
An API to Wi-Fi Direct Using Reactive
Building Blocks

Erlend Bjerke Gabrielsen

Master of Telematics - Communication Networks and Networked

Supervisor: Peter Herrmann, ITEM
Co-supervisor: Frank Kraemer, ITEM

Harald Viste, Pixavi

Department of Telematics

Submission date: June 2012

Norwegian University of Science and Technology

Problem Description

Name of student: Erlend Bjerke Gabrielsen

Wi-Fi Direct is a networking technology supported by an increasing number of

devices. It can be used to establish ad-hoc, peer-to-peer communication between

devices without other networking infrastructure. In this master thesis, Arctis

building blocks should be developed that support Wi-Fi Direct. The blocks should

be designed so that applications using Wi-Fi Direct can be created easier, and

without detailed knowledge of the particularities of these technologies. Different

solutions should be discussed, and the effectiveness of the building blocks and the

effect on application development should be shown by one or more examples.

Assignment given: 23.01.2012

Supervisor: Peter Herrmann, Professor, ITEM

Co-supervisor: Frank Alexander Kraemer, Ph.D., ITEM

Abstract

Implementing unfamiliar functionalities in smartphone applications can be a dif-

ficult and a tedious task. Owing to the fact that the Application Programming

Interfaces (APIs) do not have a formal way of representing the sequence of events

may be one reason. This thesis describes the development process of various Arc-

tis building blocks based on Android’s API of Wi-Fi Direct. The objective of

these blocks was to simplify the implementation of Wi-Fi Direct by confining a

predictable sequence of events.

An Android application was developed in order to test the functionalities, and to

validate the prospects of portability for the various building blocks. The work

resulted in a construction of three main building blocks, where each of them is

responsible for a Wi-Fi Direct related function. Developers will be able to seam-

lessly utilize the Wi-Fi Direct functionality by combining and implementing these

building blocks into their own applications.

i

ABSTRACT

ii

Sammendrag

Implementasjon av ukjente funksjonaliteter i smarttelefonapplikasjoner kan være

vanskelig og tidkrevende. En av grunnene til dette kan være at programmerings-

grensesnitt ikke har noen formell m̊ate å representere rekkefølgen av begivenheter

p̊a. Denne hovedoppgaven beskriver utviklingsprosessen av forskjellige Arctis-

byggeklosser basert p̊a Androids programmeringsgrensesnitt av Wi-Fi Direct. Målet

med hovedoppgaven var å enkeliggjøre implementasjonen av Wi-Fi Direct ved å

begrense rekkefølgen av begivenheter, slik at det blir mer forutsigbart.

En Android applikasjon ble utviklet slik at funksjonalitetene kunne testes ut, i

tillegg til å kunne validere mulighetene for å flytte byggeklossene fra et sted til

et annet. Arbeidet resulterte i konstruering av tre hovedbyggeklosser, hvor hver

kloss er ansvarlig for sin Wi-Fi Direct relaterte funksjon. Ved å kombinere og

implementere disse byggeklossene inn i deres egene applikasjoner, vil utviklere ha

muligheten til å enkelt utnytte funksjonaliteten til Wi-Fi Direct.

iii

SAMMENDRAG

iv

Preface

This thesis documents the work I have done as part of the master theses at Nor-

wegian University of Science and Technology (NTNU). The work was done at

Faculty of Information Technology, Mathematics and Electrical Engineering under

the Department of Telematics.

I would like to thank my supervisor Peter Herrmann, and my co-supervisor Frank

Alexander Kraemer for the guidance during the semester, and for showing initia-

tive and interest in my work. In addition to my supervisors, I had support from a

commercial actor. I would like to thank the employees at Pixavi for the guidance

with establishing specific use-cases in order to have a foundation for modeling the

Arctis blocks.

Erlend Bjerke Gabrielsen

June 2012

v

PREFACE

vi

Contents

1 Introduction 1

1.1 Simplicity vs. functionality . 2

1.2 Investigating the API . 2

2 Background 5

2.1 Wi-Fi . 5

2.2 Wi-Fi Direct . 6

2.2.1 Security . 6

2.2.2 Group owner . 8

2.2.3 Key mechanisms . 8

2.2.4 Optional capabilities . 9

2.2.5 Power management . 11

2.3 Wi-Fi Direct in Android . 13

2.3.1 API specific components . 13

2.3.2 The Wi-Fi Direct API . 15

3 Methodology 25

3.1 The choice of method . 25

3.2 The development process . 26

3.3 Connection issue . 28

3.4 Development environment . 29

4 System Implementation Design 31

4.1 Implementation alternatives . 31

4.2 Design choices . 33

5 API Building Blocks 41

5.1 The Wifi Direct Receive block . 42

vii

CONTENTS

5.1.1 Description of the Wifi Direct Receive block 43

5.1.2 Analysis of the Wifi Direct Receive block 44

5.2 The Wifi Direct Discover Peers block 44

5.2.1 Description of the Wifi Direct Discover Peers block 45

5.2.2 Analysis of the Wifi Discover Peers block 47

5.3 The Wifi Direct Connect block . 48

5.3.1 Description of the Wifi Direct Connect block 48

5.3.2 Analysis of the Wifi Direct Connect block 52

5.4 Combining the API blocks . 52

5.4.1 Description of the Wifi Direct Service block 57

5.4.2 Analysis of the Wifi Direct Service block 58

5.4.3 The Wifi Direct Responder and the Wifi Direct Initiator . . 59

5.5 Evolvement of the Wifi Direct Service block 60

5.5.1 The Wifi Direct 1 block . 61

5.5.2 The Wifi Direct 3 block . 63

5.5.3 The Wifi Direct 4 block . 64

6 Example Application 67

6.1 Application building blocks . 68

6.1.1 The Wifi Direct Application Overview block 68

7 Discussion 79

7.1 Findings . 79

7.2 Limitations . 81

7.3 Further Work . 81

8 Conclusion 83

References 85

viii

List of Figures

1.1 The ESM of the Discover Peers block 3

1.2 A snippet of a block that encapsulates the Discover Peers block . . 4

2.1 Examples of the PIN method’s sequence 7

2.2 P2P group configurations . 9

2.3 Example of a smartphone with a concurrent connection 10

2.4 The operation of the OPS protocol 11

2.5 Example of a NoA operation . 12

2.6 A graph based on the distribution of Google Play’s users 13

2.7 A UML class diagram of the API of Wi-Fi Direct 16

2.8 A state machine of the initialization process 18

2.9 A state machine of the discovery process 19

2.10 A state machine of the connection process 21

2.11 A state machine of the disconnection process 22

3.1 The waterfall model . 26

3.2 The iterative model . 26

3.3 An overview of the development process 27

4.1 Illustration of the system . 32

4.2 An informal sequence diagram which illustrates the media stream . 33

4.3 Example with a list of available peers 36

4.4 An informal sequence diagram showing an example of the 38

4.5 An informal sequence diagram showing the discovery and 39

5.1 The internal structure of the Wifi Direct Receive block 42

5.2 The ESM of the Wifi Direct Receive block 44

5.3 The left side of the Wifi Direct Discover Peers block 45

ix

LIST OF FIGURES

5.4 The right side of the Wifi Direct Discover Peers block 46

5.5 The internal structure of the Discover Peers block 47

5.6 The ESM of the Wifi Discover Peers block 47

5.7 The left side of the Wifi Direct Connect block 49

5.8 The right side of the Wifi Direct Connect block 50

5.9 The internal structure of the Connect, Cancel Connect and 51

5.10 The ESM of the Wifi Direct Connect block 53

5.11 The left side of the Wifi Direct Service block 54

5.12 The middle part of the Wifi Direct Service block 55

5.13 The right side of the Wifi Direct Service block 56

5.14 The ESM of the Wifi Direct Service block 58

5.15 The Wifi Direct Responder block 60

5.16 The Wifi Direct Initiator block . 61

5.17 A snippet of some of the Wifi Direct 1 block’s input pins 62

5.18 A snippet of the Wifi Direct 1 block 63

5.19 A snippet of the Wifi Direct 1 block 64

5.20 A snippet of the Wifi Direct 3 block’s input pins 65

5.21 A snippet of the Wifi Direct 4 block 66

6.1 The Wifi Direct System block . 68

6.2 The left side of the Wifi Direct Application Overview block 69

6.3 The middle part of the Wifi Direct Application Overview block . . 70

6.4 The right side of the Wifi Direct Application Overview block 71

6.5 The application is initialized . 72

6.6 The discovery initiation process with two possible outcomes 73

6.7 A connection request is received . 74

6.8 The devices are connected . 75

6.9 Group information is displayed on the UI 76

6.10 The Open Camera button has been pushed on the group owner . . 77

7.1 Example of an ANR dialog . 80

x

List of Tables

2.1 The request methods specified by the API 17

xi

LIST OF TABLES

xii

Acronyms

ANR Application Not Responding

AP Access Point

API Application Programming Interface

ESM External State Machine

GUI Graphical User Interface

HD High-Definition

HDMI High-Definition Multimedia Interface

IEEE Institute of Electrical and Electronics Engineers

LAN Local Area Network

LED Light-Emitting Diode

MAC Media Access Control

MDE Model-Driven Engineering

NFC Near Field Communication

NoA Notice of Absence

OMG Object Management Group

OPS Opportunistic Power Save

P2P Peer-to-Peer

xiii

ACRONYMS

PBC Push Button Configuration

PIN Personal Identification Number

QoS Quality of Service

SSID Service Set Identifier

SDK Software Development Kit

SDL Specification and Description Language

TCP Transmission Control Protocol

UI User Interface

UML Unified Modeling Language

URI Uniform Resource Identifier

USB Universal Serial Bus

WECA Wireless Ethernet Compatibility Alliance

WFA Wi-Fi Alliance

WLAN Wireless Local Area Network

WPAN Wireless Personal Area Network

WPS Wi-Fi Protected Setup

xiv

Chapter 1
Introduction

Android provides several APIs to facilitate interaction between software compo-

nents and the operating system. Each API contains a set of functions that together

form its functionality.

Some of these APIs contains time-consuming functions that can take an arbitrar-

ily time to run, which must be executed simultaneously with other tasks. Using

them is known as asynchronous programming and is essential in Android develop-

ment where reactiveness is a requirement. Without asynchronous programming,

only one task can be executed at once, resulting in the application to be blocked

until the current task is finished. However, asynchronous APIs are complicated.

The sequence of executions and the awareness of the application’s state during the

reception of messages are important factors developers need to take into consider-

ation when using such APIs. Modeling the application’s behavior should therefore

be a crucial part of the development.

By dividing an API into different generic templates based on predefined use-cases,

we wanted to find out if an implementation of the API’s functions could be made

easier to achieve. Hence, with the assistance of Arctis Software Development

Kit (SDK) we constructed building blocks to model such templates based on the

android.net.wifi.p2p API. For simplicity, these building blocks will be referred to as

API blocks and the API will be referred to as the Wi-Fi Direct API henceforward

in this thesis.

This API provides the possibility to crate Peer-to-Peer (P2P) connections using

Wi-Fi Direct (see Sect. 2.2 for more information of Wi-Fi Direct). It includes the

following properties of interest:

1

CHAPTER 1. INTRODUCTION

• The API is asynchronous, which makes it quite complex and more dependable

on model specifications.

• The Wi-Fi Direct technology is novel and most developers are therefore un-

acquainted with this particular API.

• The API includes a variety of potential use-cases.

1.1 Simplicity vs. functionality

Even though individual functions within an API are well documented, they can

still be misinterpreted. Developers could for instance entirely understand a func-

tion’s property, but not how it is supposed to perform together with other functions

to form a specific service. Hence, by implementing functionalities only based on

an API specification requires multiple trials and errors before a successful imple-

mentation is accomplished. This is because the Java compiler doesn’t specify the

sequence of API operations, and it is left to developers to decide this. However,

if they rather implement building blocks based on use-cases from the API, the

complexity of adapting it is drastically reduced resulting in much time saved.

There is a tradeoff between an API building block’s functionality and the simplicity

of implementing it. If a building block encapsulates too much of an API’s func-

tioning into one sequence of events, it will be fairly simple to use it. However, the

variety of events is constricted to meet the building block’s logical design. Hence,

the block is only useful if developers seek the exact same sequence of events. On

the other hand, if the block does not contain sufficient sequential logic there is no

gained simplicity. This is because the lack of restrictions increases the probability

of design flaws.

1.2 Investigating the API

The difficulty is to obtain a suitable amount of functionality for a particular API

building block. By studying the API, we realized that some events are expected

to happen in one particular sequence. Even though this sequence is specified by

the documentation, constraints to follow it are not established by the API.

By for instance examining the WifiP2pManager class in the Wi-Fi Direct API [1],

there is a request method named discoverPeers (see Sect. 2.3.2 for more details

on request methods). The documentation of this method reveals the following [1].

«The function call immediately returns after sending a discovery request to the

2

CHAPTER 1. INTRODUCTION

framework. The application is notified of a success or failure to initiate discovery

through listener callbacks onSuccess() or onFailure(int).» This means that the after

the discoverPeers method has been executed, the application should expect either

an onSuccess or an onFailure callback to be triggered. This behavior is reflected

in Fig. 1.1, where a building block named Discover Peers puts a constrain to the

sequence. See Fig. 5.5 in Sect. 5.2.1 for the internal structure of this block. The

block is initiated by the start pin being triggered. When the block is in state

active, it will execute the discoverPeers method and wait for an onSuccess or an

onFailure to be triggered. When this happens, the corresponding output pin is

triggered.

Figure 1.1: The ESM of the Discover Peers block

This simple External State Machine (ESM) will together with Fig. 5.5 enhance the

understanding of the expected sequence of events. The reason for this is that a writ-

ten documentation can more easily suffer from being misinterpreted than graphical

illustrations. The documentation of the discoverPeers method carries on by stating

the following [1]. «Register for WIFI P2P PEERS CHANGED ACTION intent

to determine when the framework notifies of a change as peers are discovered.»
The application must therefore be ready to receive an intent from the framework

if the onSuccess callback was triggered. See Sect. 2.3.1 for a brief description on

intents.

By encapsulating the Discover Peers block in another block, additional behavior

can be added. This is shown in Fig. 1.2. First, a broadcast receiver is regis-

tered in the registerBroadcastReceiver operation. This broadcast receiver have

the WIFI P2P PEERS CHANGED ACTION intent action in its intent filter. In

the initDiscoverPeers operation, an instance of the DiscoverPeersInfo class is re-

turned. This class includes two public variables of the data types Channel and

WifiP2pManager. See Sect. 2.3.1 for a short explanation on broadcast receivers.

In order to be in consistence with the documentation, if the onSuccess pin is trig-

gered at the Discover Peers block, an event identified as WIFI P2P PEERS CHA-

3

CHAPTER 1. INTRODUCTION

Figure 1.2: A snippet of a block that encapsulates the Discover Peers block to add
behavior

NGED ACTION will cause the outer block to wait for the broadcast intent with

the same name to be received from the Android framework.

Figure 1.2 also shows that some additional behavior is added to the block sub-

sequent to the WIFI P2P PEERS CHANGED ACTION event. This is in agree-

ment with the following statement from the documentation of the discoverPeers

method [1]. «Upon receiving a WIFI P2P PEERS CHANGED ACTION intent,

an application can request for the list of peers using requestPeers(WifiP2pManager-

.Channel, WifiP2pManager.PeerListListener).» Therefore, after the event has been

triggered, the previously registered broadcast receiver is unregistered in the unreg-

isterBroadcastReceiver operation and the current list of peer devices is requested

in the requestPeers operation. This method has a listener callback that is triggered

when the requested list is available. The application should therefore expect this

to happen. This is shown in Fig. 1.2 by the ON PEERS AVAILABLE event.

4

Chapter 2
Background

This chapter provides an introduction to the technologies and concepts that is rel-

evant for this thesis. Wi-Fi Direct is a new technology and is therefore thoroughly

elaborated, both individually and together with Android. It is assumed that the

reader has a basic knowledge of the Android platform and the Arctis framework.

However, some Android specific components that are directly related to Android’s

Wi-Fi Direct API will be elaborated.

2.1 Wi-Fi

Wi-Fi is a marketing brand for products that are based on the IEEE 802.11 working

group and is often mistakenly referred to as wireless fidelity [2]. Wi-Fi provides

wireless access to LANs by using radio frequency as the transport mean. The

marketing success of the Wi-Fi brand is tremendous and roughly ten per cent of

all people in the world use Wi-Fi for Internet connectivity [3].

When the 802.11 standard was introduced by IEEE, it was interpreted by the var-

ious manufactures in different ways [2]. This led to a variety of 802.11 compatible

devices which did not interoperate with each other. To prevent this expansion of

incompatible wireless devices among the different vendors, a group called Wireless

Ethernet Compatibility Alliance (WECA) was formed in August 1999. This group

is currently known as the Wi-Fi Alliance (WFA) after they changed their name

in October 2002. The WFA’s role is to perform various tests for certification of

wireless devices to be Wi-Fi compliant. As a result, the Wi-Fi certified devices are

able to interoperate with each other.

5

CHAPTER 2. BACKGROUND

2.2 Wi-Fi Direct

In October 2010, the WFA introduced a new network technology called Wi-Fi

Direct [4]. It allows for wireless devices to have direct P2P connectivity without

the need of any traditional network infrastructure or Access Point (AP) between

them [3]. It is built upon the well-established Wi-Fi specification, which means

that it belongs to the IEEE 802.11 working group. Wi-Fi Direct support data rates

from all existing IEEE 802.11 protocols except from IEEE 802.11b. This results

in an efficient utilization of the wireless bandwidth.

Because of its similarities with Bluetooth, a common misinterpretation is to relate

this network type to Wireless Personal Area Network (WPAN). But WPAN lies

within the IEEE 802.15 working group’s area and does not comprise Wi-Fi Direct.

Wi-Fi Direct certified devices support connectivity for legacy Wi-Fi equipment,

which means that an ordinary Wi-Fi device can discover and connect to Wi-Fi

Direct groups. A Wi-Fi Direct group is a set of devices that are connected together

via Wi-Fi Direct to form an ad-hoc network (details of group formation is given in

Sect. 2.2.3). The group owner will appear as an ordinary AP for legacy equipment

(see Sect. 2.2.2 for information about the group owner).

2.2.1 Security

Wi-Fi Direct certified devices are using Wi-Fi Protected Setup (WPS) when they

are connecting with each other. WPS is a setup mechanism that let users add

Wi-Fi compatible devices to Wi-Fi networks more seamlessly, and with the same

level of security as with traditional manual Wi-Fi setup procedures. The main

reason for this is to be able to configure Wi-Fi networks without the knowledge of

the underlying technologies or processes involved in the setup procedure [5]. There

are four types of setup methods users can choose to implement [6]:

• The Personal Identification Number (PIN) method.

• The Push Button Configuration (PBC) method.

• The Near Field Communication (NFC) method.

• The Universal Serial Bus (USB) method.

The AP, or the group owner in Wi-Fi Direct is required to offer both the PIN and

the PBC methods, while the client devices must at least offer the PIN method.

The last two methods are optional.

6

CHAPTER 2. BACKGROUND

The PIN method

The reason for having a PIN is to ensure that the right device is added to the

network, and to prevent accidental or malicious attempts of adding unintended

devices [5]. A PIN can be dynamically generated, and distributed to the connecting

client device from the AP. In this way, the PIN will be shown at the connecting

device’s display but is required to be entered at the AP’s User Interface (UI) (see

Fig. 2.1a). Another way is to have a fixed PIN placed on the AP. The fixed PIN

is then required to be entered on the connecting device’s UI (see Fig. 2.1b).

(a) PINs are dynamically generated (b) The fixed PIN’s sequence

Figure 2.1: Examples of the PIN method’s sequence

The PBC method

This method is realized by having an interaction with both the AP and the client

device when users want to add a device to the network. This interaction will

typically be a button being pushed (physical or virtual) at both the AP and the

client device [5]. In the time between these buttons are pushed, there is a possibility

for unintended devices within the range to join the network. This could possibly

result in a vulnerability to the network and should be taken into consideration

when choosing method for the setup procedure.

The NFC and the USB method

In order to employ the NFC method, both the client device and the AP must be

equipped with the NFC technology [6]. By bringing the client device close enough

to be within NFC range of the AP, the authentication can be performed by using

the NFC channel. With the USB method, the client uses a USB flash drive to

transfer the authentication data manually between the client device and the AP.

7

CHAPTER 2. BACKGROUND

2.2.2 Group owner

In every P2P group there is a device that will be in charge. This device is called

the group owner and will act as an AP on behalf of the other group members. This

includes governing the group’s initiation and termination process, in addition to

controlling which devices that are allowed to participate in the group.

All Wi-Fi Direct certified devices must be able to act as a group owner [3]. In

addition, they must be able to negotiate which of the connecting devices that will

become the group owner. Hence, if an automatic group formation takes place, a

negotiation between the connecting devices are performed to determine the device

that will become the group owner. Otherwise, the device that autonomously initi-

ated the P2P group will act as the group owner. A Wi-Fi Direct device can either

have a temporary or persistent connection over a longer period of time. It is the

group owner that decides what kind of connection the group is going to have.

2.2.3 Key mechanisms

There are several key mechanisms specified in the WFA’s P2P specification. Some

of them are mandatory while others are optional [3]:

• Mandatory mechanisms

– Device discovery

– Group formation

– Client discovery

• Optional mechanisms

– Service discovery

– Invitation

Device discovery and group formation

Device discovery is used to detect other Wi-Fi Direct compatible devices within

the reach. When a device is discovered, a connection to the discovered device can

be established. If the target device is already part of a P2P group, a request can be

sent in order to join the particular group. Otherwise, a new group will be formed

automatically when the connection request is initiated.

A group will always be formed irrespective of how many devices that are going

8

CHAPTER 2. BACKGROUND

to be connected to each other. A group can even be formed by a single device

alone. This is convenient if the device is going to provide a specific service (e.g.

internet connectivity) to other devices. In addition, this is required if all the other

devices are legacy equipment. A group can either be formed manually (with a

single device alone) or automatically (when connecting multiple devices). A P2P

group can both have a one-to-one and one-to-many configuration (see Fig. 2.2).

(a) One-to-one configuration (b) One-to-many configuration

Figure 2.2: P2P group configurations. Taken from the WFA [3]

Client discovery and service discovery

In order to find out what kind of devices that are connected to a P2P group, a

client discovery is initiated. A smartphone can for instance inquire other devices

within a group to find out if there exists a TV for displaying an image, or a printer

for a printing request.

Instead of inquiring a specific device in order to perform something, a request for

a specific service could be initiated. This is called service discovery and can be

performed at any time, even prior to establishing a Wi-Fi Direct connection [3].

It is supported by higher layer applications such as UPnP and Bonjour.

2.2.4 Optional capabilities

The WFA’s P2P specification introduces the following optional capabilities within

Wi-Fi Direct [3]:

• Persistent groups

• Concurrent connection

– Multiple groups

– Cross-connection

9

CHAPTER 2. BACKGROUND

• Managed device

Persistent groups

By storing the group information and credentials, persistent groups eliminates the

process of WPS when a group is re-invoked [3]. This means that users don’t need

the additional interaction that comes with WPS, which is useful for devices that

are frequently re-connected. It is the group owner that decides whether the group

should be persistent or not. An example of a situation where persistent groups are

valuable is when a laptop connects with a printer. With a persistent group, the

only requirement is that the laptop is in range of the printer in order to use it.

Concurrent connections

A concurrent Wi-Fi Direct device can be connected to multiple P2P groups or

external networks at the same time. Figure 2.3 shows an example of a concurrent

connection. This figure illustrates a smartphone that is connected to two different

Wi-Fi Direct groups and one external Wi-Fi network at the same time.

Figure 2.3: Example of a smartphone with a concurrent connection

To attain concurrent connections, a distinct Media Access Control (MAC) entity

for each type of connection is needed [3]. This is realized by having multiple

MAC entities on a single device. These entities are either physically or virtually

separated. Thus, it is the number of MAC entities on a device that limits the

number of concurrent connections it can incorporate.

When a device has a connection with an additional external network, it is charac-

terized to have a cross-connection. The device will then be able to provide Internet

connectivity for the other devices within the Wi-Fi Direct group(s) it is a part of.

To achieve this, the device is required to act as the group owner in addition to

10

CHAPTER 2. BACKGROUND

have sufficient MAC entities.

Managed device

An AP may be configured with capabilities to support management of Wi-Fi Direct

devices to protect an enterprise infrastructure network [3]. The AP may monitor

the connected Wi-Fi Direct devices and possibly expel, if out-of-policy behavior

is detected. A Wi-Fi Direct device may implement managed device mechanisms

to assist the AP in managing the Wi-Fi environment. This device will be able to

receive service information from the AP and send useful information back. An AP

can for instance have the option to only authenticate Wi-Fi Direct devices that

has implemented the managed device mechanism.

2.2.5 Power management

A typical Wi-Fi Direct device is portable with a limited battery-lifetime. Hence,

efficient use of power is important in Wi-Fi Direct to avoid draining of the device’s

battery. The WFA’s P2P specification includes power management to minimize

the power consumption regardless of the role or the state of the device within a

P2P group [3]. Irrespective of these power management features, the power con-

sumption depends on the settings and the interactions between the devices. Along

with some adapted legacy power management mechanisms from Wi-Fi, two new

power saving protocols are included in Wi-Fi Direct. These are the Opportunistic

Power Save (OPS) and the Notice of Absence (NoA) [7]. The reason for adding

these protocols is that the group owner behaves differently than the clients, which

results in a power consumption that is significantly higher.

The OPS protocol

As the name implies, OPS is a protocol that opportunistically saves the group

owner’s power by going in sleep mode when all its associated P2P clients are

sleeping [5]. Figure 2.4 shows the OPS protocol’s operation.

Figure 2.4: The operation of the OPS protocol. Taken from Campus-Mur et. al. [7]

11

CHAPTER 2. BACKGROUND

The group owner specifies a limited presence period where the P2P clients are

allowed to transmit. This time period is called the CTWindow and takes place

when a beacon frame is sent from the group owner. If the group owner senses that

a client is active at the end this time period, it will continue to stay awake. On

the other hand, if no clients are active, the group owner will enter sleep mode until

the next beacon frame is sent.

The possibility of entering sleep mode and save power for the group owner is being

reduced as the number of clients in the group increases. This place a limitation

on the total amount of power the OPS protocol is capable of saving in large P2P

groups.

The NoA protocol

In contrast to the OPS protocol, the NoA protocol makes it possible for the group

owner to save power regardless of the clients’ state. Figure 2.5 shows an example

of a NoA operation.

Figure 2.5: Example of a NoA operation. Taken from Campus-Mur et. al. [7]

Four different parameters contribute to schedule the group owner’s absence:

• Start time determines the staring time of the next absence period.

• Duration regulates the duration of a specific absence period.

• Interval controls the time between the start of two consecutive absence pe-

riods.

• Count denotes the number of absence periods within a NoA schedule.

A beacon frame or a probe response frame will contain a NoA schedule. These

frames will either start a new NoA schedule or update the current one. By omitting

the signaling element in these frames, a NoA schedule is cancelled. The clients will

always act in accordance with the latest advertised NoA schedule. To ensure

Quality of Service (QoS), a client can request the group owner to be present at

12

CHAPTER 2. BACKGROUND

certain intervals by a mechanism termed P2P presence request/response handshake.

2.3 Wi-Fi Direct in Android

Wi-Fi Direct is a new technology that has recently made its entry into the smart-

phones. Android 4.0 (Ice Cream Sandwich) was the first Android platform with

built-in Wi-Fi Direct capabilities [8]. The first release of this platform was launched

in October 2011, one year after the WFA’s introduction of Wi-Fi Direct. By May

1, 2012 no more than roughly five per cent of the users who accessed Google Play

operated on a device with an Android 4.0 - 4.0.3 platform [9]. This means that

only a minority of today’s Android users are able to utilize this technology. How-

ever, the reason for this small percentage is the low maturity of the platform, and

the number of Android users with Wi-Fi Direct compatible platforms will certainly

grow in the future. See Fig. 2.6 for a chart of the distribution based on the number

of Android devices accessed Google Play within a 2 weeks period ending on May

1, 2012.

Figure 2.6: A graph based on the distribution of Google Play’s users. Taken from
the Android developer’s guide [9]

2.3.1 API specific components

Intents are asynchronous messages that are sent to announce when some specific

operations should be performed [10]. This could for instance be to initiate the

web browser to open a web page. Intents can activate the following three main

components of an Android application:

• Activities

• Services

13

CHAPTER 2. BACKGROUND

• Broadcast receivers

In addition to announce operations to be done, intents can also be used to announce

that certain events have happened. These messages (called broadcast intents) will

be broadcasted to all relevant components. Applications can listen for broadcast

intents and react on them by registering broadcast receivers.

A broadcast receiver is capable of responding to announcements, whether it origi-

nates from the system (e.g. when the battery is low or when the screen has been

unlocked), from other applications, or from its own application [11]. Broadcast

receivers are not directly connected with a UI, but they may trigger the UI to

perform certain actions.

Intents can be divided in the following two groups [10]:

• Explicit intents

• Implicit intents

The difference between these groups is in how they address the target component.

Explicit intents locate components by explicitly specifying the components name

(e.g. com.example.project). These types of intents obviously require developers

to know the exact name of the components, which is normally not the case for

developers of other applications. Hence, intents within this group are typically not

used for system-wide messaging.

Implicit intents on the other hand do not specify the target by its name. This

means that the Android system needs another way of resolving the intent’s receiv-

ing component. This is done by registering intent filters on the receiver component.

The system will then test the intent filters against the broadcasted intents in order

to find the best suitable receiving component.

There are three different tests an intent must go through, for successfully deliver

an implicit intent to a receiving component [10]:

• Action test

• Category test

• Data test

Each of these tests involves comparing the information in the different fields of

the intent with the intent filter at the receiving component. To pass the action

14

CHAPTER 2. BACKGROUND

test, the action specified in the intent’s action field must at least match one of

the action elements listed at the receiver’s intent filter [10]. To pass the category

test, the receiver’s intent filter must contain at least every category elements in

the intent’s category field.

Each data element in the data field can contain a Uniform Resource Identifier (URI)

and a data type. There are different rules whether an element contains a URI, a

data type, both a URI and a data type, or none of them. The Wi-Fi Direct API

neither specifies a URI nor a data type for receiving broadcast intents. In this

case, the test will be passed if the intent’s data element contains neither a URI

nor a data type.

2.3.2 The Wi-Fi Direct API

The Android API level 14 and higher incorporates the opportunity for applications

to discover, connect and communicate by the use of Wi-Fi Direct [12]. Figure 2.7

shows a Unified Modeling Language (UML) class diagram of the Wi-Fi Direct API

(the association with a crossed circle represents inner classes). This diagram shows

that the WifiP2pManager is the primary class, which is composed of the following

three main parts:

• Listeners

• Request methods

• Intent actions

Listeners

The message passing for Wi-Fi Direct in Android is asynchronous and the API

specifies listener callback methods that are responsible for reacting to requests

from the application. The following five different interfaces represent the various

listeners:

• ActionListener

• ChannelListener

• ConnectionInfoListener

• GroupInfoListener

• PeerListListener

15

CHAPTER 2. BACKGROUND

Figure 2.7: A UML class diagram of the API of Wi-Fi Direct

Each of these interfaces has callback methods which are triggered when a response

is sent. The ActionListener’s callback methods inform whether the operation was

successful or not. In case of a failure, the callback will convey a constant to point

16

CHAPTER 2. BACKGROUND

out the reason. This reason can be one of the following [1]:

• ERROR denotes that the reason was due to an internal failure.

• P2P UNSUPPORTED indicates that Wi-Fi Direct is not supported by the

current device.

• BUSY means that the framework is busy, and therefore unable to serve the

request.

The ChannelListener’s callback will be triggered if the channel gets disconnected

from the framework [13]. The remaining listeners are triggered when some specific

requested information is available.

Request methods

The API has defines nine different request methods (see Tab. 2.1). Some of them

are required to be implemented, while others are optional. By using these methods,

the application will be able to request the operating system to perform specific

actions. Each of them will trigger asynchronous message requests and they should

therefore be able to react when responses are sent. This is why each method

includes a listener for callbacks.

Table 2.1: The request methods specified by the API. Taken from the Android
API [1]

17

CHAPTER 2. BACKGROUND

In the following, some informal state machines based on the Specification and

Description Language (SDL) semantic are shown. They was created by the author

and later used as a starting point for the API blocks. Thus, these state machines

are not a part of the API, but a proposed sequence of events. We opted to have

them in this section, since they facilitate a wider understanding of how the request

methods relates to the other components of the API.

In order to implement a Wi-Fi Direct functionality in an application, a registra-

tion to the Wi-Fi framework is required [1]. This is realized by executing the

initialize method in Tab. 2.1. All other request methods in the Wi-Fi Direct API

depend on this registration. Hence, this must be the first Wi-Fi Direct operation

to be performed. Figure 2.8 shows a proposed state machine of the initializa-

tion process. When the application enters the initialized state it should be able

to discover other peer devices. The WIFI P2P STATE CHANGED ACTION,

WIFI P2P THIS DEVICE CHANGED ACTION and WIFI P2P CONNECTIO-

N CHANGED ACTION intent actions are explained later in this section.

Figure 2.8: A state machine of the initialization process

To be able of finding peer devices, the application must execute the discover-

Peers method. This operation initiates a peer discovery, which involves sending

a request to the framework to scan for available peer devices. If the request is

successfully achieved, the discovery procedure will stay active until a P2P group

is formed or a successful connection request is initiated [1]. When the applica-

tion knows that peer devices are discovered (this is described later in this sec-

tion), it can request for the current list of devices from the framework by calling

the requestPeers method. Figure 2.9 shows a proposed state machine of the dis-

covery process with a suggested sequence of the related request methods. The

WIFI P2P PEERS CHANGED ACTION intent action will be explained later in

this section.

When the current list of peer devices has been received and the application enters

18

CHAPTER 2. BACKGROUND

Figure 2.9: A state machine of the discovery process

the peers discovered state in Fig. 2.9 and Fig. 2.10, a connection request can be

initiated with one of the devices in the list. This is done by executing the connect

method. If the current device is not already part of a P2P group, this request

will initiate a group negotiation with the peer device [1]. A group negotiation is

required in order to decide which device that is going to act as the group owner.

If the current device is already part of a group, an invitation to join this group

is sent. If an ongoing group negotiation ought to be cancelled, the cancelConnect

method must be executed. Upon a successful group negotiation and when the

19

CHAPTER 2. BACKGROUND

application knows that the connection has been changed (this is described later

in this section), it can detect if network connectivity exists. If so, a request for

connection info can be inquired by executing the requestConnectionInfo method.

By doing so, the application will be able to attain the following details:

• If a group has been formed.

• The group owner’s IP address.

• If the current device is the group owner.

If a group has been formed, a request for group info can be inquired by executing

the requestGroupInfo method. The following information will be received by the

application:

• The list of client devices that are currently part of the P2P group.

• The name of the interface the group is using (e.g. p2p-wlan0-0).

• The Service Set Identifier (SSID) of the group (e.g. DIRECT-fd).

• The details of the group owner in a WifiP2pDevice object.

• The group’s passphrase.

• If the current device is the group owner.

Figure 2.10 shows a proposed state machine of the connection process with a

suggested sequence of the relevant request methods.

The createGroup method causes the current device to create an empty P2P group

with itself acting as the group owner. This method is only intended to be used in

circumstances where the peer devices are legacy equipment, and will normally not

be used in ordinary Wi-Fi Direct operations. Nevertheless, this request method is

particularly useful nowadays since the Wi-Fi Direct technology is still pretty novel

to most consumers’ equipment.

In order to perform a disconnection request to a connected group, the removeGroup

method must be executed. By using the method’s callback listener, the application

will be able to know whether the request was successful or not. Figure 2.11 shows

a proposed state machine of the disconnection process. This diagram shows that

the removeGroup method should be able of being triggered in the following states:

• wait for connection changed

20

CHAPTER 2. BACKGROUND

Figure 2.10: A state machine of the connection process

• wait for connection info

• wait for group info

• connected

Intents and intent actions

In order for a Wi-Fi Direct application to be able to know when certain Wi-Fi

Direct specific events happen, it needs to listen for broadcast intents. To achieve

21

CHAPTER 2. BACKGROUND

Figure 2.11: A state machine of the disconnection process

this, broadcast receivers with intent filters need to be registered at the application.

The following intent actions are relevant for Wi-Fi Direct [1]:

• WIFI P2P STATE CHANGED ACTION

• WIFI P2P PEERS CHANGED ACTION

• WIFI P2P CONNECTION CHANGED ACTION

• WIFI P2P THIS DEVICE CHANGED ACTION

To be able to initiate a discovery process and connect with peer devices, the Wi-

Fi Direct mode must be enabled on the current device. This information will

be broadcasted by the Android system. By registering a broadcast receiver with

an intent filter that contains the WIFI P2P STATE CHANGED ACTION intent

action, the application can be informed if the Wi-Fi Direct mode is enabled on

the current device. Every time the users turn on or off the Wi-Fi Direct mode,

an intent will be broadcasted causing the application to always be updated on the

Wi-Fi Direct mode’s status.

If the WIFI P2P PEERS CHANGED ACTION intent action is added to the fil-

ter, the application can be notified when peers are discovered. This will most likely

occur after a peer discovery process has been initiated. However, the application

will always be ready to receive this type of notification as long as the broadcast

receiver is registered.

22

CHAPTER 2. BACKGROUND

In order for the application to detect any changes in its Wi-Fi connectivity, the

WIFI P2P CONNECTION CHANGED ACTION action must be added to the

filter. There are several reasons for this intent action to be triggered, e.g.:

• A connection request is made by the current device and the group negotiation

procedure was successfully accomplished.

• The connection was lost.

• A disconnection procedure was successfully accomplished.

• Another device has sent a connection request to the current device and the

group negotiation procedure was successfully accomplished.

By adding the WIFI P2P THIS DEVICE CHANGED ACTION intent to the fil-

ter, the application will be informed when a change in the device’s P2P properties

has occurred. This could for instance happen when the devices status changes

from being available to be connected. When the intent action is triggered, the

UI of the application should be updated in order to give back information of the

device’s current status to the users.

Permissions and uses-features

Permissions provide a restricted access to part of the device’s code or to some

specific data on the device [14]. The reason for this is to protect critical code

or data from being misused. They are identified by a unique label and the users

accept the application’s permissions prior to installing it.

By using the API of Wi-Fi Direct, the application must request the following

permissions[15]:

• ACCESS WIFI STATE

• CHANGE WIFI STATE

• INTERNET

In order to let the application access information of the Wi-Fi networks the AC-

CESS WIFI STATE permission must be authorized [16]. In addition, in order to

change the Wi-Fi connectivity, the CHANGE WIFI STATE permission must be

authorized. Even though an internet connection is not required for a Wi-Fi Di-

rect application, the INTERNET permission must be authorized. This permission

authorizes the application to open Java network sockets, which is necessary when

23

CHAPTER 2. BACKGROUND

communicating to other peer devices over Wi-Fi Direct.

Uses-features are announcements of specific hardware and software the applica-

tion are using [17]. They are only meant to inform external entities, which means

that the Android system does not check whether the device actually support these

features or not. Google Play uses for instance these declarations to filter appli-

cations that are visible to the users. This is done by comparing the Google Play

applications’ uses-features with the features available on the device.

Since only a fraction of Android devices are Wi-Fi Direct compatible, the android.h-

ardware.wifi.direct uses-feature should be declared.

24

Chapter 3
Methodology

In this chapter, a discussion on which method we opted to follow is carried out.

Furthermore, a description of how we preceded the development of the building

blocks, based on the chosen method is presented. In addition, an issue we encoun-

tered during the testing procedure is discussed. This issue is worth mentioning

because it affected the testing process, and it persisted during the entire develop-

ment process. Finally, a short description of which tools we used in order to obtain

the objective is presented.

3.1 The choice of method

The building blocks and the ESMs of Arctis SDK are based on the UML 2.0

semantics [18]. UML is a modeling language standardized by the Object Man-

agement Group (OMG) for describing a software system in a family of graphical

notations [19, 20]. This method is known as Model-Driven Engineering (MDE).

Even though models play an important part of the Arctis tool, it may be unsuitable

to classify the method of using Arctis as MDE. As France and Rumpe [21] state,

«The term Model-Driven Engineering (MDE) is typically used to describe software

development approaches in which abstract models of software systems are created

and systematically transformed to concrete implementations.» This means that

developers need to have a distinct separation between design and implementation.

To be precise, developers need to be finished with the design of the models before

they are implemented. This method of development follows the waterfall model,

where the different activities are proceeded sequentially through various phases [22]

(see Fig. 3.1 for an illustration). Every activity that belongs to a phase must

25

CHAPTER 3. METHODOLOGY

be completely finished before the next phase starts [23]. Since there are many

uncertainties in the design phase, this method is quite difficult to follow.

Figure 3.1: The waterfall model. Adapted from [24]

It is often necessary to revert from the implementation phase and redesign al-

ready predefined models, because of some different points of views has emerged.

Therefore, we based our methodology on the iterative model (see Fig. 3.2 for an

illustration). By using the Arctis SDK, we were able to continuously alternate

between model design and code implementation through testing and evaluation.

This process is exemplified in Sect. 5.5.

Figure 3.2: The iterative model. Adapted from [24]

3.2 The development process

Figure 3.3 shows an overview of how we managed to reach the objective of de-

veloping Arctis building blocks to support Wi-Fi Direct. Since the Wi-Fi Direct

technology was unfamiliar to us, gaining sufficient knowledge within this area was

the first phase of the work. By obtaining and studying an adequate amount of

26

CHAPTER 3. METHODOLOGY

Figure 3.3: An overview of the development process

background material, an investigation of Android’s Wi-Fi Direct API was initi-

ated. By doing so, we realized that the API documentation was difficult to follow

with asynchronous messages being sent from different sources. Hence, we designed

some informal state machines based on the SDL semantic in order to enhance our

own comprehension of the API. During this we realized that we could divide the

API’s functioning into the following four operational procedures:

• Initialization

• Discovering of peers

• Connection

• Disconnection

27

CHAPTER 3. METHODOLOGY

With a broader understanding of the Wi-Fi Direct API and the Wi-Fi Direct

technology, a dialog with some employees from Pixavi was commenced. During

this process, we discussed various scenarios and use-cases on how to implement Wi-

Fi Direct into theirs system. This is documented in Chapt. 4. The benefit of having

Pixavi involved was to get some genuine experience on how such technology should

be implemented in order to meet the requirements of usability. When an agreement

on some specific use-cases was established, informal sequence diagrams was created

in order to gain an unambiguous foundation for the further developments of the

API blocks.

Since our objective was to prove that predefined building blocks based on the Wi-

Fi Direct API could easily be implemented in other developer’s applications, we

needed a foundation to run experiments and tests. Hence, we opted to create an

example application assembled by these blocks. As a result, these blocks became

composed by having an iterative process between testing and restructuring.

In addition to run various tests on the blocks, we needed to analyze them. This was

done both manually and automatically. Arctis let us set up ESMs in conjunction

with the blocks to control the sequence of the various messages that is sent and

received. By doing so, we were able to have them behave in accordance with the

predefined state machines and sequence diagrams. In order to analyze the behavior,

Arctis allows us to animate a token flow by manually stepping through the ESM.

While doing this, Arctis automatically checks for design flaws and reports back if

something was found.

In order for a block to comply with our objective, it needs to enhance the simplicity

for a developer of having a functionality implemented. In addition, it must be

generic enough to suite most relevant tasks. This was discussed in Sect. 1.1.

Finally after multiple iterations of testing, analysis and reshaping, the building

blocks were satisfactory to meet our requirements of functionality and simplicity.

This resulted in a complete set of Wi-Fi Direct API building blocks endorsed by

the example application.

3.3 Connection issue

During the testing procedure, we observed some unexpected erroneous events.

After four successive times of connection and disconnection between two devices,

they suddenly wouldn’t reconnect. However if they were rebooted, everything went

back to normal and worked as it should, until the process was repeated. This error

28

CHAPTER 3. METHODOLOGY

has a significant impact on the user-friendliness and should not be acceptable.

Thus, we needed to investigate this in order to detect if the implementation or the

design choices was the source of the error. By logging the events using logcat [25],

we recognized that every time a connection is established the name of the interface

was changed in the following way:

• p2p-wlan0-0

• p2p-wlan0-1

The last number continued to increment each time a new connection was estab-

lished until a connection request was sent for the fifth time. Then the following

message was logged:

• Failed to create interface p2p-wlan0-4: -12 (Out of memory)

From this log we could presume that every time a new connection was initiated, a

virtual interface was established and the last number identifies this virtual inter-

face. However, when a disconnection is performed it looks like the virtual interface

is not properly removed. Hence, this could be the reason why the last number is in-

cremented on connections subsequent to disconnections. By searching the web for

the issue, we found several discussion forums where this error has been confirmed.

Therefore, we concluded that our design and implementation was not related to

this issue, and it was located at a lower layer in Android’s software stack. This

error will most likely be corrected in the future, and the correction will probably

not affect our design since it is based on the Wi-Fi Direct API.

3.4 Development environment

All development was realized in Eclipse Classic 3.7.2 (Indigo) running on the Win-

dows 7 operating system. The building blocks were constructed using Arctis plug-

in 1.0.0.M0642 for Eclipse, and the Android specific features was provided by the

Android Development Toolkit 16.0.1. The testing was performed on two Sam-

sung Galaxy Nexus GT-I9250 smartphones running on Android 4.0.2 (Ice Cream

Sandwich) operating system.

29

CHAPTER 3. METHODOLOGY

30

Chapter 4
System Implementation Design

This chapter is confidential, and therefore omitted in this version of the thesis.

31

CHAPTER 4. SYSTEM IMPLEMENTATION DESIGN

32

Chapter 5
API Building Blocks

Design of reusable building blocks for Wi-Fi Direct was achieved by the use of Arc-

tis SDK. The objective was to end up with blocks that are easily implementable

in other applications. As a result, the requirement of comprehending the techno-

logical details of Wi-Fi Direct and Android’s Wi-Fi Direct API would be relaxed.

Hence, these blocks were made generic in such a way that they can be used inde-

pendent of application’s use-case. In this manner, the restriction of functionality

relies in how the blocks are combined, not the blocks itself.

This chapter describes these building blocks in details, as well as how they are

composed to structure the complete functionality. The most important functions

of Wi-Fi Direct are the following:

• Be able to find peer devices in range.

• Send connection requests.

• Listen for connection requests by peer devices.

These functions are separated into three different building blocks given the follow-

ing names:

• Wifi Direct Receive

• Wifi Direct Discover Peers

• Wifi Direct Connect

41

CHAPTER 5. API BUILDING BLOCKS

5.1 The Wifi Direct Receive block

This block is responsible for notifying the application when some Wi-Fi Direct

related intents are sent from the Android framework. See Fig. 5.1 for the block’s

internal structure.

(a) The left side of the block

(b) The right side of the block

Figure 5.1: The internal structure of the Wifi Direct Receive block

42

CHAPTER 5. API BUILDING BLOCKS

5.1.1 Description of the Wifi Direct Receive block

This block is initiated when the start pin gets triggered (see Fig. 5.1a). This pin

has a data type of the WifiDirectReceiveInfo class. This class contains two public

variables of the data type WifiP2pManager and Channel. The reason for using

this data type is that these variables are declared outside of the block, but is also

needed here.

Within the registerBroadcastReceiver operation, two private variables are initial-

ized and a broadcast receiver is registered. This broadcast receiver has filtered

out the following intent actions (see Sect. 2.3.2 for a detailed description of these

intent actions):

• WIFI P2P STATE CHANGED ACTION

• WIFI P2P THIS DEVICE CHANGED ACTION

• WIFI P2P CONNECTION CHANGED ACTION

The stateEnabled pin will return a boolean variable depending on the received

intent’s Wi-Fi P2P state (see Fig. 5.1b). If the state is enabled, which means

that the Wi-Fi Direct mode is turned on, a true variable is returned. Otherwise

a false variable will be returned. This test is done in the isWifiP2pStateEnabled

operation.

The thisDeviceChanged pin will return P2P related information of the current

device. This happens when a P2P related event has changed something with the

device. The event could for instance result in a change in the device’s status. The

device’s variable of data type WifiP2pDevice is extracted from the intent in the

getWifiP2pDevice operation.

If the Wi-Fi Direct framework notifies that the device’s connectivity has been

changed, an intent will be sent. Consequently, the broadcast receiver will receive

this intent and the block will check its connectivity in the checkConnectivity op-

eration. If the device has a connection, the connectionInfo pin returns the Wi-Fi

Direct connection information. If a group is formed, the groupInfo pin returns the

Wi-Fi Direct group information. Otherwise, if the device doesn’t have a connec-

tion, the notConnected pin will be triggered.

To unregister the broadcast receiver, the stop pin must be triggered. This will in

addition result in a termination of the building block. The deregistration happens

in the unregisterBroadcastReceiver operation.

43

CHAPTER 5. API BUILDING BLOCKS

5.1.2 Analysis of the Wifi Direct Receive block

Figure 5.2 shows the Wifi Direct Receive block’s ESM. It has two states in addition

to the initial and the final state, namely active and stopping.

Figure 5.2: The ESM of the Wifi Direct Receive block

When the start pin is triggered, the block enters the active state and is able to

trigger the five different output pins shown under this state in Fig. 5.2. In addition

to these output pins, the stop pin can be triggered. This is the only event that

will cause the block to leave the active state. If this happens, the block will enter

stopping state and wait for the stopped pin to be triggered, in order to enter the

final state. Otherwise, the stopped pin could instantly be triggered and the block

enters the final state.

By deciding the order of pins to be triggered, the block will in this case not be able

to trigger any output pins when it is in its initial state. It will correspondingly

only be terminated when it is in the active or stopping state.

5.2 The Wifi Direct Discover Peers block

This block is responsible for finding peer devices and to return the current list of

peer devices found. See Fig. 5.3 and Fig. 5.4 for the internal structure of the Wifi

Direct Discover Peers block.

44

CHAPTER 5. API BUILDING BLOCKS

Figure 5.3: The left side of the Wifi Direct Discover Peers block

5.2.1 Description of the Wifi Direct Discover Peers block

In the same way as with the Wifi Direct Receive block, this block is initiated

when start pin is triggered (see Fig. 5.3). This pin contains a data type of the

WifiDirectDiscoverPeersInfo class. This class contains three public variables of

the following data types:

• Channel

• boolean

• WifiP2pManager

These variables will initialize some private variables that belongs to the block’s

class in the unwrap operation. The boolean data type is supposed to be denoted

45

CHAPTER 5. API BUILDING BLOCKS

Figure 5.4: The right side of the Wifi Direct Discover Peers block

by the stateEnabled pin in the Wifi Direct Receive block. This means again that

if this variable is false, the Wi-Fi Direct mode is turned off. Consequently, the

wifiP2pDisabled pin is triggered and the block terminates. Otherwise, a broadcast

receiver is registered in the registerBroadcastReceiver operation. In addition, the

Discover Peers block is prepared to be initiated in the initDiscoverPeers operation.

The details of these operations are described in Sect. 1.2.

The Discover Peers block shown in Fig. 5.5 contains only one operation identi-

fied as discoverPeers. This operation is directly associated with the discoverPeers

request method in the API (see Sect. 2.3.2 for more details). The block will imme-

diately be notified whether the request was successful or a failure. Upon receiving

this notification, the block will terminate by either trigger the onSuccess or the

onFailure pin depending on the response. The onFailure pin includes a data type

46

CHAPTER 5. API BUILDING BLOCKS

Figure 5.5: The internal structure of the Discover Peers block

of int which represents the error code.

If the Discover Peers block triggers the onFailure pin, the previously registered

broadcast receiver is deregistered in the unregisterBroadcastReceiver operation

(see Fig. 5.3). In addition, the onFailure pin is triggered and the Wifi Discover

Peers block gets terminated.

If the onSuccess pin is triggered, an event will cause the block to wait for an intent

to be sent from the Android framework. This and the following procedures are

described in details in Sect. 1.2. When the peersAvailable pin is triggered, a data

type of WifiP2pDeviceList, which essentially is a list of peer devices is conveyed

out of the block.

To manually deregister the broadcast receiver, the stop pin must be triggered.

This is done in the same matter as with the Wifi Direct Receive block.

5.2.2 Analysis of the Wifi Discover Peers block

Figure 5.6 shows the Wifi Discover Peers block’s ESM. It has one state identified

as discoveringPeers, in addition to the initial and final state.

Figure 5.6: The ESM of the Wifi Discover Peers block

When the block is in its initial state, two events can happen. The start pin could

either trigger the block to enter the final state or the discoveringPeers state. In case

47

CHAPTER 5. API BUILDING BLOCKS

the block enters the final state, the wifiP2pDisabled pin is triggered. Otherwise,

if the block enters the disoveringPeers state, three events can happen where all of

them cause the block to enter the final state:

• The onFailure pin is triggered.

• The peersAvailable pin is triggered.

• The stop pin is triggered, resulting the stopped pin to be triggered.

5.3 The Wifi Direct Connect block

This block is responsible for connecting to a peer device in addition to tear down

a connection. See Fig. 5.7 and Fig. 5.8 for the block’s internal structure.

5.3.1 Description of the Wifi Direct Connect block

This block is initiated when the connect pin is triggered. In the same way as

with the Wifi Direct Receive and the Wifi Direct Discover Peers block, this block

uses variables that are declared outside the block. Hence, the connect pin includes

the data type of the WifiDirectConnectInfo class. This class has the three public

variables of the following data types:

• Channel

• WifiP2pConfig

• WifiP2pManager

In the setParameters operation, these variables are initialized to the following

classes’ public variables:

• ContactInfo

• CancelConnectInfo

• RemoveGroupInfo

These classes are used in the Connect, the Cancel Connect and the Remove Group

block in the same way as how the Discover Peers block uses the DiscoverPeersInfo

class in the Wifi Direct Discover Peers block. These blocks are equally constructed,

with one start, one onSuccess and one onFailure pin each. The only difference

between them lies in the operations, which contains a distinct request method for

each of the blocks. See Fig. 5.9 for the internal structure of these blocks.

48

CHAPTER 5. API BUILDING BLOCKS

Figure 5.7: The left side of the Wifi Direct Connect block

As with the Wifi Direct Receive and the Wifi Direct Discover Peers, this block

uses a broadcast receiver. This receiver is registered in the registerReceiver opera-

tion with a WIFI P2P CONNECTION CHANGED ACTION intent action in its

intent filter.

The Connect block starts a P2P connection to a peer device with a specified

configuration. This configuration is given by the WifiP2pConfig data type, which

is configured outside of the Wifi Direct Connect block.

If the Connect block triggers the onFailure pin, the previously registered broad-

cast receiver will be unregistered and the onFailureConnect pin is triggered (see

Fig. 5.7). Consequently, the Wifi Direct Connect block terminates. If the Connect

49

CHAPTER 5. API BUILDING BLOCKS

Figure 5.8: The right side of the Wifi Direct Connect block

block triggers the onSuccess pin, a boolean variable is declared true in the set-

ConnectedTrue operation. This variable indicates whether the connection request

was successful or not and is needed when a disconnection request is performed.

The block will then wait for an intent to be received by the previously registered

broadcast receiver. When the intent is received, the connectivity is checked in

checkConnectivity operation. This and the following procedures are exactly the

same as with the checkConnectivity operation and its subsequent procedures in

the Wifi Direct Receive block.

If the users want to disconnect or abort an ongoing P2P group negotiation, the

disconnect pin must be triggered. Consequently, either the Cancel Connect block

or the Remove Group block will be initiated. Which of them are determined by

the boolean variable mentioned in the previous paragraph. A successful connection

request means that a group negotiation has been successful. This further means

that a group has been formed. In this case, an abortion of the group negotiation

50

CHAPTER 5. API BUILDING BLOCKS

(a) The Connect block

(b) The Cancel Connect block

(c) The Remove Group block

Figure 5.9: The internal structure of the Connect, Cancel Connect and Remove
Group block

is too late to perform and the Remove Group block should be initiated instead of

the Cancel Connect block. If the disconnect pin is triggered prior to a successful

connection request, the boolean variable has its default value, which is false. This

will lead to the initiation of the Cancel Connect block instead. As a result, a

termination request to the ongoing group negotiation is executed.

If either the Cancel Connect or the Remove Group block triggers theirs onFailure

pin, the corresponding onFailureCancelConnect or onFailureDisconnect pin gets

triggered. Accordingly, the failure code will be transported out of the Wifi Direct

Connect block. Otherwise, if the procedure is successful and the onSuccess pin is

triggered at one of these blocks, the previously registered broadcast receiver gets

unregistered. Subsequently, the disconnected pin at the Wifi Direct Connect block

is triggered and the block terminates.

51

CHAPTER 5. API BUILDING BLOCKS

5.3.2 Analysis of the Wifi Direct Connect block

Figure 5.10 shows the Wifi Direct Connect block’s ESM. It has three states besides

the initial and final state, namely connecting, connected and disconnecting.

When the connect pin initiates the block, it will enter the connecting state. In this

state, five different pins are able to trigger the block to enter three different states:

• onFailureConnect cause the block to enter the final state.

• connectionInfo, notConnected and groupInfo cause the block to enter the

connected state.

• disconnect cause the block to enter the disconnecting state.

Since the users should be able to abort an ongoing group negotiation, the dis-

connect pin must be enabled in the connecting state. When the block is in the

connected state, the groupInfo and connectionInfo pins are enabled to be capa-

ble of continuously sending updated group and connection information out of the

block.

The only pin that is able to trigger the block out of the connected state is the

disconnect pin. When this happens, the block enters the disconnecting state while

it tries to tear down the connection. As pointed out earlier, this operation can

either be successful or a failure. If it fails, either the onFailureDisconnect or the

onFailureCancelConnect pin is triggered depending on which of the Cancel Con-

nect and Remove Group block that was initiated. If the onFailureDisconnect pin

was triggered, the block returns to the connected state. Otherwise, if the onFail-

ureCancelConnect pin was triggered the block will return to the connecting state.

If the disconnection procedure succeeded, the disconnected pin gets triggered and

the block enters the final state causing it to terminate.

5.4 Combining the API blocks

All blocks defined so far make up the total Wi-Fi Direct service. However, combin-

ing these blocks to establish the total service still requires considerable background

knowledge of Android’s Wi-Fi Direct API and the Wi-Fi Direct technology. As a

consequence, we designed a block named Wifi Direct Service to encapsulate these

blocks.

A consequence of reducing the complexity is that the functionality also becomes

reduced. To be precise, this block automatically initiates connection request to

52

CHAPTER 5. API BUILDING BLOCKS

Figure 5.10: The ESM of the Wifi Direct Connect block

53

CHAPTER 5. API BUILDING BLOCKS

peer devices that are discovered instead of letting the user decide when this should

happen. If this assumption is satisfactory, the block will be usable. Otherwise,

other blocks could be constructed to suite other use-cases. See Fig. 5.11, Fig. 5.12

and Fig. 5.13 for this block’s internal structure.

Figure 5.11: The left side of the Wifi Direct Service block

54

CHAPTER 5. API BUILDING BLOCKS

Figure 5.12: The middle part of the Wifi Direct Service block

55

CHAPTER 5. API BUILDING BLOCKS

Figure 5.13: The right side of the Wifi Direct Service block

56

CHAPTER 5. API BUILDING BLOCKS

5.4.1 Description of the Wifi Direct Service block

This block is initiated when the listen pin is triggered. This will cause the ini-

tialize operation to be activated. Within this operation, two variables of the

WifiP2pManager and Channel data types are initialized. These variables are used

in every block the Wifi Direct Service block encapsulates. The Channel data type

includes a callback listener that is activated if the channel is lost. If this occurs, the

CHANNEL LOST event gets triggered. This will again lead to a triggering of the

failure pin (see Fig. 5.13). On the first time the channel is lost, a re-initialization

is attempted. If the channel is lost once again, the block assumes that the channel

is permanently lost and gives up the initialization procedure.

The first of the API blocks to be initiated is the Wifi Direct Receive block. When

this happens, the application will be able to receive Wi-Fi Direct related intents

from the Android framework. Every time this happens, an update is sent out of

the Wifi Direct Service block’s update pin. Likewise, if the notConnected pin is

triggered at the Wifi Direct Receive block, the Wifi Direct Service block’s failure

pin will be triggered.

When the findAndConnect pin is triggered, a variable with a WifiP2pConfig data

type is conveyed into the block. This variable is needed to set up a Wi-Fi Direct

connection. In order to keep this block as generic as possible, this variable must be

configured on the outside of the block. Accordingly, the Wifi Direct Discover Peers

block is initiated. This block will return a list of discovered devices. As a result,

the CONNECT event is triggered and the Wifi Direct Connect block is initiated.

This leads to a connection request being sent to the discovered devices. In the same

way as with the Wifi Direct Receive block, these two blocks are able to trigger the

failure pin at the Wifi Direct Service block if errors occur. In addition, the Wifi

Direct Connect block can also trigger the Wifi Direct Service block’s update pin

when updates are conveyed out of the Wifi Direct Connect block.

If the disconnect pin at the Wifi Direct Service block is triggered, a disconnection

procedure should be executed. However, this should only happen if a connection

with a peer device is established. This is taken into account by having boolean

variables declared in the Wifi Direct Service block.

A successful connection between the current device and a peer device can be ac-

complished even if the Wifi Direct Connect block hasn’t been initiated. When this

happens, the current device is the responding one and the peer device is the initi-

ating one. In this case, triggering the disconnect pin at the Wifi Direct Connect

57

CHAPTER 5. API BUILDING BLOCKS

block is not possible because the block has never been initiated. Therefore, the

Remove Group block also needs to be implemented outside the Wifi Direct Con-

nect block. Finally, if the stop pin is triggered, all active blocks will be terminated

along with the Wifi Direct Service block.

5.4.2 Analysis of the Wifi Direct Service block

Figure 5.14 shows the Wifi Direct Service block’s ESM. It has four states besides

the initial and final state, namely listening, active, stopping and disconnecting.

Figure 5.14: The ESM of the Wifi Direct Service block

When the listen pin is triggered, the block enters the listening state. In this state

the following five pins can be triggered:

• update

• failure

• findAndConnect

• stop

• disconnect

A triggering of the update and failure pins will not cause the application to enter

a new state, like the other three input pins do. The stop pin will cause the

58

CHAPTER 5. API BUILDING BLOCKS

application to enter the stopping state while the disconnect pin cause it enter the

disconnecting state.

If the findAndConnect pin is triggered, the application will enter the active state

where the discovering of peers and connection procedure are initiated. Since up-

dates and error messages can occur while the application is in this state, the update

and failure pins are still capable of being triggered.

When in disconnecting state, the application can only trigger the disconnected pin

causing it to re-enter the listening state. Consequently, the application will again

be able to discover and send connection requests to other peer devices. The only

way to terminate the block is when it enters the stopping state and the output pin

is triggered.

5.4.3 The Wifi Direct Responder and the Wifi Direct Ini-

tiator blocks

The Wifi Direct Service block restricts the sequence of how the Wi-Fi Direct API

blocks are composed by encapsulating them. However, as an experiment we wanted

to further specialize this block in order to accommodate even more specific use-

cases. Therefore, we divided the Wifi Direct Service block’s functioning in two

separate use-cases. This was realized by composing two additional blocks, namely

the Wifi Direct Responder and the Wifi Direct Initiatior, where each of them

encapsulates the Wifi Direct Service block.

Figure 5.15 and Fig. 5.16 show the internal structure of these blocks. The Wifi

Direct Responder block is responsible for informing the application when connec-

tions has been successfully initiated by a peer device. In addition, to keep the

application updated with the status of the current device. The Wifi Direct Initia-

tor block is responsible for letting the users find and initiate connection requests

to peer devices. As the figures show, they differ slightly internally. The Wifi Di-

rect Responder will not trigger the findAndConnect pin at the Wifi Direct Service

block, whereas the Wifi Direct Initiator will. This is done after a short break to

ensure that the listen pin is triggered first, in order to initiate the Wifi Direct

Service block. None of these blocks has the opportunity to initiate a disconnection

without being terminated. Hence, the disconnect and the disconnected pins at the

Wifi Direct Service block are not used in these blocks.

59

CHAPTER 5. API BUILDING BLOCKS

Figure 5.15: The Wifi Direct Responder block

5.5 Evolvement of the Wifi Direct Service block

All building blocks described so far are evolved by an iterative process between

testing and restructuring, in order for them to meet their functional requirements.

This section describes the progression of how the Wifi Direct Service block evolved,

in order to give the reader an insight of this process.

60

CHAPTER 5. API BUILDING BLOCKS

(a) The left side of the block

(b) The right side of the block

Figure 5.16: The Wifi Direct Initiator block

5.5.1 The Wifi Direct 1 block

An entire new building block, called Wifi Direct 1 was created in order to encapsu-

late the Wifi Direct Receive, Wifi Direct Discover Peers and Wifi Direct Connect

blocks. The main objective of this block was to facilitate implementation of the

Wi-Fi Direct service without profound knowledge of the Wi-Fi Direct technology

61

CHAPTER 5. API BUILDING BLOCKS

or Android’s Wi-Fi Direct API.

At this moment, we noticed that the Android’s Wi-Fi Direct API was quite closely

connected to the Android’s activity lifecycle. Therefore we started to create input

pins identified in accordance to the various states of this lifecycle. Figure 5.17

shows these input pins.

Figure 5.17: A snippet of some of the Wifi Direct 1 block’s input pins

The purpose of this was to make it easier for developers to know when the various

input pins should be triggered. However, the drawback was that the number of

input pins hadn’t been reduces compared to the number of input pins at the API

blocks. This caused the block to continuously being overly complex. Despite this,

we managed to reduce the total amount of pins from twenty-four to fourteen at

this point in time. One of the reasons for this was that we assembled all error

messages into one token flow instead of having a separate flow for each of them

(see Fig. 5.18). By doing so, seven different output pins from the API blocks was

concatenated down to one single pin called failure at the Wifi Direct 1 block.

In addition, both the Wifi Direct Receive and the Wifi Direct Connect block have

some identical output pins, respectively connectionInfo and groupInfo. These four

pins are combined into two token flows, one for each pin type. Furthermore, the

Wifi Direct 1 block separates whether the current device is a group owner or a client

(see Fig. 5.19). This is determined by whether the Wifi Direct Receive or Wifi

Direct Connect block’s connectionInfo pin that was triggered. As a consequence,

these four pins are only reduced by one.

Figure 5.18 also shows that the token flow out of the peersAvailable pin at the

Discover block (this block is essentially the same as the Wifi Direct Discover Peers

block) is directly connected to the connect pin at the Wifi Direct Connect block.

62

CHAPTER 5. API BUILDING BLOCKS

Figure 5.18: A snippet of the Wifi Direct 1 block. The error message flows are
emphasized by a red color

Hence by using the Wifi Direct 1 block, the user will not be able to manually

initiate a connection to a peer device. This result in fewer pins to deal with, which

again reduces the block’s complexity.

5.5.2 The Wifi Direct 3 block

After some additional experiments and analysis, we got another idea on how to

further reduce the amount of input pins. Therefore, we duplicated the Wifi Direct

1 block into a new block named Wifi Direct 3 to try a new approach.

63

CHAPTER 5. API BUILDING BLOCKS

Figure 5.19: A snippet of the Wifi Direct 1 block

In this block we discarded the idea of having the input pins corresponding to

the Android’s activity lifecycle. Instead, we made them consistent to the users’

interaction with the application. As a consequence, the total number of input pins

was reduced from seven to four. This is shown in Fig. 5.20.

5.5.3 The Wifi Direct 4 block

Finally, we wanted to combine all the informative updates the various API blocks

are listening for, in the same manner as we did with the error messages in the Wifi

Direct 1 and Wifi Direct 3 block. Therefore, we duplicated the Wifi Direct 3 block

into a new block named Wifi Direct 4 to include this additional behavior. This is

shown in Fig. 5.21. The informative updates will trigger the following output pins

at the Wifi Direct Receive and the Wifi Direct Connect blocks:

• thisDeviceChanged

• connectionInfo

• groupInfo

If any of the latter pins are triggered, the Wifi Direct 4 block will check whether

the exact same update has previously been conveyed out of the block. If not, the

update pin at the Wifi Direct 4 block gets triggered.

Some additional logic was added to the building block after some further testing.

As a result, we ended up with the Wifi Direct Service block described in Sect. 5.4

(see Fig. 5.11, Fig. 5.12 and Fig. 5.12).

64

CHAPTER 5. API BUILDING BLOCKS

Figure 5.20: A snippet of the Wifi Direct 3 block’s input pins

65

CHAPTER 5. API BUILDING BLOCKS

Figure 5.21: A snippet of the Wifi Direct 4 block

66

Chapter 6
Example Application

To demonstrate how the API building blocks from Chapt. 5 can be used, we

developed an application with the following functional requirements:

• It should be able to receive and react to connection requests from other

devices by using Wi-Fi Direct.

• It should be able to discover other peer devices by using Wi-Fi Direct.

• It should be able to initiate connection requests to discovered peer devices

by using Wi-Fi Direct.

• Once a connection with a peer device is initiated, it should be able to receive

P2P group information and display it to the users via its UI.

• The same application should be able to act both as a group owner and a

client.

• It should be able to initiate disconnection requests when connected to a

group.

The following functional requirement should be specific for client devices:

• It should be able to take a photo on command from the group owner and

automatically send it to the group owner device.

The following functional requirements should be specific for group owner devices:

• It should be able to open and close the client device’s camera.

67

CHAPTER 6. EXAMPLE APPLICATION

• When the camera is opened, should be able to choose which camera the client

should use, either the front or the back camera.

• It should be able to command the client device to take a photo.

• Once a photo is received from the client device, it should automatically save

and display it on the mobile device.

6.1 Application building blocks

Figure 6.1 shows the Wifi Direct System block. This block is at the highest decom-

position level of the application. It contains two inner blocks, namely Startup and

Wifi Direct Application Overview. The Startup block is used to aid an Android

application to start, terminate and re-activate. The other block encloses the whole

application logic, from an activity being created until it is destroyed.

Figure 6.1: The Wifi Direct System block

6.1.1 The Wifi Direct Application Overview block

Figure 6.2, Fig. 6.3 and Fig. 6.4 shows the internal structure of the Wifi Direct Ap-

plication Overview block. The first building block to be initiated inside this block

is a block named Activity (see Fig. 6.2). This block starts an Android activity

and listens to its lifecycle. Its activity class is identified as WiFiDirectApplica-

tionActivity. This class can trigger the following seven events in the Wifi Direct

Application Overview block:

• DISCONNECTED

• ENABLE SELECTED

68

CHAPTER 6. EXAMPLE APPLICATION

Figure 6.2: The left side of the Wifi Direct Application Overview block

• ON CREATE OPTIONS MENU

• DISCOVER SELECTED

• SEND PHOTO

• GROUP PHOTO

• BACK

When the Activity block is initiated, the Wifi Direct Responder and the Remote

Camera Service block will be triggered (see Fig. 6.3 and Fig. 6.4). The Wifi Direct

69

CHAPTER 6. EXAMPLE APPLICATION

Figure 6.3: The middle part of the Wifi Direct Application Overview block

Responder block is responsible for listen to connection request from peer devices,

while the Remote Camera Service block is responsible for the TCP transport be-

tween the devices. A capture of the application’s UI at this stage is shown in

Fig. 6.5.

The DISCOVER SELECTED event in Fig. 6.3 gets triggered when the user pushes

the discover peers button at the UI (the magnifying glass icon at the top-right

corner in Fig. 6.5). This results in an initiation of the Wifi Direct Initiator block.

There are two possible outcome of this action:

• The discover peers initiation fails and an error message is given to the users,

70

CHAPTER 6. EXAMPLE APPLICATION

Figure 6.4: The right side of the Wifi Direct Application Overview block

e.g. the Wi-Fi Direct mode is turned off (see Fig. 6.6a).

• The discover peers initiation succeeds and a scan for peer devices starts. The

magnifying glass is changed with a progress bar to indicate that the scan has

started (see Fig. 6.6b).

If the discover peer initiation process succeeds and a peer device is discovered, a

connection request is automatically sent to the peer device causing an alert dialog

to be displayed on the peer device’s UI (see Fig. 6.7).

71

CHAPTER 6. EXAMPLE APPLICATION

Figure 6.5: The application is initialized

If the peer device accepts the connection request, a group negotiation to determine

the group owner is started. If the initiating device has turned the Group Owner

switch to ON (see Fig. 6.5), the current device will become the group owner.

Otherwise, the peer device becomes the group owner. See Sect. 4.2 for more

information of the group negotiation process.

If the group negotiation succeeds, the devices will be connected. If the current de-

vice is the group owner, the GROUP OWNER event in Fig. 6.4 is triggered causing

the Remote Camera Service block’s groupOwner pin to be triggered. Otherwise,

the GROUP CLIENT event and subsequently the groupClient pin at the Remote

Camera Service block is triggered. Captures of the UI at this stage is shown in

Fig. 6.8 where Fig. 6.8a shows the group owner’s UI and Fig. 6.8b shows the client’s

UI. These figures show that both devices have two buttons, respectively named

Disconnect and Group Info. The Disconnect button triggers the DISCONNECT

event in Fig. 6.3 to initiate a disconnection procedure, which means that the cur-

rent device gets removed from the group. By pressing the Group Info button,

72

CHAPTER 6. EXAMPLE APPLICATION

(a) The discovery initiation process has
failed

(b) The discovery initiation process has
succeeded

Figure 6.6: The discovery initiation process with two possible outcomes

the GROUP INFO event in Fig. 6.4 is triggered and the UI will display informa-

tion about the group. This is shown in Fig. 6.9 where Fig. 6.9a shows the group

owner’s UI and Fig. 6.9b shows the client’s UI. Notice from this figure that the

group owner will hold group’s passphrase.

In addition to the Disconnect and Group Info button, the group owner device

has a button named Open Camera (see Fig. 6.8a). When this button is pushed,

a message will be sent to the client device instructing it to open the camera.

The client device’s UI at this point in time is shown in Fig. 6.10b. Accordingly, an

additional button named Take Photo, in addition to a switch is shown at the group

owner’s UI (see Fig. 6.10a). In addition, the Open Camera button is changed to

Close Camera in order to reverse this process.

When the Take Photo button is pushed, a message is sent to the client device

instructing it to take a photo and transfer it back to the group owner device. The

73

CHAPTER 6. EXAMPLE APPLICATION

Figure 6.7: A connection request is received

captured photo is subsequently saved and displayed on the group owner device.

The switch controls which camera the client device is going to use, either the front

or the back camera. Every time the switch is alternated a message is sent to the

client device instructing it to switch the camera.

74

CHAPTER 6. EXAMPLE APPLICATION

(a) The group owner device (b) The client device

Figure 6.8: The devices are connected

75

CHAPTER 6. EXAMPLE APPLICATION

(a) The group owner device (b) The client device

Figure 6.9: Group information is displayed on the UI

76

CHAPTER 6. EXAMPLE APPLICATION

(a) The group owner device (b) The client device

Figure 6.10: The Open Camera button has been pushed on the group owner de-
vice’s UI

77

CHAPTER 6. EXAMPLE APPLICATION

78

Chapter 7
Discussion

This chapter describes the results of the study. The importance of the findings is

pointed out and compared with prevailing approaches of software development. In

addition, the limitations that were exposed during the study are called attention

to. Finally, some suggestions for further work are emphasized in order to further

endorse the results.

7.1 Findings

Our study confirms that using Arctis building blocks based on an API will enhance

the understanding of the API’s intended sequence of events. This is done by

graphically visualize the course of events in an editor instead of only having it

written down in an API documentation. It is much easier to follow a building

block’s token flow than examining the code of an application in order to understand

the sequence of events. In addition, as pointed out in Sect. 3.2, Arctis automatically

analyzes the model for design flaws as the blocks’ token flow are manually followed.

The ordinary way of implementing functionalities by using an API can result in

unnecessary communication between the software components. This will result in

a reduced efficiency and a lack of responsiveness in the application. Since mobile

devices have a limited amount of resources, the Android system has established

a protection against unresponsive application. Each time an application doesn’t

meet the requirements of responsiveness, the system will display an Application

Not Responding (ANR) dialog (see Fig. 7.1) [26]. This dialog leads to an inter-

rupted user experience and conducts developers to design responsive applications.

Much developing time is saved by directly applying a building block with a pre-

79

CHAPTER 7. DISCUSSION

Figure 7.1: Example of an ANR dialog. Taken from [26]

defined behavior into an application. By doing so, developers don’t need to spend

additional time on gaining in-depth knowledge of the API in order to identify how

the sequence of events should be, and which API methods that are blocking. As

long as they know what kind of use-cases a specific API block ought to be used

in and when a building block’s pins should be triggered, the block may easily be

implemented. In addition to saved implementation time, the testing time will be

significantly reduced because the API blocks should already be thoroughly tested

in order to function with a set of predefined use-cases.

By using API building blocks, a complex behavior can be decomposed into a hier-

archy of sub-blocks affecting developers to abstract themselves from unnecessary

details in order to comprehend the overall behavior. Hence, the probability of hav-

ing errors arise upon implementation can be further reduced with this approach.

Another aspect of using the API blocks is the portability of functionality. These

building blocks are made to be portable, i.e. they are made to be implemented in

other developers’ applications. On the other hand, developers should not expect

that a sequence of events written in code can seamlessly be relocated from one

generic use-case into specific scenarios within other applications. Building blocks

restrict developers from operating at the code level, which enhances the separation

of functionalities. It would for instance be a relatively easy task to either remove

or change an API block. This is because the functionality is confined within

80

CHAPTER 7. DISCUSSION

the block. On the other hand, by removing or altering some code without using

building blocks may result in unexpected effects on other functionalities.

7.2 Limitations

Occasionally, the Android APIs will have some of their functions updated or dep-

recated. However, modifications of Android’s APIs will not affect Arctis building

blocks based on them. Thus, these blocks must be brought up to date manually.

As a consequence, the API building blocks can be outdated without developers

necessary being aware of it.

A fundamental requirement for implementing the building blocks into an appli-

cation is that developers have sufficient knowledge of how to use the Arctis tool.

Even though using it is quite intuitive, there are some concepts developers should

acquire before beginning to model and implement building blocks.

Using a building block in order to embrace functionality into an application is

difficult and time-consuming if the application hasn’t been using the Arctis tool

from the beginning. In case only a minor functionality is going to be implemented,

the time gained on implementing the building block will probably be lost if the

whole application’s behavior needs to be replaced by Arctis models.

7.3 Further Work

In this thesis, some aspects on how Wi-Fi Direct could be implemented in a system

have been discussed. However, in order to completely cover the Android’s Wi-

Fi Direct API, it still remains some use-cases to be explored and discussed. In

addition, building blocks from other APIs could be created in order to demonstrate

that this method of developing is not constricted to a single API.

In order to examine the actual time saved by using the API blocks, we could

measure the time some selected developers spend on implementing a specific func-

tionality with a set of predefined API blocks. Furthermore, we could compare this

time to the time some other developers spend on implementing the exact same

functionality, but without using the API blocks.

81

CHAPTER 7. DISCUSSION

82

Chapter 8
Conclusion

Wi-Fi Direct is one of many technologies which has recently made its entrance to

the Android platform. In order to utilize and implement such up-to-date technolo-

gies, developers need to gain sufficient knowledge. This is sometimes challenging

and much time is therefore spent on understanding them. By using Arctis SDK,

we have developed building blocks to ease the interpretation of this functionality.

The building blocks emerged through an iterative process between establishing the

requirements, analysis and design, implementation and evaluation. Together with

Pixavi, a set of use-cases has been devised to verify the blocks requirements. In

order to prove the utility of the blocks, they were implemented in an example

application. This application was further tested and evaluated before the require-

ments once again were examined. This iterative process continued until the blocks

covered a satisfactory amount of functionality according to the requirements.

A significant amount of development time will be reduced by using the building

blocks we have presented in this thesis. This is due to the following reasons:

• Using a graphical notation to present the expected behavior will enhance

the understanding. As a result, the time developers need to spend in to gain

sufficient amount of knowledge will decrease.

• The blocks add contracts to the behavior, which makes it less prone to design

flaws. Thus, the testing and error correction time will be reduced.

• The implementations of functionality from the Android’s Wi-Fi Direct API

are already completed within these blocks.

83

CHAPTER 8. CONCLUSION

By using these results as a foundation, further development of building blocks can

be realized by exploring more APIs and use-cases. It is hoped that this way of

thinking will inspire other developers to see the value of incorporating graphical

models in the development process.

84

References

[1] Google Inc. and Open Handset Alliance. WifiP2pManager. [Online].

Available: http://developer.android.com/reference/android/net/

wifi/p2p/WifiP2pManager.html. [Accessed February 28, 2012].

[2] David D. Coleman and David A. Westcott. CWNA: Certified Wireless

Network Administrator Official Study Guide: Exam PW0-104. John Wiley

& Sons, 2009.

[3] Wi-Fi Alliance. Wi-fi certified wi-fi direct: Personal, portable wi-fi

technology. October 2010.

[4] Wi-Fi Alliance. Wi-fi gets personal: Groundbreaking wi-fi direct launches

today, October 2010. [Online]. Available:

http://www.wi-fi.org/media/press-releases/wi-fi%C2%

AE-gets-personal-groundbreaking-wi-fi-direct%E2%84%

A2-launches-today. [Accessed February 23, 2012].

[5] Wi-Fi Alliance. Wi-fi certified wi-fi protected setup: Easing the user

experience for home and small office wi-fi networks. December 2010.

[6] Olli Vihervuori. Recent developments in ieee 802.11 wireless local area

network link-layer security. April 2009. [Online]. Available: http:

//cse.tkk.fi/en/publications/B/5/papers/vihervuori_final.pdf.

[Accessed May 22, 2012].

[7] Daniel Camps-Mur, Xavier Pérez-Costa, and Sebastià Sallent-Ribes.

Designing energy efficient access points with wi-fi direct. Computer

Networks, 2011. [Online]. Available:

http://www.campsmur.cat/files/wifi_direct_CN.pdf. [Accessed May

85

http://developer.android.com/reference/android/net/wifi/p2p/WifiP2pManager.html
http://developer.android.com/reference/android/net/wifi/p2p/WifiP2pManager.html
http://www.wi-fi.org/media/press-releases/wi-fi%C2%AE-gets-personal-groundbreaking-wi-fi-direct%E2%84%A2-launches-today
http://www.wi-fi.org/media/press-releases/wi-fi%C2%AE-gets-personal-groundbreaking-wi-fi-direct%E2%84%A2-launches-today
http://www.wi-fi.org/media/press-releases/wi-fi%C2%AE-gets-personal-groundbreaking-wi-fi-direct%E2%84%A2-launches-today
http://cse.tkk.fi/en/publications/B/5/papers/vihervuori_final.pdf
http://cse.tkk.fi/en/publications/B/5/papers/vihervuori_final.pdf
http://www.campsmur.cat/files/wifi_direct_CN.pdf

REFERENCES

21, 2012].

[8] Google Inc. and Open Handset Alliance. Android 4.0 Platform Highlights.

[Online]. Available:

http://developer.android.com/sdk/android-4.0-highlights.html.

[Accessed February 24, 2012].

[9] Google Inc. and Open Handset Alliance. Platform Versions. [Online].

Available: http://developer.android.com/resources/dashboard/

platform-versions.html. [Accessed May 21, 2012].

[10] Google Inc. and Open Handset Alliance. Intents and Intent Filters. [Online].

Available: http://developer.android.com/guide/topics/intents/

intents-filters.html. [Accessed May 7, 2012].

[11] Google Inc. and Open Handset Alliance. Application Fundamentals.

[Online]. Available:

http://developer.android.com/guide/topics/fundamentals.html.

[Accessed May 8, 2012].

[12] Google Inc. and Open Handset Alliance. Wi-Fi Direct. [Online]. Available:

http://developer.android.com/guide/topics/wireless/wifip2p.html.

[Accessed May 12, 2012].

[13] Google Inc. and Open Handset Alliance. WifiP2pManager.ChannelListener.

[Online]. Available: http://developer.android.com/reference/android/

net/wifi/p2p/WifiP2pManager.ChannelListener.html. [Accessed May

12, 2012].

[14] Google Inc. and Open Handset Alliance. The AndroidManifest.xml File.

[Online]. Available: http://developer.android.com/guide/topics/

manifest/manifest-intro.html. [Accessed May 11, 2012].

[15] Google Inc. and Open Handset Alliance. android.net.wifi.p2p. [Online].

Available: http://developer.android.com/reference/android/net/

wifi/p2p/package-summary.html. [Accessed May 11, 2012].

[16] Google Inc. and Open Handset Alliance. Manifest.permission. [Online].

Available: http://developer.android.com/reference/android/

Manifest.permission.html. [Accessed May 11, 2012].

[17] Google Inc. and Open Handset Alliance. <uses-feature>. [Online].

86

http://developer.android.com/sdk/android-4.0-highlights.html
http://developer.android.com/resources/dashboard/platform-versions.html
http://developer.android.com/resources/dashboard/platform-versions.html
http://developer.android.com/guide/topics/intents/intents-filters.html
http://developer.android.com/guide/topics/intents/intents-filters.html
http://developer.android.com/guide/topics/fundamentals.html
http://developer.android.com/guide/topics/wireless/wifip2p.html
http://developer.android.com/reference/android/net/wifi/p2p/WifiP2pManager.ChannelListener.html
http://developer.android.com/reference/android/net/wifi/p2p/WifiP2pManager.ChannelListener.html
http://developer.android.com/guide/topics/manifest/manifest-intro.html
http://developer.android.com/guide/topics/manifest/manifest-intro.html
http://developer.android.com/reference/android/net/wifi/p2p/package-summary.html
http://developer.android.com/reference/android/net/wifi/p2p/package-summary.html
http://developer.android.com/reference/android/Manifest.permission.html
http://developer.android.com/reference/android/Manifest.permission.html

REFERENCES

Available: http://developer.android.com/guide/topics/manifest/

uses-feature-element.html. [Accessed May 11, 2012].

[18] Bitreactive. [Online]. Available:

http://www.bitreactive.com/technology/faq. [Accessed June 2, 2012].

[19] Henriette Baumann, Patrick Grässle, and Philippe Baumann. UML 2.0 in

Action. Packt Publishing Ltd., 2005.

[20] Martin Fowler. UML Distilled: A Brief Guide to the Standard Object

Modeling Language. Pearson Education Inc., 2004.

[21] Robert France and Bernhard Rumpe. Model-driven development of complex

software: A research roadmap. In 2007 Future of Software Engineering,

pages 37–54. IEEE Computer Society, 2007.

[22] Dean Leffingwell and Don Widrig. Managing Software Requirements: A Use

Case Approach. Addison-Wesley Proffesional, 2003.

[23] Rajib Mall. Fundamentals of Software Engineering. PHI Learning Private

Limited, third edition, 2009.

[24] Agile vs. other software-development methods. [Online]. Available:

http://pg-server.csc.ncsu.edu/mediawiki/index.php/CSC/ECE_517_

Fall_2010/ch6_6d_NM. [Accessed June 13, 2012].

[25] Google Inc. and Open Handset Alliance. logcat. [Online]. Available:

http://developer.android.com/guide/developing/tools/logcat.html.

[Accessed June 1, 2012].

[26] Google Inc. and Open Handset Alliance. Designing for Responsiveness.

[Online]. Available: http://developer.android.com/guide/practices/

design/responsiveness.html. [Accessed June 1, 2012].

87

http://developer.android.com/guide/topics/manifest/uses-feature-element.html
http://developer.android.com/guide/topics/manifest/uses-feature-element.html
http://www.bitreactive.com/technology/faq
http://pg-server.csc.ncsu.edu/mediawiki/index.php/CSC/ECE_517_Fall_2010/ch6_6d_NM
http://pg-server.csc.ncsu.edu/mediawiki/index.php/CSC/ECE_517_Fall_2010/ch6_6d_NM
http://developer.android.com/guide/developing/tools/logcat.html
http://developer.android.com/guide/practices/design/responsiveness.html
http://developer.android.com/guide/practices/design/responsiveness.html

	Title Page
	Introduction
	Simplicity vs. functionality
	Investigating the API

	Background
	Wi-Fi
	Wi-Fi Direct
	Security
	Group owner
	Key mechanisms
	Optional capabilities
	Power management

	Wi-Fi Direct in Android
	API specific components
	The Wi-Fi Direct API

	Methodology
	The choice of method
	The development process
	Connection issue
	Development environment

	System Implementation Design
	Implementation alternatives
	Design choices

	API Building Blocks
	The Wifi Direct Receive block
	Description of the Wifi Direct Receive block
	Analysis of the Wifi Direct Receive block

	The Wifi Direct Discover Peers block
	Description of the Wifi Direct Discover Peers block
	Analysis of the Wifi Discover Peers block

	The Wifi Direct Connect block
	Description of the Wifi Direct Connect block
	Analysis of the Wifi Direct Connect block

	Combining the API blocks
	Description of the Wifi Direct Service block
	Analysis of the Wifi Direct Service block
	The Wifi Direct Responder and the Wifi Direct Initiator

	Evolvement of the Wifi Direct Service block
	The Wifi Direct 1 block
	The Wifi Direct 3 block
	The Wifi Direct 4 block

	Example Application
	Application building blocks
	The Wifi Direct Application Overview block

	Discussion
	Findings
	Limitations
	Further Work

	Conclusion
	References

