
Treasure Hunt Components

Charles Mawutor Adrah

Master of Telematics - Communication Networks and Networked

Supervisor: Rolv Bræk, ITEM
Co-supervisor: Fatima Urooj, ITEM

Frank Alexander Kraemer, ITEM

Department of Telematics

Submission date: June 2012

Norwegian University of Science and Technology

Problem Description

Name of student: Charles Mawutor Adrah

The Treasure Hunt is a collaborative game for Android developed here at
the institute. In this thesis, additional components and services for the game
should be developed and integrated.

Assignment given: 23.01.2012

Supervisor: Professor Rolv Bræk, ITEM
Co-supervisor: Frank Alexander Kraemer, Ph.D., ITEM
Co-supervisor: Urooj Fatima, ITEM

Abstract

The development of distributed, reactive and collaborative services is quite
challenging. Rapidly composing services for collaborative learning activi-
ties require some development methods and tools. This thesis presents an
extension of the City Guide application, a platform that supports situated
collaborative learning services developed by Surya Bahudar Kathayat in his
PhD thesis: On the Development of Situated Collaborative Services.

The application was developed using the engineering method SPACE and
its development tool Arctis. In the extension made, two new services, instant
messaging and group chat, have be composed and integrated into the appli-
cation. The two services have been identified as basic support services that
are required for a true collaborative learning experience. By using the archi-
tecture employed in the City Guide application, the instant messaging and
group chat services were developed as components that could be integrated
with other components within the application. The results show the instant
messaging and group chat service as standalone functionalities that handle
their own message routing within the application and hence did not require
the use of any other messaging protocols. The results also show that by using
this architecture and with the necessary Arctis modifications, the City Guide
application opens up for unexplored possibilities where new services can be
rapidly developed and integrated.

i

Preface

This report documents the results of my work done in the course TTM4905
- Network and Services, Master Thesis, during the spring semester of 2012
as the final part of the Masters degree program in Telematics, from the
Department of Telematics (ITEM) at the Norwegian University of Science
and Technology (NTNU).

I would like to thank my supervisor Professor Rolv Bræk for providing
invaluable comments and suggestions during the report writing process. My
sincere gratitude also goes to my co-supervisors Frank Alexander Kraemer
and Urooj Fatima for their support, guidance and encouragement throughout
my thesis work. Many thanks goes to Surya Bahudar Kathayatin for his
assistance during the initial stages of my work.

I wish to thank my parents, Mr. and Mrs. Adrah for their continuous
support and funding of my education. To my siblings, friends and love, I
appreciate your support and encouragement throughout this period, thank
you.

Charles Mawutor Adrah,
Trondheim, June 2012.

ii

iii

Contents

Abstract i

Preface ii

List of Figures vi

Acronyms x

1 Introduction 1
1.1 History of the City Guide Application 3
1.2 Application Overview . 3

1.2.1 Use Case Scenario . 4
1.3 Design and Development Methodology 4

1.3.1 Implementation Procedure 5
1.3.2 Development Environment 5

1.4 Contribution . 5
1.5 Outline of Thesis . 6

2 Background 7
2.1 Android . 7

2.1.1 Android SDK . 7
2.1.2 Android Location API 8

2.2 The SPACE Engineering Method 8
2.2.1 Arctis . 8

2.3 ActorFrame . 9
2.3.1 ActorFrame Concepts 10
2.3.2 ActorFrame protocol 11

2.4 UML 2.0 Collaborations and Structural Models 11
2.5 Service Discovery Protocols 13

iv

2.5.1 Jini Connection Technology 14
2.5.2 Universal Plug and Play (UPnP) 15
2.5.3 Salutation . 15
2.5.4 Service Location Protocols (SLP) 16

DA Discovery . 17
Operation Mode . 18
Service Advertisement 19

3 Background of the City Guide Application 21
3.1 City Guide Application . 21
3.2 High Level Overview of System 23

3.2.1 Proxy Host . 24
3.2.2 Service discovery mechanism 25
3.2.3 Registry . 27

3.3 Relevant Building Blocks for Service Discovery 29
3.3.1 Generic Service . 30

Server Proxy . 30
Register and Deregister Service 31

3.3.2 Login Service Proxy 33
3.3.3 Proxy Host . 34

4 Components of the City Guide Application 37
4.1 Registry System . 37

4.1.1 Service Registry . 38
4.2 City Guide Server . 40

4.2.1 Group Manager . 41
Login Service . 43
Group Positioning Service 43

4.2.2 City Guide Service . 44
4.3 City Guide App . 45

4.3.1 Server Connection Dialog 46
4.3.2 Login App . 47
4.3.3 City Guide UI . 49

5 Introducing New Components 51
5.1 Group Chat Platform . 51

5.1.1 General Architecture 52
5.1.2 Communication Principle for the Group Chat Service . 54

5.2 Server Components of Group Chat Service 57
5.2.1 Block Address Service Proxy (GLs) 58
5.2.2 GroupChat Service (GCs) 59

v

5.3 Client Components of Group Chat Service 63
5.3.1 GroupChat App . 66
5.3.2 Group Chat UI . 67

(a) Client Starts a Group Chat with other users 68
(b) Client receives a Group Chat message from another

client . 69
5.3.3 GroupChat Service Proxy 70
5.3.4 Block Address Service 71

5.4 IM Service Components . 72
5.4.1 Server Components of IM Service 72

IM Service . 73
5.4.2 Client Components of IM service 74

6 Discussion 77
6.1 Self Adaptive Computing System 77

6.1.1 Limitation of City Guide application Architecture . . . 78
6.1.2 Decentralized service description for City Guide appli-

cation Architecture . 79
6.1.3 Tradeoffs between Centralized and Decentralized ser-

vice description . 80
6.2 Issues: City Guide application, Service Discovery Protocol in

the mobile context . 81
6.2.1 Frequent disconnections 81
6.2.2 Limited resources in power and memory management . 82
6.2.3 Heterogeneity of the mobile devices 83

6.3 Critical Assessment of Components 83
6.3.1 Proposal of a new Chat Application Architecture . . . 83
6.3.2 Components needed for the implementation of pro-

posed model . 86

7 Concluding Remarks 89
7.1 Summary of Results . 89
7.2 Conclusion . 90

Bibliography 93

A GroupChat Service Class 96

B Group Chat Messaging Activity (User Interface) Class 97

C IM Service Class 99

vi

List of Figures

1.1 Cross-cutting nature of services [Kat12]. 2
1.2 The SPACE engineering method. 5

2.1 Actor[TA08]. 10
2.2 A simple service [GM03]. 11
2.3 Notation for UML 2.0 collaboration. 12
2.4 Structural model of a walking tour service. [1,2 and3] enumer-

ate the collaboration uses [Kat12]. 13
2.5 Architecture of the Jini connection technology [LH02]. 14
2.6 Model of the Salutation Manager [SC99]. 16
2.7 SLP agents transactions for service discovery and registration,

adapted from [BR00]. 17
2.8 Active and Passive methods of DA discovery [Gu99]. 18

3.1 Collaboration of the City Guide System. 22
3.2 Collaboration of the City Guide Service. 23
3.3 High level system representation of City Guide application. . . 24
3.4 Proxy Host routing. 25
3.5 Service discovery of two roles collaboratiing to perform a service. 27
3.6 Login service collaboration. 28
3.7 UML sequence diagram of Login Service collaboration. 28
3.8 Location Service collaboration. 29
3.9 Internal behavior of Generic service block. 30
3.10 Internal behavior of Server Proxy block. 31
3.11 Internal behavior of the Register and Deregister Service block. 32
3.12 Internal behavior of the Register Service block. 32
3.13 Internal behavior of the Client Proxy block. 33
3.14 Internal behavior of the Login Service Proxy block. 34
3.15 Internal behavior of the Discover Service block. 34

vii

3.16 Internal behavior Behavior of Proxy Host and ActorRouter. . 36

4.1 Registry System. 38
4.2 Behavior and ESM of Service Registry. 39
4.3 City Guide Server system. 41
4.4 Behavior and ESM of Group Manager. 42
4.5 Internal behavior of the Login Service block. 43
4.6 Internal behavior of the Group Positioning Service block. . . . 44
4.7 Internal behavior of the City Guide Service block. 45
4.8 Internal behavior of the City Guide App block. 46
4.9 Behavior of Server Connection Dialog and Activity screen show-

ing the dialog window. 47
4.10 Behavior and ESM of Login App. 48
4.11 Internal behavior of the City Guide UI block. 49
4.12 Internal behavior of the Location Aware Quiz Service block. . 50

5.1 City Guide Service and Group Chat Service collaboration. . . 52
5.2 Illustration of Group Chat service behavior (user A sends a

message). 53
5.3 Illustration of Group Chat service behavior (user B sends a

message). 54
5.4 Group Chat sequence diagram. 55
5.5 Illustration of Group Chat service behavior (with Address col-

laboration service roles). 56
5.6 Illustration of Group Chat service behavior (with Address col-

laboration service roles). 57
5.7 City Guide Server showing the location of server components

of the Group Chat service. 58
5.8 Internal behavior of City Guide Service with a new component. 59
5.9 Group Manager behavior and ESM. 60
5.10 GroupChat Service behavior and ESM. 61
5.11 City Guide App showing the location of GroupChat App. . . . 63
5.12 City Guide UI block with GroupChat App block. 64
5.13 Options menu item of map display and Android Map UI block

behavior. 65
5.14 GroupChat App behavior and ESM. 66
5.15 Layout of Group Chat UI. 68
5.16 ESM of Group Chat UI. 68
5.17 Internal behavior of Group Chat UI. 70
5.18 Internal behavior of Block Address Service Proxy. 71

viii

5.19 City Guide Server with components for the IM service collab-
oration. 73

5.20 Internal behavior of IM service. 74
5.21 City Guide App showing components for IM service collabo-

ration. 75
5.22 Internal behavior of Android Map UI with signal reception

event to handle starting an IM. 76
5.23 Internal behavior of IM App. 76

6.1 Login Service collaboration sequence diagram. 79
6.2 Decentralized service discovery with push and pull model [ONT05]. 80
6.3 Group Chat sequence diagram of proposed model. 84
6.4 Block model of proposed architecture. 85

ix

Acronyms

ADT Android Development Tools

API Application Programming Interface

DA Directory Agent

DHCP Dynamic Host Configuration Protocol

ESM External State Machine

FU Functional Unit

GUI Graphical User Interface

GPS Global Positioning System

IETF Internet Engineering Task Force

IM Instant Messaging

J2SE Java 2 Platform, Standard Edition

MDD Model Driven Development

OSGi Open Services Gateway initiative

PC Personal Computer

PDA Personal Digital Assistant

P2P Peer-to-Peer

RMI Remote Method Invocation

x

SA Service Agent

SCLS Situated Collaborative Learning Services

SDK Software Development Kit

SDP Service Discovery Protocol

SLM Salutation Manager

SLP Service Location Protocol

SMS Short Message Service

TCP/IP Transmission Control Protocol/ Internet Protocol

TM Transport Manager

UA User Agent

UI User Interface

UML Unified Modeling Language

UPnP Universal Plug and Play

URL Uniform Resource Locator

XML Extensible Markup Language

XMPP Extensible Messaging and Presence Protocol

Wi-Fi Wireless Fidelity

xi

Chapter 1
Introduction

The influx of new and emerging technologies in mobile and ubiquitous com-
puting has greatly influenced our everyday activities in different ways. This is
also true with respect to learning within the student-teacher context. Tradi-
tionally, learning by students is characterized by sitting in a classroom setting
or by reading books privately. In addition, class or group centered activities
often focused on a specific task at a time with the students limited in their
efforts to collaborate. With the advent of mobile and wireless technologies,
learners take advantage of the resources and people that are both globally
and locally available to them, allowing a more situated and contextualized
learning experience [IC09]. Learning services provided in this manner are
called Situated Collaborative Learning Services (SCLS).

The City Guide application is a platform that seeks to illustrate the SCLS
domain. It was developed by Surya Bahadur Kathaya, PhD. With this ap-
plication, students as members of a group go around the city and collaborate
to learn. The students work together on collaborative tasks outside the
classroom thereby contributing a fair share to their learning activities. The
activities performed are based on learning objects which are situated and
are accessed depending on a player’s location and state. An application as
this that incorporates collaborative learning has the potential of supporting
both formal and informal learning since there is interaction among different
actors (teachers and students), inside and outside the performance of a task.
[JJH98] states key elements of situated and collaborative learning which are:
positive interdependence among the learners, interaction, individual account-
ability, interpersonal and social skills, situatedness, and group processing.

Understanding and identifying stable domain concepts will enable us to
know the kind of services that should be provided. [Kat12] identifies core
domain entities of a city-wide collaborative learning as users, social config-

1

urations, learning objects, enablers and platforms. The services support the
learning activities and typically crosscut several domain entities. A service
may involve several domain objects and a domain object may participate
in several services. The cross-cutting nature of collaborative services is il-
lustrated in Fig. 1.1. [KB09] categorizes the domain services provided into
two groups namely, basic and application specific services. Some basic ser-
vices that have been identified include location awareness, instant messaging
(IM), group chat, document sharing and SMS. Some application specific ser-
vices also identified are group positioning, interactive quiz, scoring, clues
and configuration. The services are distributed and reactive in nature hence
their development is complex. To flexibly and rapidly develop these services
presents a big and interesting challenge.

SPACE [Kra08], a method for the development of reactive systems and its
supporting tool Arctis was used in composing some components and services
for the City Guide application. Currently, services that have been developed
for the platform are the location service, interactive quiz service and group
positioning service.

In this thesis, we have identified two basic services namely IM and Group
Chat and have sought out to design building blocks which will be integrated
into the already existing platform. In composing these services, we have
employed technologies such as the Service Discovery Protocol (SDP), which
enables collaborating roles to seek out their complementary collaborating
roles to perform services as well as ActorRouter which enables the distributed
deployment of services and systems.

Figure 1.1: Cross-cutting nature of services [Kat12].

2

1.1 History of the City Guide Application

The City Guide application was originally developed as a Treasure Hunt game
in TTM4115 as a term assignment in 2008. A reference to the assignment
can found in [TT08]. The students used the RAMSES tool and ActorFrame
and were able to simulate the game on Java clients using stationary terminals
of desktop PCs and laptops.

The game was extended and modularized in the Fabula Project, still using
RAMSES and ActorFrame by Surya Bahadur Kathaya. At this stage the
game was demonstrable on Android clients. The need to reduce dependency
on RAMSES led to the move of the Treasure Hunt game onto the Arctis
platform. This was still carried out during the Fabula project. Challenges
encountered during this period included handling sessions and distribution
of the system which made this effort infeasible.

During the lab work of TTM3, a course on self-adapting systems [TT11]
in 2011, a new platform developed using Arctis could handle sessions and
distribution in systems with the introduction of new concepts on proxies,
proxy host and registry.

A new attempt of the Treasure Hunt using Arctis and the TTM3 platform
by Surya resulted in a working system called City Guide application and
provides the basis of my work with details presented here.

1.2 Application Overview

City Guide Application is a collaborative game developed for students. Basi-
cally the students go around the city looking for “treasures”, which could be
a historical place, museum or a location in the city. When the game starts,
each player moves around with a handheld terminal. On getting close to a
treasure the player is interrupted with an interactive quiz task. Questions
are asked about the treasure and it is the responsibility of the student to use
information surrounding the treasure to answer these questions. On success-
fully answering all questions, the user then continues playing the game by
exploring other parts of the city to discover more treasures.

To ensure the collaborative learning among the students, we have ex-
tended the application with new services:

� Instant Messaging enables players to contact and interact with other
players on a peer-to-peer level.

� Group Chat enables all the players to have a common platform to
interact at the same time.

3

1.2.1 Use Case Scenario

The following presents scenarios where the new services implemented are
useful to the City Guide application:

Instant Messaging Urooj and Surya are both members of a group who are
in different locations and are playing the game (City Guide application).
Urooj is engaged in a question-answer task on her game after locating a
treasure and is faced with a difficult question. She remembers a previous
conversation with Surya pertaining to this question and so she decides to
send a private message to Surya. She opens an IM window for Surya and
sends him a message via texting. Surya who might be busy doing
something else receives a notification on his device. He opens it and
receives the message from Urooj. Both of them can then continue their
conversation.

Group Chat Ephraim, Victor, Urooj and Surya are participants in the
same group using the City Guide application for a group task. For them to
work faster and more effectively, they agreed that they would cooperate in
solving all questions together when any of them finds a treasure. Ephraim
is the first to discover a treasure so he immediately initiates a group chat
with the rest. All the group members receive his message and they start a
group discussion and suggest ideas to one another about the questions and
its solutions. They are able to work faster and learn from each other.

1.3 Design and Development Methodology

The set of methods deployed in developing the new services was based on the
principles of model-driven development (MDD). MDD supports the software
development process by creating models on different levels of abstraction
and platform independence. Our aim was to develop abstract models which
specified the pure functionality of services while hiding details of realization.
The following models were used:

� UML sequence diagrams

� UML collaboration diagrams

4

1.3.1 Implementation Procedure

For the transformation into implementation specific models, the SPACE en-
gineering method was used. This creates building blocks that are expressed
as UML models combined with Java code, wrapping the details of opera-
tions. Development of the system considered reusable building blocks from
the Arctis library and also building blocks for new functionality. The com-
position structure is depicted in Fig. 1.2. The development method involved
an iterated process of design and development, testing and evaluation. Based
on this sound and successful results were achieved.

Figure 1.2: The SPACE engineering method.

1.3.2 Development Environment

Development was done in Eclipse Classic 3.7.0 (Helios) on Windows, using
the regularly updated Arctis plug-in (latest version 1.0.0.M0714) and An-
droid Developer Tools plugin for Eclipse, version 15.0.0. Testing of the ap-
plication was performed with an HTC desire, Asus Transformer and Samsung
Galaxy Nexus running Android 2.2, 4.1 and 4.2 respectively.

1.4 Contribution

The contribution of this thesis includes a comprehensive study of the City
Guide application and documenting the system architecture. This includes

5

explaining how the system components are distributed and the communica-
tion principles used in the distributed architecture. In addition new com-
ponents for IM service and Group Chat service have been developed. In
developing these services we chose to implement a standalone architecture
where message handling and routing for the services are done internally by
our system without using open messaging protocols such as XMPP.

1.5 Outline of Thesis

The thesis is structured as follows:

Chapter 1 presents the domain as motivation behind this thesis. An
overview of the City Guide application is given. In addition an outline of
the methodology used is shown.

Chapter 2 provides theoretical background information of the technologies
used in achieving the goals of the thesis.

Chapter 3 presents a background to the design and architecture of the
City Guide application. The principles of the service discovery technology
used are illustrated and communication principles explained as well. The
building blocks used for service discovery are shown and explained

Chapter 4 presents the components of the City Guide application that has
already been developed. The client system, server system and Registry are
introduced and the services that have implemented so far are explained

Chapter 5 presents the architecture and components of the new services.
Group Chat service components are used to illustrate the overall principles
for the two services. Some specific components of the IM service are
presented to show the differences between the two services.

Chapter 6 presents an evaluation of the City Guide application with
regard to the technologies used in its current implementation. Alternative
technologies are also discussed. In addition a critical assessment is done
for the new services and a different architectural design is proposed.

Chapter 7 concludes the thesis by summing up the results, concluding
remarks and proposing future work.

6

Chapter 2
Background

In this chapter, we give an overview of the concepts and technologies used
in our work. This is intended to provide the reader a basic understanding of
these principles. In Sec. 2.1, there is a brief introduction of Android Software
Development Kit with emphasis on its support for location services. In Sec.
2.2, the engineering method SPACE and its model driven development tool
Arctis are introduced. Section 2.3 presents the ActorFrame platform and its
core component, the ActorRouter which supports asynchronous communica-
tion in distributed nodes. In Sec. 2.4, UML collaboration and Structural
models used to specify functionality are explained. Finally in Sec 2.5, we in-
troduce the principle of service discovery protocol, a technology used in our
implementation work. Jini,UPnP, Salutation and Service Location Protocol
are some emerging technologies of service discovery which are discussed and
compared.

2.1 Android

The reader is assumed to have basic knowledge of Android; otherwise [OHA11]
provides a comprehensive introduction to the operating system. The focus
in the following section is on how the Android SDK can support Situated
Collaborative Learning Services.

2.1.1 Android SDK

Developers can build applications using the Android SDK developed by
Google. The Android SDK provides the tools and APIs necessary to begin
developing applications on the Android platform using the Java program-
ming language [OHA11]. These APIs facilitate access to contents on the

7

phone such as GPS or Wi-Fi information as well as integrate them with
external web services in order to provide real-time services.

2.1.2 Android Location API

According to [KB09], “Mobile devices combined with location technologies
enable what we call Situated Collaborative Learning”. Current mobile de-
vices are normally equipped with location detection capabilities. The tech-
nologies in use include:

� GPS

� Cell tower triangulation; where the position of a device is determined
based on signal strength from nearby towers

� Wi-Fi hotspots that have known geographic locations

Android enables applications to obtain location services provided by these
devices through a location library. A location point obtained provides in-
formation about the device’s current location and it might provide other
essential information such as elevation over the sea level and current speed.
This normally depends on the type of location provider available. The dif-
ferent location providers have different requirements for power consumption,
capital cost and accuracy. Location information is useful for map based
applications. Acquiring the location information enables the geographical
location to be pinned down on a map. The classes and interfaces from the
android.location package can be found in [OHA14].

2.2 The SPACE Engineering Method

The specification unit for the implementation of the work in this thesis is
based on the SPACE method. The SPACE method [Kra08] uses a combina-
tion of UML 2.0 collaborations and activities to describe systems and their
services by the compositions of building blocks. The tool support for this
method, Arctis is presented below.

2.2.1 Arctis

Arctis is an SDK for reactive systems [BA12] which is implemented as a set of
Eclipse plugins. It consists of the Arctis Editor, Arctis Analyzer and the Arc-
tis Compiler however the major interfaces towards the users are the library
of building blocks and the editor for UML collaborations [KBH09]. This is

8

so because there is a high degree of automation. The building blocks encap-
sulate solutions to problems in a self-contained form, also securing in which
sequence features are used [KSH09]. These reusable building blocks can sim-
ply be combined to develop applications. The external view of a building
block is provided by a state machine called external state machine (ESM)
which defines the allowed sequences of actions executed by the block. Due
to this abstract description via external interfaces expressed by the ESMs,
the internals of the building blocks do not have to be considered [KSH09].

In order to build applications with Arctis, available public libraries are
checked to locate blocks with useful functionality for the application. The
Arctis building block Wizard is used to create a new system, which is also
a variant of a building block, and the blocks required can be dragged into
the system. The blocks are connected with control flows or object flows in
order to control the flows of execution among the blocks. If necessary, Java
operations that can perform specific tasks may be added as well.

The Arctis components, the analyzer and the compiler enable formal
analysis and model checking to be performed on the building blocks of the
system. The analyzer verifies the specification of the blocks against theorems
based on Temporal Logic. If a theorem is violated, the analyzer tries to
identify possible reasons and presents an error trace as animation in the
activity [KSH09]. If the specification is correct, the model transformation to
implement components needs no further interaction, that is, it is automated.

The model transformation in Arctis maps the behavior implied by the
activities to state machines [KBH09], which also serves as input to the code
generator. The code generators produce the final executable implementations
deployable on several platforms, with current focus of Arctis on Java and the
use of ServiceFrame execution platforms.

2.3 ActorFrame

ActorFrame is a Java framework developed by Tellu AS for the development
and execution of services. The services are modeled using UML 2.0 con-
cepts for concurrent state machines communicating asynchronously through
message passing. The ActorFrame protocol supports the actor play roles
concept, and to create and configure actors. In addition there is support for
routing of messages between actors deployed on different machines [TA08].
In Sec. 2.3.1, the general architecture of the ActorFrame service platform is
presented. Section 2.3.2 describes the ActorFrame protocol and its commu-
nication architecture.

9

2.3.1 ActorFrame Concepts

The core concept of ActorFrame is the Actor. Actors are objects with state
machines that communicate asynchronously with other actors. The behav-
ior of the state machines will be according to the generic actor behavior
well known to all other actors. Actors can have an optional inner structure
of actors. Figure 2.1 illustrates an Actor. While the inner actors can be
static,that is having the same lifetime as the enclosing actors, other actors
can be dynamically created and deleted within the lifetime of the enclosing
actor. An actor communicates with its environment using the Input and the
Output ports. Inner actors within an actor can also communicate internally
via these ports.

Figure 2.1: Actor[TA08].

A core component in ActorFrame is the ActorRouter. This message router
carries messages between actors running in different Java containers such as
Java J2SE, Midlet and OSGi [TA08]. Each router updates other routers with
actors that are running in the same container as the router. When a receiving
actor of a message does not run in the same container, the message is then
forwarded to the appropriate container. This forwarding is possible through
lookup in the forward table maintained by each router. This contains each
registered actor’s information describing its link to the container that has
the actor.

10

2.3.2 ActorFrame protocol

ActorFrame employs the protocols for role requests and role releases. It
allows for the dynamic creation and initiation of new roles on request. The
basic feature of the protocol is to allow an actor (requestor) to request another
actor to play a specific role. The protocol also allows the actors to interact
and perform a service or a play [TA08]. Role release can lead to deleting of
actors if their roles do not exist. Figure 2.2 shows a typical pattern of how
RoleRequest and RoleRelease are used to invoke other actors to play services.

Figure 2.2: A simple service [GM03].

2.4 UML 2.0 Collaborations and Structural

Models

According to [OMG09],“collaboration describes a structure of collaborating
elements (roles), each performing a specialized function, which collectively

11

accomplishes some desired functionality.” The roles are partial objects that
interact with each other to achieve a joint task. UML 2.0 collaborations
are structured classifiers and can have any kind of behavioral descriptions
associated [OMG09].

Figure 2.3 illustrates the graphical notation of the UML 2.0 collaboration.
A Collaboration is shown as a dashed ellipse containing the name of the
collaboration. The internal structure is comprised of roles and connectors
among the roles.

Figure 2.3: Notation for UML 2.0 collaboration.

UML collaborations are well suited to specify structural service models
[OMG09, Cas08, Kra08]. The entities collaborating in the service are rep-
resented as collaboration roles. Services are classified into elementary and
composite services. Elementary services are basic services that cannot be
decomposed while composite services are composed from smaller services.
When a service is composed from smaller services, the sub-services are spec-
ified using the concept of collaboration use where the roles of a collaboration
use are bound to the roles of a composite collaboration [Kat12].

Figure 2.4 shows the structural model of a WalkingTour Service. This is a
composite service specification and comprises of elementary services Location
Service, Quiz Service and Information Service. Taking Location Service as
an example, the roles of this collaboration user and server are bound to the
roles of the composite collaboration User and Server respectively.

12

Figure 2.4: Structural model of a walking tour service. [1,2 and3] enumerate
the collaboration uses [Kat12].

2.5 Service Discovery Protocols

The advent of mobile technologies such as mobile phones, laptops and PDA’s
has influenced how current application systems are packaged and deployed.
The main requirement for mobile technology is the support of mobility for the
users [ONT05]. However there are inherent challenges for the mobile devices
such as limited resources in energy, computing capacity and storage capacity.
In addition communication networks are faced with a strong dynamicity in
connections and disconnections. It is important that the way software and
network resources are configured, deployed and advertised be redesigned to
meet current challenges of the mobile user such that the access and provision
of services by mobile users is independent of time and location.

According to [ONT05], “Service Discovery Protocol enables network de-
vices, applications, and services to seek out and find other complementary
network devices, applications, and services needed to properly complete spec-
ified tasks”. The implementation work done in this thesis is based on the
principle of how collaborating roles seek out other complementary collabora-
tion roles in order to perform services through the use of service discovery.
Some emerging technologies of service discovery in the context of mobile
and wireless computing are Jini, UPnP, Salution, Service Location Protocol,
Trader Service and Rendezvous protocols. A few of the notable protocols are
discussed below.

13

2.5.1 Jini Connection Technology

Jini is a technology developed by Sun Microsystems and is an extension of
the Java programming language. The purpose of the Jini architecture is to
federate groups of devices and software components into a single, dynamic
and distributed system [LH02]. This enables coordination between different
entities, that is the client and server know each other’s existence from the
other.

The heart of the Jini system is a trio of protocols called discovery, join
and lookup [ONT05]. A device or an application registers with a Jini network
using discovery and join protocols. Discovery is the process where the service
is looking for a lookup service with which to register and Join takes place
when the service places itself into the lookup table on the look up server.
Lookup occurs when a client or user needs to locate and invoke a service
described by its interface type and other attributes. The look up server is
a service of directory which maintains dynamic information on the services.
After the look up, a copy of the service object is moved to the client and
used by the client to talk to the service [LH02]. The client then interacts
directly with the service provider via the service object.

Jini uses Java RMI as the communications protocol between the service
and the client which allows the dynamic remote loading of the code and also
provides a security mechanism in such a distributed system [ONT05]. The
network services run on top of the Jini software architecture. Figure 2.5
shows the architecture of the Jini connection technology.

Figure 2.5: Architecture of the Jini connection technology [LH02].

14

2.5.2 Universal Plug and Play (UPnP)

UPnP is an architecture for pervasive peer-to-peer network connectivity of
intelligent appliances, wireless devices, and PCs of all forms [LH02]. Devel-
oped by Microsoft, it is an extension to Plug and Play (PnP) technology such
that devices are reachable through a TCP/IP network. Unlike Jini which de-
pends on mobile code, UPnP aims to standardize the protocols used by de-
vices to communicate using XML [Ri00]. XML description enables complex
and powerful description of device capabilities as opposed to Jini’s simple
service attribute.

Two main entities in UPnP are the Control Point and the Device. The
device is an apparatus which offers services while control point is the entity
which discovers these services and uses them [ONT05]. When devices are
introduced into a network, they send multicast advertisements to the control
points. These messages are called “alive” messages. When the devices want
to terminate the availability of their services, they send “bye-bye” messages.
In UPnP’s current version (release 0.91) there is no central service register,
such as the DA in SLP (see Sec. 2.5.4) or the lookup table in Jini [BR00].

2.5.3 Salutation

Salutation is a service discovery architecture being developed by the open
industry consortium known as the Salutation Consortium. The consortium’s
goal is to build a royalty-free architecture for service advertisement and dis-
covery that is independent of a particular network transport [Ri00]. The
architecture provides a standard method for applications, services and de-
vices to describe and to advertise their capabilities to other applications,
services and devices [LH02]. According to [SC99], “the architecture enables
application, services and devices to search other applications, services or de-
vices for a particular capability, and to request and establish interoperable
sessions with them to utilize their capabilities”.

The architecture composes of three components namely; Functional Unit
(FU), Salutation Manager (SLM), and Transport Manager (TM). The FU
is the minimal meaningful function to constitute a client or service and can
be regarded as the basic building block in the Salutation architecture. FU’s
register themselves locally or remotely with an SLM.

Figure 2.6 illustrates the model of the salutation manager. The SLM is
the central focus of the architecture and this is comparable to the lookup
service in Jini. It functions as a service broker. According to [LH02], “A
service provider registers its capability with a Salutation Manager. When
a client asks its local Salutation Manager for a service search, the search is

15

performed by coordination among Salutation Managers. Then the client can
use the returned service.” This means that the client’s SLM performs the
search for the desired service on behalf of the client as well as manages the
communication session with the server’s SLM.

Figure 2.6: Model of the Salutation Manager [SC99].

The TM isolates the implementation of the SLM from a particular transport-
layer protocol and thereby gives the Salutation, network transport indepen-
dence [Ri00]. The TM is dependent upon the network transport it supports.
This communication protocol independence is possible in the architecture
because of a defined interface SLM-TI which is located between the SLM
and TM. In order to support a new network transport, a new TM is needed
however the SLM does not require any changes since it sees its underlying
transport through the transport-independence interface (SLM-TI).

2.5.4 Service Location Protocols (SLP)

Service location protocol is an IETF standard that provides a scalable frame-
work for automatic resource discovery on IP networks [Gu99]. It has a similar
architecture as Jini but unlike the other service discovery protocols such as
Jini, UPnP and Salutation that seek some sort of transport independence;
SLP is designed for TCP/IP networks. The SLP architecture consists of
three main entities with the following functions [BR00]:

� User Agents (UA) perform service discovery, on behalf of the client
(user)

� Service Agents (SA) advertise the location and characteristics of ser-
vices, on behalf of services

16

� Directory Agents (DA) collect service addresses and information re-
ceived from SAs in their database and respond to service requests from
UAs.

Figure 2.7: SLP agents transactions for service discovery and registration,
adapted from [BR00].

The interaction among the three entities is shown in Fig. 2.7. When a
new service is available, the SA contacts the DA to advertise its existence
(Service Registration). A user that needs a certain service will require the
UA to query the available service from the DA (Service Request). Upon
receipt of the address and characteristics of the desired service, the user can
then use the service.

DA Discovery

Knowing that a DA exists in a network is important in the service loca-
tion protocol hence the UA and the SA must find a way to discover its
existence. Three different methods for DA discovery are static, active and
passive [BR00].

For the static discovery of DA, the UAs and SAs learn the locations of
DAs by using the DHCP option for Service Location [PG99]. DHCP servers

17

use the DHCP Option 78 to distribute the address of the DA to hosts that
request them [BR00].This means that a fixed address for the DA is known
hence the SA and UA use this address to contact the DA.

The active and passive methods of DA discovery are illustrated in Fig-
ure 2.8. In active discovery, UAs and SAs send service requests to the SLP
multicast group address [BR00]. A DA listening on this address will receive
the request and respond with a unicast address to the requesting agent. For
passive discovery, DAs multicast advertisements for their services and con-
tinue to do this periodically in case any UAs or SAs have failed to receive the
initial advertisement [Gu99]. The UAs and SAs then learn the DA address
from these advertisements and can contact the DA directly with their unicast
address.

Figure 2.8: Active and Passive methods of DA discovery [Gu99].

Operation Mode

SLP has two modes of operation which are explained below:

� Centralized Service Description: When a DA is present, it collects all
service information advertised by SAs as well as UAs and unicast their
requests to the DA [Gu99].

18

� Decentralized Service Description: In the absence of a DA, UAs mul-
ticast requests for service and receive unicast responses directly from
the SAs that control matching services [Ri00].

The benefits accrued when a DA is present are that; UAs receive faster
responses, SLP uses less network bandwidth and fewer multicast messages
are issued [Gu99]. Conversely when no DA is present, there is an increase
in bandwidth consumption but such a model is simpler and appropriate for
smaller networks [Ri00].

Service Advertisement

SLP services are advertised through a service URL [Ri00]. The service URL
contains the IP address of the service, the port number, and the path [BR90].
This information contained in the service URL is what clients require to
contact the advertised service. In addition Service Templates are used to
specify the attributes that characterize the service and their default values
[BR90]. The attributes differentiate between services of the same type and
communicate configuration information to UAs [Ri00]. SAs advertise services
according to attribute definitions in the Service Templates, and UAs issue
requests using these same definitions [Gu99]. According to [Gu99], “This
ensures interoperability between vendors because every client will request
services using the same vocabulary, and every service will advertise itself
using well-known attributes.”

SLP does not define the protocols for communication between clients and
services [Ri00]. This means that the protocol used between the client and
the service is independent of the service location protocol.

19

20

Chapter 3
Background of the City Guide
Application

In this chapter, we present a background to the system design of the City
Guide application. The work in this thesis involves developing new compo-
nents for the application hence it is important to understand the architecture
of the application first. Section 3.1 introduces the City Guide application
using UML collaborations. In Sec. 3.2 we present an overview of the appli-
cation using illustrations where we explain the service discovery technology
employed in addition to the communication methods used for the distributed
architecture. In Sec. 3.3, we present the actual building blocks which are
used for the service discovery technology in Arctis. We show how the build-
ing blocks of client proxy, server proxy and Proxy Host are used for internal
and distributed communication with the system.

3.1 City Guide Application

The City Guide System is a proof of concept application which demonstrates
a situated collaborative learning service [KB09]. The system specifies a ser-
vice for students to learn about different historical places [KKB09]. It is
a map-based application which constantly monitors the position of the stu-
dent in relation to point of interests, which we call treasures that are situated
nearby. When the student is within the defined proximity of a treasure, a
service is initiated towards the student in the form of an interactive quiz. The
interactive quiz service is a session between the student and a remote server
where the student is asked questions about the treasure found. This service
also provides additional information to the student such as a summary of

21

progress of treasures found and other useful information if necessary.
In the City Guide system, another main service provided is the Group

Positioning Service. This is a service that keeps track of the position of the
student and makes it available to the other group participants.The behavior
of the components in the City Guide system can be specified using collabora-
tions. In Fig. 3.1, UML collaboration is used to illustrate the entire system
structure.

Figure 3.1: Collaboration of the City Guide System.

The system is composed of multiple users each connected to a server and
interacting with it. The sub collaboration between the collaboration roles,
i.e. l:Login Service and s:City Guide Service are the smaller collaborations
into which the system can be decomposed. The structural decomposition of
collaborations may result in elementary collaborations. This can be seen in
Fig. 3.2 which shows the City Guide Service collaboration.

22

Figure 3.2: Collaboration of the City Guide Service.

3.2 High Level Overview of System

The UML collaborations shown above provide an overview of the overall
service structure and the roles provided by the various components but they
do not provide any detailed behavior. The engineering approach of SPACE
is used to specify the detailed behavior of each component in the system.
Figure 3.3 illustrates an overview of the system structure which is used in the
implementation of the City Guide application. The three main components
are:

� Client(User)-Android

� Server

� Registry

The three components are physically distributed and each has a Proxy
Host component (shown in Fig. 3.3) which encapsulates communication and
is used as an interface to interconnect the components (details to be explained
later).

The client is a component in the model that contains the application
logic for the client side of the City Guide system. It has an equivalent logical
behavior as the corresponding role of the User from the UML collaboration
in Fig 3.1. The client is run as an Android application deployable on mobile
devices and with this distributed and reactive services can be supported.

The server is a component that contains the server side application logic
of the City Guide system. It is run as a Java application and may be deployed

23

together with the Registry on the same machine (PC). The server performs
all the corresponding roles of the Server from the UML collaboration in Fig.
3.1.

Figure 3.3: High level system representation of City Guide application.

3.2.1 Proxy Host

As seen from the high level model in Fig. 3.3, each of the three main com-
ponents contains a Proxy Host block. This block is an interface for each
component and handles all forms of internal and external communication
among the components. It is considered as the router in each of the dis-
tributed nodes. To understand the communication principle employed, we
consider the illustration in Fig 3.4.

24

Figure 3.4: Proxy Host routing.

Within each main component, there are several other smaller compo-
nents. In the Client for example, there are smaller components that are used
to perform collaborations such as the login service, quiz service and group po-
sitioning service. Each of the smaller components contains local roles called
either Client Proxy or Server Proxy which are used to communicate with the
Proxy Host. The Client and Server proxies communicate with the Proxy Host
by send and receive operations. The Proxy Host handles internal communi-
cation between different components within the Client. For communication
with external components in either the Registry or the Server, the Proxy
Host encapsulates ActorRouter technology which it uses to route messages
across the network. The messages will be received first by the Proxy Host of
either Registry or Server.

3.2.2 Service discovery mechanism

The collaboration roles of the users and the server for the various collabo-
ration services are implemented using a service discovery mechanism. The
service discovery mechanism employed here has an architecture closely sim-
ilar to the Service Location Protocol explained in Chap 2. We will explain
the service discovery mechanism with a service that involves collaboration
between two roles, R1 and R2. In this mechanism, one of the collaboration
roles (R1) for the service is registered with a central directory (known as
Registry in our system). R1 uses an entity containing a set of client prox-
ies and server proxy to do this registration. The entity referred to is called

25

Generic Service. The Generic Service registers a unique address with the
Registry with which the behavior of R1 can be accessed. The Generic Ser-
vice is therefore not a part of the collaboration role but is used together with
the collaboration role to execute its functionality. We refer to the collabo-
ration role together with the Generic Service as a service provider. This is
because the purpose of the Generic Service is to inform the Registry (through
registration) that a particular collaboration role is available and is accessible
on this address. We consider the collaboration role as wanting to provide a
specialized function or service, and therefore it announces its availability to
the other role(s) that need to interact with it. We normally say the Generic
Service registers the service behavior of the collaboration role.

For the second collaboration role (R2) to interact with R1, it needs a
reference to its location. This is where the discovery happens. R2 uses a set
of client proxies to also discover the collaborating roles it needs to interact
with. It achieves this by requesting from the Registry the address with which
R1 can be reached. R1 must already have been registered at the Registry
using the Generic Service. We call the client proxies as service proxy. R2
together with the service proxy is then used to interact with R1. We refer to
R2 with its service proxy as service consumer. This is so because the service
proxy discovers the registered service of the R1 collaboration role with which
the R2 collaboration role uses and it’s now able to interact with R1.

We depict the service discovery mechanism principle in Fig. 3.5 where
two collaboration roles CL-R1 and CL-R2 want to interact to perform a
collaboration service. The Generic Service registers the behavior of CL-R1
at the Registry using a service name and an address. The behavior of the
Generic Service and CL-R1 together is what we call the service provider. In
the client system, the service proxy contacts the Registry using the same
service name in order to find the address of the Generic service. Once it
discovers this address, CL-R2 can now collaborate with CL-R1 by sending
its messages via the address of its Generic Service. The behavior of CL-R2
together with its service proxy is what we call the service consumer. With this
service discovery mechanism, there exists a service provider-service consumer
relationship which has a direct relationship with the actual collaboration roles
for each collaboration service.

If you take the collaboration roles of the login service as an example,
one of the roles is implemented as a service provider. This means that the
collaboration role uses a Generic Service to register its behavior with the
Registry. The second role is implemented as a service consumer which means
this role is used together with a service proxy to discover the service behavior
of the first role. (See more details under Registry).

26

Figure 3.5: Service discovery of two roles collaboratiing to perform a service.

3.2.3 Registry

The Registry component in the model provides the role of registering services
from service providers and availing these services to the service consumers.
The Registry maps the address of the Generic Service from a service provider
with its unique service name and stores it in a table of entry. A service proxy
from a service consumer will then send a request to the Registry with the
service name it wants to discover. The Registry checks to see if its table has
a mapping to the requested service name. Once its mappings contain the
requested service name, the address of the Generic Service representing the
location of the service provider is returned to the service proxy. With this
address the service consumer through its service proxy can now interact with
the service provider.

A service provider role can be located in either the client or server system.
Similarly a service consumer role can be found in either the client or server
system. A typical model of the service provider-service consumer role behav-
ior is shown in Fig. 3.6. This model is similar to the client-server architecture
where the clients (service consumers) initiate communication sessions while

27

the servers (service providers) await requests.

Figure 3.6: Login service collaboration.

Taking the Login Service collaboration as an example, the server provides
the service provider role while the user provides the service consumer role.
In this instance the LG-S role located in the server will need to be registered
in the Registry first with a unique service name. Once this is done, the
user which has the LG-C role can request (discover) the service from the
Registry using the service name of the service provider. Fig. 3.7 shows a UML
sequence diagram of the interactions within the Login Service collaboration
as seen from the service discovery illustration in Fig. 3.5.

Figure 3.7: UML sequence diagram of Login Service collaboration.

28

A Location Service collaboration structure where the user plays the ser-
vice provider role and the server plays the service consumer role is illustrated
in Fig. 3.8. The location service works by using various location technologies
such as GPS and WIFI to get the location of a user which is then sent to the
server. In this instance since the server requests the location from the user,
the server has the service consumer role for this collaboration and the user
which provides the location service has the service provider role. Therefore,
the LS-C in the user must be registered first in the Registry also with a
unique service name. The server with the LS-S role can then discover the
service provider through the Registry.

Figure 3.8: Location Service collaboration.

3.3 Relevant Building Blocks for Service Dis-

covery

In this section, the building blocks that are used to implement service reg-
istration and service discovery are explained. In addition the Proxy Host
block is presented briefly to explain the technologies used to handle internal
communication as well as external communication between the distributed
components.

The building blocks for service registration and service discovery are de-
veloped using parameterization to describe their service behavior. The in-
stantiation of these building blocks by parameterization makes it possible to
reuse the same blocks for multiple service registration and service discovery.
The building block for service registration called Generic Service is shown
in Sec. 3.3.1. In Sec. 3.3.2, a set of building blocks for service discovery is
illustrated with an example called Login Service Proxy, from the login service
collaboration.

29

3.3.1 Generic Service

The Generic Service block is used to register a service behavior with the
Registry. It is a parameterized block and so the user instantiates the block
with a service name. The user is prompted to provide an instance parameter
value through a GUI. The value provided is the service name. The service
name is then used to register an address of the Generic Service block at
the Registry. The internal behavior is as shown below in Fig. 3.9. The two
blocks involved here are the Register and Deregister Service block and Server
Proxy block.

Figure 3.9: Internal behavior of Generic service block.

Server Proxy

The primary purpose of the Server Proxy is to connect to the Proxy Host.
The Server Proxy listens to incoming messages that are sent to a particular
serviceSessionID. The serviceSessionID is the service name used to instanti-
ate the Generic Service block. In the Generic Service, the serviceSessionID is
passed to the Server Proxy. Inside the Server Proxy block shown in Fig. 3.10,
a subscribe operation registers the serviceSessionID with the Proxy Host and
can thus monitor and receive incoming messages to this serviceSessionID.
The received messages are passed via the receive pin.

The Server Proxy also performs send operations. This is necessitated
when the Generic Service needs to send a reply to a message that has previ-

30

ously been received. Again for such an operation the Server Proxy collabo-
rates with the Proxy Host to perform this function.

Figure 3.10: Internal behavior of Server Proxy block.

Register and Deregister Service

As the name of the building block suggests, the Register and Deregister Ser-
vice block shown in Fig. 3.11 has the functionality to register and deregister
services. To register or deregister a service, the Generic Service creates a
registry entry using the address and the service name which is passed to the
Register and Deregister service block. In this block a Register service block
handles registration process separately while the Deregister service block
handles the deregistration function. The two blocks have the same external
behavior. They only differ in the kind of messages they send to the Registry.
The internal behavior of the Register Service is shown in Fig. 3.12.

31

Figure 3.11: Internal behavior of the Register and Deregister Service block.

Figure 3.12: Internal behavior of the Register Service block.

The Register Service block contains a Client Proxy block shown in Fig.
3.13, which similarly to the Server Proxy is a basic building block for commu-
nication as explained in Sec. 3.2.1. The Client Proxy has the same external
behavior (ESM) as the Server Proxy. It’s purpose is also to communicate
with the Proxy Host block. The client proxy differs from the server proxy in
its internal behavior by passing the Registry address to the Client Proxy as
a variable. This address is then used in the message.setReceiver method for

32

every message sent using the Client Proxy. This is done to force all messages
sent from the Client Proxy to be received by the Registry.

Figure 3.13: Internal behavior of the Client Proxy block.

3.3.2 Login Service Proxy

The Login Service Proxy is used to illustrate the set of blocks that are used
in service discovery. Shown in Fig. 3.14, the proxy has two blocks namely
the Discover Service and the Client Proxy blocks. The discover service is the
block that discovers the service. It is also instantiated through parameteri-
zation similar to the configuration of the Generic Service. The service name
used to instantiate the Discover Service block must be the same as the one
used for the service registration. In the Discover Service block shown in Fig.
3.15, a remote message is sent to the Registry using the Client Proxy. The
message contains the name of the service it wants to discover and it requests
the Registry to return an address of that service name contained in the mes-
sage. The Client Proxy will receive a reply message from the Registry and
consequently return the address of the service if available via found pin or
otherwise terminate via failed pin.

The address of the service found by the Discover Service block is fed

33

to another Client Proxy as shown in the Fig. 3.14. The Login Service
Proxy having found the address of the Login Service can then send messages
using the Client Proxy by setting the address of the Login Service in its
message.setReceiver method anytime it wants to send a message.

Figure 3.14: Internal behavior of the Login Service Proxy block.

Figure 3.15: Internal behavior of the Discover Service block.

3.3.3 Proxy Host

The Proxy Host block may be considered as an interface for communica-
tion. In a particular system, several components may want to communicate

34

with other components in the same system or different components in other
systems. The basic building blocks for communication that are used in the
City Guide application; Client Proxy and Server Proxy, collaborate with the
Proxy Host to make communication possible in the system.

In implementing systems, they could be deployed on the same local host
machine or distributed on different platforms. For the city guide applica-
tion, the Registry and Server systems are deployed on J2SE while the Client
system is deployed on an Android platform. The Proxy Host encapsulates
ActorFrame technology that supports P2P communication architecture with
asynchronous message passing which effectively handles active service and
distribution [KB09].

The Proxy Host is parameterized with some system configurations. There
are four configuration parameters each separated by “-” and is represented
as such; param1-param2-param3-param4.

� param1 defines the system type: Server for the server node (Registry),
Client for a standard Java client, AndroidClient for an android client.

� param2 is the IP address of the server node (Registry).

� param3 is the listener port of the server node.

� param4 is the listener port of the client node.

The internal behavior of the Proxy Host shown in Fig. 3.16 is started
via start pin which sets the local address as a variable. The local address
consists of the port number and IP address of the terminals running the
client, server and Registry systems. A control flow also performs an opera-
tion getProxyType which returns the String value of the instance parameters
(param1-param2-param3-param4) set for the Proxy Host . This is used to
start the ActorRouter block.

The Proxy Host performs send operations on behalf of the Client Proxy
and Server Proxy blocks. When a send operation is done, a reception signal
OUTBOUND is received in the Proxy host together with the message. An
operation isLocal is performed next which results in a boolean decision. The
operation returns true if the message sent should be received by the other
components in the same system. Other messages will flow via the else branch
and will be forwarded to the ActorRouter block via the send pin. This means
that these messages are either not addressed to any components within that
system or have been intentionally forced out to be received by components
in other systems.

35

(a) Internal behavior of Proxy Host

(b) Internal behavior of Actor-
Router

Figure 3.16: Internal behavior Behavior of Proxy Host and ActorRouter.

The ActorRouter block encapsulates the ActorFrame protocol and ba-
sically supports routing of messages between actors deployed on different
machines. This supports the distributed deployment of the City Guide ap-
plication that has the client system running on Android with the Server and
Registry systems running on a J2SE local host machine.

36

Chapter 4
Components of the City Guide
Application

This chapter presents the building block components of the three systems
making the City Guide application as has been developed already. We ana-
lyze the system components and show how the service discovery mechanism
is used to implement the collaborative services between the users and the
server. It is important to have this overview of the system design before
components for the new services are added. Section 4.1 presents the Reg-
istry System. In Sec. 4.2 we present the server part of the application called
the City Guide Server and in Sec 4.3 we present the client part of the ap-
plication, called the City Guide App. Reference to Chap. 3 is encouraged in
order to put the system components in context with regard to the high level
overview already explained.

4.1 Registry System

In this section, the various building blocks and call operations that make up
the Registry system are presented. The Registry system acts as a registry for
all the services in the system. Figure 4.1 gives an overview of the Registry
system. The system contains a Service Registry block and a Proxy Host
block. The Proxy Host is a common block that must be contained in each of
the three systems as already explained. When the Registry system is started,
a token flow starts from the two initial nodes. A timer is used to delay the
Service Registry block so as to ensure that the Proxy Host block is started
before the Service Registry block. This is necessary since all communication
from within the Service Registry block depends on the Proxy Host.

37

Figure 4.1: Registry System.

4.1.1 Service Registry

The Service Registry provides the service whereby all services will be regis-
tered (service registration) and all service proxies will look up (discover) for
the corresponding service. Its behavior and ESM is shown in Fig. 4.2.

The block starts via the initial pin start and performs a Java operation
to set the sessionID of the Registry which is then passed to the Server Proxy
block (explained in Sec. 3.3.1). The block can receive a message of a certain
data type Message from the receive pin of the Server Proxy block. The re-
ceived message is checked to extract a signalID. The signalID is a String value
contained in the message and based on it, a decision is taken to perform either
of the following operations: discover, register, deregister, unexpectedSignal.
As their names suggest, the register operation is used to register new services
in the Registry. The discover operation is where available services are looked
up (discovered) and the deregister operation is where registered services are
removed from the Registry. The unexpectedSignal operation handles any
other message that is undefined.

The discover, register and deregister operations also return values of type
Message which is sent to the send pin of the Server Proxy. The reason for
this is that it is important for the Service Registry to communicate back with
the sender’s of the messages on the status of the operations they want the
Registry to execute. The Registry also uses this return value to provide any
needed resources such as references to the Registry address and references to
other service addresses’.

38

(a) Internal behavior of ServiceRegistry

(b) ESM of Service Reg-
istry

Figure 4.2: Behavior and ESM of Service Registry.

39

A service that wants to register in the Registry can either be successful
or fail in the registration process. When a service is successfully registered,
an acknowledgement message of “OK” is sent to the registered service to
inform it of the success of registration of the service. Conversely when the
registration fails, a “failed” message is sent to that service. Similarly in a
deregister operation, when the service is successfully deregistered from the
Registry, an “OK” message is sent to the service that requested the action
and if the operation was unsuccessful, a “failed” message is returned to the
service.

In a discover operation, similar acknowledgement messages are sent as
well, as explained in the register and deregister operations. In addition how-
ever, given a successful discovery of a service, a reference to the address of the
discovered service is added to the message before it is sent to the requesting
component.

Considering the ESM of the Service Registry , after a token has been
emitted from the start pin the block will remain in active state until it
receives a token via the stop pin. The Registry system is supposed to be
running throughout the lifetime of the application.

4.2 City Guide Server

The building blocks making up the server system of the City Guide appli-
cation are presented in Fig. 4.3. As already explained, this part of the
application contains the server side application logic of the City Guide ap-
plication. It consists of the Group Manager, City Guide Service, Proxy Host
and Web Server blocks. When this system is started, a token is fired simul-
taneously through all the three initial nodes present. It is important again
to ensure that the Proxy Host is started first. This is achieved by using a
timer to delay the start of Group Manager block.

40

Figure 4.3: City Guide Server system.

After the Group Manager block has been started, it will emit a token
via pin uloggedIn. This pin is a streaming pin which provides a data flow
to start an instance of the City Guide Service. The City Guide Service is a
block that can create multiple instances of itself (see Sec. 4.2.2). The City
Guide service has a streaming pin loc which returns a result that is fed to
the Group Manager via its pin uPosUpdate.

4.2.1 Group Manager

The Group Manager contains the Login Service and the Group Positioning
Service blocks. Figure 4.4 shows the internal behavior and ESM of the Group
Manager. The block is started when a token flows via pin start. An operation,
startGM is performed next. This operation loads all configurations for the
system including the players of the game and the groups they belong to.
Configuring the system by adding, modifying or deleting players and groups
is normally done prior to deploying the system. The game owner (teacher) is
responsible for doing this configuration and is done using XML. The variables
users and groups of type Vector are used to hold the players and the groups.

Considering the ESM of the Group Manager, the block is in active state
after a token is received via start pin. In the active state, the block can
emit tokens via streaming pin uloggedIn or receive tokens via streaming pin
uPosUpdate. The block only terminates when it receives signal via stop.

41

(a) Internal behavior of GroupManager

(b) ESM of GroupMan-
ager

Figure 4.4: Behavior and ESM of Group Manager.

42

Login Service

The Login Service, shown in Fig. 4.5 is the component which executes the
service provider role of the Login Service collaboration. It contains a Generic
Service which it uses to register the service with the service name “login”.
The corresponding service consumer role (found in the client) sends login
data and is received by the Generic Service via receive pin. The login data
is fed to a Java operation extractMessage which checks whether the client
exists and should be authenticated. Based on this operation, a message is
sent via send pin to the service consumer to either grant or deny the client.
An authenticated client will cause the Login Service to emit a data flow via
pin loginOk while an unauthenticated client causes no further action in this
block and is terminated in the loginFailed operation.

Figure 4.5: Internal behavior of the Login Service block.

Group Positioning Service

For the group position service collaboration (see Fig. 3.2), the Group Positin-
ing Service shown in Fig. 4.6 is the component that plays the service provider
role. The main function of the Group Positioning Service is to receive posi-
tion updates from every user and forward them to the other members of the
group. The block uses the Generic Service to register in the Registry with
service name “grouppositioning”. A client sends a message requesting this
service and it is received via receive pin. An operation getGroupMemberLoca-
tions checks to see if the client belongs to any groups. If this is confirmed as
true, a location update of the group is returned to the client via send pin.
Users periodically update their positions to the Group Positining Service via
the streaming pin grpMemberLocUpdate.

43

Figure 4.6: Internal behavior of the Group Positioning Service block.

4.2.2 City Guide Service

The City Guide Service shown in Fig. 4.7 manages part of the resources that
the server requires to perform the rest of the collaboration with a client after
login. Active initiatives that the server makes towards the user are controlled
in this block. An instance of the City Guide Service block is created for
each user after successful authentication by the Login Service in the Group
Manager. This means that a copy of the City Guide Service block with all its
internal resources is created for each client. The intended lifetime for each
copy of the block is the duration for which the client remains active and is
interacting with the server. This is referred to as multisession creation. As
such, each client using the application will have a corresponding City Guide
Service block component in the application which will be managed entirely
by the server.

The block is started via the userLoggedIn pin which carries a data flow,
the value of which is the username of the client for which the City Guide Ser-
vice instance is created. The operation setCred is performed to set the block
instance and also to download the system configurations for the treasures
(points of interest) associated for the user. The City Guide Service block
contains the Location Aware Quiz Service Proxy and Location Service Proxy
blocks. These two blocks are service discovery blocks and hence execute the
service consumer role for their collaboration services. The Location Service
Proxy is the component that subscribes to the location service provided by a
corresponding component in the client. The Location Service Proxy requests
for periodic location updates from the client. The location information re-
ceived is combined with the client’s username and sent to the Group Manager
via pin loc. In addition the location information is used to check if the client

44

is near a point of interest. In such a case the Location Aware Quiz Service
Proxy is started to perform the quiz service collaboration.

The Location Aware Quiz Service Proxy is started when the user’s loca-
tion is near a treasure. The Location Aware Quiz Service Proxy subscribes
to the Quiz Service (found in the client) and takes initiative towards the
client by pushing questions to the client via reqQuiz pin.

Figure 4.7: Internal behavior of the City Guide Service block.

4.3 City Guide App

The City Guide App shown in Fig. 4.8 is the system deployed on an Android
phone and is the final part of the City Guide application. As explained in Sec.
3.2, this is the part that contains the application logic for the client side of the
City Guide application. The system consists of Server Connection Dialog,
Login App, City Guide UI and Proxy Host blocks. Here too, the Proxy Host
should be started before the main components are started. A timer delay
inserted before the start of the City Guide UI achieves this purpose.

45

Figure 4.8: Internal behavior of the City Guide App block.

The system starts from an initial node and a token flow to start the
Server Connection Dialog via start pin. An operation setAndroidContext is
performed prior, in order to set the Android context for the running applica-
tion. The Server Connection Dialog emits a token via tryConnect pin which
is forked to start the Proxy Host and City Guide UI block. The City Guide
UI after it has been started will emit a token via regOk pin. The token is
then forked to the streaming pin connOK and also via start pin of Login
App. A successful login by the user will cause a data flow via loggedOn pin
which is then fed back to the City Guide UI via loggedIn pin.

4.3.1 Server Connection Dialog

The Server Connection Dialog encapsulates an Android activity screen which
presents the first interactive screen between the user and the application. The
activity shows a dialog window with an editable text field with which the user
can enter the “server IP” address it is trying to connect with. The IP address
to be entered in this field will be the IP address of the local host machine on
which the Registry system is running. A progress bar is shown as well when
the connection process is in progress. When the block receives a token via
connOk pin, the dialog window and the progress dialog are cleared off the
screen. Its internal behavior and activity screen are shown in Fig. 4.9.

46

(a) Internal behavior of Server Connection Dialog

(b) Activity screen show-
ing dialog window

Figure 4.9: Behavior of Server Connection Dialog and Activity screen show-
ing the dialog window.

4.3.2 Login App

The Login App block is the component on the client side that collaborates
to perform the Login Service. It executes the service consumer role of the
Login Service collaboration. Login App contains two distinct blocks; An-
droid Login UI and Login Service Proxy block. This decomposition leads to
a separation of user interface concerns from service collaboration concerns
[KKB09]. Figure 4.10 shows the internal behavior and ESM of the block.

47

(a) Internal behavior of the Login App block

(b) ESM of Login App block

Figure 4.10: Behavior and ESM of Login App.

The Android Login UI provides a user interface with which the user can
log into the system. The behavior of this block is to encapsulate all interac-
tions from and to the user as well as manage operations of interface elements
such as windows and buttons. Considering the ESM behavior of the block,
after the block is started through the parameter node start, it emits a token
via login pin. This sends the login data to the Login Service Proxy which
sends the data to the Login Service located in the server. In this active
state, the block waits to receive a token via either its loginOK or loginDe-
nied pins. Based on this the block will either forward a successful login data
via loggedOn pin or terminate via cancel.

The Login Service Proxy is a service discovery block and its function is to
discover the Login Service registered in the Registry. It receives login data
via inPincode pin which is sent to the Login Service in the server and receives
response from the Login Service which it emits via access pin. Noteworthy
from the Login App block is that the Login Service Proxy is started first and
it is only when it emits a token via ok pin that the start pin of the Android
Login UI is triggered. The reason for this design method is to ensure that
the Login Service is discovered by the Login Service Proxy first before the
user is presented with the user interface.

48

4.3.3 City Guide UI

After a successful login, a data flow is sent via the streaming pin loggedIn
to start the main user component which is the City Guide UI block. The
block itself is started prior to this via its start pin. The reason for this is
to make sure all components which are implemented as service providers are
registered immediately when the City Guide App is started. It is important
to prioritize such components so that they are registered as soon as possible.
This ensures that service consumers that intend to find these services can do
so immediately they contact the Registry. The internal behavior of the City
Guide UI is shown in Fig. 4.11.

Figure 4.11: Internal behavior of the City Guide UI block.

The Android Map UI block encapsulates the main user interface behavior
presented to the user. Other component blocks (Group Positioning Service
Proxy, Location Service and Location Aware Quiz Service) in the City Guide
UI interact with the Android Map UI block throughout its lifecycle. The
user interface is a map display showing the current location of the user on
the map.The Location Service uses the Generic Service block to register its
service with the Registry. Its function is to use the location technology
capability of the mobile device to periodically get the position of the device.
This Location Service block is the user component implemented as a service
provider that performs the location service collaboration with the server. In
addition to periodically supplying the Location Service Proxy at the server
with location data, it emits the location data via its loc pin which is fed to
the Android Map UI block to update the map.

The Group Positioning Service Proxy block is the user component that
performs the group positioning service collaboration. It contains a service

49

discovery block which it uses to discover the Group Positioning Service at the
Registry. Whiles the map is being displayed on the user’s screen, the user can
request for the position updates of other group participants by going to the
options menu and choosing “Show Group Members”. With this done a token
is sent via reqGrpLoc pin to the reqLoc pin which then sends a remote message
to the server requesting for the updates. The received updates are emitted
through parameter node loc and fed back to Android Map UI via respGrpLoc
pin. The Android map UI refreshes itself and the position information of the
user and other group participants are displayed on the map, represented as
icons.

The Location Aware Quiz Service block is used for the quiz service collab-
oration. This block contains a Generic Service block with which it registers
its service with a service name “quiz”. In this collaboration the server com-
ponent Location Aware Quiz Service Proxy forwards questions to the user
when the user is near a point of interest. The Location Aware Quiz Service
receives the questions and presents the user with an interactive quiz user
interface with which the user answers the set of questions. The details of
this user interactivity is encapsulated in the Android Quiz UI block which is
not further explored here. The answers given by the user are forwarded back
to the Location Aware Quiz Service Proxy using the send pin of the Generic
Service. The Android Quiz UI terminates after the quiz session and the user
is taken back to the Android Map UI. The internal behavior of the Location
Aware Quiz Service is shown in Fig. 4.12.

Figure 4.12: Internal behavior of the Location Aware Quiz Service block.

50

Chapter 5
Introducing New Components

In this chapter we present the components for the two new services imple-
mented, i.e. IM and Group Chat service. In our design, the IM and Group
Chat services use a similar architecture with differences only in their func-
tionalities. Whereas the IM enables two group participants to communicate
at a time, the Group Chat allows all participants to communicate at the
same time. We will illustrate the underlying architecture of our design using
the Group Chat platform. In Sec. 5.1 we introduce the Group Chat service
collaboration and use examples to illustrate its service behavior. We also ex-
plain the communication principle used within the Group Chat service and
show how we overcame a limitation imposed on our design by the service
discovery mechanism used in deploying the City Guide application. Section
5.2 and 5.3 present the building blocks of the Group Chat service for the
server system and client system respectively. Here we show how the building
blocks are combined with existing blocks within the City Guide application.
In Sec. 5.4, we present an overview of the IM service components and show
how they are integrated within the City Guide application. We also high-
light the specific building blocks that exhibit differences in behavior from the
Group Chat service.

5.1 Group Chat Platform

Group Chat is a basic support service that is important for the city guide
application since the concept of this application is to support situated col-
laborative learning. In SCL there is learning through participation, problem
solving and fun [KB09]. With the Group Chat platform, players can col-
laboratively answer the questions with group members during the question-

51

(a) City Guide Service with Group Chat service

(b) Group Chat service collaboration

Figure 5.1: City Guide Service and Group Chat Service collaboration.

answer session.
The Group Chat service involves collaborations among many users. The

UML collaboration of the City Guide Service is extended to capture the
Group Chat service behavior. Figure 5.1 shows the city guide service col-
laboration and the Group Chat service collaboration. The collaboration role
GroupChat Service interacts with the users and the server, and is described
by the collaboration use c3 for the Group Chat Service.

5.1.1 General Architecture

The purpose of the Group Chat functionality is for users to communicate and
be able to send and receive messages among one another simultaneously and
in real time. In a typical scenario for the City Guide application, we assume
group participants in the game are scattered in the city with each in search
of a point of interest. Supposing one member locates a point of interest, he
is presented with questions in the quiz service. He could immediately start
a Group Chat with the other group members where they could discuss and

52

solve the questions before he submits a solution.
Considering that the distributed agent based platform is used in deploy-

ing the City Guide application, it is important to illustrate how the agent
structure and roles, bound to the Group Chat service interact. We will use
block diagrams to illustrate this. In Fig. 5.2, a reusable role GCp in the client
system participates in Group Chat with a corresponding GCs role found in
the server system.

We have chosen to implement the Group Chat platform using the ser-
vice discovery mechanism explained in Chap. 3. For this, the GCs role is
implemented as the service provider and will therefore be registered with
the Registry. We name this as GroupChat Service building block in our de-
sign. The GCp role is implemented as the service consumer and so has a
GroupChat Service Proxy with which it uses to discover GCs. Since there
will be multiple users of the system at a time, the Group Chat service must
be made public when registering in the Registry such that each GroupChat
Service Proxy of the client can discover it.

Figure 5.2: Illustration of Group Chat service behavior (user A sends a
message).

The main function of the GCs is to route messages among the clients. This

53

is achieved by receiving messages from the various group members and using
its internal mechanism to send the messages to the other group participants.
In Fig. 5.2, three users in the application use the Group Chat functionality.
User A’s GCp role sends a Hello message. The message is received by the
GCs role in the server which then forwards the message to users’ B and C.
Similarly user B sends a Hi message which will be received by the GCs role
in the server system. The message is then forwarded to users’ A and C as
shown in Fig. 5.3.

Figure 5.3: Illustration of Group Chat service behavior (user B sends a mes-
sage).

5.1.2 Communication Principle for the Group Chat
Service

From the block diagram illustrating the Group Chat functionality, we can
observe that the GCs role in the server has the responsibility of a message
router. It can also be regarded as a chat server whereby it routes messages
sent from one client to the others. In order for clients to receive Group
Chat messages from the server, the GCs role must know of the existence of

54

the clients in the first place. Clients should have a means of subscribing to
the chat server (GCs) such that when a message is received by the GCs, it
can look up its routing table and forward the message to clients that are
subscribed to receive messages from it.

To illustrate this idea further, we consider a sequence diagram of a simple
chat service in Java shown in Fig. 5.4. As shown, each client creates a new
listener object. The client then registers its name and listener with the server.
When a message is sent from a client to the server, the server will forward
the message to the listeners of all clients that have been registered with it
(notifyMessage). This will be a continuous process for messages sent from
all clients.

Figure 5.4: Group Chat sequence diagram.

Using this idea for implementation in our architecture proved challeng-
ing. This is because, with the service discovery mechanism being used for
the Group Chat, the GCs and GCp roles have a service provider-service con-
sumer relationship. This means that the GCp component must first initiate
communication session (send action) before the GCs can respond by provid-
ing its service. Assuming A sends the first message, the GCs in the server

55

will receive the message and therefore know of the existence of A’s GCp role.
The function of the GCs is to forward the message to B and C however it
cannot achieve this since it will only know of the existence of the GCp roles
of B and C if they also send a message to it. With this limitation the Group
Chat functionality cannot be achieved since the GCs should be an active
service [SB08] that can respond to user initiatives while it takes initiatives
towards other users as well.

From the block diagrams in Fig. 5.2 and 5.3, it can be seen that the
messages received by the users terminate just on the outer block. This was
purposefully done so as to first explain the communication structure and the
limitations imposed by the service discovery mechanism.

Figure 5.5: Illustration of Group Chat service behavior (with Address col-
laboration service roles).

To solve this limitation, we have introduced two new reusable roles GLp
and GLs in the client and server systems respectively as shown in Fig. 5.5.
The function of the GLp role is to inform the server of its existence immedi-
ately the client is logged in. It achieves this by collaborating with the GLs
role. In the server, each client will be created its own GLs role (GLsA, GLsB,
and GLsC) as shown in the Fig. 5.5. The GLs components for each client

56

then establish a relationship with the GCs role by providing it a reference to
the GLp of their clients. The GCs keeps a table of the references and will be
updated whenever a new client arrives in the system. With this model, the
GCs role will now know of the existence of all clients that want to receive
Group Chat messages. When it receives a message from any client, it simply
checks its table and forwards the message to the GLp of all clients except
the GLp of the sender.

The GLp and GLs roles perform a collaboration. This collaboration, we
call Address Service collaboration is shown in Fig. 5.6. The collaboration
role GLp is implemented as the service provider whiles the GLs role is im-
plemented as the service consumer. This collaboration provides the service
of registering a receiver for each client with the GCs in the server. The GLs
then has a dynamic role binding with the GCs to perform the Group Chat
service collaboration.

Figure 5.6: Illustration of Group Chat service behavior (with Address col-
laboration service roles).

5.2 Server Components of Group Chat Ser-

vice

This section presents the building blocks for the Group Chat service that
are located in the server side of the City Guide application. The City Guide
Server which is the system containing building blocks for the server compo-
nents has already been explained in Sec. 4.2. The aim now is to integrate the
Group Chat service blocks into the City Guide Server. Two building blocks
namely GroupChat Service and Block Address Service Proxy are introduced.
Figure 5.7 shows a pictorial view of the City Guide Server system and the
specific blocks in which the GroupChat Service and Block Address Service
Proxy will be located.

57

Figure 5.7: City Guide Server showing the location of server components of
the Group Chat service.

5.2.1 Block Address Service Proxy (GLs)

This building block forms part of the components used to perform the Ad-
dress Service collaboration explained in Sec. 5.1.2. The block is a typical
service discovery block and therefore contains a discover service block which
it uses to discover the Block Address Service from the Registry. The main
function of the Block Address Service Proxy is to initiate a request to the
Block Address Service located at the client side to provide a reference of it-
self. The reference provided is a unique address of the Block Address Service.

Placing the Block Address Service Proxy block in the City Guide Service
block is required for the server to have a reference to each client for the Group
Chat service collaboration as has been explained. Since a new City Guide
Service instance is created for each user after a successful login procedure,
the Block Address Service Proxy component will also be created for each new
user with which it can receive the Block Address Service address from the
client.Each client therefore has its own Block Address Service Proxy compo-
nent in the server with which it performs the Address Service collaboration
with. Figure 5.8 shows the new design of the City Guide Service block.

58

Figure 5.8: Internal behavior of City Guide Service with a new component.

When an instance of the City Guide Service block is created for each
user via the userLoggenIn pin, a fork inserted sends a control flow to start
the Block Address Service Proxy block. The discover service block uses the
service name “Block Address” to discover the Block Address Service at the
Registry and on finding it emits a token via ok pin. A control flow through a
zero timer is immediately used to emit a token through the streaming pin re-
qAdd. This action then sends a remote message to the client’s Block Address
Service prompting it to provide it with an address. The Block Address Ser-
vice Proxy emits the received requested address from the client via str pin. A
special operation block AddressToString is performed to combine the clients
username and the address as a String value which is then sent out as a
data flow via the blockAddr pin. From Fig. 5.7, it can be observed that the
blockAddr pin from the City Guide Service emits a data flow to the uGrpchat-
BlockID pin in the Group Manager. The GroupChat Service block is shown
next and its relationship with the Block Address Service Proxy explained.

5.2.2 GroupChat Service (GCs)

The GroupChat Service block constitutes an important component in the
Group Chat service collaboration. It has a logical equivalence to the GCs
role of the server system illustrated in Fig. 5.2. The block is implemented as
a service provider and therefore contains the Generic Service block which is
used for the service registration. The function of the service it provides is to
receive chat messages from users and forward these messages to other group
participants currently signed into the application. The GroupChat Service

59

(a) Group Manager with new block GroupChat Service.

(b) ESM of Group Manager

Figure 5.9: Group Manager behavior and ESM.

block is placed in the Group Manager block so that it can be accessible to all
clients who use the service. In addition additional resources such as group
and player configurations are contained in the Group Manager hence it will
be easier for the GroupChat Service block to access such information when
performing its functionality. Figure 5.9 shows the behavior and ESM of the
Group Manager block with the GroupChat Service block added.

Considering the internal behavior of the Group Manager block, the GroupChat
Service is started via the start pin after a token is emitted via regOK pin
from the Group Positioning Service. The two services are independent of
each other and can therefore be started separately. However the GroupChat
Service is dependent on the Login Service and so should be started only af-
ter the Login Service has registered successfully and emitted a token via its
regOK pin. The introduction of a new streaming pin uGrpChatBlockID to
the Group Manager passes a data flow to the GroupChat Service. The ESM

60

of the Group Manager will change with the addition of this new pin. In the
active state the Group Manager block will in addition receive tokens via the
streaming pin uGrpChatBlockID.

(a) Internal behavior of GroupChat Service.

(b) ESM of GroupChat Service

Figure 5.10: GroupChat Service behavior and ESM.

In the GroupChat Service behavior shown in Fig. 5.10, the Generic Ser-
vice uses the service name “GroupChat” to register the service with the
Registry. The block will receive data via the userGrpChtBlockID pin from
the City Guide Service instance created for all successfully logged in clients.
The data received is the client’s username and its address obtained by the
Block Address Service Proxy (explained in 5.2.1). The purpose of this in-
formation is to register each client’s address with the GroupChat Service.
The GroupChat Service performs an operation updateBlockAddr to do this
registration. In the operation a hash map is kept for each client entry. A
key/value relationship is maintained which stores each client’s username with

61

its address. The ESM of the block will be such that in the active state, it
can receive tokens via the userGrpChtBlockID pin hence new users can reg-
ister their addresses with the GroupChat Service for as long as the server is
running.

The Generic Service receives remote messages from clients subscribed to
the GroupChat Service via the receive pin. The client is the user wanting to
send chat messages to the other group participants. The received message is
set as a variable in the block and fed as input to the Java operation multi-
castMessage. It is in this operation that the central logic of the GroupChat
Service is executed.

Before the details of the multicastMessage operation are explained, it
will be important to explain the structure used by a remote client to send
a Group Chat message. A Group Chat message sent by a user follows the
structure: SENDER#MESSAGE where the SENDER value is the username
of the sender of the message and the MESSAGE value is the actual informa-
tion sent by the user. The Java code used in the multicastMessage operation
is shown in Appendix A.

The function of the operation is to forward the chat message from one user
to the other users using their addresses which have been registered with the
GroupChat Service. After receiving the message and extracting the message
payload, it is split from its SENDER#MESSAGE structure. A for statement
is used to iterate over the hash map containing the usernames and their
respective addresses. What this part of the operation does is to fetch the
entry value of each user in the hash map. This value is the address which
is stored as a String value. This value is converted to the Address data
type. A new message is composed (response) with the payload being the
same message received from the sender. In composing the new message, its
set.Receive() value is then set as the Address of the hash map entry value.
An internal notification is then sent to the GroupChat Service block using
the sendToBlock() method with the signal “SEND” and value of the message
response. The GroupChat Service block receives the signal and forwards the
message to the Generic Service via the send pin.

Whenever a new message is received by the multicastMessage, the for
loop will be executed for all entries in the hash map, except for the address
of the sender of the original message. This ensures that when a message is
sent by a user, it will be forwarded to the other group participants except the
sender itself. In summary the GroupChat Service can be seen as a message
router which receives incoming messages from various users and forwards the
messages to other users based on their receiver addresses previously registered
in its hash map table.

62

5.3 Client Components of Group Chat Ser-

vice

In this section, the set of building blocks on the client side that collaborate to
perform the group chat service collaboration are presented. The new building
block components are introduced within the City Guide UI block of the City
Guide App system. This is so because the City Guide UI is the main block
executed after a successful authentication of a client by the server and since
the group chat service is only usable by logged in clients, it is logical to
locate its components within the City Guide UI block. The new building
block introduced is called the GroupChat App. Figure 5.11 gives an overview
of the City Guide App with the GroupChat App block.

Figure 5.11: City Guide App showing the location of GroupChat App.

The GroupChat App block encapsulates the functional behavior of the
group chat collaboration involving several other components. Its details will
be explored subsequently. In the City Guide UI block shown in Fig. 5.12,
the GroupChat App has parameter nodes with which it uses to interact with
other components in the block. The GroupChat App is initialized via its
start pin, in the same process that starts the City Guide UI block. This is
so because the GroupChat App contains a component which is implemented
as a service provider which requires to be registered immediately the client
side application is started.

When the client is logged in successfully, the user credentials received via
the loggedIn pin are also provided to the GroupChat App via its int parameter

63

node. With this data, the username can be obtained which is used to identify
each client taking part in the Group Chat collaboration.

Figure 5.12: City Guide UI block with GroupChat App block.

The Android Map UI block which encapsulates the main map user in-
terface presented to the user during the running of the application, interacts
with the GroupChat App by sending a control flow through its streaming pa-
rameter node startGrpChat to the startFrmMap pin of the GroupChat App.
On the map display, the client uses its options menu to select the item “Go
To GroupChat”. This sends a notification to the Android Map UI block
which is received by the reception signal “GRP CHAT”. This initiates a
control flow which is emitted via the startGrpChat pin. The purpose of this
action is to open the Group Chat user interface which is a component block
located in the GroupChat App. A screen shot of the map display with its
options menu and the internal behavior of Android Map UI showing the new
reception signal “GRP CHAT” is shown in Fig. 5.13.

64

(a) “Go To Group Chat” is
a menu item pressed to open
the Group Chat UI.

(b) Android Map UI block with new signal reception event
“GRP CHAT”.

Figure 5.13: Options menu item of map display and Android Map UI block
behavior.

65

5.3.1 GroupChat App

The internal behavior and ESM of the GroupChat App is shown in Fig.
5.14. It consists of three building blocks namely Group Chat UI, GroupChat
Service Proxy and Block Address Service. These building blocks are designed
such that there is separation of user interface behavior from actual service
behavior of the group chat service. The Group Chat UI encapsulates all
interactions to and from the user. The GroupChat Service Proxy and the
Block Address Service components are used in defining the service behavior
of the group chat service collaboration.

From the ESM of the GroupChat App, the block is initialized via the start
pin to purposefully register the only service provider component in the block.
After a successful registration of the Block Address service, a token emitted
via regOK pin transitions the block from state s1 to s0 where the block will
remain active until it is terminated via stop or failed pins.

(a) Internal behavior of GroupChat App.

(b) ESM of GroupChat App.

Figure 5.14: GroupChat App behavior and ESM.

66

5.3.2 Group Chat UI

This block models the user interface presented to the user during the Group
Chat process. The behavior of user interfaces is normally triggered by distinct
events such as triggers from signal receptions and timeouts, as well as direct
actions from users like the tap on a button [KKB09]. Figure 5.15 shows the
layout the Group Chat user interface designed in Android.

The layout file is created using graphical editor provided by the Android
SDK. The screen layout shown is called Android activity. The user interface
has two text fields. The larger text field is where ongoing messages will
be received. These will be events that will update the user interface. The
smaller text field is where the user writes messages. The “send” button is
used to trigger the service action of sending messages.

The lifecycle of the user interface activity is controlled from within the
Group Chat UI and it is only the ESM of the Group Chat UI that constrains
the events affecting the lifecycle of the user interface activity. The ESM of
the block is shown in Fig. 5.16. It was important in our design to keep
the Group Chat UI block in its active state at all times because it is in this
block that the chat UI can be opened and used to send messages. In addition
messages can be received at any time and the chat UI will be updated with
the received messages.

From the behavior of the GroupChat App block and the ESM of the
Group Chat UI, the Group Chat UI can only terminate via the finished pin.
In the event that the Group Chat UI block terminates, a data flow through
a zero timer is used to set a connector merge named reset (shown in green).
The second connector merge is placed purposefully so that it can reinitialize
the Group Chat UI. This is because the connector merge is in the same state
and the two can be viewed as a single point which allows a token flow to
start the Group Chat UI. This means that each time the Group Chat UI
block terminates, it is restarted again and so will always be in the active
state.

67

Figure 5.15: Layout of Group Chat UI.

Figure 5.16: ESM of Group Chat UI.

(a) Client Starts a Group Chat with other users

The internal behavior of Group Chat UI is shown in Fig. 5.17. The block
is initialized when it receives user credentials through the user pin. The UI
is opened via startGrpChat pin which performs the startActivity operation.
This operation launches the main activity class (MessagingActivity Class)
of the Group Chat UI (see Appendix B). The Group Chat UI then opens
on top of the map display, with the map UI which was originally displayed
moved into the background.

After the launch of the Group Chat UI, an internal notification“CREATED”
is received by the block and this sets the newly created Android activity as a
variable. After this stage a number actions could be perform which are based
on the client’s use of the service. An operation setUsername is executed to

68

pass the user’s credentials (username) to the UI so that it can be identified
as the sender of a message. A user who wants to send a Group Chat message
composes the message in the lower text field and presses the “Send” button.
A series of events take place simultaneously.

Immediately the message is sent, the user will see the message appear in
the upper text field in a format username: message. The username will be
his own name and the message will be what he has sent. The lower text field
is subsequently cleared and can be used to compose more messages.

In the same action, an internal notification with signal “SEND” is sent to
the Group Chat UI block from the UI activity. Along with the notification
is data received from the UI activity. The data received is composed in the
format SENDER#MESSAGE and set as a payload for the data structure
InstantMessage which is forwarded through the msgToGrp node.

Reply messages sent to the client from other clients are forwarded to
the Group Chat UI via the receiveGrpMsg pin. When the message is re-
ceived, a Boolean operation checkSession is performed to check whether the
activity variable is set or not. Since the UI is active and can be seen on the
phone screen, the operation returns a true value which enables the ActiveSes-
sionMessages method to be executed. This operation displays the received
message on the UI.

A user can close the Group Chat UI by pressing the back button on the
Android terminal. When this is done the activity class of the Group Chat
UI sends an internal signal “EXIT” to the Group Chat UI which performs
the destroyAct operation and terminates the block via finished pin. In the
destroyAct operation, the activity variable of the Group Chat UI is destroyed
by setting its value to null. Doing this means that the client is no more
engaged in any group chat session with other participants.

(b) Client receives a Group Chat message from another client

While a user might be busy doing other things with City Guide application
such as exploring points of interest or engaged in the interactive quiz, he
can also receive Group Chat messages from other group participants. Al-
ready the Group Chat UI block would be initialized via the user pin when
the application is started. Messages sent to the client will be received by its
Block Address Service and forwarded to the receivedGrpMsg pin. The check-
Session operation in this instance would return a false value. This is because
the Group Chat UI has not been started so its variable in the Group Chat
UI would be null. The next action followed is to forward the message to the
Notification block via its start pin.

The Notification block is taken from the Arctis library of building blocks.

69

Its internal details would not be discussed here. The function of this block
is to add an icon to the system’s status bar and a notification message in
the notifications window. The notification is also configured to alert the user
with a sound. When the user selects the notification, a token is emitted
via the pressed pin and a control flow sent to the merge node causes the
Group Chat UI to open on top of whatever activity is being displayed on the
phone screen.

When the UI opens, it will update the upper text field with the received
message. To do this it performs an operation checkIsFirst which is a Boolean
logic preset to check if the received message was initiated as a result of the
action from the Notification block. if a true value is returned, a notification
signal “SHOW” is received by the Group Chat UI to execute the update-
ChatUI method. The UI is thus updated with the received message. The
user can subsequently continue to send and receive messages as explained
previously.

Figure 5.17: Internal behavior of Group Chat UI.

5.3.3 GroupChat Service Proxy

This is a service discovery block and is what is used by the client in the
group chat service collaboration. Its logical equivalence in the block diagram

70

is the GCp role of the client system. The discover service block uses the ser-
vice name “GroupChat” to discover the GroupChat Service at the Registry.
The main function of this block is to send messages to the GroupChat Ser-
vice located in the server. These messages will be composed in the Group
Chat UI by the user and passed to the GroupChat Service Proxy for onward
transmission to the GroupChat Service.

5.3.4 Block Address Service

This component is used in the address service collaboration. It has a logical
equivalence to the GLp role of the client system in the block diagram. Its
functions are in two parts. The first is to collaborate with the Block Address
Service Proxy of the client in the server and provide it with the block’s
address. The second function is to receive messages from the GroupChat
Service which are intended for the user. The internal behavior of the block
is shown in Fig. 5.18.

Figure 5.18: Internal behavior of Block Address Service Proxy.

The Generic Service registers this service with the Registry using the
service name “Block Address”. The Block Address Service block is among
the first components started in the client system along with other service
provider components. The first message received by the block would be
from the client’s Block Address Service Proxy in the server. An operation
checkMessage verifies this and returns a false value. With this an operation
createMessage returns a message to the Block Address Service Proxy with
the payload of the message containing the local address of the Block Address
Service.

71

Messages that are sent to a user by the GroupChat Service will be received
in this same block. This time around the checkMessage operation verifies the
message and returns a true value. The received message is then emitted as a
data flow via the groupMsg pin which is then forwarded to the Group Chat
UI (see Fig. 5.14).

5.4 IM Service Components

In this section we present the IM service components for both the server
system and the client system. The architecture is similar to the Group Chat
service but with some differences which are explained.

5.4.1 Server Components of IM Service

The IM service has two components in the server system namely, the IM
Service and the MyAddress Service Proxy building blocks. Figure 5.19 gives
a pictorial overview of how these blocks are combined with the other City
Guide Server components.

72

Figure 5.19: City Guide Server with components for the IM service collabo-
ration.

IM Service

The IM service is shown in Fig. 5.20. Its internal behavior is similar to the
GroupChat Service. Clients logged in are able to register their username and
address in the operation updateAdd by passing data to the block using the
parameter pin userAddrUpdate. The Generic Service will receive messages
sent from the IM Service Proxy of the various clients. The IM message sent
is of the structure SENDER#RECEIVER#MESSAGE. As can be observed,
the structure used for the IM service differs from the one used in the Group
Chat service. A RECEIVER value is added for the IM service. This value
will be the recipient of the IM message.

The received message is fed as input to a Java operation sendIMMessage.
In this operation, the received message is split and the RECEIVER value is
extracted. It is then used to search the username/address hash map which

73

stores the username and address of clients registered for the IM service. The
address found will be that of the recipient of the message. A new message is
composed with the recipient address set in the set.Receiver() method of the
new message. The message action is received in the IM Service block as an
internal notification from the “SEND” signal with the value of the message.
This is forwarded to the Generic Service via the send pin. The payload
of the message sent to the recipient by the IM service will be the same as
received from the sender. The IM Service is only to route the message to the
correct recipient. It does not alter the contents of the message in any way.
This is also true about the GroupChat Service. The GroupChat Service only
forwards the message to other participants and does not alter the message
structure. Extracting the actual message is done by the client itself. The
Java code of the sendIMMessage operation is shown in the Appendix C.

Figure 5.20: Internal behavior of IM service.

5.4.2 Client Components of IM service

Figure 5.21 shows how the IM App block, which encapsulates all the IM ser-
vice functionality on the client system, is integrated with other components.
Its relationship with the Android Map UI block which encapsulates the map
user interface is also shown in the City Guide UI. In Fig. 5.22, the internal
behavior of the Android Map UI is shown. In here, we have added a new
reception signal “START IM” which is used to select a participant displayed
over the map to start an IM session with. The user is able to see on his map
icons representing other group participants by using the Group Positioning
Service (see Sec. 4.2.1 and 4.3.3). We adapted this to indicate presence or
availability of a participant.

The user can start an IM with another participant by simply tapping
on the icon of that participant. When this is done an internal notification
“START IM” is received by the Android Map UI block. The signal received

74

also carries data, value of which is the name of the participant the client
intends to start the IM with. The signal with this data is passed out of the
block via startChat pin which is then used to open the IM user interface.

Figure 5.21: City Guide App showing components for IM service collabora-
tion.

The internal behavior of the IM App is shown in Fig. 5.23. A UI is opened
for the user where an IM message could be composed and sent. The Instant
Messaging UI is given the username of the recipient of the IM message when
it is started via the startMap pin. The message composed has the structure
SENDER#RECEIVER#MESSAGE. The message sent in this format will
be adequately handled by the IM Service in the server to route it to the
correct recipient.

75

Figure 5.22: Internal behavior of Android Map UI with signal reception event
to handle starting an IM.

Figure 5.23: Internal behavior of IM App.

76

Chapter 6
Discussion

This chapter presents an analysis of the City Guide application based on the
service discovery mechanism used. In Sec. 6.1 we discuss the application as
a self-adaptive system and we identify limitations of how it currently works.
We also discuss some alternative service discovery mechanisms that could be
used for such an application. In Sec. 6.2, we identify and discuss some issues
the application using a service discovery mechanism could face in the mobile
environment. In Sec. 6.3, we take a critical look at our design of the IM and
Group Chat services and discuss alternative solutions to our design.

6.1 Self Adaptive Computing System

The City Guide application uses the principles of self-adaptive systems. By
this we mean systems and components that configure themselves and dynam-
ically adapt to changing environments with minimal human participation.
The City Guide application uses static discovery (explained in Sec. 2.5.4,
DA Discovery). The Registry which is the centralized point of the system is
configured along with the system components to ensure discovery and use of
services.

Parameter adaptation is made in the Proxy Host of each of the three
systems (see Sec. 3.3.3) before the application is deployed. Parameter adap-
tation modifies program variables that determine behavior [MS+04]. By this
we mean changing values without changing components or algorithms. We
achieved this by statically setting the Registry address in the client system
and server system Proxy Hosts’. This ensures connectivity between the Reg-
istry, the client and the server systems.

77

6.1.1 Limitation of City Guide application Architec-
ture

The system uses a centralized service description (explained in Sec. 2.5.4,
Operation Mode). The Registry is the directory agent, the City Guide App
deployed on Android devices acts as client and the City Guide Server acts
as the server. Through parameter adaptation [MS+04], the client and the
server set the IP address and port number of the directory agent at design
time.

After a service provider registers its service with the Registry and a ser-
vice consumer discovers this service with a service proxy, communication
between the service provider and its service consumer still goes through the
Proxy Host in the Registry system. This means that all forms of data ex-
change between the client and the server pass through the Registry system.
Take the UML sequence diagram for the login service collaboration as an
example shown in Fig 3.7. After the login service is registered and the login
service proxy has successfully discovered the service, the user’s login creden-
tials are first sent through the Registry system before they are forwarded to
the login service in the server. Similarly the response from the login ser-
vice passes through the Registry system before being forwarded to the login
service proxy. We have identified this as not an optimal way of using the
service discovery mechanism. The Registry system should only be used for
service registration and discovery and the communication between the ser-
vice provider and service consumer should not be routed through the Registry
system.

To optimize the implementation, communication between the service provider
and its service consumer should be direct after initial registration and discov-
ery of a service at the Registry. Figure 6.1 shows a UML sequence diagram of
a login service collaboration which is based on the proposed implementation.
After initial discovery of the login service, the user sends the login credentials
directly to the server without passing through the Registry system. Response
messages are then also forwarded directly to the user. Hence in this scenario,
only the initial service registration and discovery goes through the Registry
system.

78

Figure 6.1: Login Service collaboration sequence diagram.

6.1.2 Decentralized service description for City Guide
application Architecture

The main disadvantage of centralized service description is that there is a
single point of failure. This breakdown point occurs at the DA. In the case
of our application, the breakdown point is at the Registry. Take for example
that the City Guide application is running smoothly. In the event that the
Registry system fails the entire application will breakdown. This means that
the client and server components have their functionality bound to that of
the Registry.

A decentralized service description could be used in the implementation
of the City Guide application. With the decentralized service description,
the Registry would be absent. The server and client must find a way to
discover services from each other without any central directory. In general,
service providers must spread their descriptions so that the service consumers
are informed about their services or the service consumers must spread their
requests of service providers searched [ONT05]. Two methods by which this
can be achieved are shown in Fig. 6.2.

� push model

� pull model

79

(a) push model (b) pull model

Figure 6.2: Decentralized service discovery with push and pull model
[ONT05].

In the push model, the server periodically publishes in multicast service
descriptions in the network. This makes it possible for the clients to find
the available services. The clients can then contact the server with a unicast
message for the service of their choice. In the pull model, the client makes
requests in multicast in the network. The servers in accordance with the
requests respond using a unicast message.

6.1.3 Tradeoffs between Centralized and Decentralized
service description

In implementing the City Guide application using the central service descrip-
tion, the Registry assumes the main role of service discovery which would
have otherwise been the responsibilities of the client and server systems.
Service providers publish their service descriptions to the Registry and ser-
vice consumers consult the Registry for the published services. Had the
system been implemented using a decentralized service description, the ser-
vice consumers must listen to service descriptions broadcasted directly from
the service providers, or the service consumer must broadcast a request for
a service description that the service provider could respond to.

Using the centralized service description would result in generally faster
responses. Using static discovery, the client and server will have reference to
the Registry so can connect with it directly. In addition, multicast messages
that need to be circulated in the network are reduced hence there would
be less use of the network bandwidth. In larger network environments, the
centralized service description is scalable and supports adding more DAs to
serve as duplicate repositories of service registrations [Gu99]. On the contrary

80

however, there is always the chance of failure with the Registry which would
result in breakdown of the application since components cannot be configured
and adapted in terms of service registration and discovery.

The decentralized service description is suitable for smaller networks. By
smaller network, we mean that the number of users the application is in-
tended for is small. Furthermore, since the Registry system is not involved,
there is no central point in this architecture and hence the number of system
components susceptible to failure is reduced. The challenge also here is that
although the decentralized service description seems like a simple architec-
ture, it involves higher consumption of bandwidth and increase in network
traffic [ONT05]. Deciding on which of the two service descriptions to imple-
ment would therefore border on factors such as the size of the network and
how robust the application should be.

6.2 Issues: City Guide application, Service

Discovery Protocol in the mobile context

A major component of the City Guide application, the City Guide App sys-
tem is deployed on mobile devices. Service discovery protocols were tradi-
tionally not intended for mobile contexts [ONT05] and so implementing such
protocols with requirements on memory and storage capacity in the devices
could prove challenging. Inherent mobile network features such as hetero-
geneity, limited bandwidth and frequent disconnections can pose limitations
on these protocols. In this section, we discuss the pertinent problems faced
in the mobile context viz-a-viz how the service discovery protocol used in the
City Guide application adapts with these challenges.

6.2.1 Frequent disconnections

There are frequent disconnections for devices in a mobile environment. This
is primarily due to limited energy in the device. When using the City Guide
application and the mobile device loses connectivity, all interactions between
the service provider components and the service consumer components in
either the client or server are stopped abruptly. The server system however
maintains the state of the client details indefinitely. For example the Group
Positioning Service in the server still keeps the last known position of the
client in its entries after the client loses connectivity. When the client gets
connectivity back, it is prompted to restart the application and sign in again.
The Login Service uses this new login credentials as entry for the client and
the system operates as normal.

81

When a user signs in, the Login Service only seeks to authenticate the
user’s credentials and does not monitor which user is authenticated or what
device is being used for the login procedure. This appears suitable for fre-
quent loss of network connectivity of devices since the client could always
reconnect with the server. In contrast, there is no way for the server to keep
track of which user and what device it is signed on with. This limitation has
been identified for the City Guide application and would need to be resolved
to handle the situation of a user logging in with multiple devices.

6.2.2 Limited resources in power and memory man-
agement

A well-known fact about mobile devices is that they have weak memories,
energy and low storage capacities. The Android operating system has its own
mechanisms of managing system resources such as killing off some activities
in low memory conditions. The City Guide App deployed on the mobile
device should however not use too many background services [OHA12] that
would require the spending of resources.

The Location Service is for instance one service which puts constraints
on battery consumption of the device. The service requires that the GPS
or WiFi is constantly being used to fetch location values for as long as the
application is in use. The Location Service is run as a background service
in Android and so in extreme low memory conditions could be terminated.
The ActorRouter block found in the Proxy Host is also run as a background
service since it is continuously interacting with other actors deployed in the
distributed platform of the application. These two blocks identified are the
heaviest in terms of use of resources by the City Guide App. To ensure
successful running of the application, it is advisable to close other power
consuming applications on the device while running the City Guide applica-
tion.

The rest of the design of the City Guide application is such that most of
the service intensive operations requiring the use of heavy logic such as the
Login Service, Group Positioning service, IM Service and GroupChat Service
which are implemented as service providers, are handled in the server system
of the City Guide application. The server system is deployed on local host
machines (PC) with far greater processing powers than the mobile device
hence will be capable of creating and managing all the resources neededfor
the application.

82

6.2.3 Heterogeneity of the mobile devices

The City Guide application is intended for Android platforms and has been
tested on different devices running API version 7 and above with good suc-
cess. However, a significant observation worth noting is that the appearance
of the layout of the UI of the chat applications (Group Chat and IM) varies
slightly when deployed on the varied devices. This is because of the different
screen sizes offered by the devices. The core functionality and behavior of
the UI does not however change when used across the various devices.

Android provides the developmental environment across devices and han-
dles adjusting an applications UI to the screen on which it is displayed how-
ever for a better optimization, the Android platform provides APIs which
allow for the control of application UI specific screen sizes and densities.
Our implementation did not focus on user interface optimization. [OHA13]
explains how Android supports applications deployed on devices with differ-
ent screen sizes.

6.3 Critical Assessment of Components

In this section, the IM and Group Chat components are examined and the
design aspects and implementation decisions that could otherwise been done
differently are explored.

6.3.1 Proposal of a new Chat Application Architecture

The architecture used in the implementation of the IM and Group Chat com-
munication platforms uses a relay point in the system to deliver the messages
to the various clients. The GroupChat Service and IM Service components
located in the server system are the relay points used. It would be ideal
to route messages between players directly without the use of intermediaries
such as the one in the server system. Eliminating intermediaries will reduce
traffic in the network, improve the quality , lower latency and improve inter-
activity [HK+10].We will now propose an architecture that supports direct
communication among the clients without any relay point. We will use the
Group Chat platform to illustrate this.

From the knowledge of the Group Chat architecture already explained,
each client is able to send and receive messages from the other clients in real
time. The sending and receiving processes for the client are independent of
each other. It is in that sense that each client registers a unique address
with the GroupChat Service in the server to receive messages with. In the
proposed model, the functional behavior of the Group Chat will not change

83

from the perspective of the client. This means that the client will send and
receive messages as normal. What is different here is that, all the Group
Chat application specific logic is moved onto the user client such that it is
run from the user client directly. We explain this idea further with a sequence
diagram of a simple chat service in Java shown in Fig. 6.3.

Figure 6.3: Group Chat sequence diagram of proposed model.

In this simple chat service, each client creates a listener object which is
registered with the server. The server in this case forwards a reference of the
listener objects of other group participants to the client in a notifyMessage.
This means that each client will hold a copy of the listener objects of the
group provided by the server. When the client wants to send a message,
it uses the reference list of the listener objects to forward the message in
a multicast message. The message is received by the other clients through
their listeners. Since each client has a reference to the listeners of all other
clients, the communication among the clients is direct and the server plays
no role in the ensuing group chat communication.

We now proceed to illustrate using block diagrams, how the proposed
architecture could be implemented in a distributed framework. Figure 6.4
shows a Group Chat communication involving three users. In each client
system, there is a GCp role which takes part in the Group Chat collaboration.

84

The behavior of the GCp role is the same as shown in the previous block
diagrams in Chap. 5, which is to send messages out from the client. However
its implementation in this new model would be different since it would not
necessarily require any corresponding role in the server system. The reusable
roles GLp and GLs which model the Address Service collaboration is still
relevant in this model because each client should be able to register an address
with the server. In the server system we introduce a new role CCs whose
behavior will be to establish a dynamic relationship with the GLs role in the
server. This then provides a reference list of GLp’s from various clients to all
other clients subscribed. Hence client A for example will contain a reference
to the GLp of client B and C (indicated as GLpB andGLpC).

Figure 6.4: Block model of proposed architecture.

In Fig. 6.4, A sends a Hi message directly to B and C. To achieve this,
A uses the reference of the GCp role of B and C and addresses the message
directly to them. The message is routed through the network and the GLp
component in B and C are notified therein. When B wants to send a message,

85

the principle is the same however the GLp reference held by B will be for
client A and C (GLpA andGLpC). The sent message will thus be received by
A and C only. The knowledge about group membership for the Group Chat
service is thus distributed among the clients.

Comparing this new architecture to the one implemented, it is clearly seen
that with the new model, sending and receiving messages is executed directly
between clients without the use of any intermediary. In the previous model,
messages were sent first to a server before being forwarded to the clients.
This new architecture decreases the number of messages circulating in the
network as well as reduced latency. In addition the need to use servers that
can scale enough to handle a larger domain of users for a larger network is
reduced. In contrast however, the new model brings high requirements on the
mobile device itself. This is because all the application specific logic for the
implementation of the Group Chat functionality is run on the client terminal
and its network connection. Implementing this model would require the
usage of more resources such as power and memory from the mobile devices.
Robust implementation of such a model would require using high capacity
mobile terminals with good requirements in power, memory management and
signal strength.

6.3.2 Components needed for the implementation of
proposed model

The new model will require changes to be made when composing building
blocks for the Group Chat functionality. The GCp role for instance does
not require any corresponding role in the server system. This means that
the service provider-service consumer relationship is not required for this
role. In implementing, the GCp role could be modeled as a service provider
only and registered with the Registry. A service proxy for this service is not
required since it does not need to be discovered by any other components.
Alternativelty, a new building block could be composed and its functional
behavior would be to establish a unilateral relationship with the Registry
with which it can use to send messages from within a client. The behavior of
the GCp role would however be more complex in the proposed model since
it would be required to do multicast in sending messages to other clients. In
addition it would have to handle and manage group data (addresses) that it
would be updated with from the server.

The new role CCs could be implemented using a service provider-service
consumer behavior. The behavior of this role is to notify each client of all
the client addresses that have been registered with the server. The service

86

provider component of the CCs role would be located in the server system
while the service consumer component would be located in the client sys-
tem. This means that each client would be subscribed to this service and
would establish a relationship such that, it would periodically be updated of
the addresses from other clients that have been registered with the service
provider in the server.

87

88

Chapter 7
Concluding Remarks

This chapter summarizes results achieved in this thesis. Based on our dis-
cussion chapter, some recommendations are also proposed as future work.

7.1 Summary of Results

In this thesis, we have presented the City Guide application and shown the
architecture behind its design and implementation. The distributed system
is decomposed into a set of building blocks wrapped up as three separate sys-
tems consisting of the client system which is deployed on handheld terminals,
a server system and a Registry system which are deployed on a local host
machine. In modeling the collaborative services which have a cross-cutting
behavior among the several components in the distributed architecture, a
service discovery technology was used. With this mechanism, each service
is decomposed into a service provider role and a service consumer role. The
service provider publishes its service using a known service description with a
Registry and the service consumer discovers the service at the Registry. With
this, there is a dynamic linkage between the collaborating roles to perform
the service.

The communication model used in routing between the three distributed
systems has also been examined. Each system has a Proxy Host which serves
as the router. In the Proxy Host, we use ActorRouter to communicate among
the distributed systems. The routing table in the Proxy Host for each system
gets updated as components within each system communicate back and forth
with components in other systems. Components within each system commu-
nicate with the Proxy Host using two local router proxies called Client Proxy
and Server Proxy which are encapsulated in the Generic Service block and

89

the service proxy block.
Two new services, IM and Group Chat have also been introduced with

their components developed and integrated with other system components.
The IM service and Group Chat service have been recognized as basic services
that should support an SCLS domain. The basic services could be reused
in other application specific services. These two services enhance the social
aspects of collaborative learning when using the application since there is
a feeling of connectedness among the players of the game. In addition, by
using these services, group members are able to perform shared tasks while
distributed.

7.2 Conclusion

The platform used to compose the City Guide application provides an ef-
ficient way of composing other systems as well. Having knowledge of the
development tool, Arctis and its use is necessary to achieving this. In ad-
dition having understanding of service discovery protocols and technology is
essential. Thanks to the reusable building blocks in Arctis, new applications
and services can rapidly be developed.

Composing the new services of IM and Group chat was flexible using the
service discovery technology and the communication principle involving prox-
ies and Proxy Host for the distributed architecture. The architecture itself
enabled communication among distributed components hence developing an
IM and Group chat service for the City Guide application required under-
standing the communication principles and developing suitable components
for the client and server to run a successful IM and Group chat service.

The City Guide application is still in active development. The following
are considered as further development and extensions of the City Guide
application.

Implementation of new services The City Guide application should be
extended to include new services that are important for situated
collaborative learning. Other basic services such as picture or file sharing
and SMS could be implemented. Application specific services such as
scoring and clues are also yet to be implemented.

User Interactivity for composing of learning services Currently
composing learning activities such as adding players, groups and learning
content is done in XML as part of the server configurations. The system
could be improved by making it more user-interactive with a graphical

90

user interface where game configurations would be loaded. This will create
a good user experience for the administrator or composer of the game.

91

92

Bibliography

[BA12] Bitreactive AS 2012,LATEX: Arctis , Available at
http://reference.bitreactive.com/, Accessed April, 2012.

[BR00] C. Bettsetter and C. Renner, LATEX:A Comparison of Service Discovery
Protocols and Implementation of the Service Location Protocol.2000

[Cas08] Humberto Nicholas Castejon, LATEX: Collaborations in Service Engineer-
ing. Modeling, Analysis and Execution. PhD thesis, Norwegian University
of Science and Technology, 2008.

[GM03] Geir Melby, LATEX: Using J2EE Technologies for Implementation of Ac-
torFrame Based UML2.0 Models Agder University College, May 2003.

[Gu99] Erik Guttman, LATEX:Service Location Protocol: Automatic Discovery of
IP Network Services, IEEE Internet Computing, vol. 3, no. 4, pp. 71-80,
July-Aug. 1999.

[HK+10] Huang Te-Yuan, Kok-Kiong Yap, et al., LATEX: Phone-Net: a Phone-to-
Phone Network for GroupCommunication within an Administrative Do-
man,Proceedings of the second ACM SIGCOMM workshop on Networking,
systems, and applications on mobile handhelds, 2010

[IC09] Ilaria Canova Calori, LATEX:Supporting Different Social Structures in City-
Wide Collaborative Learning, IADIS International Conference Mobile
Learning, 2009,NTNU.

[JJH98] D.W. Johnson, R.T. Johnson, and E.J Holubec, LATEX:Cooperation in the
classroom Interaction Book Company Edina, Minn, 1998.

[Kat12] Surya B. Kathayat, LATEX:On the Development of Situated Collaborative
Services . Doctoral thesis , NTNU, February 2012.

93

[KB09] Surya Bahadur Kathayat and Rolv Bræk, LATEX:Platform support for situ-
ated collaborative learning In International Conference on Mobile, Hybrid,
and On-line Learning, 2009. ELML09. IEEE Press, 2009.

[KBH09] F. A. Kraemer, R. Bræk, P. Herrmann. LATEX: Compositional Service
Engineering with Arctis, Teletronik, 2009.

[KKB09] F. A. Kraemer, S. B. Kathayat and R. Bræk, LATEX:Unified modeling
of service logic with user interfaces. Proceedings of the first international
workshop on Model driven service engineering and data quality and secu-
rity,2009

[Kra08] Frank A. Kraemer, LATEX: Engineering Reactive Systems. A Composi-
tional and Model-Driven Method Based on Collaborative Building Blocks
PhD thesis,NTNU, August 2008.

[KSH09] F. A. Kraemer,V. Slttem, P. Herrmann, LATEX: Tool support for the rapid
composition, analysis and implementation of reactive services Journal of
Systems and Software, 82(12):2068-2080, 2009.

[LH02] C. Lee and S. Helal, LATEX: Protocols for Service Discovery in Dynamic and
Mobile Networks. International Journal of Computer Research, Volume 11,
Number 1, pp.1-12, 2002.

[MS+04] Philip K. Mckinley, Seyed M. Sadjadi, et al. LATEX:Compossing Adaptive
Software. Dept. of Computer. Sci.& Eng., Michigan State Univ., USA July
2004.

[OHA11] Open Handset Alliance, LATEX: What is Android, Available
at http://developer.android.com/guide/basics/what-is-android.html, Ac-
cessed April, 2012.

[OHA12] Open Handset Alliance, LATEX: What is a Service, Available at
http://developer.android.com/reference/android/app/Service.html, Ac-
cessed April, 2012.

[OHA13] Open Handset Alliance, LATEX: Supporting Multiple Screens, Available at
http://developer.android.com/guide/practices/screens support.html, Ac-
cessed April, 2012.

[OHA14] Open Handset Alliance, LATEX: android.location,
http://developer.android.com/reference/android/location/package-
summary.html, Accessed April, 2012.

94

[OMG09] Object Management Group (OMG), LATEX: UML 2.2.1 Superstructure
Spec., February 2009.

[ONT05] S. Ousliha and N. Nouali-Taboudjemat, LATEX: Service Discov-
ery Protocols, Available at http//http://mnet.skku.ac.kr/data/2005data
/JCCI2005Spring/Papers/Paper/TM22/TM22-1.pdf, 2005.

[PG99] C. Perkins and E. Guttman, LATEX: DHCP Options for Ser-
vice Location Protocol, IETF, RFC 2610, June 1999. Available at
http://www.ietf.org/rfc/rfc2610.txt

[Ri00] Golden G. Richard III, LATEX: Service Advertisement and Dis-
covery: Enabling Universal Device Cooperation, Available:
http://computer.org/internet/, 2000.

[SB08] Haldor Samset and Rolv Bræk, LATEX:Dynamic Service Discovery Using
Active Lookup and Registration services, pp.545-552, 2008 IEEE Congress
on Services - Part I, 2008

[SC99] Salutation Consortium, LATEX: Salutation Architecture Specification Ver-
sion 2.0c Part 1, The Salutation Consortium, June, 1999 Available at
http:// http://systems.cs.colorado.edu/ grunwald/MobileComputing/Pa-
pers/Salutation/Sa20e1a21.pdf

[TA08] Tellu AS, LATEX: ActorFrame Technical Documentation Draft V-01, June
2008

[TT08] TTM4115, LATEX: Engineering Distributed Real Time
Systems, Laboratory Exercise 4, 2008. Available at
:http://www.item.ntnu.no/fag/ttm4115/exercises/2008/Labs/4/Lab 4 Problem.pdf,
Accessed June 2012.

[TT11] TTM3, LATEX: Design of Self-Adaptive Systems, laboratory Available at
:http://www.item.ntnu.no/academics/courses/ttm3/start, Accessed June
2012.

95

Appendix A
GroupChat Service Class

Listing A.1: multicastMessage operation in GroupChatService Java Class
package no.item.ntnu.arctis.examples.cityguide.groupchatservice;

import java.util.HashMap;

import java.util.Iterator;

import java.util.Map;

import no.ntnu.item.arctis.library.proxies.Address;

import no.ntnu.item.arctis.library.proxies.Message;

import no.ntnu.item.arctis.runtime.Block;

public class GroupChatService extends Block {

public java.util.Vector <no.ntnu.item.arctis.library.objects.user.Group > grps;

public no.ntnu.item.arctis.library.proxies.Message message;

public java.util.HashMap <java.lang.String , java.lang.String > address= new HashMap <String , String >();

public void multicastMessage(Message message) {

String msg = (String) message.getPayload ();

String mess []= msg.split("#");

for (Map.Entry <String , String > entry : address.entrySet ()) {

System.out.println("Key = " + entry.getKey () + ", Value = " + entry.getValue ());

if(!(mess [0]. contains(entry.getKey ()))){

System.out.println("KeyLoop = " + entry.getKey () + ", ValueLoop = " + entry.getValue ());

String payloadStr [] = entry.getValue (). split("-");

Address addr = new Address ();

addr.setSessionID(payloadStr [0]);

addr.setIP(payloadStr [1]);

addr.setPort(payloadStr [2]);

Message response = new Message("Group_Chat Service");

response.setReceiver(addr);

response.setSender(message.getReceiver (). getCopy ());

Object s = message.getPayload ();

response.setPayload(s);

sendToBlock("SEND", response);

}

}

}

public void updateBlockAddr(String upd) {

String str[] = upd.split("#");

System.out.println("Group Manager BlockID_AddressToStr "+ str [0]+ " "+str [1]);

address.put(str[0], str [1]);

}

}

96

Appendix B
Group Chat Messaging Activity (User
Interface) Class

Listing B.1: Group Chat activity class for user interface: Messaging Activity
Class
package no.ntnu.item.arctis.examples.android.cityguide.group_chatui;

import no.ntnu.item.arctis.android.R;

import no.ntnu.item.arctis.examples.android.cityguide.androidmapui.AndroidMapUI;

import no.ntnu.item.arctis.library.objects.quiz.InstantMessage;

import android.app.Activity;

import android.os.Bundle;

import android.util.Log;

import android.view.KeyEvent;

import android.view.View;

import android.view.View.OnClickListener;

import android.widget.Button;

import android.widget.EditText;

public class MessagingActivity extends Activity implements OnClickListener {

private EditText messageText;

private EditText messageHistoryText;

private Button sendMessageButton;

private String username , chatPartner;

@Override

public void onClick(View v) {

// TODO Auto -generated method stub

//check is button is clicked

boolean ischecked = (v.getId ()== R.id.sendMessageButton);

if(ischecked){

// get message and send to block

System.out.println("Send button is clicked");

CharSequence message;

message = messageText.getText ();

if (message.length ()>0) {

InstantMessage msg = new InstantMessage ();

System.out.println("Username is....."+ username);

appendToMessageHistory(username , message.toString ());

messageText.setText("");

String msgText = "message is sent..";

msgText = message.toString ();

String newmsg = username+"#"+msgText;

msg.setMessageText(newmsg);

Group_ChatUI.getInstance (). sendFromActivityToBlock("SEND", msg);

}

}

97

}

@Override

protected void onCreate(Bundle savedInstanceState) {

// TODO Auto -generated method stub

super.onCreate(savedInstanceState);

setContentView(R.layout.messaging_screen); // messaging_screen);

this.sendMessageButton = (Button) findViewById(R.id.sendMessageButton);

sendMessageButton.setOnClickListener(this);

this.messageHistoryText = (EditText) findViewById(R.id.messageHistory);

this.messageText = (EditText) findViewById(R.id.message);

messageText.requestFocus ();

Group_ChatUI.getInstance (). sendFromActivityToBlock("CREATED", this);

}

@Override

protected void onStart () {

// TODO Auto -generated method stub

super.onStart ();

}

public void showNewMessage(final String msg){

Runnable r = new Runnable () {

public void run() {

CharSequence message;

String str[] = msg.split("#");

message = str [1];

chatPartner = str [0];

appendToMessageHistory(chatPartner ,message.toString ());

}

};

runOnUiThread(r);

}

private void appendToMessageHistory(String username , String message) {

if (username != null && message != null) {

messageHistoryText.append(username + ":\n");

messageHistoryText.append(message + "\n");

}

}

public void parseUsername(String user){

username = user;

}

public void replyMessage(final String msg){

Runnable r = new Runnable () {

public void run() {

String str[] = msg.split("#");

CharSequence message;

message = str [1];

chatPartner = str [0];

System.out.println("First Other partner isssssss "+ chatPartner+ "and"+str [0]);

appendToMessageHistory(str[0], message.toString ());

}

};

runOnUiThread(r);

}

//kill the Instant Messaging UI block

public boolean onKeyDown(int keyCode , KeyEvent event) {

Log.v("KEYCODE","" + keyCode);

switch (keyCode) {

case KeyEvent.KEYCODE_BACK:

Log.v("","Exit?");

finish ();

Group_ChatUI.getInstance (). sendFromActivityToBlock("EXIT");

break;

}

return super.onKeyDown(KeyEvent.KEYCODE_0 , event);

}

}

98

Appendix C
IM Service Class

Listing C.1: sendIMMessage operation in IMService Java Class
package no.item.ntnu.arctis.examples.cityguide.imservice;

import java.util.HashMap;

import java.util.Iterator;

import no.ntnu.item.arctis.library.proxies.Address;

import no.ntnu.item.arctis.library.proxies.Message;

import no.ntnu.item.arctis.runtime.Block;

public class IMService extends Block {

public no.ntnu.item.arctis.library.proxies.Message message;

public java.util.Vector <no.ntnu.item.arctis.library.objects.user.Group > grps;

public java.util.HashMap <java.lang.String , java.lang.String > usersAddress = new HashMap <String , String >();

public void extractMessage(Message message) {

System.out.println("IM Service is Registered .."+ message);

String mess = (String) message.getPayload ();

String mess2 []= mess.split("#");

System.out.println("Message split is as folowwwwwwwwwws .."+ mess2 [0]+ mess2 [1]+ mess2 [2]);

Iterator <?> i = usersAddress.entrySet (). iterator ();

while(i.hasNext ()) {

java.util.Map.Entry <String , String > me = (java.util.Map.Entry)i.next ();

if(mess2 [1]. contains(me.getKey ())){

String payloadStr [] = me.getValue (). split("-");

Address addr = new Address ();

addr.setSessionID(payloadStr [0]);

addr.setIP(payloadStr [1]);

addr.setPort(payloadStr [2]);

Message response = new Message("IM Service");

response.setReceiver(addr);

response.setSender(message.getReceiver (). getCopy ());

Object s = message.getPayload ();

response.setPayload(s);

sendToBlock("SEND", response);

}

}

}

public void updateAdd(String upd) {

String str[] = upd.split("#");

System.out.println("Group Manager MyAddressToStr "+ str [0]+ " "+str [1]);

usersAddress.put(str[0], str [1]);

}

}

99

	Title Page
	masteroppgave.pdf

