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Abstract

The performance of time-interleaved analogue-to-digital (A/D) converters is often significantly

degraded by timing mismatch errors. In this project we explore methods for performing recon-

struction of signals from recurrent non-uniform samples. We analyse how time-skews affect

the spectrum of the output signal. Several methods for estimation of the unknown parameters

(time-skew and gain), using techniques required only the outputs of the A/D converters, are

represented in this paper. We also present a filter-bank which perform signal reconstruction

from these estimates. It is assumed that the input signal is analog band-limited and that

the time-skews, which are introduced by the system before each A/D, are smaller than the

sampling interval. The system is described in time-domain.
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1 Introduction

Requirements for modern electronic systems as a rule include a reduction in cost, power

consumption, and size, along with providing an increase in speed, accuracy, testability, and

system robustness. These benefits can be achieved by digital methods which allow to com-

pensate for inadequate analog circuit performance and by allowing system designers to relax

analog system constraints.

Converting an analog signal to the digital form includes two main processes: sampling and

quantization. A single analog-to-digital (A/D) converter has to provide sampling with very

fast sampling rate (Fs) in order to handle modern system requirements. Because the cost

of A/D converters and power consumption grow faster than linearly with sampling rate, the

method which distributes the load across many converters becomes very attractive for systems

with high sampling rates. In other words, we can benefit from converting a continuous-time

band-limited signal to a discrete-time signal using a number of A/D converters equal to M ,

each operating at 1/M of the Nyquist rate.

Since the converters are typically not synchronized, the resulting time-discrete signal is a

combination of uniform samples, where each sequence corresponds to samples at 1/M of the

Nyquist rate of a time delayed version of the continuous time signal. Thus, the resulting

discrete-time signal corresponds to recurrent non-uniform samples of the continuous-time sig-

nal.

It is well known that a band-limited signal is uniquely determined from its non-uniform sam-

ples, provided that the average sampling rate exceeds the Nyquist rate.The article ”Filter-

bank reconstruction of band-limited signals from non-uniform and generalized samples” [1]

shows that we can reconstruct such a signal by dividing the time axes into non-overlapping

intervals of length MTs
1 , and apply a reconstruction filter-bank by assuming that time-skews

are constant and known to the filter-bank.

Because it is impractical to manufacture totally identical hardware, some other parameters,

such as gains introduced by the branches, have to be estimated for improving signal recon-

struction. Some systems (for example, systems operating in a big range of temperature) may

require estimation to be done periodically or adaptively.

1Ts here is the sampling interval

3



CHAPTER 1. INTRODUCTION

There are two general approaches to system calibration. The first one is to pilot a signal (the

signal with is known for the receiver) in the input in order to facilitate direct estimation of the

unknown parameters. The various implementation of such a method can have disadvantages

such as requiring extra hardware, decreasing the sampling resolution and cause system delays

by requiring operation of the converters to be interrupted. The second approach is to perform

blind recovery using only the output of A/D converters. In this project the last approach is

used.

Thus, our problem is to determine unknown parameters and design a reconstruction filter-

bank which will be used in order to reconstruct signal efficiently. We will describe the system

in the time domain.

This report is divided into 7 chapters. Chapter 2 presents the problem formulation, stating the

challenges which relate to the processes of sampling and quantization a designer is faced with.

The reconstruction of a signal represented by non-uniform samples is represented in Chapter 3.

Chapters 4 and 5 discuss the estimation of the unknown parameters and evaluate performance

for the estimates. The system evaluation, including quantization, is described in Chapter 7.

In Chapter 8 the conclusion sums up the most important results, and finally an appendix

contains the main important scripts and function that have been used for implementation of

the system using Matlab.
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2 Problem formulation

As applications become more advanced, a single state-of-the-art analogue-to-digital converter

(A/D converter) may be insufficient to handle system sampling requirements since it may

not able to sample fast enough or may consume a large amount of power to do so. At high

sampling rates, time-interleaved A/D converters offer an efficient method of sampling by dis-

tributing the load across many A/D converters.

As shown by figure 2.1, time-interleaved A/D converters operate in a round-robin manner. If

the system contains M converters, and the sampling period is Ts, then each converter operates

with period T = MTs for each converter and a spacing Ts between consecutive converters.

This means that we have reduced the requirement for sampling rate for each converter of the

system, but a new problem arises: inaccurate (or non-uniform) sampling. This problem may

be caused by differences in a signal path length or other kind of restrictions in the physical

layout.

x(t)
x[nT ]

x[nT + 1 + τ1]

x[nT +M − 1 + τM−1]

A/D

A/D

A/D

y[nT ]

y[nT + 1]

y[nT +M − 1]

H0(ω)

H1(ω)

HM−1(ω)

S
U
M x̂[n]

Figure 2.1: Time-interleaved ADC system with M converters

The block diagram in figure 2.1 shows that the input analog signal x(t) is split into M

branches, sampled with period Ts, and converted in to the digital signal x̂[n]. The role of a

filter-bank is to compensate for the time-skews τ , introduced by each branch.
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CHAPTER 2. PROBLEM FORMULATION

We assume that x(t) is band-limited with cut-off frequency Ωc, i.e. the Fourier transform is

zero for Ωc < |Ω|. The overall sampling period Ts is chosen such that the sampling procedure

is able to fulfil the Nyquist criterion: the Nyquist rate is the minimum sampling rate required

to avoid aliasing, equal to two times the highest frequency component contained within the

signal. Restrictions for the input signal are described in more details in Chapter 3.

The time-skew τ0 introduced by the first branch is taken as reference, i.e. it is equal to

zero. Time-skews introduced by the other branches can take any value between −Ts < τi < Ts.

So, the time-skews are defined by following interval vector, where the first element is equal

to zero:

τ = [0 τ1 τ2 . . . τM−1] (2.1)

The filter-bank uses information about time-skews to compensate distortions of the output

signal. To estimate τ in this project, the method of least squares (LS) and some adaptive

methods (recursive least squares (RLS) and least mean squares (LMS)) are used. Only out-

puts from A/D converters are used to perform estimation of time-skew parameter. These

three methods described in more details in Chapter 5.

The functions of the A/D converters and the filter-bank for the system presented in figure

2.1 are discussed in the next two sections.

2.1 Analog-to-Digital Conversion

A/D conversion in our system (figure 2.1) is realised by quantizing the sampled signal, i.e.

the compression of a discrete signal to a lesser set of representative levels. We assume that

the A/D converters in each branch are identical.

Quantization is a many-to-one mapping, as such, there will be loss of data when the quan-

tization is performed on an arbitrary analog signal. The number of quantization levels is

determined by the number of bits used to quantize. A quantizer size of n bits will be able to

represent 2n different quantization levels.

In this project, uniform, scalar, mid-rise quantization is used because of its simplicity. It

means that the process of quantizing consists of mapping a set of one-dimensional (scalar)

signal values with uniform quantization steps, without being able to represent 0 (mid-rise).

We assume that this quantization is suitable because the only restriction for input signal is

that it has to be band-limited. If we have some other (statistical) information about the input

signal, some other type of quantization can be used in order to improve efficiency (or reduce
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2.1. ANALOG-TO-DIGITAL CONVERSION

quantization noise). The uniform, scalar, mid-rise quantization process is given by:

Quantized =

⌊
S

Qstep
+ 0.5

⌋
∆ (2.2)

Where S is the signal sample value, ∆ is the quantization step and b·c is rounding downwards

to the nearest integer.

We first need to find the representative values the quantizer can take. As such we define the

dynamic range of the input as 2V , the number of quantization levels as L, and the step-size as

∆. L is defined by the number of bits (n) used by the quantizer, such that L = 2n. Dynamic

range can vary slightly for different A/D converters in the system.

The step size of a uniform scalar quantizer is a function of both the dynamic range of the

input and the number of quantization levels, such that:

∆ = 2V
L (2.3)

The quantizer is described by a set of quantized representative levels rk, where k = [1 2 . . . L]

and decision boundaries qi, with i = [1 2 . . . L− 1] . This can be seen in figure 2.2.

∆

r1 r2 r3 r4 r5 r6 r7 r8

q1 q2 q3

0

q4 q5 q6 q7

Figure 2.2: Depiction of uniform, scalar, mid-rise quantizer by representative levels and deci-
sion boundaries.

Figure 2.2 shows that if an input value is between two successive q’s: qi and qi+1, then the

output value from the quantizer is the rk lying in between of these two decision levels. If the

input value is either above the highest, or below the lowest quantizer representative level, the

signal value will be represent by the nearest quantization representative level, or simply be

”clipped”.

If we define the quantization error ε as the difference between the quantized sample and

the original signal sample, we can calculate the mean squared quantization error and relate

7



CHAPTER 2. PROBLEM FORMULATION

it to the quantizer output resolution. For uniform quantizer and signal values distributed

uniformly over the given range, the mean squared quantization error is defined as ∆2

12 [?].

Thus the selection of the dynamic range of the quantizer (r1 → rk) results in a trade-off

between quantizer resolution and signal clipping. If the r’s are chosen closer to each other,

with a lower maximum and higher minimum value, the resolution will increase and the mean

squared quantization error will be reduced. In return all the signal values above or below r’s

maximum and minimum will be truncated to the nearest representation level.

If we assume that the input signal is highly correlated, we can improve our system by using

linear prediction (or DPCM1), that means we can modulate the input signal such that dis-

tortions2 introduced by quantization are reduced.

2.2 Filter-bank reconstruction

The function of the filter-bank is to recover the transmitted signal (from a continuous-time

signal that has been distorted by a noisy channel) and the time-skews between samples.

According to the Nyquist criterion, the minimum bandwidth required to avoid ISI 3 is half of

the symbol rate ( 1
2T ). There are an infinite number of pulses that satisfy the Nyquist criterion,

and in practical systems Raised cosine pulses is commonly used [3]. The bandwidth W of

such a pulse is larger than its minimum value (which corresponds to ideal band-limited pulses)

by a factor of 1 + α:

W =
1 + α

2T
(2.4)

and the pulse shape of the raised cosine pulses is given by:

g(t) =

(
sin(πt/T )

πt/T

)(
cos(απt/T )

1− (2αt/T )2

)
(2.5)

This gives us pulses with zero-crossing at multiples of T (here we have T = Ts). This is

illustrated by figure 2.3. There are two parameters which can be optimised in filter design:

roll-off factor α and filter length K. The filter length K assumes that we have duration of

the filter impulse response equals (2K + 1)T or t ∈ (−KT,KT ) for K = 1, 2, . . .). With

increasing α follows an increase in bandwidth, but the pulse tail decays more rapidly in the

time domain. The same with the length of the filter: as we increase the length, characteristics

of the filter becomes more accurate. In this project we use α = 0.5. Choosing the value of K

is discussed in chapter 7.

1Differential Pulse Code Modulation
2Distortions here is measured as D =

∑
i
(x̂[i]−x[i])2

x[i]2
3Inter symbol interference
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2.2. FILTER-BANK RECONSTRUCTION

−5 −4 −3 −2 −1 0 1 2 3 4 5
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

t

g
(t

)

Figure 2.3: Cosine roll-off filter in the time domain. Parameters: α = 0.5, K = 5

As we can see from figure 2.3, the pulse has its maximum value (which is equal to 1) at

t = 0 and zero-crossing approximately at t = nT, for n = ±1, 2, . . .. So this filter can

reconstruct the signal, which is sampled with sampling rate Ts = T , perfectly, without ISI.

On the other hand, if we have some time-skew τ (as was defined earlier) in the input pulse-

sequence, we no longer have zero-crossing at t = nT, for n = ±1, 2, . . . and maximum is

no longer equal to 1 at t = 0. This is illustrated by figure 2.4. As a consequence, we have

distortions of the reconstructed signal, caused by ISI.
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CHAPTER 2. PROBLEM FORMULATION

−5 −4 −3 −2 −1 0 1 2 3 4
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

n

g[
n
]

Figure 2.4: Inaccuracy in cosine roll-off filter coefficients caused by the time-skew. (Blue -
coefficients without any time-skews, red - time-skewed coefficients)

The filter-bank have to use information about τ in order to compensate for distortions, which

are caused by time-skews (or ISI-distortions) of the output signal. As was mentioned above,

to find τ , we use oversampling and take advantage of the excess bandwidth in the system.

The filter-bank treats the signal in each branch separately, and adds them together at the

output. The main principles of designing the filter-bank are described in detail in Chapter 4.
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3 Signal modelling

As was already mentioned in Chapter 2, the input signal is restricted to be band-limited with

cut-off frequency Ωc, i.e. the Fourier transform is zero for Ωc < |Ω|. In this chapter we discuss

modelling of the signals which fulfil these restrictions.

There are a lot of functions which fulfils the restrictions for input signal. First of all we model

our input signal in the time domain as sinc-shaped pulse because it is strictly band-limited in

the frequency domain. And then we model input signal as band-limited white Gaussian noise.

3.1 Input signal modelled as sinc-function

In order to make an adjustment of the input signal we model our signal such that the band-

width of the input signal can be changed. Parameters which define the signal bandwidth

in the frequency domain are time interval, sampling interval and length of the signal. In

the Matlab implementation the function which is used for signal modelling in this project is

x = gensignal(tau, l, time,wc), where

• τ is a vector ofM elements representing time-skews between the first and other branches;

• l is a scalar representing the length of the signal as number of samples (signal is repre-

sented as vector, l is length of this vector);

• time is the length of the signal measured in seconds (sec) such that we can represent

sampling interval Ts =
time

l
measured in sec; and Fs =

1

Ts
=

l

time
measured in Hz.

• wc represents the desired bandwidth of the sampled signal.

The next sections demonstrate more detailed examples of modelling the input signal.

3.1.1 Example for the case with two branches

As example for modelling band-limited signal, we first use a determined (sinc-shaped) func-

tion. In Matlab implementation an analog signal is always represented as discrete signal with

a small sampling interval. Analog version of the signal x(t) =
sin(wct)

πt
with parameters

M = 2, l = 2000; time = 200; wc = 0.1 ∗ 2π in the time domain is represented below:

11



CHAPTER 3. SIGNAL MODELLING

−100 −80 −60 −40 −20 0 20 40 60 80 100
− 5 · 10−2

0

5 · 10−2

0.1

0.15

0.2

t, sec

x
(t

)

Figure 3.1: Analog signal x(t)

The highest (or cut-off) frequency for a given signal is wc = 0.2π. According to the Nyquist

criteria, to avoid aliasing, sampling rate Fs (ws = 2πFs) for this signal has to be equal

to or exceed 2Fc (wc = 2πFc). We can then sample the signal using sampling frequency

Fs ≥ 0.2 Hz. The signal in figure 3.1 is represented as the sampled signal with Fs = 10 Hz.

Because sampling rate is 50 times more then we should take to fulfil Nyquist criteria, it looks

like an analog signal. The signal sampled with sampling rate Fs = 1Hz (or five times bigger

than the Nyquist rate for the signal) is represented in 3.2. We can see that the length of the

sampled signal y[n] is ten times smaller than the length of the analog signal x(t).
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3.1. INPUT SIGNAL MODELLED AS SINC-FUNCTION

−100 −80 −60 −40 −20 0 20 40 60 80 100
− 5 · 10−2

0

5 · 10−2

0.1

0.15

0.2

n

y
[n

]

Figure 3.2: Signal y[n] modelled as a sampled version of the analoge signal with sampling
interval ten times bigger than for signal x(t). Parameters: l = 200, τ = [0 0]

As we can see from figures 3.1 and 3.2, although the form of the sampled signal is not so

smooth as for analog signal, it is almost the same. It means there would not be any problem

to reconstruct the analog signal from its samplings if we choose a sampling rate fulfilling the

Nyquist criteria.

In order to analyse the signal in the frequency domain, we take the Fourier transformation for

a discrete time aperiodic signal [4]. Analysis equation for Discrete Time Fourier Transform

(DTFT) is:

X(w) =

∞∑
n=−∞

x[n]e−jwn (3.1)

In our example signal y[n] is a sampled version of x(t) consisting of signals from M branches.

Than the DTFT of y[n], assuming no time-skews between branches, is:

Y (w) =

∞∑
n=−∞

y[n]e−jwn (3.2)

=

∞∑
n=−∞

sin(wcn)

πn
e−jwn (3.3)

For M = 2 we can represent odd samples as yodd[n] = x(t)|t=(2k+1+τ1)Ts and even samples

13



CHAPTER 3. SIGNAL MODELLING

as y[n]even = x(t)|t=2kTs for k = 0, ±1, ±2, . . . ± l

2
. Without loss of generality, we assume

Ts = 1.

Y (w) =
−j
2π

l/4∑
k=−l/4

[
(ejwc2k − e−jwc2k)e−jw2k

2k
+

(ejwc(2k+1+τ1) − e−jwc(2k+1+τ1))e−jw(2k+1)

2k + 1 + τ1

]
(3.4)

=
−j
2π

l/4∑
k=−l/4

[
ej2k(wc−w) − e−j2k(wc+w)

2k
+
ej(2k+1)(wc−w)+jwcτ1 − e−j(2k+1)(wc+w)−jwcτ1

2k + 1 + τ1

]
(3.5)

Now we assume τ to be small and apply first order Taylor series expansion for the exponential

function ex with complex x.

ex =
∞∑
n=0

xn

n!
(3.6)

= 1 + x+O(x2) (3.7)

For our example now we have ejwcτ1 ≈ 1 + jwcτ1 and e−jwcτ1 ≈ 1 − jwcτ1. We rewrite

expression 3.5 as:

Y (w) =
−j
2π

l/4∑
k=−l/4

[
ej2k(wc−w) − e−j2k(wc+w)

2k

]

+
−j
2π

l/4∑
k=−l/4

[
ej(2k+1)(wc−w) − e−j(2k+1)(wc+w)

2k + 1 + τ1

]

+
wcτ1

2π

l/4∑
k=−l/4

[
ej(2k+1)(wc−w) − e−j(2k+1)(wc+w)

2k + 1 + τ1

]
(3.8)

If we deal with uniform sampling (or τ1 = 0), the last term disappears, and 3.8 can be

rewritten as:

14



3.1. INPUT SIGNAL MODELLED AS SINC-FUNCTION

Y (w)uniform =
−j
2π

l/4∑
k=−l/4

[
ej2k(wc−w) − e−j2k(wc+w)

2k
+
ej(2k+1)(wc−w) − e−j(2k+1)(wc+w)

2k + 1

]
(3.9)

=
−j
2π

l/4∑
n=−l/4

(ejn(wc−w) − e−jn(wc+w))

n
(3.10)

=

l/2∑
n=−l/2

sin(wcn)

πn
e−jwn (3.11)

≈

1, |w| ≤ wc
0, wc < |w| ≤ π

(3.12)

The spectrum Y (f)1 for the uniformly sampled signal y[n] is shown in figure 3.3.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1 · 10−3

2 · 10−3

3 · 10−3

4 · 10−3

5 · 10−3

6 · 10−3

f

|Y
(f

)|

Figure 3.3: Spectrum of the uniformly sampled signal y[n]

The oscillatory behavior (Gibbs phenomenon) which we can see near the band edge is due

to the truncation of the input sinc-function in the time domain. Truncation of the length

(or multiplication of y[n] with rectangular window) is known to introduce ripples in the fre-

quency response characteristic due to the non-uniform convergence of the Fourier series at a

1the digital frequency f =
F

Fc
; w = 2πf

15



CHAPTER 3. SIGNAL MODELLING

discontinuity [3], Chapter 10.2.2.

If τ1 6= 0, the first two terms of equation 3.8 does not give the same spectrum as shown in

figure 3.3 because of the second term is divided by τ1 The spectrum consisting of the first

two terms for the case with τ = [0 0.9] is represented in figure 3.4.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1 · 10−3

2 · 10−3

3 · 10−3

4 · 10−3

5 · 10−3

6 · 10−3

f

|Y
(f

)|

Figure 3.4: Spectrum for the non-uniformly sampled signal y[n], consisting of the first two
terms of equation 3.8

The last term in 3.8 can be rewritten as

wcτ1

2π

l/2∑
k=0

ej(2k+1)(wc−w) − e−j(2k+1)(wc+w)

2k + 1 + τ1
= wcτ1

l/2∑
k=0

cos((2k + 1)wc)

π(2k + 1 + τ1)
e−j(2k+1)w (3.13)

The spectrum given by the third term in equation 3.8 is shown in figure 3.5.
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Figure 3.5: Spectrum for the non-uniformly sampled signal y[n], consisting of the third terms
of equation 3.8

The figure 3.6 shows the spectrum for the non-uniformly sampled signal given by equation

3.8.
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Figure 3.6: Spectrum for the non-uniformly sampled signal y[n], given by equation 3.8
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The approximation used in 3.7 can be improved by using second and higher orders of Taylor

approximation. The expression for second order Taylor approximation is represented below:

ex =
∞∑
n=0

xn

n!
(3.14)

= 1 + x+
x2

2!
+O(x3) (3.15)

If we use second order Taylor approximation for expression 3.5, equation 3.8 will have one

more term:

−j
2π

l/2∑
k=0

−w2
cτ

2
1

(
ej(2k+1)(wc−w) − e−j(2k+1)(wc+w)

)
2(2k + 1 + τ1)

=
−w2

cτ
2
1

2

l/2∑
k=0

sin((2k + 1)wc)

π(2k + 1 + τ1)
e−j(2k+1)w

(3.16)

Figure 3.7 shows the spectrum given by the equation 3.16. The spectrum for the non-uniformly

sampled signal consisting of four therms is represented in figure 3.8.
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Figure 3.7: Spectrum for the non-uniformly sampled signal y[n], consisting of the fourth term
given by equation 3.16
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Figure 3.8: Spectrum for the non-uniformly sampled signal y[n], including the fourth term
given by equation 3.16

If we continue to increase the order of Taylor approximation, the resulting spectrum for the

non-uniformly sampled signal y[n] will have a shape as represented by figure 3.9.
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Figure 3.9: Spectrum of the sampled signal y[n], τ = [0 0.9]
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As we see from figure 3.9 with τ1 6= 0 we have the frequency components which are symmetric

around f =
n

2
for n = 0, ±1, ±2 . . . and have the width of 0.1 (the same as band for the

signal). These lobes increase in magnitude with τ1. With small oversampling (in our example

we have sampling rate five times bigger than we need to fulfil the Nyquist criteria), it can

result in aliasing and distortions in reconstructed signal. We can also see that the shape of

the spectrum in the band |f | ≤ 0.1 is not rectangular as in figure 3.3 but it is slightly affected

by the magnitude of τ1.

If we have a system with M > 2, then we can rewrite the samples from p-branch as y[n]p =

x(t)|t=(Mk−p+τ [p])Ts for k = 0, ±1, ,±2 . . .
l

2M
. In the case with M branches, equation 3.8

can be rewritten as

Y (w) =
j

2π

M−1∑
p=0

l
2M∑

k= −l
2M

[
ej(kM+p)(wc−w)ejτp(wc−w) − e−j(kM+p)(wc+w)e−jτp(wc+w)

kM + p+ τp

]
(3.17)

The spectrum for the non-uniform sampled signal for the case withM = 4 and τ = [00.90.90.9]

is shown in figure 3.10.
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Figure 3.10: Spectrum of the sampled signal y[n], τ = [0 0.9 0.9 0.9]

As we can see from figure 3.10, for the case with M = 4 we have the frequency components

which are symmetric around f =
n

M
for n = 0, ±1, ±2 . . . and have the width of 0.1. For
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3.2. INPUT SIGNALS GENERATED AS BAND-LIMITED WHITE GAUSSIAN NOISE

the case with M ≥ 5 these lobes will cause aliasing as shown by figure 3.11.
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Figure 3.11: Spectrum of the sampled signal y[n], τ = [0 0.9 0.9 0.9 0.9 0.9]

Thus far we discussed the subclass of band-limited signals which consists of spectrally ”full”

signals. We see that aliasing for this type of signals occurs in the band wc < |w| ≤ π and the

algorithm described in Chapters 5 and 6 can be used to estimate the unknown timing skews.

We can also use passband signals with aliasing in other band, i.e. the Fourier transform is

non-zero for
π

2
≤ |w| ≤ 2π

3
. If we use this kind of signals for the case with M = 2 converters,

then aliasing in spectrum for y[n] appears in the band
π

3
≤ |w| < π

2
. The calibration algo-

rithm described in this report can be modified to handle such a signals as long as the input

signal band is known the the system. In this report we discuss only the first subclass of signals.

3.2 Input signals generated as band-limited white Gaussian noise

To justify why we use band-limited white Gaussian noise as input signal, we will see how sig-

nals used in practical systems such as speech, music and pictures can be modulated in order

to improve system efficiency. These signals are highly correlated. In this section we describe

how removal of the input signal redundancy affect distortions2 introduced by quantization.

Assuming the original signal is redundant, there are a lot of techniques which allows us to re-

duce range of the signal measured as difference between the biggest and smallest values. The

2or Signal-to-Quantization noise Ration (SQNR), see Chapter 7
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CHAPTER 3. SIGNAL MODELLING

redundancy can be reduced for example by sending the difference between two neighboring

values instead of sending signal values directly. As was mentioned in Chapter 2, the selection

of the dynamic range for quantizer (which depends on signal range) results in a trade-off

between quantizer resolution and signal clipping.

We will illustrate how this technique works in the next example. In our example we are going

to use an audio signal. Audio quality speech has a bandwidth of 8kHz and is thus, according

to the Nyquist criteria, sampled at 16 kHz. A 16 bit A/D converter is used, thus resulting

in a bitrate of 16 ∗ 16 = 256 kbits/sec. A resolution of 16 bits corresponds to 65536 different

quantization representation levels (the corresponding range is (32678, 32767)). Assume we

manage to find a representation of the input signal with a range two times smaller than the

range for the original signal, this corresponds to reducing quantization noise by four (see

Chapter 2). On the other hand, we can reduce bitrate while keeping quantization noise the

same.

There are a lot of techniques allowing us to reduce range for redundant signals. Some of them

quantize each successive signal sample separately and then transmit the difference between

two quantized values obtained. It is also possible to derive the difference of two successive

signal samples and then transmit the quantized value of this difference. In these report we

describe a more advanced type of modulation of the input signal - DPCM3) based on lin-

ear prediction. DPCM builds upon the above discussed ”difference” principle, but instead

of using the difference signal directly, a linear predictor is used. Also, the difference signal

is quantized and hence DPCM is a lossy type of modulation. Before discussing the main

principles of DPCM, we will take a look on linear prediction.

3.2.1 Linear Prediction

A P th order linear prediction is basically a FIR-filter structure with P unit delay elements

and P weights described by [4]:

x̂ =

P∑
k=1

akx[n− k] (3.18)

Where x is the input signal. We want to make the estimation error e(n) = x(n) − x̂(n) as

small as possible, and to do so we need to minimize the mean square error with respect to

the prediction coefficient ak. To do so, it is assumed that input signals are correlated and it

is a stationary process.

For a first order linear prediction estimator, the resulting equation yields [4]:

3Differential Pulse Code Modulation
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3.2. INPUT SIGNALS GENERATED AS BAND-LIMITED WHITE GAUSSIAN NOISE

γee(0) = E[e2(n)] = (1 + a2)γxx(0)− 2aγxx(1) (3.19)

where γee and γxx represent autocorrelation coefficients for x and e respectively.

Equation 3.19, then minimized with respect to a, results in:

a =
γxx(1)

γxx(0)
(3.20)

Thus we have an expression for the coefficient a which minimise the estimation error.

3.2.2 Differential Pulse Code Modulation (DPCM)

In an ideal setting, where the bandwidth (and energy) is unlimited and the channel noise is

not an issue, we could have transmitted the prediction error sequence directly and used a

decoder on the receiver side to regain the original signal. But since we don’t have unlimited

energy or bandwidth, and the goal of DPCM is to lower the bit-rate needed for transmission,

we need to quantize the prediction error sequence.

The quantizer will introduce noise to the prediction error sequence e. With a reasonable

broadband signal, and small quantization steps, it’s safe to assume that this noise, q, will be

close to additive white noise. Thus the prediction error sequence after quantization eq is:

eq(n) = e(n) + q(n) (3.21)

This results in a lowered SNR4 at the decoder output due to the introduction of noise in the

system.

A smart way to reduce the noise caused by quantization is to not quantize and transmit

the prediction error sequence directly, but rather ”encode-quantize-and-decode” the signal in

the encoder as shown in figure 3.12. This enables us to lower the distortion the quantizer

introduces before transmission, and if we subtract the reconstructed signal from the original

signal, and use this as a new input for the encoder, we have efficiently reduced the noise

generated by the quantization. If we denote the reconstructed signal in the encoder as xr,

and x̂ as a·xr, where a is the prediction coefficient of a first order linear predictor, the encoder

can be described as following:

eq = e+ q = x− a · xr + q (3.22)

4Signal to Noise Ratio
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CHAPTER 3. SIGNAL MODELLING

DPCM utilizes a linear predictor along with a quantizer in its encoder, in a method called

analysis-by-synthesis, to encode and quantize the prediction error sequence. This method will

reduce the noise power, and thus reduce the loss of SNR at the decoder output [?].

− +

az−1
1

1− az−1

eq[n]

xr[n]

e[n]
x[n]

q[n]

x̂[n]

Figure 3.12: Analysis by synthesis encoder structure

Applying DPCM for the input signals gives a stationary process (white Gaussian noise

with zero mean and variance σ2 limited to the bandwidth Ωc (by using filtering opera-

tion). It means that input signal for our system can be modelled as band-limited white

Gaussian noise (such a signal in time- and frequency domain represented by figures 3.13

and 3.14). The Matlab-function for generating band-limited white Gaussian noise is x =

gensignalasnoise(tau, l, time,wc) with the same parameters as for generating signal as sinc-

function (see section 3.1).
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Figure 3.13: Sampled signal y[n] generated as filtered white Gaussian noise
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Figure 3.14: Spectrum for the sampled signal y[n] generated as as filtered white Gaussian
noise

As we can see from figure 3.14, the spectrum for the signal generated as filtered white Gaussian

noise has some components above the normalized frequency f = 0.1. This type of input signal

will be used to evaluate performance of the reconstruction filter-bank in Chapter 4, for time-

skew estimation in Chapters 5 and 6, and of the whole system in Chapter 7.
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4 Reconstruction of band-limited signals from re-

current non-uniform samples using continuous-

time filter-bank

In this chapter we present an efficient method for reconstructing a signal from recurrent non-

uniform samples. First of all, the development of continuous-time filter-bank is presented.

As examples, filter-banks for two systems (with two and three branches) are presented here.

Then we evaluate performance for a reconstruction filter-bank using a sinc-function as input

signal. Also the influence of window functions on filter-bank design is discussed in this chapter.

Recurrent non-uniform sampling is defined as a combination of M sequences of uniform

samples taken at 1/M of the Nyquist rate [9]. We model the output of the ith constituent

A/D converter (see figure 2.1) as:

yi[n] = x(nMTs + iTs + τi) + ωi[n] (4.1)

where τi model the corresponding to the ith branch time-skew and ωi[n] represents the ag-

gregate noise. As was mentioned in section 2.1, we assume the quantizer to be uniform, and

signal values distributed uniformly over the given range. We know from [6] that the sum of

many independent random variables are Gaussian distributed, therefore we model ωi[n] as

white Gaussian noise whose variance depends on the number of bits to which the input signal

is quantized. Without loss of generality, for this chapter we assume high resolution for A/D

converters (or ωi[n] ≈ 0) for ease of analysis. The effects of quantisation noise are considered

in Chapter 7. The sampling distribution for the case with two branches is illustrated by figure

4.1:

tt0 t0 + T t0 + 2Tt1 t1 + T t1 + 2T

0

Figure 4.1: Sampling distribution for M = 2

Each period consists of M non-uniformly distributed sampling points. We denote the points of

one period by ti, i = 0, 1, . . . M−1 (or using notation for yi[n], we can express i = n(modM)),

then the complete set of sampling points is:
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ti + nT, i = 0, 1, . . . M − 1; n ∈ (−∞,∞) (4.2)

It is well established that a continuous-time signal x(t) can be reconstructed from its samples

at a set of samplings times tn if the average sampling period is smaller than the Nyquist

period. The average sampling period is defined as limx→∞
tn
n . For recurrent non-uniform

distribution the following theorem is valid [1]

Theorem 1 (Yao and Thomas Theorem). Let x(t) be a finite energy band-limited signal such

that X(ω) = 0 for |ω| > W − ε for some 0 < ε < W . Then x(t) is uniquely determined by its

samples x(tn) if

∣∣∣tn − n π
W

∣∣∣ < L <∞

|tn − tk| > δ > 0, n 6= k

The reconstruction is given by

x(t) =
∞∑

n=−∞
xn

G(t)

G′n(t− tn)
(4.3)

where

G(t) = (t− t0)
∞∏

n=−∞
n6=0

(1− t

tn
) (4.4)

G′(tn) is the derivative of G(t) evaluated at t = tn, and if tn = 0 for some n, then t0 = 0.

Based on the Theorem 4, we can therefore reconstruct a continuous-time signal x(t) where

the sampling times are given by 4.2. In particular, substituting 4.2 in 4.3 and 4.4, we obtain

the following reconstruction formula for the system with M A/D converters [1]:

x(t) = γ(t)
∞∑

n=−∞

M−1∑
i=0

y[nM + i]
ai(−1)nM

π(t− nT − τ ′i)/T
(4.5)

where
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ai =
1

M−1∏
k=0
k 6=i

sin(π(τ ′i − τ ′k)/T )

(4.6)

γ(t) =
M−1∏
k=0

sin(π(t− τ ′k)/T ) (4.7)

T = MTs (4.8)

τ ′k = kTs + τ [k] (4.9)

Because of direct implementation of the reconstruction given by 4.5 is computationally diffi-

cult, a continuous-time filter-bank implementation of 4.5 can be used. To do this we inter-

change the order of summation in 4.5 and denote the inner sum by fi(t) [1], i.e. ,

fi(t) =
∞∑

n=−∞
x(nT + ti)

ai(−1)nM
M−1∏
k=0

sin(π(t− tk)/T )

π(T − nT − ti)/T
(4.10)

= si(t) ∗ hi(t)1 (4.11)

The si here represent sub-sequences corresponding to the i−branch (see equation 4.12), i.e.

shifted by τi impulse train of samples. In the last equation we have used the relation sin(t−
nπ) = (−1)n sin(t).

si(t) =

∞∑
n=−∞

x(nT + τ ′i)δ(t− nT − τ ′i). (4.12)

Using the definition of fi, we can rewrite x(t) as a sum of M convolutions:

x(t) =
M−1∑
i=0

si(t) ∗ hi(t) (4.13)

It means that each of the sub-sequences corresponds to samples at 1
M of the Nyquist rate of a

time-shifted version of x(t). Therefore, the output of the filter-bank is an aliased and filtered

version of x(t). Filter impulse response hi for every branch can be expressed as:

hi(t) = ai

M−1∏
k=0

sin(π(t+ τ ′i − τ ′k)/T )

πt/T
(4.14)

where

28
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ai =
1

M−1∏
k=0
k 6=i

sin(π(τ ′i − τ ′k)/T )

(4.15)

As we can see from 4.14, the expression for filter impulse response of each filter of the filter-

bank includes the same term: sin(πt/T )
πt/T at the point where τ ′i = τ ′k, which corresponds to an

ideal low-pass filter with cut-off frequency W/M . All the other combinations of τ ′i − τ ′k will

compensate aliasing between sequences at the output of the filter-bank. In the next section

we will show by examples how the filter-banks for system with two and three branches can

be designed.

4.1 Implementation of the continuous-time filter-bank for the signal recon-

structing

In this section we demonstrate by examples how the reconstruction filter-bank can be designed

for systems with two and three brunches.

4.1.1 Filter-bank for systems with two branches

For the case with two branches (odd end even) we have:

hodd = aodd
sin(πt/T )

πt/T
sin(π(t− (todd − teven))/T ) (4.16)

heven = aeven
sin(πt/T )

πt/T
sin(π(t+ (todd − teven))/T ) (4.17)

where

aodd =
1

sin(π(todd − teven)/T )
(4.18)

aeven =
1

sin(π(teven − todd)/T )
(4.19)

Without loss of generality we assume T = 1. If we deal with uniform samples (or equivalently

the same time offset between all the samples) the reconstruction filter-bank has the same

filter in each branch (figure 4.2). But in the case of non-uniform samples, the filter-bank is

constructed with respect to a delay introduced by the even branch as illustrated by figure 4.3
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Figure 4.2: Representation of the filter impulse response for the system with 2 branches.
(τ = [0 0]Ts)
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Figure 4.3: Representation of the filter impulse response for the system with 2 branches.
(τ = [0 0.3]Ts)

From figure 4.3 we see that filter impulse responses for both filters equal to 1 at the point

where t = 0, but at the points t = ±1, 2, . . . K (as was mentioned above, T = 1) the fil-

ter impulse responses are not equal to 0 as is for the case with uniform sampling (see figure

4.2). In section 4.2 we will illustrate how the filter-bank compensates time-skews by examples.
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4.1.2 Filter-bank for systems with three branches

Now we have T = 3Ts which means we have three samples at 1
3 th of the Nyquist rate in one

period. This is represented by figure 4.4:

tt0 t0 + T t0 + 2Tt1 t1 + T t1 + 2Tt2

t2 + T0

Figure 4.4: Sampling distribution for M = 3

For three-path implementation we can rewrite the equations in 4.14 as:

h0 = a0hcom sin(π(t+ t0 − t1)/T ) sin(π(t+ t0 − t2)/T ); (4.20)

h1 = a1hcom sin(π(t+ t1 − t0)/T ) sin(π(t+ t1 − t2)/T ); (4.21)

h2 = a2hcom sin(π(t+ t2 − t0)/T ) sin(π(t+ t2 − t1)/T ) (4.22)

a0 =
1

sin(π(t0 − t1)/T ) sin(π(t0 − t2)/T )
; (4.23)

a1 =
1

sin(π(t1 − t0)/T ) sin(π(t1 − t2)/T )
; (4.24)

a2 =
1

sin(π(t2 − t0)/T ) sin(π(t2 − t1)/T )
(4.25)

The examples of the filter-banks for systems with three branches for uniform and non-uniform

sampling are represented below:
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Figure 4.5: Representation of the filter impulse response for the system with 3 branches.
(τ = [0 0 0]Ts)

If we deal with uniform sampling (τ = 0), the filter bank have the same filters for each branch

as shown by figure 4.5.
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Figure 4.6: Representation of the filter impulse response for the system with 3 branches.
(τ = [0 0.2 − 0.4]Ts)
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4.2. EVALUATING PERFORMANCE OF RECONSTRUCTION USING
CONTINUOUS-TIME FILTER-BANK

As we can see from figure 4.6, if we deal with non-uniform sampling, filters are not the same

for each branch because time-skews have to be compensated. It is not obvious from figure

4.6 how the filter-bank compensates time-skews, but we will demonstrate it with simulation

results in the next section.

4.2 Evaluating performance of reconstruction using continuous-time filter-

bank

To measure distortions introduced by reconstruction the filter-bank, we assume that time-

offsets are estimated accurately (i.e. for our simulations we simply take the same value of τ

for filter-bank design as for signal design). Results will be presented for systems with two

and three branches.

Distortions D are defined as the difference between the output samples and the uniformly

sampled signal, normalized by signal effect, i.e.:

D =

∑
n

|x̂[n]− x[n]|2∑
n

|x[n]|2
(4.26)

Before beginning the simulations, we have to define the length of the filters in the recon-

struction filter-bank Krec. We define the filter length as (2Krec + 1)T for Krec = 1, 2, 3, . . .

measured in seconds. There is always a trade-off between the delay introduced by the filter

and distortions: the smaller the length of the filter, the smaller the delay, but distortions grow

if we reduce length of the filter. In order to show how filter length influence reconstruction

signals, we simulate signal reconstruction with values for the Krec in the range Krec ∈ (3, 20)T

while keeping all the other parameters for the system the same, i.e. l = 200, time = 200,

wc = 0.2π and τ = [00.2]Ts. Figure 4.7 shows how distortions depend on Krec. The Krec first

samples and Krec last samples of the reconstructed signal are distorted because of the filtering

operation. As we know from figures 4.2 and 4.3, the magnitude of hi grows with magnitude

of τ . It means that distortions introduced by the reconstruction filter grow with magnitude

of τ . Since for now we are not interesting in distortions introduced by filtering operations in

general, we reduce the length of the x[n] and x̂[n] by Krec samples for both sides in order to

measure distortions.
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Figure 4.7: Distortions introduced by the reconstruction filter-bank for an input signal gen-
erated as the sinc-function depending of the filter-length Krec

As we can see from figure 4.7, the distortions reduce with increasing Krec Since we have no

information about the value of allowable distortions for the system, the Krec = 10 may be

a reasonable trade-off between the distortions and delay, introduced by the reconstruction

filter, for our simulations.

4.2.1 System with two branches

For the case with two branches we denoted the second term (the first one is always zero) of

τ as the offset between uniform samples relative to the first branch and real (i.e. including

time-offset introducing by system) ones. Samplings period in each branch T is two times

bigger than overall samplings interval Ts (T = 2Ts ). That means that time-offset can not

be greater than sampling interval or τ1 < |Ts|. For our simulations we change the second

value of the time-skew vector in the range τ1 ∈ (−0.98Ts, 0.98Ts) with step size τs = 0.02Ts.

Values for other parameters for the input signal are the same as in section 5.3, i.e signal length

l = 200, time = 200, wc = 0.2π. The figure below represents how distortions, introduced by

reconstruction filter-bank, depend on time-skews.
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Figure 4.8: Distortions introduced by reconstruction filter-bank for input signal generated as
sinc-function.

From figure 4.8 we see that reconstruction is more accurate if the information about time-

skews is used by the filter-bank. We see also that distortions grows with magnitude of time-

skew, but after the |τ1| = 0.4Ts, distortions remain almost the same. This may be due to the

inaccuracies in filter-bank implementation and can be improved by using windowing functions

as discussed in section 4.2.1.

Designing the reconstruction filter-bank using windows

In general, the unit sample response for each filter of the reconstruction filter-bank obtained

from equation 4.14 is infinite in duration. In the last section we simply truncated the input

sample response hi to the length (2Krec + 1)T measured in seconds (in our examples Krec

was chosen to be equal to 10). The edge effects were neglected. In this section we consider

the effect of using window functions for the filter design. We evaluate distortions introduced

by the reconstruction filter-bank for the case then window functions are used for it’s design.

The truncation of the hi in length is equivalent to multiplying hi by a ”rectangular window”,

defined as

wrect[n] =

1, n = 0, 1, 2, . . . , 2K

0, otherwise.
(4.27)
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By using a window function we can design a filter with finite unit sample response (FIR-filter)

which can be realized in practise.

There are a lot of window functions which can be used for FIR filter design. From reference [3]

(Chapter 10.2.2) we know that using the ”rectangular window” results in a filter with relative

small main lobes and the lowest stop-band attenuation in the frequency domain. In this

report we do not consider the frequency domain, but we know that the window functions that

do not contain abrupt discontinuities in their time-domain characteristics gives better results.

The choice of window function for reconstruction filter-bank depends on system specification.

In this report we illustrate the effect of windowing by using the Blackman window function

as example which is defined as (references [3], Chapter 10):

wBlackman[n] =

0.54− 0.46 cos 2πn
2K , n = 0, 1, . . . , 2K

0, otherwise.
(4.28)

The shape of Blackman window function for K = 10 is shown in figure 4.9.
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Figure 4.9: Shape of the Blackman window function.

Multiplying hi by wBlackman result in a new unit sample response for reconstruction filter-

bank. The unit sample responses for the reconstruction filter-bank for the case with two

branches are illustrated in figures 4.10.
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Figure 4.10: Representation of the filter impulse response for the filter-bank. (τ = [0 0]Ts,
Krec = 10)

From figure 4.10 we see that for the case with Blackman window used for filter design,

the filter impulse response converges to zero more rapidly with time than for the case with

”rectangular window”. It means that we can either use the same filter length Krec and reduce

the distortions or we can reduce the length of the filter. This trade-off is shown in figure 4.11.
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Figure 4.11: Distortions introduced by the reconstruction filter-bank depending of the filter-
length Krec

From figure 4.11 we see that using window functions for the filter design gives us better

results. It means we can expect that distortions introduced by this filter (the one which

is designed using Blackman window) are reduced. To demonstrate the advantage of using

Blackman window function (and window function in general) for filter-bank design, we will

see how distortions depend on the value of τ for two filter-banks as was done in section 4.2.1.

As input signal the sinc-function with the same parameters as in section 4.2.1 is used. The

difference between distortions introduced by systems with a filter-bank designed with and

without using Blackman window is shown in figure below.
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Figure 4.12: Distortions introduced by reconstruction filter-banks designed with and without
using Blackman window function for the system with M = 2.

From figure 4.12 we see that by using Blackman window for filter-bank design we have reduced

distortions almost to the same value as for the case with uniform sampling. This is due to

the fact that windowing reduces the length of non-zero values of the filter impulse response.

We conclude that using window functions improve the system performance, and we will use

the Blackman window function in our simulations.

System with three branches

For the case with three branches we denoted the last two terms (the first one is always zero)

of τ as the offsets between uniform samples relative to the first branch and real (i.e. including

time-offset introducing by system) ones. Sampling period for each branch T is three times

bigger than overall saplings interval Ts (T = 3Ts ). That means that time-offset can not be

greater than the sampling interval or τi < Ts for i = 1, 2. We have to take into account that

τ1− τ2 < Ts. If we do not make this restrictions, then samples at times t1 +T and t2 +T may

be swapped. It violates the system restrictions because for such a case the samples can not be

defined as recurrent non-uniform samples. So, for our simulations we change last two values

of time-skew vector: τ1 ∈ (−0.9Ts, 0.45Ts), τ2 ∈ (−0.45Ts, 0.9Ts) with step size τs = 0.15Ts.

The other parameters are the same as for the case with two branches. Distortions, introduced

by the reconstruction filter-bank depending on time-skews are represented in figure 4.13.
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Figure 4.13: Distortions introduced by reconstruction filter-bank for the system with three
branches.

As we can see from figure 4.13, the distortions grow with magnitude of τ . The worst cases

are the ones where |τ1 − τ2| is highest or where we have τ large in magnitude.

As we can see, the filter-bank for system with M = 3 A/D converters introduces more distor-

tions than the system with M = 2 for the case with non-uniform sampling. It is not obvious

how distortions depends on M . Results for simulations for the systems with M = 2, 4 are

represented in Chapter 7.

In this section we evaluated performance for the reconstruction filter-bank assuming ideal

quantization of the system, or equivalently quantization noise wi ≈ 0. In Chapter 7 we will

see how reconstruction of the non-uniformly sampled signal depends on the number of bits

using for quantization.
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5 Estimation of time-skew and gain using Least Square

method

In this section we represent a least squares (LS) method for estimating at first the unknown

time-skews and then gains for each branch of the system.

The input signal x(t) is modelled as a band-limited signal with cut-off frequency Ωc, i.e., the

continuous time Fourier transform X(jΩ) = 0 for Ωc <| Ω |. The overall sampling period Ts of

the system is chosen to ensure that the sampling rate strictly exceeds the Nyquist frequency,

i.e., Ts <
1

2Ωc
. Each converter operates with sampling period T = MTs. Thus, we can

rewrite the continuous signal x(t) in term of its samplings as:

x(t) =
∑
m

x[m]sinc(t−mTs) (5.1)

where the sinc terms are defined with period Ts.

The received signal y[n] obtained by multiplexing the A/D converters outputs yi[n] (see 4.1):

y[n] = yi

[
n− i
M

]
; where n(modM) = i. (5.2)

= x(nTs + τi) + ω[n] (5.3)

=
∑
m

x[m]sinc((n−m)Ts + τi) + ω[n] (5.4)

The goal of the signal recovery problem is to estimate x[n] = x(nTs) as accurately as possible.

To do it, we develop an algorithm for estimating the unknown parameter τ .
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h[n]
y[n]

+
x̂[n]

1 ↓M 1 ↑M 1

-

z−1 ↓M τ̂i
Ts

↑M z1

z−M+1 ↓M τ̂M−1

Ts
↑M zM−1

Figure 5.1: Filter-bank for reconstructing a signal using time-skew estimates τ̂ for a small
mismatch regime.

If we approximate the reconstruction expression given by 4.5 (assuming a small mismatch

regime) by using the first order Taylor series of the function around the point τ = 0 1 it can

be reduced at times t = nT to:

x̂[n] ≈ y[n]− τi
Ts

(b ∗ y)[n], n(modM) = i 2 (5.5)

and

b[n] =

0, n = 0

(−1)n

n
, otherwise.

(5.6)

is a discrete-time filter implementing band-limited differentiation. A derivation of 5.5 is given

by reference [2] (Appendix I). Using 5.5 we can also derive the approximation equation for

the received signal:

y[n] ≈ x[n] +
τi
Ts

(b ∗ y)[n], n(modM) = i (5.7)

Figure 5.1 represents the filter-bank implementation of the reconstruction approximation

given by 5.5. The method for signal reconstruction from recurrent non-uniform samples was

described in more detail in Chapter 4.

For convenience we rewrite our reconstruction equation in matrix representation.

1the τ here is a vector containing unknown time-skews
2* represents the convolution operation here
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y = F(τ)x (5.8)

= x+
M−1∑
i=1

τi
Ts

DiBx (5.9)

= (I + TB)x (5.10)

Toeplitz matrix B represents a discrete time filter implementing bandlimited differentiation

(Bk,l = b[k − l]).

Matrix Di of size N ×N selects the entries from the ith branch.

[Di]k,l =

1, k = l, i = k(modM)

0, otherwise.
(5.11)

Matrix T is a diagonal matrix containing the unknown time-skews

Tk,l =


τi
Ts
, k = l, i = k(modM)

0, otherwise.
(5.12)

5.1 Estimation of the time-skew parameter

Time-skew τ in our system is an unknown but constant parameter equal to time mismatch

between the first and the ith converters (i = 0, 1, . . .M − 1), i.e. τi = t− iTs. Because there

is no time difference for the first converter, the first element in the vector τ is always equal to

zero, so we can simply discard the first element and represent τ as a vector of M−1 elements.

We estimate the timing skews and input signal using the method of maximum likelihood,

modelling the time-skews as non random and unknown parameters. We assume that the

noise introduced by the system is white and Gaussian, so the maximum likelihood estimate

of the non-random unknown parameter τ reduces to the least-square problem [5]. With other

words, the optimization is formulated as a least-square problem that computes the timing

skews τ̂ minimizing out-of-band energy in x̂

τ̂ = arg min
τ
‖ (L− I)(I−TH)y ‖2 (5.13)

= arg min
τ
‖ γ −Rτ ‖2 (5.14)
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where

R = [r1 r2 . . . rM−1], ri = (L− I)DiHy (5.15)

γ = (L− I)y (5.16)

Matrix L of size N ×N represents low-pass filter with cut-off frequency ωc such that x̂ = Lx̂.

(Edge effects of filtering operation are neglected).

The solution to the over-constrained least-squares estimation problem is given by

τ̂ = (RTR)−1RTγ (5.17)

5.2 Estimation of gain parameter

An approximation equation for the output of the ith A/D converter is modelled as

yi[n] = gix(nMTs + iTs + τi) (5.18)

where the g are unknown gains. It means that non-uniform gain introduced by the system

can be compensated by multiplying output from each branch yi[n] by
1

gi
. Without loss of

generality, we assume g0 = 1, and unknown vector g consists of M − 1 elements

g = [g1 g2 . . . gM−1] (5.19)

Now we can compute the first order Taylor series approximation around the point τ = 0 and

g = 1. Vector θ̂ includes 2(M − 1) unknown parameters:

θ̂ = arg min
θ
‖ γ −Rθ ‖2 (5.20)

where

θ = [τ g′]T (5.21)

R = [r1 r2 . . . rM−1 s1 s2 . . . sM−1] (5.22)

ri = (L− I)DiHy (5.23)

si = −(L− I)Diy (5.24)

g′ =

[
1

g1

1

g2
. . .

1

gM−1

]
(5.25)
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5.3 Evaluation of the performance for time-skew estimation

In this section we evaluate the performance of time-skew estimation based on the algorithm

which was described in section 5.1. We test the system by using both deterministic signal

(sinc-function) and random signal (band-limited white Gaussian noise). Inaccuracies are

measured as

ξ =
|τ − τ̂ |2

M − 1
(5.26)

First we have to choose the length of the low-pass filter L (section 5.1) and the length of the

input signal, then we simulate estimation of time-skews for system with two branches using

both the sinc-function and the band-limited white Gaussian noise as input signals, and at the

end we generalise our results for systems with three branches using the sinc-function as input

signal.

5.3.1 Choosing parameters for simulation

In this section we argue for such parameters as length of the signal and length of the low-pass

filter L.

Low-pass filter L with cut-off frequency wc for our system ensures that the signal is band-

limited and that aliasing in the spectrum is minimized. The input signal is modelled as a

band-limited signal as was described in Chapter 3. It means the system dependence on the

the filter length (or on the sharp of the spectrum of the low-pass filter) shouldn’t be too

sensitive. As example we evaluate the dependence of the time-skew estimation on the length

of the filter L. In this case we choose the τ to be [0 0.5]Ts (for other values of τ we have the

same tendency), l = 200, time = 200 and wc = 0.2π. Simulation results are illustrated in

figure 5.2:
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Figure 5.2: Inaccuracies in estimator of τ for different values of K.

From results representing in figure 5.2, we may conclude that filter length more than approxi-

mately K = 10 does not give significant improvement for estimation. Based on this, we chose

K = 10 for further measurements.

In order to find an optimal value for l for our simulations we evaluate how accuracies of the

estimator depend on the signal length l. To do it, we will change values of l in a range from

(10, 800) samples while keeping bandwidth wc equal to 0.2π radians. We choose the value of

τ = [0 0.1], because estimation method described in this chapter performs better for values

of time-skew small in magnitude. Results are presented in figure 5.3:
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Figure 5.3: Inaccuracies in estimator of τ for different values of l.

As we can see from figure 5.3, estimates for the case then the input signal is modelled as sinc-

shape give best results for values of l > 100. For the case then the input signal is modelled as

band-limited white Gaussian noise, estimates become more stable for l > 300 We use l = 400,

time = 100, wc = 0.8π for further measurements.

5.3.2 Inaccuracies in estimation of time-skew

The LS algorithm performs accurate estimation in systems where skews and gains are small in

magnitude, because the reconstruction formula given by equation 5.5 is based on Taylor series

expansion around the point τ = 0. In this section we will evaluate dependence of estimator

on the time-skew values.

The input signals are modelled as either sinc-functions or band-limited white Gaussian noise

with parameters described in section 5.3.1. In this section we will show how inaccuracies in

the estimator increase with magnitudes of τ . First of all we evaluate performance of time-

skew estimation for the system with two branches. To do it, we change the second value of

time-skew vector τ1 in the range τ1 ∈ (−0.9Ts, 0.9Ts) with step-size τs = 0.01Ts while keeping

the value of the gain vector the same (g = [1 1]). Results are presented in the figure below.
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Figure 5.4: Inaccuracies in estimation of time-skew for the signal y[n] modelled as a sinc-
function

From figure 5.4 we can see that for the same values of τ estimates are more accurate than

for others. The two minima in τ ≈ ±0.37 are due to the cut-off frequency (i.e. if we choose

cut-off frequency to be larger than in this example, these two minima move farther from the

point τ = 0).

The next figure shows results for time-skew estimation for the input signal is modelled as

band-limited white Gaussian noise. The parameters for signal modelling are the same, but

now we take the step-size τs = 0.1Ts and produce S = 10 simulations for each value of τ . The

result value for inaccuracies computed as average value for S simulations.
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Figure 5.5: Inaccuracies in estimation of time-skew for the signal y[n] modelled as band-
limited white Gaussian noise.

As we can see from figures 5.4 and 5.5, inaccuracies between the estimation of τ grows ex-

actly with a magnitude of τ . As was mentioned earlier, this fact is due to the Taylor series

expansion around τ = 0 which is used for finding an approximation for the estimated signals

reconstruction value. For values of τi which are relatively large in magnitude (for example,

τ1 > 0.2), an iterative method can be used in order to improve estimation accuracy as de-

scribed in the next section.

5.3.3 Results for the iterative method

The iterative method presented here, for improving the accuracy of the initial LS method, is

derived based on Newton’s method. Specifically, after we have found τ̂ in the first iteration,

we compute the first order Taylor series approximation of x[n] around the new point of τ

which is the result of the first iteration. As a result we find another value of τ̂ which is closer

to the desired value. In this section we present results for two and three iterations.

In the Matlab implementation for the system we simply update τ in each iteration (τ = τ− τ̂ ,

where τ̂ is the least-squares estimate).
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Estimate of τ based on two iterations

Parameters for modelling are the same as in previous section, but now we take two iterations

for each value of τ . Results for the systems with two branches using a sinc-function as the

input signals are presented in the figure below.
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Figure 5.6: Inaccuracies in estimation of time-skew for the iterative method with two itera-
tions.

For the case with two iterations, again some values of τ1 give better estimates (the second

iteration gives two extra minima in figure 5.6 compared to figure 5.4. Now all the inaccuracies

values ξ are below 10−2. Compared to the case with one iteration, estimate dependence on

value of τ is slightly weakened as expected.

The next figure show the results for the systems using band-limited white Gaussian noise as

the input signal.
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Figure 5.7: Inaccuracies in estimation of time-skew for the iterative method with two iterations
using the signal modelled as non-uniformly sampled band-limited white Gaussian noise.

For signals modelled as band-limited white Gaussian noise, performance for estimation of τ

grows as well. From figures 5.5 and 5.7 we see that dependence of τ̂ on the magnitude of τ

is slightly reduced. We can see that all the values of τ are estimated with inaccuracy ξ ≤ 10−2.

Estimate of τ based on three iterations

The parameters for modelling the input signals are the same as in previous sections, but we

now take three iterations for computing each estimate value of τ . The next two figures show

the simulation results.
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Figure 5.8: Inaccuracies in estimation of time-skew for iterative method with three iterations.
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Figure 5.9: Inaccuracies in estimation of time-skew for iterative method with three iterations.

If we compare figures 5.8 and 5.9 with figures 5.4 to 5.5 respectively, we can see that perfor-

mance for the estimator is improved further more than for case with two iterations: all the

values of ξ are below 10−3. We also see that dependence τ̂ on τ is reduced even more than
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for the case with two iterations as was expected.

Results given above confirm our theoretical expectation about ability to improve estimate per-

formance. This improvement is due to the increasing system complexity. Instead of O(M2N)

complexity (for system with only one iteration), we have I ∗ O(M2N) where I is number of

iterations.

5.3.4 System with three branches

In this section we evaluate the performance of time-skew estimation for systems with three

branches (τ is a vector of length equal to 3 with the first element τ0 equal to 0). In our

simulations we change the values of τ1 and τ2 in a range from −0.45 to 0.45 with step-size

equal to 0.05. Other parameters are the same as in previous sections. Results are presented

in figure 5.10.
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Figure 5.10: Measured inaccuracies for the estimator of τ . Parameters: Filter length K = 10,
signal length l = 402, time = 100 and bandwidth wc = 0.8π.

As we can see from the figure 5.10, inaccuracies grow with magnitude of τ . We also see

that differences between values of each of the elements of τ make sense: inaccuracies for the

estimator grow with |τ1 − τ2|. Estimation of time-skew parameter for the case with M = 3

may be improved by using more than one iteration.
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5.4 Simulations where the input signal bandwidth does not fulfil the input

signal restrictions

To fulfil input class restrictions the input signal x(t) has to be band-limited such that sam-

pling of x(t) with Fs fulfil the Nyquist criteria and with non-zero time-skews will produce the

signal y[n] having aliasing in spectrum in the frequency band wc < w < π (see Chapter 3).

It means that non-uniform periodic sampling of x(t) will produce y[n] which is unique.

The parameters for modelling are the same as in sections 3.1.1 but now we take wc = 20π.

That means we have Fc =
wc
2π

=
20π

2π
= 10, with sampling rate Fs =

l

time
=

2000

100
=

20. We then have Fs = 2Fc. This sampling rate fulfil Nyquist criteria, but does not fulfil

the requirements for our system. The spectrum for this signal (assuming no time-skew) is

represented by figure 5.11.
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Figure 5.11: Spectrum for a signal sampled with sampling rate Fs = 2Fc.

If we introduce any time-skew for the signal represented by figure 5.11, we have aliasing in

spectrum as described in chapter 3. The spectrum for a signal modelled with time-skew vector

equal τ = [0 0.3]Ts is represented by figure 5.12:
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5.4. SIMULATIONS WHERE THE INPUT SIGNAL BANDWIDTH DOES NOT FULFIL
THE INPUT SIGNAL RESTRICTIONS
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Figure 5.12: The spectrum for a signal sampled with sampling rate Fs = 2Fc and time-skew
τ = [0 0.3].

If we compare figures 5.11 and 5.12, we can conclude that it is not possible to estimate τ by

using the technique described here. This fact is illustrated by figure 5.13.
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METHOD
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Figure 5.13: Inaccuracies in estimation of time-skew without fulfilling input restriction for
x(t).

As was expected, for input signals which does not fulfil the input signal restrictions, the sys-

tem doesn’t work: even for values of τ small in magnitude, the difference between τ̂ and τ is

very big.

5.5 Evaluating the performance for gain estimation

To evaluate performance of gain estimation we use the same parameters for the simulation

as in previous section (with M = 2), but now we change the value of the second value in the

gain vector g1 to the range g1 ∈ (0.1, 2) using step size gs = 0.1 while keeping the value of

the time-skew vector the same (τ = [0 0]). The estimator inaccuracies ξg are measured as as

ξg =
|g − ĝ|2

M − 1
(5.27)

The results are presented in figure 5.14.
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Figure 5.14: Inaccuracies in estimation of gain for signal y[n] modelled as sinc-function

As we can see from figure 5.14, inaccuracies for the estimator grow with magnitude of g and

this dependence is linear. If we normalize the inaccuracies by the g2 (or measure inaccuracies

as ξg =
(|g − ĝ|2

(M − 1)g2
), we see that the normalized inaccuracies are the same for the whole

range of g and equal to 0.0047 or 0.47% of the gain. As we know from section 5.3, the depen-

dency for time-skew estimator on the time-skew is not linear. For the rest of the report we

concentrate our attention on the estimation of the time-skews and assume that the system

has the gain g always equal to 1 3.

In this chapter we described the LS-method for estimation of unknown parameters (time-

skew and gain) for a non-uniformly sampled signal. The performance of the system using

LS-method will be discussed in Chapter 7. In the next chapter we will evaluate the adaptive

method for estimation of the time-skew.

3the 1 here represents the vector of length M with each element equal to 1
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6 Adaptive filter realization

In an adaptive filter realization we can either use the desired response (pilot signal) or use only

the ADC inputs. Because the disadvantages of the first method (extra hardware, decrease of

sampling resolution and delays), we restrict our attention to the second method.

The block implementation of the time-skew estimate described in Chapter 5 has O(M2N)

complexity and takes a large amount of memory. We develop a recursive least-squares (RLS)

implementation that distributes the computation over time and adapts to shifts in the param-

eters. Instead of O(M2N) complexity every N samples RLS takes O(M2) complexity every

sample. To simplify further, the RLS algorithm can be replaced by the least mean-squares

(LMS) algorithm which takes lower complexity due to the fact that no estimation of the co-

variance matrix P is made and only the gradient is used.

6.1 Recursive Least Squares (RLS) method

In recursive implementations of the method of least squares (RLS), we start the computation

with known initial conditions and use information contained in new data samples to update

the old estimates. Therefore the length of the observable data is variable.

Compared to block implementation of the timing skew estimate (5.1), we simply take one row

u[n] of the matrix R (5.15) for each iteration.

The initialization for the RLS algorithm includes two equations:

τ̂ [0] = 0 (6.1)

P[0] = δI (6.2)

The recommended choice for the regularization constant δ is that it should be small compared

to 0.01σ2
u, where σ2

u is the variance of a data sample u(n). The value of σ has an influence

on convergence of the estimator to the true value. For large data lengths, the exact value of

the regularization constant δ has an insignificant effect.

With RLS algorithm the equation for updating the time-skew value for each iteration can be
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6.1. RECURSIVE LEAST SQUARES (RLS) METHOD

expressed as:

π[n] = P[n− 1]u[n] (6.3)

k[n] =
π[n]

λ+ uT [n]π[n]
(6.4)

ζ[n] = γ[n]− τ̂T [n− 1]u[n] (6.5)

τ̂T [n] = τ̂T [n− 1] + k[n]ζ[n] (6.6)

P[n] = λ−1P[n− 1]− λ−1k[n]uT [n]P[n− 1] (6.7)

where λ is a positive constant close to, but less than, 1. (If we have λ = 1, we have the

ordinary method of least squares). The use of the λ, in general, is intended to ensure that

data in the distant past are ”forgotten” in order to afford the possibility of following the

statistical variations of the observable data when we deal with non-stationary environments.

We define a forgetting factor λ such that the weight of the (n− i)th sample is λ−i. The case

with λ = 1 corresponds to infinite memory.

6.1.1 Results for RLS-method

For evaluating the performance for adaptive method of time-skew estimation, we measure

mismatches between the true value of time skew and the estimated ones. As was described

in Chapter 2, the magnitude of time-skews can take values between −Ts < τ < Ts. For our

simulations, we use M = 2 (the number of A/D converters for the system) or M−1 = 1 time-

skews to be estimated. We change the τ1 in the range (−0.9Ts, 0.9Ts) with step size τs = 0.1

and produce ten simulations for each value of time-skew. The result value is computed as the

average value for ten iterations. The tests are performed using band-limited Gaussian noise

as input. The δ is chosen to be equal to 10−2.

First, we decide how long the signal has to be or how many iterations is needed for convergence,

and then evaluate the performance for the method. Figure 6.1 illustrates how estimate of

time-skew depends on the number of iterations.
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Figure 6.1: Dependency of time-skew estimation value on the number of iterations for the
RLS method. (τ1 = −0.2)

As we can see from figure 6.1, for the parameters described above, the time-skew estimator

converges to the true value (with a bias) after approximately 350 iterations (the example

illustrates estimation of τ for τ1 = −0.2, but the same tendency holds for all values of τ).

We set the number of iterations equal to 400 (the same length for the input signal as was

used for evaluation performance for LS-algorithm in Chapter 5) to evaluate performance of

the method. Figure 6.2 represents the results of our simulations.

60



6.2. THE METHOD OF LEAST MEAN SQUARES (LMS)
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Figure 6.2: Inaccuracies in estimation of time-skew for RLS method.

As we can see, the RLS method performs better for values of τ1 close to zero. If we compare

figure 6.2 and figure 5.5, we can see that the RLS method (adaptive) performs almost the

same as the LS-estimation (which is based on blocks of data).

6.2 The method of Least Mean Squares (LMS)

The main advantage of the LMS method is its lower complexity. The difference between the

RLS algorithm and LMS is that no estimation of the covariance matrix P is made. Instead

estimates τ̂ are updated by the gradient direction that minimizes the error ξ[n].

The equations for updating estimators using LMS algorithm becomes

ζ[n] = γ[n]− τ̂T [n− 1]u[n] (6.8)

τ̂T [n] = τ̂T [n− 1] + µu[n]ζ[n] (6.9)

where µ denotes the step-size parameter of the update which has to satisfy the condition:

0 < µ <
λmax

2
, where λmax is the largest eigenvalue of the correlation matrix R (R is the M

by M correlation matrix of the tap inputs u[n], u[n− 1] ... u[n−M + 1]) [7].
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CHAPTER 6. ADAPTIVE FILTER REALIZATION

6.2.1 Results for LMS-method

Figure 6.3 shows the dependency of the time-skew estimation value on the number of iterations

for two values of µ.
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Figure 6.3: The Dependency of the time-skew estimation value on the number of iterations
for LMS method. (τ1 = −0.1)

As we can see from figure 6.3, the estimate produced using the value of µ = 5 ∗ 10−7 has the

lower variance, but it converges only after approximately 4 ∗ 103 iterations. For µ = 5 ∗ 10−6,

estimate converges to the same value after approximately 103 iterations, but its variance is

larger.

Although the LMS algorithm is slower than RLS in convergence, it requires only O(M) com-

putation per sample. This fact makes the LMS algorithm very attractive for real system

implementations. In simulations performed with sufficiently small step-size, the LMS algo-

rithm converges to the same skew estimates as LS and RLS methods [7].
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7 Results

In this section, we numerically evaluate the performance characteristics of the blind calibration

method for system with 2 branches. We can compare either the signal-to-quantization-noise

(power) ration (SQNR) or number of effective bits for calibrated and uncalibrated signals. If

the sampling rate Fs fulfil the Nyquist criteria, quantization is the only error in the A/D con-

version process. Thus, we can evaluate the quantization error by quantizing analog signal x(t)

instead of the discrete-time signal x[n] = xa(nTs). The SQNR for the analog signal (assuming

uniform quantization)can be expressed on a logarithmic scale as ([4] Chapter 1.4.4.):

SQNR = 10 log10

Px
Pn

= 10 log10

3

2
2L = 1.76 + 6.02b dB (7.1)

where Px = σ2
x = E[x2(n)] is the signal power, Pn = σ2

e = E[e2
q(n)] is the power of quantiza-

tion noise and b is the number of bits using for quantization (b = log2L).

Using 7.1, we can express the effective number of bits (that may be somewhat less than the

number of bits in the A/D converter) as

b =
SQNR− 1.76

6.02
(7.2)

In our test we use 12-bits A/D converters which generate the quantization noise wi[n]. The

tests are performed using the system with two branches and band-limited Gaussian noise

as input signal. Only the LS-algorithm (which is based on blocks of data) is used in this

chapter for time-skew estimation. We know from Chapter 6 that the RLS and LMS (adaptive

algorithms) converge to the same value as LS-algorithm.

7.1 Evaluation of the system performance depending on excess bandwidth

The excess bandwidth is a result of the rate using for sampling of the analog band-limited

signal. According to Nyquist criteria, Fs = 2Fc results in no exceed bandwidth. For simula-

tion in the previous section sampling rate was chosen to be five times bigger than the Nyquist

rate (Fs = 5 ∗ 2Fc). It means that information about the input signal takes only 20% of the

spectrum in the range (0, π) and gives the factor of 80% oversampling.

From Chapter 3 we know that time-skews between the branches result in overlapping in the

spectrum. To avoid distortions of the part of the spectrum Y (w) which inhold information

about the input signal and estimate the time-skew correctly, we need the exceed bandwidth
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CHAPTER 7. RESULTS

to be equal to at least 1/3 or approximately 33% (It means that only 67% of the spectrum

contains information about x(t)). In this case overlapping for the spectrum Y (w) occurs in

the band 2π
3 ≤ |f | ≤ π and does not affect the information about the signal which is in the

band ≤ |f | ≤ 2π
3 .

To evaluate how the system performance depends on exceed bandwidth, we change value of

wc in the range (0.1π, π) with step size wcs = 0.025π The results for the values of τ [1] = 0.4

are shown in figure 7.1.
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Figure 7.1: Dependency of the SQNR on the excess bandwidth.

As we can see from the figure above, SQNR increases with increasing the excess bandwidth

(for other values for the τ [1] results are similar). As was expected, the excess bandwidth

smaller than 30%, reduces the value for SQNR significantly.

7.2 Evaluation of the system performance depending on time-skew

In this section we show how the SQNR depends on time-skew. Since from previous chapters

we know that dependence reconstructed signal on τ is symmetric around τ = 0, we take only

positive values of τ1 in the range (0, Ts)) for our tests. To do it for the system with M = 2,

we change value of τ1 in the range (0, Ts) with step size τs = 0.1Ts. The block size of 200

samples and the factor of 80% oversampling are used for modelling of the input signal.
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TIME-SKEW
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Figure 7.2: Dependency of the SQNR on the time-skew value.

For the uniform sampling case, we have the same SQNR for both calibrated and uncalibrated

signals. With time-skew small in magnitude (|τi| ≤ 0.4), the system with calibration performs

better, but if the magnitude of τ becomes larger, the SQNR goes down for both systems. From

Chapter 5 we know that our system can estimate some values of τ better than the others.

Because of this we have minima for SQNR at the point where τ1 = 0.1 and maxima at the

interval τ1 = (0.3, 0.4).

From Chapter 5 we also know that the performance for system using calibration can be

improved using relinearization for time-skew estimation. The results for the systems using

two and three iterations for the time-skew estimation are shown in figure 7.3.
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Figure 7.3: Dependency of the SQNR on the time-skew value for the systems which use
iterative method for time-skew estimation.

If we use iterative method for the time-skew estimation, we extend the range of values for τ

for which estimator is more accurate (section 5.3.3). As we can see from figure 7.3, SQNR

for the system using 4 iterations approximately reaches the limit1. For the system using 2

iterations, we have the SQNR values in the range τ1 ∈ (0.4, 0.7) smaller than for the other

values of τ1. This is due to the fact that some values of τ1 are estimated more accurate than

the others (see figure ??). For the system using three iterations we also have minima in the

range τ1 ∈ (0.6, 0.7) and maxima at τ1 = 0.9. This is also due to the fact that accuracies for

time-skew estimator vary with values of τ1 (see figure ??), and we see that the range for values

of τ1, which are estimated more accurate, is extended from τ [1] ∈ (0, 0.3) to τ1 ∈ (0, 0.5).

Because of the input signal is modelled as filtered white Gaussian noise (as a random process)

and its spectrum does not equal exactly to zero for |w| ≥ wc, it cause to that the SQNR

values may vary slightly. This explains the fact that same SQNR values for systems using 3

and 4 iterations exceed the limit value.

7.3 Evaluation of the system performance depending on the number of bits

used for quantization

In order to evaluate how the system performance depends on the number of bits using for

quantization (Nbit), we test the system for values of τ1 = 0, 0.1, 0.2, 0.3 (results for other

1we define the limit as SQNR for a system which uses time-skew estimation without error
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NUMBER OF A/D CONVERTERS

values are analogous). For our simulations we change value of Nbit in the range (5, 30). The

parameters for the input signal are the same as in the previous sections.
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Figure 7.4: Dependency of the SQNR on the number of bits using for quantization.

As we can see from figure 7.4, for the case with non-uniform sampling, the SQNR grows

with Nbit linearly until the number of bits reaches the value Nbit = 10 for our system.

For the case with uniform sampling this limit is much higher. If we increase the range of

the input signal (and the range of the quantizers), then the increasing of Nbit may result in

higher SQNR, but with a new limit for Nbits after which where is no significant improvement.

7.4 Evaluation of the system performance depending on the number of

A/D converters

For our simulations we chose Nbit = 10, and we compare SQNR for two systems with M = 2

and M = 4 A/D converters. From Chapters 5 we know that estimation of the time-skew

parameter performs better for the case with M = 2 than for the case with M = 3. The

reconstruction filter-bank introduces minimal distortions for the system with M = 2 A/D

converters for the whole range of τ1 (see Chapter 4). Thus, we can expect what the system

with M = 2 converters will have the best results.

Because of the length of τ is different for these two systems, we represent the system timing

error as the sum of magnitudes of the time-skews

M∑
i=1

|τi|/(M−1) for our simulations. We use
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only one iteration for time-skew estimation, therefore we assuming small mismatch regime

and change the values of τi for in the range τi ∈ (−0.2Ts, 0.2Ts) with step size τs = 0.1Ts.

Results are shown in figure 7.5.
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Figure 7.5: Dependency of the SQNR on the number of A/D converters.

From figure 7.5 we see that the SQNR for the case with uniform sampling is the same. If

we have some time-skews, the SQNR for the system with two A/D converters is higher for

all values of

M∑
i=1

|τi|/(M − 1). If we apply the linear fitting (from Matlab graphic toolbox)

to the data sets, we see that the SQNR value in the middle of the range (at the point where
M∑
i=1

|τi|/(M − 1) = 0.1) for the system with M = 2 equals approximately 100 dB while for the

system with M = 4 it equals 75 dB (see figure 7.6).
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Figure 7.6: Dependency of the SQNR on the magnitude of time-skew for the system with
M = 4 A/D converters.

For the system with M = 5 the SQNR value in the point
M∑
i=1

|τi|/(M − 1) = 0.1 equals to

approximately 75 dB. Based on this results we conclude that with increasing of the number

of the A/D converters, the performance of the system decreases, as was expected.
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8 Conclusion

In this report we have described the method for the calibration of the time-interleaved analog-

to-digital converters. The algorithms which was represented here, produces accurate recon-

struction based on the estimation of the unknown system parameters.

At first, we discussed the reconstruction of the signal represented by the non-uniform samples.

We have seen that the non-uniform samples can be represented as sum of M sequences of

uniform samples and that the efficient reconstruction may by performed by the filter-bank

which uses information about time-skews between the samples. The restrictions for the input

signal are taken into account.

Then we represented some methods for estimation of the unknown parameters, such as the

time-skew and the gain, for the non-uniform sampled signal. This parameters can be esti-

mated using methods based on both the blocks of data (LS) and sequence of samples (adaptive

methods such as RLS and LMS). These methods perform well assuming the time-skews are

small relative the the sampling interval, but for time-skews large in magnitude the method

of realization, based on Newton’s method, may be used. We focused out attention to the

LS-estimation, but we know that all of this methods converges to the same value.

We have evaluate performance for the system using band-limited white Gaussian noise as the

input signal. The results have shown that this kind of system may be a good decision for the

cases then the load is distributed along many A/D converters.
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A Appendices

A.1 The function for the generation of the input signal

function x = gensignal_as_noise(tau, l, time, w_c)

%produces vector of l elements representing signal which is generated as white Gaussian noisew ith zero mean and variance sigma=1 and is filtered by digital filter with cut-off frequency w_c;

% tau is a vector, represents time-skews for each branch;

% l is length of the signal in samples;

% time is length of the signal in sec;

% w_c is bandwidth of the signal;

K = 10; %the length of the low-pass filter which is used for filtering of the input signal

M = length(tau);

l_path = l/M; %length of the signal in each path

X = zeros(M, l_path);

Fs_a = 1000; %sampling rate for the analog signal

Ts_a = 1/Fs_a;

t_ref = linspace(0,time,time*Fs_a);

n_ref = 1:length(t_ref);

F_c = w_c/(2*pi); T_c = 1/F_c; %cut-off frequency

T_s = time/l; %F_s = 1/T_s; %T = T_s*M;

% White Gaussian noise generation

%rng(s);

x_t_noise = randn(1,length(t_ref));

% Filter with digital cut-off requency w_c

k = -K*T_c:Ts_a:K*T_c;

F = zeros(1,length(k));

for i = 1:length(k)

if k(i) == 0

F(i) = w_c/pi;

else

F(i) = sin(w_c*k(i))/(pi*k(i));
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end

end

%Signal filtering

x_f = conv(x_t_noise, F);

x = x_f(1, (length(F)-1)/2:end-(length(F)-1)/2-1);

%Sampling points choosing

n = zeros(M, l_path);

for a = 1:M

i = round(tau(a)*T_s*Fs_a); %tau_i in samples

n(a,1)= n_ref(round((a-1)*T_s*Fs_a+i+1));

for b = 2:l_path

j = round(((b-1)*M+(a-1))*T_s*Fs_a+i+1);

n(a,b) = n_ref(j);

end

end

%Sampling

for r = 1:M

for c = 1:l_path

X(r,c) = x(n(r,c));

end

end

x = matrix_stream(X)’; %representation of the signal as a vector

end

A.2 Skript for estimation of the time-skew and gain parameters

clear all

%input parameters

tau = [0]’; % time-skews for the elements 1, 2, ... for the time-skew vector

gain = [1]’; %gains for the elements 1, 2, ... for the gain vector

tau = [0; tau]; %the first element in time-skew vector is always 0;

gain = [1; gain]; %the first element in gainv vector is always 1;

l = 400; % signal length (for each path)

K = 10; % length of low-pass filter

wc = 0.4*2*pi; %f_c = w_c/(2*pi) cutoff frequency
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time = 100;

% creating some matricies for estimation

I = ident(l); % creationg identity matrix

T = timeskewsmatrix(tau, l); %matrix containing information about time-skews

H = diffiltermatrix(l); %creating the Toeplits matrix H representing the dif.filter

L = f_rc_coeff(K, l); %low-pass filter design

tau_hatt = zeros(size(tau));

res_tau = 0; res_gain = 0;

res_quad_tau = 0; res_quad_gain = 0;

for tau_2 = -0.9:0.1:0.9

tau(2) = tau_2;

for gain_2 = 0.1:0.1:2;

gain(2) = gain_2;

y = gensignal_gain(tau, gain, l, time, wc);

%creating matrix R

tau_hatt = tau_hatt(2:end);

[R, gamma] = Rmatrix_tau_gain(tau_hatt, l, L, H, y);

%finding tau_est

teta = (R’*R)^(-1)*R’*gamma;

tau_hatt = [0; teta(1:M-1)];

gain_hatt_1 = [1; teta(M:end)]; gain_hatt = 1./gain_hatt_1;

feil_quad_tau = 0; feil_quad_gain = 0;

feil_tau = 0; feil_gain = 0;

for i = 2:length(tau)

feil_quad_tau = feil_quad_tau + (tau(i)-tau_hatt(i))^2;

feil_quad_gain = feil_quad_gain + (gain(i)-gain_hatt(i))^2;

end

res_quad_tau = [res_quad_tau; feil_quad_tau];

res_quad_gain = [res_quad_gain; feil_quad_gain];

end

74



A.3. SKRIPT FOR SIGNAL RECONSTRUCTION WITH USING INFORMATION
ABOUT TIME-SKEWS

end

% Plotting Results

t = -0.9:0.1:0.9;

semilogy(t,res_quad_tau(2:end));

figure

plot(t,res_quad_gain(2:end));

A.3 Skript for signal reconstruction with using information about time-

skews

tau = [0]’; % time-skew vector

tau = [0; tau];

M = length(tau); %number og path

l = 200; %signal length (for each path)

time = 100;

K_rec = 10; %length of reconstruction filter

w_c = 0.2*2*pi; %cutoff frequency for low-pass filter

I = 100; %Interpolation factor

% signal designing in matrix (each row represents path og the system)

s = rng; %to generate the same random sequence next time

rng(s);

x = gensignal([0 0], l, time, w_c);

rng(s); %to use the same random seguence to create y[n] as was used to create x[n]

tau_hatt = zeros(size(tau));

res_quad = 0;

for tau_new = -0.98:0.02:0.98;

tau_hatt(2) = tau_new;

rng(s)

y = gensignal(tau_hatt, l, time, w_c);

Y = stream_matrix(y’,M);

Y_i = interp(Y, I); %interpolation with factor > M

% time-skew correcting

y_interp_2 = timeskew_zeros(Y_i(2,:), 0.5+tau_new/2, I);

y_interp_1 = zeros(1, length(y_interp_2));

for n = 1:length(Y_i(1,:))
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y_interp_1(n) = Y_i(1,n);

end

h = h_rec_wind(K_rec, I, tau_hatt); %reconstruction filter

x_hatt_1 = conv(y_interp_1, h(1,:));

x_hatt_2 = conv(y_interp_2, h(2,:));

x_hatt = x_hatt_1 + x_hatt_2;

x_hatt_cut = x_hatt(K_rec*I+1:end-K_rec*I+1); %!!!!!

x_hatt_sampl = sampling(x_hatt, I/2, 0);

x_hatt_res = x_hatt_sampl(2*K_rec+1:end-2*K_rec-2);

feil_quad = 0;

feil = 0;

for i = 1:length(tau)

feil_quad = sum((x(K_rec:end-K_rec) - x_hatt_res(K_rec:end-K_rec)’ ).^2);

end

res_quad = [res_quad; feil_quad];

end

res_quad = res_quad(2:end);

%plotting result

D_norm = res_quad./sum(x(K_rec:end-K_rec).^2);

t = -0.98:0.02:0.98;

semilogy(t, D_norm);

A.4 Function for creating filter-bank for the case with M = 2

function h = h_rec_wind(K, I, tau)

%The function computes impulse filter response of the reconstruction filterbank consisting of 2 filters and return matrix (row, colomn) which includes rows = 2 = responses for filters for each brunch; colomn = length of the response;

%(2*K+1) - length of the filter;

%tau is vector representing time-skews between branches (the first element is always zero)

% I - imterpolation factor.

T = 1; %- period of saplings T = 2*T_s

L = I*100;

t = linspace(-K, K, L*K*2);
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tau_r = 0.5 + tau(2)*0.5;

%a - coeff vector

a = zeros(1,2);

a(1) = 1/(sin(pi*(-tau_r)/T)); %a_0

a(2) = 1/(sin(pi*( tau_r)/T)); %a_1

%filters

h_1 = a(1).* T./(pi*t).*sin(pi.*t./T).* sin(pi.*(t-tau_r)./T);

h_2 = a(2).* T./(pi*t).*sin(pi.*t./T).* sin(pi.*(t+tau_r)./T);

h_sampl_1= sampling(h_1,100,0);

h_sampl_2= sampling(h_2,100,0);

%windowing

M = L*K*2/100;

n = linspace(0,M-1, M);

h_ham = 0.42 - 0.5.*cos((2*pi*n)./(M-1)) + 0.08.*cos((4*pi*n)./(M-1)); %Blackman window

h_1_ham = h_sampl_1.*h_ham;

h_2_ham = h_sampl_2.*h_ham;

h = [h_1_ham; h_2_ham];

end

A.5 Skript for time-skew estimation using RLS algorithm

tau = [-0.1]’; % time-skew vector

tau = [0; tau];

M = length(tau); %number of path

l = 1000; % signal length (for each path)

K = 10; % length of low-pass filter

wc = 1*2*pi; % cut-off frequency for signal forming

time = 100;

%RLS initialization

delta = 0.01;

lambda = 1;

%creationg identity matrix

77



APPENDIX A. APPENDICES

I = ident(l);

%creating the Toeplits matrix H representing the dif.filter

H = diffiltermatrix(l);

%Low-pass filter

L = f_rc_coeff(K, l);

J = 10; % Number og iterations for each value of tau[1]

tau_est_end = 0;

t = -0.9:0.1:0.9;

res = zeros(1,l);

for tau_2 = -0.2%:0.1:0.9;

tau(2) = tau_2;

tau_res = zeros(1,l);

for j = 1:J

y = gensignal_as_noise(tau, l, time, wc);

%creating matrix R and gamma

tau_hatt = zeros(M-1,1);

R = Rmatrix(tau_hatt, l, L, H, y);

gamma = (L-I)*y;

%RLS initialization

P = delta.*ident(M-1);

%RLS update

est_tau = zeros(M-1, 1);

for n = 1:length(y)

pi = P*R(n,:)’;

k = pi./(lambda + R(n,:)*pi);

ksi = gamma(n) - tau_hatt’*R(n,:)’;

tau_hatt = tau_hatt+ k*ksi;

P = lambda^(-1)*P-lambda^(-1)*k*R(n,:)*P;

est_tau = [est_tau; tau_hatt];

end
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tau_res = tau_res + est_tau(2:end)’;

end

tau_est = sum(tau_res(1, end-100:end))/100/J;

tau_est_end = [tau_est_end; tau_est];

end

tau_est_end = (tau_est_end(2:end) - t’).^2;

%plotting results

semilogy(t, tau_est_end);

A.6 Skript for time-skew estimation using RLS algorithm

tau = [-0.1]’; % time-skew vector

tau = [0; tau];

M = length(tau); %number og path

l = 5000; % signal length (for each path)

K = 10; % length of low-pass filter

wc = 5*2*pi; %cutoff frequency for signal forming

time = 100;

%LMS initialization

mu = 0.5*10^(-5);

%creationg identity matrix

I = ident(l);

%creating the Toeplits matrix H representing the dif.filter

H = diffiltermatrix(l);

%Low-pass filter

L = f_rc_coeff(K, l);

%update

y = gensignal_as_noise(tau, l, time, wc);

%creating matrix R and gamma

tau_hatt = zeros(M-1,1);

R = Rmatrix(tau_hatt, l, L, H, y);

gamma = (L-I)*y;
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%LMS update

est_tau = zeros(M-1, 1);

for n = 1:length(y)

ksi = gamma(n) - tau_hatt*R(n,:);

tau_hatt = tau_hatt + mu*R(n,:)*ksi;

est_tau = [est_tau tau_hatt];

end

est_tau = est_tau(:, 2:end);

A.7 Skript for system testing using the iterative time-skew estimation for

M = 2

tau = [0]’; % time-skew vector

tau = [0; tau];

M = length(tau); %number of path

l = 200; % signal length (for each path)

K = 10; % length of low-pass filter

K_rec = 10; % length of the reconstruction filter

wc = 0.2*2*pi; %f_c = w_c/(2*pi) cutoff frequency for signal forming

time = 100;

I = 100; %interpolation factor

Nbit = 12;

iteration = 3; %number of iteration using for time-skew estimation

s = rng;

rng(s);

x = gensignal(tau, l, time, wc);

x_q = quantize_w_range(x, Nbit); %quantazing x(t)

% creationg identity matrix

Ident = ident(l);

T = timeskewsmatrix(tau, l);

%creating the Toeplits matrix H representing the dif.filter

H = diffiltermatrix(l);

%low-pass filter design

L = f_rc_coeff(K, l);
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tau_hatt = zeros(size(tau));

sqnr = 0; sqnr_un = 0;

h_un = h_rec_wind(K_rec, I, zeros(size(tau))); % uncolibrated reconstruction filter

for tau_2 = 0:0.1:0.9

tau(2) = tau_2;

rng(s);

y = gensignal(tau, l, time, wc);

y_q = quantize_w_range(y, Nbit);

Y = stream_matrix(y_q’,M);

Y_i = interp(Y, I); %interpolation with factor I

%%%%%%%%% reconstruction without using tau %%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% time-skew correcting

y_interp_2_un = timeskew_zeros(Y_i(2,:), 0.5, I);

y_interp_1_un = zeros(1, length(y_interp_2_un));

for n = 1:length(Y_i(1,:))

y_interp_1_un(n) = Y_i(1,n);

end

x_hatt_1_un = conv(y_interp_1_un, h_un(1,:)); %???????????????????????

x_hatt_2_un = conv(y_interp_2_un, h_un(2,:));

x_hatt_un = x_hatt_1_un + x_hatt_2_un;

x_hatt_cut_un = x_hatt_un(K_rec*I+1:end-K_rec*I+1); %!!!!!

x_hatt_sampl_un = sampling(x_hatt_un, I/2, 0);

x_hatt_res_un = x_hatt_sampl_un(2*K_rec+1:end-2*K_rec-2);

for i = 1:length(tau)

sqnr_un_res = 10*log( sum(x.^2)/ sum((x’ - x_hatt_res_un).^2));

end

sqnr_un = [sqnr_un; sqnr_un_res];

%%%%%%%%% estimation tau using iter iterations %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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tau_hatt = zeros(size(tau));

tau_new = tau;

tau_end = 0;

for iter = 1:iteration

rng(s);

y = gensignal(tau_new, l, time, wc);

tau_hatt = zeros(size(tau));

%creating matrix R

tau_hatt = tau_hatt(2,:);

R = Rmatrix(tau_hatt, l, L, H, y);

%finding tau_est

tau_hatt = (R’*R)^(-1)*R’*(L-I)*y;

tau_hatt = [0; tau_hatt];

tau_new = tau_new - tau_hatt;

tau_end = tau_end + tau_hatt;

end

tau_hatt = tau_end;

%%%%%%%%% reconstruction with using tau %%%%%%%%%%%%%%%%%%%%%%%%%%%%%

h = h_rec_wind(K_rec, I, tau_hatt); %reconstruction filter

% time-skew correcting

y_interp_2 = timeskew_zeros(Y_i(2,:), 0.5+tau_hatt(2)/2, I);

y_interp_1 = zeros(1, length(y_interp_2));

for n = 1:length(Y_i(1,:))

y_interp_1(n) = Y_i(1,n);

end

x_hatt_1 = conv(y_interp_1, h(1,:));

x_hatt_2 = conv(y_interp_2, h(2,:));

x_hatt = x_hatt_1 + x_hatt_2;
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x_hatt_cut = x_hatt(K_rec*I+1:end-K_rec*I+1); %!!!!!

x_hatt_sampl = sampling(x_hatt, I/2, 0);

x_hatt_res = x_hatt_sampl(2*K_rec+1:end-2*K_rec-2);

for i = 1:length(tau)

sqnr_res = 10*log(sum(x(K+1:end - K).^2)/sum((x(K+1:end - K)’ - x_hatt_res(K+1:end - K)).^2));

end

sqnr = [sqnr; sqnr_res];

end

SQNR = sqnr(2:end); b = (SQNR-1.76)./6.02;

SQNR_un = sqnr_un(2:end); b_un = (SQNR_un-1.76)./6.02;
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