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Abstract

In this thesis, we construct an implementation of succinct non-interactive zero
knowledge argument system. A non-interactive zero knowledge argument system
is a protocol for a party (usually known as Prover) to provide a proof of knowledge
to the solution of a statement to other parties (usually known as Verifier). The
argument system will be able to provide such proof without leaking any other
information regarding the solution. The non-interactivity allows such argument
system to be done without requiring interaction between the parties involved.
The statement that is proven in this work is the circuit satisfiability problem.
The circuit satisfiability problem is a problem of deciding whether there exists an
input that can make the final output of a circuit to be true. The argument system
is based on Lipmaa’s work [Lip13] which uses span programs and linear error-
correcting codes in its construction. We also try to give a very general explanation
on zero knowledge argument system along the way in order to provide a simple
concept to people encountering the notion for the first time. The argument system
we attempt to construct is the non-adaptive version of the argument system. This
version is useful for verifiable computation as pointed out by [PGHR13] apart from
its zero knowledge behavior. We begin by giving an overview on non-interactive
zero knowledge, followed by span programs. We then proceed to describe on how
to represent the circuit satisfiability problem using the mentioned tool. We present
our implementation afterwards, listing out the libraries and implementation details
that matters. We conclude by providing a speed measurement and possible future
improvements of this work.
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1 Introduction

1.1 Problem Statement

In daily life, it is not uncommon for a certain party to possess information that
is of interest to other parties. Knowing such information may make a person be
regarded of bigger importance and thus treated with respect and luxury. However,
as a result of this treatment there are always people claiming on knowledge of such
information even though the afore mentioned does not really possess it. This leads
to the interested parties demanding some kind of proof from the party claimed to
have the information. The easiest and most straight-forward way to do this is to
actually present such information to the interested parties by the one having the
information. However, this would mean that the possession of this information is
not exclusive to the party originally having it anymore, which might just lower
the value of that information itself. This somehow leads to a stalemate. On one
side, the interested parties needs proof to prevent any impostor from claiming to
have the information. On the other side, the party proving is reluctant to give
knowledge of such information as it might not be as valuable anymore. Impossible
as it may seems to be, this is actually possible. The first result originates from
[GMR85] shows that proving without giving any extra knowledge other than that
the party actually possesses the information can be done. This leads to the notion
of zero knowledge argument system.

Knowing that zero knowledge argument system is indeed possible, many re-
search and studies has been done on this particular field. The first zero knowledge
argument system was interactive [GMR85], where the prover and the verifier in-
teract with each other until the verifier is convinced that the prover indeed possess
certain knowledge. Moreover, the first zero knowledge argument systems provided
soundness against omnipotent adversaries. Such argument systems are called proof
systems. On the other hand, argument systems provide soundness only against
probabilistic polynomial-time adversaries. This kind of system is more known as
interactive zero knowledge, which comes from the interactive proof system. As
good as it is, the interaction in the zero knowledge argument system tends to be
impractical in many cases. One of such examples is when there are many veri-
fiers interested in the argument, needing the prover to be available for each and
everyone of the verification process. This leads to more study on how one could
possibly remove such interaction and still retains the zero knowledge property. As
an end result, several non-interactive versions of zero knowledge argument system
was proposed [BFM88].

The ongoing research on non-interactive zero knowledge argument system has
produced some interesting result such as [Gro10] and [Lip12]. More recently,
[GGPR13] propose a non-interactive zero knowledge argument system using span
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programs. This was then further improved by [Lip13] with some modifications and
the use of linear error correcting codes. This most notable result in this recent
study is that the communication overhead is constant regardless of the problem
statement size. Furthermore, the verifier only needs to do constant amount of
pairings computation in [Lip13] the non-adaptive version. From this result, it
would be of interest to see just how well does the non-interactive zero knowledge
argument system perform in the practical sense and serve as a foundation on what
possible improvement could be done on the future research. Compared to the
adaptive version, in non-adaptive version the function/circuit needs to be known
beforehand before running the argument system. The aim of this work is to imple-
ment such argument system. The non-interactive zero knowledge argument system
will work on the circuit satisfiability as the problem statement to be proven. The
non-adaptive version of this argument system has proven to be useful for practi-
cal usage such as verifiable computation shown on [PGHR13]. The performance
measurement would be generally based on the computation time and the data size
sent over the argument system’s online phase.

1.2 Outline

The work in this thesis consists of three parts. First, preliminary knowledge re-
quired to understand the non-interactive zero knowledge argument system is pro-
vided. The explanation will start with definitions of zero knowledge argument
system and span program. After the definitions, it will discuss how such span
programs may be used to construct a zero knowledge argument system. From this
idea, the explanation moves towards introducing the circuit satisfiability problem
and how to represent it using span programs. This will lead to the definition of
the gate checker span program, wire checker quadratic span program, and lastly
the circuit checker. After laying out the necessary knowledge in the representa-
tion, some general details on how the span program will be used in the argument
system is then provided. From here, further transformation of the span program
into polynomials is introduced and backgrounds on why it would be advantageous
for the argument system is explained. The explanation provided in this part is
mainly based on [Lip13] but made more intuitive to understand for readers.

In the second part, the non-interactive zero knowledge argument system that
is based on [Lip13] is introduced. This argument system uses all the preliminary
knowledge that is discussed in the previous part including the polynomial transfor-
mation shown last. The discussion then proceed to the main contribution given by
this thesis, which is the implementation on this argument system. The implemen-
tation was all done in C++. The external libraries used in the implementation
are provided, such as the one based on [BGM+10]. The work then proceed to
explain some implementation details designed in order to achieve good efficiency
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on the argument system, such as the representation of sparse matrix using map,
aggregating the gate and wire checkers, interpolation, and multiexponentiation
function.

In the last part, the time measurement of the implementation such as the
multiexponentiation time, the interpolation time, CRS generation time, prover’s
computation time, and verifier’s computation time are provided. After that, some
of the possible further improvement that could be done in the implementation are
discussed. The thesis ends with a conclusion of the work that has been done.

1.3 Author’s Contribution

The main contribution of this work is the implementation of the non-interactive
zero knowledge based on [Lip13]. It also attempts to represent the knowledge
needed to understand the argument system in a more general way so that it is easier
to be understood. Other than that, this thesis has also listed the implementation
details that may prove to be useful not only for this specific argument system
design but also for other similar work in the future. It is hoped that this work
may serve as a good representation of how non-interactive zero knowledge using
span programs work in real life and become a good foundation for all the future
work that might be related.

For the author, this work served as a good way to understand non-interactive
zero knowledge argument system not only in a theoretical sense, but also in prac-
tical usage. The author started with minimal knowledge on zero knowledge ar-
gument systems. From there, the author has managed to read and understand
[Lip13], benefitting from the help of the authors. After that, the author proceeded
to think of a good design and tools in order to implement the argument system.
With the help of the library’s creator [BGM+10], the author has managed to learn
how to use the pairings library that is needed in the argument system. The author
has also researched on several libraries to determine the best one for the interpo-
lation. After much consideration, the author decided to implement its own layer
of functions on top of the NTL library in order to achieve better efficiency. From
this thesis, the author has managed to gather many interesting practical details
that are needed in order to achieve the better result, ranging from data structure
design to efficient computer algebra. Many iterations of optimization coupled with
feedback from Lipmaa has improved the efficiency of the implementation by a lot.
In the end, during the writing of this thesis the author has also managed to un-
derstand more theoretical details and learn to present the knowledge in a intuitive
way. This will serve as a very good foundation into any other work that might be
done by the author in the future.
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2 Preliminaries

Before going into the argument system, some notions needed to understand how
the argument system works are given. This will mostly consists of definitions of
zero knowledge, non-interactive zero knowledge, span programs, and circuit sat-
isfiability problem. After that, the way to represent circuit satisfiability problem
using span programs are given. Lastly, polynomial transformation of span pro-
grams and background on such transformation are also given.

2.1 Basic Definitions

2.1.1 Zero Knowledge Argument System

Zero knowledge argument system was first introduced by [GMR85], in the form of
an interactive proof system. In an interactive proof system setting, a proof of a
theorem usually contains more knowledge than the fact that the theorem is true.
What zero knowledge argument system tries to achieve is to be able to prove the
correctness of the problem or theorem in question without giving any additional
knowledge other than that correctness itself. A zero knowledge argument system
should satisfy three properties, which is as follows:

1. Completeness: if the prover is honest then the verifier will always accept
the proof.

2. Soundness: if the prover is dishonest then the verifier will reject the proof
with very high probability.

3. Zero knowledge: no additional information is gotten by the verifier except
from the fact that the statement being proven by the prover is true.

One of the more commonly known argument system is the sigma protocol [CDS94].
The sigma protocol itself is not completely zero knowledge, it is a honest verifier
zero knowledge argument system. A honest verifier zero knowledge argument
system is a zero knowledge argument system where the verifier is assumed to be
honest, where in the sigma protocol case is to provide a ”honest” challenge. If
the challenge given by the verifier is somewhat crafted in some specific way, then
the zero knowledge property is not guaranteed. Albeit not being completely zero
knowledge, sigma protocol can however be used as a building block to construct
a real zero knowledge argument system. This work will not go more into this
argument system, more on this can be read on [CDS94]. Figure 1 shows the
general step of the sigma protocol.
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Figure 1: Sigma protocol general steps of interaction

2.1.2 Non-Interactive Zero Knowledge Argument System

Viewing from a practical value, there are times where the interactivity of the
zero knowledge argument system explain earlier becomes a liability. For example,
it might make sense in some settings where there are multiple parties that are
interested in verifying the proof by prover. In this case, the interactive argument
system would need the prover to always be there whenever a verifier wants to
verify such proof. This leads to a new way of providing a zero knowledge argument
system where a prover does not need to interact with the verifier whenever such
verification takes place. The way to do this is to remove the interactivity that
is needed in the argument system, which is why it is called the non-interactive
zero knowledge argument system. One of the way that has been proposed includes
a small modification from the general steps of the sigma protocol using random
oracle model [BR95]. In the original setting, the prover would need to receive a
challenge from the verifier and then compute the proof based on the challenge and
the original data it sends to the verifier. In the new setting, first of all it is assumed
that both the prover and the verifier has access to a random oracle. A random
oracle can be viewed as a function that outputs a truly random output (chosen
from its output domain) on every unique query. This means that if the random
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oracle is given the same query, then it will always give the same output. With the
help of the random oracle, instead of getting the challenge from the verifier, the
challenge in generated from the random oracle. By having the challenge generated
from the random oracle, the prover can then generate its own initial data similar to
the first in the original setting, while also computing the proof after that without
having to interact with the verifier. The initial data, the challenge gotten from the
random oracle, and the proof could then be sent over to the verifier all together.
The rest of the verification follows that of the original setting. The concept of this
argument system can be seen on figure 2.

Figure 2: Non interactive argument system with Random Oracle Model (ROM)

Unfortunately, the condition of this new setting is the existence of random
oracles, which are pratically known to be non-existent [CGH98, BGI+01, GT03].
This leads to a more profound idea of having a non-interactive zero knowledge
argument system in the Common Reference String (CRS) model [BFM88]. In this
model, it is assumed that there is another trusted third party aside from the prover
and the verifier. This trusted third party would then generate some value which is
called the CRS and send it over to both the prover and verifier. The prover would
then compute its proof based on the CRS and send it to the verifier. The verifier
herself would then verify the proof given by the prover also based on the CRS from
the trusted third party. Note here that the argument system is designed such that
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the CRS does not need to be generated every time the prover needs to prove some
statement but instead can be reused. Figure 3 shows a general outline of the CRS
model non-interactive zero knowledge argument system.

Figure 3: Non interactive argument system in CRS Model

2.1.3 Verifiable Computation

A verifiable computation scheme allows a computationally limited client to out-
source to a worker the evaluation function F on input u. The client can then
verify the correctness of the returned result F (u) while performing less work than
required for the function evaluation [PGHR13]. In real life where computational
power are not symmetric, verifiable computation can be very useful. This scheme
allows reliable allocation of heavier computation to more powerful worker so that
even client who has weaker computational power is able to finish its computation
faster. In that sense, the outsourced worker can’t always be fully trusted, which ex-
plains why there would be a need for a way to verify that the worker computes the
function correctly. What needs to be noted that for this to make sense, the verifi-
cation should be of less effort compared to computing the function itself, or else the
client can just compute the function itself. A good example of verifiable computa-
tion uses is the Amazon CPU time renting service (http://aws.amazon.com/ec2/).
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The service allows user/client to run programs in their cloud server, at the cost of
some price. As the client, it would make sense to be able to verify that the program
actually runs smoothly without a hitch and this is where verifiable computation
comes in.

It can be seen that verifiable computation scheme resembles the zero knowl-
edge argument system to some degree. To match up the zero knowledge argument
system’s parties with verifiable computation, the outsourced worker here acts as a
prover while the computationally limited client acts as the verifier. The difference
here is that the ”proof” given by the outsourced worker doesn’t have to exhibit
a zero knowledge behavior, i.e. the proof might leak some information about the
output of the function itself (assuming that the output itself is not known/sent
yet). The other behavior from the zero knowledge argument system, namely com-
pleteness and soundness applies to the verifiable computation scheme itself.

As stated before, the implementation of this work is the non-adaptive version of
the zero knowledge argument system based on [Lip13]. The difference between the
non-adaptive version and the adaptive version is that in the adaptive version, the
CRS remains unchanged even when the problem (which in this case, the circuit)
changes. This is due to the fact of the usage of universal circuit that takes in
a circuit itself as the input (explained in a later section). This means by using
this universal circuit approach the circuit/function itself need not to be known
in the first place and the CRS can be still computed beforehand. On the other
hand in the non-adaptive version, if the circuit changes then the CRS needs to be
recomputed. The consequence is that then the function/circuit itself needs to be
known first before any CRS construction can be done.

Although the implementation in this work is a non-adaptive version of zero
knowledge argument system (which is less preferable compared to the adaptive
version), it is sufficient for the usage of the verifiable computation scheme which as
explained is a very common scenario nowadays. The reason that the non-adaptive
version is sufficient is that the function is already known by the client/user. The
implementation in this thesis extends the behavior of the verifiable computation
scheme by adding the zero knowledge behavior on top of it. It is therefore very
useful and hopefully can be used for such schemes as needed in the future.

2.1.4 Circuit Satisfiability Problem

Circuit satisfiability (SAT) problem is the problem of determining whether a
boolean circuit has an input assignment that makes the value of the final output to
be true. A boolean circuit is a mathematically precise computational model of the
digital circuit where each input and output has a true or false value (in constrast
with having a supply voltage or not in the digital circuit). A boolean circuit can
be viewed as a directed acyclic graph where vertices corresponds to the gates and
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edges corresponds to the wire. In this work, the boolean circuit that is discussed
will be restricted to circuits that have gates with maximum fan-in 2 and maximum
fan-out 2, which means that every gate will have a maximum of two input and two
output values. Viewing it again from graph point of view, this means that each
vertex will have at most in-degree 2 and out-degree 2. Some example of the gates
in the circuit are the AND gate, OR gate, and NAND gate. These gates represent
the boolean function AND, OR, and NAND respectively. Note that instead of
having one output as in the boolean function, a gate with fan-out 2 would just
have two outputs with the same value that enter different gates.

Figure 4: Boolean circuit example

The circuit SAT problem is one of the problems which is often used as the
problem statement to be proven in a zero knowledge argument system. What the
prover tries to prove in this case is that he/she knows the satisfying assignment
that makes the final output of the circuit to be true. The reason behind it is that
circuit SAT problem is known to be an NP-complete problem. An NP problem is
a problem which can be solved in polynomial time by a non-deterministic Turing
machine. An NP-complete problem is in turn an NP problem which is as hard as all
the other problem in NP, in the sense that every NP problem can be reduced to the
form of an NP-complete problem. By being able to construct a zero knowledge
argument system to prove an NP-complete problem would mean that the same
argument system would also work for any other NP problem (with some polynomial
slowdown) by first reducing it into the NP-complete problem. The NP-complete
problem that is chosen in this case is the circuit SAT problem. Furthermore,
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circuit SAT problem is also a natural language for the verifiable computation
usage compared to other language in NP-complete class. The reasoning is that
the function that is going to be verified in a verifiable computation protocol can
be represented naturally in the form of a circuit. For each function, there exists
circuits that will produce the same output as the function given the same input.

2.2 Representing Circuit SAT Problem using Span Pro-
grams

In this work, the circuit SAT problem is used as the problem statement to be
proven. Before going into the argument system itself, circuit that is going to be
proven needs to be encoded into appropriate form, in this case using span programs
and quadratic span programs. There are two main component in representing the
circuit. First, what the prover needs to do is to prove that each of the boolean
gate in the circuit is consistent, meaning that the output of the gate is consistent
with the boolean function applied to the input of the gate. Second, for each wire
connecting up the output of a gate with the input of other gate, the prover needs
to prove that those two value are actually the same. The first part of the proof
is done by using a gate checker, while the second part is done by using a wire
checker. Finally, both the gate checkers and the wire checkers are combined into
one quadratic span program which is the circuit checker. Figure 5 shows illustra-
tion of the gate and wire checker. The upcoming explanation on the construction of
the circuit checker is simplified for easier understanding. Interested reader should
refer to [Lip13] for more background on this.

2.2.1 Gate Checker

The first part of the encoding of the circuit is constructing a gate checker for each
of the gate in the circuit. In order to construct a gate checker, the argument
system of [Lip13] uses span program [KW93] to represent the checker. A span
program P = (t,V , %) contains a target vector t with d elements, an m× d matrix
V , and a labelling map % which maps every row of V into a literal xι or x̄ι where ι
is one of the indexes of the variable in the specified gate that is going to be checked
by the gate checker. Figure 6 shows a span program example. The details of the
components in this example are
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Figure 5: Gate and wire checker illustration

d = 3

m = 6

t = (1, 1, 1)

V0 = (1, 0, 0)

V1 = (0, 1, 0)

V2 = (1, 1, 0)

V3 = (0, 0, 1)

V4 = (0, 0, 1)

V5 = (0, 0, 1)

with labelling % = {V0 → x1,V1 → x2,V2 → x3,V3 → x̄1 V4 → x̄2,V5 → x̄3}. The
solution to the gate checker span program is directly translated from the value of
the variables of the gate itself. For example, in Figure 6, the variables concerned
are x1, x2, and x3. An assignment u consists of the assignment of value for all
the variables in the gate. Suppose that the assignment value from the example is
u = {x1 = 1, x2 = 0, x3 = 1}. The assignment is said to be the solution of a span
program iff t is in the span of the sum of row vector Vi based on the labelling %
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from the assignment u. Based on the assignment u = {x1 = 1, x2 = 0, x3 = 1},
define the corresponding row vector set as Vu = {V0,V4,V2}. The row vector with
the negation of the variable is chosen when the assignment variable is set to 0,
while its non negation row vector is chosen otherwise. By definition of linear span,
this means that

∃ai,
∑
Vi∈Vu

aiVi = t

From the example, the sum of the row vector from Vu by choosing a0 = 0, a4 =
1, a2 = 1 yields the row vector (1, 1, 1), which is the target vector t. Note that
it is allowed to assign ai to 0 for some or all the chosen row vector (meaning that
this row vector itself isn’t used in the end), but it is not allowed to use any other
row vector than otherwise reflected in the assignment u in the sum itself.

t 1 1 1
x1 1 0 0
x2 0 1 0
x3 1 1 0
x̄1 0 0 1
x̄2 0 0 1
x̄3 0 0 1


Figure 6: Span program example

After knowing the structure of a span program, the next step is to know how
to construct the gate checker span program from a boolean gate. Notice that in
the proof, the aim is to prove that the output of the boolean gate is consistent
with the input. For example, if the gate is a NAND gate, then the checker should
check whether the output is indeed the NAND of the two input. There is an
exception to this which is in the last output gate of the circuit. As the proof is
about the satisfiability of the circuit, instead of checking that the output has to
be consistent with the input, what needs to be done is to check that the output
is indeed 1 (which actually simplifies the span program more). The example span
program shown earlier on Figure 6 is actually a gate checker for the NAND gate,
where the span program only have a solution iff x3 = (x1 Z x2). The case analysis
is as follows.

• x1 = x2 = x3 = 0 does not give a solution,

• x1 = x2 = 0 and x3 = 1 gives a solution with a2 = 1, a3 arbitrary, and
a4 = 1− a3,
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

t 1 1 1
x 0 1 0
y1 0 0 1
y2 1 0 0
x̄ 1 0 0
ȳ1 0 1 0
ȳ2 0 0 1


Figure 7: Fork gate checker

• x1 = x3 = 0 and x2 = 1 does not give a solution,

• x1 = 0 and x2 = x3 = 1 gives a solution with a2 = 1, a1 = 0, a3 = 1,

• x1 = 1 and x2 = x3 = 0 does not give a solution,

• x1 = x3 = 1 and x2 = 0 gives a solution with a0 = 0, a2 = 1, a4 = 1,

• x1 = x2 = 1 and x3 = 0 gives a solution with a0 = 1, a1 = 1, a4 = 1,

• x1 = x2 = x3 = 1 does not give a solution.

In this work, it is assumed that all the gates of the circuit will be of NAND gates
(this does not reduce the power of the argument system, as it is well known that all
circuit with different gates can be transform into circuit with only NAND gates).
Apart from that, a fork gate that computes y1 ← x, y2 ← x is also needed to
reduce the fanout. The reasoning behind the reduction of fanout has to do with
the size of the wire checker later on, which in turn will affect the efficiency of the
final argument system. By having a small fanout, the efficiency of the argument
system will be better. For more details on this, see [Lip13]. Note that in his paper,
Lipmaa stated that limiting the circuit to have fanout at most 3 might be more
efficient in some cases. Although this thesis focuses on circuit with fanout at most
2, future work should also test out the efficiency of the implementation on circuit
with different fanout. The span program of the fork gate checker is presented in
Figure 7.

After constructing the gate checker for each of the gate in the circuit, all the
gate checkers need to be aggregated into one span program. The aggregation is
done by doing an AND composition between the gate checker. Suppose that there
are two span programs P1 = (t1,V1, %1) and P2 = (t2,V2, %2) with size m1, d1

and m2, d2 respectively. The AND composition of these two span program is
P = (t,V , %) with size m = m1 + m2, d = d1 + d2. t will just be a concatenation
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of the two target vectors t1 and t2. Next, define V as follows

Vi =

{
(V1

i , 0d2) 0 ≤ i < m1

(0d1 ,V2
i−m1

) m1 ≤ i < m1 +m2

where 0x represents x amount of zeros. The new labelling % will be consistent
with the previous labelling, meaning that if %1 has a mapping V1

i → xι, then %
has a mapping Vi → xι, and if %2 has a mapping V2

i → xι′ then % has a mapping
Vm1+i → xι′ .

2.2.2 Wire Checker and Quadratic Span Program

After defining a gate checker for each of the gate in the circuit, a wire checker for
each of the wire also needs to be constructed in order for the prover to prove that
the assignments it makes are consistent. As this work only focuses on gates with
fan-out at most 2, this means that each wire will have at most 3 different variables
associated with it. Previously on Figure 5, the gate that is shown has fan-out 1.
Figure 10 shows the illustration of wire checker with fan-out 2.

Figure 8: Wire checker illustration for gates with fan-out 2

A quadratic span program is used in order to construct the wire checker. A
quadractic span program P = (v0,w0,V ,W , %) [GGPR13] consists of two target
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

v0 0 0 0 0 0 0

V

x1 1 0 −1 0 0 0
x2 0 1 2 0 0 0
x̄1 0 0 0 1 0 −1
x̄2 0 0 0 0 1 2
w0 0 0 0 0 0 0

W

x1 0 0 0 1 0 −1
x2 0 0 0 0 1 2
x̄1 1 0 −1 0 0 0
x̄2 0 1 2 0 0 0


Figure 9: Quadratic span program example

vectors v0 and w0 with d elements respectively, two m×d matrices V andW , and
a labelling % which maps every row of V and W into a literal xι or x̄ι where ι is
one of the indexes of the variable in the specified wire that is going to be checked
by the wire checker. It can be seen that the components of the quadratic span
program are very similar to that of the span program, whereas instead of having
only one target vector and matrix, the quadratic span program has two of them.
An assignment u is said to be the solution for a quadractic span program iff the
corresponding row vector Vu and Wu chosen based on the assignment u (defined
similarly as in span program) satisfies

∃ai, bi, ((
∑

aiVi)− v0) ◦ ((
∑

biWi)−w0) = 0

where x ◦y denotes the pointwise (Hadamard) product of x and y. The pointwise
(Hadamard) product of x = (x1, · · · , xn) and y = (y1, · · · , yn) is the vector z =
(x0.y0, · · · , xn.yn). Figure 9 shows a quadratic span program example, which in
fact is also a wire checker for gates with fan-out 1. The size of are m = 4 and
d = 6 respectively. As both target vectors are all zero vectors, the previous
equation simplifies to

∃ai, bi, (
∑

aiVi) ◦ (
∑

biWi) = 0

Notice that both V and W are in the form of(
G 0
0 G

)

where each element is a sub-matrix of size
m

2
× d

2
. In fact, G is a generator matrix

of the [2D− 1, D,D] systematic Reed-Solomon linear error correcting code where
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

v0 0 0 0 0 0 0 0 0 0 0

V

x1 1 0 0 1 3 0 0 0 0 0
x2 0 1 0 −3 −8 0 0 0 0 0
x3 0 0 1 3 6 0 0 0 0 0
x̄1 0 0 0 0 0 1 0 0 1 3
x̄2 0 0 0 0 0 0 1 0 −3 −8
x̄3 0 0 0 0 0 0 0 1 3 6
w0 0 0 0 0 0 0 0 0 0 0

W

x1 0 0 0 0 0 1 0 0 1 3
x2 0 0 0 0 0 0 1 0 −3 −8
x3 0 0 0 0 0 0 0 1 3 6
x̄1 1 0 0 1 3 0 0 0 0 0
x̄2 0 1 0 −3 −8 0 0 0 0 0
x̄3 0 0 1 3 6 0 0 0 0 0


Figure 10: Wire checker for gates with fan-out 2

D = 2 [Rot06]. What this means is that every resulting vector (that has size
3) that is generated by multiplying any non-zero initial vector (that has size 2)
with the generator matrix will have non-zero values in at least 2 positions. For
example, suppose that there are two initial vectors a = (0, 0) and b = (0, 1). The
resulting vector by multiplying a with the generator matrix G is Ra = (0, 0, 0).
The resulting vector gotten from the second vector b is then Rb = (0, 1, 2). The
claim that the resulting vector will have non zero values in at least D = 2 positions
holds true in this case. In fact, this holds true for any other two arbitrary initial
vectors a and b. This work will not discuss the theory behind the error correction
and proof of correctness. Interested reader should refer to [Lip13]. Figure 10 shows
the wire checker for gates with fan-out 2.

Now, one might wonder how does using this generator matrix helps the proof
of the wire checker. Notice that if the assignment of the variables are indeed
consistent, then all of the variables in one wire checker should have the same value
(i.e. all are 0 or all are 1). When observed from the quadratic span program that

is given above, this means that either the first
m

2
rows or the last

m

2
rows are

chosen for each of V and W . Either way, this would mean that if the assignments

are actually consistent, either the first or the last
d

2
elements of

∑
aiVi are 0. For

example, if the quadratic span program on Figure 9 has a consistent assignment,
then the value of x1 should be the same as x2. Let’s assume that both value are
true. If both are true, then only the first two row from each V and W is chosen.
Then, no matter what value ai and bi is, the last 3 elements of

∑
aiVi will be 0
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while the first 3 elements of
∑
biWi will be 0. The pointwise (Hadamard) product

of those two will then be the zero vector. As one might have noticed, W is just
a copy of V with each of the labelling between Vi → xι and Vj → x̄ι swapped

(and reordered). This means that if
∑
aiVi has the first

d

2
elements being 0, then∑

biWi would have the last
d

2
elements being 0, and vice versa. By multiplying

those two together, then one would indeed have 0 as the end result.
On the other hand, suppose that the assignment of the variables are not con-

sistent. This means that there is at least one row vector Vi and Wi chosen for

Vu and Wu at both the first
m

2
rows and the last

m

2
rows. Notice that, in the

example before, when the initial vector is (0, 0) the resulting vector are also an all
zero vector (0, 0, 0). By the definition that all resulting vector will have at least
D = 2 different values, this means that all the other resulting vectors will have
non zero value in at least 2 positions. As Vu and Wu has row vector in both the

first
m

2
rows and the last

m

2
rows, this means that for each part, the initial vector

is not an all zero vector. Each of the resulting vector will have non zero value in at
least 2 out of 3 positions, and therefore when multiplied, there will be at least one
position that will stay non zero. This means that the equation for the quadratic
span program cannot be satisfied, thus not an assignment that is the solution for
the wire checker. One might think that it is still possible to cheat by setting the
proper coefficient ai or bi to 0 instead, but it will be seen later that this is not
possible as the wire checker will be combined with the gate checker with consistent
labelling.

After constructing wire checker for each of the wire, all the wire checkers also
need to be aggregated into one quadratic span program. The method of aggregat-
ing is similar to that of the gate checker, which is by doing an AND composition
on the wire checkers. The only difference here is that instead of just one target
vector and one matrix, each wire checker has two target vector and two matrix.
The rest of the aggregating process stays the same.

2.2.3 Circuit Checker

After having an aggregated gate checker and an aggregated wire checker for the
circuit, the next step is to combine them both to become a full circuit checker. The
resulting circuit checker is also a quadratic span program. The step to construct
such a circuit checker is as follows. Suppose that the resulting aggregated gate
checker is Pg = (tg,Vg, %g). Construct another span program P ′g = (tg,Wg, %′g)
where Wg = Vg. %′g will have the ”swapped” version of %g, meaning that if %g has
a mapping Vi → xι, then %′g has a mapping Wi → x̄ι, and if %g has a mapping
Vi → x̄ι, then %′g has a mapping Wi → xι. Suppose also that the resulting wire
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checker is Pw = (0,0,Vw,Ww, %w). Construct the quadratic span program circuit
checker P = (v0,w0,V ,W , %) as

v0

V
w0

W

 =


tg 1 0
Vg 0mg×dg Vw
1 tg 0

0mg×dg Wg Ww

 .

The labelling % is constructed from the proper reordering of the labelling between
the gate checker and the wire checker. This is done by combining/concatenating
the row with the same literal mapping. For example, if %g has a mapping of
Vgi → xι and %w has a mapping of Vwi → xι, then the new labelling % will have a
mapping (Vgi , 0dg ,Vwi )→ xι. For proof behind the construction, see [Lip13].

2.3 From Span Programs to Polynomials

After knowing how to represent a circuit into one circuit checker, it can be seen
that the circuit checker is just one big quadratic span program. The question now
is what the prover sends to the verifier in this new encoding in order to prove that
he knows the satisfying assignment. Remind that an assignment u of the circuit is
also a solution for a quadratic span program P = (v0,w0,V ,W , %) iff the chosen
row vector satisfies

∃ai, bi, ((
∑

aiVi)− v0) ◦ ((
∑

biWi)−w0) = 0

It is worth to note that this requirement is automatically enforced in the con-
structed circuit checker, meaning as long as one is able to find a and b that makes
the circuit checker to accept, the requirement will be satisfied for sure. What the
prover needs to do now is then to show that he/she knows ai’s and bi’s such that
the above equation holds. However, this means that the amount of data that the
prover needs to send is propotional in terms of the size of the span program, m.
The final goal of the argument system is to bring the amount of data that needs
to be sent to a constant, meaning that the size of the proof is always the same
regardless of the size of the circuit, while still preserving the security property and
privacy of the argument system.

In order to do this, the circuit checker needs to be modified. Instead of looking
each of the target vector and row vector just as a vector, each of them are instead
transformed into a polynomial p(x). The polynomial p(x) is interpolated from a set
of points that are constructed based on the vector. For example, suppose there’s
a row vector Vi = (Vi0, ...,Vid−1). Define the polynomial p(x) as the polynomial
interpolation of Vi where p(rj) = Vij for all j ∈ [0, ..., d − 1]. rj can be chosen
arbitrarily, but smart choice of rj will affect the efficiency of the arithmetics in
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the computation. By doing this for every target vector and row vector Vi, Wi, the
new polynomial span program is then P = (v0(x),w0(x),V(x),W(x), %).

The idea behind how representing the span program as polynomials helps in
compacting the proof is as follows. Instead of sending the value if ai’s and bi’s,
compute the new polynomial v(x) =

∑
aiVi(x), and w(x) =

∑
biWi(x). Notice

that it now holds that (v(x)− v0(x)) · (w(x)−w0(x)) = Ẑ(x)h(x) for some poly-
nomial h(x) where Ẑ(x) =

∏
(x− rj). Then, instead of sending v(x) and w(x) as

the proof (which still has size that depends on the size of the circuit), the prover
can instead send an encoding of v(σ) and w(σ) where σ is a secret evaluation
point. The new element v(σ) and w(σ) is just one element each, meaning that no
matter what degree the polynomial v(x) and w(x) is, they will stay the same size.
However, with this modification there are other things that needs to be checked,
such as making sure that v(σ) is indeed from the span of Vi(x), sending the in-
formation needed about h(x) and so on. The zero knowledge property also needs
to be maintained. The detailed explanation on the whole process can be found in
[Lip13].
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3 Argument System and Implementation

This section provides the non-interactive zero knowledge argument system based
on [Lip13]. The argument system provided is the non-adaptive version where the
circuit is not the universal circuit. After providing the argument system, the
implementation of the argument system is then given. Several details to improve
the efficiency of the implementation are explained.

3.1 Notation

Some of the notations used in the argument system are explained as follows.

1. var ← F, means that the variable is assigned a value randomly chosen from
a chosen finite field. In the argument system, F is equal to Zq, where q is
the order of the group.

2. [[a]]i, means an encoding of a in group Gi which in this implementation is
represented by an exponentiation, [[a]]i = gai for a fixed gi.

3. ê(a, b), means a bilinear pairing of a and b. A pairing [BF01] is a map ê : G1×
G2 → G3. A bilinear pairing has the property ∀a, b ∈ G1,G2 : ê(aP, bQ) =
ê(P,Q)ab where P and Q is the generator in group G1 and G2 respectively. In
addition, a cryptographically useful bilinear map is assumed to satisfy certain
security assumptions. See [Lip13] for the assumptions required there.

3.2 Non-Interactive Zero Knowledge Argument System

The argument system mainly consists of 3 part, the CRS generation, the prover’s
computation, and finally the verifier’s verification. The argument system is directly
taken from [Lip13] by removing the adaptive part from the argument system. The
non-interactive zero knowledge argument system is defined formally as the triple
of algorithms:

• CRS generation G(1κ, n), with input κ as the security parameter and circuit
size n. The output of this algorithm is the prover’s CRS crs and verifier’s
CRS vcrs.

• Prover’s computation P(crs;C,u), with input of the prover’s CRS crs, the
circuit description C, and the circuit’s satisfying assignment u. The output
of this algorithm is the zero knowledge argument π.

• Verifier’s verification V(vcrs;C, π), with input of verifier’s CRS vcrs, the cir-
cuit description C, and argument π. The output of this algorithm is a
boolean value signifying whether the verification is successful.
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The details of each of the algorithm are as follows. Comments are added on some
descriptions to highlight the total amount of computation needed in that specific
operation. See [Lip13] for more details.

3.2.1 CRS generation G(1κ, n)

1 Let Cn be a circuit of size |C| = n;

2 Let P := (v0,w0,V,W, %) be the circuit checker for Cn with size m and d, V = (V1, . . . ,Vm), and

W = (W1, . . . ,Wm);

3 Choose d roots ri for i ∈ [1, d];

4 Compute v̂0(X) =
∑d−1

j=0 v̄0jX
j by polynomial interpolation from v0; /* Θ(d log2 d) F-ops */

5 Compute ŵ0(X) =
∑d−1

j=0 w̄0jX
j by polynomial interpolation from w0; /* Θ(d log2 d) F-ops */

6 α, σ, βv , βw, γ ← F;

7 for i← 0 to m do compute ([[v̂i(σ)]]2, [[ŵi(σ)]]2);

8 Ẑ(σ)←
∏d

i=1(σ − ri);

9 (V0, V ∗0 )← ([[v̂0(σ)]]2, [[αv̂0(σ)]]2);

10 for i← 1 to 2 do (W0[i],W ∗0 [i])← ([[ŵ0(σ)]]i, [[αŵ0(σ)]]i);

11 for i← 1 to 2 do (Z[i], Z∗[i])← ([[Ẑ(σ)]]i, [[αẐ(σ)]]i);

12 Let

crs←

P, (ri)i∈[d],
(
[[σj ]]i, [[ασ

j ]]i
)
i∈{1,2},j∈[0,d−1]

, v̂0(X), ŵ0(X), V0, V
∗
0 ,W0[1],W ∗0 [1], Z[1], Z∗[1],

Z[2], Z∗[2], ([[βvv̂i(σ)]]2, [[βwŵi(σ)]]2)i∈[m] , [[βvẐ(σ)]]2, [[βwẐ(σ)]]2

 ;

13 vcrs←
(
P, ([[1]]i, [[α]]i)i∈{1,2}, V0,W0[1], Z[1], [[γ]]1, [[βvγ]]1, [[βwγ]]1

)
;

14 The trapdoor is (σ, α, βv , βw);
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3.2.2 Prove P(crs;C,u)

1 Evaluate Cn to obtain a,b ∈ Fm;

2 v←
∑

i aivi, w←
∑m

i=1 biwi

3 Compute v̂(X) =
∑d−1

j=0 v̄jX
j by polynomial interpolation from v; /* Θ(d log2 d) F-ops */

4 Compute ŵ(X) =
∑d−1

j=0 w̄jX
j by polynomial interpolation from w; /* Θ(d log2 d) F-ops */

5 v̂†(X)← v̂0(X) + v̂(X); ŵ†(X)← ŵ0(X) + ŵ(X); /* Θ(d) additions */

6 Ẑ(X)←
∏d

i=1(X − ri);

7 ĥ(X)← v̂†(X) · ŵ†(X)/Ẑ(X) ∈ Fd−2[X]; /* Θ(d log d) F-operations */

8 (V, V ∗)←
∏d−1

j=0 ([[σj ]]
v̄j
2 , [[ασj ]]

v̄j
2 ); /* 2 d-wide multiexponentiations */

9 For i ∈ {1, 2}: (W [i],W ∗[i])←
∏d−1

j=0 ([[σj ]]
w̄j

i , [[ασj ]]
w̄j

i ); /* 4 d-wide multiexponentiations */

10 (H,H∗)←
∏d−2

j=0 ([[σj ]]
hj

2 , [[ασj ]]
hj

2 ); /* 2 (d− 1)-wide multiexponentiations */

11 rv , rw ← F;

12 (πv , π∗v)← (V, V ∗) · (Z[2], Z∗[2])rv ;

13 (πw, π∗w)← (W [1],W ∗[1]) · (Z[1], Z∗[1])rw ;

14 (πh, π
∗
h)← (H,H∗) · (W0[2]W [2],W ∗0 [2]W ∗[2])rv (V0VcVu, V ∗0 V

∗
c V
∗
u )rw · (Z[2], Z∗[2])rvrw ;

15 πy ←
∏m

i=1[[βvv̂i(σ)]]
ai
2 ·

∏m
i=1[[βwŵi(σ)]]

bi
2 · [[βvẐ(σ)]]rv2 [[βwẐ(σ)]]rw2 ; /* 2 m-wide multiexp-s */

16 P outputs π = (πv , π∗v , πw, π
∗
w, πh, π

∗
h, πy);

3.2.3 Verify V(vcrs;C, π)

1 Parse π as π = (πv , π∗v , πw, π
∗
w, πh, π

∗
h, πy) ∈ G2

2 × G2
1 × G3

2; Abort if this is not the case;

2 Confirm that the following equations hold:

1. ê(W0[1]πw, V0Vcπv) = ê(Z[1], πh);

2. ê([[α]]1, πv) = ê([[1]]1, π∗v);

3. ê(πw, [[α]]2) = ê(π∗w, [[1]]2);

4. ê([[α]]1, πh) = ê([[1]]1, π∗h);

5. ê([[γ]]1, πy) = ê([[βvγ]]1, πv) · ê([[βwγ]]1, πw);

3.3 Implementation

In order to implement the argument system, this work uses two main libraries: the
encryption/pairings library from [BGM+10] and the NTL 5.5.2 library (available
at http://www.shoup.net/ntl/). The first library is used to do the encryption and
pairings, while the second library is used to do the polynomial arithmetics. The
encryption and pairings are done over a Barreto-Naehrig curve [BN06] over 256-bit
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prime field Fp, where p = 36z4 + 36z3 + 24z2 + 6z + 1, z = −(262 + 255 + 1). The
group G2 in the argument system is a point in Fp (256 bit), while the group G1

is represented as a point in F 2
p (512 bit). The NTL library is a high-performance,

portable C++ library providing data structures and algorithms for manipulating
signed, arbitrary length integers, and for vectors, matrices, and polynomials over
the integers and over finite fields. NTL’s polynomial arithmetic is one of the
fastest available anywhere, and has been used to set ”world records” for polynomial
factorization and determining orders of elliptic curves. The main class of NTL
used in this work is the ZZ pX class which is a representation of a polynomial
with coefficients in finite field.

3.3.1 Sparse Matrix Representation

In order to have efficient memory consumption, there needs to be a good repre-
sentation of the circuit checker. The circuit checker is a quadratic span program
which in turns consists of aggregation of many checkers. It can be seen that the
circuit checker will have a lot of zero value entries due to the AND composition
of span programs and the nature of the gate checkers used itself. Therefore, the
representation of the quadratic span program should not represent all those zero
values, but still have a representation such that the arithmetics such as vectors
addition will have a good complexity. To be more precise, the new representation
should be made such that the arithmetics of the span program will have complexity
proportional to the number of non-zero entries.

The representation of the quadratic span program is done by representing each
of the row vectors (and target vectors) separately. Furthermore, in each of those
vectors the data that is stored is a list of pair of positions with its value where
the entries are not zero. To further optimize, for the gate checker the value itself
is not stored, as it can be seen the entries in the span programs are either 1 or 0.
Figure 11 shows an illustration of the new sparse matrix representation.

3.3.2 Ordered vs Unordered Map

To represent the labelling of the span programs, the implementation uses the map
from the standard template library extensively. Maps are associative containers
that store elements formed by a combination of a key value and a mapped value,
following a specific order. For readers familiar with hash table data structure,
map have somewhat similar structure to it. However, it is known that the lookup
time of map in C++ is not constant, but logarithmic. This is due to the fact
that the map data structure in C++ uses red-black trees to store its mapping
instead of hashing. In order to have a constant time lookup, one can instead use
the unordered map data structure. It has to be noted that this data structure is
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Figure 11: Sparse matrix representation example

not available for all version of compilers and therefore the official version shown on
this work retains the usage of the usual map. In order to use the unordered map
data structure, the compiler must have C++0x support. A light amount of work
is needed in order to use the unordered map data structure instead for efficiency.
The improvement between using ordered or unordered map is not significant, as
the logarithmic time is logarithmic in terms of the size of each individual span
program and the total number of checkers. Furthermore, the lookup operation is
not the main operations that takes time (it is overshadowed by other operation
such as exponentiation etc). In spite of that, it is always good to know that if
at some point in the future the size of the span program grows larger that the
complexity becomes significant enough, the implementation can still handle it by
using this data structure.

3.3.3 Aggregating the Checkers

Aggregating checkers involves doing an AND composition between two span pro-
grams. The new aggregated span program between two span program will have
double the size of the original. However, the top right and bottom left part of the
matrix will just contain zero entries. Therefore, instead of simulating the real ag-
gregation, the implementation only keeps track of which span programs are being
aggregated. When the aggregated checker needs to be accessed, the entries will be
created on the fly based on the need of the program.
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3.3.4 Multipoint Evaluation and Interpolation

In this work, the polynomials are interpolated using the ZZ pX class in NTL li-
brary where the underlying arithmetics such as multiplication, division, addition,
and modular arithmetics are highly optimized. Some of the algorithms used in the
polynomial arithmetics are Fast Fourier Transform (FFT), Karatsuba multiplica-
tion, and Chinese Remainder Theorem. However, after researching the interpola-
tion function of the library, it turns out that the interpolation function uses usual
quadratic Lagrange interpolation. Initial test on the function in the argument
system turned out to be unsatisfactory, where the interpolation function would
actually dominate over the encryption/pairings time by a lot. As interpolation is
one of the core operation in the argument system, we decided to design its own
interpolation function in the end.

In the implementation, we built a new layer on top of the NTL library. As
NTL library already has very good underlying arithmetics functions, what we did
was to build the interpolation function on top of these arithmetics. There are two
main functions on top of the layers, the multipoint evaluation function and the
interpolation function itself. The new interpolation function works in quasilinear
O(M(n) log n) time, where M(n) is the time to do a polynomial multiplication. As
NTL uses FFT in the polynomial multiplication, the complexity of the multiplica-
tion is O(n log n), resulting in total complexity of O(n log2 n) for the interpolation
function. This is a significant improvement over the function NTL provides. The
two main functions are based on [BS12] with some slight corrections. Section 4
will show the improvement of the new function compared to the one provided by
NTL.

Algorithm 1 shows the pseudocode of the multipoint evaluation function that
is implemented. In the function, a precomputation of a matrix P is needed, where
P is computed recursively as follows

P0,j = (x− uj) and Pi+1,j = Pi,2j · Pi,2j+1.

The multipoint evaluation function takes in a function f and a set of points to
be evaluated (u0, · · · , un−1). The function assumes that n is a power of two,
which can be easily fixed for the argument system usage by adding extra el-
ements into the vectors. In order to evaluate a set of points, one would call
MultiPointEval(f, u, 0, n − 1, P ) and expect n − 1 return values which is the
values of f evaluated on (u0, · · · , un−1). The multipoint evaluation function works
in quasilinear O(T (n) log n) time, where T (n) is the time to do a single polynomial
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modulo operation. The total complexity is then O(n log2 n).

1 Precompute Pi,j for all 0 ≤ i ≤ k and 0 ≤ j < 2k−i;

2 Function MultiPointEval(f, u, a, b, P ):

Data: A function f , a set of points u, interval a and b, P

Result: A set of values (f(ua), · · · , f(ub))

3 Let n = (b− a);

4 if n = 1 then

5 return (f(a));

6 else

7 Let k = log2(n);

8 Let idx =
⌊
a/2k−1

⌋
;

9 Let r0 = f mod Pk−1,idx and r1 = f mod Pk−1,idx+1;

10 Let (ya, ..., y(a+b)/2) = MultiPointEval(r0, u, a, (a+ b)/2, P );

11 Let (y(a+b)/2+1, · · · , yb) = MultiPointEval(r1, u, (a+ b)/2 + 1, b, P );

12 return (ya, · · · , yb);

13 end

Algorithm 1: Multipoint evaluation

In order to implement the interpolation function, this work make use of the
multipoint evaluation function. As one know, the polynomial interpolation is the
problem of finding the polynomial f where f(ui) = vi for two vectors u and v of
same length. Here, it is also assumed that the length of the vectors n is a power
of two. The Lagrange interpolation formula constructs f as follows

f(x) =
n−1∑
i=0

vi ·
n−1∏

j=0,j 6=i

x− uj
ui − uj

.

One can rewrite the above equation as

f(x) =
n−1∑
i=0

visi ·
n−1∏

j=0,j 6=i

(x− uj),

si =
n−1∏

j=0,j 6=i

1

ui − uj
.
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Notice that si is somewhat similar to the definition of P defined previously in
algorithm 1. To be more precise, s−1

i = P
′

k,0(ui) where P
′

k,0 is the formal derivative
of the polynomial Pk,0. This means that in order to find si one just need to do
multipoint evaluation of P

′

k,0 at points (u0, · · · , un−1) to obtain s−1
0 , · · · , s−1

n−1. After

that, it is easy to compute v
′
i = vi/s

−1
i = visi. The problem now simplifies to the

following: given two vectors u and v compute the polynomial f where f(ui) = vi
as follows

f(x) =
n−1∑
i=0

v
′

i ·
n−1∏

j=0,j 6=i

(x− uj).

The polynomial f has the following structure: f = r0Pk−1,1 + r1Pk−1,0 where

r0(x) =

n/2−1∑
i=0

v
′

i ·
n/2−1∏
j=0,j 6=i

(x− uj),

r1(x) =
n−1∑
i=n/2

v
′

i ·
n−1∏

j=n/2,j 6=i

(x− uj).

which then again suggests a recursive algorithm as shown in Algorithm 2. In order
to use the function, one would call Interpolate(u, v, 0, n − 1, P ) and expect the
polynomial f as explained earlier. Similar as the multipoint evaluation function,
the interpolation function has a quasilinear O(n log2 n) running time.

In addition to the multipoint evaluation and the polynomial interpolation func-
tion, there are several speed up that is applicable in this argument system.

• By using Lagrange interpolation, all the basis polynomials can be precom-
puted in the offline phase, as rj is chosen independent of the span program
content. Compared to using a library’s interpolation function, the basis
polynomial is always recomputed for every single row which is redundant.

• The precomputation of each basis polynomial itself can be further opti-
mized in the offline phase by using the sliding window technique to avoid
whole recomputation of the denominator of the polynomial. For example, if
(x0, · · · , xn) = (1, · · · , n) then the denominator for the first basis polynomial
is d0 = (1 − 2)(1 − 3) · · · (1 − n) = (−1)(−2) · · · (−n + 1). The denomina-
tor for the second basis polynomial is d1 = (2 − 1)(2 − 3) · · · (2 − n) =
(1)(−1) · · · (−n+ 2) = d0 · 1/(−n+ 1).
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1 Pre-compute Pi,j for all 0 ≤ i ≤ k and 0 ≤ j < 2k−i;

2 Pre-compute v
′
i for 0 ≤ i < n;

3 Function Interpolate(u, v, a, b, P ):

Data: a set of points u and v, interval a and b, P

Result: A polynomial f where f(ui) = vi for a ≤ i ≤ b

4 Let n = (b− a);

5 if n = 1 then

6 return v
′
a;

7 else

8 Let k = log2(n);

9 Let idx =
⌊
a/2k−1

⌋
;

10 Let r0 = Interpolate(u, v, a, (a+ b)/2, P );

11 Let r1 = Interpolate(u, v, (a+ b)/2 + 1, b, P );

12 return (r0 · Pk−1,idx+1) + (r1 · Pk−1,idx);

13 end

Algorithm 2: Polynomial Interpolation

3.3.5 Pairings

The pairings function in this work is the function opt atePairing <Fp >(result,
element1, element2), where element1 is in group G2 and element2 is in group G1.
The pairings function as stated is from the library by [BGM+10]. This pairings
function has been optimized by the author of the library, and runs considerably fast
compared to other pairings libraries. One of the comparison is with Aranha library
[AKL+11] where Aranha library uses 10545 unreduced multiplications producing
double precision result and 5028 modular reduction of double precision integers.
This library uses 1033 unreduced multiplications producing double precision result
and 4925 modular reduction of double precision integers for the pairings. More
information of the benchmark could be found in [BGM+10].
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3.3.6 Multiexponentiation

In order to have a better efficiency in the cryptographic process of the argument
system, this thesis has implemented another function on top of the encryption
library, which is the multiexponentiation function. The multiexponentiation al-
gorithm is known as the Straus algorithm and was later rediscovered as Shamir’s
Simultaneous Squaring Multiexponentation algorithm, and it is also discussed in
[Str64]. The pseudocode of the algorithm is shown in algorithm 3. Note that the
exponents described in the pseudocode are represented in bits.

Data: base number g1, · · · , gh, exponents e1, · · · , eh where

ej = (ej,k−1, · · · , ej,0)

Result: ge11 × · · · × g
eh
h

1 Let R = 1 ;

2 for i = k − 1→ 0 do

3 R = R2;

4 R = R× (g
e1,i
1 × · · · × geh,ih ) for all ej,i 6= 0

5 end

6 return R;

Algorithm 3: Multiexponentiation Algorithm

Apart from the algorithm shown above, this thesis has also used the optimiza-
tion suggested by [PGHR13] which is to precompute exponent table using sliding
window technique. The essence mainly is to precompute (g

e1,i
1 × · · · × gek,ik ) for all

possible (boolean) values of ej,i where k is the window size.
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4 Comparison and Time Measurement

This section gives the time measurement result of the implementation done on the
argument system. The time measurement mostly consists of the computation time
of each party (CRS, prover, and verifier), single interpolation time, and also the
multiexponentiation function.

4.1 Parameters

All the time measurement was conducted on a Thinkpad T420, 4GB RAM, i7 core
@ 2.7GHz. The operating system is Windows 7 64 bit edition, and the implemen-
tation was run on Cygwin. The compiler used is x86 64-w64-mingw32-g++ (GCC)
4.5.3. The compilation was optimized by using -O3 -fomit-frame-pointer

-msse2 -mfpmath=sse -march=native compile options. No multithreading was
used in the measurement. In order to have a good accuracy, the measurement was
done on the same parameter. A function to generate a circuit was constructed
specifically for the measurement. The function GenCircuit(level) takes the pa-
rameter level which then generates a circuit with size 2level−1 where the size here
is the number of gates. The structure of the circuit resembles to that of a perfect
binary tree where each node corresponds to a gate, and each edge corresponds
to the wire. Furthermore, in order to minimize any time difference due to the
randomness of the gate type, all gates are set as NAND gate. Figure 12 shows
an example of the circuit output from the function. With this systematic gener-

Figure 12: Circuit output with level = 2

ation of circuit, the number of gates, wires, and variables can be pre-determined.
Note that the implementation itself is built to be able to accept circuit description
that is far more flexible than this. The purpose of this generation is merely to
measure the timings of the operation accurately as it is hard to generate a system-
atic circuit for fanout 2 for this purpose. Furthermore, the result timing will still
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serve as a good benchmark as the only part that is affected is the computation of
[[v̂i(σ)]]i, [[ŵi(σ)]]i in CRS and v,w calculation from Prover. Both of these are not
the part that affect the timing the most. The timing per dimension, multiexpo-
nentiation, and interpolation time will not be affected at all as they solely depend
on the dimension of the circuit checker.

We denote by |C| = number of gates, |E| = number of wires, and |X| = number
of variables. From Figure 12, it can be seen that the |X| = 3 |C|, whereas the
number of wires |E| (which needs to be checked using wire checker) = |C| − 1.
With the same reasoning, the final size (with m = number of rows/size, and
d = number of columns/dimension) of the quadratic span program can also be
determined beforehand due to the fact that all gates are NAND gates. The (m, d)
value is computed as follows. As every gate is a NAND gate, m = m1 ·|C|+1 where
m1 = 6 is the number of rows/size of the NAND checker. The +1 is from the target
vector. We note that in [Lip13] the target vector is not counted towards m. The
value of d is 2d1 · |C|+d2 · |E| where d1 = 3 is the dimension of the NAND checker
and d2 = 6 is the dimension of a wire checker for fanout 1. The value of d is then
simplified to 6|C|+ 6(|C| − 1) = 12|C| − 6 = 12(2level− 1)− 6. These formulas are
gotten from the circuit checker that is explained in Section 2.2.3. The measurement
was done on several levels, namely on level = 3, ..., 13. In the following sections,
the horizontal axis would be representing the span program size and dimension,
which can be seen from its (m, d) value. Note that the m value given is only the V
part of the circuit checker span program, which means the total rows should be two
times larger. The (m, d) values are (43, 78), (91, 174), (187, 366), (379, 750), (763,
1518), (1531, 3054), (3067, 6126), (6139, 12270), (12283, 24558), (24571, 49134),
(49147, 98286) respectively. More details on the parameters can be seen on Table
1. We note that the (m, d) listed on the table are the original values generated
from the circuit. In the argument system implementation, the values might get
bigger in order to be suitable for some functions, such as the interpolation function
and multiexponentiation function. For the interpolation function the input vector
should be a power of two, so additional zeros are added to the vector until the
number of elements is a power of two. For the multiexponentiation, as we used
window size 8, we pad them out by putting dummy base exponent where its
corresponding exponent is equal to zero so it does not affect the end result.

4.2 Interpolation Time

Figure 13 shows the interpolation time measurement in logarithmic (base 2) scale.
The interpolation time is measured based on the interpolation of one vector in
the span program, which means that in this case the first parameter m in the
horizontal axis does not affect the time. However, the parameter is still given on
the figure in order to provide consistency over the following figures. As explained
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Level Gates Wires Variables m d
3 7 6 21 43 78
4 15 14 45 91 174
5 31 30 93 187 366
6 63 62 189 379 750
7 127 126 381 763 1518
8 255 254 765 1531 3054
9 511 510 1533 3067 6126
10 1023 1022 3069 6139 12270
11 2047 2046 6141 12283 24558
12 4095 4094 12285 24571 49134
13 8191 8190 24573 49147 98286

Table 1: Test parameters based on level

Figure 13: Interpolation time for 1 vector in log2 scale
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before, the interpolation function was remade instead of reusing the interpolation
function from the NTL library. In the implementation, some optimization such as
pre-computation of all basis polynomials beforehand are done (only once, because
all basis polynomials remain the same throughout the argument system). The
time measurement shows a very satisfactory result. It can be seen that even on
the highest level tested, only 7.426 seconds was needed to interpolate one vector.
In total, there are only 4 vectors that need to be interpolated throughout the whole
argument system (two by CRS and another two by Prover) so the total time is
very reasonable.

In order to demonstrate how much the new time measurement of the interpo-
lation time improves over the default NTL interpolation time, Figure 14 shows the
comparison between the new and the default interpolation function on the same
parameters. The details is shown on Table 2.

Figure 14: Comparison between NTL and new interpolation function in log2 scale

We initially used the default interpolation function from NTL. However, the
resulting time was not as good as expected, since the interpolation time strongly
dominated the encoding/pairings time. This forced the author to look into the in-
terpolation function of NTL, which indeed uses a quadratic interpolation function.
A new interpolation function was then designed on top of the basic arithmetics
to achieve better efficiency. The new result shows a much better time and ad-
heres to the initial guess that the interpolation time should be dominated by the
encryption/pairings time for practically relevant values of n.
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Dimension NTL interpolation function New interpolation function
78 0.015 0.015
174 0.031 0.009
366 0.172 0.015
750 0.702 0.046
1518 2.325 0.063
3054 9.984 0.172
6126 43.945 0.359
12270 182.957 0.765
24558 - 1.622
49134 - 3.463
98286 - 7.426

Table 2: Interpolation function time comparison

4.3 Multiexponentiation Time

As explained in the previously, we implemented a multiexponentiation function
based on [Str64], also known as Shamir’s Simultaneous Squaring algorithm. Figure
15 shows time measurement and comparison between several versions of multiex-
ponentiation and the usual exponentiation algorithm. The usual exponentiation
algorithm here means the naive way where every single element is taken to the
exponent, and then multiplied together. The difference between each multiexpo-
nentation version is the radix that was used, where 1, 2, and 4 bit(s) are used
as the radix respectively. The time measurement was the average of repeating
it for 50 times in order to get a more accurate time. As seen on the figure, the
fastest version is the multiexponentiation that uses bit by bit (basis 2, single bit)
squaring, which is the best in a computer setting. It performs quite well, having
almost a 3x speed up compared to the naive version. Note that the speed of this
function is important due to the fact that a big part of the prover’s computation
is calculating multiexponentiation where the number of exponents is proportional
to the size of either m or d. More details on the exact timing can be seen on Table
3.

Apart from the radix, as stated before, we used the optimization proposed by
[PGHR13] which is to precompute exponent table using sliding window technique.
After multiple tests, we decided to use window size of 8 in order to achieve the best
timing performance while still retaining a reasonable memory usage. The details
on the timings of the sliding window optimization can be seen on Table 4.

39



Figure 15: Normal and multiexponentiation average time (log2 scale)

Exponents Normal Multi-exp Multi-2ra Mult-4ra
100 0.02852 0.01554 0.02326 0.05666
200 0.05486 0.03182 0.04536 0.11828
500 0.11884 0.07078 0.10668 0.33172
700 0.20932 0.12242 0.1778 0.44368
1000 0.29706 0.17412 0.25904 0.6388

Table 3: Multiexponentiation average timing (in seconds)

(m, d) Window size 2 Window size 4 Window size 8
(43, 78) 0.011 0.01 0.01
(91, 174) 0.026 0.016 0.016
(187, 366) 0.041 0.016 0.016
(379, 750) 0.086 0.046 0.046
(763, 1518) 0.173 0.093 0.094
(1531, 3054) 0.36 0.203 0.203
(3067, 6126) 0.742 0.406 0.436
(6139, 12270) 1.541 0.873 0.874
(12283, 24558) 3.058 1.856 1.747
(24571, 49134) 6.14 3.495 3.573
(49147, 98286) 12.185 7.504 7.254

Table 4: Multiexponentiation timing on different window size
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Figure 16: Window size timing (log2 scale)

4.4 CRS Generation Time

The CRS generation time consists mainly of two parts, interpolating each vi and wi
from the circuit checker and computing the encoding of elements which is gotten
by evaluating the aforementioned polynomials on a secret point. The result of the
time measurement shows that the CRS generation time is dominated by the time
of the encoding (exponentiation) of elements. The reason behind this is simply
because the amount of encoding operation needed is more than that of interpola-
tion. The amount of time needed for 1 multiexponentiation and 1 interpolation
is roughly the same as seen later in this section. Although the complexity of the
multiexponentiation is O(d) and the complexity of interpolation is O(d log2 d), the
multiexponentiation takes more time in practical value of degree size. This is be-
cause it takes another logarithmic factor of time in terms of the exponent to do
the multiexponentiation. The exponent is an element in the field which is 256/512
bits in size. Compared to the degree, the size of the exponent is obviously much
bigger. Taking this into account, the O(log2 d) factor in the interpolation is much
smaller compared to the ≥ log 2256 steps of multiexponentiation. The O(log2 d)
factor can be brought down even further to O(log d) (discussed later in Section
5.6) which makes the factor even smaller. In the CRS interpolation, only v0 and
w0 are truly interpolated in its polynomial form, while the rest of vi and wi are
interpolated directly into the evaluation of the secret point σ. With that, the
resulting time of the CRS interpolation time is consistent with the result on single
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interpolation, as in CRS interpolation two vectors are interpolated in polynomial
form and d doubles on each level, resulting in the increase shown on Figure 17.
The CRS exponentiation time also exhibits a normal behavior as the level goes
up (the size of the matrix doubles, and the time of the CRS computation time
goes up proportionally to it, with some constant multiplier). As the CRS is usu-
ally generated by a trusted third party and can be reused, this measurement isn’t
of much importance compared to the prover’s and verifier’s time. The prover’s
interpolation time as can be seen later on has a comparable time with the CRS
interpolation time, meanwhile the verifier’s total computaion time is significantly
smaller. We note here that if the algorithm supports an adaptive version, the CRS
only needs to be generated once. Figure 17 compares the interpolation and the
exponentiation time of the CRS generation.

Figure 17: CRS interpolation and computation time (log2 scale)

4.5 Prover’s and Verifier’s Computation Time

This section shows the prover’s and verifier’s computation time. Note that as
stated the timing here is the non-adaptive version of the argument system. The
time needed for the prover is also dominated by the encoding of the elements
(i.e. multiexponentiation) as opposed to the interpolation time. From the prover’s
side interpolation is still needed, but the number of interpolations is constant.
The verifier only needs to do constant amount of pairings in the non-adaptive
version, which makes the time needed to be much smaller than the prover’s time
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Figure 18: Prover’s and Verifier’s computation time in log2 scale

(which is already very good). Figure 18 shows the time from both the prover and
the verifier. Figure 19 shows more details on verifier’s time as the scale is much
smaller compared to prover’s total time. The verifier’s time graph in Figure 19 is
shown in linear scale. The reason behind the irregular time in the verifier’s total
time is due to the fact that the time needed is constant and so insignificant that
it can easily change with just a little noise from the test environment. It can be
seen that the prover’s total time in the argument system is lower than the CRS
time. The verifier’s total time is in turn significantly lower than the prover’s total
time due to constant number of pairings regardless of the circuit size.

4.6 Overall Timings and Details

This section lists a wrap up of all the important timings and details of the im-
plementation. Table 5 shows all the important timings and argument size of the
implementation. The timings are: time to interpolate 1 vector of dimension d, time
to do 1 multiexponentiation of dimension d, CRS interpolation time, CRS exponen-
tiation time, CRS generation total time, Prover’s interpolation time, Prover’s mul-
tiexponentiation time, Prover’s total time, Verifier’s total time, interpolation time
per dimension, multiexponentiation time per dimension, ratio between multiexpo-
nentiation and interpolation time, and argument size. All the timings are in sec-
onds, except for Interpolate/Dimension (in microseconds), MultiExp/Dimension
(in microseconds), MultiExp/Interpolate (in percent). CRS size is in megabytes,
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Figure 19: Verifier’s computation time (linear scale)

VCRS size and argument size are in bytes. The CRS and VCRS size includes all
the elements except for the span program P in order to show the better contrast
between the two. It can be seen that the timing ratio of interpolation over dimen-
sion and multiexponentiation over dimension stays stable. Furthermore, the ratio
between 1 multiexponentiation time and 1 interpolation time is roughly 1:1. The
time measurement was not done on larger circuit size due to insufficient memory
on the machine, which causes the operating system to be unstable making the
timing to be tremendously inaccurate.

4.7 Comparison with Pinocchio

This work tries to compare the implementation with the Pinocchio’s implementa-
tion from [PGHR13]. Even though Pinocchio solves a different problem, there are
some similarities in the implementation itself.

• Both Pinocchio and we uses asymmetric pairings which is faster compared
to symmetric pairings (with the same level of security). This is because the
calculation can be pushed more into the cheaper base curve compared to the
twist curve.

• The size of the proof in this work is the same as Pinocchio’s, 288 bytes. The
proof is the statement sent by the prover to the verifier. The prover sends 5
elements from G2 and 2 elements from G1 where each element of G2 is 256 bits
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(m, d) (3067, 6126) (6139, 12270) (12283, 24558) (24571, 49134) (49147, 98286)
Interpolate 1 0.359 0.765 1.622 3.463 7.426
MultiExp 1 0.436 0.874 1.747 3.573 7.254

CRS Interpolate 1.076 2.262 4.695 9.828 20.577
CRS Expo 9.048 18.049 36.254 75.525 145.08
CRS Total 10.124 20.311 40.949 85.353 165.657

Prover Interpolate 1.42 2.965 6.255 13.292 28.096
Prover Expo 4.617 9.344 19.048 39.092 79.981
Prover Total 6.037 12.309 25.303 52.384 108.077
Verifier Total 0.01 0.009 0.01 0.01 0.01

Dimension 6126 12270 24558 49134 98286
Interpolate/Dimension (µs) 58.603 62.347 66.048 70.481 75.555
MultiExp/Dimension (µs) 71.172 71.231 71.138 72.720 73.805

MultiExp/Interpolate (percent) 121.448 114.248 107.707 103.176 97.684
CRS size (MB) 1.373 2.749 5.502 11.007 22.017

VCRS size (bytes) 544 544 544 544 544
Argument Size (bytes) 288 288 288 288 288

Table 5: Timing and argument size

and each element of G1 is 512 bits. The total is then (5× 256) + (2× 512) =
2304 bits = 288 bytes. It can be noted that this can only be achieved using
some optimization pointed out in [PGHR13] which is to store the points in
affine form and further compress it to only store the abscissa (and finding
the pair ordinate as needed).

• The polynomial interpolation function implemented in this work is faster
than the one shown on Pinocchio. Pinocchio shows that in order to inter-
polate a polynomial of degree 1000, its optimized function needs 331.1 ms
whereas we need 93 ms to interpolate polynomial of degree around 1500.
The reason behind might be due to the fact that some precomputation on
the basis polynomial is done beforehand in this work which makes it to run
faster than Pinocchio’s function. Other factors that affect the performance
apart from the interpolation/multipoint evaluation itself is the polynomial
arithmetics underneath that are highly optimized by NTL.

• The multiexponentation function in Pinocchio seems to be of the same speed
compared to this work. As there are no really details given on the parameter
on the multiexponentiation function, this work tries to compare the opti-
mization used and the speed up achieved compared to the naive version.
As both this thesis and Pinocchio uses the table precomputation, they both
achieve a 3-4x speed up

• In the Pinocchio paper, they claimed that using Quadratic Arithmetic pro-
gram (QAP) is much faster compared to Quadratic Span Program (QSP).
Instead of having input as boolean value, a Quadratic Arithmetic Program
assumes each input to be an element in the field F. Futhermore, instead of
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boolean gates, QAP works with arithmetic gates (multiplication, addition,
etc). We haven’t look much into the details in their implementation, but from
their theoretical explanation adding a gate into the circuit increases the QSP
size by 12 and dimension by 9. This result was referred from [GGPR13]. In
[Lip13], adding a gate is done by using a span program (not QSP). The final
circuit checker QSP will indeed increase in terms of dimension and size. Fo-
cusing on size increase by 12, this means that the span program initially has
size 6. The two span program that Lipmaa proposed which has size 6 are the
fork gate and NAND gate. However, using either of those two gate checker
will only increase the dimension of the circuit checker by 6, not 9. Further-
more, the other gate checkers proposed (OR, AND, XOR, EQUAL) all have
smaller size (in terms of rows and dimension) compared to the NAND and
fork gate checker. In addition to that, the Pinocchio’s verification time is
not constant. They also used less precise bounds on the circuit checker size.
Interested reader should refer to both [Lip13] and [PGHR13] for compari-
son. By that reasoning, even though QSP might indeed become slower due
to larger resulting circuit checker (still needs to be directly compared with
[Lip13]), we feel that the slowdown factor is not as big as claimed in the
Pinocchio paper.

Even though not all of this work implementation can be compared directly with
Pinocchio, it may be worth noted that Pinnochio’s implementation is highly opti-
mized over longer time for industrial purpose. The author believes that this initial
implementation of work serves as a good start and can be improved much more
over time as a foundation.
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5 Future Work and Possible Improvements

This section discusses some of the possible future work and improvements resulting
from this work. Some of the improvements listed here were noticed by the author
during the work process. Unfortunately, due to time constraint not all of the
optimizations and features were added to this work. The author hopes that this
section would help anyone that would be interested in continuing this work in the
near future.

5.1 Universal Circuit

The argument system is this work is the non-adaptive version of the argument
system based on [Lip13]. In his paper, Lipmaa has also managed to design an
adaptive version of the same argument system. This version is better in the sense
that there is no need for the function/circuit to be known first before the CRS
generation. This is achieved by using a universal circuit which in turn takes in the
circuit to be proven and the assignment itself as its input. The universal circuit
is a boolean circuit that can be made to compute any boolean function by setting
its specially designated set of control inputs to appropriate fixed values [Val76].
Although the adaptive version is logarithmically slower than the non-adaptive
version due to the usage of universal circuit, the ”non-interactive” part of the
argument system looks much nicer as the non-adaptive version somehow needs the
trusted third party to be there for every single new problem to be proven (although
in the non-adaptive version the CRS can still be reused if the function/circuit stays
the same).

5.2 Circuit Fanout Reduction

The implementation done on this work assumes that the input of the circuit has a
maximum fanout 2. In [Lip13], it was also explained that any circuit with fanout
more than 2 can be transformed into a circuit with maximum fanout 2. Although
it can be argued that this is sufficient, it would be better if there is a feature where
given any circuit of any fan out, another circuit which computes the same function
is outputted where this later circuit has a maximum fanout of 2. The reason that
the circuit with higher fanout should be first transformed is due to some efficiency
issue which is explained in [Lip13].

5.3 h(X) optimization

In [Lip13], Lipmaa proposed an optimized way to compute h(X) by computing
Ẑrev(X) = XdẐ(1/X) and then using it to calculate h(X). With this optimization,
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the Prover essentially needs to do two multiplication. This optimization is not
implemented in this thesis.

5.4 Fanout 3 implementation

As stated in earlier section, [Lip13] claimed that limiting the fanout to 3 is more
efficient than limiting the fanout to 2 in some cases. It would be of interest to
have such implementation to see the time comparison between the two.

5.5 Input Circuit Generation

The time measurement was done by feeding a systematically generated circuit that
has a perfect binary tree structure into the program, which means that all gates
will have fanout 1. An implementation of circuit generation with fanout at most
2 would be good to see how much does it affect the time measurement.

5.6 Futher Optimization on Interpolation Function

As stated in the earlier section, the complexity of the new interpolation function
in this work is O(n log2 n). This can be further reduced to O(n log n) by using
inverse FFT and FFT respectively. This however requires the roots ri to be the
roots of unity, meaning that the field itself needs to support such choices. This
part remains to be explored, and successful implementation of inverse FFT and
FFT on the field will decrease the interpolation time by a factor of O(log n).

There is another optimization that the author realized during the end of this
thesis, but not implemented. As the QSP of the wire checker uses Reed-Solomon
code, it introduces redundancy. This means that not all the elements are needed to
be given to the interpolation function to interpolate the polynomial. For example,
for fanout 1 only the first two out of the three columns of the generator are needed.
This will reduce the number of additions and multiplications (of the polynomial)
by the size of wires.
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6 Conclusion

The main result of this work is the implementation of the non-adaptive version of
the non interactive zero knowledge argument system based on [Lip13]. In the pro-
cess, we also managed to improve the interpolation function for field polynomials
which to author’s knowledge hasn’t been implemented by many libraries. Based on
the implementation and the resulting measurement, there are several conclusions
to be made:

• In order to achieve maximum efficiency, a good sparse matrix representa-
tion must be used to optimize the memory usage while still considering the
operation time trade off

• For the CRS generation and prover’s side of computation, the multiexponen-
tiation of elements dominates the total time of computation as opposed to
the interpolation time

• The prover and verifier computation takes a reasonable amount of time. This
shows as a good sign to use the non interactive zero knowledge argument
system in a practical setup.

• In order to remove the dependency with the trusted third party, one can at-
tempt to build a universal circuit setup on top of the existing implementation
in order to avoid generating the CRS every time.

Although there are rooms for improvement, the author believes that the existing
implementation serves as a very good signal on how non interactive zero knowledge
can actually be used as a building block in real life. The running time of the
argument system looks reasonable enough for the main parties involved to prove
problems that are not trivial.

49



Lakoonilise nullteadmusargumendisüsteemi opti-

miseeritud implementatsioon

Magistritöö (30 EAP)

Hendri

Resümee

Käesolevas töös üritame konstrueerida lakoonilise mitteinteraktiivse null-
teadmustõestuste süsteemi implementatsiooni. Mitteinteraktiivne nulltead-
mustõestuste süsteem on protokoll, milles üks osapool, keda kutsutakse tõestajaks,
tõestab teistele osapooltele, keda kutsutakse verifitseerijateks, et mingi verifitseeri-
jale esitatud väide on tõene. Nullteadmusprotokoll peab muuhulgas garanteerima,
et vastav tõestus ei lekita väite kohta muud informatsiooni peale väite kehvituse.
Antud töös käsitleme tõeväärtusskeemide kehtestatavuse probleemi. Tõeväärtuss-
keemi kehtestatavuse probleem on küsimus selle kohta, kas leidub sisend, mil-
lel antud tõeväärtusskeem saab väljundiks väärtuse tõene. Implementeeritud
tõestusskeem põhineb Helger Lipmaa tööl [Lip13], mis kasutab tõestuse kon-
strueerimiseks lineaarkatte programme (span program) ja lineaarseid veaparan-
duskoode. Töös anname ka kerge ülevaate nullteadmustõestuste üldisest olemus-
est, et ülejäänud töö olemust paremini selgitada.

Me konstrueerime mitteadaptiivse versiooni tõestussüsteemist. Lisaks null-
teadmustõestusele iseloomulikele omadustele on see versioon kasulik ka verifit-
seeritava arvutamise saavutamiseks, nagu käsitletud näiteks artiklis [PGHR13].
Töö algab ülevaatega mitteinteraktiivsest nullteadmusest ning lineaarkatte pro-
grammidest. Edasises kirjeldame, kuidas esitada tõeväärtusskeemi kehtestatavuse
probleemi kasutades mainitud lineaarkatte programme. Lõpuks kirjeldame oma
implementatsiooni, keskendudes olulistele detailidele ning kasutatud teekidele.
Töö kokkuvõtteks on jõudlustulemused ning suunad edasisteks täiendusteks.

50



References

[AKL+11] Diego F. Aranha, Koray Karabina, Patrick Longa, Catherine H. Gebo-
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[BS12] Markus Bläser and Chandan Saha. Computational Number Theory
and Algebra, Lecture 6, 2012.

51

http://cryptojedi.org/papers/#pfcpo


[CDS94] Ronald Cramer, Ivan Damg̊ard, and Berry Schoenmakers. Proofs of
partial knowledge and simplified design of witness hiding protocols. In
Proceedings of the 14th Annual International Cryptology Conference on
Advances in Cryptology, CRYPTO ’94, pages 174–187, London, UK,
UK, 1994. Springer-Verlag.

[CGH98] Ran Canetti, Oded Goldreich, and Shai Halevi. The random oracle
methodology, revisited. In Proceedings of the thirtieth annual ACM
symposium on Theory of computing, STOC ’98, pages 209–218, New
York, NY, USA, 1998. ACM.

[GGPR13] Rosario Gennaro, Craig Gentry, Bryan Parno, and Mariana Raykova.
Quadratic span programs and succinct NIZKs without PCPs. In EU-
ROCRYPT 2013, Athens, Greece, May, 26–30 2013.

[GMR85] S Goldwasser, S Micali, and C Rackoff. The knowledge complexity
of interactive proof-systems. In Proceedings of the seventeenth annual
ACM symposium on Theory of computing, STOC ’85, pages 291–304,
New York, NY, USA, 1985. ACM.

[Gro10] Jens Groth. Short Non-interactive Zero-Knowledge Proofs. In
Masayuki Abe, editor, ASIACRYPT 2010, volume 6477, pages 341–
358, Singapore, December, 5–9 2010.

[GT03] Sha Goldwasser and Yael Taumann. On the (in)security of the fiat-
shamir paradigm. In Proceedings of the 44th Annual IEEE Symposium
on Foundations of Computer Science, pages 102–115. IEEE Computer
Society Press, 2003.

[KW93] M. Karchmer and A. Wigderson. On span programs. In In Proc. of
the 8th IEEE Structure in Complexity Theory, pages 102–111. IEEE
Computer Society Press, 1993.

[Lip12] Helger Lipmaa. Progression-Free Sets and Sublinear Pairing-Based
Non-Interactive Zero-Knowledge Arguments. In Ronald Cramer, edi-
tor, TCC 2012, volume 7194, pages 169–189, Taormina, Sicily, Italy,
March, 19–22 2012.

[Lip13] Helger Lipmaa. Succinct Non-Interactive Zero Knowledge Argu-
ments from Span Programs and linear Error-Correcting Codes.
Technical Report 2013/121, February 28, 2013. Available at
http://eprint.iacr.org/2013/121.

52



[PGHR13] Bryan Parno, Craig Gentry, Jon Howell, and Mariana Raykova. Pinoc-
chio: Nearly Practical Verifiable Computation. In Proceedings of the
IEEE Symposium on Security and Privacy, 2013.

[Rot06] Ron Roth. Introduction to Coding Theory. Cambridge University Press,
New York, NY, USA, 2006.

[Str64] Ernst G. Straus. Addition chains of vectors (problem 5125). American
Mathematical Monthly, 70:806–808, 1964. URL: http://cr.yp.to/

bib/entries.html#1964/straus.

[Val76] Leslie G. Valiant. Universal circuits (preliminary report). In Proceed-
ings of the eighth annual ACM symposium on Theory of computing,
STOC ’76, pages 196–203, New York, NY, USA, 1976. ACM.

53



 

 

 

 

 

Non-exclusive licence to reproduce thesis and make thesis public 

 

 

 

 

 

I, Hendri 

  

(date of birth: 14
th

 October 1988), 

 

 

1. herewith grant the University of Tartu a free permit (non-exclusive licence) to: 

 

1.1. reproduce, for the purpose of preservation and making available to the public, including 

for addition to the DSpace digital archives until expiry of the term of validity of the 

copyright, and 

 

1.2. make available to the public via the web environment of the University of Tartu, 

including via the DSpace digital archives until expiry of the term of validity of the 

copyright, 

 

An Optimized Implementation of a Succinct Non-Interactive Zero-Knowledge Argument 

System, 

  

supervised by Helger Lipmaa, PhD, 

 

2. I am aware of the fact that the author retains these rights. 

 

3. I certify that granting the non-exclusive licence does not infringe the intellectual property 

rights or rights arising from the Personal Data Protection Act.  

 

 

 

 

Tartu, 20
th

 May 2013 

 

 
 


	Title Page
	Hendri - Master's Thesis UT.pdf
	Acknowledgements
	Introduction
	Problem Statement
	Outline
	Author's Contribution

	Preliminaries
	Basic Definitions
	Zero Knowledge Argument System
	Non-Interactive Zero Knowledge Argument System
	Verifiable Computation
	Circuit Satisfiability Problem

	Representing Circuit SAT Problem using Span Programs
	Gate Checker
	Wire Checker and Quadratic Span Program
	Circuit Checker

	From Span Programs to Polynomials

	Argument System and Implementation
	Notation
	Non-Interactive Zero Knowledge Argument System
	CRS generation G(1, n)
	Prove P(crs; C, u)
	Verify V(vcrs; C, )

	Implementation
	Sparse Matrix Representation
	Ordered vs Unordered Map
	Aggregating the Checkers
	Multipoint Evaluation and Interpolation
	Pairings
	Multiexponentiation


	Comparison and Time Measurement
	Parameters
	Interpolation Time
	Multiexponentiation Time
	CRS Generation Time
	Prover's and Verifier's Computation Time
	Overall Timings and Details
	Comparison with Pinocchio

	Future Work and Possible Improvements
	Universal Circuit
	Circuit Fanout Reduction
	h(X) optimization
	Fanout 3 implementation
	Input Circuit Generation
	Futher Optimization on Interpolation Function

	Conclusion
	
	References

	license.pdf

