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Objective: Novel statistical methods and increasingly more accurate gene annotations
can transform “old” biological data into a renewed source of knowledge with potential
clinical relevance. Here, we provide an in silico proof-of-concept by extracting novel infor-
mation from a high-quality mRNA expression dataset, originally published in 2001, using
state-of-the-art bioinformatics approaches.

Methods: The dataset consists of histologically defined cases of lung adenocarcinoma
(AD), squamous (SQ) cell carcinoma, small-cell lung cancer, carcinoid, metastasis (breast
and colon AD), and normal lung specimens (203 samples in total). A battery of statisti-
cal tests was used for identifying differential gene expressions, diagnostic and prognostic
genes, enriched gene ontologies, and signaling pathways.

Results: Our results showed that gene expressions faithfully recapitulate immunohisto-
chemical subtype markers, as chromogranin A in carcinoids, cytokeratin 5, p63 in SQ, and
TTF1 in non-squamous types. Moreover, biological information with putative clinical rele-
vance was revealed as potentially novel diagnostic genes for each subtype with specificity
93–100% (AUC= 0.93–1.00). Cancer subtypes were characterized by (a) differential expres-
sion of treatment target genes as TYMS, HER2, and HER3 and (b) overrepresentation of
treatment-related pathways like cell cycle, DNA repair, and ERBB pathways. The vascular
smooth muscle contraction, leukocyte trans-endothelial migration, and actin cytoskeleton
pathways were overexpressed in normal tissue.

Conclusion: Reanalysis of this public dataset displayed the known biological features of
lung cancer subtypes and revealed novel pathways of potentially clinical importance. The
findings also support our hypothesis that even old omics data of high quality can be a source
of significant biological information when appropriate bioinformatics methods are used.

Keywords: bioinformatics, carcinoid, lung adenocarcinoma, mesothelioma, microarray, small cell, squamous

INTRODUCTION
Lung cancer is the cancer entity that takes most lives worldwide
and overall 5-year survival is still only 15%, despite recent progress
in targeted therapy in small subsets of patients (1). The need to
identify subgroups with different biology and treatment resistance
patterns has been an underlying theme in research, but translat-
ing this to the clinic has been very difficult due to the complexity
and heterogeneity of the disease (2). The major histological lung
cancer subgroups include adenocarcinoma (AD), squamous cell
carcinoma (SQ), large cell carcinoma (LC), the carcinoids (COID),
and small-cell lung cancer (SCLC) (3). There is an obvious lack
of molecular knowledge on lung cancer (4, 5) and an urgent need
to dissect the biological differences between/within types both for

improving diagnosis, for detecting prognostic subgroups defined
by novel molecular signatures and novel targets and strategies for
personalized treatment.

More than a decade ago, genome-wide profiling was believed
to allow detection of cancer subgroups and to be able to pro-
vide an answer to all these questions. In 2001, Bhattacharjee et al.
proposed that the lung AD should be divided into four sub-
groups based on gene-expression profiles (6). These subgroup
descriptions did not materialize into practice-changing informa-
tion. However, several bioinformatics tools and resources were not
yet developed. Particularly, gene annotation was not as complete
and we did not have the same level of pathway insight. Could
a fresh look into this material reveal new information? In this
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study, we reanalyzed the Bhattacharjee dataset in silico – still one
of the largest, publicly available, high-quality microarray datasets
on normal lung tissue and lung cancer histological subgroups (6).
The aim was to characterize the classical histological subgroups in-
depth based on differentially expressed genes, gene ontologies, and
pathways, and comparing this with our own published mesothe-
lioma dataset (7). In the AD group, we correlated gene expression
to clinicopathological information and survival.

MATERIALS AND METHODS
DATA AND PREPROCESSING
Publicly available raw gene-expression profiling data (6) of 203
snap-frozen samples from lung tumors and normal tissue were

obtained from http://www.broadinstitute.org/mpr/lung/. These
data have not been submitted in any repository (e.g.,ArrayExpress,
Gene Expression Omnibus, DNA databank of Japan) probably
because it was published as early as 2001. These included his-
tologically defined AD (n= 126), SQ (n= 21), COID (n= 20),
SCLC (n= 6) cases, metastasis from other ADs (n= 13, suspected
to be extrapulmonary metastases), and normal lung specimens
(n= 17). Of these, 125 AD samples were associated with clinical
data and with histological slides from adjacent sections (6). The
total RNA extracted from samples was used to generate cRNA tar-
get, subsequently hybridized to human U95A v2 oligonucleotide
probe arrays of 12,600 transcripts/8655 unique genes (Affymetrix,
Santa Clara, CA, USA) according to standard protocols (8). We

FIGURE 1 | Flow-chart of the performed analyses. This figure illustrates
the analyses performed during this study. The raw CEL files were
obtained from the site of the authors of the original publication and were
preprocessed with the RMA algorithm. Three different branches of
analyses were performed; first, PCA was used for investigating the
relationship among different types of tumors and against normal tissues.
Second, differentially expressed and diagnostic genes were identified in
each histological type versus the rest. On the basis of these lists of
differentially expressed genes, enriched GO biological processes, and

KEGG pathways were identified with the hyper-geometric test. Finally, the
association between clinicopathological and transcriptional information
were investigated in the primary adenocarcinoma samples. We tried to
identify genes correlated with the tumor size, differentially expressed and
diagnostic genes of lymph node status and metastasis, and single gene
or gene signatures predictive of survival. The sample size differs because
complete clinicopathological information was not always provided and in
the survival analysis only the primary adenocarcinomas were taken into
account.
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calculated expression values from the raw data (CEL files) using
the robust multi-array average (RMA) normalization approach
as implemented in the Bioconductor’s “affy” package (9) and any
probe with insufficient annotation was removed. When multi-
ple probes were referring to the same gene, only the probe with
the higher variation was retained. Principal components analy-
sis (PCA) was performed and either the first two (2D) or three
(3D) principal components were plotted in order to visualize a
significant portion of the information on the data. A schematic
representation of the different analyses performed on the lung
cancer dataset in this study is provided (Figure 1).

IDENTIFICATION OF DIFFERENTIALLY EXPRESSED AND DIAGNOSTIC
GENES
For each diagnostic group (normal/AD/SQ/SCLC/COID), dif-
ferentially expressed and diagnostic genes were analyzed in
a “one vs. all the rest” fashion (e.g., normal versus the
union of AD/SQ/SCLC/COID, SQ versus the union of nor-
mal/AD/SCLC/COID, etc.). For differential expression, linear
models and empirical Bayes statistics from Bioconductor’s
“limma” package (10, 11) were used and any gene with false dis-
covery rate (FDR) adjusted p-value below 0.05 was considered
significant. For identifying diagnostic genes, the receiver operating
characteristic (ROC) – area under the curve (AUC) (12) for each
gene was determined using its expression as a ranking criterion,
and genes with high AUC were deemed as the most diagnostic.

PATHWAY OVER/UNDERREPRESENTATION ANALYSIS
GO biological processes and KEGG pathways that were over-
represented or underrepresented for each diagnostic group were
identified via a hyper-geometric statistical test as implemented
in the hyperGTest R function (13). In our analyses, the hyper-
geometric test was used for contrasting specific GO terms/KEGG
pathways against sets of genes“of interest.”These sets were defined,
in turn, as all differentially expressed genes, the upregulated genes,
and the downregulated genes of each diagnostic group.

COMPARISON WITH MESOTHELIOMA
Our previous study on microarray of mesothelioma versus pari-
etal pleura has a gene list of differentially expressed genes as well
as GO and KEGG pathways (7). We compared these findings with
the lung cancer profiles to see possible similarities and differences.
The mesothelioma versus normal pleura expression profile has
been submitted to ArrayExpress registered with accession number
E-MTAB-47.

CORRELATION WITH PHENOTYPE CHARACTERISTICS AND SURVIVAL
We used the supplementary information available for the
ADs samples (n= 126; www.pnas.org/content/suppl/2001/11/13/
191502998.DC1/SampleData.xls), for investigating possible asso-
ciations among gene expressions and different phenotype. We
correlated gene expression with tumor size by performing Spear-
man’s rank correlation test. The resulted p-values were corrected
through Storey’s q-value method (14) (as implemented in Biocon-
ductor’s “q-value” package), where a cutoff threshold of 0.05 was
used to control the FDR.

Differentially expressed and diagnostic genes for the metasta-
tic vs. primary AD tumors and for each lymph node status were

identified as described in Section “Identification of Differentially
Expressed and Diagnostic Genes.”

A complex analysis protocol was applied in order to identify
gene signatures able to predict survival in AD. All the available
clinicopathological information as sex, age, and smoking were
included in the analysis, and missing values were replaced with the
mean of their respective variables. The experimentation protocol
from Lagani et al. (15) was applied. Briefly, this protocol consists
of several multivariate regression and feature selection algorithms
applied with a nested N-fold cross-validation procedure. The N-
fold cross validation consists in subdividing the available sample
in N-folds; in turn, each fold is held out for testing purposes while
the remaining data (training set) is employed for model selec-
tion and fitting. The nested-cross validation is a generalization
of the standard cross validation, where an inner cross validation
is applied in the training set in order to select the best model.
The performance estimation provided by nested-cross validation
is known to be more accurate than the ones provided by simple
cross validation (16).

VALIDATION ON EXTERNAL DATASETS
The validation on the robustness and reproducibility of our meth-
ods was tested by analysis of two additional, more recent lung
cancer datasets (17, 18), as detailed in Text S1 in Supplementary
Material. In brief, three ordered gene lists were produced for each
dataset, one based on FDR adjusted p-value, one based on log-fold
change, and one based on AUC. A statistical methods based on dif-
ferentially weighting overlaps among lists depending by whether
they occur at the extremes of in the middle of the lists [Biocon-
ductor’s package “OrderedList,” (19)] was employed to test and
measure the similarity between the lists of each ordering scheme.

IMMUNOHISTOCHEMISTRY
The immunohistochemistry images are from our institution, Insti-
tute of Pathology, Aalborg University Hospital and are representa-
tive for each diagnostic antibody. The microphotos are presented
in accordance with the rules of the Review Board at our institution.

RESULTS
In the first analysis, differential gene expression of each tissue type
versus all the other types was determined. Data showed that each
of the tumor subtypes and normal tissue had >1000 differen-
tially expressed genes, except the SCLC with 842 genes (Table 1;
File S1 in Supplementary Material). Likewise each tissue type had
tens of genes with an AUC greater than 0.8, indicating a strong

Table 1 | Differentially regulated genes between each diagnostic group

versus the rest (p < 0.05).

Genes Normal Lung AD SQ COID SCLC

Up 1338 1527 1611 3247 493

Down 1680 1975 2064 2130 349

Up, upregulated; Down, downregulated; AD, adenocarcinoma; SQ, squamous

cell carcinoma; COID, carcinoids; SCLC, small-cell lung cancer.
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FIGURE 2 | Distribution of normal tissues and cancer subtypes in the
principal component space. This visualization shows that normal and
carcinoids (COID) have distinct expression profiles, while adenocarcinomas
(AD) overlap with both squamous (SQ) and small-cell carcinoma (SCLC).

discriminatory or diagnostic value of these genes (File S2 in Sup-
plementary Material). Moreover, there were several significantly
over and underrepresented ontologies and pathways in GO and
KEGG (Files S3 and S4 in Supplementary Material). There was a
distinctive expression profile of the normal tissue, SCLC, SQ, and
COID as visualized by principal component analysis (PCA) in 2D
and 3D. In contrast, AD showed high degree of heterogeneity and
overlapped the expressions of SQ and SCLC (Figures 2 and 3). In
the PCA, the expression of the AD metastases to the lung from
other locations did not vary significantly from the primary lung
ADs (Figure 4). However, between the primary AD and metasta-
tic groups there were 267 differentially expressed genes with FDR
adjusted p-value <0.05. Below the main results of each tissue type
is described.

NORMAL LUNG
The top five diagnostic genes were all overexpressed, PECAM1
(AUC >0.99), TGFBR2, CDH5, AGER, and TCF21 (File S2 in Sup-
plementary Material). These results were similar with the results
from the original paper that found all these genes overexpressed in
the normal samples as well (6). The differentially expressed genes
of normal lung tissue versus all types of lung tumors were overrep-
resented in several GO processes as actin cytoskeleton organization
and regulation of developmental process and underrepresented in
such as mRNA metabolic process and G1/S transition checkpoint
(File S3 in Supplementary Material). Similar KEGG pathways were
overrepresented, such as regulation of actin cytoskeleton, vascu-
lar smooth muscle contraction, and leukocyte trans-endothelial

FIGURE 3 | Distribution of normal tissues and cancer subtypes except
adenocarcinoma in the principal component space. Small-cell,
squamous, and carcinoid subgroups show distinctive expression profile
when the adenocarcinomas are omitted, indicating that adenocarcinoma is
the most heterogeneous group.

migration (File S4 in Supplementary Material). Interestingly, these
pathways were downregulated in tumors.

NON-SMALL CELL LUNG CANCER
Squamous cell lung cancer
The top five genes with the highest predictive value were KRT5
(AUC >0.98), ATP11A, DSP, UBXN7, and RHOBTB2 from which
ATP11A and RHOBTB2 were underexpressed and the rest were
overexpressed. The GO of the differentially expressed genes of SQ
included M/G1 transition and DNA repair, while in KEGG sev-
eral DNA repair mechanisms where overexpressed. Among the
underrepresented was cellular response to cytokine stimulus and
similarly in KEGG, cytokine–cytokine receptor interaction.

Adenocarcinoma
Among the top five genes with the highest diagnostic value ERBB2
(HER2) (AUC >0.93), GALE, PRSS8, and PYCR1 were overex-
pressed and PGAP1 was downregulated. The GO of the differ-
entially expressed genes of the primary lung AD showed antigen
procession and presentation, identical as in KEGG, while response
to bacterium and cell cycle was underrepresented in GO and
KEGG, respectively (Files S3 and S4 in Supplementary Material).

SMALL CELL LUNG CANCER
The top five genes were all overexpressed, namely the ISL1
(AUC= 1.00), HMGN2, CDKN2C, STMN1, and ACYP1. The GO
of the differentially expressed genes of SCLC included mitotic
cell cycle and DNA repair, while regulation of several metabolic
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FIGURE 4 | Distribution of primary versus metastatic adenocarcinoma
samples in the principal component space. PCA plot showing the
expression of the adenocarcinoma metastases to the lung from other
locations (light blue) in relation to primary lung cancers including
adenocarcinoma (red). The general expression profile of the adenocarcinoma
metastases versus primary adenocarcinomas did not vary significantly.

processes was underrepresented. In KEGG, cell cycle, several DNA
repair mechanisms and one carbon pool by folate was overrepre-
sented while cytokine–cytokine receptor interaction and protea-
some were among the underrepresented pathways (Files S3 and S4
in Supplementary Material).

CARCINOIDS
The lung COID was the only tumor entity that separated com-
pletely from the rest of the tumors and normal tissue by PCA and
AUC (Figures 2 and 3). There were seven genes with a diagnostic
AUC= 1.00, namely VAMP2, MYT1L, GPRASP1, TSPYL2, CHGA,
MAPRE3, and SNAP91, all overexpressed. Differentially expressed
genes of COID in GO showed overrepresentation of regulation
of angiogenesis and Hippo signaling cascade, and upregulation of
synaptic transmission and neurological system process. In KEGG
pathways, the lysosome, the SCLC, and phagosome pathways were
overrepresented, and neuroactive-ligand receptor interaction neu-
rological disease pathways such as Parkinson’s, Huntington’s, and
Alzheimers’s were significantly upregulated. Underrepresentation
of GO included response to stress and immune-related ontolo-
gies while in KEGG the ribosome, the ECM-receptor interaction,
phagosome, and the leukocyte trans-endothelial migration was
downregulated (Files S3 and S4 in Supplementary Material).

PRIMARY LUNG ADENOCARCINOMA VERSUS LUNG METASTASES
In the PCA, we observed that the AD metastases of the lung from
other sites had an overlapping and overall similar gene-expression

Table 2 | Genes significantly correlated with primary lung

adenocarcinoma tumor size.

Symbol Correlation Adjusted p-value <0.05

NR2C1 0.4527 0.00564

DLGAP1 −0.4255 0.01395

ZNF259P1 −0.3952 0.0369

CD22 −0.3946 0.0369

Positive correlation implies higher expression in larger tumors.

profile with the primary lung AD (Figure 4). However, there were
267 differentially expressed genes, where 207 were downregulated
in the primary lung AD (File S1 in Supplementary Material). The
overexpressed gene with highest discriminatory power was the
SLC26A3 with AUC >0.88. In KEGG pathways, key genes of the
PI3K-Akt and Jak-Stat, e.g., the oncogenes MYC and MYB and
in the mTOR signaling pathways the AKT1, MTOR, OSMR, and
PKN1 were upregulated.

CLINICOPATHOLOGICAL CORRELATION AND SURVIVAL IN
ADENOCARCINOMAS
We performed a Spearman rank test using only the primary ADs
of the lung where clinical data were available (n= 112) to examine
the correlation of gene expression and tumor size in centimeters.
There were four genes with a significant p-value, and only one
of them, the NR2C1 was positively correlated with tumor size
(Table 2). Analysis of N-status revealed only in the N0 cases versus
N1–N3 two differentially expressed genes (P < 0.05) with an AUC
of >0.74, FLNB and ILVBL, both downregulated. There were no
differentially expressed gene related to metastasis, but there were
very few cases in the M1 group (n= 4), most where MX (undefined
M status).

The survival analysis did not achieve any notable results as
no single gene neither gene signature could predict survival in
this cohort. Particularly, we measured predictive performances in
terms of concordance index (CI) and integrated brier score (IBS)
(20). The first metric has an interpretation similar to the AUC
and provides an estimation of the probability of correctly ranking
two randomly chosen subjects according to their respective risk of
experiencing the event of interest. The IBS evaluates the calibration
of the predicted survival curves. In all our analyses, the predictive
performances of any single gene and gene signature (as measured
through nested-cross validation, see “Materials and Methods”)
were around 0.5 (CI) and 0.25 (IBS),which corresponds to random
guessing.

DISCUSSION
New insight in molecular subtyping is of increasing importance in
the era of personalized medicine, as advances in high-throughput
technology have revealed distinct molecular differences between
and within tumor types and even a high degree of intratumoral
heterogeneity. Here, we provide a proof-of-concept of how a well
curated set of expression profiles on normal lung tissues and lung
cancer subtypes can be used to make biologically and clinically rel-
evant assumptions on the phenotype based on the transcription
profiles.
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Through more than four decades, patients with lung cancer
were generally treated uniformly in two large groups, the non-
small cell lung cancers (NSCLC) and the SCLC. Current progress
include more efficient chemotherapy compounds for so-called
non-squamous carcinomas, including the multifolate inhibitor
pemetrexed (21), and smaller subgroups with molecular changes
such as EGFR mutations and ALK rearrangements that signifi-
cantly predict the effect of biological targeted therapies (22, 23).
However, the SQ, LC, SCLC, or COID and the majority of the AD
still have no molecular prognostic or predictive markers in clinical
use (4, 5) and most treatment modalities are stratified according
to clinical staging as TNM (Tumor, Node, Metastasis), Stage I–IV
and Karnofsky or WHO performance status.

In lung cancer, mRNA expression profiling showed promising
results in defining some subgroups more than a decade ago, but
surprisingly this information has still not led to any radical path
to a personalized and effective treatment. Performing high-quality
microarray analysis of human tissue is not easy, and several factors
need to be optimal at sample collection, processing, and analysis,
that may account for large variations of the results. Moreover, they
are both time consuming and costly. However, currently there are
thousands of public datasets on human material, and as both gene
function knowledge and bioinformatics methods have evolved,
these datasets may be a valuable source of new knowledge.

SELECTION OF DATASET AND IDEA OF ANALYSIS
The dataset used was from 2001, but was elected due to the unusual
high number of participants where all the large subgroups (except
the large cell type) were represented, the completeness of the clin-
ical data, as well as the quality of the research center. The main
focus of the original publication was to present several new mole-
cular subgroups of lung AD and pinned out one subtype with less
favorable prognosis. We did not try to recapitulate their findings,
but we observed that some of the differences between the classical
subgroups in their analysis were similar to our findings [Figure
1 in Ref. (6)]. The main idea of our analysis was to identify the
differential and diagnostic genes for each classical tissue type ver-
sus all the other groups, hereby trying to define the most specific
molecular characteristics of each tissue type. The results showed
a high degree of coherence between our findings and previous
knowledge, but also revealed novel potential biomarker and target
genes and pathways.

VALIDATION ON IMMUNOHISTOCHEMICAL MARKERS
As histopathology and immunohistochemistry is the gold stan-
dard of cancer diagnosis, we validated our results by comparing
the diagnostic gene results (File S2 in Supplementary Material)
with the most common negative and positive immunohistochem-
ical markers (proteins) for each subtype used for diagnosis in the
clinic. These clinical diagnostic immunohistochemical markers are
already validated through several studies, typically with sensitivity
>80–90% (24–30). This comparison revealed a quite impressive
overlap where genes encoding the diagnostic proteins were found
in the top of their respective AUC list (Table 3; Figure 5). These
included chromogranin A (CHGA) and synaptophysin (SYN ) for
COID,cytokeratin 5 (KRT5) and p63/p40 (TP63) for SQ, thyroidea
trancription factor 1 (TTF1, synonymous with NKX2-1) for AD,

and its homolog (NKX2-2) for SCLC (24–28). Interestingly, we
also detected that the NKX2-1 encoding TTF1, the most specific
marker for cancers originating from the lung, was downregulated
in SQ, in line with recent knowledge of SQ immunomarkers (28).
In line with our findings, a large immunohistochemical study veri-
fied that a two-marker panel (TTF1/p63) is sufficient for subtyping
of the majority of tumors as AD or SQ (29). Moreover, another
obviously very expensive and time-consuming study on lung can-
cer subtypes testing >1000 cases with 108 antibodies got similar
results, showing a five protein signature that could also separate
cases that were undefined after TTF1/p63 analysis. This signa-
ture included the SQ positive markers KRT5 (CK5), TRIM29, and
SLC7A5 (AUC 0.98, 0.93, and 0.83, respectively, in our analysis)
and the AD positive markers MUC1 and CEACAM5 (AUC 0.81
and 0.78, respectively, in our analysis) (30).

However, several of the top genes diagnosing each subgroup
have not been described in the literature for lung cancer, as the
neuroendocrine marker ISL1 (insulin gene enhancer protein ISL-
1) for the SCLC, the ATP11A (ATPase, class VI, type 11A) for
SQ, GALE (UDP-galactose-4-epimerase) for the AD, and VAMP2
(vesicle-associated membrane protein 2/synaptobrevin 2) for the
COID (see Results and Supplementary Material). Currently, some
of these genes are validated in tumors in an ongoing collaboration
project.

VALIDATION ON EXTERNAL DATASETS
In order to validate the robustness of our methods, two more
datasets were retrieved, one published in 2005 (17) and one in 2010
(18), where the second dataset was obtained through the Expres-
sionBlast tool (31). Unfortunately, we were not able to identify
any dataset with the exact cancer subtypes as in the Bhattacharjee
et al. study, and thus a head-to-head comparison of our results
was not possible. Due to this limitation, in each dataset we only
contrasted the AD versus the healthy tissue samples. Moreover,
since the measurements in each study were performed on the
Affymetrix platform but different chip types, HGU-95Av2, HGU-
133A, and HGU-133plus2, only the common genes of all three
datasets were used (n= 8556). The genes of each study were ranked
according to different criteria (FDR adjusted p-value for differen-
tial expression, log-fold change, and AUC). These ordered lists
were compared across studies with a statistical method devised for
evaluating similarity in gene ranks (19). In each pairwise compari-
son, the statistical tests rejected the null-hypothesis of ranks being
different, thus indicating that results obtained on the Bhattachar-
jee et al. study is reproducible on other datasets (see Text S1 in
Supplementary Material).

GENE ONTOLOGY AND PATHWAY ANALYSIS
Among the abundant gene and pathway information acquired
through this quantitative analysis, several genes, and pathways
recapitulating known phenotypes were detected, such as resistance
to known chemotherapy regimens, targeted treatments, and tumor
aggressiveness. Some of the gene ontologies/pathways with highest
differential overrepresentation of genes will be discussed below. We
observed that there were some similarities between these results
and some of the finding of our previous study (7) on mesothe-
lioma versus parietal pleura (normal mesothelial tissue). Thus, we
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Table 3 | Immunomarker occurrence expressed as percentage of cases in lung adenocarcinoma, squamous cell carcinoma, small-cell carcinoma,

and carcinoid.

Lung

cancer

CGA

(%)

CHGA, AUC CK5

(%)

KRT5, AUC p63/p40

(%)

TP63, AUC SNP

(%)

SYP, AUC TTF1

(%)

NKX2–1/

TTF1, AUC

AD 2 0.59D 5–30a,b 0.71D 5–30a,b 0.72D 10 0.56D 60–90 0.76U

SQ 0 ND 90–100 0.98U 90–100 0.89U 0 0.78D 0–20a 0.89D

SCLC 70–90 ND 0–5 ND 0–5 ND 70–90 ND 70–100 0.85U (NKX2–2)

COID 95 1,0U 0 ND 0 ND 100 0.99U 50–70 0.72D

aPredominantly focal reactions
bp40 virtually negative in adenocarcinoma.

Values are based on recent large studies [Ref. (24–30)]. For each immunomarker protein, the diagnostic power of the respective gene (expressed in terms of AUC) is

reported in blue.

CGA, chromogranin A; CHGA, CGA gene; CK5, cytokeratin 5; KRT5, CK5 gene; p63/p40, tumor protein p63/isoform of p63; TP63, p63 gene; SNP, synaptophysin;

TTF1, thyroidea transcription factor 1; NKX2-1, TTF1 encoding gene; NKX2-2, homolog of NKX2; D, downregulated; U, upregulated; ND, not differentially expressed;

COID, carcinoids; AD, adenocarcinoma; SCLC, small-cell lung cancer; SQ, squamous cell lung cancer.

FIGURE 5 | Comparison of protein and gene-expression patterns in
primary lung neoplasias. (A) hematoxylin and eosin (H&E), (B) thyroid
transcription factor-1 (TTF1), (C) cytokeratin 5 (CK5), (D) p63, and (E)
synaptophysin (SNP). All photos ×200. (1) Adenocarcinoma, (A) H&E showing
low differentiation with solid growth, (B) TTF1 showing strong nuclear
staining of all tumor cells, (C) CK5 showing no cytoplasmic staining of tumor
cells, (D) p63 showing nuclear staining of a few scattered tumor cells, and
(E) SNP showing cytoplasmic staining of a few scattered tumor cells. (2)
Squamous cell carcinoma, (A) H&E showing solid growth with slight
squamous maturation to the left, (B) TTF1 showing no nuclear staining of
tumor cells, scattered entrapped alveolar cells with normal TTF1 expression is
seen, (C) CK5 showing strong cytoplasmic staining of most tumor cells,

(E) p63 showing widespread nuclear staining of tumor cells, in the upper right
corner an entrapped bronchiolus with normal p63 expression of basal cells is
seen, and (E) SNP showing no cytoplasmic staining of tumor cells. (3)
Small-cell carcinoma, (A) H&E showing sheet-like growth, (B) TTF1 showing
very strong nuclear staining of tumor cells, (C) CK5 showing no staining of
tumor cells, (D) p63 showing widespread but weak nuclear staining of tumor
cells, and (E) SNP showing strong cytoplasmic staining of tumor cells. (4)
Carcinoid, (A) H&E showing trabecular growth, (B) TTF1 showing moderate
nuclear staining of most tumor cells, (C) CK5 showing no cytoplasmic
staining of tumor cells, (D) p63 showing no nuclear staining of tumor cells; a
few entrapped alveolar cells are positive, and (E) SNP showing strong
cytoplasmic staining of tumor cells.
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also contrasted our current results against the key pathways that
are differentially expressed in this treatment-refractory thoracic
cancer.

Cell cycle
Analysis of cell cycle pathway in KEGG of each differential list
of genes showed that in normal lung tissue only tumor suppres-
sor genes (CDKN1A/p21, CDKN1C/p57, RBL2/p130) and the
cyclin D family were overexpressed, reflecting a normal pheno-
type. Tumor suppressors are crucial factors in tumorigenesis, often
deleted or downregulated in tumors. Cyclins are often upregu-
lated in cancers (32); however, cyclin D1 has not been shown
to be a negative prognostic factor in cancer (32), cyclin D2 is
often methylated and thus downregulated in lung cancer (33), and
cyclin D3 was suggested not to have a profound role in tumorige-
nesis (34). Opposite, in all the tumors, including mesothelioma,
these genes were suppressed, while oncogenes, cyclins, cyclin
dependent kinases, and other cell cycle driving genes were overex-
pressed (Figure 6). The SQ, SCLC but also mesothelioma displayed
overexpressed Mini-Chromosome Maintenance complex genes,
while not differentially expressed in AD and downregulated in
COID. In the SQ, 56 of 63 genes in the cell cycle were over-
expressed, including CCNE/CDK2, CCNA/CDK2, CCNA/CDK1,
CCNB/CDK1 complexes, BUB1, BUB1B, BUB3, and MYC onco-
genes, the damage response genes as ATR, CHEK1/2, and five genes
of the 14-3-3 family, where several have been linked to tumorige-
nesis including the hypomethylated SFN or Stratifin (35). Again,
some of these findings are not surprising, but recapitulate prior
knowledge. Moreover, the TGFB1I1 was overexpressed in nor-
mal lung but less so in tumors, as seen in the Human Protein
Atlas (36). Recently, a gene-expression study on aggressive ver-
sus more indolent lung COID showed that several of these cell
cycle genes, including BUB1, were overexpressed in the aggressive
forms (37).

Thymidylate synthase
The one carbon pool by folate pathway is the target of several
antineoplastic treatments, where thymidylate synthase (TS) is a
key enzyme. Pemetrexed is a multifolate antagonist that inhibits
replication through inhibition of folate-dependent enzymes as
TS, GARFT, and DHFR, where TS is the main target with many
orders of magnitude higher affinity for pemetrexed (38). The TS
encoded by TYMS, is a key protein that catalyzes the methyla-
tion of deoxyuridylate (dUMP) to deoxythymidylate (dTMP) that
maintains the dTMP pool critical for DNA replication and repair
and has shown a strong correlation to the effect of pemetrexed.
Low TS expression increases the pemetrexed response in vitro (39,
40) and a recent meta-analysis on clinical data showed that both
TYMS and TS expression were inversely correlated to the effect of
pemetrexed in lung cancer (41). This is in line with our findings
were TYMS was not overexpressed in AD where pemetrexed has
a main role in treatment, but significantly overexpressed in SCLC
and SQ were it has no proven effect, and is not used in the clinic
(42–44). Interestingly, while in the normal tissue, no genes in this
one carbon pool by folate pathway were overexpressed, several
genes were upregulated in the cancers (Figure S1 in Supplemen-
tary Material). The overexpression of TYMS in our mesothelioma

cohort, where pemetrexed is a key treatment, was probably due
to the fact that most of the mesothelioma cases included were
generally resistant to pemetrexed, and had overexpressed TS (45,
46). In the COID, the TYMS was not overexpressed, indicating that
COID could be a potential tumor group for multifolate inhibitors.
To our knowledge, this has not been tested yet.

ERBB signaling pathway
The genes of the epidermal growth factor receptor (ERBB) sig-
naling pathway were differentially expressed in each tissue type,
including the ERBB2 (HER2), ERBB3 (HER3), and ERBB4. These
are type I transmembrane growth factor receptors that activate
intracellular signaling pathways in response to extracellular sig-
nals and activate numerous downstream pathways involved in the
regulation of differentiation, migration, proliferation, and survival
(47). Interestingly, EGFR (HER1), encoding EGFR, the primary
target of the tyrosine kinases gefitinib and erlotinib, was not over-
expressed in any type. This may have a simple explanation, either
that only a minority has activating mutations of EGFR (17 and 2%
of the non-squamous cancers in Caucasian and Afro-American
population, respectively), and thus did not show a statistical dif-
ference as a group, or the array did not detect mutant EGFR (48).
Currently, the HER2 receptor is a very important drug target in
HER2 overexpressing breast and gastric cancers. It is known that
the HER2 protein is overexpressed in 20% of lung cancer cases,
but treatment with trastuzumab in this group has not been ben-
eficial except probably in 1–2% of cases with a HER2 gene driver
mutation (49). More surprising was the finding that HER3 was
overexpressed in AD. Recently afatinib, a selective, orally bioavail-
able ERBB family blocker that irreversibly blocks signaling from
EGFR, HER2, and ERBB4 showed an increased progression-free
survival of EGFR mutated ADs of the lung in a phase III study
versus chemotherapy (50). The ERBB4 was overexpressed in the
COID, recapitulating immunohistochemistry showing that 100%
of lung COID expresses ERBB4 (51) and thus indicating a poten-
tial novel candidate target for COID (Figure S1 in Supplementary
Material).

DNA repair
The backbone of cytotoxic treatment of non-EGFR mutated lung
cancers as well as mesothelioma includes platinum derivatives cis-
platin and carboplatin. They are often designated cross-linking
agents due to their capacity of inducing lethal DNA damage in
cells through DNA inter- and intra-strand crosslinks. However,
the response rates in the first line treatment of advanced cases
are approximately 35%, meaning that the intrinsic resistance is
high (52). Resistance to the cross-linking agents requires a func-
tioning DNA repair system, especially the pathways that take care
of crosslinks and adducts. In that respect, this analysis showed
a marked difference between tumors and normal lung tissue.
Tumors showed overrepresentation and overexpression of genes
of all the DNA repair pathways, including the NER, BER, HR,
MMR, and NHEJ, as well as the Fanconi anemia, all known to play
a role in platinum resistance, while in normal lung only one DNA
repair gene was overexpressed, the XPC in NER (Figure 7) (7, 53).
Importantly, the tumor types with the highest intrinsic resistance
to platinum, the COID and SQ also had the highest number of
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FIGURE 6 | Cell cycle pathway. Tumor suppressor genes (CDKN1A/p21,
CDKN1C/p57, RBL2/p130) and the cyclin D family were overexpressed in
normal lung tissue while there was type-specific overexpression of
oncogenes, cyclins, cyclin dependent kinases, and other cell cycle driving
genes in tumors. Genes belonging to the mini-chromosome maintenance
complex were overexpressed in squamous and small-cell lung cancer, as well
as in mesothelioma. The same genes were not differentially expressed in AD

and downregulated in COID. Fifty-six out of 63 genes in the Cell Cycle
pathway were overexpressed in SQ, including CCNE/CDK2, CCNA/CDK2,
CCNA/CDK1, CCNB/CDK1 complexes, BUB1, BUB1B, BUB3, and MYC
oncogenes, damage response genes (ATR, CHEK1/2) and five genes of the
14-3-3 family. Red is overexpressed, dark green downregulated. SQ,
squamous type; AD, adenocarcinoma; SCLC, small-cell lung cancer; COID,
carcinoid; MESO, mesothelioma.

www.frontiersin.org September 2014 | Volume 4 | Article 251 | 9

http://www.frontiersin.org
http://www.frontiersin.org/Thoracic_Oncology/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Kerkentzes et al. Hidden treasures in “ancient” microarrays

repair genes overexpressed (Table 4). The NER pathway is the prin-
cipal and most analyzed pathway related to cisplatin resistance, and
here, there was an array of significantly overexpressed NER genes
in the COID, SCLC, SQ, and MESO tumors. Interestingly, the most
heterogeneous tumor group, both genetically and regarding treat-
ment response, the AD, had the least NER genes overexpressed
(Figure 7). In the SQ, 25 NER genes were differentially expressed,
and only four were downregulated, the CUL4, XPD, ERCC2, and
ERCC8. Key genes of the whole NER repair process through

damage recognition, DNA unwinding, incision, excision, DNA
synthesis, and ligation were overexpressed (Figure 7). There are
also several similarities with mesothelioma in this respect where
overexpression of two or more of CDK7, GTF2H2, PCNA, RFC4,
and the RFC5 were shared by the lung tumors (Table 4). Impor-
tantly, a recent study showed that DNA repair proteins of the NER
pathway can predict effect of adjuvant cisplatin in SQ but not in
AD, showing the relevance of more knowledge related to these
pathways (54).

FIGURE 7 | Nucleotide excision repair (NER) pathway. Genes
belonging to all the principal DNA repair systems were predominantly
overexpressed in tumors. The NER is the most analyzed pathway related
to cisplatin resistance. In normal lung tissue (Normal), only one DNA
repair gene was overexpressed, the XPC. In the COID, SCLC, SQ, and
MESO tumors, an array of genes was overexpressed. Key genes of the
whole repair process were overexpressed. In the SQ, 25 NER genes

were differentially expressed, and only four were downregulated, the
CUL4, XPD, ERCC2, and ERCC8. The most heterogeneous tumor group,
AD, had the least NER genes overexpressed. Red indicates significantly
overexpression, dark green significant downregulation, and light green no
differential expression. COID, carcinoids; AD, adenocarcinoma; SCLC,
small-cell lung cancer; SQ, Squamous cell lung cancer; MESO,
mesothelioma.
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Table 4 | Differential expression for each tumor type versus rest in KEGG pathways related to DNA repair.

Genes NER BER NHEJ HR MMR

NOR XPC None None None None

COID CCNH, CUL4B, DDB1, DDB2, ERCC3,

ERCC6, ERCC8, GTF2H2 , GTF2H4,

MNAT1, RFC1, RFC2, RFC4, RPA2,

XPA, XPC

LIG3, MUTYH, OGG1,

XRCC1

DNL4, LIG4,

RAD50 ,

XRCC6 (KU70)

RAD51C, RAD51D,

XRCC2

MLH1, MLH3,

MSH3, RFC1,

RFC2, RFC4, RPA2

AD CDK7 , POLD4 MPG, NTHL1, POLD4, PARP3,

PARP4

MRE11A,

XRCC4,

XRCC6 (KU70)

MRE11A, POLD4 POLD4

SCLC LIG1, MNAT1, PCNA, POLD3, POLD4,

POLE, POLE2, POLE3, RFC3, RFC4,

RFC5

FEN1, LIG1, MUTYH, PARP1,

PARP2, PARP3, PCNA, POLD3,

POLD4, POLE, POLE2TDG,

UNG

FEN1 BLM, BRCA2 ,

POLD3, POLD4,

RAD54L, RAD51C

EXO1, LIG1, MSH2,

MSH6 , POLD3,

POLD4, PCNA,

RFC3, RFC4, RFC5

SQ DDB1, DDB2, ERCC1, GTF2H1,

GTF2H3, LIG1, MNAT1, PCNA,

POLD2, POLD4, POLE, POLE2,

POLE3, RAD23A, RAD23B, RFC2,

RFC3, RFC4, RFC5 , RPA1, RPA2, XPA

APEX2, FEN1, HMBG1, LIG1,

MBD4, PCNA, POLD2, POLD4,

POLE, POLE2, POLE3, POLB,

PARP1, PARP2, PARP3, TDG,

UNG

LIG4, FEN1,

PRKDC,

XRCC5 (KU80)

BLM, BRCA2 ,

POLD2, POLD4,

RPA1, RPA2,

RAD51C, RAD51D,

RAD54L, SHFM1

LIG1, MSH2,

MSH6 , POLD2,

POLD4, PCNA,

RFC2, RFC3, RFC4,

RFC5 , RPA1, RPA2

MESO CDK7 , GTF2H2 , PCNA, RFC4, RFC5 FEN1, PCNA FEN1, RAD50 ,

XRCC4

BRCA2 , DSS1, EME1,

RAD50, SHFM1,

RAD54L, SSBP1

MSH6 , PCNA,

RFC4, RFC5 ,

SSBP1

For each pathway, only the overexpressed genes are shown. Genes that are common between several lung cancer subtypes are in bold. The mesothelioma results

are based on mesothelioma versus parietal pleura (see Materials and Methods).

BER, base excision repair; HR, homologous recombination; MMR, mismatch repair; NER, nucleotide excision repair; NHEJ, non-homologous end joining; NOR, normal

lung tissue; COID, carcinoids; AD, adenocarcinoma; SCLC, small-cell lung cancer; SQ, squamous cell lung cancer; MESO, mesothelioma.

Other important platinum resistance repair pathways were
highly overexpressed, including the HR pathway. The HR is
the principal DNA double-strand break (DSB), non-error-prone
repair mechanism that takes place in the late S-G2 phase of the cell
cycle and involves generation of a single-stranded region of DNA,
strand invasion, formation of a Holliday junction, DNA synthesis
using the intact strand as a template, branch migration, and reso-
lution. Our results showed that SQ and SCLC had overexpressed
genes throughout the pathway with 10 of 11 genes overexpressed
including the very important BRCA2, RAD51 paralogs and BLM
(Bloom syndrome mutated) (Figure 8) (55). In normal lung tissue,
none of the HR genes were overexpressed.

One indispensable part of cisplatin induced DNA inter-strand
crosslink repair is the Fanconia anemia pathway (56, 57). The
crosslinks are recognized by FANCM and associated proteins,
recruiting the FA core complex. The FANCD2 and FANCI are
monoubiquitinated by the FA core complex. The monoubiquiti-
nated FANCD2/FANCI becomes an active form and interacts with
a series of DNA repair proteins and facilitates downstream repair
pathways. In the normal tissue, all FANC genes were downregu-
lated, while in all tumors several were overexpressed (File S1 in
Supplementary Material).

In SCLC, the standard treatment consists of etoposide com-
bined with cisplatin, which gives a high response rate but an
almost 100% recurrence rate. Etoposide is a DNA topoisomerase II
poison that prevents the re-ligation of topoisomerase II-induced

single-strand breaks. However, the DNA repair profile was very
similar to the SQ, so that other genes also interfere both for the
higher response, and the high relapse rate. A recent study on deci-
phering the resistance genes of etoposide, the polymerase beta
(POLB), and the homolog of TTF1, NKX2-2 were identified. Over-
expression of NKX2-2 has been shown to predict a more dismal
survival (58). In our data, NKX2-2 was overexpressed only in the
SCLC with a diagnostic AUC of 0.85 (Table 3).

PRIMARY VERSUS METASTATIC ADENOCARCINOMA
The distribution of the gene expressions of metastatic AD from
colon (n= 8), breast cancer (n= 2), and unspecified (n= 3) was
in the same range as the primary lung AD (Figure 4), so the overall
expression profiles were similar. However, differential expression
of 267 genes was detected in metastatic versus primary tumors. The
gene with highest discriminatory power was the SLC26A3, synony-
mous to downregulated in adenoma (DRA) that was overexpressed
in the metastatic AD. This gene encodes a transmembrane glyco-
protein that transports chloride ions across the cell membrane in
exchange for bicarbonate ions and is specifically localized to the
normal mucosa of the lower intestinal tract. Downregulation of
this gene was not only inversely correlated to adenomas and ADs
of the colon but also to the clinical stage of the tumors (59, 60).
However, this gene/protein is not expressed in normal lung, or
in lung cancer (36), so this finding probably reflected the relative
overweight of colon cancer metastases in this material, and how
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FIGURE 8 | Homologous recombination (HR) pathway. The HR is the
principal, non-error-prone, repair mechanism for DNA double-strand breaks.
SQ and SCLC had 10 of 11 overexpressed genes throughout the pathway,
including the very important BRCA2, RAD51 paralogs, and BLM (Bloom

syndrome mutated). Red indicates significantly overexpression, dark green
significant downregulation, and light green no differential expression. COID,
carcinoids; AD, adenocarcinoma; SCLC, small-cell lung cancer; SQ, Squamous
cell lung cancer; MESO, mesothelioma.
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such an analysis could identify putative markers for colon cancer
metastasis to the lung.

NORMAL LUNG TISSUE
There are few published accounts of the gene profile of normal
lung tissue,as it usually is used as a control to describe tumor tissue.
However, in this analysis, we have also tried to describe the normal
tissue as related to the tumors. Actually the observed, almost non-
existent overexpression, and even downregulation of DNA repair
systems pathways was a novel finding (Figure S2 in Supplemen-
tary Material). That does not mean that the normal tissue do not
have DNA repair, only that the levels are much lower in relation
to the cancers. In this respect, the finding that some other crucial
mechanisms for cell maintenance and survival were overexpressed
in normal tissue while being downregulated or indifferent in the
tumors, was surprising. Below, we will discuss some of the path-
ways that clearly were most upregulated in the normal tissue and
downregulated in the cancers.

Vascular smooth muscle contraction
Contraction of vasculature is important in controlling the blood
flow and influx of oxygen and nutrients to tissues. Vascular smooth
muscle contraction pathway genes were significantly overrepre-
sented and upregulated in normal tissue (15/36 genes, p < 0.0001,
File S4 in Supplementary Material) opposed to SQ, SCLC, and
mesothelioma, were none of the genes of the smooth muscle cell
membrane were overexpressed in the cancers (Figure 9). Recently,
a bioinformatics study on gene expression of lung cancer of
unspecified type versus normal showed that vascular smooth mus-
cle contraction pathway was negatively regulated in tumor, in line
with our findings (61). The significantly overexpressed genes in
the normal lung included potassium channel genes (KCNMB1),
the vaso-constricting angiotensin receptor II genes (AGTR1),
endothelin receptor type A (EDNRA), and vasodilating genes as
the adenosine (ADORA2B), calcitonin (CRLCR, RAMP1, RAMP2,
and RAMP3), and natriuretic peptide receptor (NPR1). How can
this be explained? Normal vasculature needs a well-functioning
vasoconstrictor and dilator system, while some of these functions
may be defective in pathological tumor vessels formed by neo-
angiogenesis (62). Tumors often have a higher microvessel density
than normal tissues; however, these pathological blood vessels are
often described as less elastic and with different physiology than
normal vessels. As an example, the endothelium of the microvessels
has been incriminated in promoting tumor growth by autocrine
loops (63).

An intriguing finding was the overexpression of the ILK gene
(integrin-linked kinase) in normal lung (p= 3.71× 10−7) and its
downregulation in SQ (p= 0.0037). Loss of this integrin-linked
kinase induces failure in the formation of a unitary layer in ILK-
deficient vascular smooth muscle cells and also induces abnormal
contractility, through the activation of RHOA/ROCK2 that was
also overexpressed in normal lung (64). In the literature, we were
not able to identify accounts of this gene profile in lung tumors
and normal lung tissue.

Leukocyte trans-endothelial migration
Leukocyte trans-endothelial migration pathway genes were highly
overrepresented and upregulated in normal tissue versus the rest

(16/35 genes, p < 0.0001, File S4 in Supplementary Material), and
thus downregulated in the tumors. The migration of cells through
the vasculature is an important mechanism that is complex, active,
and requires the presence and activity of several genes. This mecha-
nism is very important for the flux of neutrophils in case of inflam-
mation but also lymphocytes for cytotoxic T-lymphocytes and
killer T-cells. Leukocyte trans-endothelial migration downregula-
tion was found to correlate with recurrence after operation of stage
I lung cancer in four large datasets, and thus seem to play a role
in tumor aggressiveness (65). We have previously shown that this
pathway was downregulated in mesothelioma versus normal pari-
etal pleura and that it was even more downregulated after acquired
pemetrexed and platinum resistance (66). Here, we show that it is
a consistent trait in all the lung tumors (Figure S3 in Supplemen-
tary Material). Among the consistently downregulated genes in
tumors were the PECAM1, JAM2, and CDH5. The PECAM1/CD31
(platelet/endothelial cell adhesion molecule) is a member of the
immunoglobulin superfamily that is expressed on the surface of
platelets, monocytes, neutrophils, and T-cell subsets and is also
a major constituent of the endothelial cell intercellular junction.
It modulates multiple functions besides trans-endothelial migra-
tion, integrin-mediated cell adhesion, angiogenesis, apoptosis, cell
migration, and negative regulation of immune cell signaling (67).
Inhibition of the JAM2/JAMB (junctional adhesion molecule)
decreases leukocyte infiltration (68). Vascular endothelial cad-
herin or CDH5 is a key protein controlling the endothelial barrier
and its disruption by specific antibody both amplifies metasta-
sis in normal mice and overcomes the genetic resistance in mice
(69). Moreover, CDH5 is a candidate tumor suppressor and low
expression strongly correlated to decreased survival in neurob-
lastoma (70). One is tempted to speculate that this is a trait
of aggressive and treatment resistant cancers as well, where the
antitumor immune system cannot reach the tumor cell due to
hindering the entrance of immunological cells in tumor resulting
in a barrier to immunologic tumor rejection and thus to immuno-
logical therapies. Interestingly, this coincides with results from an
immunotherapy trial showing good responses in mesothelioma,
but only in small tumors (71).

Actin cytoskeleton
Regulation of actin cytoskeleton genes was the top overrepresented
and upregulated pathway in normal tissue versus the rest (29/58
genes, p < 0.0001, File S4 in Supplementary Material) (Figure
S3 in Supplementary Material). Actin cytoskeleton is larger than
any organelle, and is comprised of actin filaments and micro-
tubules, that make cell locomotion and cell division possible, as
well as keeping cell polarity and morphology. Within this path-
way some genes were uniquely overexpressed in normal tissue
including IQGAP1 and IQGAP2 (IQ motif containing GTPase
activating protein). These are members of a family of scaffold
proteins where most studied IQGAP1 modulates several cellular
functions, including cell–cell adhesion, transcription, cytoskeletal
architecture, migration, and selected signaling pathways, reviewed
in Ref. (72). Overexpression of this gene has been associated to
several cancer types, in contrast to our findings, where it was
downregulated or indifferent in the tumors. However, IQGAP2
overexpression is protective against tumorigenesis, as the loss or
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FIGURE 9 | Vascular smooth muscle contraction pathway. Genes
belonging to the vascular smooth muscle contraction pathway were
significantly overrepresented and upregulated in normal tissue (15/36
genes, p < 0.0001). None of the genes of the smooth muscle cell
membrane (according to KEGG pathways) were overexpressed in SQ,

SCLC, and mesothelioma. Red indicates significantly overexpression,
dark green significant downregulation, and light green no differential
expression. COID, carcinoids; AD, adenocarcinoma; SCLC, small-
cell lung cancer; SQ, squamous cell lung cancer; MESO,
mesothelioma.
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downregulation of IQGAP2 has been shown to play a role in
development of hepatocellular, gastric, and prostate cancer (73).
Another uniquely overexpressed gene in normal lung tissue was the
RHOA (ras homolog family member A). The RHOA is involved
in a multitude of processes as controlling epithelial cell junctions
as well as regulating microtubule function and cytokinesis (74). It
stimulates the formation of active non-muscle myosin filaments
and long, unbranched F-actin, and is crucial for cell polarity, of
which is disturbed in epithelial–mesenchymal transition (EMT )
during metastasis. Cytokinesis dysregulation also leads to the for-
mation of polyploid and aneuploid cells that are prone to tumor
formation. Recently, it was shown that the increased degradation
of RHOA encoded protein RhoA by altered autophagy induced
pathological cytokinesis resulting in multinucleation and aneu-
ploidy (75). In the Human Protein Atlas, the RhoA is expressed in
all normal respiratory tissues while only in 34% of lung cancers,
supporting our findings (36).

GENES CORRELATED TO TUMOR SIZE BUT NOT TO SURVIVAL
The original dataset provided survival data only for the AD
patients, and all were treated surgically. Only type of operation
performed and TNM stage was shown, but no information on
adjuvant or systemic treatment in general. Eligible for survival
analysis were 31 cases in Stage IA, 40 patients with Stage IB, four
with Stage IIA, 20 with Stage IIB, 7 with Stage IIIA, 3 with Stage
IIIB, 3 with Stage IV, in total 108 cases. In the original paper,
an AD subgroup called C2 or neuroendocrine expression type,
was claimed to have a less favorable survival compared to the rest
of the AD and that one gene, kallikrein 11 (KLK11) could sepa-
rate this group from the rest of the tumors (6). However, the C2
cases were only nine, making valid conclusions on survival dif-
ficult, and the kallikrein 11 was upregulated in the other groups
as well (original publication, Figure 4). In our analysis of only
the primary lung AD (Figure 1), no single gene or gene signa-
ture could predict survival. This is not surprising as the survival
is an endpoint influenced by many factors, and this population
had a very heterogenous stage spectrum, probably heterogenous
systemic treatment that was not reported and gene-expression het-
erogeneity as we reported. Probably, a clinically more homogenous
group would provide a better basis for discovery of prognostic and
predictive signatures.

There was, however, significant correlation of four genes with
tumor size, where one gene, NR2C1 (nuclear receptor subfamily 2,
group C,member 1), showed a positive correlation that is increased
expression with larger tumor (Table 2). Interestingly, this not very
well-characterized gene seems to play an important role in early
embryonic development by regulating key genes involved in stem
cell self-renewal, commitment, and differentiation (76). Finally,
there were two genes significantly downregulated in N0 versus N1–
3 cases. One was the FLNB, one of the mammalian filamins, large
actin-binding protein that is important for migration of cells (77).

NOVEL BIOINFORMATICS APPLICATIONS VERSUS THE METHODS USED
IN THE ORIGINAL PAPER
Several groundbreaking advancements have been introduced in
the field of bioinformatics in the 13 years that separate the Bhat-
tacharjee study and this analysis. Some of the statistical methods

used in this work, for example, quantile normalization (78), were
either not available or not widely known at the time of the first
study, while they are nowadays widely accepted and used.

Importantly, the last 10 years have witnessed a dramatic effort
by the bioinformatics community for creating and maintaining
comprehensive on-line resources able to store in a structured way
the massive mole of biological knowledge that is steadily gener-
ated. The KEGG pathways database (79), the Gene Expression
Omnibus (80), and the REACTOME database (81, 82) are just a
few examples of such resources.

Particularly, most of the conclusions drawn in the present work
were obtained by integrating data-driven results (set of differ-
entially expressed genes) with the pathway-oriented information
provided by the KEGG and GO database. Such type of study would
have been severely limited back in 2001, when the information
stored in these repositories was much scarcer.

STUDY DRAWBACKS
The main weakness of this study is that it is based on tran-
scriptome data obtained in the early days of microarray tech-
nology, when mRNA extraction procedure and microarray tech-
nical solution were not as mature, optimized, and reliable as
today. As a first consequence, the number of gene-expression
levels measured in the original study was inferior to the num-
ber of genes that can now be quantified. There was no other
dataset analyzing identical subgroups, so a direct comparison
with our study could not be performed. However, the results
are aligned with other studies in several respects indirectly show-
ing the high quality of the data, and comparative analysis per-
formed on two separate datasets showed a high concordance of
differentially expressed genes, ranked gene lists and AUC (see
Text S1 in Supplementary Material). Another problem is the
scarcity of SCLC cases, which can be attributed to the fact that
they are seldom operated and fine needle cytology often gain
too few cells for analysis. Ideally, large cell or other rare sub-
groups of NSCLC should have been analyzed, but these were not
included in this dataset. Based on our findings, we would recom-
mend to use old microarray datasets for novel data mining, given
that the study design and the sample treatment are of provably
adequate quality.

CONCLUSION
The lung cancer gene-expression profiles provided through this
analysis, recapitulated some of the known features of classical his-
tological subtypes, indicated novel candidate diagnostic markers
and outlined new information on differences between normal lung
tissue and tumor. The overrepresentation and overexpression of
DNA repair genes was remarkably consistent in all tumors, and
recapitulated known treatment resistance patterns. Novel inter-
esting features of upregulated pathways in normal lung may shed
some light on the biology of the normal lung as well as in tumors,
deserving further study. This study provides an example of how the
integrative in silico analysis of “old data” in conjunction with novel
biological knowledge and computational techniques can provide
much information not deducible at the time when the data were
produced.
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Figure S1 | Clinically relevant differentially expressed pathways in each
tissue type versus the rest. The pathway maps are arranged according to the
scheme in the left-top corner. Red indicates overexpression in genes, dark
green downregulation. In the Cell Cycle pathway, tumor suppressor genes were
overexpressed in normal lung tissue while oncogenes and tumor driving cyclins
were overexpressed in cancers. The gene thymidylate synthase (TYMS or TS,
belonging to the pathway “one carbon pool by folate”) is relevant for tumor
growth and is also a treatment target. Notably, TYMS was overexpressed only in
the tumors that are generally refractory to the drug pemetrexed, as the
squamous and the small-cell lung cancer. TYMS was not overexpressed in
mesothelioma, but it is known that TYMS expression is highly variable in this
cancer. In the ERBB pathway, the ERBB2/HER2 and ERBB3/HER3 were
overexpressed in adenocarcinoma, while the ERBB4 was overexpressed in the
carcinoids.

Figure S2 | Genes in overrepresented DNA repair pathways are
predominantly overexpressed in cancer. The figure reports the base excision
repair (BER), homologous recombination (HR), and mismatch repair (MMR)
pathways. Red indicates significantly overexpressed genes, dark green
significantly downregulated, and light green not differentially expressed.

Figure S3 | Pathways predominantly overexpressed in the normal lung
tissue. The regulation of KEGG pathways actin cytoskeleton, leukocyte
trans-endothelial migration, and smooth muscle vasculature contraction. Red
indicates significantly overexpressed genes, dark green significantly
downregulated, and light green not differentially expressed.

Text S1 | Detailed report of the validation procedure and results.

File S1 | Differentially expressed genes lists. A zip file containing the
differentially expressed genes of each histological type versus the rest and of
the metastatic versus the primary adenocarcinomas.

File S2 | AUC lists. A zip file containing the AUC of the differentially expressed
genes of each histological type versus the rest and of the metastatic versus the
primary adenocarcinomas.

File S3 | GO analysis. A zip file containing the enriched GO biological
processes resulting from the hyper-geometric test for each histological type
versus the rest.

File S4 | KEGG analysis. A zip file containing the enriched KEGG pathways
processes resulting from the hyper-geometric test for each histological type
versus the rest.
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