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ABSTRACT. We observe that local embedding problems for certain Hardy and Bergman spaces
of Dirichlet series are equivalent to boundedness of a class of composition operators. Following
this, we perform a careful study of such composition operators generated by polynomial symbols
ϕ on a scale of Bergman–type Hilbert spaces Dα. We investigate the optimal β such that the
composition operator Cϕ maps Dα boundedly into Dβ. We also prove a new embedding theorem
for the non-Hilbertian Hardy space H p into a Bergman space in the half-plane and use it to
consider composition operators generated by polynomial symbols on H p , finding the first non-
trivial results of this type. The embedding also yields a new result for the functional associated to
the multiplicative Hilbert matrix.

1. INTRODUCTION

A paper by Gordon and Hedenmalm [10] initiated the study of composition operators acting
on function spaces of Dirichlet series, f (s) =∑

n≥1 ann−s . Their object of study was the Hilbert
space of Dirichlet series with square-summable coefficients, H 2. In this paper, we consider
composition operators acting on various scales of function spaces of Dirichlet series.

For 1 ≤ p <∞, we follow [3] and define the Hardy space H p as the Banach space completion
of Dirichlet polynomials P (s) =∑N

n=1 ann−s in the Besicovitch norm

(1) ‖P‖H p := lim
T→∞

(
1

2T

∫ T

−T
|P (i t )|p d t

) 1
p

.

The spaces H p are Dirichlet series analogues of the classical Hardy spaces in unit disc. We refer
to [17] and to [18, Ch. 6] for basic properties of H p , mentioning for the moment only that their
elements are absolutely convergent in the half-plane C1/2, where Cθ := {s ∈C : Re(s) > θ}.

For α ∈R, we let Dα denote the Hilbert space consisting of Dirichlet series f satisfying

(2) ‖ f ‖Dα :=
( ∞∑

n=1

|an |2
[d(n)]α

) 1
2

<∞.

Here d(n) denotes the number of divisors of the positive integer n. Note that D0 = H 2. We
are interested in the range α ≥ 0 and, as explained in [1], these spaces may be thought of as
Dirichlet series analogues of the classical scale of weighted Bergman spaces in the unit disc.
Since d(n) =O (nε) for every ε> 0, it follows from the Cauchy–Schwarz inequality that Dirichlet
series in Dα also are absolutely convergent in C1/2.

Due to an insight of H. Bohr (see Section 2), both H p and Dα can be identified with certain
function spaces in countably infinite number of complex variables, and — consequently — the
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norms (1) and (2) can be computed as integrals on the polytorus T∞ or in the polydisc D∞,
respectively.

In an attempt to better understand these spaces, their composition operators Cϕ( f ) = f ◦ϕ
have recently been investigated in a series of papers. It is well-known (see [1, 3, 10, 19]) that any
function ϕ : C1/2 → C1/2 defining a bounded composition operator from H p to H q , for some
p, q ≥ 1, or from Dα to Dβ, for some α,β≥ 0, necessarily is a member of the following class.

Definition. The Gordon–Hedenmalm class, denoted G , is the set of functions ϕ : C1/2 →C1/2 of
the form

ϕ(s) = c0s +
∞∑

n=1
cnn−s =: c0s +ϕ0(s),

where c0 is a non-negative integer called the characteristic of ϕ and is denoted char(ϕ), the
Dirichlet series ϕ0 converges uniformly in Cε (ε> 0) and has the following mapping properties:

(a) If c0 = 0, then ϕ0(C0) ⊂C1/2.
(b) If c0 ≥ 1, then either ϕ0 ≡ 0 or ϕ0(C0) ⊂C0.

Regarding sufficient conditions, the case char(ϕ) ≥ 1 is the best understood. It was shown in
[3] that (b) is sufficient for boundedness of Cϕ from H p to H p and in [1] that the same holds
for boundedness of Cϕ from Dα to Dα.

The case char(ϕ) = 0, which is the topic of this paper, is more difficult. Here it is only known
that (a) is sufficient for boundedness of Cϕ from H p to H p if p is an even integer. In [1], it was
shown that if ϕ ∈G with char(ϕ) = 0, then Cϕ maps Dα into D2α−1 (which is smaller than Dα if
0 <α< 1 and larger than Dα if α> 1). It was left open whether the value 2α−1 is optimal or not.

The sticking point seems to be that in order to prove sufficient conditions for boundedness
of composition operators with char(ϕ) = 0, we require an embedding of the function spaces of
Dirichlet series into certain classical function spaces in the half-plane C1/2. The existence of
embeddings in the non-Hilbertian case is a well-known open problem in the field.

This paper is initiated by the observation that such embeddings are in fact equivalent to the
sufficiency of condition (a). The precise statement of this equivalence is presented in Theorem 3
(for H p ) and Theorem 4 (for Dα) below. Our approach is related to the transference principle
introduced in [19]. As a corollary, we obtain that the parameter 2α−1 discussed above is sharp,
since it was demonstrated in [14] that the corresponding embedding is optimal.

We also discuss embeddings of H p when 1 ≤ p < 2. Although we were unable to prove that
H p embeds into the corresponding conformally invariant Hardy space of C1/2, we show that it
embeds into an optimal conformally invariant Bergman space.

Theorem 1. Let 1 ≤ p < 2. There exists a constant Cp > 0 such that(∫
R

∫ ∞

1/2
| f (s)|2

(
σ− 1

2

) 2
p −2 dσd t

|s +1/2|4/p

) 1
2

≤Cp‖ f ‖H p ,

for every f ∈H p . The exponent 2
p −2 is the smallest possible.

We then perform a careful study of composition operators with polynomial symbols mapping
Dα to Dβ, in the spirit of [5]. We show that for certain polynomial symbols, Cϕ maps Dα into
Dβ with β< 2α−1 and that the optimality of β= 2α−1 also can be decided by investigating the
most simple non-trivial symbol, namely ϕ(s) = 3/2−2−s .

Consequently, we consider boundedness of this simple composition operator an interesting
necessary condition for the embedding problem for H p . This leads us to an in-depth study
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of composition operators with linear symbols on H p . By using Theorem 1 and estimates of
Carleson measures, we prove the following result.

Theorem 2. Let ϕ(s) = c1 +∑d
j=1 cp j p−s

j be a Dirichlet polynomial supported on the primes such

that cp j 6= 0 for j = 1, . . . , d. If ϕ ∈G and d ≥ 2, then Cϕ is bounded on H p for every p ∈ [1,∞).

Observe that the case d = 1 corresponds to the simple symbol discussed above. It should
also be mentioned that very few non-trivial composition operators of characteristic 0 on H p

are known when p is not an even integer, and none involving two or more prime numbers.
Moreover, it is possible to generate more examples from our method and results in [5].

We finally show that if ϕ(s) = 3/2− 2−s generates a bounded composition operator on H 1,
then Nehari’s theorem holds for the multiplicative Hilbert matrix introduced in [8]. We apply
Theorem 1 to demonstrate that the associated functional is bounded on H p for p ∈ (1,∞).

Organization. This paper is divided into six sections.

• Section 2 contains an exposition of our observation that the local embedding problem
mentioned above is equivalent to boundedness of certain composition operators for
H p (Theorem 3) and Dα (Theorem 4), in addition to the proof of Theorem 1.

• In Section 3, we collect some results regarding Carleson measures in the half-plane and
on the polydisc, which will be needed in the following sections.

• Section 4 is devoted to a study of composition operators from Dα to Dβ generated by
polynomial symbols. The main result of this section, Theorem 17, demonstrates that the
boundedness of Cϕ : Dα→Dβ depends strongly on the complex dimension and degree
of the polynomial symbol.

• In Section 5, we discuss composition operators with linear symbols on H p . The proof
of Theorem 2 can be found here.

• The final section contains some connections from the results obtained in this paper to
the validity of Nehari’s theorem for the multiplicative Hilbert matrix.

Notation. We will use the notation f (x) ¿ g (x) when there is some constant C > 0 such that
| f (x)| ≤ C |g (x)| for all (appropriate) x. If both f (x) ¿ g (x) and g (x) ¿ f (x) hold, we will write
f (x) ³ g (x). As usual, {p j } j≥1 will denote the increasing sequence of prime numbers.

2. COMPOSITION OPERATORS AND THE EMBEDDING PROBLEM

2.1. Hardy spaces. As mentioned in the introduction, functions in H p are holomorphic in the
half-plane C1/2. It is therefore interesting to investigate how they behave on the line 1/2+ i t . In
this context, the most important question is the embedding problem (see [20, Sec. 3]), which
can be formulated as follows. Is there a constant Cp such that

(3) sup
τ∈R

∫ τ+1

τ
|P (1/2+ i t )|p d t ≤Cp‖P‖p

H p

for every Dirichlet polynomial P? It follows from an inequality of Montgomery and Vaughan
(see [13, pp. 140–141]) that (3) holds for p = 2, and hence for every even integer p, but its validity
for other values remains open. Now, from (1) it is clear that the H p norm is invariant under
vertical translations, so it is enough to check (3) for a fixed τ, say τ= 0.

A typical (see e.g. [3, 10]) application of the local embedding is to deduce that if ϕ is in G

with char(ϕ) = 0, then the composition operator Cϕ is bounded on H p . This is usually done
through the following equivalent formulation of (3).
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The conformally invariant Hardy space in the half-plane C1/2, which we denote H p
i , consists

of those functions f such that f ◦T ∈ H p (T), where T is the following mapping fromD to C1/2,

T (z) = 1

2
+ 1− z

1+ z
.

The mapping T appeared in the transference principle of [19], where it was used to transfer
certain results about composition operators on H 2(T) to results about composition operators
on H 2. Now, the norm of H p

i can be computed as

(4) ‖ f ‖p

H
p
i

:= ‖ f ◦T ‖p
H p (T) =

1

2π

∫ π

−π
| f (1/2+ i tan(θ/2))|p dθ = 1

π

∫
R
| f (1/2+ i t )|p d t

1+ t 2
.

The inequality (3) is equivalent to ‖P‖H
p
i
≤C ′

p‖P‖H p , since evidently∫ 1

0
|P (1/2+ i t )|p d t ¿‖P‖p

H
p
i

¿ sup
τ∈R

∫ τ+1

τ
|P (1/2+ i t )|p d t .

Our observation is that not only does the embedding (3) imply a sufficient condition for
boundedness of certain composition operators, it is in fact equivalent to boundedness of all
composition operators of this type.

Theorem 3. Fix 1 ≤ p <∞. The following are equivalent.

(a) The local embedding (3) holds for p.
(b) For every ϕ ∈G with char(ϕ) = 0, the composition operator Cϕ acts boundedly on H p .
(c) Let ψ(s) =T (2−s). The composition operator Cψ acts boundedly on H p .

As explained in [3], the proof of (a) =⇒ (b) can be adapted from the proof given for p = 2
in [10]. This argument relies on approximating the Besicovitch norm (1) by taking a limit in a
family of conformal mappings. A simpler proof of this implication, based on a trick from [1], is
included below.

To facilitate this, let us recall the Bohr lift. Every positive integer n can be written uniquely as
a product of prime numbers,

n =
∞∏

j=1
p
κ j

j .

This factorization associates the finite multi-index κ(n) = (κ1, κ2, . . . ) to n. Consider a Dirichlet
series f (s) =∑

n≥1 ann−s . Its Bohr lift B f is the power series

B f (z) =
∞∑

n=1
an zκ(n).

It is well-known (see [3, 18]) that the Bohr lift defines an isometric isomorphism between H p

and the Hardy space of the countably infinite polytorus, H p (T∞). The polytorus T∞ is a com-
pact abelian group, which we endow with its normalized Haar measure ν, so that

‖ f ‖p
H p = ‖B f ‖p

H p (T∞) :=
(∫
T∞

|B f (z)|p dν(z)

) 1
p

.

It is important to note that the Haar measure ν= ν0 of the polytorus T∞ is simply the product
of the normalized Lebesgue measure on T, denoted m = m0, in each variable. The subscript is
included to indicate the connection to D0 =H 2.
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Proof of Theorem 3. For (a) =⇒ (b), we first suppose thatΦ is a holomorphic function mapping
D to C1/2. Using Littlewood’s subordination principle (see [25, Ch. 11]), we find that

(5) ‖ f ◦Φ‖p
H p (T) ≤

1+|T −1(Φ(0))|
1−|T −1(Φ(0))|‖ f ‖p

H
p
i

,

for f ∈ H p
i . For G ∈ H p (T∞) and w ∈C, set Gw (z) =G(w z1, w z2, . . . ). By Fubini’s theorem,

‖G‖p
H p (T∞) =

∫
T∞

∫
T
|Gw (z)|p dm(w)dν(z).

Let P be a Dirichlet polynomial and assume that ϕ ∈G with char(ϕ) = 0. The latter assumption
implies that B(P ◦ϕ) = P ◦ (Bϕ). Thus, by setting G =B(P ◦ϕ), we obtain

‖P ◦ϕ‖p
H p =

∫
T∞

∫
T
|P ◦ (Bϕ)w (z)|p dm(w)dν(z).

Fixing for a moment z ∈ T∞, we notice that Φ(w) = (Bϕ)w (z) maps D to C1/2 with Φ(0) = c1.
Considering therefore P a member of H p

i , we apply (5) and conclude that

‖P ◦ϕ‖p
H p ≤

∫
T∞

(
1+|T −1(c1)|
1−|T −1(c1)|‖P‖p

H
p
i

)
dν(z) = 1+|T −1(c1)|

1−|T −1(c1)|‖P‖p

H
p
i

,

seeing as the constant in this instantiation of Littlewood’s subordination principle does not
involve z.

The implication (b) =⇒ (c) is obvious, seeing as it is easy to verify that ψ ∈ G . To prove that
(c) =⇒ (a), assume that Cψ acts boundedly on H p , say that

‖CψP‖H p ≤Cp‖P‖H p

holds for every Dirichlet polynomial P . Arguing as above, we find that B(P ◦ψ) = P ◦ (Bψ) and
that, in this case, Bψ(z) =T (z1). In particular, using the Bohr lift, this means that

‖CψP‖H p = ‖P ◦T ‖H p (T),

so we are done by (4). �

2.2. Bergman spaces. Let us now explain how to do the same for the Bergman–type spaces Dα.
Let α,β> 0, and consider the following probability measures on D.

dmα(z) = 1

Γ(α)

(
log

1

|z|2
)α−1

dm1(z),(6)

dm̃β(z) =β(
1−|z|2)β−1

dm1(z).(7)

Here m1 (which is the only case where m = m̃) is taken to be the standard Lebesgue measure
on C, normalized so that m1(D) = 1. For α> 0, the Bergman space Dα(D) can be defined as the
L2-closure of polynomials with respect to either measure, yielding equivalent norms. We will
for simplicity use the measure (7) in most cases.

However, in an infinite number of variables, the norms are no longer equivalent. We use (6)
to compute the norm of Dα as an integral over D∞ to ensure that (2) is satisfied. Therefore, we
define dνα(z) = dmα(z1)×dmα(z2)×·· · . It is straightforward to verify that

‖ f ‖2
Dα

=
∫
D∞

|B f (z)|2 dνα(z).
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Set Sτ = [1/2,1]× [τ,τ+1]. For the Bergman spaces Dα, the local embedding problem takes on
the following form: Given α> 0, what is the smallest β> 0 such that

(8) sup
τ∈R

∫
Sτ
|P (s)|2

(
σ− 1

2

)β−1

dm1(s) ≤Cα,β‖P‖2
Dα

for every Dirichlet polynomial P? Again, it is clear that the norm of Dα is invariant under vertical
translations, so arguing as above, we find that (8) is equivalent to ‖P‖Dβ,i ≤C ′

α,β‖P‖2
Dα

, setting

(9) ‖ f ‖2
Dβ,i

:= ‖ f ◦T ‖2
Dβ(D) = 4ββ

∫
C1/2

| f (s)|2
(
σ− 1

2

)β−1 dm1(s)

|s +1/2|2β+2
,

since any f in Dα is uniformly bounded in C1 by its Dα norm. For the next result, (a) =⇒ (b) is
part of the main result in [1]. The other steps are identical to the proof of Theorem 3 in view of
the discussion above.

Theorem 4. Fix α,β> 0. The following are equivalent.

(a) The local embedding (8) holds for α and β.
(b) For every ϕ ∈G with char(ϕ) = 0, the composition operator Cϕ : Dα→Dβ is bounded.
(c) Let ψ(s) =T (2−s). The composition operator Cψ maps Dα boundedly into Dβ.

It was shown in [14] that β = 2α− 1 is the optimal exponent in (8). We will touch upon the
reason behind this value in the next section, see in particular (19). From this optimality, we
obtain at once the following result, clarifying the optimal β in the main result of [1], which
states that if ϕ ∈G with char(ϕ) = 0, then Cϕ maps Dα boundedly into Dβ if β≥ 2α−1.

Corollary 5. Let α≥ 0. There isϕ ∈G with char(ϕ) = 0 such that Cϕ : Dα→Dβ is bounded if and
only if β≥ 2α−1.

2.3. Embedding of H p into Dβ,i. Even if one is unable to prove the embedding inequality (3)
for 1 ≤ p < 2, it is natural to ask whether it is possible to embed H p into some Bergman space
Dβ,i. For the Hardy spaces of the unit disc, this type of result goes back to the function theoretic
version of the isoperimetric inequality due to Carleman, which asserts that

(10) ‖ f ‖D1(D) ≤ ‖ f ‖H 1(D).

Iterating the inequality (its contractivity is crucial) and using the Bohr lift, Helson [11] found
that ‖ f ‖D1 ≤ ‖ f ‖H 1 . Combining Helson’s inequality with the results from [14] discussed above,
one finds that H 1 is embedded in D1,i, thereby reclaiming (10) in the context of Hardy spaces
of Dirichlet series and weighted Bergman spaces in C1/2.

If we seek to extend Helson’s inequality to 1 < p < 2, we are required to use the measure (6)
when defining the spaces Dα(D), to ensure that we get Dα after the iterative procedure. By a
standard interpolation argument between (10) and H 2(D), one find that for p ∈ (1,2),

(11) ‖ f ‖D 2
p −1

(D) ≤Cp‖ f ‖H p (D).

Nevertheless, the constant Cp arising from interpolation between Hardy spaces is strictly bigger
than 1 (see [7]). Without contractivity, we cannot argue as Helson, starting from (11), to prove
that H p embeds into D2/p−1. It turns out that this embedding is false, since it can be proved
(see [7] or the argument at the end of the proof of Theorem 1) that if H p embeds into Dα, then
α≥ 1− log p/log2 which is stricly bigger than 2/p −1 when p ∈ (1,2).
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On the other hand, such an embedding is not known to exist, unless p ∈ {1,2}. If we could
prove that H p embeds into Dα, with α= 1− log p/log2, then the embedding (8), which is valid
with β= 2α−1, would imply that

(12) ‖ f ‖D 2
p −1,i

¿‖ f ‖H p ,

again reclaiming (11) for Hardy spaces of Dirichlet series and weighted Bergman spaces in C1/2.
Similarly, the embedding (3) also implies (12), in this case by first translating (11) to C1/2 with
T . We have been able to prove (12) by different methods, which is our Theorem 1.

The proof uses several tools from harmonic analysis and analytic number theory. The first
is a special case of a result of Weissler [23], who studied the hypercontractivity of the Poisson
kernel.

Lemma 6. Let p ∈ [1,2]. For any f (z) =∑
k≥0 ak zk , we have the contractive estimate( ∞∑

k=0
|ak |2

(p

2

)k
)1/2

≤ ‖ f ‖H p (D).

The second tool is a way to iterate this inequality multiplicatively, first devised in [3] and later
used in [7, 11]. We formulate it in an abstract context and we give a brief account of the proof.

Lemma 7. Let p ∈ [1,2] and assume that there exists a sequence {γk }k≥0 of positive real numbers
with γ0 = 1, such that for every f (z) =∑

k≥0 ak zk ∈ H p (D),( ∞∑
k=0

|ak |2γk

)1/2

≤ ‖ f ‖H p (D).

Let Γ(n) denote the multiplicative function defined on the prime powers by Γ(pk
j ) = γk . Then,( ∞∑

n=1
|an |2Γ(n)

)1/2

≤ ‖ f ‖H p ,

for every f (s) =∑
n≥1 ann−s ∈H p .

Proof. Fix d ≥ 1 and f (z) =∑
κ∈Nd aκzκ ∈ H p (Td ). By the Bohr lift, it is sufficient to prove that

(13)

( ∑
κ∈Nd

|aκ|2γκ1 · · ·γκd

)1/2

≤ ‖ f ‖H p (Td ).

The assumption of the lemma is that (13) holds for d = 1. We will argue by induction on d and
assume that (13) is true for d −1. Then, fixing z1, . . . , zd−1 ∈ Td−1 and considering f a function
only of zd , we use (13) with d = 1 to get(∫

T

∣∣∣∣∣ ∑
κ∈Nd

aκγ
1/2
κd

zκ1
1 · · ·zκd

d

∣∣∣∣∣
2

dm(zd )

)p/2

≤
∫
T

∣∣∣∣∣ ∑
κ∈Nd

aκzκ1
1 · · ·zκd

d

∣∣∣∣∣
p

dm(zd ).

We integrate over the remaining coordinates z1, . . . , zd−1 and use Minkowski inequality in the
following form: For measure spaces X and Y , a measurable function g on X ×Y and r ≥ 1,(∫

X

(∫
Y
|g (x, y)|d y

)r

d x

)1/r

≤
∫

Y

(∫
X
|g (x, y)|r d x

)1/r

d y.



8 FRÉDÉRIC BAYART AND OLE FREDRIK BREVIG

This yields, with X =T, Y =Td−1 and r = 2/p, that∫
T

(∫
Td−1

∣∣∣∣∣ ∑
κ∈Nd

aκγ
1/2
κd

zκ1
1 · · ·zκd

d

∣∣∣∣∣
p

dm(z1) · · ·dm(zd−1)

)2/p

dm(zd )

p/2

≤ ‖ f ‖p

H p (Td )
.

The induction hypothesis allows us to conclude. �

Our final tool is a number theoretic estimate on the average order of a multiplicative function.
LetΩ(n) be the total number of prime divisors of n, sayΩ(pκ1

1 · · ·pκd
d ) = κ1+·· ·+κd . For 0 < y < 2

we refer to Selberg–Delange method (see [22, Thm. II.6.2]) and for y = 2 we refer to [2].

Lemma 8. Let 0 < y ≤ 2. Then

(14)
1

x

∑
n≤x

yΩ(n) ³
{

(log x)y−1 if 0 < y < 2,

(log x)2 if y = 2.

Observe the phase change at y = 2, which occurs since 2 is the first prime number. We are
now ready to proceed with the proof of (12).

Proof of Theorem 1. Combining Lemma 6 and Lemma 7, we get the inequality

(15)

( ∞∑
n=1

|an |2
(p

2

)Ω(n)
)1/2

≤ ‖ f ‖H p ,

for every f (s) =∑
n≥1 ann−s ∈H p , since in this case Γ(n) = (p/2)Ω(n). In other words, following

the conventions of [14], the space H p is continuously embedded into

Hwp :=
{ ∞∑

n=1
ann−s : ‖ f ‖wp :=

( ∞∑
n=1

|an |2/wp (n)

) 1
2

<∞
}

, where wp (n) =
(

2

p

)Ω(n)

.

The main result of [14] relates the average order of the weight w(n) with the optimal embedding
of Hw into Dβ,i, the relation being the two-sided estimate

(16)
1

x

∑
n≤x

w(n) ³ (log x)β.

Now, the case p = 1 was discussed and resolved above, using Helson’s inequality. For 1 < p < 2,
we have 1 < y < 2, so we conclude using (14) that Hwp is continuously embedded in D2/p−1,i

and that the parameter 2/p −1 is optimal, with respect to Hwp . This proves (12), using (15).
It remains only to verify that the optimality of the parameter 2/p −1 extends to H p . Fix ε> 0

and consider

fε(s) = [ζ(s +1/2+ε)]2/p

[ζ(1+2ε)]1/p
,

which, as shown in [3, Thm. 3], satisfies ‖ fε‖H p = 1. For s = σ+ i t satisfying, say, 1 < σ < 3/2
and 0 < t < 1, we have that ζ(s) ³ (s−1)−1. Assume now that H p embed continuously into Dβ,i.
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Then, for 1 ≤ p < 2 and 0 <β≤ 1, we estimate

1 À‖ fε‖Dβ,i À
∫ 1

1/2

∫ 1

0

|ζ(s +1/2+ε|]4/p

[ζ(1+2ε)]2/p

(
σ− 1

2

)β−1

d tdσ

À ε2/p
∫ 1

1/2

∫ 1

0

(σ−1/2)β−1(
(σ−1/2+ε)2 + t 2

)2/p
d tdσ

³ ε2/p
∫ 1

1/2

(σ−1/2)β−1

(σ−1/2+ε)4/p−1
dσÀ ε2/p+β−4/p+1,

which means that if H p is continuously embedded in Dβ,i, then necessarily β≥ 2/p −1. �

Let us compare the space Hwp to the space Dα for α = 1− log p/log2. It turns out that if

n is square-free, then (p/2)Ω(n) = 1/[d(n)]α. For other values, wp (n) is strictly smaller than
1/[d(n)]α, and it can be significantly smaller, most easily seen by considering n = 2k . Thus,
the space Hwp is (strictly) bigger than Dα. However, when 1 < p < 2, the weights wp (n) are
dominated by their square-free parts, so Dα and Hwp are embedded into the same Dβ.

To explain why this happens, let ξ be any positive multiplicative function with ξ(p j ) = β and
ξ(pk

j ) ¿ (2−δ)k for some 0 < δ< 2. Then, for Re(s) > 1,

∞∑
n=1

ξ(n)n−s =
∞∏

j=1

(
1+βp−s

j +
∞∑

k=2
ξ(pk

j )p−ks
j

)

= [ζ(s)]β
∞∏

j=1

(
1+βp−s

j +O (p−2s
j )

)(
1−βp−s

j +O (p−2s
j )

)
= [ζ(s)]β

∞∏
j=1

(
1+O (p−2s

j )
)

,

so by the Selberg–Delange method, we find
∑

n≤x ξ(n) ³ x(log x)β−1. Observe again the phase
change at δ= 0, leading to different embeddings for Hw1 and D1 in view of (16), since the latter
weight satisfies the assumption ξ(pk

j ) ¿ (2−δ)k , while the former does not.

Remark. By using Weissler’s inequality [23] for p ≥ 2 and arguing as in the proof of Lemma 7,
we find that if f (s) =∑

n≥1 ann−s and 2 ≤ p <∞, then

(17) ‖ f ‖H p ≤
( ∞∑

n=1
|an |2

(p

2

)Ω(n)
) 1

2

.

This inequality allows us to improve a result on the bounded zero sequences of H p from [21].
We achieve this by replacing [21, Lem. 9] with (17) and [21, Lem. 6] with Lemma 8. No additional
changes to the arguments are required. In the notation of [21] we get that

(18) Z
(
D1−2/p (C1/2)

)⊂ Z (H p ),

for 2 < p <∞. This improves a similar statement from [21, Sec. 4] when p is not an even integer.
Taking the dual of (11) in the H 2(D) pairing and recalling that (H p )∗ ∼= H p/(p−1) for 1 < p <∞,

we find that if f (z) =∑
k≥0 ak zk and 2 ≤ p <∞, then

‖ f ‖H p (D) ≤Cp

( ∞∑
k=0

|ak |2(k +1)1−2/p

) 1
2

.

As in (11) the parameter 1−2/p is optimal. This indicates that (18) is the best possible result of
this type we can hope to obtain by Hilbert space techniques.
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3. CARLESON MEASURES IN THE HALF-PLANE AND ON THE POLYDISC

3.1. Carleson measures in the half-plane. The non-conformal Bergman space Dβ(C1/2), for
β> 0, consists of the holomorphic functions f in C1/2 which satisfy

‖ f ‖2
Dβ(C1/2) :=

∫
C1/2

| f (s)|2
(
σ− 1

2

)β−1

d s <∞.

If β= 0, then Dβ(C1/2) is taken to be the non-conformal Hardy space, H 2(C1/2), with norm

‖ f ‖2
H 2(C1/2) := sup

σ>1/2

∫
R
| f (σ+ i t )|2 d t <∞.

For α,β ≥ 0, let X denote either Dα or Dβ(C1/2). A positive Borel measure µ on C1/2 is called a
Carleson measure for X provided there is a constant C =C (X ,µ) such that for every f ∈ X ,∫

C1/2

| f (s)|2 dµ(s) ≤C‖ f ‖2
X .

The smallest such constant C (X ,µ) is called the Carleson constant for µ with respect to X . A
Carleson measure µ is said to be a vanishing Carleson measure for X provided

lim
k→∞

∫
C1/2

| fk (s)|2 dµ(s) = 0

for every weakly compact sequence
{

fk
}

k≥1 in X . In this case, weakly compact means that
φ( fk ) → 0 for every φ ∈ X ∗. Since both X = Dβ(C1/2) and X =Dα are reproducing kernel spaces,
it is clear that

{
fk

}
k≥1 in X is weakly compact if and only if ‖ fk‖X ≤ C and fk (s) → 0 on every

compact subset K of C1/2.

Lemma 9. Let α≥ 0. Suppose that µ is a Borel measure on C1/2 with bounded support. Then µ is
a Carleson measure for Dα if and only if µ is a Carleson measure for D2α−1(C1/2). Moreover, µ is
vanishing Carleson for Dα if and only if µ is vanishing Carleson for D2α−1(C1/2).

The first part of this result can be extracted from [14, 15]. In preparation for the part regarding
vanishing Carleson measures, let us collect some preliminary results. The following geometric
characterization of Carleson measures for Bergman spaces can be found in [25, Sec. 7.2].

Lemma 10. Let β ≥ 0 and let µ be a Borel measure on C1/2. Then µ is a Carleson measure for
Dβ(C1/2) if and only if

µ
(
Q(τ,ε)

)=O
(
εβ+1)

for every Carleson square Q(τ,ε) = [1/2,1/2+ ε]× [τ−ε/2,τ+ε/2]. Additionally, µ is vanishing
Carleson for Dβ(C1/2) if and only if

µ
(
Q(τ,ε)

)= o
(
εβ+1),

as ε→ 0+, uniformly for τ ∈R.

The reproducing kernels of Dα are given by Kα(s, w) = ζα
(
s +w

)
, where

ζα(s) =
∞∑

n=1
[d(n)]αn−s .

It is clear that ‖Kα(·, w)‖Dα
=√

ζα(2Re w). We extract from [24, pp. 240–241] that

(19) ζα(s) :=
∞∑

n=1
[d(n)]αn−s = [ζ(s)]2α

∞∏
j=1

(
1+

∞∑
m=2

bm p−ms
j

)
=: [ζ(s)]2αφα(s),
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where the Euler product φα(s) converges absolutely in C1/2 with φα(1) 6= 0.

Proof of Lemma 9. As stated above, the first part regarding Carleson measures can be extracted
from [14, 15]. We will only consider the part pertaining to vanishing Carleson measures here.

We argue first by contradiction. Assume that µ is vanishing Carleson for Dα, and that µ is not
vanishing Carleson for D2α−1(C1/2). By Lemma 10, the latter assumption implies that there is
some sequence of Carleson squares

{
Qk (τk ,εk )

}
k≥1, where εk → 0, satisfying

µ(Qk ) À ε2α

k .

Let sk = 1/2+εk + iτk and consider

fk (s) = Kα(s, sk )

‖Kα(·, sk )‖Dα

= ζα
(
s + sk

)√
ζα(1+2εk )

.

It is easy to see that fk is weakly compact in Dα, since ‖ fk‖Dα = 1 and fk (s) → 0 uniformly in
σ≥ 1/2+δ for every δ> 0. Since µ is assumed to be vanishing Carleson for Dα, this means that

lim
k→∞

∫
Qk

| fk (s)|2 dµ(s) ≤ lim
k→∞

∫
C1/2

| fk (s)|2 dµ(s) = 0.

Now, let s = σ+ i t ∈ Qk . Then 1/2 ≤ σ ≤ 1/2+ εk and τk − εk /2 ≤ t ≤ τk + εk /2. Recalling the
simple pole of the zeta function and using (19), we obtain

ζα
(
s + sk

)³ (
s + sk −1

)−2α À (1+2εk + iεk /2−1)−2α ³ ε−2α

k .

Similarly,
√
ζα(1+2εk ) ³ ε−2α−1

k . Hence, by the assumption that µ is not vanishing Carleson for
D2α−1(C1/2), we estimate

0 = lim
k→∞

∫
Qk

| fk (s)|2 dµ(s) À lim
k→∞

µ(Qk )ε−2α

k À 1,

and the desired contradiction is obtained.
In the other direction, assume that µ is vanishing Carleson for D2α−1(C1/2). Let

{
fk

}
k≥1 be a

weakly compact sequence in Dα. Since µ has bounded support, there is some constant M > 0
so that

(20)
∫
C1/2

| fk (s)|2 dµ(s) ≤ M
∫
C1/2

∣∣∣∣ fk (s)

(s +1/2)2α

∣∣∣∣2

dµ(s).

Let Fk (s) = fk (s)/(s+1/2)2α . Clearly Fk (s) → 0 on compact subsets K of C1/2 since this is true for
fk . From (9) and the discussion following Theorem 4, we conclude that ‖Fk‖D2α−1

¿‖ fk‖Dα . In
particular, this implies that {Fk }k≥1 is a weakly compact sequence in D2α−1(C1/2) and hence by
(20), the measure µ is vanishing Carleson for Dα. �

Remark. The first part of the proof of Lemma 9 does not use that µ has bounded support, so a
vanishing Carleson measure for Dα is always vanishing Carleson for D2α−1(C1/2).

3.2. Carleson measures on the polydisc. Letϕ ∈G with char(ϕ) = 0, and letΦ denote the Bohr
lift of ϕ. For β≥ 0 we will consider the following measures on C1/2.

µβ,ϕ(E) =
{
νβ

(
{z ∈D∞ : Φ(z) ∈ E }

)
, if β> 0,

νβ
(

{z ∈T∞ : Φ(z) ∈ E }
)
, if β= 0,

E ⊂C1/2.

The following necessary and sufficient Carleson conditions for boundedness and compactness
of Cϕ when ϕ ∈ G with char(ϕ) = 0 and ϕ(C0) is a bounded set will be our main technical tool
for the study of composition operators between the spaces Dα.
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Lemma 11. Let α,β ≥ 0. Suppose that ϕ ∈ G with char(ϕ) = 0 and suppose that ϕ(C0) is a
bounded subset of C1/2. Then Cϕ : Dα→Dβ is bounded if and only if

(21) µβ,ϕ
(
Q(τ,ε)

)=O
(
ε2α)

for every Carleson square Q(τ,ε) = [1/2,1/2+ε]× [τ−ε/2,τ+ε/2]. Moreover, Cϕ is compact from
Dα to Dβ if and only if

µβ,ϕ
(
Q(τ,ε)

)= o
(
ε2α),

as ε→ 0+, uniformly for τ ∈R.

Proof. We begin with the proof of the boundedness criterion (21). Assume at first that α,β> 0.
Let P be a Dirichlet polynomial. Since c0 = 0, we observe as in the proof of Theorem 3 that
B(P ◦ϕ) = P ◦Bϕ, so

(22) ‖CϕP‖2
β =

∫
D∞

|P (Φ(z)) |2 dνβ(z).

Now, sinceµβ,ϕ = νβ,ϕ◦Φ−1 and since Dirichlet polynomials are dense in Dα, it is easy to deduce
from (22) that Cϕ is bounded from Dα to Dβ if and only if∫

C1/2

| f (s)|2 dµβ,ϕ(s) ¿‖ f ‖2
Dα

.

Using Kronecker’s theorem and the maximum modulus principle on the polydisc, we find that
supp

(
µβ,ϕ

) = ϕ(C0). By assumption, ϕ(C0) is a bounded subset of C1/2, so µβ,ϕ has bounded
support. Hence, by Lemma 9 and Lemma 10, µβ,ϕ is a Carleson measure for Dα if and only if

µβ,ϕ
(
Q(τ,ε)

)=O
(
ε2α

)
.

The argument for compactness follows by similar considerations. If α = 0, these arguments
work line for line. If β = 0, we appeal directly to [19, Lem. 4.1]. Clearly supp

(
µβ,ϕ

) ⊆ ϕ(C0), so
the measure is still boundedly supported. The remaining deliberations apply directly. �

This lemma can be combined with a compactness argument as in [5, Lem. 6], to obtain the
next result. But first, note that if ϕ ∈ G is a Dirichlet polynomial with char(ϕ) = 0, its Bohr lift
Φ = Bϕ is always a polynomial of d <∞ variables. We call d the complex dimension of ϕ and
write d = dim(ϕ).

Corollary 12. Let ϕ ∈ G be a Dirichlet polynomial with dim(ϕ) = d and Bohr lift Φ. If for every

w ∈ Td with ReΦ(w) = 1/2 there exist a neighborhood Uw 3 w in Dd , constants Cw > 0 and
κw ≥ 2α such that, for every τ ∈R and every ε> 0,

νβ
(
{z ∈Uw : Φ(z) ∈Q(τ,ε)}

)≤Cwε
κw ,

then Cϕ maps Dα boundedly into Dβ. If moreover κw > 2α for every w ∈Td with ReΦ(w) = 1/2,
then Cϕ : Dα→Dβ is compact.

3.3. Measures of some sets inDd . Corollary 12 indicates that we need to estimate the measure
of some sets in Dd . Let us collect some estimates for some particular subsets of Dd . To simplify
the computations, we will replace the measure νβ with the new measure ν̃β associated to m̃β as
defined in (7). Now, if dim( f ) = d , then clearly∫

Dd
|B f (z)|2 d ν̃β(z) ³d ,β

∫
Dd

|B f (z)|2 dνβ(z).



COMPOSITION OPERATORS AND EMBEDDING THEOREMS FOR SOME FUNCTION SPACES OF DIRICHLET SERIES 13

In particular, we can replace νβ by ν̃β in Corollary 12. We should also point out that for β = 0,
we do not change the measure and adopt the convention ν0 = ν̃0.

For δ,ε > 0, let S(δ,ε) = {
z = (1−ρ)e iθ ∈D : 0 ≤ ρ ≤ δ, |θ| ≤ ε} . As usual, B(w,r ) will denote

the open ball centered at w ∈ C with radius r > 0. Geometric considerations show that there
exist absolute constants c,C > 0 such that, for every ε> 0 and every w ∈T, we have

S
(
cε,cε1/2)⊂ {z ∈D : Re(1− z) < ε} ⊂ S

(
Cε,Cε1/2)(23)

wS(cε,cε) ⊂ B(w,ε)∩D⊂ wS(Cε,Cε).(24)

The following lemmas are inspired by [4], and for the sake of clarity we include a brief account
of their proofs.

Lemma 13. For any β> 0, m̃β

(
S(δ,ε)

)³β δβε.

Proof. This follows from an integration in polar coordinates. �

Lemma 14. For any β> 0, m̃β

(
{z ∈D : Re(1− z) < ε}

)³β εβ+ 1
2 .

Proof. The result follows from Lemma 13 and (23). �

Lemma 15. Let β> 0 and v ∈C. Then

m̃β

(
{z ∈D : Re(1− z) < ε, | Im(v − z)| < ε}

)¿β ε
1+β.

Proof. This follows again from an integration in polar coordinates. �

Lemma 16. Let β> 0. There exists c > 0 such that, for any v ∈C satisfying

|Re(v)−1| ≤ cε and | Im(v)| ≤ (cε)1/2,

then
m̃β

(
{z ∈D : Re(1− z) < ε, |v − z| < ε}

)³β ε1+β.

Proof. The upper bound is Lemma 15. For the lower bound, observe that, provided c ∈ (0,1/2),
then {z ∈D : |z−v | < ε/2} ⊂ {z ∈D : Re(1−z) < ε}. Hence, we just need to minorize m̃β

(
B(v,ε/2)∩

D
)
. Now, it is easy to check that upon the conditions c ∈ (0,1/2) and ε ∈ (0,1),

−8cε≤ 1−|v | ≤ 8cε.

Writing

|z − v | ≤
∣∣∣∣z − v

|v |
∣∣∣∣+ ∣∣1−|v |∣∣

we get that B(v/|v |,ε/4) ⊂ B(v,ε/2) provided c < 1/32. We finish the proof as in Lemma 15. �

Remark. When δ = ε, the sets S(δ,ε) are the classical Carleson windows of the disc. However,
we are required to handle inhomogeneous Carleson windows in what follows.

4. COMPOSITION OPERATORS WITH POLYNOMIAL SYMBOLS ON Dα

Let us consider a polynomial symbol in G of characteristic c0 = 0, say ϕ(s) = ∑N
n=1 cnn−s .

We are only interested in symbols having unrestricted range, which means that ϕ(C0) is not
contained in C1/2+δ, for any δ> 0. If the symbol has restricted range, it is trivial to deduce from
[1, Thm. 1] that Cϕ maps Dα compactly into Dβ, for any choice of α,β≥ 0.

Let us now look at the Bohr lift of ϕ, denotedΦ. As in the previous section, we will let dim(ϕ)
denote the complex dimension ofϕ, which is equal to the number of variables in the polynomial
Φ(z1, . . . , zd ). Now, the degree of ϕ will be the degree of Φ, and we will write deg(ϕ). When the



14 FRÉDÉRIC BAYART AND OLE FREDRIK BREVIG

complex dimension is big and the degree is small, we can improve β = 2α− 1 from the main
result of [1] substantially.

Theorem 17. Fix α> 0 and consider a Dirichlet polynomial ϕ in G with unrestricted range.

(i) If d = dim(ϕ) ≥ 2 and deg(ϕ) ∈ {1,2}, then Cϕ maps Dα boundedly into Dβ for some β <
2α−1. More precisely, Cϕ : Dα→D(2α−1)/d is bounded.

The result is optimal in the following sense.

(ii) If dim(ϕ) = 1, then Cϕ : Dα→Dβ is not bounded for any β< 2α−1.
(iii) There are polynomialsϕ ∈G of any complex dimension and with arbitrary deg(ϕ) ≥ 3 for

which Cϕ is not bounded from Dα to Dβ for any β< 2α−1.

From the proof of Theorem 17 (and Corollary 12) it is possible to deduce the following result
regarding compactness. However, before we state the result, let us stress that the inclusion
Dα ⊂ Dβ is not compact for α< β. To realize this one needs only consider the weakly compact
sequence generated by the prime numbers, {p−s

j } j≥1, since d(p j ) = 2.

Corollary 18. Fix α> 0 and consider a Dirichlet polynomial ϕ in G with unrestricted range.

(i) If dim(ϕ) ≥ 2 and deg(ϕ) ∈ {1,2}, then Cϕ : Dα→D2α−1 is compact.

The result is optimal in the following sense.

(ii) If dim(ϕ) = 1, then Cϕ : Dα→D2α−1 is never compact.
(iii) There are polynomialsϕ ∈G of any complex dimension and with arbitrary deg(ϕ) ≥ 3 for

which Cϕ : Dα→D2α−1 is not compact.

It is interesting to compare Corollary 18 to its version for α= 0 which is [5, Thm. 3]. Ignoring
the technical part of [5, Thm. 3] regarding minimal Bohr lift and boundary index, we observe
that the results match up. However, going into the details, we observe that this correspondance
is not completely true. We shall give later (see Theorem 21) simple examples of polynomial
symbols ϕ such that Cϕ maps Dα compactly into D2α−1 for α > 0, but does not map H 2 com-
pactly into H 2. This phenomenon is due to the necessity to introduce the minimal Bohr lift in
the context of H 2.

Observe also that it is possible to deduce a version of Theorem 17 for the case Cϕ : Dα→H 2

from [5, Lem. 10] using Lemma 11 and Corollary 12. However, the result would be cumbersome
to state, due to the above mentioned technical parts, so we avoid it here.

We need one final lemma to prove Theorem 17, which can easily be deduced from the Julia–
Caratheodory theorem (or from elementary considerations as in the proof of [5, Lem. 7]).

Lemma 19. Let P (z) =∑K
k=1 ak (1−z)k be a polynomial mappingD into C0. Then P ≡ 0 or a1 > 0.

We split the proof of Theorem 17 into two parts, and begin with the easiest part.

Proof of Theorem 17 — (ii) and (iii). We begin with (ii). Fix α > 0 and assume that ϕ ∈ G is a
Dirichlet polynomial with dim(ϕ) = 1 and unrestricted range. By Corollary 12 we investigate
some w ∈T such that Φ(w) = 1/2+ iτ, where Φ denotes the Bohr lift of ϕ. We may assume that
w = 1 and τ= 0 after, if necessary, a (complex) rotation and a (vertical) translation. Hence, Φ is
a polynomial of the form

Φ(z) = 1

2
+

K∑
k=1

ak (1− z)k .
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By Lemma 19 we know that a1 > 0. In view of Corollary 12, it suffices to prove that for β> 0 and
every small enough ε> 0,

µβ,ϕ
(
Q(0,ε)

)À εβ+1.

Using Lemma 13, we see that it is sufficient to prove that the homogeneous Carleson window
S(ε,ε) is included in the pre-image of Q(0,cε) under Φ for some fixed c ∈ (0,1) and for every
small enough ε> 0. Now, note that if z ∈ S(ε,ε), then

max
{

Re
(
(1− z)k)

, Im
(
(1− z)k)}≤ εk .

In particular, sinceΦ is a polynomial and a1 > 0, we find that if z ∈ S(ε,ε), then

1/2 ≤ ReΦ(z) ≤ 1/2+a1ε+O (ε2),

| ImΦ(z)| ≤ a1ε+O (ε2).

Hence any c > a1/2 will do. Part (iii) can be deduced from this argument in the following way.
Let δ> 0 and letΨ(z) =Ψ(z1, . . . , zd ) be any polynomial in d variables and define

Φ(z) = 1

2
+ (1− z1)+δ(1− z1)2Ψ(z).

ClearlyΦ is the Bohr lift of

ϕ(s) = 1

2
+ (1−p−s

1 )+δ(1−p−s
1 )2Ψ(p−s

1 , . . . , p−s
d ).

It is proved in [5, Lem. 9] that by choosing δ> 0 sufficiently small, we can guarantee that ϕ ∈G ,
that ϕ has unrestricted range and furthermore that if Φ touches the boundary of C1/2 at some

point z ∈ Dd , then necessarily z1 = 1. The argument given above works line for line with one
minor modification. Suppose z1 ∈ S(ε,ε). Then for every choice of z2, . . . , zd in Dwe have

max
{
Re

(
δ(1− z1)2Ψ(z)

)
, Im

(
δ(1− z1)2Ψ(z)

)}≤ δ‖Ψ‖∞ε2,

so we conclude again by Corollary 12 and Lemma 13. �

Proof of Theorem 17 — (i). Let ϕ ∈G be a Dirichlet polynomial and assume that dim(ϕ) = d ≥ 2
and deg(ϕ) ∈ {1,2}. Let Φ be the Bohr lift of ϕ. We will again apply Corollary 12. Hence, let w ∈
Td be such that ReΦ(w) = 1/2. Without loss of generality, we may assume that w = 1 = (1, . . . ,1)
and thatΦ(1) = 1/2. We may writeΦ as

Φ(z) = 1

2
+

d∑
j=1

a j (1− z j )+
d∑

j=1
b j (1− z j )2 + ∑

1≤ j<k≤d
c j ,k (1− z j )(1− zk ).

We first claim that a j > 0 for any j = 1, . . . , d . Indeed, applying Lemma 19 toΦ(1, z j ,1)−1/2, we
know that either a j > 0 or a j = b j = 0. Assume that the latter case holds. Since ϕ has complex
dimension d , there exists k 6= j so that c j ,k 6= 0. Let us considerΨ(z j , zk ) =Φ(1, z j ,1, zk ,1). Then
a Taylor expansion ofΨ(e iθ j ,e iθk ) shows that

ReΨ
(
e iθ j ,e iθk

)= 1

2
+

(ak

2
−Re(bk )

)
θ2

k −Re(c j ,k )θ jθk +o(θ2
j )+o(θ2

k ).

Choosing θ j = δ and θk = δ2 and letting δ to 0, this implies that Re(c j ,k ) = 0 since by assumption
ReΨ≥ 1/2. On the other hand, for ρ j ∈ (0,1),

ReΨ(1−ρ j ,e iθk ) = 1

2
+

(ak

2
−Re(bk )

)
θ2

k + Im(c j ,k )ρ jθk +o(ρ2
j )+o(θ2

k ).

This in turn yields that Im(c j ,k ) = 0, a contradiction.
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We come back to Φ and, for j = 1, . . . , d , we write z j = (1 − ρ j )e iθ j where ρ j ∈ (0,1) and
θ j ∈ [−π,π). We shall use the local diffeomorphism between a neighborhood of 1 in Cd and
a neighborhood of 0 in R2d given by

(ρ,θ) 7→ (
(1−ρ1)e iθ1 , . . . , (1−ρd )e iθd

)
.

A Taylor expansion of ReΦ near 1 shows that

ReΦ(z) = 1

2
+

d∑
j=1

ρ j F j (ρ,θ)+G(θ)

where F j (0) = a j . Taking all ρ j equal to zero, we get that G(θ) ≥ 0. Hence, there exists a (fixed)

neighborhood U 3 1 in Dd such that for all ε> 0 and all τ ∈R,

0 ≤
d∑

j=1
ρ j F j (ρ,θ) ≤ ε and F j (ρ,θ) ≥ a j

2

provided z ∈ U and Φ(z) ∈ Q(τ,ε). This implies that |ρ j | ≤ 2ε/a j for any j = 1, . . . ,d . We now
look at ImΦ and let us write it under the following form:

ImΦ(z) = γ(ρ,θ2,...,θd )(θ1) = a1θ1 +o(θ1).

The map (ρ,θ) 7→ γ(ρ,θ2,...,θd )(θ1) is smooth and satisfies γ′(ρ,θ2,...,θd )(0) = a1. Then there exists V a

neighborhood of 1 in Cd =R2d such that, for any z ∈ V ,

γ′(ρ,θ2,...,θd )(θ1) ≥ a1

2
.(25)

Now, if (ρ,θ2, . . . ,θd ) are fixed and θ1 is such that z belongs to V , the condition Φ(z) ∈ Q(τ,ε)
implies that γ(ρ,θ2,...,θd )(θ1) belongs to some interval of length ε. By (25), this implies that θ1

belongs to some interval of length Cε, where C does not depend on (ρ,θ2, . . . ,θd ) provided z ∈ V .
Let us summarize the previous computations. We have shown that there exist a (fixed) neigh-

borhood W =U ∩V of 1 in Cd and a constant D > 0 such that, for any z ∈W ∩Dd and any ε> 0
satisfying Φ(z) ∈ Q(τ,ε), then ρ j ≤ Dε and ρ, θ2, . . . , θd being fixed, θ1 belongs to some fixed
interval of length Dε. By Fubini’s theorem and polar integration as in Lemma 13, we get that

ν̃β

({
z ∈W ∩Dd : Φ(z) ∈Q(τ,ε)

})¿ εdβ+1.

We conclude by Corollary 12. �

Let us focus our attention on part (ii) of Theorem 17, which implies that it is sufficient to
consider the most simple non-trivial symbol,

(26) ϕ(s) = 3/2−2−s = 1/2+ (1−2−s),

to conclude that the sharp β for Cϕ : Dα → Dβ is β = 2α−1. This is perhaps not so surprising,
since we can consider (26) a local version of the symbol associated to the transference map,

T (2−s) = 1

2
+ 1−2−s

1+2−s
,

as considered in Section 2. We will devote the remainder of this section to investigating two
classes of examples that generalize (26).
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The first extension of (26) are the linear symbols, namely symbols which are of the form

(27) ϕ(s) = c1 +
d∑

j=1
cp j p−s

j .

Observe in particular that (26) is just the case d = 1. We have the following result.

Theorem 20. Let α,β≥ 0. Let ϕ of the form (27) with unrestricted range and cp j 6= 0 for every j .
Then Cϕ : Dα→Dβ is bounded if and only if

(28)
1

2
+d

(
1

2
+β

)
≥ 2α.

Moreover, Cϕ : Dα→Dβ is compact if and only if the inequality in (28) is strict.

Proof. If β= 0, this can be extracted from [19, Lem. 8.2] in combination with Corollary 12.
Assume therefore that β > 0. Arguing as in [19], we may assume that c1 > 0 and that cp j < 0

for every j . Since ϕ has unrestricted range, we know that

c1 = 1

2
+

d∑
j=1

|cp j |.

We will represent the Bohr lift of ϕ in the following way.

(29) Φ(z) = c1 +
d∑

j=1
cp j −

d∑
j=1

cp j (1− z j ) = 1

2
+

d∑
j=1

|cp j |(1− z j ).

Let τ ∈R and ε> 0. IfΦ(z) ∈Q(τ,ε), we inspect (29) to conclude, for any j = 1, . . . ,d −1, that

Re(1− z j ) ≤ ε

|cp j |
.

Hence, for any j = 1, . . . ,d−1, by Lemma 14 we know that z j belongs to some set R j (ε) satisfying

m̃β(R j (ε)) ¿ ε
1
2+β. Moreover, for a fixed value of z1, . . . , zd−1, we also have

Re(1− zd ) ≤ ε

|cpd |
and | Im(v − zd )| ≤ ε

2|cpd |
for v ∈ C depending on τ, z1, . . . , zd−1. By Lemma 15, zd belongs to some set Rd (z1, . . . , zd−1)
satisfying m̃β(Rd (z1, . . . , zd−1)) ¿ ε1+β. Using Fubini’s theorem, we get

µβ,ϕ
(
Q(τ,ε)

)¿ ε
1
2+d

( 1
2+β

)
and we compare this with the sufficient condition for continuity.

Conversely, assume that z j belongs to D(η) = {z ∈D : Re(1− z) ≥ ηε} for some small η> 0 and

for any j = 1, . . . ,d −1. Observe that m̃β

(
D(η)

)À ε
1
2+β. Then, setting

v = (|cp1 |(1− z1)+·· ·+ |cpd−1 |(1− zd−1)
)
/|cpd |

we get

Φ(z1, . . . , zd ) ∈Q(0,ε) ⇐⇒
{

0 ≤ Re
(
c1 −|cp1 |z1 −·· ·− |cpd |zd

)≤ ε∣∣Im(|cp1 |z1 +·· ·+ |cpd |zd
)∣∣≤ ε/2

⇐⇒
{

0 ≤ |cp1 |Re(1− z1)+·· ·+ |cpd |Re(1− zd ) ≤ ε∣∣Im(|cp1 (1− z1)+·· ·+ |cpd−1 |(1− zd−1)−|cpd |zd
)∣∣≤ ε/2

⇐⇒
{

0 ≤ Re
(
v + (1− zd )

)≤ ε/|cpd |∣∣Im(
v − zd

)∣∣≤ ε/2|cpd |.
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Now, Re(v) ≤Cηε and | Im(v)| ≤ (2Cηε)1/2 for

C = |cp1 |+ · · ·+ |cpd−1 |
|cpd |

.

Hence, provided η is small enough, then Φ(z1, . . . , zd ) ∈ Q(0,ε) as soon as Re(1− zd ) < ηε and
|v − zd | < ηε. By Fubini’s theorem and Lemma 16,

µβ,ϕ
(
Q(0,ε)

)À ε
1
2+d

( 1
2+β

)
.

We conclude by Corollary 12. The same proof shows that Cϕ maps Dα compactly into Dβ if and
only if 1/2+d(1/2+β) > 2α. �

It is clear that in H 2, the monomials n−s all have norm 1. This is of course no longer the
case in Dα when α> 0. Thus we have more flexibility in choosing the Bohr lift for H 2, since we
may use any sequence of independent integers (q1, . . . , qd ) instead of (p1, . . . , pd ). This lead us
to introduce the notion of minimal Bohr lift in [5]. For the Bergman spaces, we are by definition
required to consider the canonical Bohr lift, since it is used to compute the norm. In this sense
the situation is less subtle. To further emphasize the difference between α = 0 and α > 0, we
have the following result.

Theorem 21. Letα≥ 0 and considerϕ(s) = 3/2−n−s for some fixed integer n ≥ 2. Set d = dim(ϕ),
which in this case is equal to the number of distinct prime factors of n. Then Cϕ : Dα → Dβ is
bounded if and only if β ≥ (2α− 1)/d. If α = 0, then Cϕ is not compact on H 2. If α > 0, then
Cϕ : Dα→Dβ is compact if and only if β> (2α−1)/d.

Observe that for every α > 0, we can make Cϕ map Dα into Dβ for any β > 0, by increasing
the number of prime factors in n. However, we can never obtain β= 0 in this case.

Proof. Assume first that α= 0. As explained in [5], the minimal Bohr lift is simplyΦ(z) = 3/2− z
for every integer n ≥ 2, and by the results in [5], this means that Cϕ : H 2 →H 2 is bounded, but
not compact.

Assume now that α > 0. Let p be any prime number that does not divide n and consider
ψ(s) = 3/2−p−s . By Theorem 17 (ii) and Corollary 18 (ii) we know that Cψ : Dα→Dβ is bounded
if and only if β ≥ 2α−1 and compact if and only if β > 2α−1. Now, define the operator T on
Cψ(Dα) by T (p−s) = n−s so that Cϕ = T ◦Cψ. A trivial estimate with the divisor function shows
that if g ∈Cψ(Dα), then

‖g‖Dβ
≤ ‖T (g )‖Dβ/d ¿n,β ‖g‖Dβ

,

so we are done. �

Remark. It is natural to ask whether the space D(2α−1)/d in Theorem 17 (i) is optimal. We found
that this is not the case for linear symbols in Theorem 20. By Theorem 21, it is optimal if
dim(ϕ) = 2. For dim(ϕ) ≥ 3, we conjecture that (2α − 1)/d is not optimal, but our results do
not further substantiate this claim.

5. COMPOSITION OPERATORS WITH LINEAR SYMBOLS ON H p

Let us reiterate that the results of the previous section show that the optimal β for the local
embedding of Dα can, through the results of Section 2, be decided simply by considering the
symbol ϕ(s) = 3/2−2−s . The embedding problem is in general open for H p , so it is therefore
interesting to investigate how the composition operator generated by this symbol acts on H p .
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As previously mentioned, composition operators with characteristic 0 acting on H p are not
well understood when p is not an even integer. In particular, very few examples are known.
To our knowledge, the only known non-trivial examples appear in [6]. The symbols of these
operators are given by

(30) ϕ(s) = 1

2
+

(
1−ω(2−s)

1+ω(2−s)

)1−ε

where ω is an analytic self-map of D and ε ∈ (0,1). Observe that the fact that we are not allowed
to set ε = 0 restricts the range of ϕ in C1/2. Symbols of this type are a type of lens maps from
C0 to C1/2. Observe also that the most simple case ω(z) = z yields a restricted version of the
“transference map” from Theorem 3 (iii).

Now, it is clear that ϕ(s) = 3/2−2−s , or indeed any Dirichlet polynomial, is not of the form
(30). We are not able to settle the boundedness of the composition operator induced by this
symbol on H p , but we will again consider symbols of linear type. Using Theorem 1, we will be
able to prove boundedness when the complex dimension is bigger than or equal to 2.

Our last main tool for this will be the so-called p/q–Carleson measures. Let 1 ≤ p, q <∞ and
let X be one of the spaces considered in this paper, for instance X = H q or X = H q (C1/2). If
X =Dα or X = Dβ(C1/2) then q = 2. We require that a measure µ satisfies

(31)

(∫
C1/2

| f (s)|p dµ(s)

) 1
p ≤C‖ f ‖X ,

for some constant C = C (p, q, X ) to be p/q–Carleson for X . For X = H q (C1/2) and q ≤ p, the
following description can be found in [9, Thm. 9.4].

Lemma 22. Let 1 ≤ q ≤ p <∞. A positive Borel measure µ on C1/2 is p/q–Carleson for H q (C1/2)
if and only if

µ
(
Q(τ,ε)

)=O
(
εp/q)

for every Carleson square Q(τ,ε) = [1/2,1/2+ε]× [τ−ε/2,τ+ε/2].

Let us now extend a result from [15] to the case p < q , which will be needed in the proof of
Theorem 2 for the range 2 < p <∞.

Lemma 23. Fix 1 ≤ q ≤ p <∞ and let µ be a positive Borel measure on C1/2.

(i) If µ is p/q–Carleson for H q , then µ is p/q–Carleson for H q (C1/2).
(ii) If the embedding (3) holds for q and µ has bounded support, then the converse is true.

Proof. To prove part (i), we use Lemma 22 and argue by contradiction as in the first part of the
proof of Lemma 9. In particular, assume that µ is a p/q–Carleson measure H q . Consider a
sequence of Carleson squares Qk =Q(τk ,εk ) and the Dirichlet series

fk (s) = [ζ(s +1/2+εk + iτk )]2/q ,

which satisfies ‖ fk‖H q = [ζ(1+2εk )]1/q . We deduce from (31) that µ(Qk ) ¿ ε
p/q
k as εk → 0 and

conclude as in Lemma 9. Part (ii) follows from a routine application of the embedding. We
proceed as in the proof of the second part of Lemma 9, setting now F (s) = f (s)/(s +1/2)2/q and
using the same trick as in (20). �

To make the statement of our final lemma more convenient, we will move to C0 as in [5]. This
change is easily carried out when working with composition operators, since it corresponds to



20 FRÉDÉRIC BAYART AND OLE FREDRIK BREVIG

the changes f (s) 7→ f (s +1/2) and ϕ(s) 7→ϕ(s +1/2)−1/2. In particular, the translated f ∈Dα is
embedded in D2α−1,i(C0).

Let dH(z, w) be the hyperbolic distance in the half-plane C0 which is defined by

1−e−dH(z,w)

1+e−dH(z,w)
=

∣∣∣z −w

z +w

∣∣∣
and let BH(s,r ) be the hyperbolic disc of centre s and radius r ∈ (0,1). It is well-known that
BH(s,r ), for s = σ+ i t , is simply the Euclidean disc of centre (σcoshr, t ) and radius σsinhr . In
particular, we shall use that if r is not too big, then BH(s,r ) is contained in [σ/2,2σ]×[t−σ, t+σ].

Luecking in [12] has characterized the p/q–Carleson measures of the (unweighted) Bergman
spaces in the unit disc when p < q . As observed in [16], his proof carries on the weighted
Bergman spaces. The next lemma is simply [16, Thm. B] with p = 2 and n = 0, translated from
Dβ(D) to Dβ,i(C0) using T −1/2.

Lemma 24. Let 1 ≤ p < 2 and let µ be a positive Borel measure on C0. Then µ is p/2–Carleson for
Dβ,i(C0) if and only if for some (any) r > 0,

(32)
∫
C0

(
µ
(
BH(s,r )

)) 2
2−p σ

(p−4)−pβ
2−p |s +1|

2p(β+1)
2−p dm1(s) <∞.

We are finally in a position to prove Theorem 2.

Proof of Theorem 2. We first assume p > 2. We begin by fixing some positive integer k and con-
sider q = 2k < p < 2k + 2. We want to investigate when Cϕ maps H q to H p . Since p > q ,
this also means that Cϕ acts boundedly on H p . Setting µϕ := µ0,ϕ, we argue as in the proof of
Lemma 11 to find that boundedness of Cϕ : H q →H p is equivalent to

(33)

(∫
C1/2

| f (s)|p dµϕ(s)

) 1
p ¿‖ f ‖H q .

Using Lemma 22 and Lemma 23, while keeping in mind that the embedding (3) holds for q = 2k,
we find that (33) is equivalent to

µϕ
(
Q(τ,ε)

)¿ εp/q ,

for every Carleson square Q. However, from [19, Lem. 8.2] we know that µϕ
(
Q(τ,ε)

)¿ ε(d+1)/2.
Hence we require of d that

d ≥ 2p

q
−1 = p

k
−1.

It is easy to check that d ≥ 2 is sufficient if p ∈ (2,3]∪ (4,∞) and d ≥ 3 is sufficient if 3 < p < 4.
We now consider 1 ≤ p < 2. First, we use Theorem 20 with α= 1 and β= 0 to conclude that if

d ≥ 3, then Cϕ maps D1 boundedly into D0 =H 2. To conclude that Cϕ : H p →H p is bounded,
we use the inequalities

‖ f ‖D1 ≤ ‖ f ‖H 1 ≤ ‖ f ‖H p ≤ ‖ f ‖H 2 ,

where the first one is Helson’s inequality.
It remains to prove that d ≥ 2 is sufficient when 1 ≤ p < 2 and p ∈ (3,4). The trivial identity∥∥ f ◦ϕ∥∥2p

H 2p = ∥∥ f 2 ◦ϕ∥∥p
H p
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shows that it is enough to conclude for p ∈ [1,2). Assume that ϕ(s) = c1 + cp1 p−s
1 + cp2 p−s

2 has
unrestricted range. Using Theorem 1, we find that it is sufficient to verify that(∫

T2
| f ◦Φ(z)|p dν(z)

) 1
p =

(∫
C1/2

| f (s)|p dµ0,ϕ(s)

) 1
p ¿‖ f ‖D 2

p −1,i
(C1/2).

We now move to C0 to use Lemma 24, and subtract 1/2 from ϕ. Arguing as in (29) we may
assume that Φ̃(z) = |cp1 |(1− z1)+|cp2 |(1− z2), and we consider the measure µ̃ defined on C0 by

µ̃(E) = ν({
(z1, z2) ∈T2 : Φ̃(z1, z2) ∈ E

})
, E ⊂C0.

We need to investigate for which 1 ≤ p < 2 the measure µ̃ satisfies the condition of Lemma 24
with β= 2/p −1. Recall that, for s =σ+ i t and some suitably small r > 0,

µ̃
(
BH(s,r )

) ≤ µ̃
(
[σ/2,2σ]× [t −σ, t +σ]

)
= ν

({
(z1, z2) ∈T2 : |cp1 |(1− z1)+|cp2 |(1− z2) ∈ [σ/2,2σ]× [t −σ, t +σ]

})
.

Since Φ̃(T2) is a bounded subset of C0, it is clear that µ̃
(
BH(s,r )

)= 0 when Re(s) is large enough,
say σ>σ0, or when | Im(s)| is large enough, say |t | > t0. This means that the integral (32) in our
case is equal to∫ σ0

0

∫
|t |≤t0

(
µ̃
(
BH(s,r )

)) 2
2−p σ

2p−6
2−p |s +1| 4

2−p
d tdσ

π
³

∫ σ0

0

∫
|t |≤t0

(
µ̃
(
BH(s,r )

)) 2
2−p σ

2p−6
2−p d t dσ=: I .

This means we only need to prove that I <∞ for any fixed pair (σ0, t0). Because µ̃
(
BH(s,r )

)
is

bounded, we may in fact assume that σ0 is very small. Now, let us fix s ∈C0 with Re(s) ≤σ0 and
let us consider (θ1,θ2) ∈ [−π,π)2 such that Φ̃(e iθ1 ,e iθ2 ) ∈ BH(s,r ). Writing

ReΦ̃(e iθ1 ,e iθ2 ) = |cp1 | (1−cos(θ1))+|cp2 | (1−cos(θ2)) ,

it is clear that θ1 and θ2 are close to 0, so that

θ2
1 +θ2

2 ¿ ReΦ̃(e iθ1 ,e iθ2 ) ≤ 2σ,

and hence we conclude that |θ1|, |θ2|¿σ1/2. On the other hand, this implies that∣∣∣ImΦ̃(e iθ1 ,e iθ2 )
∣∣∣= ∣∣|cp1 |sin(θ1)+|cp2 |sin(θ2)

∣∣¿σ1/2,

which yields that µ̃
(
BH(s,r )

)= 0 provided |t | Àσ1/2. Otherwise, for a fixed value of θ2, we note
that θ1 belongs to some interval with length dominated by Cσ. Therefore, by Fubini’s theorem,
µ̃
(
BH(s,r )

)¿σ3/2 where the involved constant does not depend on t . In total, this means that
we require

I ¿
∫ σ0

0

∫
|t |¿σ1/2

σ
2p−3
2−p d t dσ³

∫ σ0

0
σ

2p−3
2−p + 1

2 dσ<∞.

This last integral is convergent for p ≥ 1. �

Remark. It is possible to generate more examples from the results in [5] or from the results of
Section 4 in combination with Theorem 1. If 2k < p < 2k +2, we can choose any Dirichlet poly-
nomial with κ≥ p/2k, where κ as defined in [5, Lem. 10]. However, this also illustrates the dis-
advantage of this interpolation method, since the natural condition is κ≥ 1, which corresponds
to the case d = 1 in (27).
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We end this section by emphasizing that results with d = 1, or results for Dirichlet polynomi-
alsϕ ∈G with unrestricted range and dim(ϕ) = 1, cannot be obtained from the type of Carleson
measure arguments employed in this section and the local embedding (3) seems to be com-
pletely unavoidable in this setting.

6. THE MULTIPLICATIVE HILBERT MATRIX

It was asked in [8, Sec. 6] whether the multiplicative Hilbert matrix introduced in the same
paper has a bounded symbol on the polytorus T∞, or, equivalently, whether the functional

(34) L( f ) =
∫ ∞

1/2
( f (s)−a1)d s

is bounded on H 1. It follows by standard Carleson measure techniques that if the embedding
(3) holds for H p , then the functional (34) acts boundedly on H p . It is therefore only known
that the functional is bounded on H p when 2 ≤ p <∞.

Returning to the composition operator with symbol ϕ(s) = 3/2−2−s , we write out explicitly
the associated Carleson measure, finding that boundedness of Cϕ on H p is equivalent to the
inequality ∫

3/2+T
|P (z)|p dm(z) ¿‖P‖p

H p ,

for every Dirichlet polynomial P . If we apply the characterization of Carleson measures for
H p (T), we find furthermore that∫ 1

1/2
|P (z)|p d z ¿

∫
3/2+T

|P (z)|p dm(z).

From this and the results in [8, Sec. 6] we observe that if Cϕ acts boundedly on H 1, then the
multiplicative Hilbert matrix considered in [8] has a bounded symbol on the polytorus T∞. In
[8] it is only shown that the embedding (3) implies that the multiplicative Hilbert matrix has a
bounded symbol, so this observation is in some sense an improvement.

Using Theorem 1, we can prove boundedness of L on H p for p ∈ (1,∞).

Theorem 25. The functional L defined by (34) is bounded on H p for any p > 1.

Proof. We may restrict ourselves to p ∈ (1,2). By Theorem 1, it is sufficient to verify that the
functional of integration from 1/2 to 1 is bounded on D2/p−1,i(C1/2) or, equivalently, that the
functional of integration from 0 to 1 is bounded on D2/p−1(D). By duality, this is true since

fα(z) =
∞∑

k=0
(k +1)α−1zk

is in Dα(D) if and only if α< 1, so that p > 1 is sufficient for L to act boundedly on H p . �

This theorem has an interesting corollary. Write L( f ) = 〈 f , g 〉H 2 , where

g (s) =
∞∑

n=2

1p
n logn

n−s .

We first have the following computation.

Lemma 26. g ∈H p if and only if p < 4.
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Proof. From the estimate
∑

n≤x[d(n)]α ³ x(log x)2α−1 (see [24]) and a standard computation
with Abel summation, we find that

∞∑
n=2

[d(n)]α

n(logn)β
<∞

if and only if 2α <β. Assume first that 2 < p < 4. Using [21, Thm. 3] we have that

‖g‖H p ≤
( ∞∑

n=2

[d(n)]2− 4
p

n(logn)2

) 1
2

<∞,

since α= 2−4/p < 1 when 2 < p < 4. For p = 4, we compute

‖g‖4
H 4 =

∥∥g 2
∥∥2

H 2 =
∞∑

n=2

1

n

 ∑
d |n

1<d<n

(
log(d) log(n/d)

)−1


2

À
∞∑

n=2

[d(n)]2

n(logn)4
=∞,

so we are done. �

Theorem 25 and Lemma 26 yield an explicit and natural example of the observation that
H q ( (H p )∗ for Hölder conjugates 1 < p, q <∞, as discussed in [20, Sec. 3].

Corollary 27. Let 1 < p ≤ 4/3 and set 1/p +1/q = 1. The Dirichlet series g is in (H p )∗\H q .
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