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Abstract 1 

In current optimization methods for free-form shells, the shape and topology are usually optimized 2 

separately. These methods are based on the assumption that the shape and topology of a shell 3 

influence each other only slightly, but this is not always correct. Moreover, different 4 

parameterization models are used in the shape optimization and topology optimization of 5 

free-form shells, which brings difficulties to carry out the integrated optimization. To solve this 6 

problem, an integrated method is proposed for simultaneously optimizing shape and topology for 7 

free-form shells. A uniform parameterization model based on NURBS solids is established to 8 

parameterize the free-form shells. In this model, only a small number of variables are used to 9 

describe both the shape and topology of the shell. In this way, the integrated optimization problem 10 

can be simplified, thus decrease the computational complexity. The integrated optimization of 11 

shape and topology integrated optimization is a complicated and large-scale optimization problem. 12 

Solving this problem requires a suitable optimization method. In this paper, the Method of Moving 13 

Asymptotes (MMA) is adopted. Finally, numerical examples are presented to address the 14 

importance of the optimization sequences and show the effectiveness and application of the 15 

proposed method.  16 

 17 
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1. Introduction 1 

One of the ultimate aims of the structural engineers is to design safe and economical structures. 2 

Among different types of structures, shells are mechanical efficient. Benefitting of the excellent 3 

structural behavior, shells are always light weight structures. Engineers and architects, attracted by 4 

its elegance and aesthetic performance [1], even called the shells the structural “prima donna” [2].  5 

Among the shells, free-form shells are favored for their rich architectural expressions and 6 

excellent performances. But sometimes their irregular shapes may result in a bad structural 7 

behavior. A sub-working group of the International Association for Shell and Spatial Structures 8 

(IASS) [3] emphasized the importance of the shape design for free-form shells. To solve this 9 

problem, a series of methods to find shells with better structural behavior were proposed. In the 10 

early time, the shape of shells was found through experimental methods, such as the soap film 11 

method [4] and the hanging method [5]. In recent decades, numerical methods for improving the 12 

structural behavior of shells has become the dominant research method.  13 

Stress distribution within shells is the most important aspect affecting the structural performance. 14 

Triangular stress distributions in the cross section lead to unfavorable mechanics of shells; the 15 

stress distribution should be as uniform as possible in optimized shells [6]. The more the stress 16 

state resembles a membrane stress state, the better is the performance of shells. Changing shell 17 

shapes mainly affects the stress distribution, thus many researchers proposed the shape 18 

optimization method to improve the structural capacity. Bletzinger and Ramm proposed a 19 

structural optimization method to optimize the shape of shells [7]. Next, they investigated the 20 

differences in shapes of shells generated by different methods, such as the hanging method, the 21 

soap film method and a structural optimization based method [8]. A common conclusion was that 22 

optimization methods are a generalization of the form finding methods [9]. A comparative review 23 

of the optimization methods for shells and their relationship to form finding methods was given in 24 

[10]. In some cases, it was noticed that even slight changes of the shape of shells had important 25 

improvements of the structural behavior [11].  26 

To solve a structural optimization problem, there are three important parts. In terms of the 27 

mechanics in the optimization process, usually, the finite element method (FEM) is used. 28 

Researchers used programs like NASTRAN, MSC/NASTRAN, ADINA and ANSYS [1, 12-16]. 29 
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Different optimization algorithms are considered in the mathematical part, such as the gradient 1 

based method [17], the genetic algorithm [18-19] and the firefly algorithm [20]. Finally, different 2 

parameterization methods were proposed. For example, in [14] a major node method was 3 

proposed to parameterize the shape of shells and reducing the number of variables in the 4 

optimization process. In [21] a non-parametric based method was proposed for optimizing the 5 

shape of free-form shells. 6 

Topology optimization of shells received relatively limited attention by researchers, compared to 7 

shape optimization of shells. In [22], a method to optimize the shape and thickness of free-form 8 

shells was proposed. In the method, a linear interpolation of nodal thickness variables was used, 9 

which avoided discontinuities of thicknesses within and between elements. The integrated 10 

optimization of shells, considering the shape and topology optimization was investigated in 11 

[23-25]. With the progress of the 3D printing construction technology, the construction of complex 12 

forms becomes possible [26]. To fully exploit this technology, more investigations of the 13 

integrated optimization of free-form shells are required.  14 

Usually, the shape optimization and topology optimization were two separate processes in the 15 

shell optimization design. The shape of shells was optimized while maintaining the topology. In 16 

[12], it was concluded that the optimized shape of shells was sensitive to their topology, and the 17 

change of the shell topology resulted in different optimized shapes. The two optimization 18 

problems are connected; the optimal result could not be obtained by divided optimizations [23-25]. 19 

To obtain more optimized results, the simultaneous optimization approach for shells is required. 20 

The approach needs to be elaborated to prevent wrong results due to interaction of shape and 21 

topology. Usually, researchers used different parameterization models for describing the shape and 22 

topology of free-form shells, which brings difficulties to integrate the two optimization procedures 23 

in one method. This paper focuses on developing a suitable and uniform approach for the 24 

integrated shape and topology optimization of free-form shells. 25 

In this paper, a uniform parameterization method is established to describe the geometry of the 26 

shell. Based on this parameterization method, a shape and topology integrated optimization 27 

method of free-form shells is proposed. In the geometry part, the Non-Uniform Rational Basis 28 

Spline (NURBS) function is selected as the basic function to formulate the uniform 29 
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parameterization model. Usually, NURBS surfaces are used in the shape optimization of shells [19, 1 

20, 22, 25]; Here NURBS solids are used as an alternative. The geometry data is stored in a few 2 

control points, the dimension of NURBS can be easily extended to allow more design freedom. 3 

The control points are used to adjust the geometry of the free-form shells and are used as the 4 

variables in the optimization process. In the mathematical part, the Method of Moving Asymptotes 5 

(MMA) [27] is used to solve the integrated optimization problem of minimizing the strain energy 6 

of shells with a volume constraint. It was concluded that accounting for minimizing strain energy 7 

is an implicit way of improving the structural behavior in the optimization of shells [1]. ANSYS 8 

software is used to solve the mechanic problem. By combining the three parts together, the shape 9 

and topology integrated optimization method is established. 10 

The paper comprises four sections. After the introduction section, the second section describes the 11 

methodology. It contains the establishment of the uniform parameterization model, the 12 

transformation method of different parameterization models and the framework of the integrated 13 

optimization method. The third section includes numerical examples. They are tested and 14 

discussed to illustrate the effectiveness of the proposed method. The last section presents the 15 

conclusions of this paper. 16 

2. Methodology 17 

2.1 Uniform parameterization model 18 

2.1.1 Basis and notations 19 

A NURBS solid is a type of embedding volume. The fundamentals of NURBS in [30] are 20 

summarized here. A NURBS solid is a piecewise polynomial solid based on weighted control 21 

points. The basic NURBS function 
, ( )i pN   is decided by knot vectors 

0 1{ , , ... , }m p    , 22 

where p  
is the degree, i

 
is the index of the control points, 

 
is a real number called the knot 23 

and m
 

is the number of control points. An interval 
1[ , ]i i    

is called a knot span and the whole 24 

patch is 
0[ , ]m p  

. The -k th
 
repeated times of knots decide the continuity by 

p kC 
. Then, the 25 

basis function 
, ( )i pN 

 
can be defined as in Eq. (1). 26 
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By the linear combination of control points 
iP , weights iW

 
and basic functions 

, ( )i pN  , the 1 

NURBS solids can be computed. For compact notation, the function R
 

is defined in Eq. (2), the 2 

NURBS solid can be calculated in Eq. (3). 3 

1 2 3

1 2 3

, , ,

, , ,

[ ( ) ( ) ( )]
( , , )

[ ( ) ( ) ( )]

i p j p k p ijk

ijk

i p j p k p ijk

N N N
R

N N N

  
  

  



W

W  
(2) 

In terms of the NURBS solid, it can be generated by the three-order tensor product of the knot 4 

vectors (
1  , 

2  
and 

3 ), shown in Eq. (3). The 1 2 3m m m 
 

control points 5 

1 2 3 ( 1 , 1 and 1 )ijk  i =  ... m j = ...m     k = ... mP
 
form the control point polyhedron, the orders of 6 

NURBS basic functions defined on three knot vectors are 1p , 2p
 

and 3p
 

respectively. The 7 

NURBS solid representing a shell in the physical and parametric space is shown in Fig. 1. In the 8 

NURBS model, index 3m  in the control point polyhedron is 2, and there is only one knot span in 9 

3  to represent the topology of shell elements. 10 

31 2

1 1 1

( , , ) ( , , )
mm m

ijk ijk

i j k

R     
  

 PE  (3) 

 

Fig. 1. The NURBS parametric model and the represented shell  

 

2.1.2 Geometry parameterization of free-form shells  11 

NURBS haves been used previously to parameterize the shape of shells’ shape in the shape 12 
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optimization process in [19, 20, 22, 25]. In this paper, in Eq. (3), the parameters define the 1 

geometry including the shape and the topology of free-form shells. The order of NURBS basic 2 

functions affects the continuity. Using more control points in parameterizing a shell, on the one 3 

hand moreincreases the number of optimization variables are providedwithin in the optimization 4 

process, on the other hand the optimized result could be different (see discussions in Section 5 

3.5.3)and thus allows for more freedom in describing the shape and topology. For shells, the 6 

thickness is much smaller than the other sizes. The other parameters are set to satisfy the demand 7 

in describing the shape of the shells. The finite element analysis model is generated according to 8 

the design parameterization model. How toThe mesh used in the finite element analysis model 9 

could affect the analysis result. I, in this paper the structural uniform meshes with shell elements 10 

areis used for shells. In order to obtain the aimed meshes from the parameterization model, 11 

uniform knots in the parameterization model are adopted, each knot in the parameterization model 12 

represents the node in the analysis model, and knot spans denotes structural elements. The 13 

thickness of the knot denotes the density of the element which can be used in the topology 14 

optimization. 15 

Minimizing the difference between the parameterization model and the analysis model is 16 

important. Fig. 2. is an example of analysis models based on one parameterization model with 17 

different knot spans. It shows that the difference between two models can be decreased to an 18 

acceptable level by increasing knot spans.  19 

 

Fig. 2. Analysis models based on the same parameterization model with different knot spans 

Fig. 3 shows an example of adjusting the geometry of a shell by changing control points in the 20 
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parameterization model. In the figure, 
ijkP

 
are the control points of the parameter model. The 1 

shape can be changed through sijk  P  and changing the thickness by tijk  P . By increasing 2 

t , a void area in the parameter model appears, which leads to a hole in the FEM model. In this 3 

paper, a minimal thickness is assigned to elements in a hole with a small Young’s modulus to 4 

prevent singularity in the analysis. The black and gray areas in the thickness contour of the FEM 5 

model indicate solid parts and the white areas indicate void. In this way, the NURBS-based model 6 

is taken as the common basis to parametrize the shape and topology of a shell. Besides, the change 7 

of the shape by varying the shape model doesn’t affect variables in the topology model. The shape 8 

of structures is decided by the mid-surface of the shape model whereas the topology is the result 9 

of the difference of control variables of the topology model. Both the shape and topology are 10 

determined and changed implicitly by the control points of the parameterization model. 11 

  

Fig. 3. Adjusting a parametric model through control points 

Customarily, the number of variables in the topology optimization relates defines to the structural 12 

meshes [31]. The huge number of un-coupled variables causes the problem of mesh instability in 13 

the topology optimization [28]. The noise clean technique is adopted for this kind of problem [25]. 14 

Taking advantages of the parameterization model, only a small number of control points is used to 15 

describe the geometry of shells and taken as optimization variables. Besides, the continuity of the 16 

model provides smoothness between each element, which prevents the mesh instability problem in 17 

A

A-A section

A

 

 

 

s

ijkP

t t

t
t
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an implicit way [28]. When the thickness of the shell elements is lower than a threshold value, the 1 

material in those areas is interpreted as insignificant. The thickness optimization in a broad sense 2 

is also a way of the topology optimization and it leads to more optimal result than topology 3 

optimization [29]. In this paper, the minimum thickness is assigned as 1% of the original 4 

thickness. 5 

2.2 Transformation method of parameterization models  6 

As we know, the number of variables will influence the computational costs and optimization 7 

results. According to the uniform parameterization model in Section 2, the number of shape 8 

variables equals to the number of topology variables. In this section, a method of parameterizing 9 

the same shell with different parameterization models is established. It enables that the number of 10 

variables changes during the optimization, which gives extra flexibility considering efficiency and 11 

effectiveness in optimization processes. More specifically, different NURBS solids will be used 12 

for shape and topology (or thickness) optimization, both representing the same shell structure. 13 

The most important point is that all parameterization models should describe the same geometry 14 

of a shell, or the structural analysis results could be different in terms of the shape 15 

parameterization model and the topology parameterization model. For establishing different 16 

parameterization models while maintaining the same geometry, the transformation method based 17 

on NURBS Global Interpolation [30] is introduced. 18 

The parameters of the original model with 
1 2 3n n n 

 
nodes are set as, the orders 

1 2 3( , , )p p p , 19 

control point polyhedron 
1 2 3 ( 1 , 1 and 1... )ijk  i =  ... m j = ...m    k = m  P

 
and uniform knot values 20 

( , , )i j k  
 1 2 3( 1... , 1... , 1... )i n j n k n   . Then the parameters of the new model are control 21 

points 1 2 3 ( , and )ijk  i = 1 ... m j = 1...m     k = 1... mP , orders 
1 2 3( , , )p p p

 
and uniform values 22 

( , , )    
on the new knot vectors. The values of ijkP

 
are required and calculated as follows. 23 

Firstly, the node data of the new model is calculated in Eq. (4) and is known. Solving this equation 24 

directly is complex. Since ( , , )  E  
is the tensor product result, ijkP

 
can be calculated in a 25 

simpler way by a sequence of surface interpolations followed by curve interpolations. 26 

Commented [MH1]: I do not understand this part. Maybe 

you can skip it. 
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31 2

1 1 1

( , , ) ( , , )
mm m

ijk ijk

i j k

R     
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E P  (4) 

Secondly, the Eq. (4) can be written as Eq. (5), where 
3

1

( ) ( )
m

ij k ijk

k

R 


Q P . It shows that the 1 

solid is interpolated by surfaces with varying parameters  .  2 

31 2 1 2

1 1 1 1 1

( , , ) ( , )[ ( ) ]= ( , ) ( )
mm m m m

ij k ijk ij ij

i j k i j

R R R        
    

  E P Q  (5) 

Thirdly, the Eq. (5) can be transformed as Eq. (6), where 
2

1

( ) | ( ) ( )
m

i j ij

j

R  


T Q . It means that 3 

the interpolation surfaces of the fixed parameter 
 

can be interpolated by curves with varying 4 

parameters  . 5 

1 2 1 2 1

1 1 1 1 1

( , ) ( )= ( )[ ( ) ( )] ( ) ( ) |
m m m m m

ij ij i j ij i i

i j i j i

R R R R        
    

   Q Q T  (6) 

Fourthly, by solving three simpler linear equations the required control points ijkP
 

can be 6 

obtained. Solving the Eq. (6) in advance, curve control points ( ) |i T
 

with fixed 
 

can be 7 

calculated. Then subtitute the result in 
2

1

( ) | ( ) ( )
m

i j ij

j

R  


T Q , surface control points ( )ij Q
 

8 

are calculated.  9 

Finally, the control points ijkP are computed by solving 
3

1

( ) ( )
m

ij k ijk

k

R 


Q P .The procedure of 10 

transforming a shell parametric model is shown in Fig. 4. In the figure, (a) shows the node data of 11 

the original model, (b) the interpolated surfaces, (c) the interpolated curves based on the surfaces, 12 

(d), (e) and (f) are the solving steps to calculate interpolated points of curves, surfaces and finally 13 

the required shell parametric model. 14 
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Fig. 4. The procedure of transforming a shell parametric model 

Due to the analytical difference of the interpolation process, the new models based on this method 1 

lead to the a geometrical dissimilarity y difference from compared to the original model. However, 2 

the difference can be kept within a small range. An example in Fig. 5 shows analysis models based 3 

on the different parameterization models. The original model has 5 5 2   
control points with 4 

orders (2, 2,1)
 

and 30 30  knot spans. In figure (a), the number of control points increases, 5 

the average difference of the nodal coordinates comparing with ones of the original analysis model 6 

is about 0.01%. In figure (b) the orders increase. In figure (c) the orders decrease to create the 7 

model, obviously large differences occur. By increasing the number of control points in (e), the 8 

difference is reduced. In figure (d) both the number of control points and orders are increased. 9 
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Fig. 5. Different models transformed from the original one 

2.3 Framework of the integrated optimization method 1 

The establishment of a mathematical model of the optimization problem is shown in Eq. (7).  2 

max min max

min max min max

find: ( , )

min: ( ) ( )

s.t. : ( ) , ( ) ,

,

k k k

k k

k i k

k k

f SE

V V t t t







  
    

X S T

X X

T T

S S S T T T

 (7) 

Where, 
kX  

are the optimization variables of the k-th step, consisting of shape variables kS
 

and 3 

topology variables kT . The variations of shells can be seen in Fig. 3, where the t  and s  for 4 

different control points forms the vectors kS  and kT  respectively. In this paper, only the 5 

Z-direction coordinates of the control points are optimized. The objective function ( )kf X  
is the 6 

structural strain energy ( )kSE X . In the topology optimization process, the SIMP material model 7 

with penalty h [31] is adopted combined with the density variables ( )i kt T  of the i-th element to 8 

modify the Young’s modulus, shown in Eq.(8). The variables can be calculated through the 9 

thickness as shown in Fig. 3. ( )kV T  is the volume constraints of the shell. 10 

 
0

( )
h

i kE E t T  (8) 
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In the parameterization model, the topology density ( )i kt T  of the i-th element is decided by 1 

variables kT , thus it brings the difficulty to find the distinct topology optimization result. 2 

Reducing the coupling of the densities is of importance. The adaptive constraints for topology 3 

variables and the filter 
 

of the ( )i kt T  are proposed to solve this problem. The filter is shown 4 

in Eq. (9). It is the smooth Heaviside step function, where boundaries are maxt  and mint ,   is the 5 

value of the smooth area. In this way, density constraints 
min max( )i kt t t T in the Eq. (8) can be 6 

simplified. The adaptive constraints with the varying boundaries of topology variables are as 7 

follows in the k-th step 
max min max,initial min,initial( ) ( ) k T T T T  where   is 0.1 in this paper. 8 

max min( , , , )i it t t t   

(9) min

max

min min min( )/

min max

max max max( )/

1
,

e

,

1
,

e

i

i

it t

i i i

it t

t t t t

t t t t t

t t t t

 

 

 

 

 

 

 


    


    

     


 
The shape and topology integrated optimization is theamounts to a complicated and large-scale 9 

optimization problem. The MMA method [27] is used in this paper. Based on sequential convex 10 

programming, this optimization method can solve the complex optimization problem by solving a 11 

sequence of explicit and convex approximated sub-problems. Using MMA optimization method to 12 

update the optimization variables, the sensitivities of the variables are required. In this paper, due 13 

considering the o a small number of optimization variables and simplicity inthe ease of 14 

implementing, the first-order forward finite difference method is used to calculate the sensitivities 15 

for the objective function and the constraint function, written as Eq. (10). There are some 16 

differences of shape variables and topology variables, such as the magnitude of allowable 17 

variation. The large difference may result in numerical errors of the result. To solve this problem, 18 

the scaling technique is utilized in [25]. However, in this paper it is not necessary to scale the 19 

variables. The difference of results is slight, which means these two types of variables are nearly 20 

independent. The verification is discussed in Section 3.5.1. 21 

( ) ( )i

i i

f x x f xf

x x

  


 
 (10) 
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Finally, summarizing Section 2, a method is proposed to optimize free-form shells. The flowchart 1 

is shown in Fig. 6. The terminatione condition is that the difference of two-step values of the 2 

objective function is smaller than a given minimum numbertolerance, which denotes indicates that 3 

a stable optimized result is obtained.  4 

 

Fig. 6. The procedure of the integrated optimization method 

3. Numerical examples and discussions 5 

In this section, several numerical examples are presented to verify the proposed method. The 6 

important factors of this method are illustrated through the discussion. In these examples, the 7 

triangular elastic shell elements considering both in-plane and out-of-plane states are used. The 8 

parameters of the MMA optimizer are at default settings as in [27]. 9 

3.1 Example one 10 

This shell is simply supported by four corners and subject to a concentrated load F=10kN. The 11 

Young’s modulus of the material is 
92 10 Pa

 
and the Poisson’s ratio is 0.3, the span of the shell 12 

is 6 m, the original rise is 0.45 m, and the original thickness is 0.1 m. The original geometry of the 13 

shell is shown in Fig. 7. 14 
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Fig. 7. The original shell 

Taking the advantages of the structural symmetry, the shell within blue lines in Fig. 7. is analyzed 1 

and optimized. Two parameterization models are established, in the shape optimization the model 2 

is constructed by 4 4 2 
 

control points with the order (3,3,1) , and in the topology 3 

optimization it is constructed by 7 7 2   
control points with the order (2,2,1) . The original 4 

FEM analysis model of 20 20  meshes are shown in Fig. 8.  5 

There are 10 shape variables and 28 topology variables in this optimization problem, shown as red 6 

points in Fig. 8. The number of the variables in the optimization process is independent of the 7 

FEM meshes. In the traditional density-based topology optimization method, each element has an 8 

optimization variable which may cause the instability problem in the result. Here, the continuity of 9 

the parameterization model provides the continuous changes between the elements, which prevent 10 

the mesh instability problem in an implicit way. 11 

  

(a) Shape optimization parametric model (b) Topology optimization parametric model 

Fig. 8. Two parameterization models 

In the optimization process, the maximum shape change is 1.5 m, and the max volume is limited 12 

to be less than the half of the original volume. The convergence analysis of the finite difference 13 

approximations is presented in Fig. 9. It has the stable region of the finite difference from 10-3 to 14 

10-7, in the present case the finite differences were set to 10-4. Fig. 10 shows the history of the 15 

F=10KN

6m6m
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shape and topology optimization including some snapshots of topology contours. The total strain 1 

energy reduces to 31.76 Nm after 70 optimization steps. 2 

Fig. 11 shows the optimum shell after the shape and topology optimization, which appears like a 3 

four-bar truss structure. Moreover, the shape of the optimized shell shows zero-order smoothness 4 

(i.e. C0 continuous) across the two lines of symmetry. This is a result of the applied NURBS. An 5 

optimization taking the complete shell as point of departure would clearly have resulted in another 6 

shape. Note that appropriate boundary conditions have been selected in the finite element model, 7 

representing the symmetry in a mechanical sense. The calculated displacement field is thus 8 

first-order smooth across the lines of symmetry and the obtained shape of Fig. 11 is a valid result. 9 

 

Fig. 9. Convergence analysis of the finite difference approximations 
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Fig. 10. The history of the shape and topology optimization  

  

Fig. 11. The geometry after the shape and topology optimization 

3.2 Example two 1 

The shell in this example has the same parameters as the first example, but with different load and 2 

support conditions, as shown in Fig. 12. The convergence analysis of the finite difference 3 

approximations is shown in Fig. 13. Similar with results of Example one, it has a stable region for 4 

finite differences from 10-3 to 10-8; the finite difference in this example is set to 10-4. 5 

 

Fig. 12. The original shell 

 6 

 

Fig. 13. Convergence analysis of the finite difference approximations 
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Fig. 14 shows the history of the shape and topology optimization and some snapshots of the 1 

contours. In this example, the minimal strain energy reduces to about 155.1 Nm after 90 2 

optimization steps. Fig. 15 shows the shell after the shape and topology optimization. 3 

 

Fig. 14. The history of the shape and topology optimization 

 

Fig. 15. The geometry after the shape and topology optimization 

3.3 Example three 4 

This example aims to optimize an irregular shell by changing the shape and finding the 5 

distribution of a reinforced layer at the bottom of the shell. The original geometry of the irregular 6 

shell is shown in Fig. 16. The span of the shell is 13 m, the rise is 0.8 m, and the thickness of the 7 

shell and the reinforced material is 0.1 m and 0.05 m respectively. It subjects to the uniform load 8 

1.25 kN/m2. The Young’s modulus of the material is 
92 10  Pa

 
and the Poisson’s ratio is 0.3. 9 

Then Young’s modulus of the reinforced material is 
103 10 Pa

 
and the Poisson’s ratio is 0.3, 10 
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supported below the shell. 1 

 

 

(a) Top view of the model (b) Analysis model with 40 40  elements 

Fig. 16. The original shell 

The parameterization model of this shell in the shape optimization is constructed by 6 6 3   2 

control points with the order (3,3,1) . The topology optimization model has 8 8 3   control 3 

points with the order (2,2,1) . The control points can be separated by three layers, the two lowest 4 

layers control the geometry of reinforced material. The relative position of the two upper layers in 5 

the parameterization model is fixed to maintain the topology of the shell. Only a quarter of the 6 

control points are taken as optimization variables, due to the 4-fold rotational symmetry (the blue 7 

area in Fig. 16. (a)). 8 

During the shape and topology optimization process, the maximum shape change is 3 m and the 9 

finite differences equal to 10-4. The maximum volume constraint is 50%. Fig.17 is the geometry of 10 

the shell after the 37 steps optimizing. The strain energy of the optimized shell is only 11.63% 11 

from the original shell. It is about 34.7% of the shell with the same optimized shape but without 12 

the reinforced material. And it is about 85.26% comparing to the shell with the optimized shape 13 

and uniform distribution of the reinforced material. 14 

 

 

 

(a) The front view (b) Perspective (c) Reinforced material 
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contour 

Fig. 17. The optimized geometry of the shell 

3.4 Example four 1 

In this example, the proposed method is extended to optimize a short thin-walled box with a 2 

closed (square) cross-section. Box-shaped structures are generally designed to resist the torsion. 3 

The finite model of this structure is shown in Fig. 18. It is fixed at the left edges and subjected to 4 

four concentrated loads of 10 kN each, at the right edges. The Young’s modulus of the material is 5 

92 10 Pa
 
and the Poisson’s ratio is 0.3. 6 

 

Fig. 18. The finite element model 

Four parametric models are created and combined to describe the geometry and topology of this 7 

structure. In the shape optimization, only the out-of-plane variation of the control points are taken 8 

as the optimization variables. The control points on the boundary edge are fixed during the 9 

optimization process. Due to the 4-fold rotational symmetry, only one face of the model is 10 

considered during the optimization process. The variations of the other three faces are obtained 11 

from the result of the first face. The parametric shape model is constructed by 4 4 2   control 12 

points with the order (3,3,1)  and the topology optimization model has 8 8 2   control points 13 

with the order (2,2,1) . 14 

During the optimization, the maximum out-of-plane shape variation is 1 m and maximum material 15 

proportion is 50%. The finite differences equal to 10-4. The optimization result after 126 iterations 16 

is shown in Fig. 19. The total strain energy is reduced from 236.5 Nm to 74.8 Nm. In the 17 

optimized structure, the shape is slightly twisted and the members are nearly 45°on each face 18 

which present the truss-like system. 19 
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(a) The front view (b) Perspective (c) Optimized topology 

Fig. 19. The optimized result of the boxed-shape structure 

Moreover, another structure with the length 6 m are optimized. With the frame work, within the 1 

proposed method, only the X-direction coordinates of control points need to be changed. It is 2 

convenient to design the similar type of structures. The optimization result is shown in Fig. 20. 3 

The section of the free edge is enlarged and the twisting is reduced. The strain energy is reduced 4 

from 583.13 Nm to 151.87 Nm. 5 

  

(a) Perspective (b) Front view 

Fig. 20. The optimized result 

3.5 Discussions 6 

In this part, more numerical examples are tested and compared to illustrate the detailed 7 

characteristics of the proposed method. The parameters of the examples are similar with the 8 

previous examples in Section 3.1 and 3.2. 9 

3.5.1 The verification of the variable independence 10 

In this section, the independence of the shape variables and topology variables are discussed. 11 

Based on the model of two examples, the results of three different variable scaling schemes are 12 

compared. Apart from considering the selected scheme of scaling optimization variables, the 13 

optimization conditions of the compared cases are all the same with within two both examples, 14 



22   

 

including such as the analysis loads, boundary conditionsies, parameterization models and, 1 

parameters of the MMA method and so on. The first scheme is without scaling variables. The 2 

second one uses scaled variables, the scalinged scheme is introduce explained in the below. The 3 

last one considers that the shape variable and the topology variable are independent. In the last 4 

case, the shape variables and the topology variables are updated in the MMA optimizer separately.  5 

Based on the concept in [25], the scaling of the variables is based on the the scaling factors kk 6 

which is the ratio of the largest difference of the shape and topology optimization variables, shown 7 

in Eq.(11). In the equation, maxT  and 
minT  are upper and lower boundaries of topology 8 

optimization variables, maxS  and minS  are boundaries of shape optimization variables. The new 9 

topology variables Z  are obtained by scaling the original T  topology variables as kkZ = T / . 10 

max min

max min

max )

max( )
kk






(T T

S S
 (11) 

The optimization histories for the three schemes based on Example one and Example two are 11 

shown in Fig. 21. The results of the three schemes of two examples are nearly the same, for both 12 

examples. It denotes that shape variables and topology variables are independent. All the schemes 13 

are thus suitable to solve these specific problems. Note that the current paper uses the third 14 

scheme. 15 

  

(a) Example one (b) Example two 

Fig. 21. Optimization history of three schemes 

3.5.2 The necessity of the simultaneous optimization 16 

The simultaneous optimization of shells not only benefits the decreasing of computational costs, 17 

but also leads to the more optimized results. In this part, a comparison of the shape and topology 18 
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optimization of the two examples is presented, in terms of the simultaneous optimization sequence, 1 

the Shape by Topology optimization sequence and the Topology by Shape optimization sequence 2 

respectively. 3 

The optimized geometry of the three optimization sequences of the two examples is presented in 4 

Fig. 22. It is noticed from the figure that, for the sequence of shape optimization by topology 5 

optimization, the two optimized shells has the similar shape with the result of the simultaneous 6 

optimization. However, the shape differences lead to an evident difference in the topology result. 7 

In the sequence of topology optimization by shape optimization, the topology optimization results 8 

are different comparing with the simultaneous optimization result, thus results in the very different 9 

optimized shapes of the shells. The results of strain energy are presented in Table 1. The strain 10 

energy of the simultaneous optimization sequence is smaller than the obtained energy for the two 11 

other sequences. The simultaneous optimization sequence is necessary to obtain a more optimized 12 

result. 13 

 

Fig. 22. The optimized results of three optimization sequences 

Table 1 

Strain energy results (Nm) of three optimization sequences 

 Shape-by-Topology Topology-by-Shape Simultaneous  

Example one 61.30 33.64 31.76 

Example two 160.24 278.7 155.1 

3.5.3 The impact of using different parameterization models for one problem 14 

The integrated optimization of the shell can proceed with only one parameter model (In this case 15 

the number of shape optimization variables remains equal during the topology optimization). 16 

However, it may lead to failure and inefficiency in finding the optimized geometry. A comparison 17 

with previous results is presented in Fig. 23 to demonstrate the necessity of using the 18 
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transformation technique of parameterization models as prescribed in Section 2.2. In the 1 

comparison, the optimization parameters and step numbers are similar with the Example two. 2 

In the Fig. 23 the shell optimized by one model with uniformly 4 4  variables shows that it is 3 

hard to get the accurate topology optimization result by a small number of variables. Moreover, 4 

the result optimized of 7 7
 

variables shows that the more variables in the shape optimization 5 

do not guarantee a better result but may result in a worse one. Usually, due to the increasing 6 

nonlinearity of the optimization problem with an increasing number of the shape variables, the 7 

difficulty to find optimized results is largely increased. 8 

 

Fig. 23. The comparison of using the different models 

The parameterization model gives the flexibility of choosing the number of variables in the 9 

optimization process. The optimization results of different numbers of variables are discussed. 10 

Next, a comparison based on Example two in which the numbers of topology optimization 11 

variables are chosen as 7 7 , 9 9
 

and 11 11 . The result is presented in Fig. 24. In figure (a), 12 

the shell with more topology variables shows a more detailed optimization results. In figure (b), 13 

the strain energy of the results of 7 7 , 9 9
 

and 11 11 variables reduces to 155.1 Nm, 14 

153.14 Nm and 149.27 Nm respectively. With even more variables in the topology optimization, a 15 

more optimized result can be obtained, while more computational costs are required.  16 

 

(a) The result after the optimization 
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(b) The history of the shape and topology optimization 

Fig. 24. The result of different numbers of variables in the topology optimization 

3.5.4 The comparison between thickness and topology optimization 1 

In the proposed method, the shape and thickness optimization of the shells can be achieved with a 2 

slight change of the parameters during the optimization process. In the thickness optimization, the 3 

penalty factor h  in the SIMP in the Eq. (9) equals to 1. A comparison of shape-thick 4 

optimization and shape-topology optimization of two examples is shown in Fig. 25. 5 

 

Fig. 25. The geometry of the two kinds of the integrated optimization 

In the result of the shape-thickness optimization, the strain energy of the two examples reduce to 6 

24.76 Nm and 135.78 Nm respectively, which are smaller than the results of the shape-topology 7 
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optimization (31.76 Nm and 155.1 Nm). Obviously, the thickness optimization is the generation of 1 

the topology optimization in the proposed method. After the integrated optimization, the pure 2 

membrane state of the shell is approached. The thickness optimization provides more suitable 3 

geometry to transform the forces than the topology optimization.  4 

4. Conclusion 5 

In this paper, an integrated optimization method of for simultaneously optimizing shape and 6 

topology for free-form shells is proposed.  7 

1. A uniform parameterization model based on NURBS solids with a transformation method is 8 

developed to parameterize and optimize the shape and topology of free-form shells. Although 9 

shape variables and topology variables are independent in each optimization step, the optimized 10 

structure is affected by both. 11 

2. Based on the parameterization model, a small number of variables are used to optimize the 12 

free-form shape and topology of the shell, thus simplifying the integrated optimization problem 13 

and improving the efficiency. Taking the advantage of the higher continuity of the parameter 14 

model, the problem of the formation of checkerboarding patterns and mesh instability in the 15 

topology optimization can be prevented.  16 

3. It is noticed from the numerical examples that, the simultaneous optimization sequence is 17 

necessary and results in more optimized geometry, compared with the other two optimization 18 

sequences (Shape-by-Topology sequence and Topology-by-Shape sequence), while reducing the 19 

computational costs. 20 

4. With a little change of the parameters in the method, the shape and thickness optimization 21 

problem can be solved instead of the shape and topology optimization. It shows that the shells 22 

after shape and thickness optimization have a better structural behavior than the one of the shape 23 

and topology optimization. With the development of construction techniques such as 3D printing, 24 

free form shells can be designed more efficiently considering thickness optimization. 25 

5. The proposed method gives the flexibility to change the number of variables for parameterizing 26 

one shell and leads to the flexible optimization considering both effectiveness and efficiency. 27 

Moreover, the method can be utilized to reinforce the free-form shell by considering the reinforced 28 

material in the optimization process. Moreover, the method can be extended to optimize more 29 
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structures such as the boxed-shaped structures. 1 
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