
Abstract

This thesis is about developing a high quality Air Pollution Prediction model for giving
precise forecasts of air quality based on previous data of air pollution levels and historical
weather conditions and weather forecasts. The thesis was given by Telenor in cooperation
with NTNU. The Air Pollution training data was provided by NILU and the weather data
was provided by Yr.

i

Preface

First of all, I would like to thank Studentersamfundet in Trondheim for three amazing
years filled with joy, laughter and a lot of activities all year long. I am really thankfull for
discovering a second home here in Trondheim filled with fantastic people.

Second, I am grateful for having a master thesis in machine learning, because I believe
Artificial Intelligence and machine learning is the future and I would like to participate in
making the world a better place using this technology.

A huge thanks goes to my friends and family for supporting me with joy, understanding
and love. It would be an understatement to say it would be hard to achieve this without
them.

ii

Table of Contents

Abstract i

Preface ii

Table of Contents v

List of Tables vii

List of Figures ix

Abbreviations x

1 Introduction 1
1.1 Background . 1
1.2 Motivation . 2
1.3 Problem Description . 2
1.4 Contribution . 2
1.5 Research Question . 3
1.6 Report structure . 3

2 Overview 5
2.1 Machine Learning Methods . 5
2.2 Theory . 6

2.2.1 Air Pollution . 6
2.2.2 Formulae . 6
2.2.3 Equations . 7

3 Datasets 9
3.1 Introduction . 9
3.2 Air Quality Data . 9

3.2.1 Tromsø . 9
3.2.2 Other Areas . 10

iii

3.3 Weather Data . 10
3.4 Traffic Data . 11

4 Data preparation 13
4.1 Overview . 13
4.2 Merging . 13
4.3 Invalid measurements . 14
4.4 Outliers . 15
4.5 Label Encoding . 15
4.6 Normalization . 15
4.7 Splitting . 16
4.8 Sequencing . 17
4.9 Padding . 18

5 Prediction Model 19
5.1 Overview . 19
5.2 Architecture . 19

5.2.1 Overview . 19
5.2.2 Sub Networks . 20
5.2.3 Data Features . 21
5.2.4 Activation functions . 22
5.2.5 Optimization Algorithm . 22

6 Implementation 25
6.1 Environment . 25

6.1.1 Python . 25
6.1.2 Tensorflow . 25
6.1.3 Keras . 26

6.2 Google Cloud Computing . 26
6.3 Code . 26

6.3.1 Retrieving the data . 26
6.3.2 Processing the data . 27
6.3.3 Defining model . 27

7 Results 29
7.1 Feature Importance . 29
7.2 Scoring . 30
7.3 Comparison . 32

8 Discussion 33
8.1 Model . 33

8.1.1 Model type . 33
8.1.2 Model Structure . 33
8.1.3 Features . 34
8.1.4 Outputs . 34
8.1.5 Limitations . 34

iv

8.2 Work environment . 34
8.3 Work distribution . 35

9 Conclusion 37
9.1 Experience . 37
9.2 Future work . 37

9.2.1 Features to include . 37
9.2.2 Training data . 37
9.2.3 Web Platform . 37

9.3 Bottom line . 38

Bibliography 39

A Graph Appendix 43

Appendix 43

B Tables 49

C Code Appendix 59
I Weather data script . 59
II AQI script . 61
III Data script . 63
IV Model definition script . 70
V Model train script . 72

v

vi

List of Tables

4.1 Features . 13
4.2 Merged Dataset . 14
4.3 The new sub datasets derived from the original dataset. 16

7.1 Accuracy for models 1h, 2h, 3h, 12h, 24h and 48h on Hansjordnesbukta
data for AQI PM2.5 . 30

7.2 Accuracy for models 1h, 2h, 3h, 12h, 24h and 48h on all PM2.5 data. . . . 31

B.1 All Oslo PM2.5 AQI model accuracy . 50
B.2 All Oslo PM10 AQI model accuracy . 51
B.3 All Oslo NO2 AQI model accuracy . 52
B.4 All Oslo NO AQI model accuracy . 53
B.5 All Oslo PM2.5 AQI model rmse . 54
B.6 All Oslo PM10 AQI model rmse . 55
B.7 All Oslo NO2 AQI model rmse . 56
B.8 All Oslo NO AQI model rmse . 57

vii

viii

List of Figures

1.1 Luftkvalitet i NorgeLuftkvalitet i Norge (2019b) 1

2.1 An example of an Artificail Neural Network Bhatia 5

3.1 Hansjordnesbukta - (Google, 2019) . 10

4.1 Normal Distribution (Sebastiano, 2017) 14
4.2 16 Point Compass Rose - (I, Andrew pmk, 2007) 15
4.3 A view of the data with the shape of the "window" 17
4.4 Moving the "window" to the next index 17

5.1 An overview of the mMdel Architecture 20
5.2 A detailed view of the Model Architecture Ethereon 23

7.1 Feature importance . 29
7.2 Accuracy and error on data from Hansjordnesbukta, Tromsø 30
7.3 Scatter plot of selected models on data from Hansjordnesbukta, Tromsø

for AQI PM2.5 . 31

A.1 Plot of selected models on data from Hansjordnesbukta, Tromsø for AQI
PM2.5 . 43

A.2 Metrics of the models on all data for AQI PM2.5 44
A.3 Plots and scatter plot of the model 48h on all data for AQI PM2.5 45
A.4 Plot of model 48h for AQI PM2.5 . 46
A.5 RMSE and ACC of model 48h for AQI PM2.5 46
A.6 RMSE and ACC of model 48h for AQI PM10 47
A.7 RMSE and ACC of model 48h for AQI NO 47
A.8 RMSE and ACC of model 48h for AQI NO2 48

ix

Abbreviations

AQI = Air Quality Index
NILU = Norwegian Institute for Air Research
datapoint = A row in a dataset
feature = A column value of datapoint
NaN = Not a number
CPU = Central Processing Unit
GPU = Graphics Processing Unit
ŷ = the predicted output
y = the true output
IoT = Internet of things
API = Application Programming Interface
Epoch = One iteration of training all datapoints on a model

x

Chapter 1
Introduction

1.1 Background

Trondheim kommune have been planning a project in which they want to record air quality
of the traffic through equipment mounted on vehicles driving around the city area. This
means recording dynamic data, resulting in greater coverage of air pollutants over larger
areas of land. This will in turn open for the possibility of providing high quality Air
Pollution Predictions.

Today, there exists a national online AQI forecasting platform (Luftkvalitet i Norge,
2019a). It is a cooperation between the government agencies Miljødirektoratet, Statens
vegvesen, Vegdirektoratet, Meteorologisk institutt, Folkehelseinstituttet and Helsedirek-
toratet (NILU, 2019b).

Figure 1.1: Luftkvalitet i NorgeLuftkvalitet i Norge (2019b)

1

Chapter 1. Introduction

The platform presents the current air quality levels of several cities and municipalities
as well as the forecast for the next day. It includes the option of searching for several
places in Norway and also has the option of navigating through a map. This map has
a color coded transparent overlay for viewing the air pollution levels on top of the map.
Under the map, there is an option to view and select the hourly predictions from 02.00 the
current day and 48 hours forward in time.

1.2 Motivation
The thesis was given by Telenor with the goal of getting high accuracy prediction of air
quality. The utilization of moving weather stations opens the possibility of increasing
the coverage of the air pollution retrieval over large areas. The point being that moving
weather stations are more optimal for giving a better picture of the air quality level, com-
pared to a weather station fixed to a single position. The fixed weather stations will in turn
yield more reliable data because of its relatively constant surroundings and situation.

A dynamic vehicle will be exposed to a large amount of uncertainty and unreliabil-
ity. This is however a small price to pay compared to the value of great land coverage.
Especially areas where setting up a static weather station is hard or impossible. A good
prediction model and smart processing of the AQI data could be utilized for reducing the
unwanted unreliability.

1.3 Problem Description
The vision of this project is to create an Air Pollution Prediction model that predicts a
forecast of air pollution with great accuracy,. This is the first step in a large process, which
ultimately should end up with a high quality online prediction platform, which covers all
of Norway and only requires available and easy accessible data. The data should come
from mobile weather stations mounted on vehicles and stationary weather stations fixed at
a position.

This vision is something to aim towards, in the process of reaching the goal of this
project. By working towards this vision, it propagates the thesis to reach the goal of this
project, which is to create a model that is able to give high quality predictions based on
the available data from stationary weather stations through the NILU API and the weather
data available through Yr.

1.4 Contribution
This project aim to simplify the process of making good air pollution predictions all over
Norway. This is done by using data from as few sources as possible so that its reliability is
easy to maintain. By making it easier to give forecasts for air pollution it will also become
more available for more people. And with the growing interest for IoT, smart gadgets
capable of doing air quality meassurements, will perhaps be a common thing for people to
own. An application of this project would be to use this data, combined with weather data,
to predict the local air quality.

2

1.5 Research Question

1.5 Research Question
Based on the problem description and the motivation for this project we have the following
research questions:
1. What kind of machine learning model will give the best air pollution predictions?
2. What kind of factors leads to an accurate prediction model?
3. How can the results be validated and verified?

1.6 Report structure
This report consists of 9 chapters and 3 appendices. The chapters is divided into sections,
and the appendencies consists of 3 different types of information. Appendix A contains
plots from the results in chapter 7, appendix B consist of tables from the results in chapter
7, and appendix C is the relevant code used in this project.

Chapter 1 is the introduction of the thesis. It describes the background and motivation
behind this thesis. Next chapter 2 is giving an overview of the problem and the theory
that is being used as a base for this thesis. The third chapter 3 is about the datasets and
presenting the data used in the project. Chapter 4 presents the preparation of the data this
project is going to use to predict air polution data. The next chapter 5 describes and defines
the prediction model that is going to be used to predict air quality. Chapter 6 describes the
process of implementing the model. Next chapter 7 presents the results of the prediction
model and shows tables and plots of the findings. In chapter 8 I discuss some of the
findings I find interesting. And finaly, in chapter 9, I conclude the thesis and the project.

3

Chapter 1. Introduction

4

Chapter 2
Overview

2.1 Machine Learning Methods

This project will be using machine learning to predict air pollution data. This is achieved
by using regression techniques through an artificial neural network. An artificial neural
network is a network of nodes, designed for training and predicting values. An artificial
neural network is inspired by on of natures greatest inventions, the brain. Our brain is one
huge neural network, and an artificial neural network is mimicking the architecture and
connections of neurons in the brain.

Figure 2.1: An example of an Artificail Neural Network Bhatia

The artificial neural network is trained by feeding data through the network via the
input layer to the output layer and correct the error. This is done by adjusting the weights
so the output will get more and more accurate by each training iteration Dormehl (2019).

5

Chapter 2. Overview

2.2 Theory

2.2.1 Air Pollution

The air pollution regarded in this project is PM2.5, PM10, NO2 and NO. These pollutants
are the most common and interesting data to be predicted. These pollutants are categorized
as either gasses or air particles. The pollutants effects the health of the human body, as
well as the environment, ecosystems and vegetation (Luftkvalitet i Norge, 2019c).

The most common sources of pollution in Norway are the traffic on the roads. This is
because the vehicles generates particulates and gasses through the exhaust of the combus-
tion chamber, and also generate fine particulates through the wearing of e.g. the tires, the
brakes and the asphalt on the ground.

Another important source of pollution in Norway is wood burning and combustion.
The smoke generated from this process carries several types of air particles, including
ultra fine particulates like PM2.5.

Also, other sources of air pollution in Norway are industry, harbours and ships. This
is regarded as likely contributors to the local air pollution. Ships often keep the engine
going idle while being moored. This generates large amounts of pollution. The weather
also plays its part in distributing the pollution, i.e. the wind carrying and spreading the
pollution over greater distances.

Particulates

Particulates are often generated through combustion from e.g. traffic or industry, and
carried by the whirling wind produced in e.g. traffic or from the nature itself.

The particulate matter PM2.5 describes dust particles or particulates, with a diameter
less than 2.5 µm. These fine grains can get into the lungs through the air we breathe.

Likewise, the particulate matter PM10 describe particulates with a diameter lower than
10 µm. These particles can often get to the upper airways.

Gasses

NO and NO2, often called NOx are gasses that are generated by high temperature combus-
tion processes. These gasses is most often generated in traffic. When NO is in the presence
of ozone, it converts to NO2.

2.2.2 Formulae

Mean

µ =

N∑
i=1

xi
N

(2.1)

6

2.2 Theory

Standard Deviation

σ =

√∑N
i=1(xi − σ)2
N − 1

(2.2)

Normalization

z =
x− µ
σ

(2.3)

Prediction Accuracy

The prediction accuracy calculates the aggregate of the performance over all the classifi-
cations.

AUC = 1−
∑N

i=1 |ŷi − yi|∑N
i=1 yi

(2.4)

Root Mean Square Error

Root mean square error is the standard deviation of the prediction error (Stephanie, 2016).

RMSE =

√√√√ N∑
i=1

(ŷi − yi)2
N

(2.5)

2.2.3 Equations
Sigmoid

S(x) =
1

1− e−x
(2.6)

Sigmoid prime

S′(x) = S(x)(1− S(x)) (2.7)

ReLU

Rectified Linear Unit

f(x) = max(0, x) (2.8)

ReLU prime

Rectified Linear Unit

f ′(x) =

{
1, x > 0
0, x ≤ 0

(2.9)

7

Chapter 2. Overview

8

Chapter 3
Datasets

3.1 Introduction

One of the most important factors of a great model is quality data. The data should be true
to the nature of what it represent. It doesn’t matter if there is a large amount of data if the
data is unreliable and unrepresentable. Therefore, it is crucial to retrieve the data needed
for the prediction model from sources known for their reliability and quality.

Another important factor, as previously mentioned, is the amount of data. In the same
way of thinking of the quality of the data, it is not sufficient to have small amounts of
data even though it is of great quality. The broader the dataset is, the more datapoints is
available, and therefore giving a better position for finding the optimal regression model.

To give it a human perspective, think of having a small amount of data as to not having
i.e. visual sensibility, while having great hearing functions. Thus, the world is not rep-
resented by its full informational potential. However, it is fully possible to give accurate
predictions of the surroundings.

In essence, for setting the best base for high quality predictions, large amounts of data
of as high quality as possible is desired.

3.2 Air Quality Data

3.2.1 Tromsø

Initially the only dataset available for the project originated from Hansjordnesbukta Weather
Station. This weather station provides AQIs consisting of PM10, PM2.5, NO, NO2. These
AQIs set the base line and constitute the prediction labels, the features to be predicted, for
the project. The weather station is governed by NILU (2019b), the Norwegian Institute for
Air Research, and is regarded as a reliable source of information and data. The project is
heavily based on the data from this weather station, as the models were solely trained and
fitted with data from Hansjordnesbukta.

9

Chapter 3. Datasets

Figure 3.1: Hansjordnesbukta - (Google, 2019)

3.2.2 Other Areas

In the beginning of this project there was no easy way to retrieve AQI data other than
through a password protected web interface from NILU. It was slow and often crashed
when trying to download large quantities of data. However, when it did work, there was
only need to download the data once. Another factor was the fact that only one area,
Tromsø, was available for acquiring AQI data.

Now, NILU has provided an API (NILU, 2019a) for requesting historical AQI data
from any of its stations here in Norway. That is why AQI data from other areas, e.g. Oslo
or Bergen, was not used for training the air pollution prediction model. However, it was
used for cross validation and test data, and is worth looking into in the future for fine
tuning the precision of the model.

3.3 Weather Data

Yr is the joint online weather service from the Norwegian Meteorological Institute (met.no)
and the Norwegian Broadcasting Corporation (NRK). Yr provides a unique offer of free
weather data from all over the world (Yr, 2019b). The data retrieved from the Yr API in-
cluded humidity, precipitation, temperature, wind and wind direction. All of the retrieved
data included timestamps.

This data is the largest contributor to the training data and it is extremely important
that the data is accurate. Fortunately, the data from Yr is regarded as reliable and precise.
Also, the use of the weather API corresponds well with the NILU API, making it a natural
choice for giving quick and accurate data for a possible future online prediction platform.

10

3.4 Traffic Data

3.4 Traffic Data
A feature worth looking into was the traffic data from Vegvesenet. More precisely, the
interesting data was the rate of traffic from a given road. The idea was to get the amount
of traffic passing by within a given radius from the position of a given weather station at
a given time. Unfortunately, the data that was available was not in a continuous form, but
rather as a single integer value. It was only available, in some cases not, as the average
daily traffic throughout a year. In many cases the traffic data was updated too many years
in the past to be considered qualified for describing the traffic of the current year. In some
cases the data was last updated e.g. the year 2005 in Oslo.

The traffic data was not used in this project, as it was too unreliable. However, it may
be useful for future training of an improved version of the prediction model as feature
indicating how much traffic a given area could expect.

11

Chapter 3. Datasets

12

Chapter 4
Data preparation

4.1 Overview

This chapter will present the process of preparing the data from the AQI dataset 3.2.1 and
the weather dataset 3.3 for training and fitting the model.

As previously discussed in section 3.2.1, the AQI data used for the fitting and training
of the model is from Hansjordnesbukta in Tromsø. The weather data is from Yr and the
time data is extracted from both the AQI and the Weather data. The data is represented
by hourly measurements in the range from January 1st 2010 to December 31st 2018. This
gives 71,248 datapoints, which is not far from the expected value of 78,864 datapoints.
This indicates some gaps in the dataset and is not regarded as an issue. The gaps will
simply vanish after the data completely processed.

Yr NILU
Timestamp Timestamp
Humidity PM2.5

Precipitation PM10
Temperature NO

Wind NO2
Wind direction

Table 4.1: Features

4.2 Merging

The first step was to combine the data from the different datasets together. As will be
discussed in Chapter 5, the model needs certain data from the dataset. As presented in
table 4.1, each dataset has a timestamp asosciated with each datapoint. The timestamp

13

Chapter 4. Data preparation

Timestamp Yr Weather Data NILU AQI Data
Month Day Hour humidity precipitation temperature wind wind direction PM10 PM2.5 NO2 NO

Table 4.2: Merged Dataset

functions as an unique id for each datapoint. With this in mind, the data from each dataset
can be merged into a new dataset by matching the timestamps as the index.

The features in the merged dataset 4.2 are humidity, precipitation, temperature, wind,
wind direction PM10, PM2.5, NO and NO2. In addition to these features, the model requires
the following features: Month, Day of the month and hour of the day. These features are
extracted from the timetamp index.

4.3 Invalid measurements

Now a merged and complete dataset is created and it needs to be cleaned. First, the dat-
apoints, that are either invalid or whose values makes no sense, needs to be processed.
The data that are invalid will be assumed to have a value of NaN. These datapoints will
eventually be removed and are for now regarded as important to keep. This is because the
data eventually will be sequenced. Therefore, for the simplicity of the process, the NaN
data needs to remain in the dataset.

The datapoints that make no sense are when e.g. a percentage value is negative when
the value really should be between 0 and 100, i.e. a humidity value. Another value type
that makes no sense are negative AQI values. An air particle 2.2.1 or a gass 2.2.1 cannot
have a negative value. In fact, the temperature feature is the only feature that can have a
negative value. Therefore, these datapoints will be assumed as NaN and will remain in the
dataset, just like the invalid data.

-5 -4 -3 -2 -1 0 +1 +2 +3 +4 +5
Standard Deviations

Figure 4.1: Normal Distribution (Sebastiano, 2017)

14

4.4 Outliers

4.4 Outliers
Next, the outliers needs to be invalidated. An outlier is a datapoint that lies far away from
the other datapoints. In this project, an outlier is classified as a datapoint that lies more that
three standard deviations 2.2.2 away from the mean value 2.2.2 in the normal distribution
curve. This creates a range that says which data is valid. All the data that are less than the
mean minus three standard deviations and all the data that are more than the mean value
plus three standard deviations will be invalidated 4.1.

4.5 Label Encoding
All of the data is continuous numerical values, except the wind direction data, which is
discrete string values. The wind direction data is thus required to be encoded to numerical
values, as the model only works with numbers. Label encoding means representing the
label, the strings, as a unique number for each unique string. There are 16 unique wind
directions in the data set. The wind direction labels are mapped to a value ranging from 1
to 16.

Figure 4.2: 16 Point Compass Rose - (I, Andrew pmk, 2007)

4.6 Normalization
Every value in the dataset is numerical. However, it is not normalized. Each column
in the dataset are in different scales e.g. humidity which ranges from 0 to 100 percent
and wind direction which ranges from 1 to 16. The model needs to be trained on data
which is balanced and at the same scale. This is because the model minimizes its loss by
calculating the gradient descent and move towards the local minimum. If the values are
not on the same scale, the gradient will oscilate greatly and then take long time in locating

15

Chapter 4. Data preparation

the local minimum value. Ideally, all the features should have values ranging around -1
to around +1, the mean of each feature should be equal 0 and the standard deviation for
each feature should be 1. This is achieved by normalizing the dataset, feature by feature,
by using the normalization equation 2.2.2.

4.7 Splitting
The architecture of the model requires the data to be split in certain groups and shapes,
which will be presented and discussed in section 5.1. Currently, the dataset is normalized
and its shape is unchanged. From this point, the data is split up into five seperate datasets.

Time Historical Weather Weather Forecast Other Pollutants Prediction AQI
Month Precipitation Precipitation Historical AQI 2 AQI 1

Day Temperature Temperature Historical AQI 3
Hour Wind Wind Historical AQI 4

Wind Direction Wind Direction
Humididity

Table 4.3: The new sub datasets derived from the original dataset.

The historical weather dataset is going to represent the past weather values based on
how many hours the model is set to look back. The features included are humidity, precip-
itation, temperature, wind strength and wind direction.

The weather forecast dataset is the future weather that is most likely to occur in the
future. In this case, the dataset already contains a weather forecast, or rather the actual
weather that occured some given hours from a given time. The features in this dataset are
precipitation, temperature, wind strength and wind direction. The reason for excluding
humidity as a feature is because Yr does not predict the humidity in its weather forecast.
Since this model is heavily reliant on the Yr data, it seemed logical to adapt their structure
onto this model. This is a proactive decision made to make it possible to create a tool for
the model in the future 9.2.

In the next dataset, we find the other pollutants. This dataset consists of the labels,
the AQIs, that are not to be predicted. The model is only capable of predicting one label
at the time, but the other labels can still be useful. The air pollutants, the AQIs, is most
likely to be influenced by each other, i.e. the AQI label NO should be influencing the NO2,
because, when in presence of ozone, NO converts to NO2 2.2.1.

The time dataset is representing the meta data from each datapoint. This data should
reflect what season, what time of the week and what time of the day the AQI data was
recorded. Certainly, it is intuitive to think that a recorded AQI value will be greater at
rush hour mid day on a Tuesday, compared to a value recorded at a late Sunday evening.
Also, seasons seem to have an impact on the air pollution. In the winter, it is often more
articles about the thick layer of air pollution hovering in the air near traffic, probably
caused by increased heating. However, this would also be reflected by the temperature and
the precipitation, indicating the typical weather of each season.

Last, the Prediction AQI dataset contains the prediction feature, the AQI to be pre-
dicted. This dataset is made up by the previous recorded AQI data over a given range of

16

4.8 Sequencing

time in the past from a given time. The datapoints indicate a pattern of behaviour for the
AQI over time. This dataset would fit nicely into a regression model.

4.8 Sequencing
The new datasets still includes the invalidated NaN values. This is done to retain the hourly
ratio between each datapoint. When sequencing the data, the NaN values will be regarded
as valid until the last step, which is to remove any datapoints containing NaN values in
any of its columns.

Figure 4.3: A view of the data with the shape of the "window"

Figure 4.4: Moving the "window" to the next index

The five new datasets is currently two-dimensional, i.e. shape of (datapoints, features).
In this step, the datasets are converted to be three-dimensional with the shape of (data-

17

Chapter 4. Data preparation

points, hours to look back, features) or (datapoints, hours to predict, features), depending
on what type of data it is and what it will be used for in the model.

The process of converting the current flat datasets can be visualized as moving a sliding
window over the dataset and keep the data if the all of the values is not NaN as seen in
figure 4.3 and figure 4.4. Here the process starts at the fifth datapoint because there are
some NaN values in one of the columns. The green area indicates the area that has to be
valid in order to be included in the new data set. The smaller boxes in the window are each
a sequence. A datapoint in the new and final dataset.

In this project, the data used to train the prediction model was based on a value of six
hours to look back, and a range from 1 to 3 hours, plus 12, 24 and 48 hours to predict.
After sequencing the data for each prediction hour value, the datasets is combined into
a new dataset. From this point the data has reached its final shape. This results in six
datasets, one for each prediction hour. In this project, there will be trained models for each
AQI feature. Finally, this sums up to the total of 24 datasets.

4.9 Padding
The Weather prediction data needs to be padded to fit the input shape of the model, or
vice versa depending on what shape is larger. If axis 1 of the datasets is not eqaul, they
will not concatenate, i.e. the shape (datapoints, 3, 4) for the weather forecast data will not
concatenate with the shape (datapoints, 6, 1) for the historical AQI data when it is given
as an input to the model. The padding value is zero, and will be appended to the data. The
values in axis 0 and 2 is irrelevant for the concatenation. The data with the lowest value in
axis 1 will be padded to match the value of axis 1 to the data with the largest value in axis
1.

18

Chapter 5
Prediction Model

5.1 Overview

The prediction model is a fully connected neural network, with five distributed sub net-
works, inspired by Yi et al. (2018). It is designed to capture feature data from different
domains, i.e. weather data, air pollutants and time, and make predictions of the future air
quality data.

This model will not take location data or AQI data from other nearby stations as input,
making the model solely dependent on data from a single weather station, which in this
project is Hansjordnesbukta. The reason behind this is because at the time the project
started, this was the only available data. However, further into the project, more data
became available and was used as validation data for the model.

The idea of a distributed network comes from the the fact that the different domains
influences the air quality data, each in its own ways. To capture this, the model several
different sub networks that each outputs a prediction, which is combined to form a final
air quality prediction.

5.2 Architecture

5.2.1 Overview

The model is built up by a combination of five different sub networks and one output layer.
Each sub network needs an input, and the inputs vary in shape, however, axis 0 is required
to be equal for all the inputs. This is how many datapoints the model is going to fit or
predict. All of the networks fully connected layers, except the last, is activated with a
Sigmoid function 2.2.3.

The fully connected layers is then appended with a dropout layer with value 0.2. These
dropout layers will set 20% percent of its input values to be equal to zero. This is done to
regularize the model and will help reduce overfitting.

19

Chapter 5. Prediction Model

The prediction outputs from each sub net are combined through a linear merge into a
fully connected layer before flattening the tensors into a final output with the shape (N,
hours to predict) 5.2.

Each sub network has the same architecture, except from the input layer. Also, each
subnet share a common input dataset, which is the Historical AQI dataset. This is the most
feature that is going to be predicted, and is combined with the other datasets in the sub
networks to give distributed predictions.

The holistic subnet, shares input with all the other subnets, as this subnet is designed
for capturing the whole influence of all the data. In short, there are four subnets designed
for capturing the isolated influence of time, other AQIs values, historical weather values or
weather forecast values, on the prediction AQI. The last sub net is designed for capturing
all the combined influences on the prediction AQI in the same system. The five outputs
from these subnets are combined for giving a distributed prediction.

Figure 5.1: An overview of the mMdel Architecture

5.2.2 Sub Networks
Time Subnet

The Time Subnet gets its inputs from the Time Dataset and the Historical AQI dataset. The
features are prediction AQI, Month, Day of Month and Hour. This subnet is designed for
capturing the influence of time on the AQI to be predicted, by inputing the past values of
the AQI.

20

5.2 Architecture

The idea of this subnet comes from the fact that seasons and time of day have an
indirect influence on air pollution. I.e. in the winter, it usually gets much colder than in
the summer in Norway, which leads to more wood fire and heating. Also, the time of day
tells when there are more activity in the traffic, i.e. the morning rush to work or the long
lines of traffic on the way home from work.

Historical Weather Subnet

The Historical Weather subnet get its inputs from the Historical Weather Dataset and the
Historical AQI dataset. Its input features are Precipitation, Temperature, Wind, Wind
direction, Humidity and the prediction AQI. This subnet is designed for capturing the
influence of the historical weather on the historical AQI. This subnet outputs the prediction
on the AQI based on the previous weather conditions and the prediction AQI values, in a
series some hours long.

Weather Forecast Subnet

The Weather Forecast subnet get its inputs from the Weather Forecast Dataset and the
Historical AQI dataset. Its input features are Precipitation, Temperature, Wind, Wind
direction and the prediction AQI. This subnet is designed for capturing the influence of the
future weather on the historical AQI.

Like the previous subnet, this subnet combines weather data and air pollution data.
However, the weather data is not a precise value. It comes with uncertainty as it is a
prediction of the future value of the weather. Although, in training, the weather forecast
data is actually the future recorded weather data and not a real prediction.

The shape of the data is equal to the shape of the prediction shape in axis 1, i.e. the
hours to predict. If the inputs to this subnet is unequal in axis 1, it will be required to be
padded 4.9.

Other Pollutants Subnet

This subnet gets all of the AQI types as input. The AQIs data has the shape of (N, hours
to look back, 4) where there are four AQI labels. The reason for this subnet is to capture
the influences the other AQI has on the prediction AQI. There seem to be a correlation
between the rise in the other AQIs and the rise in the prediction AQI, i.e. NO converting
to NO2 2.2.1.

Holistic Subnet

Our final subnet is designed to capture all the influence of each type of data combined.
The subnet has input from all the datasets which includes all the features in table 4.3.

5.2.3 Data Features
The data used for fitting this model comes from one single weather station, as previously
mentioned. The model has been validated on data from other weather stations as well as
the validation data from this single weather station 7.

21

Chapter 5. Prediction Model

Training data

The training data for this model came from the 80% first datapoints from the 5 datasets.
All the data is historical, except the weather forecast. The prediction AQI is split in two
where the training part is the values in the range from hours to look back to current hour
from the past. The target data is extracted from the Prediction AQI dataset in the range
from next hour to hours to predict. After the split, the training data is shuffled and fit into
the model.

Validation data

The validation data comes from the last 20% datapoints of the 5 datasets. It has the same
shape of the training data other than axis 0.

5.2.4 Activation functions
In this model, all of the activation functions in the network layers are a sigmoid function
2.2.3. Even thouugh the ReLU 2.2.3 is much more effective and faster than a sigmoid
activation(Wikipedia contributors, 2019), after a series of tests, the sigmoid function seems
to give the most accurate predictions. In the beginning, the ReLU model learns quickly,
but stagnates the learning after a short amount of epochs. The sigmoid improves more in
the long run.

5.2.5 Optimization Algorithm
The optimization algorithm for this model is an Adam optimizer (Jason Brownlee , 2017),
which is a highly effective and popular algorithm for optimizing the training of a model.

22

5.2 Architecture

Figure 5.2: A detailed view of the Model Architecture Ethereon

23

Chapter 5. Prediction Model

24

Chapter 6
Implementation

6.1 Environment
In this project, the work was made on my local computer. Then, the project was moved to
a server hosted by Telenor. In the end, the project was moved to a Google Cloud server as
the access to the Telenor server was no longer available.

6.1.1 Python
All of the code for retrieving the data, processing the data, defining the model and plot-
ting the result was made in Pyhon 3.5.3 (Rossum, 1995) on a Jupyter Notebook (Kluyver
et al., 2016) server. Python is an amazing and easy programming language syntax wise.
It is highly documented and has access to many good quality libraries, such as Numpy
(Oliphant, 2006–) and Pandas (McKinney, 2010) which is great for managing, analysing
and processing data.

The main reason for choosing Python as the programming language was the simplicity
of the language, the effectiveness and the large community behind it. There are always an
answer to a problem that was encountered. Also, the ease of use with large datasets and
the easy use of libraries was a huge factor in choosing the language.

Some of the libraries that was attractive was Keras (Chollet et al., 2015), with Tensor-
flow (Abadi et al., 2015) as backend, Numpy and Pandas. These libraries was essential for
this project to be finnished. Also, Python is a very nice language for retrieving data from
APIs on the internett, i.e. Yr for weather data and Meteorologisk Institutt air pollution
data.

6.1.2 Tensorflow
Tensorflow is a symbolic math library, with support for Python, and is most known for its
use in machine learning, i.e. making neural networks. It is developed and researched by
Google, by their research team in Google Brain.

25

Chapter 6. Implementation

Tensorflow has a broad community and there are lots of documentation on the internett.
However, it is known for beeing hard and complicated to use. A lot of valuable time and
efforts would be spent in learning Tensorflow good enough to make a great prediction
model.

6.1.3 Keras
In this project, Keras was used to define the Air Quality Prediction model. Keras is an
API built on top of Tensorflow, which is used in this project, and other machine learning
libraries. It makes defining models and training them, as well as giving predictions, easy.
With this, a lot of time was saved on using this high-level API. Making prototypes and
testing them was extremely easy and fast. Ideal for research.

6.2 Google Cloud Computing
The coding and execution of code was done on a Jupyter Notebook server on a Google
Cloud Virtual Machine instance. This made it possible to run at faster speeds as the local
home computer was too slow and loud to keep running for several days in a row.

Also the service was easy to use regarding customization and tweaking of the system
preferences. To upgrade CPU power and memory was as easy as adjusting some settings.
The service also recommended new settings when it noticed the VM instance was running
slow.

The use of Google Cloud Computing (Krishnan and Gonzalez, 2015) was possible due
to the free trial with included credits free to use. Unfortunately, GPU support was not
enabled for trial users. Therefore, it was not possible to utilize the power of GPU during
the computation and fitting of the air quality prediction models.

6.3 Code
In this project, a lot of code was written. Much of the code was for the retrieval and the
processing of the data used in this project. The rest of the code was for defining the model
and plotting the results. All the relevant code for retrieving and processing data, and fitting
the model with the data is in appendix C.

6.3.1 Retrieving the data
For retrieving the data, one API and one script I provided by Telenor was used. The script
was for retrieving historical weather data from Yr.no and the API was used for retrieving
historical air pollution data from Met.no in the python script II. The Yr script covered, in
general, all of Norway. The Met.no API covered many cities in Norway, but not the entire
country.

The weather data from Yr was retrieved by iterating through each date between a given
start date and a given end date and extracting the wanted weather data to a dataframe. The
dataframe was then stored in a file to prevent the need to repeat the process. Historical

26

6.3 Code

data will always be the same any time it is downloaded, so it only needs to be downloaded
once. The same process was done for the air pollution data, as also this was historical data.

6.3.2 Processing the data
The processing of data went smooth due to the ease of use of Numpy and Pandas. The data
processing is partially in the python script III in functions load_seq_data and clean_data,
and in the function fix_data in the python script V.

6.3.3 Defining model
The model is defined as the function dense_model in the python script IV. It takes training
input and training output, as well as the activation function, as input. With keras, it is very
easy to prototype and make models quickly.

27

Chapter 6. Implementation

28

Chapter 7
Results

7.1 Feature Importance

The feature importance was calculated by first estimating the original prediction error,
which is done by calculating the root mean square error 2.2.2. Then, for each feature of
the model the following calculations was performed:

1. Recreate the feature matrix with random values.

2. Estimate the prediction error of this random matrix.

3. Calculate the feature importance by dividing the this prediction error with the origi-
nal prediction error.

Figure 7.1: Feature importance

29

Chapter 7. Results

After fitting all of the models the most important features 7.1 was the historical AQI
data. This is somewhat expected as the dataset is an input for all the sub networks in the
prediction model.

7.2 Scoring
In this chapter, the label to be inspected is PM2.5, which reduces the amount of models to
be inspected to six. The results from the other AQIs is presented in the Appendix A.

We define the scoring metrics for the model in section 2.2.2. The accuracy metric AUC
and the error metric RMSE. The RMSE tells us how many units the prediction is from the
true value, and the accuracy AUC is the sum of performance on all the output features.

Now, all of the 24 models have been fitted with data from Tromsø. The results of the
validating the Tromsø data is presented in table 7.1 and plotted in figure 7.2 and 7.3.

PM2.5 1 2 3 4 5 6 ... 44 45 46 47 48
1 0.8190 ...
2 0.8191 0.7877 ...
3 0.8200 0.7914 0.7730 ...
12 0.8209 0.7985 0.7853 0.7778 0.7711 0.7695 ...
24 0.8134 0.7938 0.7825 0.7734 0.7675 0.7637 ...
48 0.7987 0.7730 0.7575 0.7492 0.7439 0.7419 ... 0.7289 0.7275 0.7284 0.7288 0.7241

Table 7.1: Accuracy for models 1h, 2h, 3h, 12h, 24h and 48h on Hansjordnesbukta data for AQI
PM2.5

The results with 82% accuracy are indeed very impressive. This is a strong indicator
that our model works as it was meant to. Also, look at how little the accuracy falls as the
hours to predict gets larger. This indicates that the model has learned well and that our
architecture is working well.

Figure 7.2: Accuracy and error on data from Hansjordnesbukta, Tromsø

30

7.2 Scoring

Figure 7.3: Scatter plot of selected models on data from Hansjordnesbukta, Tromsø for AQI PM2.5

To look at how general the model is a validation on the data from Oslo was made to
give an indication on how accurate it predict on data from other locations. We will use all
the PM2.5 AQI data from all of the weather stations in Oslo combined. It is interesting to
see how the model performs on this data. Keep in mind that this model is only trained on
weather data from Tromsø. We can see from A.2 that the

Using all of the AQI data from Oslo on the models to predict, the resulting accuracy
of the models are very close to each other A.2. From the plot A.3 and A.4 it is clear that
the spread is wide. However, that would be expected as the predictions become more and
more inaccurate when predicting further into the future.

0 1 2 3 4 ... 43 44 45 46 47
1h 0.785266 ...
2h 0.783809 0.716501 ...
3h 0.787370 0.720358 0.671145 ...
12h 0.748812 0.698694 0.668034 0.648348 0.637171 ...
24h 0.793599 0.752586 0.725421 0.706648 0.694303 ...
48h 0.790442 0.747041 0.718389 0.698438 0.683190 ... 0.622065 0.62631 0.626092 0.624261 0.624574

Table 7.2: Accuracy for models 1h, 2h, 3h, 12h, 24h and 48h on all PM2.5 data.

The longest models are almost as good, or sometimes better than the short models.
This is a nice result, in that there is only need for one model per AQI label. That is, one
model with 24 or 48 hours to predict, give just as good, or sometimes better predictions as
the short ones, and the long models output can be sliced to fit the shape of a desired output.

If there one day is need for e.g. a 1 to 24 hour prediction, or a 12 to 16 hour prediction,
all this can be achieved by slicing the output array. This is a very interesting result, with
regards to a possible future web platform project.

31

Chapter 7. Results

7.3 Comparison
With regard to the paper from Yi et al., this projects results is not comparable to the result
of their paper as this projects model is based on data from one weather station without the
influence of other weather stations. Also the results from the paper is based on data from
another location and situation than here in Norway.

The application of this model could be i.e. on the mobile weather stations in Trond-
heim that won’t need other weather stations to be able to give air pollution predictions.
Unfortunately, this project cannot be compared with the Beijing data predictions, as it was
not trained in that climate. The comparison would not be a correct or natural comparison.

32

Chapter 8
Discussion

8.1 Model

8.1.1 Model type

This project ended up with choosing a fully connected neural network. Initially, the idea
was to implement a recurrent neural network. However, this resulted in slow learning
and poor results. It was not ideal to use much time on training bad networks instead of
prototyping and testing quicker networks. This was a problem because of the limitations
of hardware at hand. If the project was built on an environment with a CUDA GPU, the
computation time would drastically decrease and more time to develop prototypes would
increase.

First, the idea of a Long Short Term Memory (LSTM) network came to life because of
the data used in this project was in the forma of a time series sequence. Unfortunately, it
was no success in prototyping and testing. The same goes for a GRU network. To save the
project some time and problem solving, a more familiar model type was used. Also, the
fully connected type showed more promising results in the testing phase of the project.

8.1.2 Model Structure

The structure of the model is not in a perfect state and the could always be made improve-
ments and further experimentation on the model structure. There could be more layers
in the subnets, or in the concatenation junction. Since the project got hands on a whole
lot more data this late in the project, there was little time to consider this data to be used
in training. Regardless, the amount of data now available does not match the size of the
model. On the other hand, the system the project is developed on, does not work ideally
with large models and many parameters.

One thing that would be interesting to look further into would be the use of recurrent
neural networks, in some or all of the sub networks. Now that all this data is available,
there is enough data to cover the amount of parameters it would have required. Ideally one

33

Chapter 8. Discussion

wants to have about half the number of parameters as one has datapoints. Also, the fact
that we now know that there is only need for 4 models, i.e. one model for each AQI where
hours to look back is equal to six or more and hours to predict is equal to 48.

Overall, the model is close to great. However, it could still be tweaked and adjusted
to get closer to perfection, not saying it is anywhere near perfection. Still, it does provide
good predictions.

8.1.3 Features

A thought throughout the project was regarding the features, and which to choose as pre-
diction AQIs. An idea would be to find a way to predict all AQIs, e.g. NOx or SO3, at
the same time to further reduce the unique models to fit, down to one single model, i.e.
one model able to predict any label based on six or more look back hours and 48 hours to
predict.

Other features considered was getting live and historical traffic data. This would pos-
sibly help the model in capturing the influence on the air quality, based on the amount of
traffic near a location at any time of day. This was attempted through Vegvesenet, but it
proved to be unreliable and low quality and non continous. It could be interesting to use
data from the ship traffic at harbours or public transport traffic.

One feature that was activelly looked after and pursued was data from events given a
time and position. E.g. if there was a marked downtown, one would think that the amount
of people at that place and time would increase, and therefore the traffic leading to the
place and time would increase. Also other special days or hollidays could be recorded and
used as an extra feature in the Time dataset.

8.1.4 Outputs

One thought of the project is whether it is necessary with this many models to predict
the future air quality, or maybe there is only need for one model taking any AQI as input
through an embedding and predicting up to 48 hours of air quality.

8.1.5 Limitations

An obvious limitation for the practical use of the model is the requirement of features.
The model needs many features to be able to give a prediction. This limits the amount of
weather stations the model will work on, for now, as it only works with four AQIs, no more
or less. This could be solved with an embedding solution or zero filled vectors instead of
a given AQI when that AQI is unavailable.

8.2 Work environment
The equipment was varying in reliability, power and accessibility. Therefore, I ended up
using google cloud computing developing the model and for training the data. Unfortu-
nately, i was unable to access any GPUs and only got to compute on some CPUs. Also,

34

8.3 Work distribution

movig the project from server to server costed the project some time, as internet connection
and data transfer were slow.

8.3 Work distribution
About 55pct of the project time was spent on processing and formatting the data. This was
a long project with a lot of trials and fails. Also, the equipment was not always on the
helpful side resulting in time being spent in fixing unrelevant errors.
Around 25pct of the time was spent on finding a model that gave promising results. A
lot of trial and error and experimentation was performed to find the model that seemed to
work well with the data at at hand. When the data also changed from time to time, the
model needed update too. Therefore, there was a symbiotic process in processing the data
and prototyping models.
10 pct of the time was spent on retrieving and merging the data from APIs and scripts. The
script i received from Telenor was not retrieving every feature that was needed, so some
time was needed to alter the script.
Finally, the last 10 pct was spent on writing this thesis and plotting data to present the
findings in this project.

35

Chapter 8. Discussion

36

Chapter 9
Conclusion

9.1 Experience
In this project, I have learned to conduct research and to explore the process of finding
my own answers to real life challenges. It has been a challenging, but interesting task
and I have learned a lot about machine learning, deep neural networks and naturally, air
pollution.

9.2 Future work

9.2.1 Features to include
In the future, I reckon that the model will be able to accept any AQI feature and also be
able to predict any AQI feature. Maybe there is an idea looking into spatial transformation,
capturing the influence from other weather stations. However, I like the fact that the current
model is not reliant on other weather stations to work.

9.2.2 Training data
The model should be trained on other than only Tromsø data. Now, with access to more
data from all over Norway, it would be wise to fit the model with data other than just
Tromsø. Also, more data is not bad and always welcome to a machine learning problem.

9.2.3 Web Platform
This model can be utilized on a web platform to give live air pollution forecast on the
active stations in Norway from 1 hour to 48 hours in the future, making it interactive
and open for integration with mobile weather stations for live updating of air quality data
and forecasting. The platform could have a map with a graphic overlay indicating the air
pollution level and have a slider to view the forecast by up to 48 hours.

37

Chapter 9. Conclusion

9.3 Bottom line
Finally, this project has resulted in a success. A model able to predict air pollution with
79 percent accuracy for the next hour and 62 percent accuracy in predicting air pollution
in 48 hours is quite impressive. If this project could eventually be used to make the world
a better place, I would have succeeded.

38

Bibliography

Jason Brownlee , 2017. Gentle introduction to the adam optimization algorithm for deep
learning.
URL https://machinelearningmastery.com/
adam-optimization-algorithm-for-deep-learning/

Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G. S., Davis,
A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M.,
Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R.,
Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I.,
Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P.,
Wattenberg, M., Wicke, M., Yu, Y., Zheng, X., 2015. TensorFlow: Large-scale machine
learning on heterogeneous systems. Software available from tensorflow.org.
URL http://tensorflow.org/

Bhatia, R., 2018. When not to use neural networks.
URL https://medium.com/datadriveninvestor/
when-not-to-use-neural-networks-89fb5062242

Chollet, F., et al., 2015. Keras. https://keras.io.

Dormehl, L., 2019. What is an artificial neural network?
URL https://www.digitaltrends.com/cool-tech/
what-is-an-artificial-neural-network/

Ethereon, 2018. Netscope.
URL https://github.com/ethereon/netscope

Google, 2019. Hansjordnesbukta - google map location.
URL https://www.google.no/maps/place/Hansjordnesbukta/
@69.6566867,18.952272,14z/data=!3m1!4b1!4m5!3m4!
1s0x45c4c4512d0f8f1f:0xa9f04460ae7d3ec0!8m2!3d69.6566879!
4d18.9697815

39

https://machinelearningmastery.com/adam-optimization-algorithm-for-deep-learning/
https://machinelearningmastery.com/adam-optimization-algorithm-for-deep-learning/
http://tensorflow.org/
https://medium.com/datadriveninvestor/when-not-to-use-neural-networks-89fb5062242
https://medium.com/datadriveninvestor/when-not-to-use-neural-networks-89fb5062242
https://keras.io
https://www.digitaltrends.com/cool-tech/what-is-an-artificial-neural-network/
https://www.digitaltrends.com/cool-tech/what-is-an-artificial-neural-network/
https://github.com/ethereon/netscope
https://www.google.no/maps/place/Hansjordnesbukta/@69.6566867,18.952272,14z/data=!3m1!4b1!4m5!3m4!1s0x45c4c4512d0f8f1f:0xa9f04460ae7d3ec0!8m2!3d69.6566879!4d18.9697815
https://www.google.no/maps/place/Hansjordnesbukta/@69.6566867,18.952272,14z/data=!3m1!4b1!4m5!3m4!1s0x45c4c4512d0f8f1f:0xa9f04460ae7d3ec0!8m2!3d69.6566879!4d18.9697815
https://www.google.no/maps/place/Hansjordnesbukta/@69.6566867,18.952272,14z/data=!3m1!4b1!4m5!3m4!1s0x45c4c4512d0f8f1f:0xa9f04460ae7d3ec0!8m2!3d69.6566879!4d18.9697815
https://www.google.no/maps/place/Hansjordnesbukta/@69.6566867,18.952272,14z/data=!3m1!4b1!4m5!3m4!1s0x45c4c4512d0f8f1f:0xa9f04460ae7d3ec0!8m2!3d69.6566879!4d18.9697815

I, Andrew pmk, 2007. 16 point compass rose. Created 16 June 2007.
URL https://en.wikipedia.org/wiki/Points_of_the_compass#
/media/File:Compass_Rose_English_North.svg

Kluyver, T., Ragan-Kelley, B., Pérez, F., Granger, B., Bussonnier, M., Frederic, J., Kelley,
K., Hamrick, J., Grout, J., Corlay, S., Ivanov, P., Avila, D., Abdalla, S., Willing, C.,
2016. Jupyter notebooks – a publishing format for reproducible computational work-
flows.

Krishnan, S. T., Gonzalez, J. U., 2015. Building your next big thing with google cloud
platform: A guide for developers and enterprise architects.

Luftkvalitet i Norge, 2019a. Aqi forecast.
URL https://luftkvalitet.miljostatus.no/

Luftkvalitet i Norge, 2019b. Aqi forecast explained.
URL https://luftkvalitet.miljostatus.no/artikkel/581

Luftkvalitet i Norge, 2019c. Lokal luftforurensning.
URL https://luftkvalitet.miljostatus.no/artikkel/170

McKinney, W., 2010. Data structures for statistical computing in python.

met.no, 2019. The norwegian meteorological institute.
URL http://met.no/

NILU, 2019a. Nilu – api.
URL https://api.nilu.no/docs/

NILU, 2019b. Nilu – norwegian institute for air research.
URL https://www.nilu.no/en/about-nilu/

Oliphant, T., 2006–. NumPy: A guide to NumPy. USA: Trelgol Publishing, [Online; ac-
cessed <today>].
URL http://www.numpy.org/

Rossum, G., 1995. Python reference manual.

Sebastiano, 2017. Normal distribution graph. Created 9 Feb 2017.
URL https://tex.stackexchange.com/a/352969

Stephanie, 2016. RMSE online.
URL https://www.statisticshowto.datasciencecentral.com/
rmse/

Vegvesenet, 2019. Api vegvesenet.
URL https://www.vegvesen.no/nvdb/apidokumentasjon/#/

Wikipedia contributors, 2019. Rectifier (neural networks) — Wikipedia, the free encyclo-
pedia. [Online; accessed 10 May 2019].
URL https://en.wikipedia.org/wiki/Rectifier_(neural_
networks)

40

https://en.wikipedia.org/wiki/Points_of_the_compass#/media/File:Compass_Rose_English_North.svg
https://en.wikipedia.org/wiki/Points_of_the_compass#/media/File:Compass_Rose_English_North.svg
https://luftkvalitet.miljostatus.no/
https://luftkvalitet.miljostatus.no/artikkel/581
https://luftkvalitet.miljostatus.no/artikkel/170
http://met.no/
https://api.nilu.no/docs/
https://www.nilu.no/en/about-nilu/
http://www.numpy.org/
https://tex.stackexchange.com/a/352969
https://www.statisticshowto.datasciencecentral.com/rmse/
https://www.statisticshowto.datasciencecentral.com/rmse/
https://www.vegvesen.no/nvdb/apidokumentasjon/#/
https://en.wikipedia.org/wiki/Rectifier_(neural_networks)
https://en.wikipedia.org/wiki/Rectifier_(neural_networks)

Yi, X., Zhang, J., Wang, Z., Li, T., Zheng, Y., 2018. Deep distributed fusion network for
air quality prediction.
URL http://doi.acm.org/10.1145/3219819.3219822

Yr, 2019a. Facts about yr.
URL https://hjelp.yr.no/hc/en-us/articles/
206557169-Facts-about-Yr

Yr, 2019b. Free weather data service from yr.
URL https://hjelp.yr.no/hc/en-us/articles/
360001940793-Free-weather-data-service-from-Yr

41

http://doi.acm.org/10.1145/3219819.3219822
https://hjelp.yr.no/hc/en-us/articles/206557169-Facts-about-Yr
https://hjelp.yr.no/hc/en-us/articles/206557169-Facts-about-Yr
https://hjelp.yr.no/hc/en-us/articles/360001940793-Free-weather-data-service-from-Yr
https://hjelp.yr.no/hc/en-us/articles/360001940793-Free-weather-data-service-from-Yr

42

Appendix A
Graph Appendix

Figure A.1: Plot of selected models on data from Hansjordnesbukta, Tromsø for AQI PM2.5

43

Figure A.2: Metrics of the models on all data for AQI PM2.5

44

Figure A.3: Plots and scatter plot of the model 48h on all data for AQI PM2.5

45

Figure A.4: Plot of model 48h for AQI PM2.5

Figure A.5: RMSE and ACC of model 48h for AQI PM2.5

46

Figure A.6: RMSE and ACC of model 48h for AQI PM10

Figure A.7: RMSE and ACC of model 48h for AQI NO

47

Figure A.8: RMSE and ACC of model 48h for AQI NO2

48

Appendix B
Tables

49

PM2.5 1 2 3 12 24 48
1 0.7852662256591139 0.7838088807360142 0.7873698396019656 0.7488123549182938 0.7935994686827478 0.7904420153889806
2 0.7165006452307204 0.7203577647209534 0.6986944915664517 0.7525857734063601 0.7470413519228847
3 0.6711446273791519 0.6680335281623846 0.7254207591669948 0.7183887003330798
4 0.6483475206649489 0.7066477487551577 0.6984382874371384
5 0.6371707197128536 0.6943031031732718 0.6831900308844505
6 0.6289896041210288 0.6852288819144043 0.67334440045215
7 0.6190720176438496 0.6755759159414143 0.6658649989746805
8 0.6113069802333688 0.6679591541084291 0.6582917202747602
9 0.6039928750299212 0.6625778055353179 0.65492740947493
10 0.5970997468619954 0.6583590461757121 0.6505266226161399
11 0.5914412889024194 0.6550711913914917 0.6487493847987403
12 0.5918401125983286 0.6520915022790402 0.6483473545369682
13 0.6495346658801513 0.6472656278863094
14 0.6511920842034926 0.6476898552347681
15 0.6486050873588498 0.6484561798289177
16 0.6521554618657721 0.6491206687748331
17 0.6538595200909099 0.6486779492417991
18 0.6541987882480212 0.6511018575837453
19 0.6557309966114162 0.6500388920676483
20 0.6555558971981467 0.6521662329346967
21 0.6573772497567643 0.6490754694238585
22 0.6587667364900126 0.6486990417780046
23 0.6575558796737978 0.6472194159478046
24 0.6579982209302186 0.6444884634369835
25 0.6440918387490142
26 0.6389242187906885
27 0.6352198360645236
28 0.630345898916301
29 0.6269196502724153
30 0.6244438738090706
31 0.6218170664420171
32 0.6228336403292098
33 0.6215394112799564
34 0.6187048912226006
35 0.6182121661230691
36 0.6185085435526101
37 0.6208373257294613
38 0.6200186109931398
39 0.6219010784877783
40 0.6227943840423942
41 0.6209250950037233
42 0.6205363815647822
43 0.6211140344495647
44 0.6220653904512081
45 0.626310101632409
46 0.6260918954025176
47 0.6242614863210969
48 0.6245740515613883

Table B.1: All Oslo PM2.5 AQI model accuracy

50

PM10 1 2 3 12 24 48
1 0.7492129234940805 0.7454189363710371 0.7494945843630636 0.7514415505943493 0.7570683646295238 0.7525606632284199
2 0.664854049415365 0.6728830171912104 0.695225599008817 0.7033498641461469 0.7037146760434785
3 0.6198267516801582 0.6603544784569404 0.667113729770852 0.6740583298788052
4 0.6325782277993177 0.6436864086158853 0.6524090439690259
5 0.6167464110955715 0.6301067825895534 0.6370441629677509
6 0.6051742714874735 0.6195325658912434 0.6261851848895845
7 0.5944500099172503 0.6113251085268259 0.6176660842388311
8 0.587922082012798 0.602924309215793 0.609992217273795
9 0.5853511874520083 0.5976440378224352 0.6052583611108836
10 0.581488692574669 0.5956464085919788 0.6031444960079464
11 0.5785437795579249 0.5934855207005623 0.6017316556340357
12 0.5791466059869779 0.5932654262475285 0.6015065156462112
13 0.5924839653900323 0.6004886130810483
14 0.591127029361113 0.6001473480019183
15 0.5941098176482735 0.5992070720319793
16 0.5986679505501122 0.5984971367987324
17 0.6034799681605812 0.6007191816834088
18 0.6070790367048369 0.6015208672266574
19 0.6092094027205561 0.6021469033228417
20 0.6117918447558524 0.6028989211120654
21 0.6112108703981726 0.6020458397205571
22 0.6105519770037702 0.6012008572269341
23 0.6087334053751314 0.6004138613662767
24 0.6040686917360423 0.599193959460828
25 0.5976278859474617
26 0.5932800379315342
27 0.5886561134041957
28 0.5835680499654194
29 0.5802794362089323
30 0.5803166203748154
31 0.5798019560596308
32 0.5803852146171625
33 0.5811570711174908
34 0.5826587698094878
35 0.5848774813102192
36 0.5865411660360871
37 0.5871307280167969
38 0.5888951016103079
39 0.5887207182075243
40 0.5890169032232191
41 0.5898543980573442
42 0.5910394788452269
43 0.5911863042219268
44 0.5916691588588212
45 0.591112464653628
46 0.5902133164792522
47 0.588920148242011
48 0.5881138616973255

Table B.2: All Oslo PM10 AQI model accuracy

51

NO2 1 2 3 12 24 48
1 0.7587670002540479 0.7467929709066725 0.749319870766693 0.7366080685999072 0.6800550136039588 0.6773031587861558
2 0.6624845943342079 0.6630229454707328 0.6866341121623246 0.6092433022160848 0.6142712153800093
3 0.6043230472191736 0.6529262359068784 0.5667238758976978 0.5745651095471295
4 0.6357683331080868 0.5394825680285258 0.5476575422760909
5 0.626644590068363 0.5185039037657637 0.5271698106051421
6 0.6185274728714366 0.5109634727577654 0.5094870866510839
7 0.611331430855584 0.5033375444941858 0.49556642713289045
8 0.6048350280956174 0.49842748243393786 0.4854184002127325
9 0.6009565860356499 0.4934106209970942 0.48242316837707955
10 0.5934813412950578 0.49514507153036813 0.47779831788641747
11 0.5930079478390728 0.493964587466862 0.4754204879301307
12 0.5895923920322093 0.49323964301289824 0.4761847520165784
13 0.493724471052042 0.4759336995050769
14 0.4930090729314005 0.47467536216790207
15 0.49095001955511175 0.4730617546923649
16 0.4908538143329245 0.4726742683180968
17 0.49216964470710667 0.47300254273019904
18 0.49271814740176023 0.4757000209440726
19 0.49534388133178997 0.47443490258863485
20 0.4943871307057127 0.4751974813086819
21 0.49433726166824266 0.47546105163642916
22 0.48939415081952453 0.4767173078151261
23 0.48585698237054464 0.4746191735411214
24 0.48529999308659766 0.47230739247923403
25 0.4676698137713542
26 0.459284721656699
27 0.452955904442505
28 0.4500156336372202
29 0.44978380018721575
30 0.4485145631494417
31 0.44793289441547113
32 0.4457945441887148
33 0.4455179352199583
34 0.4445550779107217
35 0.44599693720314293
36 0.4453223222394693
37 0.44577464501759667
38 0.4463744078800943
39 0.4481594472652174
40 0.4500481869590708
41 0.4538808716578806
42 0.4555028506380844
43 0.45949456508403586
44 0.4613754451056007
45 0.4635514551021763
46 0.4652853165463904
47 0.4677990491905415
48 0.46980169141398376

Table B.3: All Oslo NO2 AQI model accuracy

52

NO 1 2 3 12 24 48
1 0.5757082532341252 0.5707539967094992 0.5692640036119818 0.5397060601727628 0.4973127378575639 0.47919866046167137
2 0.4212778160613657 0.435142871216483 0.4388195676069482 0.3995044403369483 0.3886183687222218
3 0.34354375350719546 0.3838190432168517 0.3361072003142358 0.3291004281602332
4 0.3470034170921559 0.2997558955465489 0.2930604229809177
5 0.32146837837802034 0.2738515118256708 0.2740444642644301
6 0.3063169112247873 0.26139111118494385 0.2622013318223465
7 0.2976597892400822 0.25608534919561954 0.2518829312526356
8 0.3015255602752186 0.2522637150248588 0.24896131088923745
9 0.30140046600753534 0.253190989852602 0.24436111467800448
10 0.2847823271524146 0.24996937693025856 0.23553962245515092
11 0.2772387188795915 0.2479597187419671 0.23346510690069489
12 0.2763504500890833 0.24445415040547924 0.22972911738397916
13 0.24503437730128308 0.22574850552489112
14 0.24427456153041982 0.22509321893904688
15 0.2447313032545133 0.2241211269041452
16 0.2440808379074706 0.21804969776015182
17 0.24682028680873558 0.21728158978844692
18 0.24660435838804262 0.2174113298443826
19 0.24584014849847036 0.2155756342632894
20 0.24441366231852213 0.21573842711896252
21 0.2391141302274985 0.2161572994450347
22 0.24011395554219828 0.21173621481619265
23 0.2401621962780447 0.20920933995269508
24 0.23319822523704203 0.20566616430567553
25 0.19511832213089364
26 0.19156324324135776
27 0.18982003650782298
28 0.1862049318217488
29 0.18634829204459524
30 0.18875575004538858
31 0.18672100578674256
32 0.19435606914011072
33 0.19466192213537614
34 0.19823825998111477
35 0.19791451852130504
36 0.19923586259141968
37 0.19653430369767932
38 0.20001440643988067
39 0.20048807846121974
40 0.20270561922829655
41 0.20210485844494142
42 0.19897308645276146
43 0.20074750867639712
44 0.2028178978434504
45 0.20456922531593846
46 0.20760295925602257
47 0.2074812045555421
48 0.21059965212378062

Table B.4: All Oslo NO AQI model accuracy

53

PM2.5 1 2 3 12 24 48
1 2.5139530117943987 2.478650699966351 2.444116494346637 2.489361115390605 2.1984751522631685 2.1362513405229118
2 3.187735338639318 3.1272140389389884 2.94617414631982 2.6128908047871224 2.5578981911622702
3 3.6325104086331454 3.224485876890353 2.877964474534852 2.8217042553376848
4 3.4092155081354885 3.0530524526548186 3.0038585514709424
5 3.5137433310078774 3.167625540556119 3.148591031932766
6 3.6029015280875565 3.2529369120827036 3.2363102406533377
7 3.693437194173146 3.341157770938495 3.3049059575336033
8 3.767633222528121 3.4197823791262376 3.3691588376338877
9 3.8388283129123573 3.480286609234758 3.4098735049398026
10 3.9014635575137144 3.5284959657212434 3.4557745808587805
11 3.949143836957768 3.565121503323458 3.4777731859008165
12 3.9600864172372505 3.6044085408742013 3.4930894987454573
13 3.647314539058517 3.5049822183452544
14 3.6351463124785344 3.5005840878358843
15 3.6733202578967448 3.4912101907639808
16 3.660387780745519 3.4840244079113294
17 3.6378050117347516 3.4810005201459897
18 3.6246671506289494 3.451956076208123
19 3.6206656338614125 3.452854676166612
20 3.622154804467665 3.4357445803187816
21 3.61329367356708 3.463572810182482
22 3.628407692932544 3.473508195034346
23 3.6589636874374047 3.492935618111791
24 3.703936238128872 3.533349359568214
25 3.5592920606999288
26 3.6183101935081585
27 3.6522763308601025
28 3.711204797861913
29 3.7439200644271455
30 3.772536319829894
31 3.8041982321144756
32 3.807965756675359
33 3.8301740564750495
34 3.857854501660689
35 3.8699064283519817
36 3.8777562303457045
37 3.8664656262202715
38 3.8838971555709088
39 3.870827228972408
40 3.8720406323207417
41 3.881486479944837
42 3.896652068519922
43 3.8977154103264207
44 3.8998514385075174
45 3.874142479029236
46 3.8908626038757554
47 3.920731009718751
48 3.959310990991841

Table B.5: All Oslo PM2.5 AQI model rmse

54

PM10 1 2 3 12 24 48
1 6.191650423665176 6.049952736569319 5.953690405280387 4.618357375227446 5.488048021134793 5.198090777056822
2 7.9475560212414775 7.640527263645733 5.628445251758559 6.630603582613667 6.206704851187601
3 8.866756956449477 6.218484844216862 7.381635156443408 6.8073288056184245
4 6.710183638440727 7.890344367425959 7.2314212592325315
5 6.94844808030564 8.163849312297566 7.562350148129964
6 7.1261378592184315 8.41703987184162 7.795065197384583
7 7.309505443454492 8.600164481259482 7.990127865192293
8 7.385519104469912 8.80273832212562 8.164800862188994
9 7.431329851754262 8.942925808540968 8.269712650368891
10 7.495091348722321 8.999979612600509 8.3289445758874
11 7.546339272622614 9.047136551718813 8.363117716311095
12 7.616775874865285 9.072540474873236 8.37514079885369
13 9.092218260601662 8.401088926775897
14 9.11332485556976 8.420830158194239
15 9.032434703661743 8.450132584643265
16 8.923660534751907 8.462886807824844
17 8.767098434081658 8.359163751376828
18 8.67730275256859 8.327782289413829
19 8.616271890113016 8.29060682438621
20 8.560730121173762 8.234928731346917
21 8.577199708767017 8.23583944312438
22 8.602402693739903 8.258152908473367
23 8.67642499925393 8.255809879554711
24 8.895469180271562 8.323559485937242
25 8.381792895333291
26 8.521530135008176
27 8.655475019388042
28 8.786032294389868
29 8.866660526895602
30 8.887754955758721
31 8.898989540720649
32 8.918723217380727
33 8.914259018054114
34 8.901651019030048
35 8.8532760382837
36 8.83581096667907
37 8.842847691385787
38 8.814532254799916
39 8.839394928720234
40 8.80410684438403
41 8.762213169010648
42 8.70976955342013
43 8.668055551587774
44 8.66430575623849
45 8.685007577740034
46 8.72437388870263
47 8.816605811055842
48 8.957245113572842

Table B.6: All Oslo PM10 AQI model rmse

55

NO2 1 2 3 12 24 48
1 13.191815739770192 13.246491156783152 13.42976880027114 11.1919826370782 16.275192640316085 15.753082692454923
2 17.208388414744718 17.30783762250318 13.171541478679934 19.67188913373553 18.69223045715057
3 19.781402214529685 14.396478139458877 21.645981444224535 20.42508804881987
4 14.971931454829797 22.886205720452455 21.564879718642572
5 15.243281418945466 23.87357117184529 22.355886218538625
6 15.511510146860065 24.201958915717306 23.0639069775623
7 15.722006501619775 24.50118466577419 23.673833982391542
8 15.882635058796376 24.769062918931592 24.190600248182488
9 15.967890858177816 25.06513390620669 24.335266467230326
10 16.241189961780794 25.04546137976557 24.446683822044864
11 16.282698751725693 25.152362012359884 24.52142438360912
12 16.467554657523475 25.234748968150512 24.468084531068243
13 25.21835872725522 24.46789831351671
14 25.329365173242763 24.490455903998257
15 25.448822515745615 24.55311207174214
16 25.38754574006256 24.540035443479837
17 25.244256005102397 24.347124933468105
18 25.109297327436902 24.16665954830203
19 24.815713189227687 24.196218432309074
20 24.826492415675865 24.083536153013938
21 24.721977700002352 24.057368358459062
22 24.870625452346324 24.030675221828236
23 25.012085781066563 24.113535278562722
24 25.161966365565732 24.253372618173685
25 24.482414211958062
26 24.862192050168893
27 25.178047253318784
28 25.42862123726995
29 25.507949771002252
30 25.62935665500577
31 25.74174924855552
32 25.953108993093853
33 25.967776671746385
34 25.96124940597461
35 25.919655449940727
36 25.925441979538768
37 25.930103474649254
38 25.915914485311617
39 25.842608298484404
40 25.754431556847617
41 25.55537439414575
42 25.467880837066986
43 25.334319922896782
44 25.22071307845378
45 25.10458258924333
46 25.03179597988543
47 24.990800034556962
48 25.088263577279633

Table B.7: All Oslo NO2 AQI model rmse

56

NO 1 2 3 12 24 48
1 20.655393905192536 19.298727338428332 18.99347905594914 13.085777202603268 22.152182972970085 22.543671273982937
2 25.392032051135786 24.236747827373247 15.46817094986018 25.66396737354039 25.063658653475763
3 28.386974170091765 16.677873329391495 28.034878337054497 26.657372913339273
4 17.31866268049552 29.364754134089537 27.62497023415702
5 17.65359525480392 30.385036876846993 28.42896233861056
6 17.781873435600254 31.21765546808076 29.00538881962254
7 17.859928626751337 32.049166165022235 29.47263106155742
8 17.692182514236848 32.576581977978115 29.731042363350326
9 17.658177581938883 32.91334567429618 30.005710248988674
10 17.88685947476869 32.93523207971006 30.076161500797884
11 18.10561018328713 32.916468465228625 30.2090658222665
12 18.683636371443463 33.06311575158279 30.295566710083172
13 32.97659988017982 30.392783141717
14 33.193014582060925 30.313867790516774
15 33.025888721339584 30.269328207697065
16 32.87164764642953 30.187013765691567
17 32.68410725895447 29.758883635252644
18 32.4049948918254 29.422052423397147
19 32.07076369824646 28.993155771129697
20 31.983622862503474 28.70803906575781
21 31.988194923650035 28.568626336144472
22 31.988172524682994 28.59397212073471
23 32.41829753033004 28.833410307844584
24 33.572855095976 29.1070158040041
25 29.24800076223714
26 29.414890305029523
27 29.90131051197158
28 30.260168546541326
29 30.529969912457222
30 30.87213818555672
31 31.256788992842736
32 31.521720109885653
33 31.6240630317442
34 31.967900473005145
35 32.207366220044534
36 32.29653351482978
37 32.26654777858492
38 32.34556607358811
39 32.3465802200042
40 32.18169118345302
41 31.912369075523205
42 31.541604673794616
43 31.562650558393223
44 31.456682698238705
45 31.44584503865449
46 31.646202075131065
47 32.20910855680164
48 33.18311516330645

Table B.8: All Oslo NO AQI model rmse

57

58

Appendix C
Code Appendix

I Weather data script

1 #! /usr /bin /env python
2
3 # weather_data.py
4
5 from __future__ import absolute_import
6 from __future__ import division
7 from __future__ import print_function
8
9 import pandas as pd

10 from pandas import DataFrame
11 import itertools
12 from six .moves import urllib
13
14 import datetime
15 import re
16 import numpy as np
17 import json
18
19 URL_FORMAT = ’https://www.yr.no/place/{location}/almanakk.html?dato={date}’
20
21 REGEXES = dict(
22 time = re .compile(r’<th scope="row">.∗(.∗)</ strong></th>’) ,
23 temperature = re .compile(r’<td class ="temperature .∗">(.∗) ∗C</td>’) ,
24 rain = re .compile(r’<td >(.∗) mm</td>’),
25 humidity = re .compile(r’<td >(.∗) %</td>’),
26 wind = re .compile(r’<img src=".∗" height =".∗" width=".∗" alt ="(.∗) " class ="

wind".∗/>’)

59

27)
28
29 def format_string (string) :
30 return str (string) . replace (’ae’ , ’%C3%A6’).replace(’oe’,’%C3%B8’).replace(’

aa’,’%C3%A5’)
31
32 def get_url (location , date) :
33 return URL_FORMAT.format(location=location, date=date)
34
35 def get_datetime (date) :
36 return datetime . strptime (date , ’%Y−%m−%dT%H:%M’)
37
38 def get_measurements(date , lines) :
39 messages = []
40 message = None
41
42 active = False
43 for line in lines :
44 line = line .decode()
45 line = line . strip ()
46
47 time_match = REGEXES[’time’].search(line)
48 if time_match is not None:
49 message = dict ()
50
51 when = get_datetime (’{date}T{time}’.format(date=date , time=

time_match.group(1)))
52 message[’timestamp’] = when. strftime (’%d.%m.%Y %T’)
53 message[’temperature ’]=[]
54 continue
55
56 temperature_match = REGEXES[’temperature’].search(line)
57 if message is not None and temperature_match is not None:
58 message[’temperature ’]. append(float (temperature_match.group(1)))
59 continue
60
61 rain_match = REGEXES[’rain’].search(line)
62 if message is not None and rain_match is not None:
63 message[’ precipitation ’] = float (rain_match.group(1))
64 continue
65
66 wind_match = REGEXES[’wind’].search(line)
67 if message is not None and wind_match is not None:
68 st = wind_match.group(1). split (’ ’)
69 if (len(st)>4) :

60

70 message[’wind’] = st [−4]
71 message[’wind_from’] = st [−1]
72 continue
73
74 humidity_match = REGEXES[’humidity’].search(line)
75 if message is not None and humidity_match is not None:
76 message[’humidity’] = int (humidity_match.group(1))
77 message[’temp_max’] = None
78 message[’temp_min’] = None
79 if len(message[’temperature ’]) > 2:
80 message[’temp_max’] = message[’temperature’][1]
81 message[’temp_min’] = message[’temperature ’][2]
82 message[’temperature ’] = message[’temperature ’][0]
83
84 messages.append(message)
85 message = None
86 continue
87
88 return messages
89
90 def load_weather_data(date_from, date_to , location =’Norge/Oslo/Oslo/Oslo’) :
91 loc = format_string (location)
92 date_from_d = datetime . strptime (date_from, ’%Y−%m−%d’)
93 date_to_d = datetime . strptime (date_to , ’%Y−%m−%d’)
94 date_range = pd.date_range(date_from_d, date_to_d)
95
96 data = []
97 for i , d in enumerate(date_range):
98 date = d. strftime (’%Y−%m−%d’)
99 with urllib . request . urlopen(get_url (location =loc , date=date)) as url :

100 lines = url . readlines ()
101 data .append(get_measurements(date, lines))
102 return data

II AQI script

1 #! /usr /bin /env python
2
3 # AQI_data.py
4
5 from urllib . request import urlopen
6 import pandas as pd
7 import numpy as np
8 from datetime import datetime , timedelta

61

9
10 def load_aqi (lat , lon , date , radius =3.0) :
11 date_string = date . strftime ("%Y−%m−%d")
12 aqi_url = ’ https :// api . nilu .no/obs/ historical

/{}%2000:00/{}%2023:59/{}/{}/{}’.format(date_string , date_string , lat ,
lon , radius)

13 return df_url (aqi_url)
14
15 def df_url (url) :
16 file = urlopen(url)
17 data = file . read ()
18 file . close ()
19 return pd. read_json (data)
20
21 def get_aqi_area (datefrom, dateto , area=’oslo ’) :
22 stations_url = ’ https :// api . nilu .no/lookup/ stations ?area={}’.format(area)
23 area_dict = {}
24
25 df = df_url (stations_url) [[’ id ’ , ’ station ’ , ’components’,’ firstMeasurment ’ , ’

lastMeasurment’ , ’ latitude ’ , ’ longitude ’]]
26 for w in df . id :
27 d = df[df . id == w]
28 lat = d. latitude . values [0]
29 lon = d. longitude . values [0]
30
31 date_range = pd.date_range(datefrom, dateto)
32 if lat != 0 and lon != 0:
33 for i , d in enumerate(date_range):
34
35 aqi_df = load_aqi (lat , lon ,d)
36 for index , row in aqi_df . iterrows () :
37 if row. station not in list (area_dict .keys()) :
38 area_dict [row. station] = dict ()
39
40 if ’ lat ’ not in list (area_dict [row. station]. keys()) :
41 area_dict [row. station][’ lat ’] = row. latitude
42
43 if ’ lon’ not in list (area_dict [row. station]. keys()) :
44 area_dict [row. station][’ lon’] = row. longitude
45
46
47 if ’ aqi ’ not in list (area_dict [row. station]. keys()) :
48 area_dict [row. station][’ aqi ’] = pd.DataFrame(columns=[

row[’component’]])
49

62

50 for val in row[’values ’]:
51 if row.component not in area_dict [row. station][’ aqi ’].

columns:
52 area_dict [row. station][’ aqi ’][row.component] = np.

NaN
53 t_str = val [’toTime’]
54 k = t_str . rfind (" :")
55 t_str = t_str [: k] + t_str [k+1:]
56 ix = datetime . strptime (t_str , "%Y−%d−%mT%H:%M

:%S%z")
57 if val [’ qualityControlled ’]:
58 area_dict [row. station][’ aqi ’]. at [ix , row.component

]= float (val [’value’])
59
60 return area_dict

III Data script

1 #!/ usr /bin /env python
2
3 # data .py
4
5
6 import pandas as pd
7 import numpy as np
8 import sys
9 import os

10 import pathlib
11 from math import sqrt
12 import math
13 from numpy import concatenate
14 from matplotlib import pyplot
15 from pandas import read_csv
16 from pandas import DataFrame
17 from pandas import concat
18 from sklearn . preprocessing import LabelEncoder, StandardScaler
19 from sklearn . metrics import mean_squared_error
20 from keras .models import Sequential
21 from keras . layers import Dense
22 from keras . layers import LSTM
23 from keras . layers import Input
24
25 import sys
26 from datetime import datetime , timedelta

63

27
28
29 def load_seq_data (station , area , predict_label , hours_to_predict ,

hours_to_lookback,dataframe) :
30
31 yr_labels = ["humidity" , " precipitation " , "temp_max" ,"temp_min" ,"

temperature" , "wind","wind_from"]
32 time_label = [’month’, ’day’ , ’hour’]
33 feature_labels = [c for c in dataframe if c in [’PM10’, ’PM2.5’, ’NO’, ’

NO2’]]
34
35 hist_weather_label = [’humidity’ , ’ precipitation ’ , ’ temperature ’ , ’wind’, ’

wind_from’]
36 weather_prediction_label = [’ precipitation ’ , ’ temperature ’ , ’wind’, ’

wind_from’]
37
38 AQI_dict = {}
39 # get data for all AQI’s
40 for l in feature_labels :
41 AQI = l
42 other_pollutants = feature_labels [: feature_labels . index(AQI)] +

feature_labels [feature_labels . index(AQI)+1:]
43 AQI_dict[AQI]= other_pollutants
44
45 df = clean_data (dataframe=dataframe, feature_label = predict_label , dropnan=

False)
46
47 for col in df :
48 if col != ’wind_from’:
49 df[col] = df[col]. astype (float)
50
51 aqi = series_to_sequence (df [[predict_label]], n_out= hours_to_predict , n_in=

hours_to_lookback, dropnan=False) . values
52 aqi_X = aqi [:,: hours_to_lookback]. reshape(−1, hours_to_lookback ,1) [

hours_to_lookback :]
53 aqi_y = aqi [:, hours_to_lookback :][hours_to_lookback :]
54
55 other_pollutants = series_to_sequence (df[AQI_dict[predict_label]], n_out=0,

n_in=hours_to_lookback, dropnan=False) . values [hours_to_lookback :].
reshape(−1, hours_to_lookback, len(AQI_dict[predict_label]))

56 time = series_to_sequence (df[time_label], n_out=0, n_in=hours_to_lookback,
dropnan=False) . values [hours_to_lookback :]. reshape(−1, hours_to_lookback
, len(time_label))

57

64

58 meteorology = series_to_sequence (df[hist_weather_label], n_out=0, n_in=
hours_to_lookback, dropnan=False) . values [hours_to_lookback :]. reshape
(−1, hours_to_lookback, len(hist_weather_label))

59 weatherforecast = series_to_sequence (df[weather_prediction_label], n_out=
hours_to_predict , n_in=0, dropnan=False) . values [hours_to_lookback :].
reshape(−1, hours_to_predict , len(weather_prediction_label))

60
61 del_rows = null_rows ([other_pollutants ,aqi_X,aqi_y , time,meteorology,

weatherforecast])
62 del_mask = np.ones(len(aqi_X), dtype=bool)
63 del_mask[del_rows] = False
64
65 # Remove rows with NaN
66 other_pollutants = other_pollutants [del_mask]
67 aqi_X = aqi_X[del_mask]
68 time = time[del_mask]
69 meteorology = meteorology[del_mask]
70 weatherforecast = weatherforecast [del_mask]
71 aqi_y = aqi_y[del_mask]
72
73 # Transform the weather direction
74 w_shape=weatherforecast [:,:,−1:]. shape
75 m_shape=meteorology [:,:,−1:]. shape
76
77 encoder = LabelEncoder()
78 encoder = encoder. fit ([’ east ’ ,
79 ’ east−northeast’ ,
80 ’ east−southeast’ ,
81 ’ north ’ ,
82 ’ north−northeast’ ,
83 ’ north−northwest’,
84 ’ northeast ’ ,
85 ’northwest ’ ,
86 ’south’ ,
87 ’south−southeast’ ,
88 ’south−southwest’,
89 ’ southeast ’ ,
90 ’southwest’ ,
91 ’west’ ,
92 ’west−northwest’,
93 ’west−southwest’])
94 weatherforecast [:,:,−1:] = encoder. transform (weatherforecast [:,:,−1:].

flatten ()) . reshape(w_shape)
95 meteorology [:,:,−1:] = encoder. transform (meteorology [:,:,−1:]. flatten ()) .

reshape(m_shape)

65

96
97 return meteorology, weatherforecast , other_pollutants , time ,aqi_X,aqi_y
98
99 def load_data (location ="tromso", del_col =[], force_reload =False) :

100 filepath = "data /combined_data_{}.json" . format(location) . lower ()
101 df = None
102 if os . path . isfile (filepath) and not force_reload :
103 df = pd. read_json (filepath)
104 else :
105 print ("Loading data from NILU")
106 #Load data from nilu
107 nilu_df = load_nilu_dataframe (location = location)
108 print ("Loading data from Yr.no")
109 # load yr data to nilu data using timestamp
110 yr_df = load_yr_dataframe(nilu_df . index [0], nilu_df . index[−1], location =

location)
111 print ("Done loading")
112 print ("Processing ... ")
113 df = combine_data(nilu_df , yr_df)
114 print ("Done processing")
115 print ("Storing data")
116 # Store the data
117 pathlib .Path(filepath . rsplit (’ / ’ ,1) [0]) .mkdir(parents=True, exist_ok=

True)
118 df . to_json (filepath)
119
120 predict_labels = [’PM2.5’, ’PM10’,’NO2’,’NO’]
121
122 # remove columns not to be included
123 df = df .drop(columns=del_col)
124
125 # Set prediction label at back
126 df = df [[c for c in df if c not in predict_labels] + [c for c in

predict_labels if c in df]]
127 return df
128
129 def progressbar (index , total , start_time =None):
130 sys . stdout . write (’ \ r ’)
131 j = (index + 1) / total
132 sys . stdout . write ("[%−20s] %d%%" % (’=’∗int(20∗j), 100∗j))
133 if (index % (round(total /1000)) == 0) and start_time is not None:
134 now = datetime .now()
135 duration = (now−start_time). total_seconds ()
136 expected_duration = (duration /(j∗100))∗100
137 time_left = expected_duration − duration

66

138 if (index % (round(total /1000)) == 0) :
139 sys . stdout . write (" \tETA: " + str (timedelta (seconds= time_left)))
140
141 sys . stdout . flush ()
142
143
144 # Get NILU data
145 def load_nilu_dataframe (return_labels =False , location ="tromso"):
146 nilu_df = pd.read_csv("data / aqi_values_ {}.csv" .format(location) . lower ())
147 nilu_df [’Date’] = pd. to_datetime (nilu_df [’Date’])
148 nilu_df [’month’] = nilu_df [’Date’]. dt .month
149 nilu_df [’day’] = nilu_df [’Date’]. dt .day
150 nilu_df [’hour’] = nilu_df [’Date’]. dt .hour
151 nilu_df . set_index (’Date’ , inplace =True)
152
153 cols_at_start = [’month’, ’day’ , ’hour’]
154 if return_labels :
155 return [c for c in nilu_df if c not in cols_at_start]
156 nilu_df = nilu_df [[c for c in cols_at_start if c in nilu_df] + [c for c in

nilu_df if c not in cols_at_start]]
157
158 return nilu_df
159
160 # Get Weather data
161 def load_yr_dataframe(from_time, to_time , location ="tromso"):
162 #yr_weather_df = pd.read_csv("data/yr_hourly_2008_2018.csv")
163 yr_weather_df = pd.read_csv("data /yr_weather_{}.csv" .format(location) . lower

())
164 yr_weather_df[’timestamp’] = pd. to_datetime (yr_weather_df[’timestamp’])
165 yr_weather_df = yr_weather_df[yr_weather_df . timestamp >= from_time]
166 yr_weather_df = yr_weather_df[yr_weather_df . timestamp <= to_time]
167 yr_weather_df . set_index (’timestamp’, inplace =True)
168 yr_weather_df . index .name = ’Date’
169 return yr_weather_df
170
171 def combine_data(a, b) :
172 combined_df = a.copy()
173 for c in b.columns:
174 nan_arr = np.empty(combined_df.shape[0])
175 nan_arr . fill (np.nan)
176 combined_df = combined_df.assign(x=pd.Series (nan_arr) . values)
177 combined_df = combined_df.rename(index=str, columns={’x’: c})
178 total = (b.shape [0])
179 counter = 0
180 start_time = datetime .now()

67

181 for i , row in b. iterrows () :
182
183 for x in range(0, len(b.columns)):
184 combined_df.loc[(a . index) == i , b.columns[x]] = row[x]
185
186 progressbar (counter , total , start_time)
187 counter +=1
188 return combined_df
189
190
191
192 # convert time series to sequence
193 def series_to_sequence (data , n_in=1, n_out=1, dropnan=True):
194 n_vars = 1 if type(data) is list else data .shape[1]
195 df = DataFrame(data)
196 cols , names = list () , list ()
197 # input sequence (t−n, ... t−1)
198 for i in range(n_in, 0, −1):
199 cols .append(df . shift (i))
200 names += [(’var%d(t−%d)’ % (j+1, i)) for j in range(n_vars)]
201 # forecast sequence (t , t+1, ... t+n)
202 for i in range(0, n_out) :
203 cols .append(df . shift (−i))
204 if i == 0:
205 names += [(’var%d(t)’ % (j+1)) for j in range(n_vars)]
206 else :
207 names += [(’var%d(t+%d)’ % (j+1, i)) for j in range(n_vars)]
208 # put it all together
209 agg = concat(cols , axis=1)
210 agg.columns = names
211 # drop rows with NaN values
212 if dropnan:
213 agg.dropna(inplace =True)
214 return agg
215
216
217 # root mean squared error (rmse) for regression
218 def rmse(y_true , y_pred) :
219 from keras import backend as K
220 return K.sqrt (K.mean(K.square(y_pred − y_true)))
221
222 def rmse_acc(y_true , y_pred) :
223 return 1−rmse(y_true,y_pred)
224
225 # mean squared error (mse) for regression

68

226 def mse(y_true, y_pred) :
227 from keras import backend
228 return backend.mean(backend.square(y_pred − y_true) , axis=−1)
229
230 def mse_acc(y_true, y_pred) :
231 return 1−mse(y_true,y_pred)
232
233 # coefficient of determination (R^2) for regression
234 def r_square (y_true , y_pred) :
235 from keras import backend as K
236 SS_res = K.sum(K.square(y_true − y_pred))
237 SS_tot = K.sum(K.square(y_true − K.mean(y_true)))
238 return (1 − SS_res/(SS_tot + K.epsilon ()))
239
240 def r_square_loss (y_true , y_pred) :
241 from keras import backend as K
242 SS_res = K.sum(K.square(y_true − y_pred))
243 SS_tot = K.sum(K.square(y_true − K.mean(y_true)))
244 return 1 − (1 − SS_res/(SS_tot + K.epsilon ()))
245
246 def scale_down(data) :
247 scaler = StandardScaler () . fit (flatten (data))
248 return scale (data , scaler) . astype (float) , scaler
249
250
251 def scale_up(data , scaler) :
252 return scaler . inverse_transform (data)
253
254
255 def null_rows(data_list) :
256 rows = []
257 for d in data_list :
258 for r in pd. isnull (d) .any(1).nonzero() [0]:
259 rows.append(r)
260 return list (set (rows))
261
262 def pad(array , reference , offsets) :
263 # Create an array of zeros with the reference shape
264 result = np.zeros (reference .shape)
265 # Create a list of slices from offset to offset + shape in each dimension
266 insertHere = [slice (offset [dim], offset [dim] + array .shape[dim]) for dim in

range(a.ndim)]
267 # Insert the array in the result at the specified offsets
268 result [insertHere] = a
269 return result

69

270
271 def flatten (X):
272 flattened_X = np.empty((X.shape [0], X.shape[2])) # sample x features array

.
273 for i in range(X.shape[0]) :
274 flattened_X [i] = X[i , (X.shape[1]−1), :]
275 return(flattened_X)
276
277 def scale (X, scaler) :
278 for i in range(X.shape[0]) :
279 X[i , :, :] = scaler . transform (X[i , :, :])
280
281 return X
282
283 def clean_data (dataframe , feature_label , dropnan=False) :
284 df = dataframe .copy()
285 # remove data below 0.0 except temperature
286 wind_from = df[’wind_from’]
287 df[’wind_from’] = 1.1
288 df = df . astype (float)
289 below_mask = df < 0.0
290 below_mask[’wind_from’] = False
291 below_mask[’temperature’] = False
292 df[’wind_from’] = wind_from
293 df[below_mask] = np.NaN
294 label_data = df[feature_label]
295
296 #remove 3∗standard deviation
297 std= label_data . std ()∗3
298 mean = label_data .mean()
299 max_thresh = mean+std
300 max_mask = label_data>max_thresh
301 label_data [max_mask] = np.NaN
302 df[feature_label] = label_data
303
304 # fill row with nan if nan in a column
305 df . iloc [pd. isnull (df) .any(1). to_numpy().nonzero() [0]] = np.nan
306 # drop rows with NaN values
307 if dropnan:
308 df .dropna(inplace =True)
309 return df

IV Model definition script

70

1 #! /usr /bin /env python
2
3 # model_bank.py
4
5
6 def dense_model(X_train, y_train , act="relu") :
7
8 def make_submodel(model_inputs, sub_name):
9 models_dense = []

10
11 for m_in in model_inputs:
12 m_name = m_in.name.split(’_’) [0]
13 models_dense.append(keras . layers .Dropout(0.2) (Dense(int(m_in.shape.

dims[1]) , activation =act) (m_in)))
14
15
16
17 output = keras . layers . concatenate (models_dense, name=sub_name)
18 timesteps = int (output .shape.dims[1])
19 n_features = int (output .shape.dims[2])
20
21 output = Dense(timesteps , activation =act) (output)
22 output = keras . layers .Dropout(0.2) (output)
23
24 output = Dense(64, activation =act) (output)
25 output = keras . layers .Dropout(0.2) (output)
26
27 output = Dense(32, activation =act) (output)
28 output = keras . layers .Dropout(0.2) (output)
29
30 output = Dense(n_features) (output)
31 output = keras . layers .Dropout(0.2) (output)
32
33 return output
34
35 # embedd
36 hw_input = Input (shape=X_train [0]. shape [1:], name="HW_input")
37 wf_input = Input (shape=X_train [1]. shape [1:], name="WF_input")
38 sp_input = Input (shape=X_train [2]. shape [1:], name="SP_input")
39 mp_input = Input (shape=X_train [3]. shape [1:], name="MP_input")
40 aqi_input = Input (shape=X_train [4]. shape [1:], name ="AQI_input")
41
42 hw = make_submodel([hw_input, aqi_input], "HW")
43 wf = make_submodel([wf_input, aqi_input], "WF")
44 sp = make_submodel([sp_input, aqi_input], "SP")

71

45 mp = make_submodel([mp_input, aqi_input], "MP")
46 hi = make_submodel([hw_input, wf_input, sp_input , mp_input, aqi_input], ’HI

’)
47
48 # Make submodel take x amount of model inputs and concatenate
49 merged = keras . layers . concatenate ([hw, wf, sp , mp, hi])
50 merged = Dense(5)(merged)
51
52 merged = keras . layers . Flatten () (merged)
53 merged = keras . layers .Dropout(0.2) (merged)
54
55 # output = Dense(y_train .shape[−1], kernel_initializer =’lecun_normal’,

activation =’linear ’) (merged)
56 output_dim = y_train .shape[−1]
57 if y_train .ndim < 2:
58 output_dim = 1
59 output = Dense(output_dim)(merged)
60 return Model(inputs=[hw_input, wf_input, sp_input , mp_input, aqi_input],
61 outputs=output)

V Model train script

1 #!/ usr /bin /env python
2
3 # train_model .py
4
5 import os
6 import keras
7 from keras . callbacks import EarlyStopping , ModelCheckpoint
8 from keras . utils import plot_model
9 from keras import backend as K, optimizers , Sequential

10
11 import numpy as np
12 import pandas as pd
13 from sklearn . preprocessing import LabelEncoder, StandardScaler
14
15 import data
16 import model_bank
17
18
19 def fix_data (meteorology, weatherforecast , other_pollutants , time ,aqi_X,aqi_y) :
20 # Scale data
21 met_scaled, _ = data .scale_down(meteorology)
22 temp_wf_scaled, _ = data .scale_down(weatherforecast)

72

23 op_scaled , _ = data .scale_down(other_pollutants)
24 t_scaled , _ = data .scale_down(time)
25 aqiX_scaled, _ = data .scale_down(aqi_X)
26 aqiy_scaled , scaler = data .scale_down(aqi_y. reshape(−1, hours_to_predict ,1))
27 aqiy_scaled = aqiy_scaled . reshape(−1, hours_to_predict)
28 # Padding weather forecast
29 dimdiff = np. array (aqi_X.shape) − np.array (temp_wf_scaled.shape)
30 wf_scaled = np.pad(temp_wf_scaled ,[(0, dimdiff [0]) , (0, dimdiff [1]) ,(0,0)],

mode=’constant’)
31 # Splitting data train test
32 portion = int (len(aqiy_scaled) ∗ 0.8)
33 met_train , met_test = met_scaled [: portion], met_scaled[portion :]
34 wf_train , wf_test = wf_scaled [: portion], wf_scaled[portion :]
35 op_train , op_test = op_scaled [: portion], op_scaled[portion :]
36 t_train , t_test = t_scaled [: portion], t_scaled [portion :]
37 aqiX_train , aqiX_test = aqiX_scaled [: portion], aqiX_scaled[portion :]
38 aqiy_train , aqiy_test = aqiy_scaled [: portion], aqiy_scaled [portion :]
39
40 train_list = ([met_train , wf_train , op_train , t_train , aqiX_train], aqiy_train

)
41 test_list = ([met_test , wf_test , op_test , t_test , aqiX_test], aqiy_test)
42
43 return train_list , test_list , scaler
44
45 def fit_model (model, trainX , trainy , testX , testy) :
46
47
48 # callbacks
49 tbCallBack = keras . callbacks .TensorBoard(log_dir=’logs /{}’ . format(model.

name), histogram_freq=0, write_graph=True, write_images=True)
50
51 # Save the checkpoint in the / output folder
52 filepath = ’ checkpoints /{}_best .hdf5’ . format(model.name)
53
54 # Keep only a single checkpoint , the best over test accuracy.
55 checkpoint = ModelCheckpoint(filepath ,
56 monitor=acc_name,
57 verbose=0,
58 save_best_only=True,
59 mode=’max’)
60
61 #early stopping
62 es = EarlyStopping(monitor=’ val_loss ’ , mode=’min’, verbose=0, patience =200)
63 # fit network
64

73

65 history = model. fit (
66 trainX ,
67 trainy ,
68 epochs=1000,
69 #batch_size=64,
70 validation_data =(testX , testy) ,
71 verbose=0,
72 shuffle =True,
73 callbacks =[
74 checkpoint ,
75 tbCallBack,
76 es
77],
78 #callbacks=[checkpoint , tbCallBack]
79)
80 return history
81
82
83
84 hours_to_lookback = 6
85 area = "Tromso"
86 station = "Hansjordnesbukta"
87
88 opt = ’adam’
89 act = ’sigmoid’
90 loss_name = ’mse’
91 acc_name = "val_rmse_acc"
92 loss = data .mse
93
94 df = data . load_data (area , del_col=[’temp_max’,’temp_min’])
95
96 for predict_label in [’PM2.5’ ’PM10’, ’NO2’, ’NO’]:
97 for hours_to_predict in [1,2,3,12,24,48]:
98 model_name=’Dense_all_{}_{}−{}’.format(predict_label, hours_to_predict ,

hours_to_lookback)
99 a = data . load_seq_data (station , area , predict_label , hours_to_predict ,

hours_to_lookback,df)
100 train_list , test_list , _ = fix_data (a [0], a [1], a [2], a [3], a [4], a [5])
101
102 train_list_X = train_list [0]
103 aqiy_train = train_list [1]
104 test_list_X = test_list [0]
105 aqiy_test = test_list [1]
106
107 model = model_bank.tromso_dense5(train_list_X , aqiy_train , act=act)

74

108 model.name = model_name
109 model.compile(optimizer=opt, loss=loss , metrics=[’accuracy’ , data .

mse_acc,data . rmse_acc, data . r_square])
110 model_yaml = model.to_yaml()
111
112 with open("models/{}.yaml".format(model_name), "w") as yaml_file :
113 yaml_file . write (model_yaml)
114 print (model.name)
115 fit_model (model, train_list_X , aqiy_train , test_list_X , aqiy_test)

75

	Abstract
	Preface
	Table of Contents
	List of Tables
	List of Figures
	Abbreviations
	Introduction
	Background
	Motivation
	Problem Description
	Contribution
	Research Question
	Report structure

	Overview
	Machine Learning Methods
	Theory
	Air Pollution
	Formulae
	Equations

	Datasets
	Introduction
	Air Quality Data
	Tromsø
	Other Areas

	Weather Data
	Traffic Data

	Data preparation
	Overview
	Merging
	Invalid measurements
	Outliers
	Label Encoding
	Normalization
	Splitting
	Sequencing
	Padding

	Prediction Model
	Overview
	Architecture
	Overview
	Sub Networks
	Data Features
	Activation functions
	Optimization Algorithm

	Implementation
	Environment
	Python
	Tensorflow
	Keras

	Google Cloud Computing
	Code
	Retrieving the data
	Processing the data
	Defining model

	Results
	Feature Importance
	Scoring
	Comparison

	Discussion
	Model
	Model type
	Model Structure
	Features
	Outputs
	Limitations

	Work environment
	Work distribution

	Conclusion
	Experience
	Future work
	Features to include
	Training data
	Web Platform

	Bottom line

	Bibliography
	Graph Appendix
	Appendix
	Tables
	Code Appendix
	Weather data script
	AQI script
	Data script
	Model definition script
	Model train script

