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Thesis Description 
Reliable and efficient personal recognition is a critical concern in today’s widely interconnected 
society. As a newly emerging technique, biometric recognition systems are being increasingly 
used by government, business and forensic applications. In this thesis, multibiometric systems 
are of interest due to their advantages in improving the matching accuracy, increasing 
population coverage, detering spoofing attacks and imparting fault tolerance to biometric 
applications. 

Multibiometric systems are biometric systems that consolidate multiple sources of biometric 
evidences. The integration of evidences is known as fusion. In biometrics, various levels of 
fusion can be categorized into two broad categories: preclassification (fusion before matching) 
and postclassification (fusion after matching). In this thesis, a survey of different levels of fusion 
will be conducted. In particular, fusion at match score level will be examined in detail, since it is 
the dominant level of fusion in biometric systems. 

In a multibiometric system, multiple sources of biometric information are used.  Various 
sources that can be fused will be studied in this thesis. Besides, depending on the nature of 
these sources, multibiometric systems can be classified into different categories, for instance, 
multi-sensor systems, multi-algorithm systems, multi-instance systems, multi-sample systems, 
multimodal systems and hybrid systems. In this thesis, an overview of these systems will be 
provided. Special attention will be devoted to multimodal systems since multimodal systems 
consolidate the evidence presented by different body traits and the use of multiple body traits 
improves the identification accuracy significantly. 
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Abstract 
Reliable user authentication has become very important with rapid advancements in 
networking and mobility coupled with increased concerns about security. Biometric systems 
perform recognition based on specific physiological or behavioral characteristics(s) possessed 
by a user. Biometrics establishes identity based on who you are rather than what you possess 
(e.g, tokens) or what you remember (e.g, passwords). Biometric systems have now been 
deployed in various commercial, civilian, and forensic applications for reliable individual 
recognition. Unibiometric systems rely on the evidence of a single source of information 
whereas multibiometric systems consolidate multiple sources of biometric evidences. 
Multibiometric systems, if designed properly, are able to enhance the matching performance. 
Moreover, they are expected to increase population coverage, deter spoofing attacks and 
provide fault tolerance to biometric systems. In this thesis, we perform a survey of various 
categories multibiometric systems based on the levels of fusion and sources of evidences being 
consolidated.  Based on the type of information being consolidated, we discuss the fusion at 
sensor level, feature level, score level, rank level and decision level with examples from 
literature. Based on the sources of evidences being consolidated, we discuss the multi-sensor, 
multi-algorithm, multi-instance, multi-sample, multimodal and hybrid systems with examples 
from literature. 
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Chapter 1 

Introduction 
 

1.1 Thesis Motivation 
Reliable identity establishment/conformance is becoming critical in a variety of applications. 
Some examples of such applications are sharing networked computer resources, performing 
remote financial transactions, border security control, and forensic applications. Traditional 
methods of establishing identity are either knowledge based (e.g., passwords) or possession 
based (e.g., ID cards). Individuals have certain distinct physiological and behavioral traits that 
are used by biometric systems for reliable authentication. Biometric systems provide better 
security and greater convenience than the traditional systems. 

Our motivation for working on this project comes from the fact that in near future biometric 
systems will be supplementing or replacing the traditional systems in many applications.  
Most of the biometric systems presently being used are unibiometric systems typically 
making use of a single biometric trait for recognition purpose. There are several limitations 
of unibiometric systems and some of these can be addressed by designing multibiometric 
systems that consolidate multiple sources of biometric information. Multibiometric systems 
can improve the matching accuracy of a biometric system [54]. They also address challenges 
such as non-universality, noise, susceptibility to spoof attacks and large intra-class variations.  
 

1.2 Related Work 

As multibiometric systems can be one of the important solutions for various applications in 
near future, there has been a long list of articles addressing this topic. Ross et al. [54] 
provide a very good survey of multibiometric systems. The authors focus on the survey of 
various levels of fusion and go into the details of score level fusion. The ISO/IEC Technical 
Report [25] contains descriptions and analysis on current practices on various multibiometric 
fusion. It also discusses requirements and possible routes of standardization to support 
multibiometric systems.  

There are numerous research papers on the various levels of fusion in multibiometric 
systems. Ratha et al. [49] propose a mosaicking scheme which constructs a composite 
fingerprint image fingerprint by integrating multiple partial fingerprints as the user rolls 
finger on the sensor surface. Singh et al. [56] propose a face recognition system combining 
visible and thermal Infrared (IR) images at sensor level. Kong et al. [18] also discuss a face 
recognition system performing fusion of visual and thermal infrared images with eyeglass 
removal at sensor level. Son et al. [60] perform the feature level fusion of face and iris. Ross 
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et al. [50] perform feature level fusion of hand and face biometrics and perform experiments 
in three different scenarios. Kittler et al. [34] develop a common theoretical framework for 
combining classifiers and discuss the various classifier combination strategies. Verlinde et al. 
[68] compare the performance of score level fusion using three different classifiers based on 
the k-nearest-neighbor (k-NN) classifier, decision trees and logistic regression. Jain et al. [53] 
use the classifiers decision trees and linear discriminant function for fusion of match scores. 
Jain et al. [26] study the performance of different normalization techniques and fusion 
methods in a fusion scenario involving face, fingerprint and hand geometry modalities. Ho et 
al. [19] describe the three methods: the highest rank method, the borda count method, and 
the logistic regression method, to combine the ranks assigned by different matchers. 
Decision level fusion process is categorized into simple decision level fusion and advanced 
decision level fusion and discussed in [25].  

Many works discuss on the various categories of multibiometric systems based on the 
sources of information being consolidated. Marcialis et al. [39] discuss a multi-sensor 
fingerprint system employing optical and capacitive sensors. Jain et al. [31] propose a multi-
algorithm system which integrates the evidence obtained from three different minutiae 
based fingerprint matchers. Han and Bhanu [17] propose a multi-algorithm gait recognition 
system which probabilistically combines different gait classifiers based on different 
environmental contexts. Wang et al. [69] discuss a multi-instance iris recognition system 
where the left and right irises of an individual are combined.  Jain et al. [29] describe a multi-
sample system which constructs a composite fingerprint template from multiple impressions 
of the same finger using mosaicking scheme. Bowyer et al. [3] evaluate the performances of 
face recognition system using both the multi-sensor and multi-sample approaches. Jain et al. 
[27] investigate a multimodal biometric identification system combining face, fingerprint and 
voice modalities. Yao et al. [70] propose a multimodal biometric system combining face and 
palmprint features. Thian et al. [43] propose a hybrid multibiometric system where fusion of 
multiple samples obtained from multiple modalities is performed at score level.   
 
1.3 Thesis Outline 

Chapter 1. Introduction outlines the motivations for working on this thesis, the related 
works and the thesis outline. 

Chapter 2. Background presents general information about biometric system operations and 
functional processes, biometric system errors, biometric characteristics and their desirable 
properties, challenges in biometric systems and advantages of multibiometric systems over 
unibiometric systems, etc. 

Chapter 3. Levels of Fusion in Biometrics provides an overview on various levels of fusion. It 
describes sensor level fusion, feature level fusion, score level fusion, rank level fusion and 
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decision level fusion with corresponding examples from the literature. The score level fusion 
is dealt in more details.  

Chapter 4 Sources of Evidences provides an overview of six categories of biometric systems 
depending on the nature of the sources of information being fused. Multi-sensor, multi-
algorithm, multi-instance, multi-sample, multimodal and hybrid systems are described with 
examples from the literature. More examples are studied for multimodal systems. 

Chapter 5 Conclusion summarizes the main findings and concludes the thesis. 
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Chapter 2 

Background 
 

2.1 Biometric Systems 
Biometric systems perform recognition of individuals on the basis of their physical and/or 
behavioral traits. Some commonly used traits are fingerprint, face, iris, retina, palmprint, 
voice pattern, signature, gait, etc. Most biometric systems will serve one of the two 
purposes: identification or verification/authentication. Biometric systems provide several 
advantages over the traditional methods. Unlike passwords and tokens, biometric traits 
cannot be lost, forgotten or manipulated. Biometric traits cannot be easily copied, shared, 
distributed or forged. Biometric systems also add to user convenience by alleviating the 
need to design and remember passwords. Moreover, use of biometrics can provide negative 
recognition and non-repudiation which is not possible through traditional methods. Negative 
recognition is a process by which an individual is found to be enrolled in a system despite his 
unwillingness to be identified. Non-repudiation is a way to guarantee an individual accessing 
a certain facility cannot later deny having used it. Multibiometric systems consolidate 
multiple sources of biometric evidences. The integration of evidences is known as fusion. 
Multibiometric systems combine the information from multiple sensors, samples or traits of 
an individual, matching algorithms operating on the same biometric. 
 
2.2 Biometric System Functional Processes 

A biometric system involves the following three main functional processes: 

Enrollment Process: 

In enrollment process, a subject presents his/her biometric characteristics to the sensor 
along with his/her non-biometric information. Non-biometric information related to subjects 
could be name, social security number, driver license’s number, etc. Biometric features 
extracted from the captured sample and the non-biometric information are enrolled in the 
database.  

Verification Process: 

In a verification process, the question being answered is “Is this person who he claims to 
be?”. Subject who desires to be recognized claims his identity which could be a Personal 
Identity Number (PIN), a username or a smartcard and presents his biometric 
characteristic(s). The system then compares the extracted template (from the captured 
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sample) with the enrolled template linked to the claimed identity and determines whether 
the claim is true or false. Identity verification is used in positive recognition applications 
where a subject is willing to be recognized.  

Identification Process: 

In an identification process, the question being answered is “Who is this person?”. In this 
process, an individual is recognized by searching the templates of all users in an enrollment 
database against the captured and extracted biometric features for a match. Identification is 
a critical component in negative recognition applications where the user tries to avoid being 
found out who he is [45]. Some examples of negative recognition applications are 
background checks, forensic criminal identification or preventing terrorists from entering 
certain areas. Though traditional recognition methods such as passwords, PIN, tokens work 
for positive recognition; the only viable approach for negative recognition is biometric 
identification [45]. 
 

2.3 Biometric System Operations 

The overall conceptual structure of a biometric system as given in [24] is shown in Figure 2.1. 
The biometric system usually consists of five subsystems enumerated below [24]. 

Biometric data capture subsystem 

This subsystem comprises of suitable capture devices or sensors. A sensor is required to 
collect signals from a biometric trait and convert the captured signals into a biometric 
sample such as a fingerprint image, iris image or voice recording.  

Signal processing subsystem 

This subsystem is responsible for extracting a set of salient discriminatory features from a 
biometric sample. The extracted feature set represents the underlying trait.  The biometric 
features are suitable for comparing with those extracted from other biometric samples. The 
biometric feature set extracted in the enrollment process is stored in the data storage 
subsystem which serves as a biometric reference during recognition process.   

Data storage subsystem 

During enrollment phase, the feature sets extracted are stored in a data storage subsystem.  
The feature sets are possibly stored along with other non-biometric information related to 
subject such as name, PIN, social security number, etc.  In practice, biometric templates and 
non-biometric information are often stored in different databases which are logically or 
physically separated for security and privacy concerns.  
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Figure 2.1: Conceptual structure of a biometric system [24]. 
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Decision subsystem 

Based on the comparison score(s) and decision policy, a decision subsystem determines if 
the captured biometric sample and enrolled template are derived from the same subject. In 
case of verification process, decision made based on a comparison score is either the 
acceptance or rejection of the subject. In case of identification, a ranking of enrolled 
identities that meet the decision policy is presented in order to identify an individual. 
 

2.4 Desirable Properties of Biometric Characteristics 

Some desirable properties of biometric characteristics for good subject discrimination and 
reliable recognition performance are described below [54]: 

Universality: Every individual should possess the characteristic. 

Uniqueness: The characteristics should be sufficiently distinguishable across individuals 
comprising the population. 

Permanence: The biometric characteristics should be sufficiently invariant over a period of 
time. 

Measurability: It should be possible to acquire the characteristics without causing undue 
inconvenience. The acquired raw data should be suitable for further processing. 

From an application point of view, following properties should also be taken into account. 

Performance: The required recognition accuracy in an application should be achievable using 
the characteristics. 

Acceptability: Acceptability refers to the willingness by the subject to present his biometric 
characteristics. 

Spoof Resistance: This refers to how difficult it is to use artifacts (for example, fake fingers) in 
case of physiological characteristics and mimicry in case of behavioral characteristics. 
 

2.5 Biometric Characteristics 

There are various physiological and behavioral biometric characteristics that can be used 
during recognition.  The choice of a biometric characteristic to be used in a specific 
application is made depending upon the nature and requirements of applications and the 
properties of the biometric characteristics [32]. Physiological biometric traits include but are 
not limited to fingerprint, face, iris, hand geometry, hand/finger vein, retina, DNA and palm 
print. Behavioral characteristics include but are not limited to signature and gait. We 
introduce some of the commonly used biometric characteristics discussed in [32]. 
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Face:  

Face recognition is a non-intrusive method and also requires minimum cooperation from the 
subject. The dimensions, proportions and physical attributes of a person’s face are unique. In 
some application scenario like crowd surveillance, face recognition probably is the only 
feasible modality to be used. Face recognition can be in a static controlled environment or a 
dynamic uncontrolled environment. One popular approach to face recognition is based on 
the location, dimensions and proportions of facial attributes such as eyes, eyebrows, nose, 
lips, and chin and their spatial relationships. Another approach being widely used is based on 
the overall analysis of the face image that represents face as a weighted combination of a 
number of canonical faces.  

Face recognition involves two major tasks: i) face location and ii) face recognition.  Face 
location is determining the location of face in the input image. For recognizing the located 
face, the eigenface approach is one of the very popular methods. The eigenface-based 
recognition method consists of two stages: i) training stage and ii)operational stage. In the 
training stage, training set of face images are acquired. The acquired face images are 
projected into lower dimensional subspace using Principle Component Analaysis (PCA) [63]. 
A set of images that best describe the distribution of training images in a lower dimensional 
facespace (the eigenspace) is computed. Then the training facial images are projected into 
this eigenspace to generate representation of the training images in the eigenspace. In the 
operational stage, the input face image is projected into the same eigenspace that the 
training samples were projected into. Then, recognition can be performed by a classifier 
operating in the eigenspace. 

Fingerprints:  

Fingerprints are unique and consistent over time and hence being used since a long time. A 
fingerprint is a pattern of ridges and valleys on the surface of a fingertip. Ridges are the 
upper skin layer segments of the finger and valleys are the lower segments. The various 
kinds of discontinuities in ridges (minutiae) have sufficient discriminatory information to 
recognize fingerprints. Ridge bifurcation (where the ridge splits) and ridge ending (where the 
ridge ends) are the important minutiae points. A minutiae-based fingerprint recognition 
usually represents fingerprint by these two ridge characteristics called as minutiae.  

The uniqueness of a fingerprint can be determined by the pattern of ridges and furrows as 
well as the minutiae points. Availability of multiple fingerprints of a person makes fingerprint 
recognition suitable for use in large-scale identification involving millions of identities. 
However, the problem with the large scale fingerprint recognition system is the requirement 
of huge amount of computational resources, especially in the identification mode.  
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Hand geometry:  

Hand geometry recognition systems are based on the different measurements such as shape 
of the hand, size of palm, lengths and widths of the fingers. Hand features are not very 
distinctive. They are suitable for verification but not for identification [52]. In certain 
situations such as immigration and border control, biometrics such as fingerprints may not 
be suitable because they infringe on privacy. In such situations hand geometry can be used 
for verification as hand geometry is not very distinctive. Hand geometry features may not be 
invariant during the growth period of children. The size of such recognition systems is large 
and hence it is difficult to embed the systems in other devices such as laptops. 

Palmprint: 

Human palms also contain pattern of ridges and valleys like human fingerprints. Palmprint 
based recognition is based on the principle lines, wrinkles and ridges on the surface of the 
palm. Palmprint is distinct for each person. Palmprint scanners are bulkier and more 
expensive than fingerprint sensors. Features such as principal lines and wrinkles can be 
captured even with a low resolution scanner. When a high-resolution scanner is used, all 
features such as geometry, ridges and valley features, principle lines and wrinkles can be 
combined to achieve higher accuracy. Kumar et al. [36] use both palmprint and hand 
geometry features for personal verification. Both features are simultaneously acquired from 
a single hand image.   

Iris:  

Iris is the annular region of the eye regulating the size of the pupil. It is bounded by pupil and 
sclera (white of the eye) on either side. Iris develops during prenatal period and stabilizes 
during the first two years of life. The complex iris texture carries very distinctive information 
useful for personal recognition. Irises of twins are different as well. Iris based recognition 
systems provide promising speed and accuracy and support large scale identification 
operations as well. Contact lenses printed with fake iris [11] can be detected. The hippus 
movement of the eye can also be used for liveness detection. 

Signature: 

 Signature is a behavioral biometrics. Electronic signature, for example taken at a POS 
terminal is compared to the signature on our driving license (or another type of ID) for 
verification. This is not signature recognition but can be called as ‘simple signature 
comparison’ [9]. Signature recognition involves a process known as ‘dynamic signature 
recognition’ where the focus is not only on the ‘look’ of the signature, but on the behavioral 
patterns inherent to the process of signing. This includes changes in timing, pressure, and 
speed. It is easy for an imposter to duplicate the visual appearance of signature. However, it 
is difficult to mimic the behavioral characteristics. Signature recognition is particularly 
suitable for high-value transactions. Signature recognition is also non-invasive. However, the 
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system is prone to high error rates when the behavioral characteristics of signatures are not 
consistent. 

Voice:  

Voice recognition is a combination of both physical characteristics and behavioral biometric 
characteristics. Voice recognition uses the acoustic features of speech that vary among 
individuals to discriminate among users. The variations in these acoustics properties arise 
because of the anatomical differences naturally occurring in individuals and the differences 
in learned speaking habits. The physical characteristics remain constant whereas the 
behavioral characteristics of voice could change over time because of age, medical 
conditions, emotional state, etc. Voice is not distinctive enough to be used for large scale 
identification. A voice recognition system could be either text-dependent or text-
independent. In a text based system any subject needs to utter a specific phrase whereas a 
text-independent system recognizes subject independent of what he speaks. Text-
independent systems are more difficult to design and also more robust against frauds. 

Gait:  

Image-based recognition methods employing fingerprint, face or iris modalities require co-
operation from subject, physical contact or close proximity with capture devices. Gait 
recognition is based on recognizing individuals on the basis of the way they walk. This 
technique can be appropriate in many practical cases where the environmental condition is 
changing; subject is not cooperating and is at a distance from the capture device. Gait 
recognition has several challenges. Gait can be affected by clothing, injuries or other 
environmental context. There can be large variation in gait characteristics of an individual 
(both intentionally and unintentionally) making it less unique compared to iris or fingerprint. 
However, it is still useful in many visual surveillance applications. 
 

2.6 Biometric System Errors 

Two samples of a single user’s biometric trait are rarely read exactly the same. This occurs 
due to various reasons such as imperfect sensing condition, alterations in user’s biometric 
characteristics, changes in ambient conditions and user’s interaction with the sensor. 
Therefore, the output of a biometric matching system is a similarity score(s) that quantifies 
similarities between the enrolled and input templates. The system decision depends on the 
set threshold 𝑡. Pairs of biometric samples generating a similarity score 𝑠 greater than 𝑡 are 
inferred as mate pairs belonging to the same person. Pairs of samples with similarity score 
less than 𝑡 as inferred as non-mate pairs belonging to different persons. The distribution of 
match scores generated from pairs of samples from different persons is called an imposter 
distribution and the distribution of match scores generated from pairs of samples of the 
same person is called a genuine distribution (see Figure 2.2). 
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False Acceptance Rate (FAR) (or, the False Match Rate (FMR)) of a biometric system is the 
rate at which the non-authorized persons are falsely recognized during matching process. 
False Rejection Rate (FRR) (or, the False Non-match Rate (FNMR)) of a biometric system is 
the rate at which authorized people are falsely not recognized during matching process.  
Total Error Rate (TER) is obtained by combining these two errors. TER = (Number of False 
Accepts + Number of False Rejects) / (Total Number of Accesses).   

Regulating the threshold 𝑡 changes both FAR and FRR. If the threshold 𝑡 is increased in order 
to attain higher system security, FRR increases. If the threshold is decreased in order make 
the system more tolerant to input variations and noise, and reduce annoyance, FAR 
increases.  Therefore, a biometric system needs to make a tradeoff between FAR and FRR. 
The system performance at all operating points (thresholds 𝑡) can be depicted by Receiver 
Operating Characteristics (ROC) Curve.  ROC curve represents the FAR as a function of FRR 
(see Figure 2.3). In many cases ROC curve plots the (1-FRR) (instead of FRR) against the FAR. 
The Equal Error Rate (EER), which is the FAR and FRR when they are equal, is often used as a 
performance measure. However, EER is not a robust measure for system performance [4].  
This is because most practical biometric systems do not have threshold adjusted for 
FAR=FRR. ROC curves of various systems could be very different and thus two systems with 
the same EER could differ by decades for other ROC points. 

 

Figure 2.2: Biometric system error rates: The curves show FAR and FRR for a given threshold 
𝑡 over the genuine and impostor score distributions. FAR is the percentage of the non-mate 
pairs whose matching scores are greater than or equal to 𝑡, and FRR is the percentage of the 
mate pairs whose matching scores are less than 𝑡 [45]. 

 



12 
 

 

Figure 2.3: Receiver operating characteristic curve: Different biometric application types 
make different trade-offs between the FAR and FRR. [45].  

Besides the two error rates FAR and FRR discussed above, some other error rates are also 
used to characterize biometric system’s accuracy. The Failure to Acquire (FTA) (also known 
as Failure to Capture (FTC)) rate shows the rate at which biometric device fails to 
automatically capture a sample when presented with a biometric characteristic. This usually 
occurs because of low quality of inputs (for example, extremely faint fingerprint) and also 
sensor wear and tear. Failure to enroll (FTE) rate is the proportion of users who cannot be 
successfully enrolled in a biometric system. FTE rate usually occurs when the system rejects 
poor quality templates during enrollment.  

We now discuss Cumulative Match Characteristic (CMC) curves. These are the most common 
graphs for evaluating closed-set identification performances of a system. In closed-set 
identification, every probe sample has a corresponding match in the database. However, 
such systems usually exist in laboratories and there are very few real-world applications 
operating under closed-set identification task.  CMC curve is relevant to a recognition 
scenario, in which a probe sample is matched against each of a set of gallery samples. The 
gallery sample exhibiting best match (for example best similarity score) with the probe 
sample represents the identity of the probe. If the trial is repeated for all probe samples, it is 
possible to know how often the top match selected by the system represents a correct 
identity. The rank one identification rate is the percentage of the probes for which the 
closest match (top similarity score) in the gallery represents the correct identity.  The 
percentage of probes for which either the closest or second-closest match (top or second 
ranked score) in the gallery represents the correct identity is the rank two identification rate. 
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Thus rank forty identification rate gives the probability that the correct identity lies 
somewhere in the top forty similarity scores. A CMC curve shows the probability of 
identification at numerous ranks. CMC curves are largely dependent on gallery size.  The 
probability of correct identification at a certain rank is higher for smaller databases. For 
instance, for identification at rank 10, the probability of correct identification is much higher 
when the database size is 100 than when the database size is 10,000. Therefore, it is 
important to state the size of database for any CMC curve. 
 

2.7 Social Acceptance and Privacy Issues 

The ease and comfort in interaction with the biometric systems largely contribute to 
acceptability. Acceptability may also be influenced by religious, cultural and ethnic factors. 
For example, use of contactless biometric features such as face, iris, or voice may be 
considered as more user-friendly and hygienic [33]. Likewise, systems requiring lesser co-
operation from user may be considered as more convenient to users. However, biometric 
characteristics which can be captured without user participation might be captured without 
the knowledge of user which may be perceived as threat to individual privacy. 

“Privacy is the ability to lead life free of intrusions, to remain autonomous and to control 
access to one’s personal information”[45].  The use of biometric data raises several privacy 
concerns which need to be addressed. We mention some threats to privacy discussed in 
[24]. Biometric data could be misused for applications other than originally intended. 
Biometric data might be misused to retrieve or analyze some other information that is not 
required for recognition purpose. For example, the subject’s health status or ethnic 
background could be determined from biometric traits. Biometric data could also be used in 
linking information of a subject across different databases or systems. Public need to be 
ensured that their biometric data is used only for the intended purpose and the biometric 
information remains private by the companies and agencies operating biometric systems. 
Appropriate legislation is necessary to ensure that the biometric information is not abused 
and the misuse is punished. Biometric applications with highly decentralized recognition 
capabilities are the most acceptable [45]. This can be done by storing the biometric 
information in decentralized encrypted databases over which a subject has his control. For 
example, a system can issue user a smart card with his fingerprint template stored on it in an 
encrypted format. 

 

2.8 Challenges in Biometric Systems 

Most biometric systems presently in use employ a single biometric trait for recognizing 
individuals. Even though these unibiometric systems have offered a reliable solution for 
identification and verification applications, it is important to consider the vulnerabilities and 
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limitations of these systems. Some of the challenges encountered by the unibiometric 
systems are described below [51]: 

Noise in sensed data:  

The biometric data is contaminated by noise mainly due to slight variations in the biometric 
trait itself or imperfect acquisition conditions. For example, a fingerprint image with a scar or 
a voice sample altered by cold is noisy data. Inappropriate ambient conditions like poor 
illumination of user’s face in face recognition or imperfectly maintained sensors like a 
fingerprint sensor with dirt on its surface lead to noisy data. Noisy data can result in 
rejection of a genuine user. 

Non-universality: 

Biometric system may not be able to acquire meaningful biometric data from a subset of 
individuals. This results in a failure-to-enroll (FTE) error. For example, an iris recognition 
system may not be able to obtain the iris information of users with long eyelashes, drooping 
eyelids or certain pathological conditions of eyes.  

Spoof attacks:  

Spoofing attack is more relevant in cases where behavioral traits such as signature and voice 
are used. In such cases, an imposter tries to mimic the traits corresponding to the enrolled 
user. However, physical traits such as fingerprints and iris are also vulnerable to spoof 
attacks by creating biometric artifacts. Matsumoto et al. [41] report that the gummy fingers, 
made using cheap and easily obtainable tools and materials, were accepted with high rates 
by the 11 different fingerprint systems they used. Those fingerprint systems employed 
optical or capacitive sensors. Gelatin, a readily available and cheap soft plastic material was 
used to make gummies. Not only gummy fingers made using impression taken from live 
fingers but also the gummy fingers made from residual fingerprints were readily accepted by 
their systems.  Targeted spoof attacks can seriously undermine the security of biometric 
systems. Different ways have been suggested to protect the system from spoofing attacks. 
For example, in the case of fingerprint and iris, liveness detection can be used. There are two 
complementary approaches to liveness detection [65]. One is detection of the known 
artifacts (e.g. silicon and gelatin fingerprints, photograph of a face etc.). The other approach 
is to look for evidences of liveness in the presented biometric (for example temperature, 
pulse, humidity etc).  In the case of behavioral traits such as voice, a challenge response 
mechanism could be used (for example system prompts “Please say 5-3-4-8”). 

Intra-class variations:  

Changes in biometric characteristics of a person with the passage of time (for example, 
change in hand geometry) or user interactions with the sensor in a wrong manner (for 
example, incorrect facial pose) are the main factors resulting in intra-class variations 
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between the enrolled and input template of an individual.  Some ways to address the intra-
class variations could be storing multiple templates for every user during enrollment and 
updating these templates at certain intervals of time [65]. Intra-class variations are more 
serious concerns in biometric systems using behavioral traits since the variations in 
psychological makeup of an individual might result in very different behavioral traits at 
different times. For example, the voice of a person can vary depending on stress levels, 
health conditions. Similarly, gait can be affected by clothing, injuries, inebriation and other 
environmental context. 

Inter-class similarities:  

Inter-class similarity refers to overlapping of feature spaces corresponding to multiple 
classes or individuals. Inter-class similarity is prominent in an identification system 
comprising a large population of enrolled users resulting in an increased false match rate. 
Therefore, there is an upper bound on the number of individuals that can be discriminated 
effectively which determines the capacity of an identification system. 
 

2.9 Advantages of Multibiometric Systems over Unibiometric 
Systems 

We discuss some of the advantages multibiometric systems offer over unibiometric systems 
in the following paragraphs [51].  

Multibiometric systems address the issue of non-universality i.e., limited population 
coverage. For example, if a person’s poor quality of fingerprints prevents him from enrolling 
in the system; then the use of other biometric traits such as iris, face, voice etc. will help the 
system acquire meaningful biometric data and enroll the user. 

It is extremely difficult to spoof multiple biometric traits of a legitimate user. If each 
subsystem determines the probability of the particular trait being a spoof, it is possible to 
find out the probability of the user being an imposter by using an appropriate fusion 
technology. Moreover, a challenge response mechanism can be included that asks user to 
present the random subset of traits (in a particular order) at the point of acquisition. This 
would ensure that the system is interacting with a live user. 

Multibiometric systems effectively address the problem arising because of noisy data. When 
the information acquired from one biometric trait is corrupted by noise, it is possible to use 
information acquired from the other biometric trait.  Some systems also take into 
considerations the quality of acquired input biometric signals during the fusion process.  
Estimating the quality of acquired biometric data is in itself a challenging problem. However, 
if done appropriately, multibiometric systems gain significant benefits.  
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A multibiometric system acts as a fault tolerant system by continuing to operate even when 
information from certain biometric sources becomes unreliable because of sensor or 
software malfunctions or intentional user manipulation. Fault tolerance is usually desirable 
in authentication systems involving large number of subjects (for example, in border control 
applications). 

Consolidation of evidences from multiple sources can offer substantial improvement in the 
accuracy of biometric systems.  Use of proper sources of information and the right fusion 
methodology determines the improvement in matching accuracy. The availability of multiple 
sources also increases the feature space thereby increasing the number of individuals that 
can be discriminated reliably. Therefore, the capacity (i.e., the number of users that can be 
enrolled) of an identification system can be increased. 
 

2.10 Levels of Fusion in Multibiometric Systems 

Fusion in multibiometric systems can be performed utilizing information available in any of 
the modules (data capture module to decision module).  Fusion can take place at these 
levels: i) sensor level ii) feature level iii) score level iv) rank level and v) decision level.  In 
sensor level fusion raw data captured by the sensor(s) are combined.  In feature level fusion 
features originating from each individual biometric process are combined to form a single 
feature set or vector. In score level fusion, match scores provided by different matchers 
indicating degree of similarity (differences) between the input and enrolled templates, are 
consolidated to reach the final decision. In rank level fusion each biometric sub-system 
assigns a rank to each enrolled identity and the ranks from the subsystems are combined to 
obtain a new rank for each identity. In decision level fusion the final Boolean result from 
every biometric subsystem are combined to obtain final recognition decision. We provide a 
more detailed description of fusion at various levels in Chapter 3. 
 

2.11 Sources of Evidences in Multibiometric Systems 

Various sources of biometric information can be used in a multibiometric system.  Based on 
these sources, multibiometric systems can be classified into six different categories [54]: 
multi-sensor, multi-algorithm, multi-instance, multi-sample, multimodal and hybrid. Multi-
sensor systems employ multiple sensors to capture a single biometric trait in order to extract 
diverse information. In multi-algorithm systems, multiple algorithms are applied to the same 
biometric data. Multi-instance systems use multiple instances of the same body trait (for 
example, left and right irises or left and right index fingers).  In multi-sample system, 
multiple samples of the same biometric trait are acquired using the same sensor in order to 
obtain a more complete representation of the underlying trait. Multimodal systems combine 
evidences obtained from different (two or more) biometric traits. In [54] hybrid is used to 
refer to those systems integrating two or more of the scenarios mentioned earlier. We 
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conduct a detailed survey of multibiometric systems based on the sources of information in 
Chapter 4. 
 

2.12 Application of Biometric Systems 

Biometric applications can be categorized into three main groups [45]: 

1) Commercial applications such as computer network login, e-commerce, Internet 
access, ATMs or credit cards, physical access control, mobile phones, Personal Digital 
Assistant (PDA)s, medical records management, distance learning, etc. 

2) Government applications such as national ID card, driver’s license, social security, 
border control, passport control, welfare-disbursement, etc. 

3) Forensic applications such as corpse identification, criminal investigation, terrorist 
identification, parenthood determination, etc. 
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Chapter 3 

Levels of Fusion in Biometrics 
 

It is important to determine the type of information that should be consolidated during 
fusion process. The amount of information available decreases after each level of processing 
in different modules of a biometric system. The raw data represents the richest source of 
information whereas the final decision just contains an abstract level of information. The 
various levels of fusion are categorized as (i) preclassification or fusion before matching and 
(ii) postclassification or fusion after matching [55]. This categorization is based on the fact 
that the amount of information available for fusion is drastically reduced once the matcher is 
invoked. Fusion before matching can take place either at the sensor level or at the feature 
level. Fusion at score level, rank level and decision level occur after matching module is 
invoked (postclassification). In this chapter we discuss the various levels of fusion in 
multibiometric systems. 

 

3.1 Sensor Level Fusion 

The raw biometric data represents the richest source of information. However, it is highly 
probable that raw data is contaminated by noise (for example, non-uniform illumination, 
background clutter, etc.). Sensor level fusion refers to the consolidation of raw data 
obtained using multiple compatible sensors or multiple snapshots of a biometric using a 
single sensor [51].  

Example 3.1 Mosaicking multiple fingerprint impressions to construct rolled fingerprint 

Image mosaicking refers to aligning of two or more images into a new aggregate image 
without distortion in the overlapping areas. Mosaicking multiple fingerprint impressions to 
construct a composite image is an example of sensor level fusion. Ratha et al. [49] describe a 
mosaicking scheme which constructs a rolled fingerprint by integrating multiple partial 
fingerprints as the user rolls finger on the sensor surface. A rolled fingerprint is preferable 
over plain touch impression known as dab during enrollment of a person in database. A 
sample rolled fingerprint and dab are shown in Figure 3.1. This rolled fingerprint covers 
larger area of the finger, thereby including larger number of feature points. Therefore, the 
overlap is higher when the partial fingerprint impression (query impression) is matched to 
rolled fingerprint template than when it is matched to another partial fingerprint. 
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(a)                                                              (b) 

Figure 3.1: Images (a) rolled fingerprint (b) dab [49]. 

The first step to fingerprint mosaicking algorithm is to segment each frame into foreground, 
the fingerprint area and background, the non-fingerprint area. The second step is to 
construct a rolled fingerprint mosaic from the set of frames of partial fingerprint impression. 
For this purpose, the frames stacked are visualized as image planes. If it is assumed that 
there was no slipping when user rolled his finger on sensor, the resultant fingerprint should 
be the aggregate of the individual image components. To determine the aggregate, a pixel  
in all the frames is considered and the resultant pixel is computed as a mathematical 
function of the pixels.  Authors describe five schemes for constructing rolled fingerprint 
image. The results with different composing schemes are shown in Figure 3.2. 

The simplest approach is naïve averaging over the whole image. The second approach 
ignores the foreground masks and only takes the minimum of the intensity value at each 
pixel. The third approach does averaging only in the region where fingerprint is detected. 
The fourth approach is similar but it uses a mask that tapers from zero at the edges of 
foreground to one at the central region. The last approach shrinks the foreground mask and 
only uses the central portion of each fingerprint image. The final step is to compute the 
confidence level at each pixel in order to evaluate the reconstructed image.  
 

      

         a)Naive                           b) Minimum 
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 c) Foreground                d) Smoothed 

 

 

   e) Center 

Figure 3.2: Result with different composing schemes [49]. 

Example 3.2 Fusion of infrared (IR) and visible face Images for face recognition 

Fusion of visible and thermal face images at sensor level is discussed in several literatures. 
Singh et al. [56] describe a face recognition system by fusion of visible and thermal infrared 
images at sensor level. Face recognition is not sufficiently accurate in uncontrolled 
environments even when efficient approach to face recognition like the eigenface approach 
is implemented. Using IR images can be a good alternative to using visible images for face 
recognition applications under changing illuminations as the IR images are relatively 
insensitive to illumination changes. However, IR image has other limitations. It is opaque to 
glass and is sensitive to surrounding temperature changes and variations in the heat 
patterns of the face.  On the other hand, visible image is more robust to the mentioned 
factors but very sensitive to illumination changes. In [56], authors concentrate on the 
sensitivity of IR images to eyeglasses. Eye glasses act as temperature screen and hide the 
parts located behind them degrading the recognition performance significantly. The 
experiments in [56] show that face recognition performance in IR spectrum is significantly 
degraded when eyeglasses are present in the probe image but not in the gallery image and 
vice versa.  In order to address the serious problem arising from the sensitivity of IR image to 
facial occlusion due to eyeglasses, [56] proposes fusion of information from both IR and 
visible spectra. Genetic Algorithm (GA) (see [56] for more on GA) is employed for feature 
selection and fusion where group of wavelet features (see [56] for review on wavelets) from 
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visible and thermal face images are selected and fused to form a fused image. Experiments 
are performed using the Equinox face dataset [21]. The eigenface approach to face 
recognition is used. The experimental results show substantial improvements in recognition 
performance suggesting the potentials of fusing IR with visible images. 

Example 3.3 Fusion of visible and infrared images with eyeglass removal for face 
recognition 

Another example of fusion of visual and thermal infrared images at sensor level is by Kong et 
al. [18]. By integrating visual and thermal face images, a new face image is obtained that is 
invariant to illumination conditions and also robust under low lighting conditions. In the 
fusion process, eyeglasses which block thermal energy are detected from thermal images 
with an ellipse fitting method (see [18] for more). The detected eyeglass regions are 
replaced with template eye pattern in order to retain information for face recognition. A 
commercial face recognition software FaceIt® is used as an individual recognition module. 
From the experiments performed under conditions of varying illumination and facial 
expressions, it is observed that sensor-fusion based face recognition outperforms individual 
visual and infrared face recognitions. 

 

3.2 Feature Level Fusion 

In feature level fusion, feature sets originating from multiple information sources are 
integrated into a new feature set.  For homogeneous feature sets (for example, multiple 
measurements of a person’s hand geometry), fusion can be achieved by calculating the 
weighted average of the individual feature vectors [54].  For non-homogeneous feature sets   
(for example, features of different modalities like face and hand geometry), a single feature 
set can be obtained by concatenation. However, for incompatible feature sets (for example, 
fingerprint minutiae and eigenface coefficients) concatenation is not possible.  
Dimensionality reduction scheme like feature selection/transformation is applied to obtain a 
minimal feature set. The key benefit of this fusion scheme is that it enables 
detection/removal of correlated feature values improving recognition accuracy. Fusion at 
match score level and decision level are extensively studied in literatures. Fusion at feature 
level is relatively less studied. 

Feature level fusion is challenging for the following reasons [58]: 

1) The feature vectors of multiple modalities might be incompatible. For example, the 
minutiae set of fingerprints and eigen-coefficients of face. 

2) The relationship between the feature spaces of different biometric systems may not 
be known. 

3) Concatenation of two feature vectors might result in a feature vector with very large 
dimensionality leading to the curse-of-dimensionality problem. In such cases, when 
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sufficiently large numbers of training samples are not available, increasing number of 
features might degrade system performance. 

4) Most commercial biometric system vendors do not provide access to the feature 
sets.  

5) More complex matchers might be required to operate on concatenated feature 
vectors. 

Example 3.4  Feature level fusion of face and iris 

Son et al. [60] perform feature level fusion of face and iris (see Figure 3.3). They apply 
multilevel two-dimensional Discrete Wavelet Transform (DWT) to extract feature vectors 
from the iris and face images. For fusion, concatenation is done between the iris and face 
feature vectors to form a Joint Feature Vector (JFV). The feature dimensionality is further 
reduced by applying Direct Linear Discriminant Analysis (DLDA) in order to extract Reduced 
Joint Feature Vector (RJFV). RJFV has a lower dimensionality and a higher discriminating 
power than the JFV. Their experiments show that the multimodal authentication system 
using RJFV exhibits considerably better performance than unimodal system.  

 

 

Figure 3.3: Bimodal biometric system using iris and face [59]. 
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Example 3.5 Feature level fusion of hand and face biometrics 

In this section we summarize the feature level fusion suggested by Ross et al. [50].  

Let 𝑋 = {𝑥1, 𝑥2, … , 𝑥𝑚}  and 𝑌 = {𝑦1,𝑦2, … ,𝑦𝑛}  denote the feature vectors (𝑋 ∈ 𝑅𝑚  and 
𝑌 ∈ 𝑅𝑛) representing information extracted from two different sources. In order to yield the 
new feature vector 𝑍 , vectors 𝑋  and  𝑌  are augmented and then feature selection is 
performed on the resultant vector  in order to reduce its dimensionality. The different stages 
adopted in [50] are: 

Feature Normalization: The individual feature values of the vectors 𝑋  and 𝑌 may be 
significantly different in terms of their range and distribution. For example, the values of  𝑥𝑖’s  
may be in the range [0,100] while 𝑦𝑖’s values may be in the range [0,1]. Therefore, feature 
normalization is performed to modify the mean and variance of the feature values in order 
to ensure the contribution of each feature vector is comparable [30]. Ross et al. test two 
normalization techniques: the simple min-max and median normalization (see [23] for 
details on these techniques). In their experiments they use the median normalization 
scheme because of its robustness to presence of outliers in the training data. An outlier is an 
observation that is numerically distant from the rest of the data. After normalization the 
modified feature vectors are represented as 𝑋′ = {𝑥′1, 𝑥′2, … , 𝑥′𝑚}   and  
𝑌’ = {𝑦′1,𝑦′2, … ,𝑦′𝑛}. 

Feature Selection: When two feature vectors 𝑋’ and 𝑌’ are augumented, a new feature 
vector 𝑍′ = {𝑥′1, 𝑥′2, … , 𝑥′𝑚,𝑦′1,𝑦′2, … ,𝑦′𝑛}  (𝑍′ ∈ 𝑅𝑚+𝑛}  is obtained.  The curse of 
dimensionality dictates that the augmented vector might not result in an improved 
performance [62].  Feature selection process is a dimensionality reduction scheme. Some 
feature values maybe noisy compared to others. In the feature selection process, a minimal 
feature set of size 𝑘 < (𝑚 + 𝑛) is chosen such that classification performance on a training 
set of feature vectors is improved.  The feature selection algorithm employed here is 
sequential forward floating selection technique (see [47] for more on this technique). A new 
feature vector 𝑍 = {𝑧1 , 𝑧2, … , 𝑧𝑘}  is obtained when the feature selection algorithm is 
applied. 

Match Score Generation: Let (𝑋𝑖,𝑌𝑖) and (𝑋𝑗,𝑌𝑗) be the feature vectors obtained at the two 
different time instances 𝑖 and 𝑗 where 𝑋 and 𝑌 represent the feature vectors derived from 
two different information sources. Let (𝑍𝑖,𝑍𝑗) denote the corresponding fused feature 
vectors. 
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Figure 3.4: Procedure adopted in [50] to perform feature level fusion. 

Let (𝑠𝑥, 𝑠𝑦) denote the normalized match score generated by comparing 𝑋𝑖 with 𝑋𝑗 and 𝑌𝑖 
with 𝑌𝑗 respectively. Let 𝑠𝑚𝑎𝑡𝑐ℎ = (𝑠𝑥 + 𝑠𝑦) 2⁄  represent the fused match score obtained 
using simple sum rule. 

To compare the fused vectors  𝑍𝑖  and 𝑍𝑗, two different distance measures are used. They 
are: 

Euclidean distance (𝑠𝑒𝑢𝑐) = ∑ (𝑧𝑖,𝑟 − 𝑧𝑗,𝑟)2𝑘
𝑟=1         

Threshold Absolute Distance or TAD (𝑠𝑡𝑎𝑑) = ∑ 𝐼(�𝑧𝑖,𝑟 − 𝑧𝑗,𝑟�, 𝑡)𝑘
𝑟=1     

Here, 𝐼(𝑦, 𝑡) = 1, if 𝑦 > 𝑡 (and 0, otherwise) and 𝑡 is a pre-specified threshold. Thus, we see 
that TAD measure determines the number of normalized feature values that differ by a 
magnitude greater than the set threshold 𝑡. One feature level score 𝑠𝑓𝑒𝑎𝑡 is obtained from 
𝑠𝑒𝑢𝑐 and 𝑠𝑡𝑎𝑑 using simple sum rule (Figure 3.4). Finally, the information at match score level 
𝑠𝑚𝑎𝑡𝑐ℎ and the feature level  𝑠𝑓𝑒𝑎𝑡  are combined using simple sum rule to obtain the final 
score 𝑠𝑡𝑜𝑡 (Figure 3.5).  
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Figure 3.5: Information flow when data from the feature level and match score level are 
combined [50]. 

Ross et al. [50] carry out experiments in three different scenarios: 

a) Fusion of Principle Component Analysis (PCA) and Linear Discriminant Analysis (LDA) 
coefficients of face: Two different face recognition algorithms based on PCA and LDA are 
combined at feature level (see [1] for details on these methods). It is observed that 
performance of LDA-based matcher is higher than the performance of PCA-based matcher.  
In this situation applying match score level fusion is found to degrade matching 
performance. The proposed fusion involving the combination of feature level and match 
score level fusion neither degrades nor improves matching performance. Authors mention 
that using fusion rules other than simple sum rule could have however improved 
performance. 

b) Fusion of R, G, B channels:  Three different feature sets are generated for a face image by 
subjecting each color channel to LDA separately. These feature sets are then combined at 
both feature and match score levels. It is observed that the scheme combining feature level 
and match score level information performs significantly better than match score level 
fusion. 

c) Fusion of Hand and Face Biometrics: Face and hand feature sets are combined performing 
multimodal fusion. The matching performance of the scheme combining feature level and 
match score level fusion is slightly inferior compared to match score level fusion. However, 
when the same experiment is conducted with different dataset, the performance of the 
proposed scheme is found to be superior compared to match score level fusion.  
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3.3 Score Level Fusion 

In score level fusion, different biometric matchers provide match scores indicating the 
degree of similarity between the input and template vectors. These match scores are 
consolidated to reach the final recognition decision. After the sensor level and feature level 
information, match scores contain the richest information about the input biometric sample. 
Fusion at score level provides the best tradeoff between the available information content 
and convenience of fusion. Therefore, this scheme is extensively studied in literature. This is 
also known as fusion at measurement level or confidence level. 

From theoretical point of view the performance obtained by combining match scores from 
any number of matchers is guaranteed (on average) to be no worse than the best of the 
individual biometric matcher [25]. The key is to identify the appropriate method which 
combines the matching scores reliably and maximize the matching performance. Two 
guidelines for good combination of scores are mentioned in [25]. Firstly, each biometric 
matcher must provide a match score to the combiner. Secondly, in advance of operational 
use, each biometric matcher must make available to the combiner, its technical performance 
(such as score distributions). 

Match scores generated by individual matchers might not be homogenous. For example, one 
matcher may produce a similarity score where a high value indicates better match whereas 
the other matcher may produce a dissimilarity score where a smaller value indicates better 
match. The match scores generated from different matchers may not be in the same range 
and may have different probability distributions. Because of these reasons, scores are 
normally normalized prior to fusion. However, some fusion methods use probability density 
functions (PDFs) directly and do not require normalization methods. The general flow of 
information in a match score level fusion taking normalization into account is shown in 
Figure 3.6.  

Fusion methods at score level can be broadly classified into three categories [54]: density-
based schemes, transformation-based schemes, and classifier-based schemes. 

 

Figure 3.6: Match score level fusion [25]. 
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3.3.1 Classifier Combination Rules 

Kittler et al. [34] developed a common theoretical framework for consolidating the 
evidences obtained from different classifiers. They consider a pattern recognition problem 
where pattern 𝑋 is to be assigned into one of the 𝑀 possible classes (𝜔1,𝜔2, … ,𝜔𝑀)  based 
on the evidence provided by 𝑅 classifiers. Each of the 𝑅 classifiers represents the given 
pattern by a distinct feature vector.  Let 𝑥𝑗 denote the feature vector derived from input 
pattern 𝑋 and presented to the 𝑗P

th classifier.  In the feature space each class 𝜔𝑘 is modeled 
by the probability density function 𝑝(𝑥𝑗|𝜔𝑘) and its prior probability of occurrence is 
denoted by 𝑃(𝜔𝑘). 

According to Bayesian theory [13], given the feature vectors 𝑥𝑗,  𝑗 = 1, … ,𝑅, the pattern 𝑋 
should be assigned to class 𝜔𝑟 that maximizes the posterior probability, i.e. 

assign  𝑋 → 𝜔𝑟 if 

𝑃(𝜔𝑟 |𝑥1, … , 𝑥𝑅) =  max
𝑘

𝑃(𝜔𝑘|𝑥1, … , 𝑥𝑅)      (3.1) 

                                                                                                  
where 𝑘 = 1, … ,𝑀.  The Bayesian decision rule in equation (3.1) is known as the minimum 
error-rate classification rule in pattern recognition. Using Bayes theorem, the posteriori  
probability 𝑃(𝜔𝑘|𝑥1, … , 𝑥𝑅) can be rewritten as 

𝑃(𝜔𝑘|𝑥1, … , 𝑥𝑅) =
𝑝(𝑥1, … , 𝑥𝑅|𝜔𝑘)𝑃(𝜔𝑘)

𝑝(𝑥1, … , 𝑥𝑅)
      (3.2) 

where  𝑝(𝑥1, … , 𝑥𝑅|𝜔𝑘) is the conditional joint probability density of the feature vectors. The 
unconditional joint probability density  𝑝(𝑥1, … , 𝑥𝑅) can be expressed as 

𝑝(𝑥1, … , 𝑥𝑅) = �𝑝(𝑥1, … , 𝑥𝑅|𝜔𝑙)𝑃(𝜔𝑙

𝑀

𝑙=1

)      (3.3) 

[34] suggests approximations to simplify equation (3.2) which lead to five classifier 
combination rules used in practice. All the five combination rules are based on the 
assumption that the 𝑅 feature representations 𝑥1, … , 𝑥𝑅  used are statistically independent.  
With this assumption the conditional joint probability density 𝑝(𝑥1, … , 𝑥𝑅|𝜔𝑘)  can be 
expressed as 

𝑝(𝑥1, … , 𝑥𝑅|𝜔𝑘) = �𝑝�𝑥𝑗�𝜔𝑘�
𝑅

𝑗=1

      (3.4) 

where  𝑘 = 1, … ,𝑀. 

The assumptions in equation (3.4) is reasonable for the multimodal systems using features 
from different biometric traits (for example face, fingerprint and hand geometry) that are 
mutually independent [54]. However, for some systems like the multi-sample systems (for 
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example, two representations of the same finger), using the same representation scheme 
(for example, using minutiae) the assumption may be unrealistic. 

Product Rule 

Using equation (3.2) and equation (3.4) which assume the statistical independence of 
feature representation, the product decision rule given below is obtained. 

Assign  𝑋 → 𝜔𝑟 if 

𝑃−(𝑅−1)(𝜔𝑟)�𝑃�𝜔𝑟�𝑥𝑗� = max
𝑘=1,…,𝑀

𝑃−(𝑅−1)(𝜔𝑘)�𝑃�𝜔𝑘�𝑥𝑗�      (3.5)
𝑅

𝑗=1

𝑅

𝑗=1

 

Even if a single classifier output is close to zero, the product of 𝑅 posterior probability 
becomes very small and leads to wrong decision. Therefore, this scheme is very sensitive to 
errors in estimation of posteriori probabilities. 

Sum Rule 

In sum rule, it is further assumed that posteriori probabilities computed by the classifiers do 
not deviate much from the prior probabilities, i.e, 

𝑃�𝜔𝑘�𝑥𝑗� = 𝑃(𝜔𝑘)�1 + 𝜕𝑘𝑗�      (3.6) 

Though this is a strong assumption, it may be readily satisfied when the input is noisy, 
leading to errors in the estimation of posteriori probabilities. Some simplifications using 
equation (3.5) and (3.6) leads to the sum decision rule given below. 

Assign  𝑋 → 𝜔𝑟  if 

(1 − 𝑅)𝑃(𝜔𝑟) + ∑ 𝑃(𝜔𝑟|𝑥𝑗)𝑅
𝑗=1 =  max𝑘=1,…,𝑀�(1− 𝑅)𝑃(𝜔𝑘) + ∑ 𝑃(𝜔𝑘|𝑥𝑗)𝑅

𝑗=1 �       (3.7)                            

The feature vectors 𝑥1, … , 𝑥𝑅  contain significant discriminatory information about the 
pattern class. Therefore, the assumption that posteriori probabilities 𝑃(𝜔𝑘|𝑥𝑗) do not 
deviate much from prior probabilities 𝑃(𝜔𝑘) is unrealistic in most cases. However, [34] 
showed that the sum rule is relatively insensitive to the errors in estimation of posteriori 
probabilities. Therefore, the rule works well and is routinely used in practice. 

Starting from the decision rules (3.5) and (3.7) and introducing other assumptions, some 
other classifier combination strategies are developed in [34]. These combination schemes 
are the max rule, min rule, median rule and majority vote rule. All the schemes and their 
relationships are illustrated by Figure 3.7. 
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Figure 3.7: Classifier combination schemes and their relationships [34]. 
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3.3.2 Score Fusion Techniques 

If we consider a multibiometric system operating in the verification mode, the output of 
each biometric matcher is a match score (the formulation can be extended to identification 
scenario as well).The number of classes (𝑀) is reduced to two as our interest is to 
determine whether the input biometric sample 𝑋 belongs to a “genuine” user or an 
“imposter”.  All types of misclassifying errors are assumed to have equal costs in the 
minimum error-rate decision rule in equation (3.1). However, most of the practical 
verification systems assign different costs to FAR and FRR which would require modified 
Bayesian decision rule. If 𝜇 be the ratio of the cost values associated with false accept and 
false reject errors, the modified Bayesian decision rule becomes, 

 
Assign 𝑋 → 𝑔𝑒𝑛𝑢𝑖𝑛𝑒 if 
 
𝑃(𝑔𝑒𝑛𝑢𝑖𝑛𝑒|𝑥1, … , 𝑥𝑅)
𝑃(𝑖𝑚𝑝𝑜𝑠𝑡𝑒𝑟|𝑥1, … , 𝑥𝑅)

≥ µ       (3.8) 

Let 𝑠𝑗 represent the match score given by the 𝑗𝑡ℎ matcher for  𝑗 = 1,2, … ,𝑅 (the subscript 𝑘 
is dropped since the class is fixed as either genuine or imposter).  As it is assumed that the 
feature representations of the 𝑅 biometric matchers 𝑥1, 𝑥2, … , 𝑥𝑅 are not available in score 
level fusion, the posteriori probabilities 𝑃(𝑔𝑒𝑛𝑢𝑖𝑛𝑒|𝑥1, 𝑥2, … , 𝑥𝑅)   and 
𝑃(𝑖𝑚𝑝𝑜𝑠𝑡𝑒𝑟|𝑥1,𝑥2, … , 𝑥𝑅)  need to be estimated from 𝑠 . Classifer based score fusion, 
transformation based score fusion and the density-based score fusion are the three different 
approaches proposed for estimating these probabilities. 
 

3.3.2.1 Density-based Score Fusion 

We summarize the density based score fusion based on the survey in [54]. 

The density based score fusion approximates the posteriori probabilities 
𝑃(𝑔𝑒𝑛𝑢𝑖𝑛𝑒|𝑥1, 𝑥2, … , 𝑥𝑅 )  and 𝑃(𝑖𝑚𝑝𝑜𝑠𝑡𝑒𝑟| 𝑥1, 𝑥2, … , 𝑥𝑅)  by 
𝑃(𝑔𝑒𝑛𝑢𝑖𝑛𝑒|𝑠 = [𝑠1, 𝑠2, … , 𝑠𝑅]) and 𝑃(𝑖𝑚𝑝𝑜𝑠𝑡𝑒𝑟|𝑠 = [𝑥1, 𝑥2, … , 𝑥𝑅]), respectively. The 
conversion of vector scores 𝑠 into probabilities 𝑃(𝑔𝑒𝑛𝑢𝑖𝑛𝑒 |𝑠) and 𝑃(𝑖𝑚𝑝𝑜𝑠𝑡𝑒𝑟 |𝑠) requires 
the estimation of corresponding conditional densities 𝑝(𝑠 | 𝑔𝑒𝑛𝑢𝑖𝑛𝑒) and  𝑝(𝑠 | 𝑖𝑚𝑝𝑜𝑠𝑡𝑒𝑟) . 
Finally, Bayesian decision rule in equation (3.8) can be applied to make a decision.  

Suppose that 𝑆 𝑔𝑒𝑛  and 𝑆𝑖𝑚𝑝  be the random variables representing the genuine and 
imposter match scores respectively. Let 𝐹𝑔𝑒𝑛(𝑠)  and 𝑓𝑔𝑒𝑛(𝑠) be the distribution function 
and  density function of 𝑆 𝑔𝑒𝑛 respectively. Then, 
 

𝑃�𝑆𝑔𝑒𝑛 ≤ 𝑠� = 𝐹𝑔𝑒𝑛(𝑠) = � 𝑓𝑔𝑒𝑛(𝑣)𝑑𝑣.
𝑠

−∞
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Similarly, let 𝐹𝑖𝑚𝑝(𝑠) and 𝑓𝑖𝑚𝑝(𝑠) be the distribution function and density function of 𝑆 𝑖𝑚𝑝  
respectively. Then, 

𝑃�𝑆𝑖𝑚𝑝 ≤ 𝑠� = 𝐹𝑖𝑚𝑝(𝑠) = � 𝑓𝑖𝑚𝑝(𝑣)𝑑𝑣.
𝑠

−∞
 

 
The density functions 𝑓𝑔𝑒𝑛(𝑠) and 𝑓𝑖𝑚𝑝(𝑠) are known as class conditional densities because 
they represent the probability density functions of the match scores given that score comes 
from genuine or imposter class  (𝑝(𝑠|𝑔𝑒𝑛𝑢𝑖𝑛𝑒)) and  (𝑝(𝑠|𝑖𝑚𝑝𝑜𝑠𝑡𝑒𝑟)), respectively. The 
density functions  𝑓𝑔𝑒𝑛(𝑠) and 𝑓𝑖𝑚𝑝(𝑠) are generally not known and have to be estimated  
from the set of training scores from the genuine and imposter classes respectively. Density 
estimation can be done either by parametric or non-parametric methods [13]. In the 
former, the training data is used for estimation of the parameters of density function with  
known form of the density function. In the later, i.e., non-parametric density estimation  
method, there are not any standard form for the density function and they are essentially 
data driven.  A good selection of a specific parametric method for the density of genuine 
and imposter scores is a difficult task. The lack to the access of large amount of training data 
(especially genuine scores) for reliable estimation of genuine and imposter densities is 
another problem. Because of this limited availability of training scores, especially the 
genuine scores, the selection of density estimation method must be done carefully. 
 
Snelick et al. [57] estimate the conditional densities of the match scores by parametric 
method.  They assume a normal distribution for the conditional densities of the match 
scores. However, the assumption of normal distribution is generally not true for the 
biometric match scores. This method assumes that prior probabilities of the genuine and 
imposter classes are equal and the matchers used are statistically independent in the 
estimation process. 

 
Jain et al. [30] estimate the conditional density of the genuine and imposter scores by the 
use of the Parzen window dependent non-parametric method. This method is suitable for 
estimating the conditional densities especially in cases when the densities are non-
Gaussian. However, the output can be inaccurate because of the finite training data set and 
problems in the selection of optimum window width during density estimation process. 

 
The approaches discussed above by Snelick et al. [57] and Jain et al. [30] estimate only the 
marginal densities of individual matchers. The combination of marginal densities is done 
under the assumption of statistical independence of the feature vectors or the biometric 
matchers based on framework by Kittler et al. [34]. Prabhakar et al. [44] state that the 
assumptions made by Kittler et al. [34] of statistical independence of matchers may not be 
true in a multi-algorithm biometric system that uses different feature representations and 
different matching algorithms on the same biometric trait. A non-parametric estimation of 
the joint multivariate density is proposed in [44]. In this approach the 𝑅 variate densities 
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𝑝(𝑠1, … , 𝑠𝑅|𝑔𝑒𝑛𝑢𝑖𝑛𝑒) and 𝑝(𝑠1, … , 𝑠𝑅|𝑖𝑚𝑝𝑜𝑠𝑡𝑒𝑟) are directly estimated using the genuine 
and imposter test match scores. However, estimation of joint multivariate densities require 
larger number of training samples than estimating marginal (univariate) densities. 
 
It is important to note that the biometric matching algorithms set certain thresholds at 
different stages in the matching process. This results in discrete components in the 
distribution of match scores which cannot be accurately modeled by using a continuous 
density function. To address this problem, discrete and continuous components of the 
density should be separately modeled in order to avoid large errors in estimating 𝑓𝑔𝑒𝑛(𝑠) 
For such situations, [10] proposes a scheme for combining the match scores from multiple 
matchers based on generalized densities estimation.  
 

3.3.2.2 Classifier-based Score Fusion 

In classifier-based score fusion, a trained pattern classifier is used to learn the relationship 
between the vector of match scores [s1, s2, … , sR] (from R matchers) and the posteriori 
probabilities of the genuine and imposter classes, namely, P(genuine|s1, s2, … , sR) and  
P(imposter|s1, s2, … , sR) [54]. The vector of match scores generated by multiple matchers is 
input to the trained classifier which classifies the vector into one of the two classes, genuine 
or imposter. The classifier defines two different decision regions in the feature space for the 
genuine and imposter classes. The decision regions are separated by a decision boundary. 
The decision boundaries can be simple as a line in a linear discriminant function or more 
complex such as multilayer neural networks depending on the complexity and nature of 
distributions of the two classes [25].  In general the classifier is capable of learning the 
decision boundary irrespective of how the feature vector is constructed. Therefore, the 
output scores from different matchers do not need to be transformed into a common 
domain prior to invoking the classifier. This fusion scheme requires a large number of 
training scores of both genuine and imposter classes during the training of classifier. A 
limitation of the classifier-based score fusion approach is that it is not easy to fix one type of 
error (say FAR) and then compute the other type of error(say FRR) at that specified FAR.  

Example 3.6 Score level fusion using classifiers based on the k-nearest-neighbor (k-NN) 
classifier, decision trees and logistic regression. 

Verlinde et al. [68] perform experiments and compare the performance of fusion using three 
different classifiers based on the k-nearest-neighbor (k-NN) classifier, decision trees and 
logistic regression.   The three monomodal systems based on profile face image, frontal face 
image and voice provide match scores in parallel as input to the classifier module which has 
to take the decision either accept or reject.  All the experiments are carried out using the 
multimodal M2VTS databases. All verification results are given in terms of FRR, FAR, and TER. 
For each error the 95% level confidence intervals given between square brackets. 
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The performances achieved by three monomodal identity verification systems based on 
profile face image, frontal face image and voice expert are given in Table 3.1. 

 

Expert FRR (%)  
[37 tests] 

FAR (%)  
[1332 tests] 

TER (%)  
[1369 tests] 

Profile 21.6 [11.4, 37.2] 8.5 [7.1, 10.1]] 8.9 [7.5, 10.5] 

Face 21.6 [11.4, 37.2] 8.3 [6.9, 9.9] 8.7 [7.3, 10.3] 

Vocal 5.4 [1.5, 17.7] 3.6  [2.7, 4.7] 3.7 [2.8, 4.8] 

 

Table 3.1`: Verification results for single modalities [68]. 

A k-NN classifier is a very simple classifier that needs no specific training. It needs reference 
data points for both the imposter and client classes. The Eucledian distance between the test 
point and all the reference points is calculated and k-nearest neighbors corresponding to k-
smallest Eucledian distances are sorted out. The test point is attributed the same class label 
as the class label of the majority of its k-nearest neighbors. Exhaustive distance calculation 
results in higher computing time which is the major drawback of this scheme. Since the 
experiments have large number of imposter (1332) and small number of client (37) 
reference points, large FRR and small FAR is observed resulting in rejection of lot of clients. 
Clustering technique is chosen as a solution. The clustering is performed by the k-means 
algorithm which allows to fix a priori the number of prototypes P. This algorithm uses the 
Eucledian distance measure to group the imposter references into P clusters.  Each cluster is 
then replaced by the centroid of its samples. From the experiments performed after 
clustering, it is observed that for small P, FRR is very low and for large P, FAR is very low. The 
optimal number of imposter prototypes P depends on the cost-function specified by the 
application. The advantage with k-NN classifier with vector quantization (k-NN+VQ) is the 
considerable decrease in the number of calculations with the reduction in the number of 
imposter reference points. Though this method gives good results, the computing time is still 
high.  

A decision tree is a tree-structured classifier representing the learned function using training 
data. Some tree classifiers are CART, C4.5, QUEST [38].  Some tree classifiers generate binary 
trees and some of them generate multi-branch trees. In [68], the C4.5 algorithm has been 
chosen. Decision trees classify unknown instances by sorting them from root to the leaf 
node. The topmost node is called root node. Leaf nodes are the terminal nodes represented 
by rectangles and are tagged with class labels. At each node in the tree some attribute of the 
instance is tested and each branch descending from that node corresponds to one of the 
possible values for this attribute. In [68] the attributes are match scores of the instance 
obtained for the different modalities.  Split at the node is done in order to attain as 
homogeneous a set of labels as possible in each partition [38].  The best attribute is selected 
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for testing at the root. In C4.5 algorithm, the information gain determines the best attribute. 
Information gain is defined as the reduction in entropy caused by splitting the instances 
according to this attribute.  When a full tree is grown it needs to be pruned before using it 
for classifying unknown instances. Pruning is done to avoid over-fitting problems that arise 
because of the training data that cannot represent the test data. Pruning is implemented by 
cutting back the tree branches moving from the bottom to the top. The process starts form 
the leaf node and moving upwards sub-trees are removed in intermediate nodes wherever 
required. Such intermediate node then becomes a leaf-node. The pruning criteria that is 
used in the C4.5 is reduced-error pruning which specifies that nodes are to be removed only 
if the resulting pruned tree performs no worse than the original one. 

The influence of reducing number of imposter data points is studied in decision tree 
classifier as well by using k-means clustering algorithm as in the case with the k-NN based 
classifier. For lower value of P, the decision tree based classifier shows lower performance 
than the k-NN based classifier. However, decision tree requires lower computation time than 
the k-NN based classifier. 

For a two-class problem, classification method based on the principles of logistic regression 
can be used. In this method, through statistical analysis of the training data, discrimination 
function which is the logistic distribution function, is implemented. The function 
implemented is: 

𝐸(𝑌 𝑥)⁄ =  𝜋(𝑥) =  
𝑒𝑔(𝑥)

1 + 𝑒𝑔(𝑥)  

In the expression, 𝐸(𝑌/𝑥) is the conditional probability for the binary output variable 𝑌 
given the input vector 𝑥. 𝑔(𝑥) =  𝛽0 + 𝛽1𝑥1 + ⋯+𝛽𝑑𝑥𝑑  where 𝑥 = (𝑥1, 𝑥2, … , 𝑥𝑑) is the 𝑑-
dimensional input vector. Thus the function  𝜋(𝑥) gives the probability for the input vector 𝑥 
of belonging to the class of clients (𝑌 = 1) . Likewise, the probability 1 −  𝜋(𝑥) for the input 
vector 𝑥 belonging to the class of imposters  ( 𝑌 = 0) is also known. 

The logistic regression parameters 𝛽𝑖s are obtained using the maximum likelihood principle 
in order to maximize the probability of finding the observed training data. Since each 
𝛽𝑖 (𝑖 ≠ 0) multiplies one of the 𝑑-modalities, its value depends on the importance of that 
particular modality in the fusion process.  After 𝛽𝑖s are estimated on training data,  𝜋(𝑥) is 
calculated for test pattern. This calculated value is then compared to the theoretical optimal 
threshold, which is the EER threshold calculated on training data. It is observed that the 
results in this experiment are the best among the three experiments conducted.  Moreover, 
the computing time required in this method is less than the other two methods.  
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Table 3.2 gives summary of best verification results obtained for all 3 classifiers. 
 

Method FRR (%)     
 [37 tests] 

FAR (%)  
 [1332 tests] 

TER (%) 
 [1369 tests] 

k-NN 8.0 [2.7, 21.2] 0.0  [0.0, 0.3] 0.2  [0.1, 0.6] 

k-NN+VQ 0.0 [0.0, 9.4] 0.5 [0.2, 1.0] 0.5 [0.2, 1.0] 

Dec. Tree 7.7 [0.5, 13.8] 0.3 [0.1, 0.8] 0.5 [0.2, 0.1] 

Log. Reg. 2.7 [0.5, 13.8] 0.0 [0.0,0.3] 0.1 [0.0,0.5] 

 

Table 3.2:  Summary table of verification results [68]. 

Example 3.7 Decision trees and linear discriminant function classifiers 

Jain et al. [53] use the classifiers decision trees and linear discriminant function for fusion of 
match scores obtained from three modalities- face, fingerprint and hand geometry. The 
match scores from all three modalities are mapped to the range [0,100]. As the face and 
hand scores are distance scores, they are converted to similarity scores by subtracting them 
from 100. 

Decision trees: The C5.0 program Quinlan (1992) is used to generate a tree from the training 
set of genuine and imposter score vectors. Both the training set and test set consist of 
11,125 imposter score vectors and 250 genuine score vectors.                                        

The confusion matrices (Table 3.3) given below illustrate the performance of the C5.0 
decision tree. 
 

 

Evaluation on training data           Evaluation on test data 

Table 3.3:  Confusion matrices indicating performance of C5.0 decision tree [53]. 
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Linear discriminant function: Through linear discriminant analysis of training set,  the three 
dimensional score vectors are transformed into a new feature space that maximizes the 
separation between the two-classes. The centroids of both classes in the new feature space 
are calculated. A test vector is classified by measuring the Mahalanobis distance from the 
vector to centroid of both classes, and assigning the vector to the class for which the 
Mahalanobis distance is minimum.  The confusion matrices in Table 3.4 show the 
performance of the linear discriminant classifier on three different trials. 
 

 Genuine Imposter 
Trial 1: 
 Genuine Class 
 Imposter Class 

 
250 
54 

 
0 
11,071 

Trial 2: 
 Genuine Class 
 Imposter Class 

 
250 
50 

 
0 
11,075 

Trial 3: 
 Genuine Class 
 Imposter Class 

 
250 
72 

 
0 
11,053  

Table 3.4: Performance of linear discriminant classifier on three different trials [53]. 

Besides the two classifiers discussed, authors also use the sum rule which combines three 
scores corresponding to the three modalities. Weighted average of the scores from the 
multiple modalities is calculated. This is done for all possible combinations of the three 
modalities. Equal weight is assigned to each modality. Figure 3.8 and Figure 3.9 show the 
improvement in performance when the scores are combined using the sum rule. 

 

Figure 3.8: ROC curves when the scores are combined using the sum rule: (a) combining face 
and fingerprint scores (b) combining face and hand geometry scores [53]. 
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Figure 3.9: ROC curves when the scores are combined using the sum rule: (a) combining 
fingerprint and hand geometry scores and (b) combining face, fingerprint and hand 
geometry scores [53]. 

In the experiments, analysis of the FAR and FRR rates of all three schemes clearly suggested 
that the sum rule showed better performance than the other two classifiers.  

 

3.3.2.3 Transformation-based Score Fusion 

Density-based schemes require a large number of training samples (genuine and imposter 
match score) in order to accurately estimate the joint conditional densities 𝑝(𝑠 =
[𝑠1, 𝑠2, … , 𝑠𝑅])|𝑔𝑒𝑛𝑢𝑖𝑛𝑒)  and  𝑝(𝑠 = [𝑠1, 𝑠2, … , 𝑠𝑅])|𝑖𝑚𝑝𝑜𝑠𝑡𝑒𝑟)  [54]. However, the 
availability of training data is limited due to the time, cost and efforts required in collecting 
data. In such a scenario, it is appropriate to combine the match scores from different 
matchers without converting them into posteriori probabilities. The match scores require to 
be compatible to achieve meaningful combination. A process known as score normalization 
is applied in order to transform the match scores from different matchers into a common 
domain.  When the normalized match scores are available, different methods like the sum, 
max and min classifier combination rules can be applied to combine these scores.  

Score Normalization 

Score normalization refers to changing the location and scale parameters of the match score 
distributions so as to transform them into a common domain. A scale parameter determines 
the statistical dispersion of the probability distribution. A larger scale parameter implies a 
more spread out distribution and a smaller scale parameter implies a more concentrated 
distribution. The location parameter determines where the origin will be located and can be 
either positive or negative. The location parameter is used to shift a distribution in one 
direction or another. For a good normalization scheme, the estimates of the location and 
scale parameters of the match score distribution must be robust and efficient [20]. 
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Robustness refers to insensitivity to the presence of outliers and efficiency refers to 
proximity of the obtained estimate to the optimal estimate when the distribution of data is 
known.  Figure 3.10 shows the conditional distributions of the face, fingerprint and hand-
geometry matching scores used in experiments by Jain et al. [26]. It is apparent from the 
distributions that the scores from different modalities are non-homogeneous and require 
normalization before they can be combined. 
 

 

Figure 3.10: Conditional distribution of genuine and imposter scores: (a) face (distance 
score); (b) fingerprint (similarity score); and (c) hand-geometry (distance score) [26]. 

In the following paragraphs, we summarize some normalization techniques described in [26]. 

Min-max normalization: The simplest normalization technique is the min-max normalization. 
This technique is best suited for the case where the bounds (maximum and minimum values) 
of the scores produced by a matcher are known. In such case, the minimum and maximum 
scores can be easily shifted to 0 and 1 respectively. When the match scores are not 
bounded, minimum and maximum values can be estimated for the given set of training 
match scores and then min-max normalization can be applied. Let  {𝑠𝑘},𝑘 = 1, 2, . . . , 𝑛  
denote a set of matching scores, then the normalized scores are given by: 

𝑠′𝑘 =
𝑠𝑘 − 𝑚𝑖𝑛
𝑚𝑎𝑥 −𝑚𝑖𝑛

 . 

In the case where minimum and maximum values are estimated from the given set of scores, 
the method is sensitive to the presence of outliers in the given data and hence is not robust. 
After min-max normalization, the original distribution of scores is maintained but now all the 
scores lie in the range [0, 1]. After normalization, distance scores can be converted to 
similarity score easily by subtracting the distance score from 1.  
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Figure 3.11 shows the distribution of the face, fingerprint and hand-geometry scores after 
min-max normalization. 
 

 

Figure 3.11: Distribution of genuine and imposter scores after min-max normalization: (a) 
face; (b) fingerprint ; and (c) hand-geometry [26]. 

Decimal scaling normalization: Decimal scaling can be applied when the scores of different 
matchers are on a logarithmic scale.  The following normalization can be applied. 

𝑠′𝑘 =
𝑠𝑘

10𝑛
 , 

where 𝑛 = 𝑙𝑜𝑔10𝑚𝑎𝑥(𝑠𝑖).  For example, if two matchers had scores in the range [0, 10] and 
[0, 1000] this normalization technique can be applied and the scores can be transformed to a 
common range [0, 1]. The values of n in this case would be 1 and 3.  The decimal scaling 
normalization is not robust.  The other problem is the implicit assumption that the scores of 
different matchers vary by a logarithmic factor. 

Z-score normalization: The most commonly used normalization technique is z-score 
normalization. It uses the arithmetic mean and standard deviation of training data. This 
scheme performs well when the average and variance of score distribution of matchers are 
known. If this prior knowledge is not available, the mean and standard deviation of the 
scores need to be estimated from given training data. The normalized scores are given by 

𝑠′𝑘 =
𝑠𝑘 − 𝜇
𝜎

 , 

where 𝜇 is the arithmetic mean and 𝜎 is the standard deviation. Since both mean and 
standard deviation are sensitive to outliers, this method is not robust. This method does not 
guarantee a common numerical range for the normalized scores. If the input scores are not 
Gaussian distributed, this method does not retain the input distribution at the output. This is 
because the mean and standard deviation are the optimal location and scale parameters 
only for a Gaussian distribution. For arbitrary distributions, mean and standard deviation are 
the reasonable estimates of location and scale but are not the optimal. 
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Figure 3.12 shows the distribution of the face, fingerprint and hand-geometry scores after z-
score normalization.  It can be observed that the scores are not transformed into a common 
numerical range and for the fingerprint modality the original distribution of scores is not 
retained. 
 

 

Figure 3.12: Distribution of genuine and imposter scores after z-score normalization: (a) face; 
(b) fingerprint ; and (c) hand-geometry [26]. 

Median-MAD normalization: The median and median absolute deviation (MAD) statistics are 
less sensitive to the outliers and the points in the extreme tails of the distribution. 
Therefore, a normalization scheme using median and MAD is robust. The normalized scores 
using this scheme are given by 

𝑠′𝑘 =
𝑠𝑘 −𝑚𝑒𝑑𝑖𝑎𝑛

𝑀𝐴𝐷
 , 

where 𝑀𝐴𝐷 = 𝑚𝑒𝑑𝑖𝑎𝑛(|𝑠𝑘 − 𝑚𝑒𝑑𝑖𝑎𝑛| ). For score distributions other than Gaussian, 
median and MAD are poor estimates of the location and scale parameters.  Therefore, this 
technique does not preserve the input distribution and does not transform the scores into a 
common numerical range.  Figure 3.13 shows the distribution of the face, fingerprint and 
hand-geometry scores after median-MAD normalization. 
 

 

Figure 3.13: Distribution of genuine and imposter scores after median-MAD normalization: 
(a) face; (b) fingerprint ; and (c) hand-geometry [26]. 
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Double sigmoid normalization: The normalized scores obtained using double sigmoid 
function are given by  

𝑠′𝑘 =

⎩
⎨

⎧
1

1 + exp(−2((𝑠𝑘 − 𝑡) 𝑟1))⁄     𝑖𝑓 𝑠𝑘 < 𝑡,

1
1 + exp(−2((𝑠𝑘 − 𝑡) 𝑟2))⁄    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,

 

where 𝑡 is the reference operating point and 𝑟1 and 𝑟2 denote the left and right edges of the 
linear region of the function. Figure 3.14 shows an example of the double sigmoid 
normalization, where the scores in the range [0,300] are mapped to the [0, 1] range using 
𝑡 = 200, 𝑟1 = 20 and 𝑟2 = 30. 
 

 

Figure 3.14: Double sigmoid normalization (𝑡 = 200, 𝑟1 = 20,𝑎𝑛𝑑 𝑟2 = 30) [26] 

This scheme transforms the scores into the [0, 1] interval.  To obtain a good efficiency, 
appropriate tuning of the parameters 𝑡, 𝑟1, 𝑟2 is important.  Generally, 𝑡 is chosen such that it 
falls in the region of overlap between genuine and imposter score distributions and 𝑟1 and 𝑟2 
are set so that they correspond to the extent of overlap between the two distributions 
towards the left and right of 𝑡, respectively.   

Figure 3.15 shows the distribution of the face, fingerprint and hand-geometry scores after 
double sigmoid normalization. It can be seen that all the scores are transformed to a 
common numerical range [0, 1], but the shape of the original fingerprint distribution scores 
is not retained.  
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Figure 3.15: Distribution of genuine and imposter scores after double sigmoid normalization: 
(a) face; (b) fingerprint ; and (c) hand-geometry [26]. 

Tanh normalization: Hampel et al. [16] introduced the tanh-estimators which are robust and  
highly efficient. The normalization is given by 

𝑠′𝑘 =
1
2
�tanh�0.01 �

𝑠𝑘 − 𝜇𝐺𝐻
𝜎𝐺𝐻

�� + 1�, 

where 𝑢𝐺𝐻 and 𝜎𝐺𝐻 are the mean and standard deviation estimates, respectively, of the 
genuine score distribution as given by Hampel estimators. Hampel estimators are based on 
the following influence (𝜑)-function: 

𝜑(𝑢) =

⎩
⎪
⎨

⎪
⎧

           𝑢                                 0 ≤ |𝑢| < 𝑎,
𝑎 𝑠𝑖𝑔𝑛(𝑢)                           𝑎 ≤ |𝑢| < 𝑏,

𝑎 𝑠𝑖𝑔𝑛(𝜇) �
𝑐 − |𝑢|
𝑐 − 𝑏

�          𝑏 ≤ |𝑢| < 𝑐,

0                                    |𝑢| ≥ 𝑐.

   

The Hampel influence function reduces the influence of the scores at the tails of the 
distribution (identified by a, b, c) in estimating the location and scale parameters. This 
normalization technique is therefore not sensitive to outliers.  Discarding many points at the 
tails of the distribution results in an estimate that is more robust but not efficient (optimal). 
On the other hand, including many points at the tails of the distribution results in an 
estimate that is more efficient but not robust. Therefore, the parameters a, b, c must be 
carefully chosen depending on the required level of robustness which depends on the 
amount of noise present in the training data. Figure 3.16 shows the distribution of the face, 
fingerprint and hand-geometry scores after tanh normalization. 
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Figure 3.16: Distribution of genuine and imposter scores after tanh normalization: (a) face; 
(b) fingerprint ; and c) hand-geometry [26].  

A summary of the characteristics of different score normalization techniques is given in 
Table 3.5. 
 

Normalization technique Robustness Efficiency 
Min-max NO N/A 
Decimal Scaling NO N/A 
Z-Score NO High 

(Optimal for Gaussian Data) 
Median-MAD YES Moderate 
Double Sigmoid YES High 
Tanh Yes High  

Table 3.5:  Summary of normalization techniques [26]. 

Example 3.8 Performance of various normalization techniques 

Choice of the normalization scheme giving the best performance depends on the fusion 
problem. It is recommended that a number of normalization schemes need to be evaluated 
to determine the optimal scheme for the given problem.  We discuss the main results from 
the experiments performed by Jain et al. [26]. They studied the performance of a multimodal 
system where score-level fusion of face, fingerprint and hand geometry modalities was 
performed using different normalization and fusion techniques. 

The recognition performance of the three unimodal systems is shown in Figure 3.17. From 
Figure 3.10 (b) and  Figure 3.10 (c) it can be seen that the overlap between the conditional 
densities of genuine and imposter scores is highest for hand-geometry system and smallest 
for fingerprint system. This explains the worst performance of hand geometry based system 
and the best performance of fingerprint based system.  
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Figure 3.17: ROC curves for unimodal systems [26] 

Three fusion techniques: the simple sum of scores, the max-score, and the min-score fusion 
are applied on normalized scores in [26].  Normalized scores are obtained by using the 
techniques: simple distance-to-similarity transformation with no change in scale (STrans), 
min-max normalization (Minmax), z-score normalization (ZScore), median-MAD 
normalization (Median), double sigmoid normalization (Sigmoid), tanh normalization (Tanh), 
and Parzen normalization (Parzen). We have mentioned in Section 3.3.2.1 that Parzen 
window density estimation method is used to covert match scores into posteriori 
probabilities which is not a normalization technique. “However, [26] treats the ratio of the 
posteriori probabilities of the genuine and imposter classes as a normalized match score and 
refer to this technique as Parzen normalization” [54]. The match scores output by different 
matchers may not be homogenous. One matcher may output a distance (dissimilarity) 
measure while other may output a proximity (similarity) measure. In order to obtain a set of 
homogenous match scores, simple distance to similarity conversion is performed in STrans 
transformation. 

Table 3.6 summarizes the average Genuine Accept Rate (GAR=1-FRR) at a False Accept Rate 
(FAR) of 0.1% of the multimodal systems and the standard deviation of the GAR (shown in 
parentheses) for various normalization and fusion schemes.  From the table it becomes clear 
that the sum of scores fusion gave better performance than the max-score and min-score 
techniques.   
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Table 3.6:  GAR (%) of different normalization and fusion techniques at 0.1% FAR [26]. 

Figure 3.18 shows the recognition performance of the multimodal system when the scores 
normalized using various methods are combined by the sum of scores method. It is clear 
from the graphs that the sum of scores method gives better result than the fingerprint based 
system (the best unimodal system in this case) for all normalization techniques except the 
median-MAD normalization. At lower values of FARs, the tanh and min-max normalization 
techniques provide higher performance than other techniques. At higher FARs, z-score 
normalization provides slightly better performance than the tanh and min-max  
normalization.  The min-max, z-score, tanh and distance-to-similarity transformation show 
similar performances.  The raw scores of the three modalities  used in the experiment are 
comparable. It is to be noted that when the raw scores are significantly different, distance-
to-similarity transformation method does not work. 

 

Figure 3.18:  ROC curves for sum of score fusion method [26]. 

Normalization Techniques 
Fusion Techniques 

Sum of scores Max-Score Min-Score 

STrans 98.3 [0.4] 46.7 [2.3] 83.9 [1.6] 

Min-max 97.8 [0.6] 67.0 [2.5] 83.9 [1.6] 

z-score 98.6 [0.4] 92.1 [1.1] 84.8 [1.6] 

Median 84.5 [1.3] 83.7[1.6] 68.8 [2.2] 

Sigmoid 96.5 [1.3] 83.7 [1.6] 83.1 [1.8] 

Tanh 98.5 [0.4] 86.9 [1.8] 85.6 [1.5] 

Parzen 95.7 [0.9] 93.6 [2.0] 83.9 [1.9] 
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Jain et al. [26] also perform experiments which reveal that both min-max and z-score 
methods are sensitive to outliers whereas tanh method is both robust and efficient. When 
the minimum and maximum values of scores produced by a matcher are known, min-max 
technique works well. The z-score normalization works well when prior knowledge about the 
average score and score variations of the matcher is available. However, if these values are 
to be estimated from training scores and the available training scores are noisy, then a 
robust normalization technique like tanh normalization is the appropriate choice. 

Authors also compute weighted sum of scores based on user-specific weights. The weights 
for each user are computed based on the training scores [26]. The scores are first normalized 
using min-max and tanh normalization and then the weighted combined score is calculated. 
It is observed from the experiments that the use of user-specific weights results in a 
significant improvement in recognition performance.   
 

3.4 Rank Level Fusion 

Rank level fusion is appropriate in the multibiometric systems operating in the identification 
mode where each component biometric system associates a rank with every enrolled 
identity (a higher rank indicating a better match) [54]. Rank level fusion entails consolidating 
the multiple ranks output by individual biometric subsystem in order to determine a new 
rank for each identity. The final decision is established based on these new ranks for all 
identities. Ranks reveal more information compared to just the identity of the best match 
and less information compared to the match scores.  

Ho et al. [19] describe three methods to combine the ranks assigned by different matchers. 
Those are the highest rank method, the borda count method, and the logistic regression 
method.  

Highest Rank Method 

In the highest rank method each identity is assigned the highest (minimum value) rank of all 
the ranks computed by different matchers. Ties are broken randomly to achieve a strict 
ranking order.  This method requires the number of matchers to be small relative to the 
number of identities which is usually the scenario in multibiometric identification systems. If 
this is not the case, many identities could have ties and the final ranking is not reliable. The 
advantage of this method is its ability to utilize the strength of each matcher. As long as at 
least one matcher assigns a high rank to the correct identity, it is highly probable that the 
true identity will get high rank after reordering.  

Borda Count  Method 

In this method, the final rank for an identity is calculated as the sum of the ranks assigned to 
the identity by individual matchers. This method assumes that the ranks assigned to a given 
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identity by different matchers are independent. It also assumes similar accuracy of all 
matchers.   

Logistic Regression Model 

Logistic regression model is a modification of borda count method where the final rank is 
calculated as the weighted sum of the individual ranks. Therefore, logistic regression model 
takes into consideration the differences in performances of different matchers. The weights 
are calculated during the training phase using logistic regression method. 

 
                                   

Figure 3.19: Example of rank level fusion (adopted from [48] ) 
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Figure 3.19 illustrates a simple example of rank level fusion using the highest rank, borda 
count and logistic regression methods. Ranks assigned to Person 1 by the fingerprint and iris 
matchers are 3 and 2 respectively.  For the highest rank method, the fused score is the 
higher of the two ranks i.e, 2 for Person 1. After fused scores for all identities are 
deterimined using highest rank method, we can see that there is tie between person 2 and 
person 3 for rank 1.  This tie is broken randomly and the final reordered rank is obtained. 
Using borda count method for Person 1, the fused score is obatined by adding the two ranks 
3 and 2 and dividing the sum by 2 (the number of matchers) which results in 2.5.  The 
highest rank and borda count methods both assume equal performances of both matchers. 
Therefore, the reordered ranks by these methods are influenced equally by the ranks 
assigned individually by both matchers. For logistic regression method, weights 0.7 and 0.3 
are assigned for the iris and fingerprint matchers. A lower value of weight is assigned to the 
more accurate matcher (the fingerprint matcher being more accurate here).Therefore, the 
result here can be expected to be more influenced by the ranks assigned by the fingerprint 
matcher which is the case. 
 

3.5 Decision Level Fusion 

Decision level fusion is performed using the decisions output by the biometric matcher 
components. Many Commercial Off-the-Shelf (COTS) biometric matchers provide only the 
final recognition result which is the match or non-match decision. When such matchers are 
used in multibiometric systems, fusion is only possible at decision level.  

 Decision level fusion process is broadly categorized into a) Simple decision-level fusion and 
b) Advanced decision level fusion in [25]. 

Simple Decision Level Fusion 

When the multibiometric systems comprise of few components, AND and OR rules can be 
used to conveniently combine decisions output by different matchers. The output of fusion 
using AND rule is a “match” only when outputs of each component matcher is a “match”. 
The output of fusion using OR rule is a “match” if at least one of the outputs of component 
matcher is a “match”. Though these rules are convenient, the drawback is that they result in 
extreme operating points. The AND rule results in a lower FAR and a higher FRR than that of 
individual matchers. Likewise, the OR rule results in a higher FAR and a lower FRR than that 
of individual matchers.   

Majority voting scheme is a commonly used approach in decision level fusion where the 
input biometric sample is assigned to that identity on which the majority of matchers agree 
[54]. When none of the identities is agreed by majority of matchers then “reject” decision is 
output by the system. This scheme assumes that performances of all matchers are similar. 
However, when the matchers used do not have similar recognition accuracy, it is reasonable 
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to assign higher weights to more accurate matchers. This is done in weighted majority voting 
scheme. 

Advanced Decision Level Fusion 

Advanced decision level fusion into two subgroups 1) layered and 2) cascaded by [25].  
Decision level fusion for both sub-groups are shown in Figure 3.20. 

Layered System 

A layered system uses the result of threshold test of a biometric score to determine the 
pass/fail threshold for the subsequent test of the next biometric score. Figure 3.20 shows an 
example of a layered decision level fusion comprising of three modalities P1, P2 and P3. The 
match score of P1 first enters the system. It is checked against the system threshold for the 
modality P1. The result (pass/fail) of this check determines the adjustment required for the 
next threshold for the modality P2. When the threshold for modality P2 is reset, match score 
of P2 enters the system. The same process is repeated for P2 and then for P3. After the 
process for P3 is completed, the final accept/reject decision is made. 

Cascaded System 

In cascaded systems the results of threshold test and strength test for a biometric sample 
determine whether additional biometric samples from other modalities are required in order 
to reach the final system decision. A simple model of a cascaded system shown in Figure 
3.20.  The match score of P1 enters the system which is checked against the threshold for 
P1. If the match score for P1 meets the threshold requirement, next decision is made on the 
strength of the result. If the strength is sufficient, then the final accept decision is made. If 
the strength is not sufficient or the match score fails the initial threshold test, the same 
process has to be repeated for the match score P2.  If the match score P2 also does not pass 
both tests, the process has to be repeated for match score P3 as well. However, when one 
match score passes both tests, the system does not require samples of other modalities to 
be captured. 
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Figure 3.20:  Advanced decision level fusion [25] 
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Chapter 4 

Sources of Evidences 
 

A multibiometric system performs recognition based on the evidences obtained from 
multiple sources of biometric information. Depending on the nature of sources, multi-
biometric systems can be classified into six categories [54]:   multi-sensor, multi-algorithm, 
multi-instance, multi-sample, multimodal, and hybrid. In this chapter we discuss all six 
scenarios. Table 4.1 below illustrates the five multibiometric categories by the simple case of 
using 2 of something.                     

 

Table 4.1: Comparison between the different multibiometric systems (categorized on the 
basis of sources of evidence) [58]. 

aException: It is possible that two samples from separate sensors are processed by using 
separate “feature extraction” algorithms, and  then through a common comparison 
algorithm, making this “1.5 algorithms”, or two completely different algorithms. 

bException case may be using two individual sensors each capturing one instance.  

cException: a multimodal system with a single sensor used to capture two different 
modalities(e. g, a high resolution image used to extract face and iris). 
 

4.1 Multi-sensor Systems 

In multi-sensor systems a single biometric trait is captured using multiple sensors in order to 
extract diverse information.  For example, Chen et al. [8] investigate multi sensor face 
recognition system employing visible light camera and infrared camera.  The PCA-based 

Category Modality Algorithm Biometric trait (e.g., fingerprint, iris 
etc) 

Sensor 

Multi-sensor 1(always) 1(usually)a 1(always, and same instance) 2(always) 
Multi-
algorithm 

1(always) 2(always) 1(always) 1(always) 

Multi-instance 1(always) 1(always) 2 instances(subtypes) of 
1 body trait (e. g, left and right index 
finger) 

1(usually)b 

Multi-sample 1(always) 1(always) 2 samples of 1 biometric trait 
(e. g, 2 fingerprints of the same finger) 

1(always) 

Multimodal 2(always) 2(always) 2(always) 2(usually)c 
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recognition using visible light images showed better matching performance than PCA-based 
recognition using Infrared images. They further demonstrate that the integration of 
evidences provided by these two images substantially outperform the systems using either 
of these images. 

Example 4.1 Multi-sensor fingerprint system employing optical and capacitive fingerprint 
sensors 

We discuss the multi-sensor fingerprint system by Marcialis et al. [39] employing optical and 
capacitive fingerprint sensors. Fusion is performed at the match score level where the match 
scores obtained separately from two sensors are combined by score transformation fusion 
rules. Implementing multi-sensor fingerprint verification system demands increase in system 
cost and user co-operation. Therefore, acceptability of such systems depends on the 
improvement in verification accuracy achieved compared to that of a single-sensor system. 
In addition to improvement in performance accuracy, multi-sensor fingerprint verification 
system has other advantages too. A single sensor is not equally suited for all type of 
fingerprints. Hence, use of more than one sensor also increases the coverage of user 
population. Moreover, the difficulty of presenting fake fingers increases when multiple 
sensors are used as multiple sensors might require different fake fingers. This helps in 
prevention of fraudulent attempts.   

Figure 4.1 shows the architecture of multi-sensor fingerprint verification system proposed in 
[39]. In the first step the fingerprint of user is acquired by both the optical and capacitive 
sensors. The acquired images from both the optical and capacitive sensors are  processed to 
extract feature sets in terms of minutiae points. A minutiae based matching algorithm is 
separately applied to both the feature sets to obtain two match scores.  

 

Figure 4.1:  Architecture of the proposed multi-sensor fingerprint verification system [39]. 
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Two different match scores are obtained after applying matching algorithm to the images 
acquired from optical and capacitive sensors. Authors investigate two kinds of score 
transformations for fusion of the obtained scores. In the first fusion rule, the fused score is 
determined as the mean of the two match scores. The second fusion rule, the logistic 
transformation, requires training phase as well to determine certain parameters in order to 
compute the fused score. If the fused score exceeds the threshold set, the identity is 
classified as genuine else it is classified as imposter. 

The result from the experiment performed in [39] is summarized in Table 4.2. Firstly EER is 
computed on training set. Then, FAR and FRR are computed on test set using the EER 
threshold estimated from training set. 

 

 

 

 
 

Table 4.2:  Errors of single and multi-sensor fingerprint verification systems [39]. 

The capacitive sensor performs very worse compared to optical sensor as expected. This is 
because the sensing surface is reduced when a capacitive sensor is used and this results in 
reduced number of minutiae extracted. The results indicate performance improvement after 
fusion. In particular, when the logistic fusion is implemented, the EER reduces from 3.4% (for 
the optical sensor) to 2.3%. Moreover, the results show that the deviation between the 
training set performance and test set performance is reduced by fusion, particularly when 
logistic fusion rule is used , improving the system’s robustness. Despite the difference in 
performances between the optical and capacitive sensors, fusion provides better 
performance than the best individual sensor. This result suggests that the optical and 
capacitive sensors are strongly complementary. Complementarity refers to the capability of 
the sensors of recovering patterns misclassified by the other sensor. 
 

4.2 Multi-algorithm Systems 

Multi-algorithm systems process the same biometric sample using multiple algorithms. They 
can use multiple feature sets (i.e., multiple representations) extracted from the same 
biometric sample or multiple matching schemes operating on a single feature set [54]. These 
systems employ single sensor and hence reduce the cost as well as avoid the need for users 
to interact with multiple sensors. However, multi-algorithm systems require additional 
feature extractor modules or matching modules.  

 EER FAR FRR 

Optical 3.4 3.2 3.6 

Capacitive 18.5 18.2 18.8 

Fusion by Mean 2.9 3.1 2.8 

Fusion by Logistic 2.3 2.4 2.3 
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Example 4.2 Fingerprint verification system combining three minutiae based fingerprint 
matchers  

Jain et al. [31] integrate the evidence obtained from three different minutiae based 
fingerprint matchers in order to improve performance of the proposed fingerprint 
verification system.  Different fingerprint matching algorithms are usually based on different 
representations for a fingerprint and thus provide complementary information. In [31] 
output scores from three different minutiae matchers are integrated using logistic 
transform. The input and enrolled features (minutiae extracted by using minutiae extraction 
algorithm) are matched using one of the three matching algorithms or using a combination 
of these algorithms to obtain a matching score. The three matching algorithms used are 
Hough transform based matching, string distance based matching and dynamic 
programming based matching (see [31] for more on the algorithms). Results from 
experiments conducted using a large fingerprint database reveal the potential of integrating 
information from multiple matchers for performance improvement. The performance 
improvement achieved by integrating all three algorithms was the same as achieved by 
integrating string distance based matching algorithm and dynamic programming based 
matching algorithm. This is because the Hough transform based matching algorithm is 
substantially inferior compared to the other two algorithms and does not provide 
complementary information. Authors point out that integrating two matching algorithms do 
not guarantee improved performance. A poor matching algorithm may not add to overall 
performance improvement with its integration. Factors such as correlation between the 
matching algorithms used, disparity in the efficiencies of those algorithms and the fusion 
technique employed impact the performance that can be achieved with fusion [54]. 

Example 4.3 Gait recognition system combining three gait classifiers based on 
environmental contexts 

Han and Bhanu [17] propose a context-based gait recognition system by probabilistically 
combining different gait classifiers based on different environmental contexts.  This system 
is an example of multi-algorithm system combing different matching modules (classifiers). 
During enrollment phase templates representing individuals are stored (in the gallery set). 
These templates can be acquired under similar environmental condition for biometrics such 
as fingerprint and iris with sufficient discriminating features. However, this approach is not 
appropriate for gait recognition as changes in environmental context (for example, walking 
surface, temperature, carrying objects etc.) can lead to large appearance changes in 
detected human silhouette.  Large gait variation occurring with changes in environmental 
contexts necessitates acquisition of more gallery images from all possible environmental 
contexts for each individual. However, this requirement is unrealistic in practical situations. 
In practice, limited number of gait gallery images are obtained under one or more 
environmental contexts for each individual. A single classifier is not able to reliably recognize 
an individual under different environmental contexts when the gallery images from those 



55 
 

contexts are not available. One classifier could be insensitive to changes in one context 
whereas another classifier could be insensitive to changes in other context. To improve 
recognition performance, it is possible to combine different classifiers for which the 
environmental context of the given probe sample (to be recognized) needs to be detected. 

The basic idea of the proposed context-based recognition system is illustrated in Figure 4.2.  
 

 

Figure 4.2:  Gait recognition by combining context-based classifiers [17]. 

In the initial stage, the acquired context training samples are used in learning of context 
properties in order to construct context detectors.  These context detectors are used to find 
out the context of a given probe gait sample. The context changes between the probe 
sample and gallery samples are determined under the assumption that all gallery samples 
are obtained under similar environmental contexts. One classifier is robust to change in one 
context whereas other classifier is robust to change in some other context. This makes 
different classifiers suitable for recognition under different context changes. Therefore, 
these classifiers are probabilistically combined based on the detected context changes for 
better recognition of a given probe gait. 

Han and Bhanu [17] present a context-based gait recognition system where walking surface 
is the context type (see Figure 4.3). They design a real gate classifier for recognizing probe 
samples having no surface type changes with respect to gallery templates and synthetic gait 
classifier for recognizing probe samples with surface type changes.  Experiments are carried 
out in three scenarios: i) using real classifier, ii) using synthetic classifier and iii) using the 
context-based combined classifier. In the third approach, the two gait classifiers (real and 
synthetic classifiers) are combined based on walking surface. Probabilistic  approach is used 
in combining classifiers. In experiments where the surface type of probe samples is different 
from that of gallery samples, the performance of synthetic classifier is significantly higher 
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than that of the real classifier. In other experiments where the surface type of probe and 
gallery samples is the same, the performance of real classifiers is better. These results 
demonstrate the suitability of the designed real and synthetic classifiers for their desired 
contexts. The combined classifier based on the surface context shows better performance 
than the two individual classifiers in most experiments indicating the advantages of using 
context information in biometric fusion. When using the combined classifier, the context 
information is detected and the classifier takes advantage of the merits in individual 
classifiers. Only one walking surface type is detected and used as context information in the 
proposed system. Authors suggest that further performance improvement can be achieved if 
some more context information such as carrying objects, clothing etc. are detected, 
corresponding classifiers designed and  incorporated into the recognition system.  
 

 

Figure 4.3: Gait recognition by combining context-based classifiers. The context investigated 
in the system is walking surface type [17]. 
 

4.3 Multi-instance Systems 

Multi-instance systems involve fusion of information from multiple instances within the 
same biometric modality. For example, evidence from the left and right irises or the left and 
right index fingers can be combined for the recognition of an individual. Multi-instance 
systems are particularly useful for the individuals whose biometric traits cannot be reliably 
captured due to inherent problems. For example, it might not be possible to acquire 
sufficient features when the skin is very dry. In such cases, combining information obtained 
from fingerprints of multiple fingers of an individual provides with better discriminatory 
information required for recognition. Multi-instance systems generally do not require 
additional sensors and also do not necessitate new feature extraction and matching 
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algorithms. However, in some applications a new sensor arrangement might be required to 
capture various instances simultaneously [54]. Multi-instance systems are necessary in 
applications where the size of database is very huge. Integrated Automated Fingerprint 
Identification System (IAFIS) is a national fingerprint and criminal history system maintained 
by the Federal Bureau of Investigation (FBI) with a huge database [22]. FBI’s IAFIS combines 
evidence from all ten fingers to determine a match in the database. The fingerprints from 
multiple fingers are obtained simultaneously in IAFIS.  

Example 4.4 Iris recognition system combining left and right irises    

Wang et al. [69] discuss a multi-instance iris recognition system where the left and right 
irises of an individual are combined.  Figure 4.4 shows the block diagram of the proposed 
multi-instance iris recognition system. Iris recognition involves preprocessing, feature 
extraction, matching and decision making. During verification, the left and right irises go 
through the pre-processing and feature extraction steps individually.  The features extracted 
for both the left and right irises are matched with their corresponding enrolled templates. 
Now, a score vector (𝑥1, 𝑥2) can be constructed, where 𝑥1 and 𝑥2 are the match scores 
obtained after matching the left and right irises with their respective templates.  The next 
step is fusion at matching score level. Among the classification and combination approach to 
fusion, combination approach is preferred here. In combination approach scores are fused 
to generate a single scalar score which is then compared to the decision threshold for final 
decision. The decision threshold can be adjusted in order to meet requirements under 
different circumstances. Therefore, combination approach is chosen for the higher flexibility 
it provides. Then two matching scores from the two irises are fused using a fusion strategy 
based on minimax probability machine [37] to generate a fused score. When the fused score 
is obtained, decision on whether the individual is genuine or imposter is made based on the 
predefined threshold. 

Experiments are performed on CASIA [6] and UBIRIS [46] iris databases in order to evaluate 
the performance of the proposed multi-instance fusion scheme.  Experiments using single 
instance (either left or right iris) are also carried out. The experimental results for both the 
CASIA and UBIRIS databases show that the performance of multi-instance system is 
significantly better compared to the single-instance system. The EER for the left-iris, right-iris 
and multi-instance iris recognition systems on the CASIA database are 0.47%, 0.53% and 
0.13% respectively. The EER for the left-iris, right-iris and multi-instance iris recognition 
systems on the UBIRIS database are 0.63%, 0.71% and 0.18% respectively. 
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Figure 4.4: Multi-instance fusion block diagram [69]. 

Example 4.5 Fingerprint and eigenfinger-based multi-instance recognition system 

Uhl et al. [64] present a multi-instance fingerprint and eigenfinger-based biometric system. 
Acquisition of multiple instances in serial order results in additional transaction time costs. 
This can be avoided when multiple instances of a single biometrics are acquired from a single 
input source simultaneously.  The proposed system in [64] exploits this advantage and the 
multiple features (minutiae and eigenfinger features) are extracted from a high-resolution 
scan of the entire palm. For fusion, transformation-based approaches at the confidence and 
rank levels are employed.  The combination schemes max, median, min, product and sum 
are used for verification mode and score sum, borda count are used for identification mode. 
From the experiments conducted, it is verified that the multi-instance fusion increases 
performance significantly.  In the case of combining solely eigenfinger or minutiae scores 
(multi-instance intra-feature fusion), sum rule showed the best performance. The total EER 
for combination involving minutiae and eigenfinger are observed to be 0.21% and 1.45% 
respectively when the sum rule is used. They also evaluate the case where cross feature 
combination of all minutiae and eigenfinger scores is performed. This case is the 
heterogeneous multiple-matcher and multiple instance combination of minutiae and 
eigenfinger scores. In this total combination scenario, product rule showed the best 
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performance with the lowest error rates of 0.08% EER, 0.55% zero false match rate (the 
lowest FNMR for zero false matches) and 0.14% zero false non-match rate (the lowest FMR 
for zero false non-matches). Zero false match rate and zero false non-match rate are given 
for the assessment of high-security and high-convenience scenarios, respectively. 
 

4.4 Multi-sample Systems 

Multiple samples of the same biometric trait can be acquired by using a single sensor to 
account for the variations that can occur in a biometric trait or to obtain a more complete 
representation of the underlying trait [53]. For example, different profiles such as the frontal 
profile, left profile and right profile of a face can be fused to address challenges arising from 
variations in facial pose [53]. 

Example 4.6 A multi-sample system using multiple impressions of the same finger 

Jain and Ross [29] describe a mosaicking scheme which constructs a composite fingerprint 
template using multiple impressions of the same finger. This is a multi-sample system where 
fusion is performed at sensor level. Because of the limited area of contact offered by solid-
state fingerprint sensors, they are not capable of providing sufficient information for highly 
reliable user verification. Moreover, the limited overlap between template and query 
impressions results in fewer corresponding points (Figure 4.5). In order to address these 
problems [29] use image mosaicking technique.  [29] discusses some advantages of the 
composite image constructed using the image mosaicking technique. When the templates 
used are the multiple individual impressions (of the same finger), the query image is 
compared to each of the individual template. Because of the small size of individual 
template impression, it is probable that the amount of overlap between the template 
impression and query image is small resulting in a false reject. Use of composite image can 
reduce the false rejects arising from this problem. Moreover, when a composite image is 
used as the template, only a single comparison is required. This reduces the matching time 
considerably.  The composite image also avoids the need to weight the individual templates 
during the matching process. 

 

       a)Template Image   b)Query image 

Figure 4.5:  Limited overlap between the two impressions of the same finger [29]. 
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Example 4.7 Comparative performances of the multi-sample and multi-sensor face 
recognition systems.  

Bowyer et al. [3] compare the performances of face recognition systems obtained using two 
approaches, a multi-sensor approach and a multi-sample approach. The multi-sample 
recognition system combines normal intensity images with three-dimensional or infrared 
images.  The multi-sample recognition system combines multiple normal intensity images.  

The variations in pose, lightening, facial expressions create challenges for face recognition 
systems. Therefore, sufficient accuracy might not be achieved for demanding applications by 
using a single intensity image provided by standard camera. Besides normal intensity images, 
the use of 3-D shape information and infrared images for face recognition have been 
investigated in literature. Some advantages with using 3-D image are that it allows for better 
pose correction and the shape is defined independent of lightening. The major advantage 
with using IR images is that they are relatively unaffected by changes in lightening 
conditions. 

Experiments were performed on an acquired image dataset containing images of same 
persons for each of the three image types. The intensity, IR and 3-D images of a subject for a 
session were all acquired within a period of a few minutes.  This ensured that the images of 
each type were comparable.  A total of 191 subjects participated in one or more image 
acquisition sessions held at weekly intervals over a period of several months. The eigenface 
was used as the recognition algorithm with each image type. 

In the beginning, eigenface recognition was performed using each of the three image types 
individually. The experimental results are presented in two formats: the CMC curve and the 
ROC curve. In case of both the ROC curve and the CMC curve, it was observed that the 
performance using 2-D images was slightly better than using 3-D images. The performance 
was significantly lower while using IR images compared to using 2-D or 3-D images. However, 
the images were acquired in controlled indoor lightening environment which is particularly 
well-suited to normal intensity images. If the images were acquired in outdoor environments 
with highly varying lighting conditions, then IR images could be expected to provide better 
performances than normal intensity images. 

Secondly, fusion of different image types (a multi-sensor approach) was performed at score 
level. Using eigenface approach with the cosine of the Mahalanobis angle [67] as the 
distance metric, the obtained score for a match between two points in the face space range 
between -1 and +1. The scores from each face space are normalized linearly to the same 
range (the range chosen was 0 to 100). The scores are then combined using the weighted 
sum combination method. The weight for the score from a given face space is based on the 
distribution of the top three ranks in that space. 
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 Weight (𝑤) for each face space is computed as follows: 

𝑤 =
𝑠𝑐𝑜𝑟𝑒2 − 𝑠𝑐𝑜𝑟𝑒1
𝑠𝑐𝑜𝑟𝑒3 − 𝑠𝑐𝑜𝑟𝑒1

 …  (4.1) 

𝑠𝑐𝑜𝑟𝑒 𝑘 is the 𝑘𝑡ℎ closest distance from a gallery point to the probe point. It is clear from 
equation (4.1) that greater difference between the first and second ranked matches implies 
higher chances of the top ranked match being correct. The weighted sum rule sums the 
weighted scores for each gallery subject for all three face spaces and selects the gallery 
subject with the smallest sum. 

Experiments were performed to evaluate the performances of multi-sensor systems. It was 
observed from the results that each of the multi-sensor recognition system showed 
improved performance over the single-sensor systems. The results from combining all three 
image-types were slightly better compared to combining any two of image-types. However, 
the difference between performances of two-image type based and three image-type based 
systems was not statistically significant. Authors suggest that using a more challenging 
dataset could possibly detect the performance differences if any. 

The third categories of experiments performed were to evaluate the performances of multi-
sample systems. In the same image acquisition sessions outlined earlier, four different 
intensity images were acquired for each person. The four images were taken with variations 
in lighting conditions and facial expressions. Each person was asked to make to make two 
facial expressions, smile and neutral expression, in each lightening condition. The two 
lighting conditions used were referred to as “LM” and “LS” and the two facial expressions as 
“FA” and “FB”. Therefore, the four image conditions were FALM, FALF, FBLM, and FBLF. The 
same eigenface algorithm that was used for the intensity images in earlier experiments was 
used in this case too. In this experiment two, three or all four images of a person were 
combined. 

In order to understand how the overall score is computed, let us consider the first case when 
a person is represented by two images for the gallery and also by two images for the probe. 
In order to compare one probe person to one gallery person, each of the two probe images 
need to be compared to each of the two gallery images resulting in four match scores. The 
sum of these four match scores is then the overall match score obtained for matching this 
probe person to this gallery person. Likewise, when a person is represented by three images 
for the gallery and also by 3 images for the probe, the overall match score is obtained as the 
sum of nine match scores. When a person is represented by all four images then the overall 
score is a sum of 16 match scores. 

When a person was represented by two images (the FALM and the FALF conditions), the 
rank one recognition rate was 96.1%. When three images (the FALM, FALF, and FBLM 
conditions) were used, the recognition rate was 98.4%. Using all four image conditions, the 
recognition rate reached 100%. 
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We present some interesting issues discussed in [3] while comparing multi-sample versus 
multi-sensor recognition performance. It was observed from the experimental results that 
using four intensity images  acquired at various lightening and facial expression conditions 
achieves the same recognition performance as achieved using three different image-types. 
In both the multi-sensor and multi-sample recognitions the same eigenface algorithm and 
score level fusion were used. In this case, it appears that multi-sample recognition is a better 
choice as it is cheaper and more practical to acquire several intensity images than to acquire 
multiple image-types. However, using multiple images adds improvement in performance 
only if there is some variation between the individual images of the subject.  

Example 4.8 Template selection in multi-sample systems: a case study in fingerprints 

An important issue with multi-sample systems is determining the correct number of samples 
to be acquired from an individual. The samples acquired should represent the variability and 
typicality of an individual. In [66], two methods are proposed to automatically select 
prototype fingerprint templates for a finger from multiple templates stored. The template 
selection problem authors describe involves selecting K templates that best represent the 
variability as well as typicality observed in the given N fingerprint images of a single finger 
(K<N). It is assumed that the value of K is known.  

In the first method proposed in [66], called DEND, K clusters are formed from N fingerprint 
impressions in such a way that impressions within a cluster possess more similarity 
compared to impressions in all other clusters. From each cluster, a representative 
impression that best represents the typicality of the impressions within the cluster is chosen 
resulting in K prototype impressions. It is clear that the template set selected by this 
technique represents the variability observed in the fingerprint impressions. 

The second method, called the MDIST, sorts the fingerprint impressions based on their 
average distance from the other impressions, and then selects K impressions with the 
smallest average distances. Therefore, this method selects templates that exhibit maximum 
similarity with other impressions representing typicality observed in the fingerprint 
impressions. 

The experimental result in [66] demonstrates that a systematic template selection 
procedure results in better performance than random template selection. It was also 
observed that the MDIST method results in better performance than the DEND method. 
MDIST selects a template set that represents typicality in the fingerprint impressions. Hence, 
the probability of the selected templates being matched correctly with the same fingerprint 
impression is high. The DEND method selects templates representing variability and can 
possibly select outliers as well, increasing the probability of false rejects. However, 
combination of both methods is desirable as they select template sets of complementary 
natures. 
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4.5 Multimodal Systems 

Multimodal systems combine two or more different biometric modalities (body traits) for 
establishing identity. Multimodal systems have several advantages. Better recognition rates 
can be achieved combining different modalities. Higher performance improvement can be 
expected by using physically uncorrelated traits (e.g., fingerprint and iris) than using 
correlated traits (e.g., voice and lip movement) [54]. They provide very high protection 
against spoofing as it is quite difficult for an imposter to spoof more than one biometric trait 
simultaneously. Multimodal systems also address the problems of noisy data. Even if one 
input is very noisy, input from other biometric trait might aid in recognition process.  

It can be expected that increasing the number of traits could improve recognition 
performance. However, the curse of dimensionality phenomenon dictates that there is 
bound to the number of attributes that can be used in a pattern classification system 
without degrading the performance. This upper bound arises because of the limited 
availability of training samples. Several practical considerations such as the cost of 
deployment, enrollment time, throughput time, ease of use etc. restrict the number of traits 
that can be used [54]. There are some problems in deploying multimodal systems. Cost and 
complexity of added sensors and the appropriate user interfaces are increased. It is also 
more difficult to control the acquisition environment simultaneously for several traits.  

We have discussed (in Section 3.2) an example of multimodal system by Son et al. [59] 
where face and iris biometrics are fused at feature level. The experimental results reveal 
that this multimodal authentication system performs significantly better than unimodal 
systems. We have also discussed the multimodal system proposed by Jain et al. [30] (in 
Section 3.3.2.3) where face, fingerprint and hand geometry modalities are fused at score-
level using various normalization and fusion techniques. In the following sections, we 
introduce few more examples of multimodal fusion from literature. All the multimodal 
biometric system examples described in this section vary in many terms such as the level of 
fusion, types of modalities being used, and the fusion strategy employed.   

Example 4.9 Multimodal system using fingerprint, face and speech 

Jain et al. [27] investigate a multimodal biometric identification system integrating face 
recognition, fingerprint verification and speaker verification. Preliminary results show that 
identity established by multimodal system is more reliable than the identity established by 
individual systems. The proposed system is targeted for verification applications where 
identity claimed by the user is to be authenticated. There are four main blocks in the 
proposed system: i) acquisition module ii) template database iii) enrollment module and iv) 
verification module. Acquiring of fingerprint images, face images and voice signal of users is 
done by acquisition module. Template database contains all template records of enrolled 
users. Enrollment module performs tasks as user enrollment, user deletion, user update, 
training, etc. The verification module is responsible for authenticating the identity claimed 
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by user. The verification process consists of fingerprint verification, face recognition, speaker 
verification and finally fusion. The fusion process integrates match scores obtained as 
outputs from the fingerprint verification, face recognition and speaker verification systems. 
Minutiae-based fingerprint verification is employed which consists of two steps: i) minutiae 
extraction and ii) minutiae matching [28]. In the scenario of personal identification, face 
recognition refers to static controlled full frontal portrait recognition [7]. Static implies the 
used facial portraits are still images (intensity or range). Controlled here means the type of 
background, lightening conditions, the distance between the acquisition devices and faces, 
etc. are fixed for image acquisition. Face recognition is performed using the eigenface 
approach. In [27] a text dependent speaker recognition system is implemented which uses 
left-to-right hidden Markov model to make a verification [5]. The input to the system is a 
visual of a random combination of four digits (1, 2, 7 and 9) on a video monitor which is to 
be spoken by the user for verification. 

Fusion 

If the outputs of individual systems are similarity (dissimilarity) scores, then fusion can be 
performed by accumulating the confidence associated with each individual decision. Authors 
propose fusion at match score level.    

Let 𝑋1, 𝑋2 and 𝑋3 be the random variables indicating similarity(dissimilarity) between the 
input and template for fingerprint verification, face recognition and speaker recognition 
respectively. Let 𝑝𝑗(𝑋𝑗|𝜔𝑖) (  𝑗 = 1, 2, 3 and 𝑖 = 1, 2) be the class-conditional probability 
density functions of 𝑋1,  𝑋2 and 𝑋3. When 𝑋1,  𝑋2 and 𝑋3 are statistically independent, the 
joint class-conditional probability density function of 𝑋1,  𝑋2 and 𝑋3 can be expressed as: 

𝑝(𝑋1,  𝑋2,  𝑋3|𝜔𝑖) = �𝑝𝑗�𝑋𝑗�𝜔𝑖�,   𝑖 = 1,2.
3

𝑗=1

 

In order to classify the observation based on evidence provided by different sub-systems, 
any one of the various statistical decision theory frameworks can be chosen depending on 
the desired level of accuracy. In [27], the fusion scheme needs to determine a decision 
boundary which satisfies the FAR specification and at the same time minimizes the FRR.  
Neyman-pearson rule [42] is used to establish the decision boundary. Let 𝑅3 be the three 
dimensional space spanned by(𝑋1,𝑋2,𝑋3); 𝑅13 and 𝑅23 denote the 𝜔1-region and 𝜔2-region 
respectively (𝑅3 = 𝑅13 + 𝑅23) and ∈0 denote the FAR set in advance. According to Neyman-
Pearson rule, a given observation 𝑋0 = (𝑋10,𝑋20,𝑋30), is classified as: 

(𝑋10,𝑋20,𝑋30) ∈ �𝜔1,    𝑖𝑓
𝑝1(𝑋10,𝑋20,𝑋30|𝜔1)
𝑝2(𝑋10,𝑋20,𝑋30|𝜔2)

> 𝜆 

𝜔2,   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

where λ is the minimum value that satisfies the following 
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𝜆 =
𝑝1(𝑋1,𝑋2,𝑋3|𝜔1)
𝑝2(𝑋1,𝑋2,𝑋3|𝜔2)

   𝑎𝑛𝑑 

                                                           ∈0= ∫ 𝑝2(𝑋1,𝑋2,𝑋3|𝜔2)𝑑𝑋1𝑑𝑋2𝑅1
𝑑𝑋3. 

Performance of the proposed multimodal system has been evaluated on a small set of data 
acquired in the laboratory. The genuine and imposter distributions are estimated from the 
training data. After the distributions are estimated, the decision boundary satisfying a pre-
specified FAR is derived using the Neyman-Pearson rule. The ROC curves of the individual 
systems and the multimodal system are shown in Figure 4.6 in which the authentic 
acceptance rate (the percentage of genuine individuals being accepted, i.e., 1-FRR) is plotted 
against FAR. These graphs clearly demonstrate that the multimodal system showed better 
verification performance than the individual systems.  

 

Figure 4.6:  Receiver operating curves using Neyman-Pearson rule [27]. 

Example 4.10 Multimodal system employing feature level fusion of face and palmprint 
traits  

Yao et al. [70] present a multimodal biometric system combining face and palmprint 
features. They present a novel approach to single sample biometrics recognition problem 
where discriminant features are extracted using Gabor based image processing and PCA 
techniques and then feature level fusion is performed designing a distance based 
separability weighting strategy. Single sample biometrics recognition problem, an extreme 
case of small sample size problem, is a challenge in Biometric Authentication. It might lead 
to bad recognition performance. Authors try to address this problem by implementing fusion 
strategy taking into account two important considerations. First consideration is selecting 
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appropriate biometrics having supplementary properties. In [70], face trait, a representative 
of contactless biometrics and palmprint trait, a representative of contact biometrics, are 
chosen for fusion. The second consideration is designing appropriate fusion method. In the 
case of single sample biometrics recognition, availability of rich information for fusion is very 
important. Therefore, fusion is performed at feature level since the feature vectors contain 
very rich information about the input pattern. 

 

Figure 4.7:  The single sample biometrics recognition procedure [70]. 

Figure 4.7 shows the entire recognition procedure adopted in [70]. Both Gabor and PCA 
transforms are used to extract the discriminant features. Gabor transform is useful for 
analyzing gradually changing data such as face, palmprint and iris images. Gabor filters can 
provide accurate time-frequency location and robustness against varying brightness and 
contrast of images [35]. In [70], circular Gabor filter is used. Let 𝑋𝑓𝑎𝑐𝑒 and 𝑋𝑝𝑎𝑙𝑚 represent 
the face and palmrint image sample sets respectively. Gabor transform is performed on each 
sample in 𝑋𝑓𝑎𝑐𝑒  and 𝑋𝑝𝑎𝑙𝑚  to obtain the transformed sample sets 𝑋𝑔𝑎𝑏𝑜𝑟−𝑓𝑎𝑐𝑒 and  
𝑋𝑔𝑎𝑏𝑜𝑟−𝑝𝑎𝑙𝑚. In the next step PCA transform is used to extract discriminant features from 
𝑋𝑔𝑎𝑏𝑜𝑟−𝑓𝑎𝑐𝑒 and  𝑋𝑔𝑎𝑏𝑜𝑟−𝑝𝑎𝑙𝑚 to obtain the corresponding face and palmprint discriminant 
feature sets 𝑌𝑓𝑎𝑐𝑒 and 𝑌𝑝𝑎𝑙𝑚. 

Before fusion, feature vector normalization is performed and . Let 𝑦𝑓𝑎𝑐𝑒 represent one 
sample of 𝑌𝑓𝑎𝑐𝑒 . Then, 𝑦𝑓𝑎𝑐𝑒  is normalized to obtain the normalized face feature 
vector 𝑦𝑛𝑜𝑟−𝑓𝑎𝑐𝑒  as follows: 

𝑦𝑛𝑜𝑟−𝑓𝑎𝑐𝑒 = (𝑦𝑓𝑎𝑐𝑒 − 𝜇𝑓𝑎𝑐𝑒) 𝜎𝑓𝑎𝑐𝑒⁄ ,  

where 𝜇𝑓𝑎𝑐𝑒 and 𝜎𝑓𝑎𝑐𝑒 represent the mean value and variance value of training sample set of 
𝑌𝑓𝑎𝑐𝑒 . Similarly, normalized palmprint feature vector 𝑦𝑛𝑜𝑟−𝑝𝑎𝑙𝑚(𝑜𝑓 𝑌𝑝𝑎𝑙𝑚 ) is obtained.  
Weight value is computed using the weighing strategy that is directly linked to the Nearest 
Neighbour (NN) Classifier. NN-classifier finds the class with the least distance to the testing 
sample and assigns the same class label to the testing sample. It is assumed that there are 𝑀 
testing samples in 𝑌𝑓𝑎𝑐𝑒 and 𝑌𝑝𝑎𝑙𝑚. For a testing sample of  𝑌𝑓𝑎𝑐𝑒, say the 𝑗th testing sample 
(𝑗 = 1,2, … ,𝑀), distance vector 𝑑 is obtained using NN classifier where 𝑑 =  [𝑑1,𝑑2, … ,𝑑𝑐], 
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𝑐 is the class number and 𝑑1 < 𝑑2 < ⋯ < 𝑑𝑐 . If 𝑑′ denotes the mean of 𝑑, then distance-
based separability value of face features, 𝑠𝑓𝑎𝑐𝑒, for the particular testing sample is obtained 
as 𝑠𝑓𝑎𝑐𝑒 = 𝑑′ 𝑑1⁄ . Similarly, for the corresponding testing sample of  𝑌𝑝𝑎𝑙𝑚 , the separability 
value 𝑠𝑝𝑎𝑙𝑚 of palmprint features is calculated. Let 𝑤𝑗 denote the ratio of separability values 
of palmprint and face feature vectors, that is, 𝑤𝑗 = 𝑠𝑝𝑎𝑙𝑚 𝑠𝑓𝑎𝑐𝑒⁄  . Weighing values 
[𝑤1,𝑤2, … ,𝑤𝑀] are computed for all 𝑀 testing samples and the average weighing value 𝑤′ is 
obtained. Weight w′ is assigned to all palmprint feature vectors and weight 1 is assigned to 
all face feature vectors. Now, the face feature vector 𝑦𝑛𝑜𝑟−𝑓𝑎𝑐𝑒 and its corresponding 
palmprint feature vector 𝑦𝑛𝑜𝑟−𝑝𝑎𝑙𝑚 are serially combined as:  

𝑦𝑓𝑢𝑠𝑒 = �𝑦𝑛𝑜𝑟−𝑓𝑎𝑐𝑒 ,  𝑤′.𝑦𝑛𝑜𝑟−𝑝𝑎𝑙𝑚�. 

Finally, a fused sample set 𝑌𝑓𝑢𝑠𝑒 is obtained. Then, the NN-classifier is used to classify 𝑌𝑓𝑢𝑠𝑒 . 
The distance 𝑑(. ) between a training sample 𝑦1 and a test sample 𝑦2 is obtained as, 

𝑑(𝑦1,𝑦2) = ‖𝑦1 − 𝑦2‖2 , where ‖ . ‖2  denotes the Eucledian distance. 

A large public face image database, the AR database [40] and a palmprint database provided 
by the Hong Kong Polytechnic University [35] were used to perform experiments.  
 

 

Table 4.3: Average recognition rates using AR and palmprint databases [70]. 

Table 4.3 shows the average recognition rates obtained from the experiments using all the 
approaches.  From the experimental results it is obvious that multimodal fusion of face and 
palmprint biometrics outperformed single mode recognition indicating suitability of face and 
palmprint fusion. Discriminant feature extraction based on Gabor and PCA transforms lead 
to significant performance improvement compared to using only PCA approach. 
Implementation of the proposed distance-based separability weighing strategy further 
improved the recognition performance. 

Compared 
methods 

  Average 
recognition 
rates (%) 

Undo Gabor 
transform 

Single modal recognition AR-PCA 43.25 
Palm-PCA 56.4 

Multimodal 
fusion(weighing or not) 

ARPalm-PCA-
directfusion 

77.07 

ARPalm-PCA-
weightfusion 

80.49 

Do Gabor 
transform 

Single modal recognition AR-GaborPCA 52.57 
Palm-GaborPCA 62.72 

Multimodal 
fusion(weighing or not) 

ARPalm-GaborPCA-
directfusion 

87.84 

ARPalm-GaborPCA-
weightfusion 

90.73 



68 
 

Example 4.11 BioID: A multimodal biometric identification system 

Implementing Biometric identification can ensure much higher security in systems 
controlling access to banking transactions, computer networks, and secured locations. For 
instance, biometric features such as fingerprint, face can be stored on a microchip in a 
secured card like a credit card. In systems depending on passwords or PIN numbers, 
imposter can steal these information and misuse the system without being detected. In a 
system implementing biometric identification even if the card in stolen, the system will 
reject access as the imposter’s features will not match the features stored in the card.   

We describe BioID which is a multimodal identification system combining three biometric 
traits: face, voice and lip movement [14]. BioID, developed by Dialog Communication 
Systems (DCS AG), is commercially available since 1998.  This system employing three 
modalities achieves much higher accuracy than a unimodal system. Use of lip movement, 
which is a dynamic feature, makes BioID more secure against frauds than those systems 
which use only static features such as fingerprint.   

 

Figure 4.8:  BioID’s main functional units [14]. 

Figure 4.8 shows the four major functional units of BioIDs: Acquisition, Preprocessing, 
Classifying, and Decision Making units. The input acquired by the system is a recorded 
sample of a person speaking a word. The one-second sample consists of a video-sequence 
and an audio signal. From the video sequence, the preprocessing module extracts optical 
features for face and lip movement. In order to extract those features, the preprocessing 
module needs to determine the exact face location first. After the face boundaries are 
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detected, the eyes are located and then further processing for feature extraction takes 
place. Acoustic preprocessing module is responsible for extracting audio feature vector. 

We discuss the vector quantifier [2] used in BioID as a classifier. Let us assume there are 
𝑑 (here 𝑑 = 3) features in which the classes distinguish themselves most. The first step to 
classification using vector classifier involves crossplotting the training data in a 𝑑 -
dimensional feature space (resulting in black points in Figure 4.9). This feature space is then 
segmented (dashed lines in Figure 4.9) in such a way that the resulting point clouds from 
different classes are best separated from each other. Each segment thus formed is assigned 
an alphabet symbol label (A, B and C in Figure 4.9). The next step is vector quantization in 
which a point is crossplotted in the 𝑑-dimensional feature set. The point is assigned the 
alphabet corresponding to the nearest segment based on calculation of Euclidean distance. 

 

Figure 4.9:  Sketch of a vector quantifier. A sequence of green, blue, blue, blue, red and red 
points is vector quantified by assigning alphabet corresponding to nearest segment resulting 
in the symbol sequence A, C, C, C, B and B [2]. 

During enrollment phase, biometric templates are generated for each feature for each 
person and stored. Classification process involves comparing the recorded input pattern with 
the corresponding stored templates. Synergetic computer is used to classify optical features 
and a vector quantifier is used to classify audio features. The synergetic computer is a set of 
algorithms that simulate synergetic phenomena in theoretical physics [15]. 

The classification results are combined into a final result selecting an appropriate strategy 
depending on the desired level of security. Figure 4.10 shows the available options for 
fusion. For normal operations, a two-out-of-three strategy is chosen in which classification 
results from two out of three traits need to agree to an enrolled class without falling below 
the threshold values set in advance. When higher security is desired three-out-of three 
strategy can be used which requires agreement of all three traits. This strategy helps achieve 
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very low FAR but FRR increases as well. The other option is finding fused result through 
weighted summation of all three classification results. It is possible to assign different 
weights to individual traits. 

 

Figure 4.10: Sensor fusion options [14]. 

BioID functions in identification or verification mode depending on requirement. In 
identification mode, the system identifies a person through his biometric traits. In 
verification mode, a person gives his name or a number, which is then verified by the system 
using biometric traits. A test was conducted involving 150 persons for three months. The 
results showed that with BioID implementation, FAR were reduced significantly below 1 
percent, depending on the desired security level. For higher security requirements, very low 
FAR has to be achieved and in doing so FRR increases. Therefore, an appropriate FRR needs 
to be determined without causing the FAR to increase undesirably. 
 

4.6 Hybrid Systems 

Hybrid term is used to refer to systems that integrate one or more of the five scenarios 
discussed above. Hybrid systems, if properly designed, can achieve the highest recognition 
performance in biometric systems. However, they are also the most complex systems, 
requiring higher storage, processing and architectural complexity. 

The National Institute of Standards and Technology - Biometric Score Set Release 1(NIST- 
BSSR1) comprises of a set of output similarity scores from two different face recognition 
matchers operating on the frontal faces (multi-algorithm) and a fingerprint matcher 
operating on left and right index live-scan fingerprints (multi-instance) [61]. The release 
includes similarity scores from comparisons of faces and fingerprints of the same individuals. 
The release is intended to facilitate interested parties to investigate problems in the fields of 
biometrics. The data is particularly suitable for study of score level fusion in different 
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scenarios such as multimodal, multi-algorithm, multi-sample or a combination of two or 
more of these scenarios resulting in a hybrid scenario. 

Example 4.12 A multi-sample and multimodal (hybrid) biometric system 

We discuss a hybrid multibiometric system proposed by Thian et al. [43] where fusion of 
multiple samples obtained from multiple modalities is performed at score level.  This system 
is both multimodal and multi-sample in its design. The basic idea of the proposed system is 
depicted in Figure 4.11. 

 

Figure 4.11: Multi-sample and multimodal (hybrid) biometric model [43]. 

In Figure 4.11, 𝑥(𝑗) is the 𝑗𝑡ℎ biometric modality and  𝑗 = 1,2, … ,𝑀. 𝑦(𝑖, 𝑗) is the match 
score obtained from the classifier for the 𝑖𝑡ℎ sample of the 𝑗𝑡ℎ biometric modality and  
𝑖 = 1,2, … ,𝑁. The supervisor here combines scores from multiple classifiers and provides 
the final match score for decision making. 

For conducting experiments, a publicly available LSIIT database [43] comprising of two 
modalities voice and face was chosen. The database consisted of 30 persons. Even with the 
small database of 30 persons perfect verification was achieved. With the increase in number 
of probe samples the accuracy improved faster for face modality than for speech modality. 
For experiments, 1 to 5 samples of each modality were taken. Improvement in accuracy was 
faster for samples of different modalities than for multiple samples of the same modality. 
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Chapter 5 

Conclusion 
 

Reliable and efficient identity management system has become very important in this highly 
interconnected world with increased concerns of identity fraud and national security. 
Biometric systems provide a greater degree of security and user convenience than the 
traditional authentication methods. Moreover, biometric systems also provide negative 
recognition and non-repudiation that traditional systems don’t. Multibiometric systems, if 
properly designed, are able to increase the matching accuracy of a recognition system, 
increase population coverage and deter spoofing attacks.  
Various types of information can be combined. In this thesis, we have discussed the various 
levels of fusion in multibiometric systems. Sensor level fusion combines the information at 
raw level. Although raw data is the richest in information, it is highly probable that raw data 
is contaminated by noise. Feature level fusion involves augmenting the feature sets 
originating from multiple information sources (from multiple feature extractors). Compared 
to the raw data, noise is suppressed in feature-level representation. Moreover, feature 
transformation algorithms can be applied to the augmented feature sets which enable the 
detection/removal of correlated feature values improving recognition accuracy.  Match 
scores contain the richest information after the raw data and feature sets obtained from raw 
data. Moreover, it is easy to access and combine the match scores from different biometric 
matchers. Therefore, fusion at score level is the most common approach in multibiometric 
systems. Three main categories of score level fusion, namely, density-based, transformation-
based and classifer-based schemes are studied in this thesis. Density-based schemes require 
a large number of training samples in order to estimate the joint conditional densities. When 
the available training data is limited, it is appropriate to use transformation-based schemes. 
Match scores generated from different matchers might not be homogeneous. We have 
discussed various normalization schemes which transform the match scores into a 
comparable domain. After the match scores are normalized, different classifier combination 
rules such as sum, max and min can be used for fusion.  In classifier-based fusion, the vector 
of match scores generated by multiple matchers is input to the trained classifier. The trained 
classifier classifies the vector into one of the two classes, genuine or imposter.  In rank level 
fusion each classifier associates a rank with every enrolled identity. Hence, rank level fusion 
is appropriate for systems operating in the identification mode. In decision level fusion, 
information is combined at abstract level. However, decision level fusion is the only viable 
approach for combining outputs from the commercial matchers which provide only the final 
recognition result. 
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Depending on how the multiple sources of evidence are obtained, multibiometric systems 
are categorized into: multi-sensor systems, multi-algorithm systems, multi-instance systems, 
multi-sample systems, multimodal systems and hybrid systems. It is very difficult to 
determine the best suited sources of biometric information for a specific application in order 
to achieve the best matching performance. During system design, factors such as cost, 
system speed and throughput, robustness, acceptability, ease of use, environmental 
flexibility, scalability, etc. have to be considered and tradeoffs must be made [54]. All these 
factors must be considered while selecting the sources of biometric information and a 
particular fusion strategy. 

An important future addition to this work can be the study of fusion incorporating ancillary 
information. The input to fusion module consists of raw images, feature vectors, match 
scores, ranks or identity decisions provided by the individual biometric matchers. In addition, 
ancillary information may be available to some applications which can be utilized for 
decision making. Intrinsic ancillary information (e. g, quality of acquired biometric sample) is 
derived from the same sample used for verifying or establishing identity of the user. Extrinsic 
information such as gender, ethnicity, height or weight is not derived from the acquired 
biometric sample of the user. Ancillary information can be useful in different ways for 
recognition. The challenges associated with incorporating ancillary information in 
multibiometric systems can be studied.  
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