
Using Case-based Reasoning for Privacy
Decisions

Daniel Jørgen Børseth

Master of Science in Communication Technology

Supervisor: Svein Johan Knapskog, ITEM

Department of Telematics

Submission date: June 2012

Norwegian University of Science and Technology

PROJECT DESCRIPTION

Student’s name: Daniel Jørgen Børseth
Title: Using Case-based Reasoning for Privacy Decisions
Description:

Protecting your privacy has become increasingly difficult, as more and more personal informa-
tion is shared through the use of social networks, mobile applications and location based services.
While there are some implementations of privacy enhancing technology to protect personal in-
formation, we have yet to see widespread adoption by end-users.

SINTEF ICT is currently investigating new approaches to privacy protection of end-users. We
have implemented a prototype PET that aims to help by giving users advice on how to behave in
different privacy contexts. The software is intended to run on for example a laptop or smartphone.
The software uses cased-based reasoning (CBR) combined with anonymous community support
to learn the user’s privacy preferences. This project will propose, implement and evaluate the
suitability of CBR logic for the PET. Focus will be on modeling, programming and testing the
behavior of the algorithm.

Assignment given: 2012-01-16
Supervisor: Svein Johan Knapskog

Abstract

SINTEF ICT has developed a prototype Privacy Enhancing Technology
called Privacy Advisor that uses Case-based Reasoning to give advice to
users on if they should accept or reject the privacy policies of a service
provider in a given context. The purpose of this PET is to learn the
privacy preferences of a user and give advice according to the previous
decisions the user has made.

The goal of this thesis is to propose, implement and test new CBR logic for
Privacy Advisor so that the advice given to the user is more trustworthy.
These goals have been reached by studying the various technologies and
methodologies Privacy Advisor is based on, as well as the current imple-
mentation of Privacy Advisor itself. The results of the thesis are three
algorithms that improve upon the existing CBR logic in Privacy Advisor
to a certain degree, as well as a fuzzy control system that uses fuzzy logic
to determine the similarity between elements in a privacy policy.

The results from the thesis have shown that even though the approach
of using fuzzy logic for similarity calculations is reasonable, several design
flaws in the implementation of Privacy Advisor limits the amount of testing
possible, and the degree the CBR logic can be improved. The results from
testing the new implementations did not reveal any definite proof that the
new implementation is any better.

Abstract

SINTEF IKT har utviklet en prototype av en Privacy Enhancing Tech-
nology (PET) som bruker Case-based Reasoning (CBR) til å gi r̊ad til
brukere om hvorvidt de skal godta eller avsl̊a personvernspoliser gitt av
tjenestetilbydere i en gitt kontekst. Meningen med denne PETen er å
lære personvernspreferansene til en bruker og gi r̊ad som følge av tidligere
avgjørelser brukeren har tatt.

Målet med denne masteroppgaven er å foresl̊a, implementere og teste ny
CBR logikk til Privacy Advisor slik at r̊adene gitt til brukeren er mer
p̊alitelige. Disse målene har blitt n̊add ved å studere de forskjellige teknolo-
giene og metodologiene Privacy Advisor er basert p̊a, samt den n̊aværende
implementasjonen av Privacy Advisor. Resultatet av denne masteropp-
gaven er tre algoritmer som forbedrer den n̊aværende CBR logikken til
forskjelig grad, i tillegg til et fuzzy control system som bruker fuzzy logic
til bestemme likheten mellom elementer i en personvernspolise.

Resultatene fra denne masteroppgaven har vist at selv om det å bruke fuzzy
logic til å bestemme likhetskalkuleringer er en rimelig fremgangsmåte, s̊a
begrenser en del designfeil i implementasjonen av Privacy Advisor graden
av testing som er mulig, og graden av forbedring som er mulig. Resultatene
fra testingen av den nye implementasjonen viste ingen definitive bevis p̊a
om den nye implementasjonen er bedre.

Preface

This report constitutes my masters thesis as part of the Master of Science
studies at the Norwegian University of Science and Technology (NTNU).
The thesis was carried out during the spring of 2012.

I would like to thank my supervisor at SINTEF ICT, Karin Bernsmed and
my professor Svein Johan Knapskog, for guidance, valuable feedback and
suggestions during this research.

Trondheim, June 10, 2012
Daniel Jørgen Børseth

3

Contents

1 Introduction 1

1.1 Background & Motivation 1

1.2 Related Work . 2

1.3 Goals & Method . 3

1.4 Structure of Thesis . 4

2 Background 5

2.1 Internet Privacy . 5

2.1.1 Privacy Concerns 6

2.1.2 Privacy Policies . 7

2.1.3 Privacy Enhancing Technology 11

2.2 Case-based Reasoning . 12

2.2.1 CBR Types . 13

2.2.2 The CBR Cycle . 15

2.2.3 Suitability of CBR 19

2.3 Privacy Advisor . 19

2.3.1 The CBR Engine 21

2.3.2 Distance Metrics 22

3 Implementation 25

3.1 Weaknesses of Privacy Advisor 25

3.1.1 Similarity . 26

3.1.2 Learning . 26

3.2 Similarity . 27

3.2.1 Algorithm . 28

3.2.2 Fuzzy Logic . 30

3.3 Implementation Specifics 36

3.3.1 jFuzzyLogic . 37

i

Contents

3.3.2 Distance Metric . 37

3.3.3 Retrieval . 45

3.3.4 Retention . 46

4 Testing 51

4.1 Functionality Testing . 51

4.1.1 Distance Metric . 51

4.1.2 Policy Similarity 53

4.1.3 Importance Values 56

5 Evaluation 59

5.1 Distance Metric Algorithm 59

5.1.1 Fuzzy Logic Similarity Calculation 59

5.1.2 Data Type Similarity 61

5.1.3 P3P Categories . 61

5.1.4 Overall Behavior of the Algorithm 62

5.2 The System . 62

5.2.1 Policy Similarity 62

5.2.2 Performance . 63

5.2.3 Subsequent Similarity Calculations 64

5.3 Overall Behavior . 65

6 Conclusion 67

6.1 Future Work . 68

A Fuzzy Control System 73

B The Improved kNN Implementation 75

ii

List of Figures

2.1 P3P flow . 8

2.2 P3P data types, purpose, retention and recipient 10

2.3 The CBR cycle [1] . 15

2.4 Privacy Advisor high-level design [2] 20

2.5 CBR system [3] . 21

2.6 P3P data-type ontology tree 23

3.1 The overall design of the distance metric algorithm 29

3.2 The membership function of the values hot and cold 31

3.3 The membership function of the variable current element . 41

3.4 The membership function of the variable previous element 42

3.5 The membership function of the output variable similarity 43

3.6 The resulting similarity of two different similarity calculations 44

4.1 Distance between similar elements 52

4.2 Distance between non-similar elements 53

4.3 Splitting statements . 54

4.4 Distance based on number of statements 55

4.5 Importance values by number of policies 56

iii

Listings

2.1 An example of a P3P statement (adapted from [4]) 9

2.2 An example of P3P data categories [4]) 11

3.1 Fuzzy Control Language variables 34

3.2 Fuzzy Control Language fuzzification 34

3.3 Fuzzy Control Language rule block 35

3.4 Fuzzy Control Language defuzification 36

3.5 Setting variables in jFuzzyLogic 37

3.6 The DistanceMetric class 38

3.7 The getTotalDistance method 39

3.8 The getPurposeDistance method 40

3.9 The ReductionAlgorithm class 45

3.10 The LearnAlgorithm class 46

3.11 The applyML method . 48

3.12 The calculateWeight method 49

v

Abbreviations

AI Artificial Intelligence

CBR Case-based Reasoning

FCL Fuzzy Control Language

HTTP HyperText Transfer Protocol

kNN k-Nearest Neighbor

P3P Platform for Privacy Preferences

PET Privacy Enhancing Technology

PII Personally Identifiable Information

URL Uniform Resource Locator

XML Extensible Markup Language

vii

1 Introduction

This chapter will introduce the background and motivation for this assign-

ment in section 1.1. Section 1.2 will mention some related work this thesis

is based on and inspired by. Section 1.3 will introduce the goals for this

thesis along with the method used during the thesis, and lastly section 1.4

will describe how the thesis is structured.

1.1 Background & Motivation

Merriam-Webster defines privacy as the quality or state of being apart from

company or observation and freedom from unauthorized intrusion <one’s

right to privacy> [5]. In the context of internet privacy this involves the

storing, displaying and provision of personal information over the internet.

As the use of social networks, mobile applications and location based ser-

vices increases, it becomes more difficult to protect a users privacy since

more and more personal information is being shared. Often, the user is

not aware of what information is being shared and may leave behind in-

formation that can be used to identify the user, or used by a malicious

third-party. By using a Privacy Enhancing Technology (PET) , a user can

gain more control over their own personal information, either by minimiz-

ing the data transferred between parties, or by hiding their identity.

A PET is a technical measure consisting of tools and mechanisms that

allow users to protect their personal information while online. The range

of PETs that exist cover different privacy concerns and allows the user

to gain more control over their personal information, and what is shared

while using the internet. Some PETs also hide the identity of a user, or

lets a user log what is being shared, and to whom it is being shared.

1

Chapter 1. Introduction

SINTEF ICT has developed a prototype PET that aims at providing ad-

vice to users in various privacy contexts. The prototype uses Case-based

Reasoning (CBR) and anonymous community support to learn the privacy

preferences of a user.

CBR is a problem solving approach that uses past experience to solve new

cases. Each solved case is stored in a knowledge base and is later used

when a new case needs to be solved. The prototype PET uses Platform

for Privacy Preferences (P3P) [6] policies as cases, and compares each

new case with previously solved ones to give users advice on if they should

accept or reject a privacy policy.

1.2 Related Work

There exists some work that tries to achieve the same results as Privacy

Advisor. The AT&T Privacy Bird [7] [8] is a P3P user agent that can

compare privacy policies using the users privacy preferences, but takes

a different approach in that users have to specify their own preferences.

Bernsmed et al. surveys user agents for matching privacy preferences in [9],

including the AT&T Privacy Bird. In the field of policies and policy sim-

ilarity, Bertino et al. [10] studies techniques for analysis of security and

privacy policies. In [11], Lin et al. creates a similarity measure that works

as a filter to remove dissimilar policies by assigning similarity scores to

policies. In [12], Saleh et al. uses Case-based Reasoning to determine if a

privacy policy satisfies a users’ privacy preferences.

The Privacy Advisor prototype is based on [13], where Tøndel et al. sug-

gests that a user agent able to learn the privacy preferences of users will be

useful for a larger group of people, as well as increase the accuracy of the

privacy preferences. Tøndel and Nyre have in [14] defined the similarity

metrics used in the current implementation of Privacy Advisor.

2

1.3. Goals & Method

1.3 Goals & Method

The overall goal of this thesis is to propose, implement and evaluate CBR

logic for the PET. The focus will be on modeling, programming and testing

the behaviour of the PET.

The research done in the thesis begins with an introduction to the termi-

nology, technology and methodology used in the current implementation of

the Privacy Advisor PET. This introduction will result in an identification

of weaknesses in the current implementation of the CBR logic that con-

tribute to create bad advice for the users of the PET. A solution to these

weaknesses will be proposed, implemented and tested. A more detailed

explanation of this approach is given below.

• Privacy - An introduction to privacy, with focus on how privacy is

handled on the internet will be studied, as well as the technologies

used to handle privacy policies in Privacy Advisor.

• Case-based reasoning - Since CBR has such an important part in

Privacy Advisor, the methodology will be studied, and the important

sub-processes will be identified.

• Privacy Advisor - How the current implementation of Privacy Ad-

visor solves the problem, with focus on the CBR logic used.

• Identify weaknesses - Identify weaknesses in the current implemen-

tation based on known difficulties with comparing privacy policies, as

well as the approaches taken to solve each sub-problem in the CBR

process.

• Propose improvements - Based on the weaknesses found, propose

alternative logic that improves the CBR process so that advice given

by Privacy Advisor is better and more reliable.

• Implementing the logic - Implement the proposed logic.

• Testing the logic - Test the behaviour of the logic.

3

Chapter 1. Introduction

• Evaluating the system - Evaluate Privacy Advisor as a whole

based on the results gained when testing the logic.

1.4 Structure of Thesis

The thesis is divided into two parts, the first contains the background

study the thesis is based on, and the second contains the results achieved

in this thesis.

The thesis is structured as follows:

Chapter 2 introduces the background information the thesis is based

on, with focus on internet privacy, the Platform for Privacy Preferences

project, Case-based Reasoning, and the Privacy Advisor implementation.

Chapter 3 proposes a solution and describes the implementation of the

improved CBR logic.

Chapter 4 describes the results gained when testing the system.

Chapter 5 discusses the results gained during testing.

Chapter 6 concludes the thesis and provides ideas for further work on

improving the system.

4

2 Background

This chapter introduces the theoretical background of the thesis, as well

as the Privacy Advisor prototype PET. The chapter begins with a brief

introduction to privacy on the internet in section 2.1, and introduces some

relevant terms and technologies that are used throughout this thesis. Fol-

lowing this, an introduction to Case-based reasoning, with focus on the

methodology and underlying processes, is made in section 2.2. Lastly, the

Privacy Advisor implementation is explained in section 2.3.

2.1 Internet Privacy

When using online services, users leave behind personal information that

can be gathered by organizations or other parties. The information that is

left behind is either Personally Identifiable Information (PII) or non-PII.

The National Institute of Standards and Technology define PII as:

Any information about an individual maintained by an agency,

including (1) any information that can be used to distinguish

or trace an individuals identity, such as name, social security

number, date and place of birth, mothers maiden name, or bio-

metric records; and (2) any other information that is linked or

linkable to an individual, such as medical, educational, finan-

cial, and employment information. [15]

Here, distinguishing or tracing an individuals identity means that the

holder of PII can identify an individual and process information to an

extent that determines specifics about the activities or status of that indi-

vidual.

5

Chapter 2. Background

The following sections will introduce some terms related to privacy on the

internet. Section 2.1.1 will describe some privacy concerns users face when

using the Internet, Section 2.1.2 describes privacy policies and one way of

representing these in a machine readable format, and lastly, section 2.1.3

describes a technology used to protect the privacy of users online.

2.1.1 Privacy Concerns

Most of the information a user leaves behind is typed in by the users

themselves in forms as answers to questions, or information that a web

browser automatically sends to a web site. The information that a web

browser sends is often not dangerous but can be used together with other

information about a user, i.e., what you have typed, and what links you

have clicked.

When visiting a web site, the browser uses the HyperText Transfer Protocol

(HTTP) to fetch the site or resource that has been requested. This HTTP

request includes information about the operating system and browser that

is used, along with the preferred language, IP address of the user, the

requested Uniform Resource Locator (URL) , and the URL of the previous

request. The request can also contain a cookie, a text string that is stored

on the user’s computer. A cookie is sent to the user in the HTTP headers

when a resource is requested, and is used by web sites to keep track of

information about a user and preferences the user might have set. Cookies

can be separated into session cookies that exist until the browser is closed

and then deleted, and persistent cookies that exist over multiple browser

sessions.

Cookies are a privacy concern because they can be used to track users on

a website without their consent. As an example, consider an online store

that keeps track of every item that has been viewed, every item that has

been bought, and every click made on the site. This can be used to show

ads based on what you have previously bought and viewed. Cookies can

also be used to track users across multiple web sites by using third-party

6

2.1. Internet Privacy

cookies. Since web sites often have resources that are hosted on other web

servers (e.g. ads), these other servers respond with a requested resource,

but often also cookies. In the case of ad companies, these cookies can be

used to track users on multiple web sites because the ads often exist on

a large number of web sites. By collection information in this way, an ad

company can create a user profile based on the ads that have been shown

and what the user clicks on. These profiles contain information about

interests and location, but they do not contain the identity of the user [4].

2.1.2 Privacy Policies

A privacy policy is a document that tells a user how a service provider will

use their personal information. This includes how information is gathered,

managed, used, and disclosed. Many service providers have accessible pri-

vacy policies that users can read, but these tend to be time-consuming and

difficult to read and understand. In addition, there is often no guarantee

that a privacy policy will stay unchanged.

Privacy policies are unstructured documents, which means that it is dif-

ficult to compare policies. By using structured machine-readable policies,

it is possible to compare privacy policies to a users privacy preferences. If

a web browser has the capability of reading a privacy policy language, it

can evaluate a privacy policy on behalf of the user. Since these languages

also are structured, it is possible to compare two policies.

THE PLATFORM FOR PRIVACY PREFERENCES PROJECT

The Platform for Privacy Preferences Project (P3P) is a standard format

that web sites can use to express their privacy policies. These privacy

policies can be retrieved and evaluated by web browsers automatically

without the user being required to read them. A user can then be notified

about a web sites privacy practises. P3P provides a way for users to be

informed about the practises of a web site, but it does not provide policy

enforcement [16].

7

Chapter 2. Background

As previously mentioned, a privacy policy describes how a service provider

handles data. P3P includes a vocabulary that describes how data is han-

dled, and a base data schema that describes what kind of data that is

collected. A P3P policy is a combination of these, and describes the data

practises of a service provider. These policies does not include as much

information as a privacy policy written in a spoken language since they

are intended for computers to read [4].

Figure 2.1: P3P flow

The P3P specification includes a protocol for requesting and transmitting

P3P policies that is build on the HTTP protocol. Figure 2.1 shows the

messages sent between a user agent and a web server when requesting a

resource. Each message in the figure is a standard HTTP request and

response. The first two messages, Request Policy Reference File and Send

Policy Reference File indicates a file that knows the location of the P3P

policy for the web site, or part of the web site. When the appropriate

policy is determined, a user can request and receive the P3P policy from

the web server (messages three and four). When the policy is received, the

user agent can parse it to determine the appropriate action according to

the users privacy preferences.

P3P policies are encoded using Extensible Markup Language (XML) , and

8

2.1. Internet Privacy

contains a single XML element, which can contain other XML elements.

These elements constructs a series of assertions that a web site makes about

their privacy practises. The type of assertions found in P3P policies are

mainly about general data practises, and how a web site handles particular

kinds of data. These last assertions are called statements and can be

considered the most important part of a P3P policy.

The general assertions consists of five types that appear in a P3P policy

in the order listed below [4].

• discuri/opturi - These attributes are used as location references to

the human-readable privacy policy, and opt-out mechanisms if they

exist.

• test - Used to indicate that the policy is for testing purposes.

• entity - Contains elements that describes the contact information

for the legal entity responsible for the privacy practises stated in the

policy.

• access - Used to explain a web sites policies on allowing people to

access the PII that has been collected.

– nonident - PII is not collected.

– all - Access to all PII.

– contact-and-other - Access to contact information and other

PII.

– ident-contact - Access to PII such as name, address, phone

number, etc.

– other-ident - Access to other PII than contact information,

e.g., subscription details and account information.

– none - No access to any information.

• disputes - Information about procedures in privacy-related disputes.

9

Chapter 2. Background

Listing 2.1: An example of a P3P statement (adapted from [4])

<STATEMENT>

<PURPOSE><admin/></PURPOSE>

<RECIPIENT><ours/></RECIPIENT>

<RETENTION><indefinitely/></RETENTION>

<DATA-GROUP>

<DATA ref="#dynamic.clickstream"/>

<DATA ref="#dynamic.http"/>

</DATA-GROUP>

</STATEMENT>

The data specific assertions are separated into six types: consequence, non-

identifiable, purpose, recipient, retention, and data. These assertions are

contained in a P3P STATEMENT element as shown in listing 2.1.

Figure 2.2: P3P data types, purpose, retention and recipient

The consequence element is a human-readable description that can be

10

2.1. Internet Privacy

shown to a user to explain why a web sites data practice exists, and po-

tentially why it benefits the user. The non-identifiable element is used in

a statement when a web site does not collect any PII, or when the data

collected is anonymized.

Figure 2.2 shows the remaining data specific assertions and their sub-

elements. The purpose element describes how a web site uses the data they

have collected, the recipient element describes what entities the collected

data is shared with, the retention element describes the data-retention pol-

icy a web site uses, and the data element describes what kind of data is

collected by the web site. P3P provides two ways to describe collected

data: elements, as shown in the figure, and categories. Categories are gen-

eral descriptions of the type of data a web site collects. These categories

are expressed by the categories sub-element of a data element. Listing 2.2

shows an example of the use of P3P categories in a P3P policy.

Listing 2.2: An example of P3P data categories [4])

<DATA-GROUP>

<DATA ref="#dynamic.referer"/>

<DATA ref="#dynamic.miscdata">

<CATEGORIES><physical/><online/><preference/></

CATEGORIES>

</DATA>

<DATA ref="#dynamic.cookies">

<CATEGORIES><state/><preference/><uniqueid/></

CATEGORIES>

</DATA>

</DATA-GROUP>

2.1.3 Privacy Enhancing Technology

Privacy Enhancing Technology is a term used to describe tools or appli-

cations used to protect the privacy of users. The goal of PETs is to allow

users more control over their PII. A PET usually works by acting as a

11

Chapter 2. Background

user agent in the users web-browser. This allows the PET to intercept the

relevant information a PET needs to perform the tasks it is created to do.

The various PETs that exist today use a multitude of different approaches

to handling a user’s PII [17]. One of these approaches is control over

information, i.e., a user is able to decide the amount of information that

is transferred to a service provider. This approach also allows for data

minimisation by minimising the data collected by a service provider. By

utilizing data tracking a user can track transactions of their personal data

by looking up what has been transferred, whom it was transferred to, and

when it was transferred.

Another approach is taking advantage of anonymity which hides the real

online identity by replacing it with a non-traceable identity. This means

using random IP addresses, pseudonyms, or disposable email addresses to

make it difficult to collect or trace a users personal data.

Privacy negotiations are negotiations between users and service providers

that determine the terms and conditions of handling of the users personal

data. This approach establishes individual privacy policies that can be

enforced so that a user can trust that a service provider does not break

the agreement when handling data.

The Stanford CIS wiki has a list of existing PETs [18]. These PETs imple-

ment some of the above mentioned approaches, but also other approaches

such as cryptography.

2.2 Case-based Reasoning

Case-based Reasoning (CBR) is a memory-based problem solving method-

ology which means that it uses memories, or past experiences, to solve

problems. Each past experience is stored in memory, and the process of

solving a new problem consists of finding a similar problem in memory,

and using it to solve the new one. This problem-solving method reflects

the way humans solve problems by remembering a previous problem and

12

2.2. Case-based Reasoning

solution, and using it to solve the current one.

As an example, consider a doctor treating a patient that remembers a

previous patient that had similar symptoms to the current one. The doc-

tor can then use the diagnosis and treatment of the previous patient to

diagnose and treat the current patient.

While CBR is an Artificial Intelligence (AI) approach, it is fundamentally

different from other approaches since it does not only use general domain

knowledge, but also specific knowledge from previously experienced cases.

Another important difference is that CBR implies incremental learning

since each solved case is stored when it is solved, and made available for

reuse for future problems [1].

The following sections are a summary of some of the key points described

in Case-Based Reasoning: Foundational Issues, Methodological Variations,

and System Approaches by A. Aamodt and E. Plaza [1], and describe what

CBR is and the important sub-tasks CBR is dependant on. Section 2.2.1

explain the different types of CBR that exist, while section 2.2.2 describes

the CBR cycle and its sub-tasks. Finally, section 2.2.3 describes when

CBR is a reasonable approach for problem solving.

2.2.1 CBR Types

All CBR systems depend on some central tasks:

• Problem identification - The process of identifying the current

problem.

• Case retrieval and matching - The process of retrieving past cases

and matching the current one to the previous ones.

• Solving a case - The process of using the retrieved case to solve the

current problem.

• Evaluate a solution - The process of evaluating the proposed so-

lution to the current problem.

13

Chapter 2. Background

• Update and learn - The process of updating the CBR system by

learning from the solved case.

These tasks exist in most CBR systems, but the specifics of each one may

differ according to what kind of problem that needs to be solved.

In addition, the term case-based reasoning includes various methods re-

sponsible for the organization, indexing and utilization of CBR systems.

These methods also vary from system to system. As an example, consider

a CBR system that groups similar previous cases into a generalized cases

instead of using each previous case as a separate unit, or instead of us-

ing previous cases directly to solve the current problem, the CBR system

adapts the previous case by using domain knowledge to fit the current

problem.

CBR is a term that describes systems of the kind previously described, but

it is also a term that describes one specific approach. Given below is a list

of CBR approaches [1].

• Exemplar-based reasoning - Problem solving in this approach is

a classification task, i.e., finding the class a case belongs to. The class

of the most similar past case becomes the solution to the problem.

• Instance-based reasoning - A specialization of the exemplar-based

reasoning approach. Needs a large number of instances to find a

concept definition. The instances are often simple since a major

focus is automated learning without user interaction.

• Memory-based reasoning - A collection of cases form a large mem-

ory. The focus of the approach is organizing, accessing and searching

the memory. The approach uses parallel processing techniques which

distinguishes it from other approaches.

• Case-based reasoning - A typical case has a degree of richness

of information and complexity. The case-based methods are able

to modify a retrieved solution when it is used in a different problem

solving context. This approach also makes use of general background

14

2.2. Case-based Reasoning

knowledge to a certain degree.

• Analogy-based reasoning - Similar to the case-based reasoning

approach, but is often used to characterize methods that solve prob-

lems based on past cases from a different domain. The main focus of

this approach is to reuse past cases, i.e., how to transfer a case from

one domain to another.

This list shows that CBR is a term that includes a lot of different ap-

proaches. These approaches depend on the same tasks, but the focus is

different in each one. This thesis will use the term case-based reasoning in

its generalized meaning.

2.2.2 The CBR Cycle

The CBR cycle can be defined by four main processes: retrieve, reuse,

revise, and retain. These processes are described as a cycle to emphasize

that CBR is a cycle of sequential steps.

Figure 2.3: The CBR cycle [1]

15

Chapter 2. Background

Figure 2.3 illustrates the CBR cycle. The CBR system solves a problem

by first retrieving similar cases from the collection of previous cases, then

the information and knowledge from this case (or cases) is reused to solve

the problem and create a proposed solution. When this solution has been

created, it is revised by application or evaluation, and repaired if the solu-

tion is a failure. The last step of the cycle is retaining the solved case for

reuse.

The most important part of a case-based reasoner is the case memory

since it holds all the previous cases that are used when solving a problem.

When searching the case memory and finding matches that are similar to

the problem, it is important that the processes used are effective and time

efficient, this is because the case memory might contain a large amount of

cases. When integrating a solved case into the case memory, these same

properties apply.

RETRIEVE

The retrieval process is the step in the CBR cycle responsible for retrieving

previous cases that can be used to solve a problem. The process starts with

a problem description that defines a new case and ends when a suitable

previous case has been found.

The first step in the retrieval process is identifying the features of the prob-

lem. This task may be complex if an attempt to understand the problem

is made, e.g., if some problem descriptors are unknown the user might be

requested to explain the descriptor, or checking if values are appropriate

in the problem context. Instead of using a complicated approach to identi-

fying the features, it is possible to use the input descriptors of the problem

directly.

When the features of a problem have been identified, these features can

be used to make a similarity assessment to find matching cases. One pos-

sibility is to compare the features directly by comparing attribute-value

pairs, and checking for syntactical similarities. This approach is mostly

16

2.2. Case-based Reasoning

appropriate in systems that lack domain knowledge, or where knowledge

is difficult to find. Another approach is to utilize semantic similarity which

requires that an extensive domain knowledge is available to generate ex-

planations that represent the degree of similarity between two cases. The

domain knowledge used when using a semantic approach helps to convey

the meaning of a problem when comparing two cases.

When comparing the features directly, the similarity of each case is com-

puted from a similarity measure, and the result is usually the k cases that

are most similar to the problem. This approach is often referred to as

k-Nearest Neighbor (kNN) [19] . When searching for similar cases in this

way, each past case has to be compared with the problem which means

that the algorithm has a complexity of O(n), where n is the number of

past cases. If n is very large, this approach might not be suitable.

When searching for similar cases, the result is often a set of cases and not

the best match. To find the best match the similar cases must be evaluated

by explaining non-identical features. This process generates consequences

and explanations that needs to be evaluated and justified by either using

general domain knowledge or user interaction. The best match is found by

ranking the similar cases by the strongest explanations, or other proper-

ties.

REUSE

The reuse process handles the proposal for an initial solution for the prob-

lem. At its most simple, this process returns the solution of the most

similar case. If the problem is a classification task, the solution is the

class of the most similar past case, and returning the solution of the most

similar case can often be appropriate. If there are significant differences

between the problem and the retrieved case, the retrieved case may need

to be adapted to account for the differences.

There are two ways to reuse past cases [1]: transformational reuse and

derivational reuse. In transformational reuse, the past case solution is

17

Chapter 2. Background

reused, but it is not a direct solution to the current case. Instead, trans-

formational operators {T} contain knowledge that can be used to trans-

form the solution into a new solution for the new case. Derivational reuse

takes another approach and looks at how the problem in the past case was

solved. The past case holds information about how it was solved, including

methods used to solve the problem. The new case is then solved by reusing

these methods in the new problem solving context.

REVISE

When an initial solution is generated by the reuse phase, it may be incor-

rect. The process of evaluating a solution and finding out if it is incorrect

is done by applying the solution in a real environment, or by requesting

that a user evaluate the solution.

The evaluation process is usually a process that is outside of the CBR

system. This is because it involves the application of the proposed solution

which may be time consuming depending on the problem. During this

process, the explanations that justify the proposed solution can be used to

determine if the solution is correct or incorrect. If a solution is incorrect,

the solution can be repaired by the CBR system, which involves identifying

the errors in the current solution and generating explanations for them.

These explanations are used to modify the solution so that failures are less

likely to occur.

RETAIN

The retention phase is the process of storing useful information from the

solved problem into the knowledge base. This involves selecting what parts

of the case that should be retained, and how to index and integrate the

case into the knowledge base.

An important aspect of this process is how the system should learn from

a case in the best possible way, and what information should be stored.

A common approach is storing the problem description and solution, but

18

2.3. Privacy Advisor

sometimes it is necessary to store information about the outcome of a

solution, i.e., how the solution fits into the system context. The solution

might also be stored as is, but some systems require that the problem

solving process that created the solution is stored if it is to be used when

reusing the case.

An important task in the retention phase is indexing the cases in the

knowledge base. The indexes are used when retrieving cases, and how the

cases are indexed has an impact on how the retrieval step is performed.

When the indexing has been constructed, it is integrated into the case base

along with the extracted case knowledge.

2.2.3 Suitability of CBR

When deciding what problem solving approach to use in a domain, CBR

has some advantages over other approaches. One of these advantages is

that CBR is not dependant on a fully defined problem domain, i.e., if the

domain is confusing or not well understood. CBR is often used in problem

domains that are rich on experiences, but harder to define explicitly. This

means that CBR is closer to human reasoning than other approaches.

Another important aspect of CBR is the capability to provide explanations.

CBR systems can provide explanations by showing individual cases as

proof for a decision. This enables the user of a system, or the system itself

to make decisions based on these explanations, which enables the system

to update itself when the system makes a wrong decision.

2.3 Privacy Advisor

Privacy Advisor is the prototype PET developed at SINTEF ICT which

aims to learn a users privacy preferences by acting as a user agent in the

users browser. The purpose of the PET is to relieve the user of specifying

privacy preferences out of context. The current implementation of Privacy

Advisor is designed to follow the four steps of the CBR cycle. The problem

19

Chapter 2. Background

Privacy Advisor solves, is the acceptance, or rejection of privacy policies

expressed in P3P from websites.

Figure 2.4: Privacy Advisor high-level design [2]

Figure 2.4 show the high-level design of the PET. The retrieval step of

the PET consists of searching a database for previous privacy policies that

have either been rejected or accepted, and finding the ones that are most

similar to the current policy. The reuse step uses these policies to give an

advice on how the user should act, accompanied by a confidence measure

that represents how trustworthy the advice is. The PET can also query a

community system to gain additional information if the confidence of an

advice is below a certain threshold, or utilize pre-configured knowledge to

revise the advice. The revise step presents the advice to the user along

with an explanation. At this point, the user can use these explanations

to perform an action of rejecting or accepting the privacy policy. The

retention step handles the storage of the new privacy policy, along with

the context, the recommended action, and user feedback. If the user does

not follow the advice of the PET, the settings of the user will be updated

20

2.3. Privacy Advisor

to reflect the user’s privacy preferences.

The following sections will explain the CBR logic used in Privacy Ad-

visor. Section 2.3.1 will describe the implementation of the CBR cycle,

while section 2.3.2 describes the specifics of the distance metric used in

the implementation.

2.3.1 The CBR Engine

Figure 2.5 shows the implementation of the CBR system in the current

implementation of the PET. The system consists of three algorithms that

are used in the retrieval, revision, and retention phases of the CBR cycle.

Figure 2.5: CBR system [3]

The ReductionAlgorithm class is responsible for the retrieval algorithm

used in the system. A description of a case, consisting of a P3P policy

and the URL of the website is received as input into the algorithm and

compared to previously experienced cases with descriptions similar to the

new case. If the description of the new case is identical to a previously

experienced case, the solution of the previous case is used directly, and

the rest of the CBR steps are skipped. When an identical match does not

exist, the algorithm uses the kNN algorithm to retrieve the most similar

21

Chapter 2. Background

cases to the new case. kNN retrieves the k nearest cases to the current

case, i.e., the k most similar cases, based on the distance from the current

to a previous case.

The ConclusionAlgorithm class is used when a set of cases is returned

from the reduction algorithm, and determines the recommended action

for a new case, i.e., whether the user should reject or accept a new P3P

policy. The algorithm also includes a confidence measure based on the

acceptance or rejection of the retrieved cases, e.g., if all the retrieved cases

were accepted, the confidence measure would be 100%, and the new policy

should also be accepted. This works by splitting the retrieved cases in two

sets, one with the cases that were accepted, and one with the cases that

were rejected. When these two sets have been created, the total similarity

of each set is computed and compared. The final advice is then chosen

based on a majority vote on the total similarity. The confidence measure

of this advice is then calculated as the fraction of the k retrieved cases.

The LearnAlgorithm class is a part of the retention phase in the CBR

cycle, and allows the CBR system to automatically tune the parameters

used in calculating the distance between cases. The implemented learning

algorithm updates these parameters each time a user overrides the advice

given by Privacy Advisor by considering every policy in the case base, and

checking if the policy contains a particular element. This means that the

most important elements are present in the majority of the policies.

2.3.2 Distance Metrics

When comparing privacy policies, Privacy Advisor uses a divide and con-

quer approach since the policies may contain a different number of state-

ments. This means that the process is split into sub-processes that find the

local similarity and global similarity of the privacy policies. This approach

enables Privacy Advisor to use different distance metrics for the four P3P

elements contained in a P3P statement, i.e., data, purpose, recipient and

retention.

22

2.3. Privacy Advisor

Each of the data-types that are contained within a policy is transformed

into a statement, this means that if a policy has the two data-types dy-

namic.clickstream and dynamic.http as shown in listing 2.1, two statements

are created. When the similarity is computed, pairs of statements with

similar data types are selected from each of the policies. Since data-types

follow a strict naming scheme, Privacy Advisor uses an ontology metric to

determine the similarity between data-types.

Figure 2.6: P3P data-type ontology tree

Figure 2.6 shows a simplified ontology tree that shows the distance between

user.home-info.postal and user.login.id. By counting the edges between the

nodes, the distance between these data-types can be determined to be 4.

The distance between recipient and retention elements is calculated ac-

cording to the inherit ordering of items as shown in figure 2.2. Since the

topmost elements in this ordering can be considered less intrusive than the

bottommost values each values is given a value according to its position in

the list. The distance between these is calculated as follows:

|Element-A - Element-B| = distance

23

Chapter 2. Background

The distance metric chosen for purpose elements is the Hamming distance

since it does not have an inherent ordering of purposes. The set of purposes

in a statement is represented as a boolean vector, and the distance between

two such sets is the number of alterations required in order to arrive at

equal sets [2].

24

3 Implementation

This chapter describes the parts of the existing implementation that has

been improved, and why this part was improved. The chapter also includes

the specifics of the implementation and the technological basis of the im-

plementation. The chapter begins with an explanation of the weaknesses

found in the current implementation of Privacy Advisor in section 3.1, in

section 3.2, the problem with comparing privacy policies is described, as

well as the overall outline of the proposed algorithm. Lastly, the specific

implementation of the algorithm is explained in section 3.3.

3.1 Weaknesses of Privacy Advisor

The current implementation of Privacy Advisor is described in section 2.3,

and is a simple prototype implementation of a CBR system that imple-

ments a simplistic and straightforward logic for solving the problem of

finding the most similar policies given a new policy.

One of the most important processes in the CBR cycle is retrieving simi-

lar cases from the case base. In Privacy Advisor this process depends on

the comparison of privacy policies, and determining the similarity between

the policies. This similarity is represented as a distance that describes

how similar two policies are. For Privacy Advisor to find the policies that

are correctly classified as the most similar, it is important that the algo-

rithm used to calculate the distance metric can utilize domain knowledge

to correctly classify entities as similar.

The majority of the weaknesses found in the current implementation is

related to finding the most similar policies and subsequently calculating

the distance between P3P elements.

25

Chapter 3. Implementation

This process can be considered the most important part of the CBR system,

so it is reasonable that this is the focus of the thesis.

3.1.1 Similarity

In the current implementation, similarity between data-types are calcu-

lated by an ontology metric. The problem with this measure is that it only

considers the distance between data-types in an ontology tree. As an exam-

ple, consider the data-types user.login.id and user.home-info.online.email.

These data-types might be considered as similar, but when using the on-

tology metric, the number of edges between them results in a distance of

5, while the distance between user.name and user.worktitle is only 2.

The similarity between the elements in the P3P purpose element are cal-

culated by using the hamming distance. The problem with this approach

is that the context of the problem is not reflected in the calculation. This

problem also exist in the similarity calculations between retention elements

and recipient elements, but to a lesser degree. These elements are com-

pared according to the inherent ordering of items, which means that one

can assume that some elements are more intrusive than others. Still, this

approach assumes that the user has the same preferences as the developer

that defines the values in the inherent ordering.

3.1.2 Learning

Another point of improvement is the learning algorithm implemented in

Privacy Advisor. The learning algorithm acts as an aid in improving the

distance metrics used when comparing policies by updating weights asso-

ciated with P3P elements. As stated in [3], the time before the weights are

updated when the system gains new information is important. Another

point is what weights are to be updated to reflect a user decision, and how

much these weights are to be changed.

The weights also represent the importance of an element. Since the weights

are calculated by what elements that are present in the majority of the

26

3.2. Similarity

policies, the importance does no reflect the contextual meaning behind an

element.

3.2 Similarity

One of the problems of working with privacy is that privacy is personal and

subjective. Privacy is also dependant on the context of a given problem, as

well as the culture and nationality of a given user. When comparing P3P

policies, this is reflected when the different elements in a policy is compared

with each other. Figure 2.2 in section 2.1.2 showed the data-types and data

handling elements in P3P, i.e., purpose, recipient, retention and data, and

their sub-elements. When comparing these sub-elements, it is difficult to

determine any specific similarities between them unless they are identical.

When the sub-elements are different, the similarity must be calculated

based on uncertain knowledge such as how important a sub-element is in

determining if a user rejects or accepts a policy, the difference in impact

between the two different sub-elements, and the accumulated impact when

combining several sub-elements in a policy.

As an example, consider the sub-elements Purpose.Admin, which is used

to signal that the web site will use information for web site and system

administration, and Purpose.Develop, which signals that information may

be used in development and evaluation of a web site. These sub-elements

can be considered as similar since they both signal that information can be

used to enhance or maintain a web site, but from a users’ standpoint, the

impact of one of the sub-elements might not be desirable. This example

describes some of the difficulties in comparing privacy policies.

A possible solution to this problem is to predefine relations between el-

ements, and use these relations as a basis for distance measures. The

problem with this approach is that these relations do not necessarily re-

flect the users preferences. There also exists a lot of distance functions that

can define the distance between elements in a set, but the amount of func-

tions that exist and the task to find the right metric can be overwhelming.

27

Chapter 3. Implementation

In addition, these distance functions does not reflect the semantics of the

elements being compared in the context of privacy.

The following section describes the proposed solution created in this the-

sis which takes a different approach than the traditional distance metrics

used in many systems. Section 3.2.1 describes the overall design of the

algorithm, while section 3.2.2 describes the method and technology used

to implement the distance metric algorithm.

3.2.1 Algorithm

To address some of the problems with comparing privacy policies an al-

gorithm that uses fuzzy logic has been created. This algorithm does not

try to solve the problem of comparing privacy policies by predefining re-

lations between elements or by calculating exact values for the distance

metric, but by utilizing that the nature of privacy, and subsequently the

elements of a P3P policy that impacts the privacy of a user, are imprecise.

By imprecise it is not meant that the elements of a P3P policy are not

defined and their meaning is often not clear, but that their meaning and

consequences vary according to the users preferences.

The main idea behind the algorithm is to determine an approximation of

the similarity between two P3P elements based on weights that signify the

importance of a P3P element. The importance of a P3P element can in this

case be defined as how much an element contributes to the user rejecting

the policy. This means that when calculating the importance weights,

the level of importance of a P3P element is based on the total number

of rejected policies the P3P element is present in. When comparing two

P3P elements, the importance plays the role of input into the algorithm.

As an example, if two P3P elements have the same level of importance,

these elements are equally important and their approximate similarity is

determined to be similar.

Figure 3.1 shows the overall design of the algorithm. The algorithm starts

when the new P3P policy is sent to the algorithm along with a previous

28

3.2. Similarity

Figure 3.1: The overall design of the distance metric algorithm

P3P policy retrieved from the case base.

The algorithm uses a divide and conquer approach to comparing policies.

A P3P policy is at first split into separate statements, where each state-

ment contains a single P3P data-type and sets of purpose, retention and

recipient elements. The statements of each of policy is processed in the

local similarity block, where the similarity of each statement is calculated.

Each one of these statements are compared to each other, and a distance

measure based on the local similarity of statements is calculated.

The reduce process reduces the statement so that identical elements are

not compared. The thought behind this is that if two policies contains

identical elements, the distance between these elements is 0, and does not

need not be calculated. The rest of the elements are then compared in

the fuzzy logic process. Each element in a statement is compared with the

elements of another statement, and the distance between each element is

summed to calculate the distance between each statement.

When the local similarities of each statement has been calculated, the algo-

rithm calculates a global similarity measure based on the local similarities.

This is the sum of the distance between all the compared statements, sep-

arated into four distance measures, one for each of the data handling P3P

elements and the P3P data type element.

29

Chapter 3. Implementation

When calculating the final distance between the policies, the distances

for each data handling practise and the data type is summed into a final

distance that is returned from the algorithm.

3.2.2 Fuzzy Logic

Fuzzy Logic is logic that is more related to human thinking and natural

language then traditional logic. Specifically, this means that unlike tradi-

tional logic, fuzzy logic aims at modeling the human reasoning process by

approximating answers to questions based on knowledge that is inexact,

incomplete or not reliable [20].

An important part of fuzzy logic is fuzzy set theory. In conventional set the-

ory, sets contain objects that satisfy precise properties required for mem-

bership [21]. If we consider the set of numbers H from 1 to 10, we can

write:

H = {r ∈ < | 1 ≤ r ≥ 10}

H is also described by its membership function:

µH(r) =

 1; 1 ≤ r ≥ 10

0; otherwise

This means that every real number r is either in H or it is not. Fuzzy

sets do on the other hand allow partial membership which can take values

ranging from 0 to 1:

µH : X → [0, 1]

where X is referred to as the universe of objects. This means that mem-

bership in a fuzzy set is a matter of degree.

30

3.2. Similarity

VALUES AND VARIABLES

Linguistic values are used in fuzzy logic to describe linguistic variables

such as temperature. If we consider the linguistic values high and low,

we can create linguistic statements by combining the variables and values

with a comparison symbol:

Linguistic variable− Symbol of comparison− Linguistic term

If we create a statement using the variable temperature, and the term low

- we would get the statement temperature is low. By using conventional

logic on this statement, the temperature would be either low or not, but

when using fuzzy logic the temperature can be a degree of low.

Figure 3.2: The membership function of the values hot and cold

Figure 3.2 shows the linguistic variable temperature as described by the

linguistic values high and low where x represents membership values in

degrees of celsius. The previous statement, temperature is low, would in

this example apply for temperatures that range from -10 degrees celsius to

10 degrees celsius.

RULES

By defining rules, it is possible to define empirical knowledge to help the

logical process. These rules are of the form:

31

Chapter 3. Implementation

IF condition THEN conclusion

The condition and conclusion can be linguistic statements, or a combina-

tion of linguistic statements. Consider another variable weather that is

defined by the values hot and cold, by using this statement we can create

a rule:

IF temperature is low THEN weather is cold

In this case, temperature is the input variable, and the conclusion deter-

mines the output, which is that the weather is cold. When a combination

of statements are used, these statements are combined by either the AND

operator, or the OR operator. If another variable, wind, defined by the

terms weak and string is introduced, a rule containing multiple statements

in the condition can be created:

IF temperature is low AND wind is strong THEN weather is cold

This rule uses the AND operator, which is related to the intersection be-

tween two sets. It is also possible to use the OR operator, and the NOT

operator, which are related to the union between two sets, and the comple-

ment of a set. These operations are defined by the membership functions.

The intersection between two sets A and B:

µA∩B(x) = I(µA(x), µB(x)),where I is the intersection operator

The union between two sets A and B:

µA∪B(x) = U(µA(x), µB(x)),where U is the union operator

32

3.2. Similarity

The complement of a set A:

µĀ(x) = 1− µA(x)

Both the intersection and union operator can be defined as minimum or

maximum, but if the intersection operator is defined as minimum, the

union operator must be defined as maximum.

The rules in fuzzy logic are contained within a rule base which consists

of several rules. Many of these rules can be applied to a given problem,

and the results of each rule needs to be combined. When combining the

results, the relationships between two fuzzy sets that apply are equality,

partial inclusion, and complete inclusion.

For two sets A and B, equality A = B applies if

µA(x) = µB(x) is true for all x ∈ G,
where G is a set

Partial inclusion A ⊂ B applies if

µA(x) ≤ µB(x) is true for all x ∈ G,
and µA(x) ≤ µB(x) is true for at least one x ∈ G

Complete inclusion applies if

µA(x) ≤ µB(x) is true for all x ∈ G

FUZZY CONTROL LANGUAGE

Fuzzy Control Language (FCL) is specified by IEC 61131 part 7 and defines

a language for programming fuzzy control applications. The term fuzzy

control means the control of processes with the help of fuzzy logic [22].

33

Chapter 3. Implementation

When using fuzzy control, the system takes input variables that are in the

form of real values, and outputs variables in the form of real values.

Listing 3.1: Fuzzy Control Language variables

VAR_INPUT

temperature : REAL;

wind : REAL;

END_VAR

VAR_OUTPUT

weather : REAL;

END_VAR

Listing 3.1 shows an example of the syntax used to define the variables

used in a fuzzy control system. The example shows two input variables,

temperature and wind, and the output variable weather. The input values

that are sent to the system are used in a process called fuzzification to

determine the degree of membership of each linguistic term of the corre-

sponding linguistic variable. As previously shown in figure 3.2, these terms

are low and high for the variable temperature.

Listing 3.2: Fuzzy Control Language fuzzification

FUZZIFY temperature

TERM high := (10,0)(30,1);

TERM low := (-10,1)(10,0);

END_FUZZIFY

FUZZIFY wind

TERM weak := (0,1)(4,0);

TERM strong := (4,0)(10,1);

END_FUZZIFY

The syntax used to define the linguistic terms used in the fuzzification pro-

cess is shown in listing 3.2. This block describes the linguistic variable by

34

3.2. Similarity

one or more linguistic terms defined by their membership function defined

as a piece-wise linear function.

Listing 3.3: Fuzzy Control Language rule block

RULEBLOCK No1

AND : MIN;

ACT : MIN;

ACCU : MAX;

RULE 1 : IF temperature IS high AND wind IS weak THEN

weather IS hot;

RULE 2 : IF temperature IS high AND wind IS strong THEN

weather IS comfortable;

RULE 3 : IF temperature IS low AND wind IS weak THEN

weather IS comfortable;

RULE 4 : IF temperature IS low AND wind IS strong THEN

weather IS cold;

END_RULEBLOCK

Listing 3.3 show the rule base of the system. These rules are used to

represent the empirical knowledge needed to perform the process from

input values to output values. The rules are evaluated using inference by

use of three functions:

• Aggregation - Represented in FCL by the AND or the OR key-

words. When the condition in a rule consists of several sub-conditions,

the aggregation of the separate values is used to determine the degree

of membership. As an example, rule 1 from listing 3.3 uses the AND

operator to combine sub-conditions, and the degree of membership

is calculated using the minimum algorithm as specified by the AND

keyword.

• Activation - Represented in FCL by the ACT keyword. Used to

determine the degree of membership of the conclusion based on the

degree of accomplishment of the condition determined by aggrega-

35

Chapter 3. Implementation

tion. The algorithms that are usually used for activation are the

minimum and multiplication algorithms.

• Accumulation - Represented in FCL by the ACCU keyword. Used

to combine the results of the rules to calculate an overall result.

The result of inference is a membership function, and can not be directly

processed. The goal is to get a crisp value as output, so the fuzzy infor-

mation from the inference process has to be converted into a crisp value

by a process called defuzzification.

Listing 3.4: Fuzzy Control Language defuzification

DEFUZZIFY weather

TERM cold := (-10,1)(0,1)(10,0);

TERM comfortable := trian 5 10 15;

TERM hot := (10,0)(25,1)(30,1);

METHOD : COG;

END_DEFUZZIFY

Listing 3.4 shows the syntax for the defuzzification block. The block de-

scribes the output variable by defining the linguistic terms and their mem-

bership functions. The defuzzification method is defined by the keyword

METHOD. The methods that are available are Center of Gravity (COG),

Center of Area (COA), Left Most Maximum (LM), Right Most Maximum

(RM), and Center of Gravity for Singletons (COGS).

3.3 Implementation Specifics

The implementation of the algorithm proposed in section 3.2.1 is imple-

mented using the java programming language and integrated with the Pri-

vacy Advisor source code. Other improvements have also been made to

enhance the process of calculating the similarity between P3P policies.

In section 3.3.1 the framework used for Fuzzy Control Systems is intro-

duced, then the algorithm that calculates the similarity between P3P poli-

36

3.3. Implementation Specifics

cies is explained in section 3.3.2. Section 3.3.3 explains the improved kNN

implementation, and lastly, section 3.3.4 explains the algorithm used to

calculate the importance weights used in the distance calculation.

3.3.1 jFuzzyLogic

jFuzzyLogic [23] is a java package that implements FCL specification IEC

61141 part 7 as described in section 3.2.2.

By defining files with the .fcl extension, the package allows for specifying

fuzzy control systems using FCL. These files are interpreted by jFuzzy-

Logic.

The java programming language is used to set the values of desired input

variables, and retrieve the output value of the system.

Listing 3.5: Setting variables in jFuzzyLogic

fis.setVariable("name_of_input_variable", value);

fis.setVariable("name_of_input_variable", value);

fis.evaluate();

fis.getVariable("name_of_output_variable").defuzzify();

Listing 3.5 shows how the input variables are set using java, and how the

resulting output variable is retrieved by running defuzzify() on it. In this

example, fis is an instance of the fuzzy inference system as specified by the

FCL file.

3.3.2 Distance Metric

A class called FuzzyDistance has been created which defines the environ-

ment that is needed to perform a calculation between P3P policies, and

implements the algorithm responsible for calculating the distance between

them. The class inherits from the DistanceMetric class to preserve the

modularity of the CBR system.

37

Chapter 3. Implementation

Listing 3.6: The DistanceMetric class

public abstract class DistanceMetric {

Properties weightsConfig;

String[] extraArgs = null;

protected DistanceMetric(Properties weights, String[]

extraArgs){

this.weightsConfig = weights;

this.extraArgs = extraArgs;

}

public abstract double getTotalDistance(PolicyObject a,

PolicyObject b);

}

Listing 3.6 shows the DistanceMetric class which FuzzyDistance inherits

from, and the single abstract method defined as getTotalDistance(PolicyObject

a, PolicyObject b). The class also contains the weights that are used to

calculate the distance in the FuzzyDistanceMetric class. These weights

are critical to the distance calculation and are saved as properties in a

configuration file, and retrieved when needed.

The getTotalDistance method is the method that performs the distance

calculation for two policies. The method calculates the local similarity of

each statement in the policies, and then the total distance between the

policies.

Listing 3.7 shows the implementation of the getTotalDistance method.

The method contains four variables, i.e., purposeDistance, recipientDis-

tance, retentionDistance, and dataDistance that contain the aggregated

distance measures obtained from calculating the distance between state-

ments. These variables each represent the similarity of a part of a state-

ment, e.g., the purposeDistance variable only contains the results of simi-

larity assessments between purpose elements.

38

3.3. Implementation Specifics

Listing 3.7: The getTotalDistance method

public double getTotalDistance(PolicyObject currentPolicy,

PolicyObject previousPolicy) {

setWeights();

ArrayList<Case> currentStatements = currentPolicy.getCases

();

ArrayList<Case> previousStatements = previousPolicy.

getCases();

double purposeDistance = 0;

double recipientDistance = 0;

double retentionDistance = 0;

double dataDistance = 0;

for (Case currentStatement : currentStatements) {

for (Case previousStatement : previousStatements) {

purposeDistance +=

getPurposeDistance(currentStatement,

previousStatement);

recipientDistance +=

getRecipientDistance(currentStatement,

previousStatement);

retentionDistance +=

getRetentionDistance(currentStatement,

previousStatement);

dataDistance +=

getDataDistance(currentStatement.getDataType(),

previousStatement.getDataType());

}

}

return purposeDistance + recipientDistance +

retentionDistance + dataDistance;

}

The methods getPurposeDistance, getRecipientDistance, and getRetentionDis-

tance are used to calculate the distance between the sub-elements of pur-

pose, recipient and retention. These three methods are implemented al-

39

Chapter 3. Implementation

most identically, but as mentioned, focus on different parts of a statement.

Listing 3.8: The getPurposeDistance method

private double getPurposeDistance(Case currentCase, Case

oldCase) {

Map<Purpose, Double> currentPurposes =

getPurposeWeights(currentCase.getPurposes());

Map<Purpose, Double> previousPurposes =

getPurposeWeights(oldCase.getPurposes());

Iterator currentIterator = currentPurposes.entrySet().

iterator();

Set<Map.Entry<Purpose, Double>> previous = previousPurposes

.entrySet();

double distance = 0;

while (currentIterator.hasNext()) {

Map.Entry<Purpose, Double> current =

(Map.Entry<Purpose, Double>)currentIterator.next();

for (Map.Entry<Purpose, Double> entry : previous) {

if (current.getKey() != entry.getKey()) {

fis.setVariable("current_element", current.getValue()

);

fis.setVariable("previous_element", entry.getValue())

;

fis.evaluate();

distance += fis.getVariable("similarity").defuzzify()

;

}

}

}

return distance;

}

Listing 3.8 shows the implementation of getpurposeDistance. The main

difference between this method and the two other methods is that the data

40

3.3. Implementation Specifics

sets that are iterated over are different, but the main operation is the same.

The method retrieves all the purpose elements in the two cases, and uses

the weights associated with each element as input values in the distance

calculation. The distance returned from the method is the aggregated

distance of all the element comparisons.

The method to calculate the distance between data types is calculated a

little bit different since each statement only contains a single data type.

This means that the getDataDistance method is a special case of the other

methods, where only one calculations is needed. The specifics of calculating

the distance is still the same as in the other methods.

FUZZY LOGIC DISTANCE MEASURE

The most important part of the method is the element comparison using

fuzzy logic. Appendix A shows the FCL system used to calculate the

distance between elements.

The system defines the input variables current element and previous element

that are defined as the importance of the specific elements that are com-

pared. The membership functions of these variables are described by the

three terms important, uncertain, and not important.

Figure 3.3: The membership function of the variable current element

Figure 3.3 shows the membership function of the current element variable.

The function consists of three triangular functions that define the degree

41

Chapter 3. Implementation

of membership for the terms that describe the variable. The thought be-

hind the function is based on the definition of importance defined in sec-

tion 3.2.1. An important element is an element that has a large impact

on if a policy is rejected, which means that elements with an importance

that ranges from 0.5 to 1 are considered important, while elements with an

importance that range from 0 to 0.5 are not important. This is a straight-

forward approach that puts the element into one of two categories, where

the degree of membership is determined by the importance of the element.

As the graph shows, an element with an importance of 1 has a stronger

degree of membership than an element with an importance of 0.6.

To make the membership function more reasonable, and not just an either-

or-system, the importance of an element can also be uncertain. Elements

with an uncertain importance are typically elements that are present in an

equal amount of rejected and accepted policies, and can not be said to have

an impact either way. the uncertain membership function ranges from

0.25 to 0.5, and overlaps the important and not important membership

functions. When an element has an importance that lies in one of the two

overlapping areas, this signals that the element is present in a larger degree

of rejected/accepted policies, but not enough to make a proper conclusion

on if the element contributes to either decision.

Figure 3.4: The membership function of the variable previous element

Both of the input variables are identical, and have the exact same member-

ship function as shown for the the variable previous element in figure 3.4.

42

3.3. Implementation Specifics

This is reasonable since the input variables are of the same type.

These two values are used to determine the output variable similarity

which defines how similar the two compared elements are, according to

the level of importance that has been specified for each element. The sim-

ilarity of two elements are represented as values from 0 to 1, where a low

number represents that the two elements are similar, and a high number

represents that they are not similar.

Figure 3.5: The membership function of the output variable similarity

Figure 3.5 shows the membership function for the output variable similar-

ity. The variable is defined by the terms similar, unclear, and not similar.

The term similar has a range from 0 to 0.33, and is defined by a trapezoidal

membership function. Since the function is trapezoidal, values from 0 to

0.15 have a maximum degree of membership, while values from 0.15 to 0.33

have varying degrees of membership. The not similar term is structured

in the same way, but ranges from 0.66 to 1, where the values from 0.85

to 1 has the maximum degree of membership. The unclear term ranges

from 0.25 to 0.75, and is defined by a triangular membership function. The

unclear term is used when the importance of one of the elements that is

being compared is uncertain, which means that the fuzzy control system

can not determine the similarity between the two elements since one of the

elements does not have a clear outcome on the final decision.

The similarity is determined according to the rules specified in the FCL

43

Chapter 3. Implementation

file. The rules work in the following way:

• Similar - The values are similar if the input variables of current element

and previous element both have a degree of membership in the im-

portant, uncertain, or not important functions.

• Unclear - The values are unclear if one of the input variables has a

degree of membership in the uncertain function.

• Not similar - The values are similar if one of the input variables

has a degree of membership in the important function, and the other

in the not important function.

More than one of these rules can be applied to a calculation, and the

fuzzy control system specifies the accumulation operator as the maximum

operator. The maximum operator is defined as Max(µ1(x), µ2(x)) which

means that it returns the maximum value of the two similarities calculated

by a rule.

(a) One rule applies (b) Two rules apply

Figure 3.6: The resulting similarity of two different similarity calculations

Figure 3.6a shows the resulting similarity of a calculation between elements

where both have an importance of 0.1. The figure shows that the similarity

in this case is only based on the membership function of the similar term,

which means that only one rule was applied to the calculation. Figure 3.6b

shows the similarity of elements with an importance of 0.1 and 0.4. In this

case, the second element is both important and uncertain, so two rules

are applied. The membership function in the figure shows that the degree

of membership is larger for the unclear term. The actual output value is

44

3.3. Implementation Specifics

determined by the Center of Gravity method which returns the mean of

the membership function.

3.3.3 Retrieval

One of the problems with the current implementation of the retrieval al-

gorithm is that the determination of the k most similar cases was done in

a non-efficient way.

Listing 3.9: The ReductionAlgorithm class

public abstract class ReductionAlgorithm {

protected PolicyDatabase policyDatabase;

String[] extraArgs = null;

public ReductionAlgorithm(PolicyDatabase policyDatabase,

String[] extraArgs) {

this.policyDatabase = policyDatabase;

this.extraArgs = extraArgs;

}

public abstract ArrayList<PolicyObject> reduce(final

PolicyObject policyObject);

}

Listing 3.9 shows the ReductionAlgorithm class wich defines the abstract

method reduce(final policyObject policyObject). This method defines the

retrieval algorithm of the CBR system, which uses a k-Nearest neighbor

approach to finding the most similar cases.

Since the distance calculation using fuzzy logic is more expensive than

the currently implemented distance calculation, the running time of the

retrieval algorithm was greatly increased. To improve the running time,

a new implementation of k-Nearest Neighbor was created, that improved

upon some of the weak points of the current implementation.

45

Chapter 3. Implementation

Appendix B shows the implementation of the retrieval algorithm. the dif-

ference between this implementation and the one implemented in Privacy

Advisor lies in the determination of the k most similar cases. The main

reason the efficiency of the current implementation is bad, is that the pro-

cess of finding out if a previous case is more similar than another previous

case calculated the distance between the current policy and the new pol-

icy for each of the k cases. This is not necessary since the distance has

already been calculated. In the worst case scenario, each previous policy

that is compared to the new policy is closer to the new policy than one

of the policies in the set of k cases. This would mean that the similarity

would have to be calculated twice for all the previous policies, once for the

initial distance calculation, and once for checking if the policy belongs in

the most similar cases.

The improved solution eliminates this last comparison. Instead, the dis-

tance between the new and previous policy is calculated once, and the

most similar policies are temporarily stored along with their distance to

the new policy. The method begins by filling up the set of k policies, and

the distance of each new policy is compared to the largest distance of the

current most similar cases. If a distance is less than the largest distance,

these policies are swapped and a new largest distance is calculated.

3.3.4 Retention

As in the current implementation of Privacy Advisor, the retention step of

the CBR system is based on updating weights that are used in the distance

calculation. In the current implementation, the weights are calculated

according to how many policies an element is present in. The improved

implementation determines the weights by defining the term importance in

another way. If the weights are to have any semantic meaning, a value that

describes how common an element is not sufficient. Instead, the weights

represent how much impact an element has when a user rejects a policy.

46

3.3. Implementation Specifics

Listing 3.10: The LearnAlgorithm class

public abstract class LearnAlgorithm {

Properties weightsConfig;

String[] extraArgs = null;

public LearnAlgorithm(Properties weightsConfig, String[]

extraArgs) {

this.weightsConfig = weightsConfig;

this.extraArgs = extraArgs;

}

public void learn(Gio theIO) {

theIO.setWeights(applyML(theIO));

}

protected abstract Properties applyML(Gio theIO);

}

Listing 3.10 shows the LearnAlgorithm class. the class defines the method

learn which is the method that is called from Privacy Advisor to signal that

the CBR system has come to the retention step. The applyML method is

responsible for calculating the weight of each element and return the new

properties. By new properties it is meant that the weights are calculated

each time a new policy is rejected or accepted, and not updated by adjust-

ing the current weights.

47

Chapter 3. Implementation

Listing 3.11: The applyML method

protected Properties applyML(Gio theIO) {

Properties weights = theIO.getWeights();

policyDatabase = theIO.getPolicyDatabase();

Properties newWeights = new Properties();

for(Object policyElement : weights.keySet()) {

newWeights.setProperty(policyElement.toString(),

Double.toString(getElementImportance(policyElement)))

;

}

return newWeights;

}

Listing 3.11 shows the applyML method, which defines the operations per-

formed during the learning step. The method retrieves the necessary ob-

jects needed to perform the importance calculations, and then iterates over

all the properties that define a weight. Then it calculates the importance

of each property. The getElementImportance method uses an approach

similar to that of the current implementation. Each statement in each

stored policy is iterated over to check if the element under consideration

is specified in the statement, and if it is, a check to see if the policy that

contains the element has been rejected or accepted is performed. The num-

ber of times an element is in a rejected policy is counted, and sent to the

method calculateWeight along with the total number of stored policies.

Listing 3.12 shows the calculateWeight method which is responsible for

calculating the importance of an element. In the current implementation,

the importance is calculated from an average:

Accepted policies

Total policies

The problem with this approach is that if an element is present in very few

policies, the resulting value is not trustworthy, e.g., if an element is present

48

3.3. Implementation Specifics

in 4 accepted policies and 0 rejected, then the average would be 4/4 = 1, and

another element is present in 50 accepted policies and 4 rejected policies,

the average would be 50/54 = 0.94. By using this approach, the first element

will have a larger importance than the second, even though the second is

present in more policies.

Listing 3.12: The calculateWeight method

private double calculateWeight(double rejectedPolicies,

double numberOfPolicies) {

if (numberOfPolicies == 0)

return 0;

double z = 1.96;

double phat = 1.0*rejectedPolicies/numberOfPolicies;

return (phat + z*z/(2*numberOfPolicies)

+ z * Math.sqrt((phat*(1-phat)+z*z/(4*numberOfPolicies))

/numberOfPolicies))/(1+z*z/numberOfPolicies);

}

In the improved weight calculation, an approach is used that balances the

proportion of rejected policies with the uncertainty of a small number of

policies. The formula used is the Wilson score interval developed by Edwin

.B Wilson [24]:

p̂+
z2α/2

2n ± zα/2

√
[p̂(1−p̂)+

z2α/2
4n]

n

1 +
z2α/2

n

where p̂ is the fraction of rejected policies, n is the total number of policies,

and zα/2 is the (1−α/2) quantile of the standard normal distribution. In the

implementation of the formula, as shown in listing 3.12, the variable z is

hard coded as 1.96. This means that the method defines a 95% confidence.

49

4 Testing

This chapter describes the testing performed on the improved logic imple-

mented into Privacy Advisor. The testing phase tests the functionality of

the logic out of context from the normal operation of Privacy Advisor to

gain an insight of the behaviour of the different sub-tasks the CBR system

consists of.

4.1 Functionality Testing

The purpose of testing the improved logic of the CBR system is to de-

termine if there are any parts of the system that behave differently then

intentioned. The intention is in this case that each part of the CBR sys-

tem that has been improved to some degree, should perform better than

the existing solution. The problem with this goal is that it is difficult to

model what the correct behaviour of the system is without testing it in

production over a long period of time.

The tests that are described here will therefore try to test the functionality

for different CBR processes separately to model how they behave without

making any assumptions on how the result should be in a real context.

4.1.1 Distance Metric

When calculating the distance between two policies, it is important that

the distance metric calculation returns values as expected according to the

input that is sent to the fuzzy control system. As an example, consider

two P3P elements that have the same importance, these elements should

be considered as similar according to how similarity has been defined in

the system. This also means that two elements that have different levels

of importance should be classified as non-similar.

51

Chapter 4. Testing

Because the range of importance values that are possible lie between 0 and

1, it is easy to model a wide range of possible outcomes of the distance

calculation. The values used to test the distance metric algorithm range

from 0 and are incremented by 0.01 up to 1. This allows the modeling of

the output values to represent any significant outlier values that might be

present.

Figure 4.1: Distance between similar elements

Figure 4.1 shows the behaviour of the fuzzy control system when the two

input values are equal. The rightmost part of the graph shows the resulting

output of the fuzzy control system. The graph shows that for most equal

pairs of input values, the output values are clustered at the bottom, which

means that the output for these values are around 0.12. The graph also

shows that for some input values, the output values climb to a maximum

of 0.35. The reason for this is because of the membership functions for

the current and previous element, as shown in figures 3.3 and 3.4. The

uncertain term in these membership functions overlaps with the important

and not important terms at the values from 0.25 to 0.75, which means

that when the input values are in this range, two rules are fired when

defuzzyfing the output.

When more than one rule is fired, the results of both rules are combined

using the defined accumulation operator. In the implemented fuzzy control

system, this operator is specified as the maximum operator since it gave

52

4.1. Functionality Testing

the best overall results of the available operators. Since the input to the

system is mostly unequal values, the accumulation operator has to reflect

what is best for the overall behaviour of the system, and not just for equal

values.

Figure 4.2: Distance between non-similar elements

Figure 4.2 shows the output of the fuzzy control system with unequal in-

put values. The graph shows that when the input values are opposites, the

resulting output variable is clustered around the value 0.87 which signifies

that the elements are not similar. The rightmost bottom value is a special

case in this model where the input values are both 0.5. Because of the

overlapping term uncertain, the output values are more spred out when

the input values lie between 0.25 and 0.75, which is reasonable. If another

accumulation operator is used, the output values would be even more clus-

tered around 0.87 which would provide little variation in the calculated

distance measure.

4.1.2 Policy Similarity

The process of calculating the distance between P3P policies depends on

that the distance metric, and the weights that are used to calculate the

distance metric are correct. One of the things that is interesting to test

is how the algorithm behaves during the aggregation of local similarities,

53

Chapter 4. Testing

and how much an effect the structure of the distance calculation has on

the total distance.

The current implementation of Privacy Advisor splits parts of a policy into

statements that contain one data type and potential recipient, retention

and purpose elements.

Figure 4.3: Splitting statements

Figure 4.3 shows how this is done in the current implementation. A P3P

statement that contain two data types are split into two statements that

contain a data type and all the data handling elements. In effect, this

means that the distance calculation has to calculate the similarity between

two elements n times, where n is the number of statements.

The following models of the system are based on inputting a new P3P

policy into the Privacy Advisor system, and comparing it to a case base

of 54 P3P policies. These policies have been rejected/accepted arbitrarily,

and the weights to calculate the distance have been calculated using the

improved method.

Figure 4.4 shows the effect on the distance if a policy has a large num-

ber of statements. Generally, the graph shows that if a policy has many

statements, i.e., the policy includes many data types, the distance will be

54

4.1. Functionality Testing

Figure 4.4: Distance based on number of statements

large. This is because the distance between the elements in a statement

is calculated for all the statements in a policy, and then added to the ag-

gregated sum of distances. In addition, the distance values are very large,

which might mean that the calculated distance value does not represent

the actual distance.

The number of statements also has an impact on the running time of the

algorithm. In the experiment, the total running time of the algorithm was

measured to 1 minute and 30 seconds, which is a very long time for a user

to wait for advice from the program. This is also reflected in the running

time of calculating the distance of a single statement. For instance, the

top right value in figure 4.4 has around 50 statements and a distance of

around 4000, and was calculated in 6.5 seconds.

The above result was performed by using the improved kNN implementa-

tion, and the result is a definite improvement when comparing the result to

the running time using the old kNN implementation. The old implemen-

tation performs a lot more similarity calculations, and the running time

was around 6 minutes and 32 seconds.

55

Chapter 4. Testing

4.1.3 Importance Values

The process of testing the calculation of importance values is done by

introducing a new case into Privacy Advisor, and solving this case. This

process will trigger the calculation of new weights since a new case has

been added to the case base.

When performing the test, the first result were that the weights were not

updated in the knowledge base. An effort to enable the functionality that

performs this task was made, and the testing was performed again. This

time, the result was that Privacy Advisor broke, and all the importance

values were removed from the property file.

Figure 4.5: Importance values by number of policies

Figure 4.5 shows how the importance values are distributed when using

the importance calculation without running it from Privacy Advisor. The

graph shows the results from 50 calculations, where 50 is the total number

of policies, and the x value represent the number of rejected policies. The

blue line shows the importance values when using the upper bound of the

Wilson score interval, and the red line the lower bound. By looking at the

56

4.1. Functionality Testing

instance where the number of rejected and accepted policies are both 25,

we have the importance 0.632 for the upper bound, and 0.367 for the lower

bound. This means that if the upper bound is set, the importance values

when a P3P element does not have any apparent impact will be higher,

meaning that the distance between these elements and non-intrusive P3P

elements will be larger.

57

5 Evaluation

This chapter presents an evaluation of the results obtained during testing,

and discusses them in the context of weaknesses and potential improve-

ments, as well as in the context of the goal of each improvement and the

fulfillment of this goal. The chapter will also take into account function-

ality that has not been directly tested, or functionality that is difficult to

test, that may introduce limitations on the system. Some of these limita-

tions are gained from experience with using Privacy Advisor. The chapter

begins by discussing the distance metric algorithm in section 5.1, before it

moves on to discuss the implementation as a whole in section 5.2

5.1 Distance Metric Algorithm

The distance metric algorithm was created to improve upon the weaknesses

described in section 3.1. This section will discuss the strengths and limita-

tions of the algorithm, as well as the strength and weaknesses of the parts of

the system that the algorithm is dependant on. In section 5.1.1, the fuzzy

control system is discussed, section 5.1.2 discusses the limitations of the

data type similarity calculation, section 5.1.3 discusses the lack of category

similarity calculations, and section 5.1.4 discusses the overall behaviour of

the algorithm.

5.1.1 Fuzzy Logic Similarity Calculation

The testing of the distance metric showed that when calculating the sim-

ilarity between input variables with equal importance, the results were

good when only one rule from the fuzzy control system was applied, and

more confusing when two rules were applied. Ideally, it would be best if

P3P elements with an equal importance always returned the same distance

59

Chapter 5. Evaluation

value, but with the membership functions of the input variables defined as

they are now, this is difficult. Changing the membership functions would

also have an effect on the output when the input variables are different,

which means that changing them would not necessarily result in better

output values.

When more than one rule is applied in the distance calculation the ac-

cumulation operator is used to determine the final output value, and as

mentioned in section 3.3.2 this is defined as the maximum operator. A

possible improvement in the fuzzy control system is to use another accu-

mulation operator to determine the final result.

A possible limitation is the membership function for the similarity out-

put variable. The similar and not similar membership functions are now

defined as trapezoidal functions, which means that the similarity is clus-

tered at the endpoints when only one rule is applied in the calculation. In

some cases it is possible that the difference between two similarity calcu-

lations is really small, and a greater distinction between them is needed.

To achieve this, a greater spread in the similarity might be desired. By

changing the membership functions, it is possible to minimize the area of

the membership function that has a maximum degree of membership, and

consequently reduce the clustering in the calculated similarity.

An important point about the similarity calculation is that it is not sup-

posed to calculate exact values of the similarity, but approximations. This

means that when the spread in final output values is as large as it is when

inputting similar importance values, the result might be considered good

when the uncertainty of the importance is taken into account. As the

membership functions are defined now, this is taken into account for im-

portance values that do not represent an impact in either direction when

a user accepts or rejects a policy. A similar spread can also be seen for

unequal importance values.

60

5.1. Distance Metric Algorithm

5.1.2 Data Type Similarity

Calculating the similarity between data types is one of the sub-tasks of the

distance metric algorithm, and uses the straight forward approach that is

used for calculating the similarity between all the P3P elements. One of the

limitations with this approach is that the P3P data types are structured

as shown in figure 2.6 in section 2.3. This means that if a data type

that contains another set of data types is included in a P3P policy, the

consequence is that all the data types beneath it in the tree are included.

The implementation does not take this into consideration, which means

that all data types are equal, which is not true. A possible solution is to

assign each level in the tree a weight, e.g., the root node has a value of 0,

while the leaf nodes has a value of n. This weight can then be multiplied

with the importance of an element to get an input to the fuzzy control

system. The problem with this approach is in incorporating the weight

into the existing similarity calculation which only takes values ranging

from 0 to 1. The easiest solution to this would be to create a separate

fuzzy control system that handles the similarity between data types.

An experience gained during testing was that the process of calculating

the similarity of data types is rather inflexible in that all the importance

weights are predefined. This means that in cases where P3P policies con-

tain data types that are customized, i.e., made by the service provider,

or in cases where the P3P policy contains typing errors, the system will

break. This is a difficult problem to handle because it is impossible to

predict what a service provider will name a customized data type, and it is

difficult to predict a miss spelt data type. The solution used when testing

the data type similarity was to ignore all unknown data types.

5.1.3 P3P Categories

One of the definite limitations of the distance metric algorithms is that it

does not take P3P categories into account when calculating the similarity.

61

Chapter 5. Evaluation

P3P categories are often used in P3P policies and it is a clear fault of the

algorithm that they are not handled. As Privacy Advisor is designed now,

each statement inputted into the distance metric algorithm contains the

specified P3P categories, and the only thing that is missing is the actual

similarity calculation.

5.1.4 Overall Behavior of the Algorithm

Although the algorithm is lacking in a few areas, the overall behaviour

works as expected and the calculations performed return values that are

appropriate considering the goal set for the behavior of the algorithm.

The most important requirement for the algorithm to work correctly is that

the importance values are correct, if these values are incorrect or incorrectly

calculated, the algorithm would return values that do not represent the

choices made by the user, and the system would not work properly.

5.2 The System

The system as a whole includes the CBR system and its sub-processes as

well as the rest of the implementation that has not been looked at during

this thesis. The goal of the new implementation is that it should work bet-

ter than the previous implementation. This section describes the results

from testing Privacy Advisor with the new CBR logic. Section 5.2.1 de-

scribes the results of performing similarity calculations between a new case

and all the previous cases in the knowledge base, section 5.2.2 describes

the performance of the system, section 5.2.3 describes the results after run-

ning the system on subsequent P3P policies, and section 5.3 describes the

results with a focus on the system as a whole.

5.2.1 Policy Similarity

As the results from section 4.1.2 shows, the comparison of policies is flawed.

Since the similarity calculation of policies does not work as intended be-

62

5.2. The System

cause of design faults in the underlying design of Privacy Advisor, it is

difficult to determine if the Policy similarity calculation works.

The biggest contributor to breaking the similarity calculation is how P3P

policies, and especially P3P statements are structured. This structure

impacts the similarity calculation in a way that implies that the only im-

portant part of a policy is how many data types it includes. In some cases,

this is not a bad assumption, i.e., a policy which requires many data types

is often less intrusive than a policy that requires few, but it is also possible

that a P3P policy that includes few data types may be more intrusive be-

cause of the nature of the data types. An example of this is when a policy

includes a data type that contains sets of data types. As mentioned in

the previous section, a possible solution to this problem would be to add

weights to the different levels of data types in an ontology tree, but the

result of the calculation would return a much smaller distance than if the

P3P policy just included all the data types specifically.

The best solution would be to keep the structure that is offered by the

P3P policy instead of using a customized structure. This enables the CBR

system to process the P3P policy in the way it was defined by the service

provider, which means that there is less of a chance that the contents of the

policy are evaluated out of context. This would also mean that the splitting

step of the distance metric algorithm (as specified in section 3.2.1) would

need to be defined differently. Instead of splitting the P3P policy into

statements containing one data type and several data handling practises,

a statement would consist of several data types and several data handling

practises that are related to the data types.

5.2.2 Performance

Another limitation that is also caused by the way P3P policies are struc-

tured is the running time of the similarity calculation. As shown during

the tests performed, the running time was excessively large, which results

in the system not being usable for users. The results gained during the

63

Chapter 5. Evaluation

tests were performed using the improved kNN implementation which was

an effort to reduce the running time of the previous implementation used

in Privacy Advisor. The running time when using the previous imple-

mentation was much greater than it is now, so in that aspect the new

implementation has achieved its goal, but the tests show that the kNN

implementation is not the bottleneck in the CBR system.

The solution considering performance is the same as for getting better sim-

ilarity calculations. If the structure is changed to a structure resembling

that of the original P3P policies, the calculation would need much fewer

comparisons between P3P elements. When running the similarity calcula-

tion now, the number of similarity calculations reflects the number of data

types a P3P policy specifies times the number of data practices specified.

If the structure is changed, the number of calculations needed would reflect

the number of data types and data handling practises, which would mean

that the number of calculations is greatly reduced.

5.2.3 Subsequent Similarity Calculations

One of the areas that is difficult to test is how the system behaves in

subsequent similarity calculations. The reason behind this is because the

system contains bugs that limit normal behavior. One of these bugs exist

in the retention phase of the CBR cycle, specifically in the integration of

updated weights into the knowledge base. When trying to test the effect

of a performed P3P policy decision, the system fails when trying to update

the weights, which means that the newest case does not have any effect on

following cases.

The testing performed on the importance calculation did on the other

hand give results on the general behavior of the algorithm. The values

seem reasonable for both the lower and upper bound, so the problem is to

decide which one to use. In the improved implementation the upper bound

was considered more appropriate. This is because of elements that do not

seem to have an impact in either direction of a users decision. Since these

64

5.3. Overall Behavior

elements are difficult to classify, it is easier to assume the worst and then

correct the decision.

5.3 Overall Behavior

Because of the previously mentioned limitations of the system, it is unnec-

essary to test the system as a finished system because the testing performed

clearly shows that the system does not work correctly. This also means

that it is impossible to determine if the new implementation is any better

or worse than the previous implementation, because there is no way of

determining the difference between the implementations correctly. If the

system is to be evaluated as a whole, the limitations in Privacy Advisor

mentioned previously must be fixed, and extensive testing based on real

interactions have to be performed.

As the system is now, the only definite results are related to the fuzzy

control system which behaves as intended. There might be a need for

tuning the fuzzy control system if cases where a bigger spread in similarity

values are needed, or if other cases that have not been tested in this thesis

are discovered.

65

6 Conclusion

By using Case-based Reasoning to determine the privacy preferences for

users, it is possible to lessen the responsibility for the user to configure the

PET, and make it more attractive to use. For the PET to work properly

and give the user good advice on which privacy policies that should be

rejected or accepted, it is important that the logic that the PET is built

on is able to represent the users preferences correctly. Privacy Advisor

is SINTEF ICT’s prototype implementation of this type of system which

uses CBR logic and and P3P policies to generate advice for the user. This

thesis has proposed, implemented and tested new logic to improve the

advice given by the system.

The new logic focused on calculating the similarity between policies by

using Fuzzy Logic and a Fuzzy Control System based on the importance

of a P3P element as seen from the users’ point of view. The thought behind

the approach was that traditional distance metrics introduced too much

subjectivity into the system, which would influence the advice given to

the user. In addition, many of the traditional distance metrics lack the

ability to represent the semantics of privacy in a good way. Instead, the

approach chosen aims to calculate approximations of similarity based on

as little predefined knowledge as possible, and instead depend on a users

actions to determine the similarity of elements in a privacy policy.

The result of the thesis are three algorithms implemented in java and

the Privacy Advisor system. The main algorithm is the distance metric

algorithm that calculates the similarity between two P3P policies using

fuzzy logic, while the two other algorithms were needed improvements to

make the distance metric algorithm perform better. The first of these is

an implementation of k-Nearest Neighbor meant to increase the running

time of the CBR retrieval phase, and the second an improvement on the

67

Chapter 6. Conclusion

old learning algorithm that redefines the term importance and balances

the results of the algorithm based on the number of occurrences of a P3P

element and the number of P3P policies. The distance metric algorithm

also includes a fuzzy control system used to process the importance of

elements, and return the similarity.

Sadly, the research done in the thesis can not come to any conclusions

about how good the improved logic is in contrast to the previous imple-

mentation. The design flaws and bugs in Privacy Advisor limit the amount

of testing possible, and because of time constraints, these flaws were not

fixed. Privacy Advisor clearly needs more work to be able to give any

results on whether it is an effective and usable tool for privacy protection.

On the other hand, tests done to the distance metric algorithm have shown

that the algorithm returns reasonable values in most cases, which signifies

that the use of fuzzy logic in the distance measure is a reasonable approach.

The research also shows that the minor improvements also had a positive

effect on the system by improving the correctness of the learning algorithm,

and increasing the total efficiency of Privacy Advisor.

6.1 Future Work

Since the testing of the system revealed a lot of shortcomings and limita-

tions of the system, there is a lot of work that needs to be done before the

system can be evaluated fully or used in production. Since these issues

have been discussed earlier, this section will provide a summary of these.

First, a description of further work that can be made to the whole system

is provided, then further work related to the CBR logic is summarized.

Privacy Advisor

• The way P3P policies are parsed and structured in Privacy Advisor

need to be improved so that the structure of the P3P policy is re-

tained. The reason for this is to allow the CBR system to perform

correct similarity calculations between policies, as well as to improve

68

6.1. Future Work

the performance of the system to make it usable for users.

• The various bugs in the system needs to be fixed to make the sys-

tem behave correctly. Especially the bug concerning the learning

algorithm is of great importance. Without an ability to learn from

subsequent cases, the system will not be able to work properly.

CBR logic

• A study to improve the similarity calculations by focusing on the

membership functions and accumulations operators can be made. As

of now, the results are balanced to account for all possible outcomes,

which produces some confusing results for some input values. If

the results can be improved, the similarity calculations will be more

accurate.

• The distance metric algorithm, or more specifically, the data type

similarity calculation can be improved to take the level of the data

type in the ontology tree into account. This will allow the similarity

calculations to be more accurate, especially in cases where a P3P

policy contains elements consisting of additional elements.

• The distance metric algorithm does not take P3P categories into

account. A method to compare these using the same approach as

created in this thesis, or by another approach can be created. This

would allow the distance calculation to be better and more correct.

69

Bibliography

[1] Agnar Aamodt and Enric Plaza. Case-based reasoning: Foundational
issues, methodological variations, and system approaches. AI Com-
munications, 7(1):39–59, 1994.

[2] Karin Bernsmed, Inger Anne Tøndel, and Åsmund Ahlmann Nyre.
Design and Implementation of a CBR-based Privacy Agent. In To ap-
pear in Proceedings of the Seventh International Workshop on Fron-
tiers in Availability, Reliability and Security, FARES 2012, August
2012.

[3] Ulf Nore, Nicholas Gerstle, Henrik Knutsen, Dimitry Kongevold,
Einar Afiouni, Neshahavan Karunakaran, and Amanpreet Kaur. Cus-
tomer driven project: Privacy advisor, November 2011.

[4] Lorrie Faith Cranor. Web Privacy with P3P. O’Reilly & Associates
Inc., 2002.

[5] Merriam-Webster. Privacy, March 2012.

[6] The World Wide Web Consortium. Platform for Privacy Preferences
(P3P) Project, March 2012.

[7] Lorrie Faith Cranor, Praveen Guduru, and Manjula Arjula. User
interfaces for privacy agents. ACM Trans. Comput.-Hum. Interact.,
13(2):135–178, June 2006.

[8] Lorrie Faith Cranor, Manjula Arjula, and Praveen Guduru. Use of a
P3P user agent by early adopters. In Proceedings of the 2002 ACM
workshop on Privacy in the Electronic Society, WPES ’02, pages 1–10,
New York, NY, USA, 2002. ACM.

[9] Karin Bernsmed, Åsmund Ahlmann Nyre, and Martin Gilje Jaatun.
User agents for matching privacy policies with user preferences. 2011.

[10] E. Bertino, C. Brodie, S. B. Calo, L. F. Cranor, C. Karat, J. Karat,
N. Li, D. Lin, J. Lobo, Q. Ni, P. R. Rao, and X. Wang. Analysis of
privacy and security policies. IBM J. Res. Dev., 53(2):225–241, March
2009.

[11] Dan Lin, Prathima Rao, Elisa Bertino, and Jorge Lobo. An approach
to evaluate policy similarity. In Proceedings of the 12th ACM sympo-
sium on Access control models and technologies, SACMAT ’07, pages
1–10, New York, NY, USA, 2007. ACM.

71

[12] R. Saleh, D. Jutla, and P. Bodorik. Management of users’ privacy
preferences in context. In Information Reuse and Integration, 2007.
IRI 2007. IEEE International Conference on, pages 91 –97, aug. 2007.

[13] I.A. Tondel, A.A. Nyre, and K. Bernsmed. Learning privacy prefer-
ences. In Availability, Reliability and Security (ARES), 2011 Sixth
International Conference on, pages 621 –626, aug. 2011.

[14] Inger Tøndel and Åsmund Nyre. Towards a similarity metric for com-
paring machine-readable privacy policies. In Jan Camenisch and Do-
gan Kesdogan, editors, Open Problems in Network Security, volume
7039 of Lecture Notes in Computer Science, pages 89–103. Springer
Berlin / Heidelberg, 2012. 10.1007/978-3-642-27585-2 8.

[15] E. McCallister. Guide to Protecting the Confidentiality of Personally
Identifiable Information. DIANE Publishing Company, 2010.

[16] W3C. The Platform for Privacy Preferences 1.0 (P3P1.0) Specifica-
tion, April 2012.

[17] M. Gupta and R. Sharman. Handbook of Research on Social and Orga-
nizational Liabilities in Information Security. Handbook of Research
On. Information Science Reference, 2008.

[18] Stanford CIS. Stanford CIS wiki database of PETs, April 2012.

[19] Tom M. Mitchell. Machine Learning. McGraw-Hill, New York, 1997.

[20] Lofti A. Zadeh. Fuzzy logic. Computer, 21(4):83–93, April 1988.

[21] J.C. Bezdek. Fuzzy Models - What are they and why? IEEE Trans-
actions on Fuzzy Systems, 1:1–6, February 1993.

[22] Technical Committee No.65 International Electrotechnical Commis-
sion (IEC). IEC 1131 - Programmable Controllers. Technical report,
1997.

[23] Pablo Cingolani. jFuzzyLogic: Open Source Fuzzy Logic library and
FCL language implementation, May 2012.

[24] Edwin B. Wilson. Probable inference, the law of succession, and sta-
tistical inference. Journal of the American Statistical Association,
22(158):pp. 209–212, 1927.

A Fuzzy Control System

FUNCTION_BLOCK policy

VAR_INPUT
current_element : REAL;
previous_element : REAL;

END_VAR

VAR_OUTPUT
similarity : REAL;

END_VAR

FUZZIFY current_element
TERM not_important := (0,1)(0.5,0);
TERM uncertain := trian 0.25 0.5 0.75;
TERM important := (0.5,0)(1,1);

END_FUZZIFY

FUZZIFY previous_element
TERM not_important := (0,1)(0.5,0);
TERM uncertain := trian 0.25 0.5 0.75;
TERM important := (0.5,0)(1,1);

END_FUZZIFY

DEFUZZIFY similarity
TERM similar := (0,1)(0.15,1)(0.33,0);
TERM unclear := trian 0.25 0.5 0.75;
TERM not_similar := (0.66,0)(0.85,1)(1,1);
METHOD : COG;
DEFAULT := 0;

END_DEFUZZIFY

RULEBLOCK No1
AND : MIN;
ACT : MIN;
ACCU : MAX;

RULE 1 : IF current_element IS important
AND previous_element IS important
THEN similarity IS similar;

RULE 2 : IF current_element IS important
AND previous_element IS not_important
THEN similarity IS not_similar;

RULE 3 : IF current_element IS important
AND previous_element IS uncertain
THEN similarity IS unclear;

RULE 4 : IF current_element IS not_important
AND previous_element IS important
THEN similarity IS not_similar;

RULE 5 : IF current_element IS not_important
AND previous_element IS not_important
THEN similarity IS similar;

RULE 6 : IF current_element IS not_important
AND previous_element IS uncertain
THEN similarity IS unclear;

RULE 7 : IF current_element IS uncertain
AND previous_element IS important
THEN similarity IS unclear;

RULE 8 : IF current_element IS uncertain
AND previous_element IS not_important
THEN similarity IS unclear;

RULE 9 : IF current_element IS uncertain
AND previous_element IS uncertain
THEN similarity IS similar;

END_RULEBLOCK

END_FUNCTION_BLOCK

B The Improved kNN Implementation

private Map.Entry<PolicyObject, Double> getLargest(Map<
PolicyObject, Double> nearest) {

double largest = -1;
Map.Entry<PolicyObject, Double> largestPolicyObject = null;
for (Map.Entry<PolicyObject, Double> entry : nearest.

entrySet()) {
if (entry.getValue() > largest) {

largest = entry.getValue();
largestPolicyObject = entry;

}
}
return largestPolicyObject;

}

public ArrayList<PolicyObject> reduce(PolicyObject
currentPolicy) {

Map<PolicyObject, Double> nearest = new HashMap<
PolicyObject, Double>();

PolicyObject largestNearestPolicy = null;
double largestNearestDistance = 0;

for (PolicyObject previousPolicy : policyDatabase) {
double distance = distanceMetric.getTotalDistance(

currentPolicy, previousPolicy);

if (nearest.size() < k) {
nearest.put(previousPolicy, distance);

Map.Entry<PolicyObject, Double> largestNearest =
getLargest(nearest);

largestNearestPolicy = largestNearest.getKey();
largestNearestDistance = largestNearest.getValue();

} else {
if (distance < largestNearestDistance) {
nearest.remove(largestNearestPolicy);
nearest.put(previousPolicy, distance);

Map.Entry<PolicyObject, Double> largestNearest =
getLargest(nearest);

largestNearestPolicy = largestNearest.getKey();

largestNearestDistance = largestNearest.getValue();
}

}
}
ArrayList<PolicyObject> result = new ArrayList<PolicyObject

>();
for (PolicyObject policy : nearest.keySet()) {

result.add(policy);
}
return result;

}

	Title Page
	Introduction
	Background & Motivation
	Related Work
	Goals & Method
	Structure of Thesis

	Background
	Internet Privacy
	Privacy Concerns
	Privacy Policies
	Privacy Enhancing Technology

	Case-based Reasoning
	CBR Types
	The CBR Cycle
	Suitability of CBR

	Privacy Advisor
	The CBR Engine
	Distance Metrics

	Implementation
	Weaknesses of Privacy Advisor
	Similarity
	Learning

	Similarity
	Algorithm
	Fuzzy Logic

	Implementation Specifics
	jFuzzyLogic
	Distance Metric
	Retrieval
	Retention

	Testing
	Functionality Testing
	Distance Metric
	Policy Similarity
	Importance Values

	Evaluation
	Distance Metric Algorithm
	Fuzzy Logic Similarity Calculation
	Data Type Similarity
	P3P Categories
	Overall Behavior of the Algorithm

	The System
	Policy Similarity
	Performance
	Subsequent Similarity Calculations

	Overall Behavior

	Conclusion
	Future Work

	Fuzzy Control System
	The Improved kNN Implementation

