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Abstract Energy efficiency below a specific thermal design power (TDP) has
become the main design goal for microprocessors across all market segments.
Optimizing the usage of the available transistors within the TDP is a pending
topic. Parallelism is the basic foundation for achieving the Exascale level.
While instruction-level (ILP) and thread-level parallelism (TLP) are embraced
by developers, data-level parallelism (DLP) is usually underutilized, despite
its huge potential (e.g., Single-Instruction Multiple-Data (SIMD) execution).
Companies are pushing the size of vector registers to double every four years.
Intel’s AVX-512 (512-bit registers) and ARM’s SVE (up to 2048-bit registers)
are examples of such trend.

In this paper we perform a scalability and energy efficiency analysis of
AVX-512 using the ParVec benchmark suite. ParVec is extended to add sup-
port for AVX-512 as well as the newest versions of the GCC compiler. We
use Intel’s Top-Down model to show the main bottlenecks of the architecture
for each studied benchmark. Results show that the performance and energy
improvements depend greatly on the fraction of code that can be vectorized.
Energy improvements over scalar codes in a single thread environment range
from 2x for Streamcluster (worst) to 8x for Blackscholes (best).
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1 Introduction

Moore’s law predicted in 1965 that the number of transistors will double every
two years. This trend has slowed down since the introduction of 22nm tech-
nologies, being closer to 30 months nowadays. Nevertheless, providing power
to all these transistors is a different story. Dennard scaling stated that the volt-
age and current required to operate a transistor should scale proportionally to
its linear dimensions [12]. However, when process technologies go below 22nm,
the benefit from voltage scaling becomes sublinear. This makes power and
temperature a prime constraint on future many-core designs [7]. The Interna-
tional Technology Roadmap for Semiconductors report reflects this slowdown
in voltage scaling [19]. Optimizing the usage of the available transistors under
power and temperature constraints is an open critical issue.

Computer architects focus nowadays on parallelism to improve perfor-
mance under a specific TDP. While instruction-level (ILP) and thread-level
parallelism (TLP) have been extensively studied, data-level parallelism (DLP)
is usually underutilized in CPUs, despite its huge potential. Vector architec-
tures are designed to extract DLP by operating over several input elements
with a single instruction [4,13]. Vector supercomputers have been present since
the 1970s [26,11,13,5,30]. Originally, vector architectures exploited DLP with
long vectors of thousands of bits. Nowadays, hardware manufacturers focus
on short-vector designs (up to 2048-bits), although there are some exceptions
(NEC’s SX-Aurora features 16,384-bit vectors [24]).

The most widespread vector implementation is based on Single-Instruction
Multiple-Data (SIMD) extensions. SIMD is available in microprocessors from
different market segments, from high performance computing (HPC) to mobile
phones [17,18,3,29,15,2]. Graphic Processing Units (GPUs) are architectures
that also benefit greatly from DLP. A GPU uses a massive number of cores to
execute sets of threads in a lock-step model.

Vector register size has seen an increase that doubled every four years [16].
The same authors state that doubling the register size can be significantly more
energy efficient than doubling the number of cores. Companies like Intel [28,
18] and Fujitsu [32] have released commercial processors that work with 512-
bit registers. Ultimately, the effectiveness of a vector architecture depends on
its ability to vectorize large quantities of code [27].

This paper focuses on the evaluation of Intel’s AVX-512 architecture in
terms of energy efficiency and performance. The evaluation will also include
Intel’s Top-Down model information [31]. In this model, performance counter
information is used to define the processor behavior for a given workload, and
to detect hardware bottlenecks. The ParVec benchmark suite will be used
for this analysis. ParVec is a modified version of PARSEC that exploits the
SIMD-capabilities offered by modern processors [8,6]. This suite is extended
with support for AVX-512 and other minor enhancements. The final source
code is available via a git repository [9].

The paper is organized as follows: Section 2 gives a brief introduction
to vectorization, benchmarking and provides information about related work.
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Section 3 describes our evaluation environment and methodology. Section 4
describes, for each benchmark, the performance and energy profiles as well as
the Top-Down model results. Finally, Section 5 concludes the evaluation and
suggests directions for further research.

2 Motivation and Related Work

Vector supercomputers dominated the HPC world from the early 1970s up
to late 2004 (Earth Simulator). Vector processors differentiate from scalar
processors in that they operate on one-dimensional arrays (vectors) rather
than single elements. However, large registers have several drawbacks. Wider
RAMs comes with a power cost. There are techniques for mitigating this,
but over dimensioning the vector register file will cost power. In addition,
if an application can not make full use of every register, then a hardware
resource is being wasted. For this reason, fabricating chips with long vector
registers for commodity processors has been considered senseless for a long
time. The first widely-deployed desktop SIMD system dates from 1996, with
Intel Pentium processors and the MMX extensions (64-bit registers). Revisions
over the initial instruction set introduce new instructions to the repertory, as
well as increase the register size. The newest AVX-512 (2016) supports up
to 32 512-bit registers. Other companies such as ARM or IBM have their
own SIMD instruction sets. SIMD architectures can be programmed using
intrinsics, assembly, or automatic compiler vectorization.

SIMD instructions have a potential speedup proportional to the width of
the SIMD registers. In addition, SIMD reduces instruction cache and pipeline
pressure (less instructions need to be located, decoded and issued). As regis-
ter size increases, many CPU bound applications may become memory bound
due to the increased data requirements of SIMD units. There are, however,
important disadvantages when using SIMD functionality. SIMD architectures
increase the pressure on the data cache and memory subsystem, since they re-
quire more bandwidth to feed the SIMD ALUs. SIMD relies on large register
files that increase power dissipation and chip area. SIMD codes are hard to
generate automatically by the compiler. As a consequence, automatic vector-
ization of naively written code is usually limited by bandwidth, gather/scatters
or tight data dependencies [20]. In such cases data conversions or algorithmic
modifications are required.

In order to evaluate such architectures, computer architects usually rely on
benchmarking. Ferdman et al. [14] introduce a benchmark suite (CloudSuite)
for emerging scale-out workloads, and compares it against state of the art
benchmark suites. However, none of these approaches analyze effects of vec-
torization on application energy efficiency. Molka et al. [22] discuss weaknesses
of the Green500 list with respect to ranking HPC system energy efficiency.
They introduce their own benchmark using a parallel workload generator and
SIMD support to stress main components in a HPC system. Kim et al. [20]
show how blocking, vectorization and minor algorithmic changes can speed up
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Fig. 1: Simplification of the Top-Down analysis hierarchy.

applications close to the best known tuned version. The RODINIA [10] and
ALPBench [21] benchmark suites also offer limited SIMD support. BioParallel
includes bioinformatic workloads, NU-MineBench measures data mining per-
formance and PhysicsBench is used for computer game physics simulations.
The Recursive Benchmark Suite [25], which includes recursive, task-parallel
benchmarks that have been transformed in order to exploit DLP. Eight appli-
cations are included, ranging from microbenchmarks to kernels, that all have
been manually vectorized with SSE (128-bit registers) AVX2 (256-bit regis-
ters) and AVX-512 (512-bit registers) intrinsics. Finally, ParVec is a modified
version of PARSEC, that exploits the SIMD capabilities offered by modern
processors [8,6].

3 Experimental Methodology

Top-Down Model. This methodology is described by the authors as “a practi-
cal method to quickly identify true bottlenecks in out-of-order processors”. It
presents a multi-level summary of the hundreds of performance events available
in Intel processors, to quickly and accurately identify dominant performance
bottlenecks. From the many levels of detail available in this methodology, we
will focus on the first and second levels (bold entries of Figure 1). The first
level divides the status of the issued µops1 into four categories: frontend-bound,
backend-bound, retiring or bad-speculation. Retiring accounts for µops finish-
ing normally and leaving the pipeline, while bad-speculation represents those
µops squashed due to a mispredicted branch. If µops are neither allocated
resources nor squashed, then it means they are stalled. Frontend-bound rep-
resents the ratio of µops stalled in fetch/decode, while backend-bound covers
ready-to-issue µops that cannot continue along the pipeline due to resource
unavailability. The second level of the model breaks down these four cate-
gories increasing the detail level. Backend-bound µops can be sub-categorized
into CPU or memory bound, depending on the resources causing these stalls.
Finally, from the third level breakdown, we will only focus on performance
counter information related to memory bound applications. This model has

1 Micro-operations.
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Cache Size Sharing Ways of Line size Latency
associativity (cycles)

Level 1 Instruction 32KB Private 8 64B 4
Level 1 Data 32KB Private 8 64B 4
Level 2 1MB Private 16 64B 12
Level 3 11MB Shared 11 64B 68
Main Memory 64GB Shared - - DDR4@2333

Table 1: Memory hierarchy information for a 3.6GHz 7820X processor.

been adopted by the Intel’s profiling production tool “VTune”. The required
performance counters are already featured in production systems (just eight
new events in the PMU on Intel’s Ivy Bridge and later models).

Evaluation Environment. We will analyze the vectorized benchmarks on an
Intel Skylake-X 7820X processor. The 7820X processor has eight physical cores,
with sixteen threads and its memory hierarchy is described in Table 1. It is
built on a 14-nm process and uses tri-gate transistors (reduced leakage power).
It offers support for SSE4.2, AVX2 and AVX-512 instructions.

The analyzed applications are based on ParVec 3.0b, that was extended to
support AVX-512. This can be easily achieved by filling the “wrapper library2”
included in the suite with the appropriate translation to AVX-512 intrinsics
(Code 1). Codes are tested to compile using both GCC 7.3.0 and 8.2.0 with
-O2 flag on a Ubuntu 18.04 distribution with Kernel 4.15. Results shown in the
evaluation are for GCC 7.3.0, since it is the default version in our distribution.

1 float dist(Point p1, Point p2, int dim) {
2 int i;
3 MM TYPE result, aux, diff, coord1, coord2; −> m512 ...
4 result = MM SETZERO(); −> mm512 setzero();
5 for (i=0;i<dim;i=i+SIMD WIDTH) { −> 16
6 coord1 = MM LOADU(&(p1.coord[i])); −> mm512 loadu ps(&(p1.coord[i]));
7 coord2 = MM LOADU(&(p2.coord[i])); −> mm512 loadu ps(&(p2.coord[i]));
8 diff = MM SUB( coord1, coord2); −> mm512 sub ps( coord1, coord2);
9 aux = MM MUL( diff, diff); −> mm512 mul ps( diff, diff);

10 ....

Code 1. Streamcluster dist function implemented with the wrapper library.

Energy estimation and performance counter information for the Top-Down
model are accurately extracted via internal MSRs3. We use PAPI libraries
(5.6.1) for such purposes [23]. We use PAPI’s powercap module to retrieve
per-processor energy information (whole package).

Executions were performed sequentially 10 times, using the native input
sizes of the PARSEC benchmark suite. The results are reproducible and stable,
with a relative standard deviation below 1%. The processor is heated to a
steady temperature, (around 50C) before running the benchmarks, to minimize

2 Set of macros used to generate the intrisics code using the C pre-processor.
3 Model Specific Registers.
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variability in the energy measurements. Systems run with minimal console
configurations (runlevel 3), to reduce OS influence on the results. Turbo boost
is disabled, and Scalar, AVX2 and AVX512 operating frequencies are forced
to 3.6Ghz. This is important to note, since the default behavior of the 7820X
Turbo Boost is to push scalar frequency to 4.5Ghz whenever possible, while
AVX2 was limited to 3.8Ghz, and AVX512 to 3.6Ghz. We use “taskset” to
prevent thread migrations between cores that may slow down application.

4 Evaluation

For every benchmark, we describe the impact of varying the number of threads
and vector register size. More specifically, we report normalized speedup, en-
ergy reduction, instruction reduction (to our baseline, single-threaded scalar
code). Then, for each combination of thread count and vector register size, we
report the key parts of the Top-Down model as described in Section 3 to iden-
tify performance bottlenecks. IPC is also reported for a single thread version of
each benchmark. The only energy MSR readable in the 7820X is the one that
accounts power for the whole package. For this reason, energy scalability will
be super-linear in the reported results, since idle cores are consuming power
all the time for 1 and 4 thread tests.

Blackscholes. This benchmark shows a linear benefit in performance as regis-
ter size increases (Figure 2-left). Scalability with thread count is also close to
linear, and SMT has a marginal performance improvement. Energy efficiency
peaks when using AVX-512 and running on 8 threads (24.5x better than base-
line). The instruction count reduction is around 19x for AVX-512 (Figure
2-centre), meaning that most of the application code is vectorized. There is a
super-linear component to instruction reduction since SIMD and scalar codes
are slightly different. The SIMD code for exponential and logarithmic func-
tions is based on SLEEF [1], while the scalar version is based on libc standard
math library. By analyzing the Top-Down model (Figure 2-right), we can see
that most of the time the application is stalled in the backend (around 70%
for AVX-512).

Going one level deeper (Figure 3-left), we see that Blackscholes is mostly
CPU-bound in our evaluation environment. Over 70% of backend stalls are due
to core-related stalls, while 28% of stalls relate memory stalls (mostly L1D,
as depicted in Figure 3-right). Since the IPC of Blackscholes is low (Figure
2-centre), we can conclude that the main limitation of this application is due
to low ILP, either due to instruction dependencies, long latency instructions
blocking the ALUs (45% of cycles), or a combination of both.

Since there is little to do in order to improve ILP in this code, vectorization
becomes critical to improve its performance and efficiency. Regarding L1D
stalls, using manual prefetching may be helpful to further push scalability.
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Fig. 2: Blackscholes energy reduction factor (left, primary axis), speedup (left, secondary
axis), instruction reduction factor (centre, primary axis), IPC (centre, secondary axis) and
first Top-Down level (right) for different thread counts (1 to 16) and SIMD ISAs.
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Fig. 3: Blackscholes backend stalls breakdown (left) and memory stalls breakdown (right).
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Fig. 4: Canneal energy reduction factor (left, primary axis), speedup (left, secondary axis),
instruction reduction factor (centre, primary axis), IPC (centre, secondary axis) and first
Top-Down level (right) for different thread counts (1 to 16) and SIMD ISAs.

Canneal. Canneal performance scalability is very limited (Figure 4-left). In a
single-thread environment, the AVX-512 implementation reaches a 2.4x speedup.
Thread scalability is slightly sub-linear (6.75x for 8 threads scalar), and or-
thogonal to SIMD extensions (16.5x for 8 threads AVX-512). SMT significantly
improves performance and energy efficiency of this benchmark. Speedup goes
up from 16.5x with 8 threads to 23.4x with 16 threads when using AVX-512.
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Fig. 5: Canneal backend stalls breakdown (left) and memory stalls breakdown (right).

Energy efficiency peaks when using AVX-512 and running on 16 threads
(15.1x better than baseline). Regarding instruction count, the reduction is
close to 8x for AVX-512 (Figure 4-centre), meaning that almost half of the
executed instructions on the SIMD implementations are not vectorized. The
first level of the Top-Down model (Figure 4-right) points to backend stalls as
the main source of performance bottleneck (around 84% for AVX-512).

Digging deeper into the backend issues, Figure 5-left shows that around
7% of stalls are due to core issues and 10% due to other processor resources
(e.g., reorder buffer, reservation stations, store buffer, etc). However, the gross
performance penalty comes from the memory subsystem (around 83%). More
specifically, around 40% of the stalled cycles happen during L1D cache misses,
5% during L2 cache misses, and the remaining 55% from other levels of the
memory hierarchy (Figure 5-right). Due to these huge stalls, the IPC of Can-
neal is really low (Figure 4-centre). L1D stalls could be reduced using manual
prefetching, but the performance scalability would still be limited by the data
movements performed by the application. Note that this is an iterative clus-
tering algorithm, so as long as the whole dataset cannot fit in the caches, there
will be performance degradation. However, SIMD can help to reduce overall
energy requirements. By increasing register size we can perform the same com-
putations in less time. Since this time reduction is useless, we can run cores
at a lower frequency, burning less power, while still overlapping computations
with data movements along the memory hierarchy.

Streamcluster. Figure 6-left shows the performance scalability of Streamclus-
ter. The speedup of this application reaches 2.9x for single threaded AVX-512,
and 20x for 16 threads AVX-512. Scalability with thread count is sub-linear,
and SMT achieves an improvement of up to 16% in performance.

The best energy efficiency is obtained using AVX-512 and running with
16 threads (7.3x better than baseline). However, the difference is minimal
when running on 8 threads. The instruction reduction factor is slightly under
5x for AVX-512 (Figure 6-centre). This is far from the ideal 16x reduction
factor, meaning scalar code will soon dominate the overall performance of the
application (Amdahl’s law). If we analyze the results of the first level Top-
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Fig. 6: Streamcluster energy reduction factor (left, primary axis), speedup (left, secondary
axis), instruction reduction factor (centre, primary axis), IPC (centre, secondary axis) and
first Top-Down level (right) for different thread counts (1 to 16) and SIMD ISAs.
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Fig. 7: Streamcluster backend stalls breakdown (left) and memory stalls breakdown (right).

Down model (Figure 6-right), almost 93% of the time the processor is stalled
on the backend, and around 2% on wrong path execution.

Figure 7-left breaks down the backend stalls, clearly showing that Stream-
cluster is highly limited by the memory subsystem. Indeed, memory stalls
account for over 82% of the total backend stalls when using AVX-512. Fur-
thermore, the memory stall analysis reveals that only 12% of these stalls relate
to the combined L1 and L2 misses, while the vast majority of stalls correlate
to other levels of the memory hierarchy (Figure 7-right). The negative effects
on performance from memory stalls drop the IPC below 0.5 (Figure 6-centre).

L1D stalls could be reduced using manual prefetching, however, since cache
locality of Streamcluster is very low, the overall system performance is going
to be strongly linked to cache and memory bandwidth. This also explains the
low impact of SMT on performance, since both threads are competing for
the same bandwidth. As it happens with Canneal, SIMD can help to reduce
overall energy requirements. Reducing operating frequency we can save energy.
Computational power is maintained by widening the vector registers/ALUs.

Fluidanimate. This application has divergent branches, small number of arith-
metic computations for each loaded data, variable number of loop indexes
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Fig. 8: Fluidanimate energy reduction factor (left, primary axis), speedup (left, secondary
axis), instruction reduction factor (centre, primary axis), IPC (centre, secondary axis) and
first Top-Down level (right) for different thread counts (1 to 16) and SIMD ISAs.

(usually non-divisible by SIMD width), high output variance due to floating
point rounding errors and small input size. The first step we took was to in-
crease particle density of the default datasets. We will release the tools and
dense datasets used in our experiments upon publication.

Figure 8-left shows the performance and energy scalability of Fluidanimate
using a dense dataset. Thread performance scalability of this application is
almost linear, while SMT only achieves 21% improvement. AVX-512 speedup
is limited to around 2x for single thread runs, and peaks at 15x for 16 threads.
Performance results are very similar to those obtained by AVX2. However,
if we check the instruction reduction factor, we see how it increases from
2.5x with AVX2 to around 3.5x for AVX512 (Figure 8-centre). This means
that while SIMD is scaling properly regarding the vectorized instructions, the
overall performance remains unaffected. Energy improvements are close to 15x
when running AVX-512 and 16 threads.

Figure 8-right points at backend stalls as the main performance limitation
(around 60% for AVX-512). Breaking down the backend stalls reveals that
almost 78% of backend stalls are core stalls (Figure 9-left). Further analyzing
core stalls showed that 50% are due to busy divider/sqrt ports. The rest can
be attributed to low ILP, since port utilization is low. This is reflected in the
IPC drop from 2 to 1.5 when going from scalar to AVX-512 (Figure 8-centre).

Swaptions. This benchmark has a sub-linear improvement in performance an
energy efficiency (Figure 10-left). In a single-thread scenario, performance im-
proves by 2.1x for AVX-512, the same as energy. When running with 8 threads,
AVX-512 performance jumps to 16.5x, and SMT adds additional 31% to that
number. The best energy efficiency is achieved running AVX-512 with 16
threads. Instruction reduction factor (Figure 10-centre) shows improvements
of 0.5 and 0.3 when moving from SSE to AVX2, and from AVX2 to AVX-512.
This means that the fraction of vectorized code not only is small, but the
number of vectorized instructions is shrinking rapidly. This will soon make
the scalar part of the application the main performance limiting factor.
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Fig. 9: Fluidanimate backend stalls breakdown (left) and memory stalls breakdown (right).
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Fig. 10: Swaptions energy reduction factor (left, primary axis), speedup (left, secondary
axis), instruction reduction factor (centre, primary axis), IPC (centre, secondary axis) and
first Top-Down level (right) for different thread counts (1 to 16) and SIMD ISAs.

The Top-Down analysis (Figure 10-right) reveals only a 40% processor
stalls for AVX-512. 2.5% of the stalls are due to mis-speculation, around 5%
are frontend stalls, while 32.5% of stalled cycles are due to backend limitations.
The second level of the Top-Down model shows that 16% of stalls happen in
pipeline stages different than execution, mostly issue stalls due to lack of re-
sources (Figure 11-left). For the remaining backend stalls, 61% are core bound,
and 23% memory bound. In this case, divider units blocking the pipeline hap-
pen rarely (around 7%). We can only conclude that the remaining stalls are
due to lack of ILP. Figure 11-right breaks down memory stalls. Most stalls
happen during L1D misses (around 88% for AVX-512), so manual prefetching
could help to further reduce memory stalls.

Vips. Vips is an image editing tool where only some filters are vectorized (42%
of total execution time). In addition, performance scalability with register size
is minimal (1.24x for the single-thread environment). Energy improvements
are also limited to around 20% for AVX-512 (Figure 12-left). IPC of this
application is high, around 3, and is decreasing with register size (Figure 12-
centre). Instruction reduction is minimal, given the small fraction of the total
code being vectorized. However it shows a steady reduction across instruction
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Fig. 11: Swaptions backend stalls breakdown (left) and memory stalls breakdown (right).
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Fig. 12: Vips energy reduction factor (left, primary axis), speedup (left, secondary axis),
instruction reduction factor (centre, primary axis), IPC (centre, secondary axis) and first
Top-Down level (right) for different thread counts (1 to 16) and SIMD ISAs.

sets. The best energy efficiency is achieved running on 8 threads with AVX-
512. SMT marginally improves performance, but has a negative impact on
energy efficiency.

Figure 12-right depicts the Top-Down breakdown for Vips. We can see it
is well optimized, and the processor spends only 20% of the cycles stalled,
being around 17% of them backend stalls. 55% of these backend stalls are core
bound, 15% are memory bound, and 30% are resource limitations on issue or
retire (Figure 13-left). Only 5.8% of core stalls are due to divider units being
busy, leading to low ILP or other ports being busy as main sources of core
stalls. Meanwhile, L1D cache stalls account for 63% of memory stalls, 13%
for L2 stalls, and the remaining 24% to other levels of the memory hierarchy
(Figure 13-right). We recommend to isolate the vectorized filters from the main
application, since it is difficult to isolate the effects of vectorization from the
main scalar code.

x264. This benchmark was vectorized by the original developers, and does
not rely on ParVec’s wrapper library. Thread scalability is sub-linear, reach-
ing 3.12x performance improvement when running on 4 threads. SMT provides
additional 30% performance improvement for AVX-512, so it is worth enabling
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Fig. 13: Vips backend stalls breakdown (left) and memory stalls breakdown (right).
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Fig. 14: x264 energy reduction factor (left, primary axis), speedup (left, secondary axis),
instruction reduction factor (centre, primary axis), IPC (centre, secondary axis) and first
Top-Down level (right) for different thread counts (1 to 16) and SIMD ISAs.

for this application. Figure 14-left shows no performance or energy scalabil-
ity with register size. However, Figure 14-centre shows that there is a slight
reduction on instruction count. From these results we can observe that the
overall fraction of code that is being vectorized is very small (1.2x from the
theoretical 4x for SSE).

The Top-Down breakdown for this benchmark is depicted in Figure 14-
right. It shows that 23% of stalls happen on the backend, 16% are due to
mis-speculation, and the remaining 16% stall at the frontend when using the
AVX-512 extensions. From that 23% of backend stalls, around 42% are core
bound, 23% are issue and retire stalls, and 35% are memory bound (Figure
15-left). Core bound stalls are mainly due to port utilization and low ILP stalls
(in fact IPC is going down with wider ISAs). Memory bound can be broken
down into L1D (around 42%), around 8% for L2, and 50% for other levels of
the memory hierarchy (Figure 15-right). Prefetching may be helpful to further
push scalability.
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Fig. 15: x264 backend stalls breakdown (left) and memory stalls breakdown (right).

5 Conclusions

Modern computer architectures focus nowadays on parallelism to improve per-
formance under a specific TDP. Instruction-level (ILP) and thread-level par-
allelism (TLP) and data-level parallelism (DLP) are at the core of these ar-
chitectures. However, DLP is usually underutilized in CPUs, despite its huge
potential. In this paper, we evaluate the performance and energy scalability
of Intel’s latest SIMD extensions, AVX-512. We have extended and updated
the ParVec benchmark suite to test our Skylake-X evaluation processor with
the latest versions of GCC. This includes 7 vectorized benchmarks from the
PARSEC benchmark suite.

The evaluation shows that not all applications experience a linear speedup
when vectorized (based on SIMD width). Speedup is limited by several factors,
including algorithmic limitations, data structure organization, application in-
put or the underlying memory hierarchy. We have identified applications that
are limited by ILP or port utilization, but still benefit linearly from SIMD ex-
tensions (Blackscholes). Other applications, such as Canneal or Streamcluster,
completely lose any core boundedness and become strongly memory bound.
Applications like Fluidanimate are limited by long latencies on divider/sqrt
units. Finally, Vips and x264 are well balanced applications, and have a va-
riety of limitations at different levels, from issue resources (e.g., reservation
stations, reorder buffer, store buffer, etc), memory hierarchy and ILP.

It is important to note that, although some benchmarks obtain similar
performance using SIMD and threading, there is a huge difference in energy
efficiency since SIMD cost much less power. SIMD implementations reduce
the total number of memory accesses but maintain similar number of cache
misses. The usage of manual or hardware prefetching is critical to make good
use of vector capabilities.

An intelligent scheduler may also be helpful. This scheduler can be used
to reduce core frequency in memory bound applications to a point that it
minimizes the pressure on the memory subsystem, improving energy efficiency.
An application that has a scalar memory-bound implementation will barely
benefit from vectorization for high processor frequencies (when the memory
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hierarchy saturates). This means that SIMD implementations can outperform
scalar implementations at lower frequencies. Another alternative would be
to implement compression techniques. This way we could use the exceeding
computational capabilities of SIMD to reduce the pressure on the memory
subsystem.

Finally, improving ILP or using alternative instructions that approximate
results, whenever possible, would be of interest in CPU bound applications.
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