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Summary

The purpose of this project is to continue exploring new ways of accelerating sequen-
tial computer code, and finding out if the machine learning techniques available today
are able to help us in this task. The core idea is trying to parallelize during run-time (in
a way completely transparent to the programmer) the code that’s being executed in the
CPU, by snooping on the RAM-CPU communication bus, and, in case an artificial neu-
ral network considers this code to be parallelizable, it should be then converted into an
FPGA module and executed on it instead. It build upon a previous project in which we
used a very simple RISC CPU, called LT16x32, and created several Software applications
to aid us in this enterprise. First, a parametric assembly code generator named LoopGen,
allowed us to create many examples of code with different degrees of parallelism. Next, a
program called LoopSim generated the neural network’s input datasets by compiling the
generated code and simulating its execution on the CPU. In this project we improved on
the previous neural network architecture by switching from an LSTM to a convolutional
model, achieving a much higher classification accuracy, while also having implemented
two synthetizable hardware models of this network: one based in High Level C Synthesis
(using C++ in Vivado HLS), and another one by traditional RTL means (using VHDL in
Vivado). In addition, we have managed to integrate these hardware blocks with the rest of
the system; namely, the CPU, memory and the instruction pre-processor, which success-
fully replicate the results obtained by the software model. While more work needs to be
done in order to obtain a complete and more realistic system, this project paves the way
for future endeavours in the quest for automatic run-time loop parallelization.
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Chapter 1
Introduction

The concept of using co-processors as hardware accelerators for mainstream computers
dates back to the late 70’s, and enjoyed an increased popularity in the subsequent decades.
The first version of such co-processors was Intel’s 80387: launched in 1980 [20], it was
a dedicated floating-point arithmetic IC (Integrated Circuit) which was fully compliant
with IEEE’s 754-1985 standard, and was later embedded in Intel’s 80486DX processor. In
more recent years, we have seen a dramatic increase in the use of other kinds of hardware
as accelerators, such as GPUs, DSPs and FPGAs, which, with the aid of programming
languages such as OpenCL or CUDA, can be utilized to off-load some of the most compu-
tationally intensive work from the CPU. In addition, the stagnation in the increase of clock
frequencies, combined with the transition to multi-threaded, multi-core processor designs
implies that sequential code will no longer achieve the historical performance gains from
advances in technology that it has obtained in the past [19]. The ”Dark silicon problem”
poses new challenges as well as new opportunities to IC designers: System-on-Chip de-
signs, containing many different, specialized accelerators can take advantage of this ”ex-
tra” silicon, dynamically turning on and off these parts of the chip as needed. All of this
points to an apparently unavoidable necessity of changing the sequential-programming-
paradigm to a parallel one. However, many factors play against designers when trying to
exploit these parallel technologies: Ahmdals law imposes a harsh theoretical upper-limit
to the achievable performance speed-up (even when only a small fraction of the code is
sequential in nature); the continued use of sequential legacy code that was written years
before the advent of mainstream parallel computers; and the sharp increase of the difficulty
in writing well-optimized parallel code, which requires experienced (and often expensive)
programmers to make efficient use of these circuits.

Another idea, which has proven itself very successful in mainstream CPUs (and other

1



Chapter 1. Introduction

kinds of ICs), is the idea of learning from previous executions of code. After all, if a
computer is repeating the same thing over and over again, wouldn’t it be clever to try to
use this information when the CPU steps again into the same part of the program? And
thus, the idea of space and time locality led to the implementation of ever-growing cache
memories, branch predictors alleviated the burden of jumping back to the same program
address, while speculative execution and simultaneous multi-threading made good use of
otherwise idling units.

But what if CPUs were able to learn more from a program, what if they could adapt
themselves to the current program execution? The USA’ Defense Advanced Research
Projects Agency (DARPA) has recently invested 1.5 billion USD in a project that aims to
develop hardware and software that can be reconfigured in real time, based on the kind of
data being processed, adapting the computing architecture for the workload in milliseconds
[13]. The recent advances in machine learning and in deep learning in particular along
with its astonishing results (often surpassing human capabilities in a growing spectrum of
fields), poses the question of whether this technology could also be used to increase the
performance of a CPU. It’s certainly not a crazy idea to use neural networks in this way,
neither is it new: today’s most advanced x86 CPU architecture, AMD’s ”Zen”, utilizes a
Perceptron-based Artificial Neural Network (ANN) to implement its branch predictor [8].

1.1 Previous Contributions

All these ideas led to my previous specialization project at NTNU, a project that proposed
a novel architecture which could help solve the aforementioned problems. The concept
behind it, is in its essence quite simple: embedding in a single IC a CPU, an ANN, and
real-time reconfigurable logic (such as an FPGA). The ANN should then detect serial
code (at run-time, by snooping on the CPU-memory bus) and accelerate the CPU by re-
programming a parallel version of this code in the FPGA. Then, the next time the CPU
tries to execute this code, it will be done by the faster, and more efficient FPGA-based
accelerator, possibly freeing up the processor to attend to other tasks. Rather than having a
plethora of idling, highly specialized dedicated IP cores (which is the case in today’s SoC
architectures), a re-configurable circuit could lead to a faster, more powerful and efficient
use of the same silicon area. The proposed architecture is illustrated in figure 1.1.

The accelerators running on the FPGA should be dynamically adapted to the code run-
ning on the CPU at any given time. Due to limitations in both time and human resources,
the specialization project was limited to generating the training data set and developing an
ANN that would detect parallelizable code and possibly extract useful features from it. To
deal with the extreme complexity of this task, we only considered loop-level parallelism
(as opposed to task-level parallelism), with loops fixed in length and with an upper-bound

2



1.2 Thesis Methodology and Contributions

Figure 1.1: The Basic Blocks of the proposed Hardware

in the number of instructions per loop, while also avoiding nested loops. The focus on
loop acceleration comes from the fact that programs spend a large percentage of their ex-
ecution time in a small portion of their code (commonly known as the 90/10 rule) [1], and
that most of this code is located within loop constructs. Additionally, not only is hardware
loop parallelization completely transparent to the programmer, but it also allows paral-
lelization of loops in cases where compilers fail to do so. The project made use of a very
simple CPU called LT16x32 which was developed for academic purposes by the Chair
of Electronic Design Automation of the Technische Universität Kaiserslautern. This is a
uni-core, 16-bit, 3-stage pipeline, 20 instruction, in-order and non-speculative execution
CPU. RAM and ROM can be conveniently accessed every clock cycle, therefore avoid-
ing the stalling problems associated with memories running at slower clock speeds than
the processor (thus requiring no cache memory). Even though these assumptions can be
dangerously unrealistic, all these simplifications were a necessity that allowed us to focus
on the core problems at hand, and if successful, future work could improve on the idea by
lifting some or all of those restrictions.

1.2 Thesis Methodology and Contributions

This Master’s Thesis builds upon the previously mentioned project, by adopting the same
hypothesis, training data-sets (although it takes a different approach on the design of the
ANN) and takes it a step further by implementing this neural network not only in soft-
ware but also in hardware (as well as implementing a hardware block of the bus snooping
unit), integrating it with the rest of the system. Additionally, this was done in parallel
with another important goal: exploring one of today’s mainstream high-level synthesis
tools (Vivado HLS, which synthesizes a subset of the C, C++ and SystemC languages),

3



Chapter 1. Introduction

and comparing its results with traditional RTL tools (Vivado, which supports VHDL de-
velopment as well as integration of C and VHDL IP blocks). Furthermore, creating a
functioning hardware Neural Network was a separate goal in itself. The working method-
ology was mostly experimental, but once the software ANN was finalized, this defined
a golden model to which we were able to the compare results. Verification of the hard-
ware modules was performed by simulating and comparing the outputs of the system to
the outputs generated by the software model, for the same given input. A good amount of
previous knowledge, along with the study of related articles, HLS tutorials, etc., provided
a sufficient basis on which a first working model of the whole system (with the exception
of the serial to parallel code translator) was successfully developed.

As a result, this work’s contribution can be summarized as follows:

• Development of a PyTorch Loop-classifying Artificial Neural Network (ANN).

• Implementation of the ANN in C++.

• Synthetizable HLS version of the ANN.

• Synthetizable VHDL version of the ANN.

• Synthetizable HLS version of the instruction pre-processor.

• Synthetizable VHDL version of the instruction pre-processor.

• Synthetizable system integration of the LT16x32 with the instruction pre-processor,
memory array controllers and ANN.

• Comparison of HLS vs RTL development of the same hardware blocks.

• Discovery of bugs in the Vivado HLS tool, as well as a discussion of its current
limitations.

1.3 Thesis Structure

The rest of this document is organized as follows: chapter 2 discusses the theoretical back-
ground of ANNs as well as loop-level parallelism topics, while chapter 3 describes the
pertaining elements of the previous project’s work. Chapter 4 discusses and presents the
results on the ANN’s architecture and implementation of the software side, while chapter 5
does the same for the hardware implementations of the ANN,the instruction pre-processor
and their integration into a system. The discussion of the results obtained so far is pre-
sented in chapter 6. Finally, chapter 7 points out recommendations towards possible future
work, and concludes the work.

4



Chapter 2
Basic Theory

This project focuses on the improvement of an ANN architecture designed in a previous
project (while still using the same datasets), as well as its hardware implementation in both
HLS and RTL. The previous project on which this Thesis is based upon, will be further
described in the next chapter.

2.1 Artificial Neural Networks

ANNs are digital structures loosely inspired on biological brains, consisting on many
copies of a basic building block called neuron or perceptron. Their excellent ability to
recognize patterns made them an extremely appealing choice for our ideas on runtime par-
allelizable loop detection. Even though our initial assessment on Recurrent Neural Net-
works (such as the LSTM) did not prove to be accurate, further investigation and testing
has proven that CNNs have an outstanding performance when applied to our classification
problem, at least in the terms that were previously decided upon. But before we move for-
ward on explaining CNNs, we’ll begin by explaining the simplest type of neural network:
the multilayer perceptron.

2.1.1 Multilayer Perceptron

A multilayer perceptron is a type of ANN which consists of many neurons arranged in
multiple layers, with the neurons of the lth layer applying an affine transformation to the
previous (l − 1)th layer neuron’s outputs, and mapped through some activation function
[11]. Neurons arranged in this way are said to be fully connected (FC).
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Chapter 2. Basic Theory

Mathematically, in the case of an FC feed-forward network, these outputs can be mod-
elled as follows:

aln = f

 Sl∑
i=1

wl
n,ia

l−1
i + bln

 (2.1)

where wl
n,i is weight of the ith synapse connected to the input of the nth neuron in the

lth layer; bln is a bias term; f is the activation function, and Sl is the number of synapses
connected to each neuron in the lth layer. It could be graphically represented as shown in
figure 2.1:

Figure 2.1: Graphical representation of a multi-layer fully connected ANN

The activation functions used in ANNs (such as the sigmoid or rectified linear unit)
provide them with the non-linearities required so that they can learn any kind of arbitrary
function. Among many other factors, the current success of deep learning can be attributed
to some variants of these networks, the most prominent of them being the CNN, which will
be described in the following subsection.

To train these ANNs, a large amount of training data is required, among their associ-
ated targets (i.e., the desired output for each given input). This training is done iteratively
by measuring the error between the network’s output for a certain input and the associated
target value, by means of a cost function, and modifying the previously mentioned weights
and biases accordingly, in order to minimize this difference.

2.1.2 Convolutional Neural Networks

Introduction

A Convolutional Neural Network (CNN) is a class of deep neural networks, most com-
monly designed to recognize image patterns directly from pixel representations (i.e., from
two or three dimensional matrices) with minimal or no pre-processing required.
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2.1 Artificial Neural Networks

These networks were inspired in a connectivity pattern that resembles the organization
of the brain’s visual cortex. Each neuron responds to signals in a restricted region of the
visual field known as the receptive field.

Like most neural networks, they are trained with some version of the back-propagation
algorithm, that is, cleverly exploiting the chain-rule of differentiation, but since the hard-
ware implementation of a CNN in this project does not deal with their training, this will
not be further discussed; however, the interested reader can find more information about
the subject in sources such as [11].

A typical CNN consists of an input and output layer, as well as multiple hidden lay-
ers sandwiched in between. The hidden layers of a CNN consist of convolutional layers
(generally composed of multiple channels per layer), ReLU activation layers, pooling lay-
ers, and FC layers, all of which will be explained later. The following image shows the
architectural representation of such typical CNN:

Figure 2.2: Graphical representation of a CNN. –Source: [18]

CNNs differ from the classic multilayer perceptrons mainly in their architecture: in-
stead of connecting all neurons in one layer to all neurons in the following layer, and all
connections having a different weight, neurons are instead connected locally from one
layer to the next using the same weights, in the form of a convolution operation, hence its
name. Strictly speaking, the actual mathematical operator used in CNNs is the valid-cross-
correlation. This operation is what gives the CNN its translation invariance characteristics.

The convolution operation can be interpreted as an FIR filter, but in contrast to tradi-
tional algorithms where these filters are hand-engineered, the network learns the filter’s
coefficients, also referred to as kernel. This independence from prior knowledge and hu-
man effort in feature design is not only a major advantage, but most likely a necessity in
what seems an unattainable task for humans, considering the complexity of the filters in
today’s extremely deep neural networks.

CNNs have wide applications in many fields, not only in image recognition, but also
in image and video classification, segmentation, natural language processing and many
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Chapter 2. Basic Theory

other fields. As it will be shown later in image 3.2, our input data can be interpreted as
2D black and white images, where time is nothing more than another spatial variable. It is
therefore not a wild idea to think that CNNs could produce satisfactory results, and in fact,
this was one of the questions that I asked myself in the previous project’s conclusion [14],
where I stated that ”perhaps (...) convolutional networks could achieve better results”.
And indeed, they did.

Convolution Layer

Each convolutional neuron processes data only for its receptive field. Although it’s pos-
sible to use traditional multilayer perceptrons to learn features and classify data, it’s not
exactly practical when it comes to images, since a very high number of neuron connections
(weights) would be necessary (even in a shallow architecture) due to the inmense input
sizes associated with images. For example, an FC layer for a very low resolution, black
and white picture of size 320 x 200 pixels, would require 64000 weights for each neuron
in the second layer. The convolution operation solves this problem by drastically reducing
the number of parameters; e.g., by using a kernel of size 3x3 with 3 output channels, only
27 learnable parameters are required (or 30, if we consider the biases), regardless of the
image’s size.

The convolutional layer can be better understood as an FIR filter, with which most
electrical engineers are more accustomed. On a high level, this operation can be better
visualized in the following picture:

Figure 2.3: Convolution high level visualization. –Source: [16]

Each output is the sum of elements of the Hadamard product (i.e., entry-wise product)
between the kernel and the tile composed of a window surrounding the input element in
the input matrix. This process is repeated for all the input’s elements to produce the final
output of the convolution. In the case that no padding is used (as is the case of our project)
the convolution product is only given for points where the signals overlap completely;
values outside the signal boundary have no effect (i.e., it’s a valid convolution, and not

8



2.1 Artificial Neural Networks

full). An horizontal or vertical stride can be defined, so that this window moves across
the input jumping nstride positions in the horizontal or vertical axis. A dilation factor can
also be defined, and this dilates the input window so that it takes non-contiguous values.
FIR filters as we know them, have a stride and dilation value of 1, which is generally the
default value for CNNs and it’s the value used in our design.

Let’s consider an example by convolving a 4x4 matrix with a 2x2 kernel, as shown in
the following figure:

Figure 2.4: Convolution example

The weighted sum for the element highlighted in the output is:

o[3][3] = (2 · 2) + (1 · [−3]) + (5 · 0) + (0 · 1) = 1

If there is more than one input channel, the output is produced by convolving each channel
with its own 2D kernel and adding the results to the same output value; analogously, if
there are more than one output channel, the process is repeated, using the same input
values but different kernels, for each output channel.

In the case that the input has dimensions (Cin, H,W ) and the output has dimensions
(Cout, Hout,Wout), the output values can be precisely described as [5]:

out(Coutj ) = bias(Coutj ) +

Cin−1∑
k=0

weight(Coutj , k) ? input(k) (2.2)

where ? is the valid 2D cross-correlation operator previously explained, C denotes the
number of channels, H is the height of the input planes, and W is their width.

Rectified Linear Unit Layer

In the context of ANNs, the rectifier is an activation function defined as the positive part
of its argument, i.e.:

R(z) = max(0, z) (2.3)

where z is the input to a neuron.
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Chapter 2. Basic Theory

This is also known as a ramp function which is analogous to a half-wave rectifier, and
can be visualized in the following figure:

Figure 2.5: Rectifier function

The rectifier is, as of today, the most popular activation function for deep ANNs [17],
not only because it’s much simpler to calculate, but because it helps reduce the vanishing
gradient problem: given that the derivative of this function for positive numbers is always
equal to one, the successive product of derivatives that appears due to the chain rule, does
not decrease the gradient in earlier layers. Moreover, the value of this derivative does not
decrease as the weighted sum input z increases, which is the case with the sigmoid or with
the hyperbolic tangent. In 2011, Xavier Glorot et al [9] demonstrated that using this unit
as an activation function enables better training of deeper networks, compared to the other
commonly used functions. Following our previous example, if we apply the ReLU layer
to the output produced by the convolution, we’d have the following:

Figure 2.6: ReLU example

There are some variations of this function, such as the leaky-ReLU, which has a slope
slightly greater than zero for negative values, instead of exactly equal to zero, but it hasn’t
been used in our project and will therefore not be further discussed.

Pooling Layer

Usually in a CNN architecture, a Pooling layer is inserted between successive convolu-
tional layers. Its function is to progressively reduce the size of the feature maps, in order
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to reduce the amount of free parameters and computation in the network, and therefore to
also control overfitting [4]. The Pooling Layer operates independently on every channel of
the input and resizes it, using some fixed function, typically the max function (although
it’s possible to use avg, min, L2-norm, etc.). The most common form is a pooling layer
with kernel size 2x2, with a stride of 2 along both horizontal and vertical directions, dis-
carding 75% of the activations from the previous layer. Our architecture uses a 2x4 kernel
size, with a horizontal stride of 2 and vertical stride of 4, discarding 87.5% of the activa-
tions.

In the case that the pooling function is max, the input has dimensions (C,H,W ),
the output has dimensions (C,Hout,Wout) and the kernel has size (kH, kW ), the output
values can be precisely described as [5]:

out(Cj , h, w) = max
{m=0,...,kH−1}

max
{n=0,...,kW−1}

input(Cj , stridex ·h+m, stridey ·w+n)

(2.4)
If we apply this to our original example, with a 2x2 kernel size and stride, we’d obtain the
following output:

Figure 2.7: MaxPool example

Mathematically, for the highlighted values, the output value is:

out(1, 1) = max{2, 1, 5, 0} = 5 (2.5)

Fully Connected Layer

As it was shown in figure 2.2, a typical CNN consists of a sequence of convolutional,
ReLU and pooling layers, after which there is a flattening operation and one or multiple
FC layers. The flattening operation is nothing more than re-arranging the output tensor
(3D matrix) from the previous convolutional layer into a single vector. This flattened
output is then connected to an FC layer which was already described in section 2.1.1. The
function of these FC layers is to perform classification based on the features extracted by
the previous convolutional layers. Typically, the last FC layer uses a softmax activation
function, which outputs a probability for each of the classification labels the model is
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trying to predict. However, in our project we chose to use a ReLU activation function
for two reasons: first, it works just fine. Second, it’s much less complex and easier to
calculate, since the ReLU function doesn’t have to deal with exponential functions.

2.2 Data Dependencies and Automatic Loop Paralleliza-
tion

2.2.1 Loop-level parallelism and data dependencies

In order to define which high-level characteristics we want the ANN to extract from the
code, we must first investigate the meaning of loop-level parallelism. As the term itself
implies, Loop-level parallelism is a form of parallelism that seeks to extract certain tasks
from loops which are in general independent from previous executions of the loop body,
or in which the data dependencies involved allows the execution of these tasks in parallel
or in a pipelined fashion. In case such tasks exist, there are various techniques that can
be applied to decrease the execution time, for example: loop-pipelining, loop-unrolling,
loop-merging and loop-splitting [6], which are currently being used in Vivado HLS. We
will later present the first two of these techniques, since they have been extensively used
in our ANN implementations.

Data dependencies in sequential statements

We have previously mentioned data dependencies, but we haven’t discussed them yet, so
let’s introduce a few useful definitions. Given two consecutive, sequential statements S1

and S2, we define the following dependencies [10]:

• True (Flow, RAW) Dependence: S1 writes to a location later read from by S2.

• Anti Dependence (WAR): S1 reads from a location later written to by S2.

• Output Dependence (WAW): S1 and S2 write to the same location.

• Input Dependence (RAR): S1 and S2 read from the same location.

To preserve the sequential behaviour of a loop after it has been parallelized, the only
kind of dependence that must be sequentially preserved is Flow Dependence; the others
can be dealt with by making copies of the involved variables for each parallel process (this
technique is known as privatization). Input dependencies are not truly dependencies, since
input-dependent statements can be freely reordered without changing the result.
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Dependencies in loops

When analyzing loops, we can distinguish between two types of dependencies:

• Loop-carried dependence

• Loop-independent dependence

In the case of loop-independent dependence, loops do not present dependence between
iterations; therefore each iteration may be performed in parallel. Let’s look at an example
code for a 2-tap FIR filter:

#Iteration independent loop example:

for (int i = 1; i < n; i ++) {

S1: tmp0 = x[i-1] * tap0;

S2: tmp1 = x[i] * tap1;

S3: out[i] = tmp0 + tmp1;

}

As we can see, there is a loop-independent, true dependence between (S1,S3) and (S2,S3),
but iterations of the loop are independent of each other, therefore allowing for the execu-
tion of each iteration in a parallel or distributed manner.

In loop-carried dependencies however, statements in an iteration of a loop depend on
the results of a previous iteration of the loop.

Let’s take a look at an example of code which can be used for calculating the first n
values of the Fibonacci sequence:

#Loop carried dependence example:

a[0] = 0;

a[1] = 1;

for (int i = 2; i < n; i ++) {

S1: a[i] = a[i - 1] + a[i - 2];

}

In this case, it is clear that the statement S1 depends on the two previous executions of S1,
and therefore cannot be distributed across different processing units.
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Metrics of parallelism in loops

In our previous project, we had defined a metric with which we could determine the Degree
Of Parallelism present in a loop, as simply 1 or 0 (parallelizable or non-parallelizable),
depending on the ”kind” of loop (these kinds will be described in the next chapter). Given
that our previous ANN architecture was not exactly successful in determining the DOP of
a loop, introducing a more complex and precise definition would not only have taken some
time to implement, but after all, if an ANN is unable to detect parallelism at this coarse
level, then the prospects of detecting parallelism at a more refined level would be even
lower. For these reasons, we have decided to keep this high-level definition, rather than
trying to find the exact proportion of loop-carried dependent instructions.

2.2.2 Automatic Loop Parallelization

As we previously mentioned, there are various techniques that can be used to automatically
parallelize loops, some of which will be discussed next.

Loop Pipelining

Pipelining allows operations to be computed concurrently, that is, it’s not necessary to wait
for the completion of all operations before the next one can start. In a loop, this means
that operations can be overlapped between consecutive executions of the loop body. Let’s
suppose we have the following loop:

#Loop with dependencies:

for (int i = 0; i < N-1; i ++) {

S1: a = x[i] * y[i];

S2: b = f(a);

S3: c = g(b);

}

where f(a) is some operation that depends on the result of a, etc. (if there were no depen-
dencies, all three operations could be executed in parallel). Without loop pipelining, we
would have the following execution pattern: S1(i=0), S2(0), S3(0), S1(1),

S2(1), S3(1), S1(2), S2(2), S3(2), etc, which would take 3 · N clock cy-
cles to complete. In contrast, when pipelining the loop, we can use the hardware that
computes S2 and S3 in parallel with S1, allowing for the following execution pattern:
S1(0), S1(1) + S2(0), S1(2) + S2(1) + S3(0), S1(3) + S2(2) +

S3(1), etc., which would take N + 2 clock cycles.
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Graphically, this can be represented as follows:

Figure 2.8: Loop Pipelining

In the case shown, pipelining the loop results in hardware roughly three times as fast
(when N >> 1), at the expense of slightly more complex steering and control logic, more
execution units (in case these instructions share some) and perhaps a few extra registers.

Loop Unrolling

Loop unrolling consists of making multiple copies of the loop body, and instead of using
the same hardware in different clock cycles, copies of the same hardware are instanti-
ated so that operations can be performed in parallel, if allowed by data dependencies and
available resources. For instance, if we consider the following loop:

#Rolled Loop:

for (int i = 0; i < 3; i ++) {

z[i] = x[i] * y[i];

}

leaving the loop rolled would require 4 clock cycles to complete, but if we partially unroll
the loop with a factor of two, we end up with the following loop instead:

#Partially unrolled Loop:

for (int i = 0; i < 1; i ++) {

z[i] = x[2*i] * y[2*i];

z[i] = x[2*i + 1] * y[2*i + 1];

}

cutting the execution time in half.
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If instead we unroll the loop completely, we end up with the following code:

#Completely unrolled Loop:

z[0] = x[0] * y[0];

z[1] = x[1] * y[1];

z[2] = x[2] * y[2];

z[3] = x[3] * y[3];

This would complete all the operations in a single clock cycle, at the expense of four times
the hardware. It should be noted that memory accesses are also multiplied by the same
factor, so care should be taken when applying this technique: if too many operations in
a loop require memory accesses, then the speed limitation will be given by the available
memory channels, and in the case of accessing external DRAM, the benefits of unrolling
the loop won’t be perceivable. In contrast, if a loop is compute-intensive and not many
memory accesses are required, the improvements can be quite substantial. In the case
of FPGAs, it’s possible to achieve sizable speed-ups even when memory accesses are
numerous, since they contain distributed memory blocks all across the chip.

Alas, given the short time available for this project, a hardware block that transforms
the detected loops into parallel versions was not be implemented, but some ideas were
discussed. In particular, columns of execution units, each unit implementing some of the
CPU instructions could be connected to the next column through reconfigurable steering
logic and registers, while a reconfigurable control unit would implement the execution
sequence and branching instructions. And so, after a loop is detected, the array would be
populated with the instructions in the loop body, trying to parallelize as many instructions
as possible, while complying with the data dependencies.
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Chapter 3
Previous Work

As it was already mentioned, this project builds upon the work done for a previous project
called Deep Learning Based CPU Acceleration [14], and therefore, in order to understand
and write a self-contained Thesis, it is necessary to describe some of the work previously
done. The main goal of that project was to generate training datasets along with the desired
training targets (i.e., degree of parallelization, head and tail of the loop, trip count, etc.),
as well as the design and training of an ANN able to detect these parameters. For this
purpose, various tools were developed, which will be briefly described next.

3.1 Dataset Generation

3.1.1 LoopGen: A Parametric Assembly Loop Code Generator

In order to train an ANN capable of recognizing parallelizable loops, we first had to create
a dataset on which we could train it. Given that the CPU we were (and still are) working
with was an in-house development, there exists no C-compiler for it and we were there-
fore forced to come up with our own assembly programs. Since the number of training
examples required is in the order of hundreds (if not thousands) we came up with the idea
of generating parametrizable assembly loops, in which the kind of loop, registers used,
number of memory arrays, number of iterations, etc., are completely parametrizable and
so, by randomizing these parameters (within certain restrictions), we were able to come
up with hundreds, or even thousands of different assembly programs. Making it possible
to change the registers was deemed necessary since we didn’t want the ANN to be biased
by arbitrarily chosen registers which it could learn to associate with certain kinds of loops.
This way of creating different assembly programs is, in fact, nothing more than a clever
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trick to perform data augmentation [12]: a machine learning technique which consists in
artificially inflating the training set with label-preserving transformations.

LoopGen consisted of three C++ functions that will be briefly described in the follow-
ing paragraphs.

The first function, called "instr_str", simply takes the type of instruction and its
parameters (such as destination register, source registers, labels, modes, etc.) and returns
a string with the correct assembly syntax for the given instruction. This is necessary to
make possible the parametrization described before while keeping the registers and labels
consistent with the desired behaviour of the assembly program.

The second and third functions, called "loop_independent" and "loop_depen
dent" respectively, take a plethora of parameters, such as loop identifier, kind of loop,
temporary registers, array registers, array names, etc., and returns a string containing fully
working assembly code automatically generated with those parameters.

The function "loop_independent" creates four different kinds of loops that were
deemed to be fully parallelizable. The first kind, "add_constant", generates a pro-
gram that adds a random constant value between -128 and 127 to the elements of the given
arrays. The second kind, "add_arrays" generates code that adds two or more arrays
and stores the result in the first of those arrays. The third kind of loop, "swap_arrays",
generates a program that, as the name suggests, swaps pairs of arrays. The fourth and last
kind of parallelizable loop, "fir_Filter" creates a parametric, fully functional FIR
filter for a CPU that does not possess a multiply instruction; an idea inspired on the work
by Y. C. Lim and B. Liu. In [15], they demonstrated that an FIR filter with very small fre-
quency response ripple magnitude can be realized using two power-of-two terms for each
coefficient value. This allowed us to implement a fast filter using shifting instructions in-
stead of multiplications, by hard-coding each filter coefficient into the immediate values
of the lsr (Logic Shift Right) instructions themselves.

Analogously, the function "loop_dependent" creates four different kinds of loops
that were deemed to be non-parallelizable. The first kind of iteration-dependent loop,
"fibonacci" returns a program that calculates Fibonacci-like sequences, given by the
recurrence formula:

f [n] =

N∑
i=1

f [n− i],

with f [0] = f [1] = ... = f [N ] = 1. It writes the sequence in an array, and when
N is equal to 2, it reduces back to the classic Fibonacci sequence. The second kind,
"dep_array_sum", returns a program that calculates the sum of elements in one or
many arrays, with each successive element being added or subtracted depending on whether
the previous partial sum was positive or negative. The third kind, "binom_coeffs",
returns a program that calculates the binomial coefficients, which count the number of
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ways of selecting k elements out of a set of n elements. This program actually returns a
recursive algorithm, which is computed by a loop with variable bounds.

The last kind of iteration-dependent loop, "IIR_filter" was implemented using
the same ideas as the FIR filter, that is, performing divisions with shift-right instructions.
It can be shown that that the output value at a certain point in time n depends on previous
outputs, therefore generating a loop whose output depends on previous iterations.

In both cases, whether it’s an iteration-independent or dependent loop, after the main
program ends, there is an infinite loop that does nothing but jump back to itself; the arrays
are defined and memory is allocated for them using assembly directives.

3.1.2 Generating the datasets with LoopSim: from LoopGen to CPU
execution traces

Since we wanted the ANN to detect loops by inspecting the signals inside a CPU, we
needed not only to create hundreds of assembly programs, but to compile them to machine
code and produce the traces that would be found in the CPU-memory bus (in reality, this
signal would be found in the instruction register’s output). Additionally, we had to be able
to do all of this in an automated way. Fortunately, the assembly compiler was already
implemented, as were some parts of the CPU simulator; solving this was then a matter of
adapting the existing code to our needs, and creating what needed creation. The flow of
LoopSim can be visualized in figure 3.1.

Figure 3.1: LoopSim Data Flow

First, the parameters to be used with the functions in LoopGen were randomly generated,
using uniform probability distributions, taking care of the restrictions imposed by each
kind of loop. Some of these parameters also became the targets for the ANN: a Paral-
lelizable loop (i.e., a loop created by the function loop_independent) was associated
with the target (1,0) and a Non-Parallelizable one (i.e., a loop created by the function
loop_dependent) with (0,1), that is, the classes we wanted the ANN to identify were
(P, NP). Then, the assembly code generated by LoopGen was assembled into machine code
using the compiler provided by the creators of the CPU, which was adapted and embedded
into LoopSim. A SystemC CPU and its memory models were then instantiated, and the
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string output from the compiler was then loaded to the RAM model.
The execution of any instruction was performed by calling the associated function in

the processor class; some of these instructions had to be implemented since they were
missing from the model. Given that we were provided only with a SystemC memory
model that can hold machine code, and with a SystemC CPU model which only contains
the register file and the functions associated with the instructions, it was necessary to
implement a decoder/execution unit which implements the operation of the CPU. This
was done as follows: after the CPU object is instantiated, it is set into the reset state: the
register file, including the Program Counter are set to 0. Then, an instruction is fetched
from the memory address given by the Program Counter and it is decoded according to its
opcode; afterwards, the corresponding processor function is called with the corresponding
parameters. The function call generates a new status with which the CPU state is updated
(in particular, the Program Counter is incremented), and the process begins once again
with a new instruction. In the case of a branching instruction, the branch delay slot and
branching address are taken care of.

3.1.3 ANN Input Pre-processor

After having generated the CPU execution traces, it was deemed convenient to represent
this information using one-hot encoded vectors as data input for the ANN. Since the op-
codes of the CPU instructions have no ordinal relationship, directly feeding the ANN
with these 16-bits numbers and allowing the model to assume a natural ordering between
instructions may have resulted in poor performance or unexpected results [3]. All instruc-
tions contain at least one of the following categories, each of which were encoded using
one-hot vectors:

• Opcode

• Mode

• Condition

• Destination Register

• Source Register A

• Source Register B

• Immediate value
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The first category, i.e., Opcode was encoded as follows:

(ADD, SUB, AND, OR, XOR, LSH, RSH, ADDI, CMP, LDIMM, LDPTR,

STPTR, BIMM, BREG, CIMM, CREG, TRAP, RETI, BRT, TST)

Therefore, as an example, an ”AND” instruction’s opcode would be encoded as: (0, 0, 1,
0, .... 0). This vector has 20 dimensions, since all ”load from pointer” instructions (LD08,
LD16, LD32) are encoded to the same vector, and the same goes for the ”store pointer
instructions”.

The remaining categories were encoded in a similar fashion.

In the previous project, the immediate value was also encoded with one-hot vectors; how-
ever, it was found that removing the immediate from the encoding did not result in any
accuracy degradation of the new ANN’s accuracy.

All these one-hot vectors were then concatenated and fed to the ANN in the following
way:

(Opcode, Mode, Condition, Destination Register, Source

Register A, Source Register B)

These vectorial time sequences were created and stored into a comma separated values
(.csv) file as the CPU simulator executed each instruction. The execution of an IIR filter
loop generates a sequence of vectors which can be visualized in figure 3.2:

Figure 3.2: Graphical representation of the first 400 vectorized instructions executed by an IIR filter

It was perhaps this way of visualizing the execution traces, that led us to the hypothesis
that CNNs could perform well in this problem, since this is nothing more than a black and
white 2D image, and CNNs are known for their excellent performance with them.
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3.1.4 LoopOracle v1: A Loop Classifier LSTM ANN

The ANN architecture implemented in our previous project consisted of an FC layer which
takes the vectorized instruction sequences as inputs and creates an adequate encoding for
an LSTM network. This input structure, given that it’s fed with one-hot vectors, acts as a
sort of embedding layer. The LSTM network consisted of two stacked LSTM layers with
a hidden size of 256. At the output of this layer, a 256-to-2 FC layer classified the loop as
either parallelizable or as non-parallelizable, i.e., the targets previously described (P, NP).
Even though LSTMs seemed the obvious choice to pick, which were also recommended
by experts on the field, the results achieved were quite underwhelming: an accuracy of
around 80% in a problem where random chance would have a 50% success rate, was less
than impressive.

The ANN was implemented using PyTorch, an open-source machine learning library
for Python (based on Torch) which is used for applications such as natural language pro-
cessing. Primarily developed by Facebook’s artificial-intelligence research group, it pro-
vides a very high-level of abstraction for implementing deep ANNs and it’s surprisingly
easy to use.
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Software Architecture and
Implementation

4.1 LoopOracle v2: Improving on the previous Loop Clas-
sifier ANN

Our new ANN architecture consists of a pretty typical CNN: three convolutional layers
followed by a fully connected classifier. It uses almost the same input data as our previous
ANN, but the number of instructions was cut down from 512 to 256 (this is around the
maximum number of instructions found in any loop body generated by LoopSim), and
after removing the one-hot encoded immediate value, the instruction encoding ended up
with a dimension of 76. The architecture can be visualized in figure 4.1:

Figure 4.1: Graphical representation of the CNN architecture
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4.1.1 Training a Pytorch CNN

As in our previous project, we started by developing the ANN in Python with the aid of the
PyTorch library. Given that this allows for a very high-level design of ANNs, it’s worth
going through some of the most important lines of the code developed, starting with the
definition of the model and forward pass:

As shown in figure 4.1, the architecture consists of three convolutional + ReLU +
MaxPooling layers, each layer duplicating the amount of channels of the previous one,
while reducing the resolution of the feature space roughly by eight, since the MaxPooling
operation has a kernel size of 2x4 and same stride. After these layers, only 192 activations
make it to the end, which are then connected to an FC layer with this same number of
inputs, and two outputs with a ReLU activation function, corresponding to the two classes
previously discussed, (P, NP). After defining the CNN, we must define a function with an
algorithm to train it:
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As we said before, we won’t go through the mathematical details of the back-propagation
algorithm since this won’t be done in hardware, but it’s perhaps worth explaining some of
the concepts involved in it. The first step of training an ANN consists of defining a loss
function, that is, the function to be minimized. In our case, we have chosen the Smooth L1
Loss, defined as follows:

L1Smooth =

|x| if |x| > 1;

x2 if |x| ≤ 1

This function is basically the classic L1 loss, but with a smooth, differentiable be-
haviour for values around zero. Although the L2 norm is more precise and better in mini-
mizing prediction errors, the L1 norm produces sparser solutions, ignores more easily fine
details and is less sensitive to outliers. Sparser solutions are good for feature selection in
high dimensional spaces, as well for prediction speed [2].

The Adam (Adaptive Moment Estimation) optimization algorithm is an enhanced ver-
sion of the stochastic gradient descent algorithm, which in contrast to the latter, computes
individual adaptive learning rates for the different parameters of the network using the
first and second derivatives of the loss function; it also takes into consideration how fast
the weights were changing in the previous steps.

The training loop itself runs num_epochs times, and it uses 80% of the whole dataset
for the training of the ANN. The forward method is called with model(x_t) and the
predicted results are stored in the variable y_hat. After the forward pass, the difference
(loss) between the target values y_t and the predictions y_hat is calculated by calling
the function criterion(y_hat, y_t). When calling the forward function along
the loss calculation, a computational graph of these operations is created, where each
operation in this process is registered, allowing to perform the back-propagation pass by
simply calling the function loss.backward(): this calculates all the gradients of the
loss function respect to each parameter in the network. After the gradients are calculated,
the Adam optimizer updates the values of the network’s weights, and the network is ready
to be trained again the next epoch. But before we do that, we first compute the loss in the
validation set, which consists of 15% of the whole dataset (however, note that the network
does not learn on this data). The idea behind this is having a measure of how well the
ANN is performing on new, unseen data, so we can perform early stopping [11], which is
another regularization technique used to avoid overfitting. For this reason, we keep track
of the minimum value of the loss function on the validation set in each iteration, and in
case this value decreases from the previous minimum, we store the model into a file that
can be loaded in the future. Finally, after training the model num_epochs times, we
perform a final test using the remaining 5% of the dataset.
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An initial learning rate of 0.001 is a fairly common practise, but we have to keep in
mind that when using Adam’s algorithm, this value will be accordingly adapted and it
only makes a significant difference in the initial training steps. A number of epochs of
250 is much more than it was found to be necessary, with the validation loss reaching its
minimum after around 50 epochs, as can be seen in figure 4.2.

Figure 4.2: Training and validation loss

A final test accuracy of around 99.8% was reached. A lot of testing with different
network sizes was done, and even though more optimizations and size reductions may be
possible, the final size was deemed reasonable. Given that one of our objectives is to in-
vestigate the hardware implementation of a CNN, a very simple architecture would lead
to a very small design, which would not appropriately reflect the technological challenges
that a typical hardware CNN implementation would entail. On the other hand, it is neces-
sary to keep the architecture small enough so that it fits in a typical FPGA at a reasonable
speed, and the sizes chosen for the CNN’s layers provide a satisfactory balance between
these opposing objectives.

4.2 Lowering the abstraction level: transforming a Py-
Torch CNN to C++ code

After successfully developing and training the CNN in Python, the next step was to imple-
ment this architecture in a language that can be later synthesized by Vivado HLS. Using
already developed C++ libraries was considered, but the complexity and generality of the
code of the libraries found seemed excessive in comparison with our very limited needs,
given that trying to understand these libraries would have taken considerable time and ef-
fort. As for the libraries and frameworks available for FPGA ANNs, they suffer a similar
problem, with the addition that these libraries are developed with the intention of using

26



4.2 Lowering the abstraction level: transforming a PyTorch CNN to C++ code

the FPGA as an inference accelerator for the PC, much in the same way one would use a
GPU. None of them, at least to the best of my knowledge, are tailored to be used as a stand-
alone hardware block inside an SoC. Additionally, re-using an already developed library
would have taken away all the experience and challenges that implementing a hardware
neural network poses. And finally, the optimization possibilities and opportunities of an
in-house developed neural network are significantly higher than what would be possible if
an existing library was adapted.

Vivado HLS currently supports three high-level languages: C, C++ and SystemC. The
initial choice was to use C as development language; however, it turned out that Vivado
HLS does not support arbitrary fixed-point number representations in C, so the code was
later ported from C to C++ instead of SystemC, since the syntax differences are minimal
(though it must be said that both languages are quite finicky when passing an array to a
function). Since the only thing we must implement in hardware is the forward pass, only
the convolution, ReLU, max-pooling, reshape and affine functions had to be implemented.

If we recall equation 2.2, expanding the valid 2D cross-correlation operator, we obtain
the following equation:

out(Cout,m, n) = b(Cout)+

NCin
−1∑

Cin=0

Kr−1∑
i=0

Kr−1∑
j=0

in(Cin,m+i, n+j) ·w(Cout, Cin, i, j)

(4.1)
where:

• out(Cout,m, n) is the output value of output channel Cout and coordinates m,n

• b(Cout) is the bias of channel Cout

• in(Cin,m+ i, n+ j) is the input value of input channel Cin

• w(Cout, Cin, i, j) is the weight of the corresponding kernel

• NCin
is the number of input channels

• Kr is the size of the kernel

Once this equation is fully understood, it’s quite easy to implement in C++; so easy in
fact that much to my amazement, the code written for the 2D convolution function worked
on the first try after it had just been written!
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As it can be seen, the lines in this code corresponds one to one with equation 4.1: the
first three for loops correspond to traversing the coordinates of the output variable, while
the remaining three for loops correspond each to one of the three summations.

Now that we have the code for the convolution operator, it is possible to calculate
the amount of multiply-accumulate operations required by each layer, with a very simple
equation:

#MulAcc = chout · (xindim
−kersize+1) · (yindim

−kersize+1) ·ker2size · chin (4.2)

All layers have a kernel size of 2 (both in the horizontal and vertical dimensions), and
the dimensions of each convolution operation are those shown in figure 4.1. Therefore,
the number of multiply-accumulate operations for the first layer is 153000, 71424 for the
second layer and 30464 for the third layer. A clever reader can already be thinking of ways
to get rid of 153000 multiply operations, given the nature of our input data.

As for the implementation of the ReLU function, the code is pretty straight-forward, it
just implements equation 2.3 for a 3D array.

An analogous function was implemented for the unidimensional case, which is needed
at the output of the FC layer.
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4.2 Lowering the abstraction level: transforming a PyTorch CNN to C++ code

As for the MaxPooling function, this is again a straight-forward implementation of
equation 2.4. The MaxPool function traverses the input array of every channel and outputs,
for each channel, the maximum value found in a window of size [stridex, stridey].

The function in charge of reshaping the output of the last convolutional layer, called
view, traverses the 3D input array and writes those values into a 1D output array, as
shown in the following code:

The last function implements an FC classification layer, which performs the affine
transformation specified by equation 2.1:

It’s easy to see that the FC layer requires 192x2 of multiply-accumulate operations;
i.e., 384. The outputs of this FC layer are passed through the ReLU activation function
which has been already described for the 3D case.
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The forward function instantiates these functions as required, in order to implement
the CNN architecture described before, as shown in the following code:

Figure 4.3: Forward function

In contrast to PyTorch, all dimensions of every array must be calculated and defined
beforehand; the values of the weights and biases were imported from the trained PyTorch
model into floating-point arrays. All these details were left out from the code shown here,
for the sake of clarity.

As anyone can intuit, this code is probably the most naive way to implement an ANN
and does not contain any optimizations, but it is however quite readable. Even though
it’s not the final version of the C++ code used in Vivado HLS, it’s necessary to show it
here in order to better understand what ended up being implemented in Vivado, which is
somewhat convoluted and nowhere near as readable.
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Chapter 5
Hardware Architecture and
Implementation

5.1 Vivado HLS implementation

Once we had a fully working C++ version of the CNN that produces identical results to
the PyTorch golden model, we were able to start working on adapting the code so that it
becomes synthetizable. The first step taken was to create specialized functions for each
layer in order to be able to optimize each one of them. Inside each layer’s convolutional
function, loops were named with the number of layer and in accordance with the variables
defined in equation 4.1, in order to make it easier to use pragmas and analyze the synthesis
results. For example, in the case of the first convolutional loop, the code ends up looking
like this:
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Given that the number of instructions analyzed by the ANN is 256, we set this number
of clock cycles as a goal, so that we can analyze loops as fast as they are executed by the
CPU.

5.1.1 Unoptimized Solution

A first synthetizable solution with no directives or any kind of optimizations (simply the
C++ code made synthetizable) achieves a latency of 4086734, a far cry from our origi-
nal objective. The FPGA chip selected for the project was the Xilinx Zynq UltraScale+
MPSoC ZU3EG A484, given that it is the chip found in the Ultra96 board, which is rea-
sonably priced and available for use in the university’s electronics department. The clock
frequency selected was 100MHz, which is the frequency in which the LT16x32 processor
was originally being used.

The hardware utilization estimates are summarized in the following table:

BRAM18K DSP48E FF LUT
Total 112 5 2512 5340
Utilization(%) 25 1 1 7

Table 5.1: First solution hardware utilization

Looking more closely at the scheduling report, we can see that the first convolutional
loop takes 1759804 clock cycles, while the second and third take 839528 and 331592 clock
cycles respectively. These numbers are roughly 11 times higher than our first estimates for
the number of operations that should be performed by these loops, so it might be a good
idea to take a closer look at the scheduling of operations in the innermost loop:

Figure 5.1: Scheduling of the first convolution innermost loop

As it can be appreciated in this figure, each multiply-accumulate operation in the loop takes
ten clock cycles: two for reading the parameters, three for the floating point multiplication
and strangely enough, four for the floating point addition. Therefore, given that each
operation takes ten clock cycles, plus the initialization of the output with the bias and some
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additional overhead, we can see that these numbers are in agreement with our estimates.
The remaining clock cycles correspond to the max pooling and ReLU operations, as well
as the fully connected layer, etc.

5.1.2 Optimizing Data-types

Many conclusions and possible action plans can be drawn from the previous initial anal-
ysis: the first and most obvious is to change the data representation from floating point
to fixed point, bit-arbitrary types. As it has been recently shown by Courbariaux et al in
[7], the resolution of the data in ANNs doesn’t have to be high at all, in fact, they show
that with Binarized Neural Networks, cutting-edge accuracies can be achieved. Since I do
not possess enough knowledge on the subject (nor time to further investigate it), a simpler
approach consists of simply using Vivado HLS’s arbitrary types instead of floating point
and test the impact of bit accuracy on the CNN’s prediction abilities. Given that the trained
CNN’s weights and biases are bounded in absolute value by a minimum of 0.000114 and
a maximum of 1.1689, it seems reasonable to use at least two bits for the integer part,
and the rest for the fractional part. Table 5.2 and figure 5.2 summarize the findings when
testing different bit precision on a test set of 1000 elements.

float fixed16 fixed8 fixed7 fixed6 fixed5 fixed4
99.8% 99.8% 99.9% 99.8% 99.6% 91.0% 53.3%

Table 5.2: Number representation accuracy

Figure 5.2: Number representation accuracy

Given that the accuracy loss of going from floating point to 6-bit fixed point is a mere
0.2%, this was the chosen resolution. However, further optimizations can be made if we
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consider that our inputs consists of a 2D array of zeros and ones, so for the first convolu-
tional layer we can use 1-bit fixed point numbers.

Another conclusion that can be drawn from the previous analysis is that instead of
using RAM banks to store the data and weights, we can use registers instead. This will
undoubtedly become a necessity if we choose to increase the parallelism level later: it’s
worth noting that by default, Vivado HLS keeps the loops rolled and does not perform
pipelining, nor does it partition arrays (unless the loops or arrays are very small).

After defining the fixed point data types as follows:

typedef ap_ufixed<1, 1, AP_RND, AP_SAT> ap1;

typedef ap_fixed<6, 2, AP_RND, AP_SAT> ap6;

and changing all data types in all functions and arrays (and changing the floating point
function fmaxf to the conditional operator "?"), the latency of the innermost convolution
loop decreases to 4, which cuts the forward function latency down to 2044558 clock cycles.
This is practically half the time required initially, and even though it’s far away from our
goal of 256, it also decreased substantially the hardware usage, as can be seen in the
following table:

BRAM18K DSP48E FF LUT
Total 28 3 1057 4141
Utilization(%) 6 ˜0 ˜0 5

Table 5.3: Second solution hardware utilization

As we previously mentioned, it is possible to get rid of the 153000 multiplications
in the first convolutional layer, by noting that one of the two operands is always one or
zero, which degenerates to a simple AND function. However, by inspecting the scheduled
operations one can see that Vivado HLS is smart enough to detect this (most likely because
one of the two inputs of the multiplication is 1-bit data) and automatically exchanges the
multipliers with AND gates.

5.1.3 Optimizing the Data-Flow

Vivado HSL creates memory blocks for every array that we define, and if we take a look at
the data flow of the forward function in figure 4.3, we can see that each of the convolution,
ReLU and MaxPool operations take an input and output array as parameters. In this way,
the convolution processes the input array and writes the corresponding value onto another

34



5.1 Vivado HLS implementation

array, which is taken as input by the ReLU process and outputs an array to the MaxPool
operation, for all layers, all of which can be completely avoided (thus accelerating the
whole process) by merging these loops into one. While Vivado HLS has a built-in pragma
that can potentially merge all these loops, it is unfortunately unable to do this automati-
cally (or at least, despite many efforts, I was unable to find a way) since it detects data
dependencies which it cannot solve. So the next step in order to avoid the unnecessary
memory arrays and clock cycles associated with these loops, is to manually merge them.
While it should be possible to merge all loops in the forward function, the code becomes
quite complex and unintelligible very fast, and therefore we merged the three loops of each
convolutional layer into one, that is, the Conv2d, ReLU3d and MaxPool3d functions
will be computed in a single loop. Similarly for the FC layer’s functions, we merged the
view function, FullyConnected and ReLU1d into a single loop.

With these three loops merged in a single one, the code for the first layer consisting of
a convolution+ReLU+MaxPool operations ends up looking like this:

Figure 5.3: Merged convolution+ReLU+MaxPool loop C++ code

As can be seen, the code is quite convoluted (no pun intended) as it now consists
of eight nested for loops. Further manual merging of the remaining loops could the-
oretically decrease the hardware usage and processing time, but the code would also be
extremely difficult to read and debug, thus losing the appeal of HLS. This became our
basic building block, which contains all three operations found in a single convolutional
layer, and would latter be used as a starting point for our VHDL implementation. As it is,
the execution time was cut in less than half, down to 893704 clock cycles, which is still
far away from our 256 clock cycles goal.
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The hardware utilization was also cut roughly in half, as can be seen in the following
table:

BRAM18K DSP48E FF LUT
Total 6 4 543 2471
Utilization(%) 1 1 ˜0 3

Table 5.4: Third solution hardware utilization

5.1.4 Pragma-based Parallelization

After all these optimizations were done, we started to parallelize the design, using the
pragma: #pragma HLS PIPELINE. This pragma not only pipelines the design, but
also unrolls the inner loops inside the level that the pragma has been placed. The outermost
possible level of pipelining is in the loop MaxPool_m_loop; trying to pipeline even
further results in failure because according to Vivado HLS, ”it may cause large runtime
and excessive memory usage due to increase in code size.” At this point, the clock cycles
required decreased substantially to 54823, that is, roughly 16 times faster. However, this
comes at the expense of a sharp increase in hardware utilization, as can be seen in the
following table:

BRAM18K DSP48E FF LUT
Total 10 152 7230 39402
Utilization(%) 2 42 5 55

Table 5.5: Fourth solution hardware utilization

In order to continue increasing the level of parallelism and not run into the problem
previously mentioned, some loops had to be manually unrolled. Starting with the inner-
most loop (Conv_CH_in_loop), we can now use the pipeline pragma at the level of
MaxPool_y_loop. If we wanted to achieve even more parallelism, we could keep un-
rolling the innermost loops, but further pipelining the functions at lower levels incurs in
excessive hardware utilization. In the following table and figures, ’L2’ and ’L3’ means
unrolling the convolutional layers at the second and third loop nests respectively, that is,
at MaxPool_y_loop and MaxPool_CH_out_loop. For example, L2L3L3 means
pipelining the first convolutional layer at the second level, and the second and third layers
at the third level.

If we pipeline at L2L2L2, the utilization of LUT units climbs up to 141%, exceeding
the available units in the FPGA. Moreover, the difference in clock cycles between L2L2L3
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Figure 5.4: Percentage of Hardware Utilization for different levels of parallelism

Figure 5.5: Clock cycles for different levels of parallelism

Level BRAM18K DSP48E FF LUT TCk
L3L3L3 22% 82% 6% 67% 13895
L2L3L3 36% 82% 6% 67% 9233
L2L2L3 36% 73% 7% 85% 6035
L2L2L2 36% 57% 7% 141% 5668

Table 5.6: Hardware utilization of the different parallelization levels

and L2L2L2 is quite small, so the obvious choice is to pipeline at levels L2L2L3, which
achieves a latency of 6035 clock cycles, roughly 23.5 times higher than our goal of 256,
while using a similar number of hardware units as slower alternatives.
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5.1.5 Increasing throughput with Array Partitioning

Besides loop pipelining, another directive that was used in order to achieve the throughput
previously shown is the HLS ARRAY_PARTITION pragma. This is suggested by the tool
itself, since during the synthesis process, we get warnings like the following:

WARNING: [SCHED 204-69] Unable to schedule ’load’ operation

on array ’DataInTr_V’ due to limited memory ports.

Please consider using a memory core with more ports or

partitioning the array ’DataInTr_V’.

The HLS ARRAY_PARTITION pragma breaks down an array into smaller arrays or
even individual elements, which results in RTL with multiple small memories or multiple
registers instead of one large memory. This effectively increases the amount of read and
write ports for the storage units, and potentially improves the throughput of the design.
However, it requires more memory instances or registers and more data buses. Multidi-
mensional arrays can be partitioned multiple times in the different dimensions, and parti-
tioning can be partial or complete. Completely partitioning an array of N elements creates
N memory banks, while block and cycle partitioning with a factor M creates M memory
banks, each with N/M addresses. Block and cyclic partitioning differ in the order that the
array elements are placed in each bank, but perhaps it is easier to visualize the different
kinds of partitioning methods available and their effects on the original array in figure 5.6:

Figure 5.6: Array Partitioning

While it was possible to achieve a latency slightly lower than the initial target of 256
clock cycles, the hardware utilization climbed up even further, with a LUT utilization
reaching over 500% of the available units. Also, it must be noted that a substantial amount
of time was spent trying many other unsuccessful approaches, such as exploring loop
merge pragmas, HLS dataflow pragmas (which is in theory, similar to pipelining but be-
tween functions instead of operations); analyzing memory access patterns to cache array
rows to a local array (also referred to as ’line buffering’ in the context of image filtering),
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so that the input arrays are read only once and can be implemented as FIFO buffers, al-
lowing for the functions to start processing the data even if not all inputs are available;
etc., but all these techniques did not provide any advantages, or in some cases, performed
much worse, and in others they didn’t work at all. Finally, during the system integration
phase (which will be discussed later on this chapter), a new optimization was found, which
(while still being an L2L2L3 pipelining) increased the execution speed by 77% (3406Tck
vs 6035Tck), and at the same time decreased the BRAM18K utilization from 36% down
to 22% and the LUT utilization from 85% down to 80%. This is roughly 1200 times faster
than the unoptimized code, and 13 times slower than our original goal.

5.2 VHDL implementation

After finishing our work with the HLS version of the CNN, we had a C++ code which we
could, with some effort, adapt to VHDL. This code can be more or less ported directly to
VHDL, but three major challenges were faced when doing this.

5.2.1 VHDL challenges

Synthetizable Fixed-point Libraries

First, unlike in Vivado HLS, the fixed point library is not available by default in Vivado
anymore and must be manually compiled and installed. Furthermore, and much to my
surprise, the IEEE fixed point library has not yet been standardized, and while there is
a proposed version of it, there are different versions which may be synthesized by some
tools, but not by others. Multiplications of two sfixed, M-integer-bit and N-fractional-
bit numbers, produce a 2M-integer and 2N-fractional bit sfixed number. Similarly, an
addition of two M-bit s_fixed numbers produce a result with size M+1 bits. In order to
avoid increasing the bit size of the data after each operation, the resize function must
be used. This function can be called with the following parameters: overflow_style
can be either fixed_saturate or fixed_wrap; and round_style can be either
fixed_round or fixed_truncate (I assume the reader has knowledge on the dif-
ferences between these methods). Similarly, the same methods are also available in Vivado
HLS when defining an ap_fixed type, along with other additional rounding and satura-
tion styles. However, no matter the combination of methods chosen for both parameters,
the result of a resize operation (or the mere conversion of a ’real’ number to a fixed point
representation) yields different results when converting to ap_fixed and sfixed in
Vivado HLS and Vivado respectively. I have so far not been able to determine the cause
behind this, but in any case, the differences become minimal as the resolution is increased.
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Multidimensional Arrays

The second major challenge faced in the conversion to VHDL was dealing with multidi-
mensional arrays and data endianness. VHDL does not support array slicing for arrays
with more than one dimension. Additionally, there are two ways of defining multidimen-
sional arrays: the first is to simply define a new data type with all the dimensions, similar
to what one would do in C++, e.g.:

type data2D_t is array (0 to rows -1, 0 to columns -1)

of STD_LOGIC;

However, this definition style does not allow accessing a whole row in a single state-
ment, since as we mentioned, array slicing is only permitted in one-dimensional arrays. A
work-around to this problem is to use a for loop to copy every single element of the row,
which results in a quite cumbersome code. Another way of defining the same array would
be to first define a row subtype:

subtype data2D_row is STD_LOGIC_VECTOR(0 to columns -1);

and then define the array type as:

type data2D_t is array (0 to rows -1) of data2D_row;

While this does allow for array slicing, it is only possible for the last dimension. To
add to the confusion, calling an array element is done differently depending on the defi-
nition used. Combine this with the fact that you can mix both definition types, different
endiannesses are possible (using X-1 downto 0 instead of 0 to X-1); throw four-
and five-dimensional arrays to the mix, and you can have quite the headache! Needless to
say, special attention and care must be taken when dealing with VHDL arrays.

Loop Unrolling

The third challenge relates to loop unrolling (or loop rolling, to be more accurate). In
VHDL, for loops are executed in one clock cycle, so in order to fit the ANN in the
hardware available, it is necessary to execute these loops in multiple clock cycles. For
example, the following loop executes in a single cycle:

for i in 0 to M-1 loop

temp(i) := 0;

for j in 0 to N-1 loop

temp(i) := temp(i) + x(i, j)*y(i, j);

end loop;

end loop;
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If we wanted the IC to execute a single multiply-accumulate statement in each clock
cycle, these loops must be manually rolled, taking special care not to overwrite variables
which should only be initialized in the first iteration of the loop. With these things in mind,
our previous example would become:

if i < M then

if (i = 0) and (j = 0) then

temp(i) := 0;

end if;

if j < N then

temp(i) := temp(i) + x(i, j)*y(i, j);

j := j+1;

end if;

if j = N then

j := 0;

i := i+1;

end if;

if i = M then

i := 0;

loop_ended := ’1’;

end if;

end if;

As anyone can imagine, in the case of our code (which consists of eight nested non-
perfect for loops for each layer), the code can become quite cumbersome and difficult
to control: a loop that takes 20 lines in C++ now takes around 80 lines of VHDL code,
a four-fold size increase, which carries with it a similar increase in the risk programming
of errors. Nonetheless, having precise control of what happens in each clock cycle is a
very welcome difference with Vivado HLS. We can take advantage of the fact that each
convolutional layer duplicates the number of output channels, while the MaxPooling layer
divides the number of outputs by eight, which amounts to a net activation reduction factor
of four. This allows us to run each successive layer four times slower than the previous
one (thus saving quite a lot of transistors) at almost no cost in the overall CNN speed. If
we look at the original code present in figure 5.3, we can calculate how many clock cycles
it would take for a layer to complete its processing, if we decide to unroll it at a certain
level: in table 5.7, a cell with a white background means the loop associated with that
variable is left rolled, while a cell with a gray background means that the associated loop
(and the loops lower in the hierarchy) have been unrolled. Therefore, the number of clock
cycles that it takes each layer to complete is the product of the values in the white cells.
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The following table summarizes the relevant values for the loops higher in the hierarchy:

Layer x_out y_out ch_out stride_x stride_y #Cycles
Layer 1 63 37 2 2 4 2331
Layer 2 15 18 4 2 4 2331
Layer 3 3 8 8 2 4 2331

Table 5.7: Loop limits and clock cycles

By unrolling the loops in each layer at the levels mentioned, it’s possible to schedule
the operations for each one so that it takes them exactly the same time to compute. As we
mentioned, only the second and third layers require multipliers; the second one requiring:

stride_y * kernel_sizeˆ2 * C2_in_CH = 32

and the third one only:

kernel_sizeˆ2 * C3_in_CH = 16

This is an insignificant amount compared to the 360 DSP48 multiply-accumulate units
present in the FPGA, which in addition have support for a SIMD mode. In theory, each
DSP48 could support up to four 6-bit multiplications, for a total of 1440 6-bit multiply-
accumulate units, so this is a possible source of optimizations which could lead to a signif-
icant speed-up. If we distributed all operations into 256 clock cycles, the first layer would
require 583 multiply-accumulate units, while the second and third layer would require 270
and 96 respectively, for a total of 949 (these numbers come from multiplying all the loop
limits and dividing by 256). Two additional units would be required for the FC layer, so
it’s theoretically possible to perform the analysis synchronously with the processor without
exceeding the FPGA’s capabilities. Unfortunately, there was not enough time to optimize
and investigate this any further, so with the current code, the synthesis tool does not infer
any of these DSP48 modules, therefore implementing multipliers through LUTs.
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5.2.2 Loop Pipelining

Given the precise, clock cycle accurate control that VHDL provides, it was possible to
easily perform ’function pipelining’ (similar to the ’dataflow pragma’ in Vivado HLS) be-
tween the different layers. By analyzing the memory access patterns and slightly changing
the order of the loop hierarchy, it can be shown that each layer requires five rows of data
(one of them being re-utilized from the previous iteration) to start processing once a new
output row is being calculated. So, for example, the second layer can start working on the
data after the following condition becomes true: y1 > 4*(y2 + 1); while the third
layer can start after an analogous condition. The same can be done with the first layer,
but here we must be a little bit more careful, since we must cache lines of data read from
an external memory with a latency of one clock cycle. Once the cached data has been
processed, the fifth row is moved to the first position. The following code takes care of
updating the cache every time the y variable is increased, which indicates that four new
rows are required:

-- Update cache with 5 lines of data:

if (update_ena = ’1’) then

for x in 0 to input_x- 1 loop

cache_lines(x, cache_ptr_old - (y*stride_y)) :=

data_in(x);

end loop;

update_ena := ’0’;

end if;

if (cache_pointer < 1 + (y+1)*stride_y) then

cache_ptr_old := cache_pointer;

addr_in <= std_logic_vector(to_unsigned(cache_pointer,

addr_in’length));

update_ena := ’1’;

cache_pointer := cache_pointer+1;

-- End Update cache with 5 lines of data

else (...)

This requires only one memory block with a single channel, a big contrast with the
dual channel memory block and three single channel memory blocks required by the HLS
version of the CNN.
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5.2.3 Controlling the CNN with a simple FSM

Finally, a very simple Finite State Machine (FSM) was created to control the whole net-
work, which can be seen in the following code:

control_FSM: process(rst, clk)

begin

if (rst = ’1’) then

state <= wait_ena;

ready <= ’0’;

elsif rising_edge(clk) then

case state is

when wait_ena =>

ready <= ’1’;

if enable = ’0’ then

state <= wait_ena;

else

state <= process_CNN;

end if;

when process_CNN =>

ready <= ’0’;

if FC_done = ’0’ then

state <= process_CNN;

else

state <= wait_ena;

end if;

when others =>

state <= wait_ena;

ready <= ’0’;

end case;

end if;

end process control_FSM;

While the reset signal is being asserted, the ready output is set to zero and the
state is set to wait_ena (wait for an enable input signal). When in the initial state
wait_ena, the ready output is set to one, to signal to the system that the ANN is
ready to process new data. Once the module is requested to start processing (by setting its
enable input to one) the state is set to process_CNN, in which the output ready is set
to 0, and we wait for the FC layer to finish processing the data. Once the ANN is done
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processing, it goes back to the wait_ena state, ready to start processing a new assembly
loop. The control of the dataflow between the different layers is done implicitly by the
conditions imposed to the row variables, as previously mentioned.

This design needs 3215 clock cycles to analyze one loop, roughly the same time as
the HLS version (2.3 times faster than it would take without function pipelining); however
hardware utilization is significantly lower, with LUT utilization at 34.3%, flip-flops at
18.6%, 0% of DSP48 and 0% of BRAM18K blocks.

5.3 Loop detection and the CNN Input Pre-processor

After we had a functioning CNN, the next step was integrating it with the rest of the
hardware; that is, the CPU and memory. In order to do this, a hardware block that snoops
on the instruction memory bus, detects a loop and vectorizes its instructions (as described
in section 3.1.3) was designed. As a first approach, we tried to detect the head and tail of
the loop with the aid of another neural network. However, all attempts were unsuccessful,
neither the LSTM nor the CNN provided good results. The input data of these neural
networks were simply the sequences of addresses generated by the loops. While the CNN
performed significantly better than the LSTM, the addresses predicted were in some cases
correct, but in some other cases the address was off by one or a few positions.

5.3.1 Detecting Loops with a FSM

Given that loops are always defined by a jump back to a previous address, an FSM capable
of detecting this is quite simple to develop. A very interesting work related to this was
performed by de Alba and Kaeli in [1], in which their loop prediction hardware consists
of four basic mechanisms; namely, the Path-to-Loop shift register (similar to a Branch
Target Buffer pattern register), a Path-in-Iteration Table (which records state transitions
through the sequence of unique path-in-loop patterns generated in a loop visit), a Loop
Prediction Table (which stores the number of predicted iterations, etc.), and a Loop Cache
(where the loop body is written). Our version is nowhere near as sophisticated, but again,
this is a very simplified version of the problem. We mentioned already that we haven’t
considered nested loops, and so the assumption we work under is that there is a main
program which starts at address 0, and it contains a few instructions after which the first
loop starts. When this loop is done, some other instructions are executed and a second
loop begins its execution. After the last loop is executed, the main program executes a few
instructions and jumps back to an address near to the beginning.
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This behaviour is depicted in figure 5.7:

Figure 5.7: Assumed program behaviour with two loops

Under this hypothesis, our instruction pre-processor contains a stack which keeps track
of the various loops present in the main program, along their head and tail addresses,
number of loop iterations, etc. The behaviour of the FSM can be depicted in the following
diagram:

Figure 5.8: Pre-processor Finite State Machine

After a reset, the FSM goes to the state wait_loop and waits for a jump back to a
previous address. If a jump back is detected, and the loop is not too small (fewer than a cer-
tain minimum threshold number of instructions), and the jump is not of a hierarchy higher
than the previously detected loops, that is, it’s not the jump back of the main program
(remember, the only loops we consider are nested inside a main program), and the CNN
is not busy processing a previous loop, then we switch the FSM to the gather_loop
state. When the loop has been detected, we push the head and tail addresses onto the stack,
and we gather instructions until one of two conditions is fulfilled. It can happen that either
the loop executes less than the 256 instructions needed by the CNN for processing, or it
can execute more than 255. In both cases, instructions are gathered, vectorized by purely
combinatorial logic, and stored into a memory array. In case that the instructions executed
are less than 256, we fill the remaining of the array with vectorized nops (this is done in
the state fill_nop). After the array is full, we switch to the wait_CNN state, in which
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we tell the CNN to start processing, and we remain in this state as long as the CNN is busy
with its process.

Once the CNN has finished working and made its prediction on whether the loop is
parallelizable or not, this result is pushed onto the stack. The information in the stack can
now theoretically be used by the serial-to-parallel code converter. The FSM goes back to
its initial state, and starts analyzing loops that are still not present in the stack.

5.3.2 Implementing the FSM in Hardware

Both a synthetizable C++ version and a VHDL version were implemented, having an al-
most one-to-one correspondence in the source code. However, for some reason unknown
the C++ HLS version does not work correctly: as it can be seen in figure 5.9, the vector-
ized instruction output of the HLS version (named vector_instr_array_V_d0_0)
contains a value of X in some of its bits, which does not happen in the VHDL version
(whose output is named vector_instr_0, and is delayed one clock cycle respect to
the HLS signal). This error does not appear when running the C simulation in Vivado
HLS, where the outputs are correct and the same as the VHDL version; it only appears
when it’s exported as an IP block and simulated in Vivado. The position of the bit (or bits)
that change their value to X is not fixed, and debugging the VHDL code generated by the
HLS synthesis tool is impossible. What is even more strange, is the fact that this vectorial
output is purely combinatorial, and when this combinatorial function is synthesized alone
from C++ it works perfectly in the RTL simulator, but when called from the FSM (which
calls exactly the same function), the outputs do not behave as expected.

Figure 5.9: FSM simulation waveform: VHDL vs C

As mentioned previously, the VHDL version of this IP block is a one-to-one translation
from the C++ code, and given that the VHDL version works as it should, along with the
fact that the C simulation does not show this behaviour (making it impossible to debug),
the C++ instruction pre-processor was discarded and the error was regarded as a bug in
the HLS tool, so no additional time was allocated to finding the root cause of the problem.
Finally, it should be noted that both versions consume very similar amounts of hardware.
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5.4 System integration

Once we had designed and tested all the building blocks required for the final system, it
was time to put all the pieces of the puzzle together. We’ll start by describing the VHDL
system, as it is simpler and easier to understand than the HLS system.

5.4.1 VHDL System

Using Vivado’s IP integrator, it is possible to create a system by simply dropping IP cores
in the Block Diagram GUI. Connections between different modules can be made by simply
dragging a wire between I/O ports; the final result can be seen in figure 5.11:

Figure 5.10: VHDL System

The system consists of six IP blocks: the first box in the figure is simply a NOT gate
providing the required reset signal polarity of the LT16 SoC, which outputs the current
instruction and its address; the instruction pre-processor and CNN blocks previously ex-
plained; a single channel distributed memory generator and a memory controller. The
memory simply stores the vectorized instructions array and it has therefore 256 addresses,
and a word width of 76 bits. The memory controller simply chooses which address should
be the input of the distributed memory block: when the instruction pre-processor is as-
serting its write enable signal, then the input address is the one given by then instruction
pre-processor; if not, the address is taken from the CNN block, so that it can read the
array when it needs to. The LT16 SoC has its own memory inside the block, this system
uses a wrapper which hides its complexity and outputs only the required signals. The SoC
is running a program randomly generated by LoopGen. Rather than testing all different
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programs from the dataset (which would be extremely complex to implement and slow to
simulate), the testing was done by using a single program, but instead of converting the
two FC layer’s outputs to two one-bit outputs, [0, 1] or [1, 0], we can simply compare the
original 6-bit values with the software CNN’s 6-bit outputs. It will soon become useful to
remember that the final output is [1, 0] if CnnOut[0] > CnnOut[1], and [0, 1] in the
opposite case.

5.4.2 HLS System

The system created with the HLS version of the CNN is very similar, but instead of requir-
ing a unique single-channel memory block, it requires one dual-channel memory block,
and an additional three single-channel memory blocks.

Figure 5.11: HLS System

Each memory block has a depth of 64 instead of 256, since the array is partitioned in
four. Initially, the input data was a two-dimensional array of 76x256 1-bit ap_ufixed
values, but this required 76 input channels, resulting in a need for 76 memory blocks, each

49



Chapter 5. Hardware Architecture and Implementation

with its own chip enable, write enable, and 8-bit address input. The obvious solution to
this problem was to create a 76 bit wide, one-dimensional array with depth 256, which
when correctly partitioned, not only does it consume less resources, but as mentioned in
section 5.1, it led to a significant speed-up of 77%. Given that the array partitioning is
cyclical, when the instruction pre-processor writes to an address whose least significant
bits are 00, the controller sends this data to the first memory block; when the address ends
in 01, it goes to the second, and to the third and fourth blocks when 10 and 11 respectively.
The input address of these memory blocks is given by the instruction pre-processor when
its write enable signal is asserted, and by the CNN when it asserts its chip enable signals.
This results in quite a lot more wiring compared to the VHDL version. At this point it
must be noted that yet another bug had been discovered: when Vivado HLS generates the
IP package for the CNN, so that it can be integrated with other IP in Vivado, the signal
DataInTr_3_V_ce0 appears as a STD_LOGIC_VECTOR of a single bit in the auto-
matically generated VHDL wrapper, but inside the generated VHDL code itself, the output
was defined as a STD_LOGIC signal, making it impossible to integrate with the memory
controller: if we defined the input signal DataIn_3_ce as STD_LOGIC_VECTOR, it
would complain that it was incompatible with the type STD_LOGIC, and the opposite
was true when DataIn_3_ce was defined as a STD_LOGIC_VECTOR. The only solu-
tion was then to directly import the VHDL code generated by the tool into the project,
rather than adding the IP block to the library as suggested by Xilinx. Alas, our prob-
lems with the HLS version of the CNN did not end here, as it did not produce the same
outputs as the C++ simulation. The VHDL version too was generating different results
(although this was to be expected, given the previously mentioned discrepancies between
sfixed and ap_fixed), and therefore, suspecting that this might have been a problem
with the data precision, we increased the number of bits to 16. The following table shows
a comparison between the outputs produced by each CNN for different bit precisions:

Precision Output C++ in
Vivado HLS

C++ in
Vivado

VHDL in
Vivado

CnnOut[0] 0.3944 - -
Floating Point CnnOut[1] 0.4316 - -

CnnOut[0] 0.3948 0.5273 0.3936
16-bit Fixed CnnOut[1] 0.4333 0.2891 0.4309

CnnOut[0] 0.3750 - 0.3594
8-bit Fixed CnnOut[1] 0.5000 - 0.4688

CnnOut[0] 0.1875 0.3750 0.3750
6-bit Fixed CnnOut[1] 0.4375 0.2500 0.1250

Table 5.8: Bit-precision and tool comparison
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In the case of the HLS CNN, the results remained completely different to the floating
point results, while the VHDL 16-bit version converged to the floating point values, with a
difference of around 0.2%. When the VHDL version is scaled down in precision to 8 bits,
the difference with the floating point values remained within 10%, but more importantly,
the ordinal relationship between both outputs was preserved. However, when scaling down
to 6 bits, the difference becomes too great and the ordinal relationship between the outputs
is inverted, which results in an incorrect prediction.

Regarding the C++ version, it did produce the same outputs as the HLS C simulation
when the CNN was fed with the same vectorized instruction repeated 256 times, so this
may suggest that there is a problem either with the memory read timings, or with the
partitioning of the array. Unfortunately, there was not enough time to further investigate
this problem, but at least the VHDL version is working as intended when integrated in the
system.
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Discussion

6.1 PyTorch Neural Network

While the CNN achieved an astonishing test accuracy of 99.8%, it is unclear whether this
success can be carried over to a more realistic scenario. It is also unclear whether the CNN
is truly detecting parallelism or if it’s simply being able to detect unique characteristics
of each type of loop and memorizing them. Working with an in-house developed CPU
inevitably led to having to create our own examples, and while theoretically the parametric
randomly generated loops are all different from each other, in the end, they’re nothing
more than eight different programs (allegedly a very low number to successfully train a
neural network), which have been augmented to hundreds of different examples, and it’s
very well possible that this accuracy is nothing more than the result of over-fitting. This
is supported by the fact that the validation loss, as shown in figure 4.2, does not increase
after reaching a minimum. Even though the validation set was not used for the training
phase, if the characteristics that the CNN is able to learn are identical in the examples of
the train set and validation set (e.g., a specific sequence of instructions present in all loops
of the same kind), then this is exactly what one would expect to find: a validation loss
closely following the behaviour of the training loss. Moreover, the failure of the ANNs
to detect a loop’s head and tail (which is a very simple task) casts even more doubt to the
approach and the validity of its results. On the other hand, this does not imply that the
task is impossible or that it cannot be solved by a neural network; rather, that the current
approach is possibly not the right one. Finally, whether the CNN is successful in a broader
sense or not, it can be said that the design works extremely well within the restrictions and
for the tasks that it was set to perform, and that CNNs are not only orders of magnitude
faster to train than LSTMs, but at least in my limited experience, they perform much better.
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6.2 C++ CNN

Implementing the forward method for a CNN in C++ was surprisingly easy, and in hind-
sight I believe it was the right choice to develop the CNN from the ground-up rather than
trying to understand and use an existing library. This was not only (most likely) the fastest
approach, but also gave me control and low-level knowledge of the inner workings of this
type of network. There isn’t much to highlight about the results, since it performed exactly
the same as its high-level PyTorch counterpart. Working with arrays in C++ can be a bit
tedious when coming from Python, but it’s not a challenge that can’t be overcome with
some work.

6.3 Vivado HLS CNN

As it was mentioned in section 5.1.5, it was possible to achieve a latency slightly lower
than the initial target of 256 clock cycles, but with a hardware utilization that far exceeded
the hardware units available in the selected FPGA. Many attempts to achieve better paral-
lelization of the algorithm were approached, such as exploring loop merge pragmas, HLS
dataflow pragmas; analyzing memory access patterns to cache array rows to a local array,
etc., but none were successful. While it’s quite possible that this failure was due to my
inexperience with HLS tools, I believe that if one must learn to code in a very different
way in order to make these pragmas work correctly, then there is no point to the whole
HLS approach. We will come back to this point later, but overall, it seems that the results
achieved by the HLS tool are the outcome of a brute-force approach in trying to achieve
the desired latency, and quite underwhelming in comparison to the expectations. Never-
theless, after optimizing the original C++ code, we obtained a considerable speed-up of
1200, only 13 times slower than our ideal goal.

6.4 VHDL CNN

One of the big differences found when trying to implement the same CNN algorithm in
VHDL was the behaviour of fixed-point numbers. Even when converting a ’real’ number
to a fixed point representation (allegedly using exactly the same rounding and saturation
methods), the results produced were not the same as the HLS arbitrary-precision fixed-
point data types. However, it was found that the results converged to the floating-point
values once the resolution was sufficiently increased. The VHDL version of the CNN
attempted to achieve a latency similar to that of its HLS counterpart, and while it was
harder to code and debug, it also provided a level of control not possible to achieve (at
least, to the best of my knowledge) in HLS. Many of the unsuccessful attempts to achieve
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better parallelization in the HLS version were successfully implemented in the VHDL
version (these ideas probably served as a guide as to what techniques could be attempted).
The study of the memory accesses in HLS was key to implementing a line cache in VHDL,
while the function dataflow was achieved with the usage of a simple conditional statement.
Moreover, for this algorithm working at roughly the same speed, and even though the effort
and time spent in optimizing the HLS version was far greater than the optimization efforts
put into the VHDL version, the amount of hardware required by the latter was only a
fraction of the hardware that the HLS version requires:

Utilization(%) BRAM18K DSP48E FF LUT #Cycles
HLS 22 57 7 80 3406
VHDL 0 0 19 34 3215

Table 6.1: HLS vs VHDL hardware utilization

While it’s still unclear whether 6-bit precision is also enough for the VHDL version
of the CNN, at least it has been verified that for eight bits and more, the neural network
works as expected and reproduces the results of the golden model.

6.5 Instruction pre-processor and System Integration

To integrate the CNN with the CPU in the same system, an instruction pre-processor and
memory controllers had to be implemented. It was at this point that we started to observe
the divergence of the simulations performed in Vivado HLS with the algorithms packed
in IP blocks, imported and simulated in Vivado. First, for some unknown reason, the
conversion of the 16-bit instructions to their 76-bit vectorized representations worked per-
fectly fine in Vivado HLS, resulting in identical values to those generated by LoopSim,
but when the same block was simulated in Vivado, this transformation gave the wrong
results, with some of the bits switching to X, as it was shown in section 5.3.2. What’s
more puzzling, is that the same vectorizing function worked just fine when implemented
as a stand-alone block. The reader is encouraged to compare the synthetizable C++ code
with the VHDL and see that there is practically a one-to-one correspondence between
them. While the VHDL version of the instruction pre-processor worked flawlessly with
the rest of the VHDL system, the same cannot be said when integrating the HLS CNN and
the VHDL instruction pre-processor, since we found that the CNN was not producing the
same results as it did in Vivado HLS. It is unclear why this is the case, but we suspect that
it might be due to either incorrect memory access timings, incorrect order or partitioning
of the input array, or yet another Vivado HLS bug.

55



Chapter 6. Discussion

6.6 HLS vs VHDL

It shouldn’t be a surprise that coding the same algorithm in VHDL can be significantly
harder, starting with the non-standardized fixed-point libraries, the difficulty of working
with VHDL arrays, rolling and unrolling imperfect loops, and dealing with the debugging
process, which is nowhere near as evolved as it can be in a C++ environment. However,
while it’s significantly harder to manually unroll, pipeline and merge loops in VHDL, there
is also the advantage that one has perfect knowledge and control of exactly what does and
doesn’t happen in each single clock cycle, something that can’t be said when working in
HLS. Additionally, as we have shown, the hardware usage for the same algorithm can be
significantly higher when coding in HLS, something that could be forgiven if it worked
correctly and performed as expected. But this leads us to the main issue and perhaps
the biggest drawback of HLS we found so far: what happens if the algorithm does not
perform as it does in the HLS simulations? I don’t think it would be far-fetched to assume
that most of us would be instinctively tempted to inspect the RTL code generated by the
tool. However, after a minute or so of inspection, it becomes painfully clear that the
code generated is completely unintelligible: the tool creates several thousands of signals
and constant values (over twenty thousand in the case of our CNN algorithm), which are
impossible to follow or understand. And not only that, but if we were to attempt to debug
this by modifying a line here and there in the C++ code, it must be noted that it can take
several hours for a computer to create the RTL code for a given C++ program. Finally,
another major problem we found, is that the HLS pragmas do not work as well as expected,
and the help we get from the tool’s warnings can be quite cryptic and not really useful.
Perhaps, having access to more support, or working with an engineer experienced with the
tool, could lead us to better results, but with things as they are today, the HLS experience
so far has been quite underwhelming.
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To finalize this document, we will go through some recommendations on how to pos-
sibly continue and improve this project, and we will end with a brief discussion of the
main conclusions that can be drawn from the results obtained so far. All the source code
for every software and hardware module implemented in this project can be found at:
https://github.com/LuisJalabert/Deep-Learning-Based-FPGA-CPU-Acceleration

7.1 Future Work

This project opens up a significant amount of questions, each of which could be enough
for a whole project or master’s thesis, and therefore, in order to advance in the aspects
that I find interesting, some of these questions have been left somewhat unanswered. In
particular, the neural network approach to the problem of loop parallelism detection re-
quires much more work to be done with a C compatible processor (either a RISC V or an
ARM CPU), in order to determine if it really works, or if the excellent accuracy obtained
by the CNN is a simple mirage, an illusion caused by a poor definition of the problem.
To improve in this area, employing a C compatible processor would allow us to use real
benchmarks (such as SPEC ACCEL or similar) which would give us a much more ample
and realistic set of programs to work with. In addition, this would allow to compare the
results obtained by other methods presented in some of the work mentioned throughout
this document.

Regarding the hardware implementations, I would discard the usage of HLS, in favour
of a C++ model and directly translating the C++ code to VHDL. The CNN implemented
in VHDL requires more testing to see if a 6-bit precision is enough to reproduce the re-
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sults obtained by the golden model. A way to do this would be implementing a VHDL
test-bench which would read an assembly program, load it in the CPU instruction mem-
ory, reset the CPU, perform the CNN analysis, and start over with the next program until
all of them are tested. This can be quite complex and time-consuming to implement in
VHDL, and it was therefore not attempted. There is a plethora of optimizations that can
be implemented in order to improve speed and hardware consumption of the CNN, such
as using binarized ANNs, or at least investigate how to make the tool instantiate DSP48
multipliers, and if timing allows, some data arrays could be implemented in BRAM18K
memory blocks rather than using registers, which would greatly increase the size of the
neural networks that could be deployed in the FPGA. In regards to the actual implementa-
tion, the CNN does not start until all 256 instructions have been vectorized, but it should be
possible to start after only five instructions have been vectorized. However, care must be
taken if the CNN is accelerated to the point that it analyzes one instruction per clock, since
the CPU can be stalled under certain circumstances. Another possible optimization comes
from noting that each time the CNN’s first layer finishes producing an output row, four
more input rows have to be read from memory, and the CNN is stalled during that reading
process. Implementing a dual-port input channel could shave off 128 clock cycles, and
doubling the line cache size could remove the 256 clock cycles completely. Many more
optimizations should be possible, but unfortunately there was not enough time to imple-
ment and test them.
The final missing piece of the puzzle is the Serial-to-Parallel translator, which could not
be implemented due to a lack of time. As we mentioned in section 2.2.2, the idea is to
have a reconfigurable matrix of ’instruction execution units’ (each unit would have two in-
puts and one output), with each column corresponding to a clock cycle, and each column
connected to the next through reconfigurable steering logic and pipeline registers. This
could easily allow transforming a serial algorithm to a parallel one (and even allow for
loop pipelining), by simply populating as many instruction units as possible in the same
column, while obeying data dependencies.

7.2 Conclusions

Regarding the main goals of the project, it can be said that we have managed to achieve all
of them: the ANN was vastly improved from the previous generation, reaching a 99.8%
accuracy; the ANN was successfully implemented in hardware and it works as expected
when integrated with the rest of the system. We have also been able to explore the dif-
ferences and problems which arise when developing hardware in HLS, and in this regard,
my personal experience leads me to believe that HLS is not worth it. While it should be
possible to achieve better results with the tool, structuring the C++ code in a way that the
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compiler infers a satisfactory hardware becomes too complex, at which point VHDL starts
to appear as a better solution. Moreover, there are many additional sources of optimiza-
tions and fine-tuning possible in VHDL, making it seem that the HLS approach to solving
the problem, is a brute force solution. Another problem with the current implementation
of the HLS tool, is that it’s still extremely buggy (it crashes the whole system if a compi-
lation is stopped) and there isn’t a way to ensure a formal high-level equivalence with the
hardware generated. And related to this, is the fact that it has very serious limitation: it
is impossible to debug the VHDL code that the tool generates, which makes it impossible
to find out where the differences between the HLS simulation and the RTL simulation are.
Everything is fine if both simulations produce the same output values, but if these values
are different, we are left with no tools to solve the problem. I honestly can’t see a use-case
in which one would opt for an HLS design, because if speed is not an issue, then using a
processor should be good enough, but if speed and transistor use are relevant, then the ex-
tra work of porting the C++ code to VHDL is not that difficult and it’s well justified. One
positive aspect that I can mention is that the attempt of using HLS led to a design method-
ology of going from a very high level Python model, to a medium level C++ model, and a
low level VHDL model which is, in my opinion, a very good approach to hardware design.
And in light of this, I think that a tool that translates C++ code to readable VHDL could
be much more useful. We have shown in section 5.2.1 how to transform a C++ loop into a
rolled VHDL version using if statements, and we have used this technique in our project
to unroll different loops at different levels. It should be possible to unroll C++ loops at
the desired level using the same pragmas that Vivado HLS implements, and translate into
VHDL code which could serve as a good starting point for the design.
With respect to the broader question on whether this approach to automatic paralleliza-
tion can solve the problem, in principle there is nothing in the results which says that it
shouldn’t be able to. However, whether this is the right approach or not, is a much more
difficult question to answer, and a lot more work needs to be done in order to have a clearer
picture. While I still firmly believe that at some point, it will become a necessity to de-
velop much less rigid CPUs, which should be able to reconfigure themselves towards the
task they are performing at any moment, I’m not so sure that neural networks will be able
to help in solving the problem. Just by noting that the number of transistors required by
the CNN is at least one order of magnitude larger than the number required by the CPU
it is trying to accelerate, and given the failure of ANNs to solve a task so simple such as
detecting a loop’s head and tail, this casts serious doubts about their usefulness on tasks
where the results must often be exact and not approximate. However, I am by no means
the first person to cast doubts about the usefulness of ANNs and I certainly won’t be the
last, but in a world where neural networks seem to become ’smarter’ by the day, only time
will tell where their real limits are.
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