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Abstract

Digital investigators and incident responders often rely on evidence residing in computer
memory and page files on hard drives. Artifacts such as browsing history, image thumb-
nails and shell commands can answer important questions in digital investigations. Win-
dows 10 introduces memory compression, which compresses inactive parts of computer
memory, leading to obfuscation of potentially important artifacts.

In this thesis, the student proposes principles and investigates methods for decompress-
ing the parts of memory compressed by the Windows 10 operating system. The goal of the
thesis is to create a method for decompressing and de-obfuscating potentially important
information from compressed data in memory samples and page files, and making it avail-
able to the forensics community. Memory compression in digital forensics of Windows 10
is a previously unsolved problem.

Through research and experiments, the student has created a proof-of-concept tool
with these capabilites, called ”MemoryDecompression”. The tool is tested on data from
two scenarios that involves recovering strings that has been compressed and obfuscated by
the memory manager. The results show that strings are in fact being obfuscated through
memory compression. The tool was submitted to the Volatility Plugin Contest as a con-
tender, and ended up on 2nd place. This is presented as an indicator of quality and potential
value. It also brings attention to the issues of memory compression, and makes the tool
available to the forensics community.

The results, the impact and the weaknesses of the applied experiments are discussed.
Finally, the thesis suggests future work in this subject, which includes further research on
Windows memory manager, and further development of MemoryDecompression tool.
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Sammendrag

Dataetterforskere og hendelseshåndterere baserer seg ofte digitale på bevis som er tilst-
ede i dataminnet og i sidevekslingsfiler på harddisker under en hendelse. Artefakter som
nettleserhistorikk, bilder og kommandoer kjrt i en konsoll kan svare på viktige spørsmål
relatert til digital etterforskning. Windows 10 introduserer minnekomprimering, som kom-
primerer inaktive deler av dataminnet, noe som fører til obfuskering av potensielt viktige
bevis.

I denne oppgaven avdekker studenten prinsipper og undersøker metoder for dekom-
primere deler av dataminnet som er komprimert av Windows 10. Målet med avhandlingen
er å skape en verdifull metode for dekomprimering og de-obfuskering av potensielt vik-
tig informasjon fra komprimerte data i minnedumper og sidevekslingsfiler, samt tilgjen-
geliggjøre den for dataetterforskningsmiljet. Minnekomprimering i dataetterforskning er
et problemet som hittil ikke er løst av noen.

Gjennom forskning og eksperimenter er det laget et ”proof-of-concept”-verktøy med
disse kapabilitetene, kalt ”MemoryDecompression”. Verktøyet testes på data fra to sce-
narier ved å forsøke gjenoppretting av strenger som har blitt komprimert og dermed ob-
fuskert. Resultatene viser at strenger faktisk blir obfuskert gjennom minnekomprimer-
ing. Verktøyet ble innsendt som et bidrag til Volatility Plugin Contest, og endte på
2. plass. Dette presenteres som en indikator p kvalitet og potensiell verdi. Det ret-
ter ogsåoppmerksomhet mot problemene rundt minnekompresjon, og tilgjengeliggjør
verktøyet til dataetterforskningsmiljøet.

Ved hjelp av resultatene diskuteres virkningen og svakhetene av de praktiske
forsøkene. Til sist foreslår avhandlingen fremtidig arbeid innen emnet, som
inkluderer videre forskning på Windows minnehåndtering og videreutvikling av
MemoryDecompression-verktøyet.
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Chapter 1
Introduction

During the past decade, researchers have made memory forensics a powerful utility in
digital investigations. By creating a number of tools that is now available to the analyst,
memory forensics has evolved from simple string searches to a deeper, more structured
analysis. A wealth of information can be found, exposing activity that only resides in
memory (Richard, 2016b).

A relatively new development in malware evolution is malware that leaves no traces on
the hard drive of the system it infects. Considering this development, being able to perform
memory forensics is critical. Other volatile artifacts that is lost when the computer shuts
down includes running processes, network connections, key material for full hard drive
encryption, console commands and chat messages (Richard, 2016b).

Microsoft introduced memory compression in Windows 10 as a feature for increased
performance. This enables parts of process memory to be compressed and swapped out
to a designated memory store (Yosifovich, 2017a). Compressing these parts of memory
potentially obfuscates the data. This process weakens the unstructured searching meth-
ods traditionally applied on this type of data (Richard, 2016a). Memory compression in
digital forensics of Windows 10 is a previously unsolved problem. It was mentioned on a
Forensic Lunch episode (Cowen, 2015) in 2015 by Andrew Case, and described as a ”huge
problem”.

This chapter contains the introduction to the thesis. It provides the background and
motivation of the research, leading to the description of the research problem and the hy-
potheses. Previous work on memory forensics and memory compression is covered, as
well as how this research will serve as a contribution to the forensics community. The lim-
itations and scope of the thesis are presented, discussing the area of focus for the research
and the applied experiments.
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1.1 Motivation

”There is currently no research that documents the algorithms used by compressed store1,
which means that the compressed pages are essentially inaccessible to memory forensics
investigators. ” Richard (2016b)

The motivation behind the thesis is giving the forensics community a proof-of-
concept tool that de-obfuscates compressed pages, and provide research that can be
further built upon. Malware hunting in digital forensics is about being one step ahead of
the adversaries. As modern operating systems creates opportunities for security analysts
to have more data at their disposal, the forensics community should make use of this
opportunity, and develop tools strengthening the capability of the good guys. Windows
10 is already widely used, and will likely continue to grow over the coming years. As a
consequence, it is likely to be targeted by attackers, and thereby ending up being analyzed
by investigators.

1.2 Problem Description

Digital investigators and incident responders often rely on evidence residing in computer
memory, and in page files on hard drives. Artifacts such as browsing history, image thumb-
nails and shell commands can reveal important information in digital investigations. Win-
dows 10 introduces memory compression, which compresses parts of computer memory,
leading to obfuscation of potentially important artifacts.

In this project, the student will study principles and investigate methods for decom-
pressing the parts of memory compressed by the Windows 10 operating system. The
student will attempt to use this knowledge to create a proof-of-concept tool for decom-
pressing memory, and thus de-obfuscating potentially vital artifacts in memory samples
and page files.

1.3 Hypothesis Statement

To solve the issue of memory compression, the thesis will be based on two research hy-
potheses. These will be supported or refuted through practical experiments and evaluations
using existing literature.

• Hypothesis 1: By analyzing operating system behaviour, it is possible to create a
method for decompressing, and thus de-obfuscating, data from memory samples or
page files that has been compressed by the Windows 10 memory manager.

• Hypothesis 2: De-obfuscating the data compressed by Windows 10 memory man-
ager can uncover digital evidence for computer forensics investigators.

1Compressed store is where the memory compression performed by the memory manager in Windows 10
stores its data.
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1.4 Related Work
This section contains related work on the subject.

1.4.1 Memory Forensics
The acquisition and analysis of computer memory is increasingly common within foren-
sics the last five years. As memory analysis enables a wealth of information, it is an in-
valuable addition to digital forensics. Frameworks for acquiring and analyzing computer
memory has become increasingly available to the investigators, who typically had to rely
on manual string searches in the past. In addition, the literature on the subject of memory
forensics has become much better with the release of The Art of Memory Forensics in
2014 (Case and Walters, 2014b).

1.4.2 Analyzing Page Files
In addition to covering most parts of memory forensics, The Art of Memory Forensics
contains some literature on analysis of page files (Case and Walters, 2014a). As memory
compression in Windows 10 serves as a virtual page file, the same techniques will apply for
analysis of the data once decompressed. The page file can only be analyzed using unstruc-
tured techniques. Strings, grep, anti-virus scans, or Yara signatures are some examples of
tools that are utilized. The Art of Memory Forensics also mentions a tool called ”page-
brute” that splits a page file into chunks and scans it with Yara rules. Unstructured analysis
can be used to find e-mail headers, console commands, HTTP requests and responses, etc.
By searching for something directly related to the suspected activity, it is possible to find
actionable evidence. For example, URL-history or search terms typed in the browser that
relates to illegal activities can be used to as pivot points to further investigate and find
evidence of a crime.

1.4.3 Memory Compression in Digital Forensics
Memory compression in digital forensics has been addressed on Mac OS/OSX and Linux.
The paper ”In Lieu of Swap” (Richard, 2014a) presents the challenges and opportunities
as well as a method and tool for decompressing memory compressed by the two operating
systems. The authors predicted that the same problem would probably apply to a future
Windows version. This paper also presents how swap files can be used as a source of
evidence. In addition to the unstructured analysis techniques mentioned in Section 1.4.2,
the paper addresses the use of data carving tools as technique for extracting valuable infor-
mation from page files. Tools such as bulk-extractor, photorec and foremost (AccessData,
2018a).

Another research paper by the same authors also addresses the topic of memory com-
pression, specifically on Windows 10 (Richard, 2016a). The paper generally discusses
current issues and future directions for memory forensics. It also presents memory com-
pression as a big challenge for forensic investigators, as they are highly dependent on
unstructured methods for finding in-memory data. The authors mention that there is no
current research that documents the algorithms used to perform memory compression and

3



that discovering a means for decompressing this data will enable unstructured analysis to
become useful.

The topic of memory compression in Windows 10 has been addressed in the latest
Windows Internals book (Yosifovich, 2017a). There is a section on the topic that con-
tains information about how the memory manager performs memory compression works,
but unfortunately it does not present any details on the methodology of the research. The
Memory Compression process is also mentioned in book (Yosifovich, 2017c). The mem-
ory manager uses its user-mode address space to store the compressed pages that would
otherwise go to a page file. Unlike other System processes, the Memory Compression
process stores data in user-mode space, and is therefore subject to trimming. This means
that its data can be paged out to a page file on disk. The process also host a number of
system threads, usually seen as SmKmStoreHelperWorker and SmStReadThread.
”Sm” is the prefix for Store Manager, which manages memory compression in Windows
10.

1.4.4 Memory Compression function
A blog post by Alois Kraus addresses some aspects of memory compression, but not in
relation to digital forensics (Kraus, 2016). The topic is how the Memory Compression
process performs when a certain memory pressure is applied. This work includes the use
of Windows Performance Kit, which reveals what function MemCompression uses for
compressing and decompressing memory pages. This type of work has been done before,
but to the knowledge of the student, this blog post was the only source of information that
contained traces of the correct function.

1.4.5 Decompressing Registry Keys
During the work on this thesis, two other blog posts were written on the topic of memory
compression. They both address some of the issues mentioned in Section 1.2. The first
blog post addresses the compression algorithm, and a use-case concerning compressed
registry keys in memory samples and page files (MSUHANOV, 2018). The author sug-
gests a method for recognizing LZ77 compressed data, which is based upon finding a
certain string after a 32 bit integer. This is how the author finds compressed registry keys
in memory and page file. As most compressed pages does not follow this pattern, it does
not help much in this thesis, but it is a very strong technique for finding compressed data
with known structures.

The second blog post shows how to find the function used for compression and de-
compression. Though the the data is interpreted incorrectly, ending up with the wrong
algorithm, the means to get the information is correct and similar to the methodology in
this thesis (TSS, 2018).

1.4.6 Previous Research affected by Memory Compression
Any previous work that has researched methods for unstructured memory analysis is likely
affected by memory compression. The search patterns that are utilized to find specific
data become obsolete. An example of this is the previous work performed at NTNU on
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search strategies for finding and extracting cryptographic keys from memory (Maartman-
Moe, 2009). If the memory pages that contains the cryptographic keys are compressed,
finding them will likely be impossible with the same techniques. By decompressing and
de-obfuscating the data, it should be possible to find the keys using the same techniques.

1.5 Contribution

The main contribution of this thesis is the proof-of-concept tool ”MemoryDecompres-
sion”. The tool was submitted to the Volatility Plugin Contest 2018 and ended up on 2nd
place. As a result, it is now publicly available online (Hale Ligh, 2018b), as discussed in
section 7.2.3. By making this tool available, everyone who performs computer forensics
on Windows 10 workstations, and likely servers in the future, will have more potential
evidence data at their disposal. As it works on both page files and memory dumps, it is
a valuable contribution to both memory and hard disk analysis. It is also possible that
the tool would work on Windows Phones and X-Box memory images, however that is not
within the scope of this thesis.

MemoryDecompression is a proof-of-concept tool, and should be treated as such.
Though the tool has been verified through the Volatility Plugin Contest, it is still a risk
that it could produce faulty results (further discussed in Section 7.1.2). The source code
is openly available online and in Appendix A, so the investigator has the opportunity to
examine the code before using the tool.

The secondary contribution is the research covered in Chapter 5 that can be further
built upon to get a better understanding of how memory compression works. The research
covers algorithm for decompression and how it works, but does not contain how the mem-
ory compression store handles its meta data. Further research on the subject can make it
possible to create a more sophisticated decompression-tool for digital forensics. The thesis
opens several paths to further research. As the algorithm is known, it is possible to create a
platform-agnostic tool for decompressing memory from Windows 10. Pooltag-analysis is
suggested as a means to find the meta data belonging to the Memory Compression process.
Reverse engineering of the Windows debugger libraries is also an area of future research.
Section 7.4 discusses some more alternatives for future work.

1.6 Limitations and Scope

This subject has a lot of potential areas for research, this makes limiting the research
essential. The research in this thesis will focus on de-obfuscating contents of Windows
10 memory samples and page files. Memory compression is also available for Windows
Phone and X-Box, but these platforms will not be covered. Hibernation files are mentioned
in this thesis, but not covered in the practical experiments. This is because the forensics
value of hibernation files has drastically decreased in later versions of Windows, as they
are zeroed out after the system wakes (Richard, 2016c).

The students limitations in this thesis are the complexity of the topic and the time at his
disposal. Completing the objectives of the thesis requires deep knowledge of the Windows
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operating systems. As part of the process, a significant portion of time is spent acquiring
the necessary competence and knowledge for accomplishing the goals of this thesis.

The research will be limited to finding the compression algorithm for the memory
compression mechanism, and using it to create a brute-force tool. The other alternative
was finding and incorporating the meta data of the Memory Compression process into the
decompression tool. This alternative will not be covered in this thesis, but it will be further
discussed in Section 7.3.2 and 7.3.3.

’Taking these limitations into consideration, it is necessary to focus on certain areas.
The main priority will be to create software that can decompress the obfuscated data.
Analyzing the decompressed data will be covered, but not prioritized. The experiments
requires careful planning, and even with relatively small memory samples it can take up
to 7 hours from beginning to end. The focus is delivering an enhanced means of pre-
processing memory samples and page files for the forensic community. This means that
answering hypothesis 1 is prioritized over hypothesis 2.

Finally, The students lack of experience with the desired programming language to
create the decompression tool is a limitation,. The consequence is that the process of
creating the tool will take a significant amount of time.

1.7 Thesis Structure
The remainder of this thesis is structured as follows.

• Chapter 2 contains background information of relevant topics from digital forensics
in general.

• Chapter 3 explains the relevant compontents of the Windows Memory Manage-
ment.

• Chapter 4 contains the relevant existing literature within memory forensics.

• Chapter 5 explains how the decompression algorithm was found, and how the tool
was developed. It also explains how the tool works, and presents the scenarios for
the practical experiments.

• Chapter 6 presents the results from the practical experiments performed with the
MemoryDecompression tool.

• Chapter 7 discusses strategies considered for solving the problem of memory com-
pression.

• Chapter 8 conludes the thesis.

1.8 Conventions
There are a number of conventions used throughout this paper.
All console commands are written in a console font, like this. To highlight interest-
ing parts of the console command output, it is shown in bold console text. Both
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Linux and Windows consoles are being used to produce results in this paper.

Windows console:
PS> echo "Hello Windows!"
Hello Windows!

Linux console:
# echo "Hello Linux!"
Hello Linux!

Some console outputs are trimmed for the sake of brevity. This is mentioned in the
context of the output. If the output has a large number of lines, ... is used to account for
the missing lines.

1.9 Tools
This section contains the tools used in research and experiments in this thesis. The tools
that were used are all highly recognized, and have been around for a long time. Choosing
tools with this criteria reduces the risk of errors produced by the tools during the practical
experiments.

1.9.1 VMWare Workstation
VMWare Workstation is a virtualization program that enables the use of virtual machines
running on a desktop computer (VMWare, 2018). In this thesis it has been used as a
lab environment. By hosting a virtual machine that is being debugged by the Windows
debugger, it is possible to control and monitor the behaviour of the guest operating system.

A possible alternative to VMWare Workstation is VirtualBox by Oracle. VMWare
Workstation was chosen for the lab environment as the student has it at his disposal, gen-
erally considers it a better tool and has a lot of experience using it.

1.9.2 Volatility
Volatility is a memory forensics framework written in Python. It is open source, and
generally considered to be the best and most extensive memory forensics tool available.
It supports Microsoft Windows, Mac OS X, and Linux. In this thesis, Volatility is mainly
used for extracting compressed contents from a memory dump.

An alternative to Volatility is Rekall. Rekall was not considered, as it does not work
on Windows 10 memory samples from VMWare virtual machines.

1.9.3 Windows Performance Toolkit
The Windows Performance Toolkit consists of two components, Windows Performance
Recorder and Windows Performance Analyzer. The recorder saves the relevant operating
system data to a file that can be parsed by the analyzer. In this thesis, the tool is used to
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analyze desired parts of Windows. The student was made aware of this tool through an
article on the internet (Kraus, 2016).

1.9.4 WinDbg
The Windows Debugger can be used to analyze kernel and user mode code, and analyze
memory dump files created through system crashes. It can also analyze Windows ex-
ecutable files. In this thesis, WinDbg is used extensively to analyze the actions of the
operating system.

1.9.5 The Sleuth Kit
The Sleuth Kit is a bundle of command line interface forensic analysis tool that can analyze
volume and file systems. The framework works on several types of file formats and file
systems, the VMWare .vmdk file being one of them (Eriberto, 2014).

There are a number of other tools with similar functionality, such as AccessData FTK
Imager(AccessData, 2018b) and Autopsy(GuidanceSoftware, 2018). The Sleuth Kit was
chosen as it produces the desired result with a few operations, and the output has a pre-
sentable structure.

1.9.6 IDA Pro
IDA Pro is the Interactive Disassembler, a highly recognized tool for reverse engineering
software. It is a very popular tool amongst malware analysts (Hex-Rays, 2017). In this
research it was used to reverse engineer kernel code.
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Chapter 2
Digital Forensics

Digital forensics or digital investigation is a process where hypotheses that answer ques-
tions about digital events are developed and tested. This is done by using the scientific
method on digital evidence to look for traces of malicious activity. Digital evidence is a
digital object that contains reliable information that supports or refutes a hypothesis in a
digital investigation (Carrier, 2005).

2.1 Sources of Digital Evidence
Digital evidence can be found everywhere. It can be a hard disk from a laptop or a log
file from a Cisco-router. Any device that has information that can prove some activity
happened or not. When a computer attack occurs, there are a lot of potential sources of
evidence that could be of interest. From the computer memory of the attackers computer
to the memory of the victim. In-between, the data could travel over a network, potentially
leaving traces of information on network equipment. Smartphones and tablets are also
potential sources of evidence (Arnes, 2018a).

2.2 The Digital Forensics Process
The Digital Forensics Process refers to a set of principals that is followed during cyber
crime investigations.

• The process starts with identifying the incident or crime to investigate.

• The necessary data can then be determined and collected in the collection phase.
This phase can typically include acquiring physical RAM from a running computer,
and pulling the hard drive to make a copy for analysis.

• The next step is initial examination and preprocessing. This includes running ap-
propriate tools on the sources of digital evidence, making the data human readable.
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De-obfuscating and de-crypting evidence is a necessary part of this phase. Other ac-
tivities include carving relevant data from deleted parts of the evidence, filtering out
known good data and searching for known bad data. Known good can be legitimate
operating system files, and known bad can be known strings relating to websites
with criminal content.

• Next step is to analyze the data. The investigator processes the information data to
answer the information requirements based on the nature of the speific case. If the
goal is to find out whether or not a corporation is compromised, the analysis could
involve looking for evidence of malware executed on the network.

• The last step is to make the final report of the incident or crime (Arnes, 2018a).

2.3 Forensic Soundness
Forensic soundness refers to the quality and completeness of methods or tool used in
investigations (Arnes, 2018b). As the results of digital investigations in law-enforcement
cases can lead to a person being imprisoned or exonerated, it is important that the tools and
techniques can be trusted. There is a vast number of digital forensics tools available, some
with overlapping functionality. One way of ensuring forensic soundness is to use similar
tools to see if they produce the same results. This is referred to as Dual Tool Verification.

By choosing tools that have been extensively tested, preferably with the source code
open to the public, the examiner can be relatively certain that the results from the tools are
correct. Having the source code available makes it possible to see what the tool actually
does (Arnes, 2018a).

2.4 Windows Forensics
Computer forensics on the Windows operating system is by far the most common skill dig-
ital investigators possess. According to netmarketshare.com, the share of Desktop com-
puters with Windows operating system is over 85% in 2017 (NetApplications.com, 2018).
As Windows is so widely used, it is also a natural target for computer network attacks by
cyber criminals. As cyber criminals choose the path of least resistance and biggest gain,
Windows is a great operating system to attack.

The Windows operating system is closed source, and several parts of it is not
documented publicly by Microsoft. In some cases, the creator of a tool has to reverse
engineer Windows components to uncover its functionality (Luttgens, 2014a).

Some core forensics artifacts found in Windows include:

• NTFS file system analysis

• Windows prefetch (evidence of program execution)

• Event logs

• Scheduled tasks
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• The registry

• Page file and hibernation file
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Chapter 3
Windows Memory Management

The Windows Memory Management refers to the operating subsystem that handles
or6ganization of memory. Memory management includes a lot of components, like trans-
lating or mapping process’s virtual addresses to physical addresses, paging memory con-
tents to disk when physical memory becomes overloaded, memory compression as a vir-
tual page file and making sure each process only has access to their permitted information
(Yosifovich, 2017b).

3.1 Virtual Memory
The memory manager is responsible for handling virtual memory. Virtual memory gives
each process its own private virtual address space (Yosifovich, 2017d). This creates a sep-
aration between the logical memory as seen by the processes, and the physical memory
that contains the data. As shown in Figure 3.1, the virtual address space of the processes
are linked to either physical memory or a page file on disk. The running processes them-
selves are not aware that certain contents of its virtual space is saved to the hard drive, it
is handled by the memory manager. When a page saved to the page file is accessed by the
process, it is handled with a page fault. The contents that was written to the page file is
then loaded back into physical memory.
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Figure 3.1: Illustration showing how virtual addresses can be mapped to physical from Case and
Walters (2014e).
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3.2 Demand Paging

Demand paging is a mechanism that is utilized by the memory manager to implement
virtual memory (Case and Walters, 2014e). This mechanism is based on keeping the pages
needed by running processes resident in physical memory, while the less prioritized pages
can be moved to a secondary storage. Demand paging makes space usage in memory
more efficient, leading to higher capacity and better performance. Windows has a system
for managing these pages, so that the pages that are required to stay in memory do so. This
is done to improve stability and performance. To store the pages that are removed from
memory, Windows uses a page file that is stored on the file system. The file is hidden in
the normal file explorer, and is called pagefile.sys (Case and Walters, 2014e). These can
exist in different locations based on the configuration of the system. This configuration
can be found in the Windows SYSTEM registry hive. It is most frequently found on
the root directory of the volume Windows is installed on. This mechanism creates some
issues in memory forensics, as the regions of memory that could be most interesting to the
examiner might be in the page file. As shown in Figure 3.1, access to a memory sample is
not necessarily sufficient.

3.3 Memory Compression

The problem using a hard drive as a secondary storage for memory data is that when some
contents need to be read from the disk and written back in memory, it takes a lot of time.
Systems insufficient physical memory needs to read and write data to the slow hard drive
frequently. Windows 10 introduces a new mechanism that handles this in a different way.
Instead of being written to the file system, the page is compressed and put in a virtual page
file. When memory compression was first introduced, the paged out memory was stored
in the System-process. In Windows 10 version 1607 this was changed to a new dedicated
process called Memory Compression1. One of the reasons for doing this was that users
were troubled by the fact that the System process occupied so much memory, which was
in-fact just compressed memory data. The Memory Compression process is a minimal
process, meaning that no DLLs are loaded. It also lacks a lot the meta data that a normal
process would have. This gives the kernel an empty address space to use as a store for
compressed pages (Yosifovich, 2017a).

The primary goal of memory compression was to compress pages belonging to the
new Windows 10 applications in the new Universal Windows Platform (UWP).
According to Windows Internals 7, the Memory Compression process uses Microsoft’s
Xpress algorithm. Their experiments has shown that this algorithm compresses data to
around 30-50% of their original size (Yosifovich, 2017a). The algorithm balances size with
speed, which makes sense as memory compression is implemented for better performance.

1The process appears as ”MemCompression” in process listings.

15



3.4 Microsoft’s Xpress Algorithm

Microsoft created the Xpress compression algorithm in 2011, which consists of three dif-
ferent variants. The three variants are plain LZ77, LZ77+Huffman and LZNT1 (Microsoft,
2018e). The Xpress algorithm used by Windows 10 memory compression is plain LZ77,
as shown by the research presented in Section 5.2.

3.4.1 Plain LZ77

Tests in Section 5.3.7 have proven plain LZ77 to be the algorithm used in memory
compression. This is the fastest variant of the Xpress-algorithm. ”LZ” is short for
Lempel-Ziv, which contains the last names of the two Professors, Abraham Lempel and
Jacob Ziv, at Israel Institute of Technology who wrote the algorithm. The number ”77”
comes from the year the algorithm was written, 1977 (ETHW.org, 2015). LZ77 works
by replacing strings of characters with a single identifier. These characters are called
”tokens”. The algorithm searches for new strings, and each time it finds a new one, it adds
it to the string, and also to a table or dictionary. Each time the algorithm finds a string of
characters that it recognizes from its table, it only outputs the token that represents the
string.

An example of how the algorithm could work would be:
”It’s the right right, right?”

could become:
”It’s the right& &, &?”

In this example, the token is represented by the character ”&”.
It makes sense to use this algorithm for memory compression, as the main purpose

of implementing it was to increase performance. Having a balance between how fast it
compresses and how much space is saved seems like a logical solution for the mechanism.

3.4.2 RtlCompressBuffer

RtlCompressBuffer is used by the MemCompression process to compress pages and store
them in its process space for later use. This is shown with the Windows Performance
Toolkit in Section 5.2. Figure 3.2 shows the parameters that are passed to the function. The
parameters are valuable when performing debugging, because it shows how the function
is utilized by the process that executes it. As the goal of the thesis is to decompress data,
the parameters will be presented in detail in Section 3.4.3, where RtlDecompressBufferEx
is covered. As the two functions gives access to about the same information, it is not
necessary to cover it more than once. The only parameter unique to RtlCompressBuffer is
the format of CompressionFormatAndEngine.

16



Figure 3.2: Parameters of RtlCompressBuffer from Microsoft (2018c).

CompressionFormatAndEngine

This parameter specifies the compression format and engine type as a bitmask. Fig-
ure 3.3 shows the alternatives of formats and engine types that is available. The
parameter must be set in the form of a bitmask or a combination of one for-
mat type and one engine type. For example COMPRESSION FORMAT XPRESS
|COMPRESSION ENGINE STANDARD.
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Figure 3.3: Alternatives of the CompressionFormatAndEngine-parameter from Microsoft (2018c).
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3.4.3 RtlDecompressBufferEx
RtlDecompressBufferEx is the function used for decompressing pages that has been com-
pressed by the MemCompression process, shown in Section 5.3 through kernel debugging.
This function decompresses an entire compressed buffer, which differs from the RtlDe-
compressChunks or RtlDecompressFragment that only decompresses parts of a buffer.

Figure 3.4: Parameters of RtlDecompressBufferEx. Figure is copied from Microsoft’s documenta-
tion (Microsoft, 2018d)

Parameters

The parameters used in RtlDecompressBuffer are shown in Figure 3.4.

1. CompressionFormat
The CompressionFormat is similar to the CompressionFormatAndEngine in Rtl-
CompressBuffer, but only handles the Format. The alternatives are the same as
shown in Figure 3.3, but only the COMPRESSION FORMAT * applies to this pa-
rameter.

2. UncompressedBuffer
An address in memory that points to the buffer allocated by the caller to receive the
decompressed data from the CompressedBuffer.

3. UncompressedBufferSize
The size of the buffer that receives the uncompressed data, in bytes.

4. CompressedBuffer
An address in memory that points to the buffer containing the actual compressed
data that will be decompressed with this function.

5. CompressedBufferSize
The size of the CompressedBuffer, in bytes.

6. FinalUncompressedSize
A memory address that contains the final uncompressed size of the decompressed
data. As MemCompression always compresses a page, this value will always be
4096 on a normally configured system.
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7. FinalUncompressedSize
A memory address that contains the final uncompressed size of the decompressed
data. As MemCompression always compresses a page, this value will always be
4096 on a normally configured system.

8. WorkSpace
A memory address that points to a work space buffer used by the function during
decompression.

3.4.4 Essential Arguments - 64-bit Parameter Handling
The 64-bit architecture enables the usage of 16 registers that is available for general-
purpose. Looking at Windows 10 functions in a debugger requires some background
knowledge on how registers store information. For example, when looking at the RtlDe-
compressBufferEx function, the interesting information lies within the parameters of the
function calls. Table 3.1 shows that the registers RCX, RDX, R8 and R9 are used for the
first four arguments.

Registers Use
RCX First Integer Argument
RDX Second Integer Argument
R8 Third Integer Argument
R9 Fourth Integer Argument

Table 3.1: Table showing registers used for passing parameters in 64-bit architecture from Microsoft
(2018b).

The remaining arguments are passed on the stack. This is because of the fastcall
calling convention used by the x64 architecture (Microsoft, 2018a). The function that
makes the call to another function, is responsible for setting up the stack and passing the
arguments correctly (Microsoft, 2017c).

With this information, it is possible to use a program like the Windows Debugger
to inspect the information passed to the proper function calls. Figure 3.5 shows what
arguments would be found on which locations.

Figure 3.5: RtlDecompressBufferEx syntax with explanation of how arguments are handled, based
on Microsoft (2017c).
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Chapter 4
Memory Forensics

This chapter and subsequent sections explains memory acquisition and analysis, and
presents available tools and techniques. Memory forensics has become increasingly rele-
vant as adversaries and criminals are making attempts to hide their activity. Some com-
puter network attacks involves malware that only lives in memory, and never touches the
hard drive. Without a memory sample, it would be impossible to fully analyze such inci-
dents (Kaspersky, 2015).

4.1 Memory Acquisition
Memory acquisition is the act of extracting a copy of the physical memory from a running
system. This is potentially one of the most important steps in data collection, as memory
contains a wealth of valuable information. The incorrect acquisition of physical memory
could result in a corrupt memory sample, or crash the running system. This could also
happen if everything is done correctly, based on how the system is configured. However,
it is still considered a risk worth taking (Case and Walters, 2014c).

4.1.1 How to capture memory
The typical way to capture memory is inserting a removable storage media that contains
memory dumping software into the system. The memory dumping software is run, and the
sample is saved to the removable device. This is to minimize the footprint of the memory
dumping, as the the process could potentially overwrite valuable data both in memory
and on the hard drive. Software that can acquire physical memory requires administrative
privileges. Some known tools for memory acquisition are RamCapturer (Belkasoft, 2016),
DumpIt (Suiche, 2016), AccessData FTK Imager (AccessData, 2018a), and the pmem-
suite (Cohen, 2016).

If administrative privileges are unavailable, it used to be possible to use the firewire
interface to get physical access to running memory. This approach is becoming obsolete,
as the firewire is rarely seen anymore. Also it only gives access to 4GB of memory.
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When dealing with virtual machines, the process is often a lot simpler. Virtualization soft-
ware often has functionality for creating snapshots, which includes a copy of its ”physical”
memory. . The file that contains the memory snapshot is simply copied out and can be
analyzed on a separate system. Volatility parses these files directly without any need for
conversion. Previous research has shown the effectiveness of using virtualized environ-
ment for recreating incidents to study computer attacks (Arnes, 2006).

To scale memory dumping, remote acquisition is also possible. An example of this
could be to have software on each computer in an enterprise with memory dumping ca-
pabilities. A memory sample can be acquired from an administrator-computer, and trans-
ferred over the network to the computer of the forensics analyst (Case and Walters, 2014c).
Figure 4.1 shows a flow chart of how to do memory acquisition based on the different sit-
uations.

Figure 4.1: Memory acquisition flow chart from Case and Walters (2014c).

4.1.2 When to capture memory
The concept of smearing was mentioned in Section 4.2.3, and this must be taken into
consideration when taking acquiring memory. When capturing a memory sample using
software, the process will take some time. The amount of time required is mostly de-
pendent upon the amount of physical memory to be acquired, and the transfer rate to the
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secondary storage. Write speed to the secondary storage may also be a bottle-neck. The
longer the process takes, the more potential for inconsistencies. To mitigate this fact, the
memory acquisition should happen when the system is as idle as possible. For example,
the acquisition should not happen during Windows updates or at system startup. The per-
son responsible for acquisition should also keep in mind that running memory dumping
software can tip off an attacker that they are being watched, and could lead to them wiping
their tracks and destroying data.

4.2 Memory Analysis

Memory analysis is the process of analyzing computer memory to find digital evidence.
A complete physical memory dump contains valuable data for a forensic examiner. The
list of potential evidence is extensive and ever-growing as toolkits evolve, and includes the
following:

• Running processes and system objects

• Open and closed network connections

• User credentials

• Loaded drivers

• Encryption keys

• Registry hives, Master File Table, and event logs

• Remnants of console commands

• Remnants of clear-text data that is otherwise encrypted on disk Luttgens (2014b)

There are several tools available for memory analysis. Volatility (Volatilityfoundation,
2016), Rekall (Cohen, 2018) and Redline (FireEye, 2018) are probably the most com-
monly used frameworks.

4.2.1 Processes

Regardless of what questions the examiner is required to answer, the process list is a good
place to start an investigation. It tells the examiner what is currently running on the system.
If the goal is to find out if malware was run, a process listing could show malware running
on the system. If the user of the computer was suspected to have visited illegal web sites,
the examiner could look for running browsers.

This shows the output of a process listing using Volatility on the memory dump
WINDEV1710EVAL.dmp. The output is trimmed for visual purposes.
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volatility -f WINDEV1710EVAL.dmp --profile=Win10x64_16299 pslist
Volatility Foundation Volatility Framework 2.6
Name PID PPID Thds Hnds Start
--------------- ----- ------ ------ -------- -------------------
System 4 0 163 0 2018-03-11 13:04:21 UTC+0000
smss.exe 516 4 4 0 2018-03-11 13:04:21 UTC+0000
csrss.exe 612 604 11 0 2018-03-11 13:04:24 UTC+0000
smss.exe 684 516 0 -------- 2018-03-11 13:04:24 UTC+0000
wininit.exe 692 604 5 0 2018-03-11 13:04:24 UTC+0000
csrss.exe 704 684 11 0 2018-03-11 13:04:24 UTC+0000
winlogon.exe 752 684 6 0 2018-03-11 13:04:25 UTC+0000
services.exe 816 692 23 0 2018-03-11 13:04:25 UTC+0000
lsass.exe 824 692 9 0 2018-03-11 13:04:25 UTC+0000
fontdrvhost.exe 916 752 6 0 2018-03-11 13:04:25 UTC+0000
svchost.exe 924 816 30 0 2018-03-11 13:04:25 UTC+0000
fontdrvhost.exe 932 692 6 0 2018-03-11 13:04:25 UTC+0000
...

From the process listing, Volatility has many options to further inspect a process. One
option is to dump the entire virtual memory space associated with a process by using its
process ID. Another option could be to view the command line parameters of that process
to determine what arguments were passed to it. It is also possible to extract the executable
image from the process (Luttgens, 2014b).

4.2.2 Hibernation Files

A hibernation file potentially contains a full physical memory dump from the last time
the system was hibernated. This is valuable in several ways. It could give access to a
memory sample from a computer that was shut down. The incident that started the case
could have occurred several weeks or months ago, and the hibernation file could potentially
contain more relevant data than a current memory sample. Hibernation files are common
on laptops, as they are commonly created when the user closes the lid. The hibernation file
is compressed by default on most Windows systems, but there are tools that can convert
them back to a working memory sample. Volatility can read hibernation files directly, but
it takes a lot of time, as it must be decompressed.

4.2.3 Page Files

As page files contains data that has been in computer memory, it is potentially a very in-
teresting source of data in digital investigations. The page file can contain console activity,
domains, IP-addresses, credit card numbers, encryption keys, web page fragments, small
files, passwords, etc. As it is very hard to get context of the data in the page file, the
investigator must know exactly what to look for. For example, a unique domain used by
malware could be an indicator of compromise (Richard, 2014b). However, as the Windows
Defender process also gets its pages stored in the page file, it can contain some seemingly
malicious activity that could be misinterpreted as an actual compromise. Another compli-
cation is that Windows does not sanitize blocks of data before allocating them the the page
file. This means that old data deleted from the hard drive could appear in the page file.
Page files is also discussed in Section 3.2.
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In theory, it is possible to get a physical memory sample to provide context if the page
file is provided. Because of memory smearing1 the kernel structures that provides context
into the page file are inconsistent as dumping memory and copying the page file takes time
while the operating system is still running, and thus changing (Richard, 2014b).

1Refers to the inconsistencies in a memory sample as a result of the operating system still running and
changing memory while it is being captured (Carvey, 2005).
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Chapter 5
Methodology

This chapter and the subsequent sections contains the methodology used to create a proof-
of-concept tool for decompressing memory in memory samples and page files. The topics
include finding the algorithm, analyzing Windows kernel code, and the scenarios for test-
ing the proof-of-concept tool.

5.1 Development of a Proof of Concept Tool
For the development of the MemoryDecompression tool, the student will test hypotheses
and answer research questions. The main hypothesis that that affects the software devel-
opment, is that memory regions compressed by the Windows operating system can in-fact
be decompressed. The following questions needed to be answered to develop this tool:

• How does Windows compress and decompress pages from memory?

• What are specific parameters required to decompress memory?

5.2 Finding the Compression Algorithm
This section contains the process of finding the compression algorithm used by Windows
10 during memory compression. As mentioned in Section 3.3, the memory manager uses
Microsoft’s Xpress algorithm to perform compression. Section 3.4 explains the different
algorithms used by Xpress. The alternatives are LZ77+Huffman, plain LZ77, and LZNT1.
To find out which one is being used here, one approach is to find out what the MemCom-
pression process actually does. The tool called Windows Performance Analyzer, hereby
referred to as ”Analyzer”, mentioned in Section 1.9, will be used for this purpose. It has
functionality for showing what Windows processes are doing, and what functions they are
using. To create the data required for the Analyzer, the Windows Performance Recorder,
hereby referred to as ”Recorder”, is used. Figure 5.1 shows how the recorder looks to the
user. After running the recorder, the data is saved to a file. This is opened in the Analyzer.
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Figure 5.1: Screenshot from Windows Performance Recorder.

After opening the file, it is of interest to see how the MemCompression process behaves.
Under ”Computation”, it is possible to look at ”CPU Usage (Sampled)”, and from there
to ”Flame by Process, stack”. This is shown in Figure 5.2. This area is of interest to
the research. When looking at the stack presented in the ”Flame by Process” view, some

Figure 5.2: Screenshot from Windows Performance Analyzer, navigating to the Flame by Process
view.

interesting Windows functions can be seen. Figure 5.3 shows the stack from the Mem-
Compression process. The function from ntoskrnl.exe, RtlCompressBuffer seems to be a
good pivot point for further analysis. Figure 5.3 also shows RtlCompressBufferXpress-
LzStandard, which contains the ”Xpress” string. This correlates with the literature from
Section 3.3, saying that Microsoft’s Xpress algorithm is used in memory compression. To
further research the RtlCompressBuffer-function, another tool is required.
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Figure 5.3: Screenshot from Windows Performance Analyzer, stack of the MemCompression pro-
cess in the Flame by Process view.

29



5.3 Kernel Debugging with WinDbg
The Windows Debugger has functionality for examining a running Windows 10 system
by utilizing remote kernel debugging. This technique requires a remote system, hereby
referred to as ”guest” and a debugging system, hereby referred to as ”host”. All commands
used in this section is documented by Microsoft (Microsoft, 2017b).

5.3.1 Lab Setup
For the guest, a virtual machine with Windows 10 will be used. For the host, a physical
machine running Windows 10 with WinDbg will be used.

The following setup is used.

HOST
Figure 5.4 shows the OS-version. The virtualization software used was VMWare
Workstation 12.1.1 build-3770994. The version of WinDbg was 10.0.16299.91. The host
is also set up with Windows Subsystem for Linux, which gives access to a Linux-console
in Windows (Microsoft, 2016). This console is used in combination with the Powershell
console throughout the experiments.

Figure 5.4: Windows 10 version on the host.

GUEST
Figure 5.5 shows the OS-version. The guest was configured with 2GB of memory to make
the required memory pressure needed to force memory compression lower. To enable
support for debugging over the network, it was necessary to activate it by running bcdedit1

in a command prompt in Windows. The guest is also setup with Windows Subsystem for
Linux, same as the host.
PS> bcdedit /dbgsettings net hostip:<ip-adress> port:<desired-port>

key:<key set by the user>

1BCDEdit is a command-line tool for managing Boot Configuration Data (Microsoft, 2017a).
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Figure 5.5: Windows 10 version on the guest.

5.3.2 Inspecting RtlCompressBuffer

In WinDbg, there is an option to set breakpoints on function calls. If the breakpoint hits
on the correct function call, the arguments can be inspected by looking at the locations
mentioned in Section ??. After attaching WinDbg to the kernel debugging interface, the
debugger now controls the virtual machine. The virtual machine is ”broken into” by the
debugger, enabling a large number debugging operations. The interesting information
should be found before the operating system makes a function call to RtlCompressBuffer
with the MemCompression process. The "bp"-command can be run to see if the function
is found by the debugger.

1: kd> x nt!RtlCompressBuffer*
fffff801‘38841000 nt!RtlCompressBufferLZNT1 (void)

fffff801‘38422530 nt!RtlCompressBufferXpressLz (void)

fffff801‘384225a0 nt!RtlCompressBufferXpressLzStandard (void)

fffff801‘38676aa4 nt!RtlCompressBufferProgress (<no parameter info>)

fffff801‘38676d14 nt!RtlCompressBufferXpressHuffMax (<no parameter info>)

fffff801‘38677b5c nt!RtlCompressBufferXpressLzMax (<no parameter info>)

fffff801‘38676c60 nt!RtlCompressBufferXpressHuff (<no parameter info>)

fffff801‘386d7978 nt!RtlCompressBufferProcs = <no type information>

fffff801‘3867739c nt!RtlCompressBufferXpressHuffStandard (<no parameter

info>)

fffff801‘38521290 nt!RtlCompressBuffer (<no parameter info>)

The output shows that the interesting function is present at offset fffff801‘38521290, and
some sub-functions that has names correlating with the background theory from Section
3.4. These functions are likely called depending on what arguments RtlCompressBuffer
is given by the callee.
The next step is to set the breakpoint on the function. This is done with the "bp"-
command.
1: kd> bp nt!RtlCompressBuffer

To list all breakpoints and look at their status, the "bl"-command is used
1: kd> bl

0 e Disable Clear fffff801‘38521290 0001 (0001) nt!RtlCompressBuffer
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The next step is to run the virtual machine until the breakpoint hits. This is done
with the "g" command. Immediately following is information about what breakpoint hit,
and the first instruction on within the function call.

1: kd> g

Breakpoint 0 hit

nt!RtlCompressBuffer:

fffff801‘38521290 4883ec58 sub rsp,58h

As the RtlCompressBuffer can be used by other processes in Windows 10, it is
necessary to find out if the breakpoint has occured on the correct one. To see the process
context of the current thread, the "!process"-command is used.

1: kd> !process

PROCESS ffffd9099ad3a040

SessionId: none Cid: 0640 Peb: 00000000 ParentCid: 0004

DirBase: 0c980002 ObjectTable: ffffab8c1ba6c540 HandleCount: 0.

Image: MemCompression

This is the correct function call to inspect. To look at the interesting information
regarding the arguments, it is necessary to see what data the registers and the stack
contains. The registers can be viewed with the "r"-command.

1: kd> r

rax=ffffd9099ad35000 rbx=ffffd90998d1e028 rcx=0000000000000003

rdx=ffffd9099d021f4f rsi=ffffd90997ca8b30 rdi=ffffd90998d1e070

rip=fffff80138521290 rsp=ffffeb80678b5b18 rbp=ffff82012790d000

r8=0000000000001000 r9=ffffd90998d1e070 r10=0000000000001000

r11=0000000000000000 r12=fffff801388379c0 r13=fffff80138837eb0

r14=ffffd90998d1e000 r15=ffffd9099d021f4f

There are two arguments that are of particular interest in this list, and that is
RCX and R8. These represents the CompressionFormatAndEngine and
UncompressedBufferSize, which are important parameters for decompress-
ing data.

• R8 is simple to decode. It displays the hex-value 0x1000, which translates to 4096
decimal. This means that the UncompressedBufferSize equals 4096. This is valu-
able information for creating the brute-force tool, as it reveals what the original size
of the compressed data is.

• RCX has the value 0x3. This number needs to be decoded to find out what com-
pression format and engine is used. One way of finding it is to look within the
winnt.h header file which ships with Microsoft Visual Studio 2017, an integrated
development environment for Windows.
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Figure 5.6: Screen shot from Visual Studio showing contents from winnt.h.

As covered in Section 3.2, this parameter is represented by a bitmask. Figure 5.6 shows
what values the bitmask consists of. Had the compression format been LZNT1 and the
engine HIBER, the value of the bitmask would be 0x0202. The number 0x0003 translates
to the combination of format type COMPRESSION FORMAT XPRESS and engine type
COMPRESSION ENGINE STANDARD. These are essential parameters that needs to be
passed correctly to the function when creating the decompression tool.

5.3.3 Finding the Decompression Function

As there is a function called ”RtlDecompressBuffer”, it is natural to assume that this
function is involved in the process of decompressing the paged out data. When setting a
breakpoint on this function in WinDbg, nothing happens. The operating system does not
seem to be using this function, atleast not too frequently. It is possible to set breakpoints
on multiple functions at the time with the "bm"-command. To see if what functions are
available, the "x"-command is used.

3: kd> x nt!RtlDecompressBuffer*
fffff801‘3842ed00 nt!RtlDecompressBufferXpressHuff (void)

fffff801‘38925cc0 nt!RtlDecompressBufferLZNT1 (void)

fffff801‘38678ba0 nt!RtlDecompressBufferXpressLzProgress (<no parameter

info>)

fffff801‘38678144 nt!RtlDecompressBufferProgress (<no parameter info>)

fffff801‘38502ce0 nt!RtlDecompressBufferEx2 (<no parameter info>)

fffff801‘386d7858 nt!RtlDecompressBufferProcs = <no type information>

fffff801‘3842ec80 nt!RtlDecompressBufferEx (<no parameter info>)

fffff801‘3866f330 nt!RtlDecompressBuffer (<no parameter info>)

fffff801‘38678204 nt!RtlDecompressBufferXpressHuffProgress (<no parameter

info>)

fffff801‘386787e0 nt!RtlDecompressBufferXpressLz (<no parameter info>)

To see if any of the other decompression functions are used by the operating sys-
tem, breakpoints are placed on all of them.

3: kd> bm nt!RtlDecompressBuffer*
1: fffff801‘3842ed00 @!"nt!RtlDecompressBufferXpressHuff"
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2: fffff801‘38925cc0 @!"nt!RtlDecompressBufferLZNT1"

3: fffff801‘38678ba0 @!"nt!RtlDecompressBufferXpressLzProgress"

4: fffff801‘38678144 @!"nt!RtlDecompressBufferProgress"

5: fffff801‘38502ce0 @!"nt!RtlDecompressBufferEx2"

6: fffff801‘3842ec80 @!"nt!RtlDecompressBufferEx"

7: fffff801‘3866f330 @!"nt!RtlDecompressBuffer"

8: fffff801‘38678204 @!"nt!RtlDecompressBufferXpressHuffProgress"

9: fffff801‘386787e0 @!"nt!RtlDecompressBufferXpressLz"

When running the virtual machine, the breakpoint immediately hits.

3: kd> g

Breakpoint 6 hit

nt!RtlDecompressBufferEx:

fffff801‘3842ec80 4053 push rbx

It is also necessary to make sure that this function is used by the MemCompression
process.

3: kd> !process

PROCESS ffffd9099ad3a040

SessionId: none Cid: 0640 Peb: 00000000 ParentCid: 0004

DirBase: 0c980002 ObjectTable: ffffab8c1ba6c540 HandleCount: 0.

Image: MemCompression

The MemCompression process is using RtlDecompressBufferEx to perform decom-
pression. The next step is to extract the compressed data and the decompressed data,
then try to decompress the compressed data and get the exact same result as the
MemCompresson process.

5.3.4 Inspecting RtlDecompressBufferEx

To verify that the correct parameters were found in Section 5.3.2, the same inspection will
be performed on RtlDecompressBufferEx. The debugger is set on the breakpoint before
RtlDecompressBufferEx, so the "r"-command is used to view the registers.

1: kd> r

rax=00000000000001ca rbx=0000000000000002 rcx=0000000000000003

rdx=ffffe7811d1bd000 rsi=00000000029c9e60 rdi=ffffe7811d1bd000

rip=fffff801f0a91990 rsp=ffffbf0968c5a278 rbp=ffffc18980496050

r8=0000000000001000 r9=00000000029c9e60 r10=7ffffffffffffffc

r11=ffffbf0968c5a3a8 r12=00000000029c9e60 r13=ffffc1897e5a9000

r14=ffffe7811d1bd000 r15=ffffbf0968c5a4a8

Section 3.4.3 shows which arguments are passed to the function.
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• RCX is 0x3, which is decoded with Figure 5.6, and gives the same compression
format as RtlCompressBuffer, COMPRESSION FORMAT XPRESS.

• RDX is the UncompresseBuffer. This register contains the kernel address a location
in memory that will receive the data that is decompressed by the function.

• R8 is the UncompressedBufferSize. The value of this register is 0x1000. This means
that the compressed data will decompress to 4096 bytes. This value also correlates
with RtlCompressBuffer.

• R9 is the virtual address to the compressed data in the MemCompression process.

The remaining arguments are passed on the stack before entering the function call. These
are found by looking at the instructions before the function call to RtlDecompress-
BufferEx. In fast call, as mentioned in Section 3.4.4, the function that calls RtlDecom-
pressBufferEx is responsible for passing the arguments on the stack.

The registers show that the same arguments passed to RtlDecompressBufferEx were
also passed to RtlCompressBuffer. This finding makes it highly likely that these are the
respective functions used to compress and decompress data to the MemCompression pro-
cess.

5.3.5 Extracting Data for Testing
To create a tool that decompresses data from a memory dump, it is necessary to start in
the most basic form. Using the RtlDecompressBufferEx-function to get a ”before-and-
after-shot” of the data it decompresses. The goal is to extract this data, and replicate the
process of decompression with a program. To get this data, three parameters are required.
The UncompressedBuffer, the CompressedBuffer, and the CompressedBufferSize. The
first two have been shown in previous sections, and is found in registers RDX and R9.
The last one is found on the stack. As mentioned in Section 5.3.4, this can be found
by looking at the instructions just before the function call to RtlDecompressBufferEx.
In WinDbg this is done by looking at the instructions before the return address of the
RtlDecompressBufferEx. The "k"-command can be used to look at the call-stack, and
find the return address to the caller of the decompression-function.

1: kd> k

Child-SP RetAddr Call Site

00 ffffbf09‘68c5a278 fffff801‘f0cec3e2 nt!RtlDecompressBufferEx

01 ffffbf09‘68c5a280 fffff801‘f0cec6ae nt!ST STORE<SM TRAITS>::

StDmSinglePageCopy+0x246

The RetAddr is then used to inspect the preceding assembly instructions. This is
done using the "ub"-command with the return address and

1: kd> ub fffff801‘f0cec3e2 L10

nt!ST STORE<SM TRAITS>::StDmSinglePageCopy+0x1fd:
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fffff801f0cec3af 0f83a4000000 jae nt!ST_STORE<SM_TRAITS>::
StDmSinglePageCopy+0x2bd (fffff801`f0cec459)
fffff801f0cec3b5 488b4c2468 mov rcx,qword ptr [rsp+68h]
fffff801f0cec3ba 448bc2 mov r8d,edx
fffff801f0cec3bd 48894c2430 mov qword ptr [rsp+30h],rcx
fffff801f0cec3c2 4c8bce mov r9,rsi
fffff801f0cec3c5 488d4c2458 lea rcx,[rsp+58h]
fffff801f0cec3ca 488bd7 mov rdx,rdi
fffff801f0cec3cd 48894c2428 mov qword ptr [rsp+28h],rcx
fffff801f0cec3d2 0fb78de0030000 movzx ecx,word ptr [rbp+3E0h]
fffff801f0cec3d9 89442420 mov dword ptr [rsp+20h],eax
fffff801f0cec3dd e8ae55daff call nt!RtlDecompressBufferEx
(fffff801f0a91990)

Since the stack follows the ”Last In First Out” (Knuth, 1997) principal and
CompressedBufferSize-argument is the fifth, and thus the first stack-argument to be used,
it is passed last on the stack. The last argument to be passed to the stack is the instruction
at offset fffff801f0cec3d9, mov dword ptr [rsp+20h],eax. This happens just be-
fore the call to RtlDecompressBufferEx. Tests have shown that this argument mostly can
be found in the RAX-register, as the value comes from the EAX-register, which represents
the lower 32-bits of RAX.

To see the value of the CompressedBufferSize-argument, the "dq"-command is used
on the offset of the stack pointer + 0x28. The stack pointer register, RSP (Microsoft,
2018b), contains the address of the stack at the current instruction. The instruction says
that the value of eax is moved to rsp+20h, but when the call to RtlDecompressBufferEx
happens, which is where the breakpoint is set, the stack is incremented with the 64-bit
address of the return pointer. This means that the value placed on the stack at rsp+20h,
is now at rsp+28h, since a 64-bit address takes 8 bytes. The proper "dq"-command will
then be:

1: kd> dq @rsp+28 L1

ffffbf09‘68c5a2a0 00000000‘000002bb

The compressed data can be extracted to a file on disk. This can achieved through
the .writemem-command. The length is 2bb, represented by L2bb in the command.

1: kd> .writemem C:\Users\User\MASTER-THESIS-TESTING\test-dbg-compressed.bin
@r9 L2bb

Writing 2bb bytes.

To extract the decompressed data, RtlDecompressBufferEx must first finish, as its
job is to decompress the data. The Windows debugger has a feature called ”Step Out”.
This runs the current function until it returns to the function that called it. When this is
done when the breakpoint is at the RtlDecompressBufferEx-function, the pointer to the
address of UncompressedBuffer in the RDX-register now contains the uncompressed
data. The .writemem-command is used to extract the data, and as seen by inspecting
the function, the size of the UncompressedBuffer is 0x1000 or 4096 bytes. The output
of the debugger says ”Writing 1000 bytes.”, but this value is misleading and should be
”1000h” or ”0x1000” as it is hexadecimal.
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1: kd> .writemem C:\Users\User\MASTER-THESIS-TESTING\test-dbg-uncompressed.bin
ffffb5802c67c000 L1000

Writing 1000 bytes.

Powershell dir-command is used to look at the folder and verify that the correct
sizes has been written to the disk.

PS C:\Users\User\MASTER-THESIS-TESTING> dir

Mode Length Name
---- ------ ----
-a---- 699 test-dbg-compressed.bin
-a---- 4096 test-dbg-uncompressed.bin

5.3.6 Decompressing Testing Data
The test-files from the previous section will be tested in two ways. The compressed test-
file will be attempted decompressed by a program using the Windows function RtlDe-
compressBuffer. The uncompressed test-file will be attempted compressed by the same
program, but by using the RtlCompressBuffer-function. The results will show if this is a
valid method that can be developed further to work on page files and memory dumps. If the
output-files from the program are identical to the result of the MemCompression-process,
the test is a success. This will be verified using md5-hash.

The program used for this testing is a slightly configured version of C++ code found
online (AceFinity, 2014). The actual code used is found in listing 8.2, in Appendix B. The
program was appropriately named ”CompressDecompress” as it can do both.

For testing decompression, the file ”test-dbg-compressed.bin” from the previous
section was used as input. The output file was named ”test-tool-decompressed.bin”.

PS C:\Users\User\MASTER-THESIS-TESTING> .\CompressDecompress.exe

PS C:\Users\User\MASTER-THESIS-TESTING> dir

Mode Length Name
---- ------ ----
-a---- 699 test-dbg-compressed.bin
-a---- 4096 test-dbg-uncompressed.bin
-a---- 4096 test-tool-decompressed.bin

The size 4096 matches, so to test that the files are identical md5sum is used.

PS C:\Users\User\MASTER-THESIS-TESTING> bash -c "md5sum *"
15448c64a3d3c522fbfc312326beebab test-dbg-compressed.bin
11a112a873db64cb2fa61b498782f278 test-dbg-uncompressed.bin
11a112a873db64cb2fa61b498782f278 test-tool-decompressed.bin

The CompressDecompress-tool has successfully decompressed data in the same way as
the MemCompression-process.
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Next is comparing compressed data from RtlCompressBuffer to compressed data
from the MemCompression process to ensure that they operate identically. The same
procedure as with decompression will be performed. To compress instead of decompress,
a slight change is necessary in the code of the CompressDecompress-tool. At line 143
in the code, the line "#define COMPRESS" must be de-commented by removing
the two forward slashes at the beginning. Also, the file names must be changed to
match the compression operation. The input file to be compressed in this experiment is
”test-dbg-uncompressed.bin”, and the output file is named ”test-tool-compressed.bin”.

PS C:\Users\User\MASTER-THESIS-TESTING> .\CompressDecompress.exe

PS C:\Users\User\MASTER-THESIS-TESTING> dir

Mode Length Name
---- ------ ----
-a---- 699 test-dbg-compressed.bin
-a---- 699 test-tool-compressed.bin
-a---- 4096 test-dbg-uncompressed.bin
-a---- 4096 test-tool-decompressed.bin

The size 699 matches, so to test that the files are identical md5sum is used.
PS C:\Users\User\MASTER-THESIS-TESTING> bash -c "md5sum *"
15448c64a3d3c522fbfc312326beebab test-dbg-compressed.bin
15448c64a3d3c522fbfc312326beebab test-tool-compressed.bin
11a112a873db64cb2fa61b498782f278 test-dbg-uncompressed.bin
11a112a873db64cb2fa61b498782f278 test-tool-decompressed.bin

The testing of RtlDecompressBuffer and RtlCompressBuffer is successful, and can be used
to decompress data from the MemCompression-process.

5.3.7 Testing LZ77
To make sure what algorithm is actually used by RtlDecompressBuffer and RtlCom-
pressBuffer, some testing was necessary. Microsoft has documented how the algorithms
are used (Microsoft, 2018e), so to test for LZ77 the same example is used. Figure 5.7
shows an example where LZ77 is used on some data. The CompressDecompress.exe tool
will be used to reproduce the example. If CompressDecompress.exe produces the same
result with RtlCompressBuffer given the parameters gathered through kernel debugging,
it concludes that LZ77 is used.

The file ”abc.txt” was created, with consecutive abc’s.
PS> Get-Content .\abc.txt
abcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabc
abcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabc
abcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabc
abcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabc
abcabcabcabcabcabcabcabc

The code used in CompressDecompress.cpp to make this happen, was:
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Figure 5.7: Example from the Microsoft’s Xpress Algorithm documentation.

#define COMPRESS

int main()
{
#ifdef COMPRESS

const char originalFile[] =
"C:\\Users\\User\\MASTER-THESIS-TESTING\\abc.txt";↪→

#endif
const char compressedFile[] =

"C:\\Users\\User\\MASTER-THESIS-TESTING\\abc.compressed";↪→

This change simply tells the program to compress instead of decompress. The file to
be compressed is ”abc.txt”, and the compressed output file is ”abc.compressed”. The
program is run in the Powershell console.

PS> .\CompressDecompress.exe

The file ”abc.compressed” was created. The file will be inspected using the xxd-command
in bash.
# xxd abc.bin

00000000: ffff ff1f 6162 6317 000f ff26 01 ....abc.....

The results show that the exact same output is produced with RtlCompressBuffer
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as the practical example of ”Plain LZ77” in Figure 5.7. This experiment concludes that
plain LZ77 is the correct algorithm.

5.4 Proof of Concept Tool: MemoryDecompression
MemoryDecompression uses a brute-force approach to decompress memory pages that
has been compressed by Windows 10. For now, the tool can only be run on a Windows 8
or Windows 10 client, as the ntdll.dll function used to decompress, RtlDecompressBuffer,
is only available on those versions. It is a console application, which means it runs in
either a command prompt or Powershell console in Windows. By making it a console
application, it is easier to integrate in scripts or other programs used to automate the
forensics preprocessing. Had the tool been written as a Graphical User Interface applica-
tion, automation through scripting would be challenging.

Usage:
MemoryDecompression.exe <input file or folder> <output-file>

Input file or folder
The input parameter can be either a file or a folder. If the input parameter is a folder, the
tool will attempt to decompress ALL the files it contains. Investigators can use a tool like
Volatility to extract the compressed memory from the MemCompression process. Output
files from both vaddump and memdump (Volatility plugins) works. The intended purpose
of using a folder as input is for the vaddump-plugin output, which dumps VAD-segments
in 128kb files. The investigator can also extract page files (pagefile.sys) from a disk image
and run the decompressor on the file. Tests have shown that this can take over 4 hours on
a 6GB page file with the current version of MemoryDecompression.

Output file
The output parameter specifies the file which the decompressed output data is written to.

5.4.1 Choice of Programming Language
Computer operations that involves compressing or decompressing data is resource de-
manding. It is desirable to utilize a low-level programming language to operate as effective
as possible. As Volatility is written in Python, and one of the goals of the decompression-
tool was integration with the existing solutions, Python was considered. The issue of
performance was addressed in ”In Lieu of Swap” (Richard, 2014a), which makes Python
a poor candidate. It was also convenient to use a programming language that could easily
utilize Windows API functions.

Taking the arguments into consideration, the programming language chosen was C++.

5.4.2 Sample Output
The MemoryDecompression tool is meant for decompressing compressed contents in
memory dumps, page files, and hibernation files.
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Example with page file as input:

PS> MemoryDecompression.exe pagefile.sys pagefile-decompressed.bin

Decompressing .\pagefile.sys

Total decompressed pages: 803827

Total compressed data: 1111505498 bytes

Total decompressed data: 3292475392 bytes

Decompression completed in:

Total Microseconds: 16731799969

Total Seconds: 16731

Total Minutes: 278

Total Hours: 4

This is an example from a real page file, and it shows how long it takes to decom-
press contents in a large file.

Example with folder of VAD-segments as input:
The tool works directly on a memory dump, but it will take a lot of time, so we want to
extract the compressed data from the MemCompression process within the memory dump
using Volatility. Outputs are minimized for readability. Firstly, Volatility is used on the
memory dump to find the process ID of the MemCompression process.
volatility -f memory.dmp --profile=Win10x64 16299 pslist

Name PID Start

-------------- ---- ------

MemCompression 1708 2018-08-24 07:38:02 UTC+0000

The PID is used to dump the VAD-segments of the process, containing the com-
pressed data.
volatility -f memory.dmp --profile=Win10x64 16299 vaddump -p 1708

-D vaddump-folder/

The folder containing the VAD-segments can now be used as input for the
MemoryDecompression-tool.
PS> MemoryDecompression.exe vaddump-folder all-vads-decompressed.bin

Decompressing MemCompression.4afa580.0x00000000000b0000-0x00000000000cffff.dmp

Decompressing MemCompression.4afa580.0x00000000000d0000-0x00000000000effff.dmp

Decompressing MemCompression.4afa580.0x00000000000f0000-0x000000000010ffff.dmp

Decompressing MemCompression.4afa580.0x0000000000a10000-0x0000000000a2ffff.dmp
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Decompressing MemCompression.4afa580.0x0000000000a30000-0x0000000000a4ffff.dmp

Decompressing MemCompression.4afa580.0x0000000000a50000-0x0000000000a6ffff.dmp

Decompressing MemCompression.4afa580.0x0000000000a70000-0x0000000000a8ffff.dmp

Decompressing MemCompression.4afa580.0x0000000000a90000-0x0000000000aaffff.dmp

Decompressing MemCompression.4afa580.0x0000000000ab0000-0x0000000000acffff.dmp

Decompressing MemCompression.4afa580.0x0000000000ad0000-0x0000000000aeffff.dmp

Decompressing MemCompression.4afa580.0x0000000000af0000-0x0000000000b0ffff.dmp

Decompressing MemCompression.4afa580.0x0000000000b10000-0x0000000000b2ffff.dmp

Decompressing MemCompression.4afa580.0x0000000000b30000-0x0000000000b4ffff.dmp

Decompressing MemCompression.4afa580.0x0000000000b50000-0x0000000000b6ffff.dmp

Decompressing MemCompression.4afa580.0x0000000000b70000-0x0000000000b8ffff.dmp

Total decompressed pages: 1239

Total compressed data: 1789658 bytes

Total decompressed data: 5074944 bytes

Decompression completed in:

Total Microseconds: 12657726

Total Seconds: 12

Total Minutes: 0

Total Hours: 0

5.4.3 How MemoryDecompression Works

To decompress contiguous compressed data from a file, MemoryDecompression uses a
brute-force approach. When a page is compressed on a normal system, the size of the page
being compressed is always 4096. This means that the decompressed size that is returned
by the RtlDecompressBuffer function should always be 4096. When the tool successfully
decompresses a page, it must jump to the next compressed data within the input file. As
mentioned in Section 3.3, the compressed data is stored in 16 byte chunks. This means
that when decompression is successful, the next compressed data starts at the next 16 byte
chunk. The offset of the next compressed data will therefore be the next number divisible
by 16. For example if MemoryDecompression successfully decompressed 900 bytes
from the beginning of the input file, the offset of the next compressed data will not start at
offset 901, but at the next chunk at offset 912.

Simplified pseudo code:

Check that the parameters are correct, quit if they aren't.
Read the input file or files.
If the input is a folder, do decompression on all files in the folder.
Read first 4096 bytes of the file and checks if the buffer is all zeros

If the buffer is all zeros, jumps 4096 bytes - To avoid wasting time
decompressing zeros.↪→

Start reading an incrementing amount of bytes from the beginning of the
file into a buffer↪→

Use RtlDecompressBuffer with Xpress format and standard engine, with
the buffer as the contents of the argument CompressedBuffer↪→
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If the decompression succeeds AND the Uncompressed size equals 4096
Write the decompressed data to the output file, and jump to the

next chunk offset↪→

Else, increment the buffer by 1 byte and try again.
If the buffer reaches 4096 bytes without successful decompression,

moves the start offset 16 bytes and tries again.↪→

When the end of the file is reached, print statistics - Total duration of
running the tool, and total compressed and decompressed data.↪→
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5.5 Testing MemoryDecompression
This section contains the parameters for testing how console and web browser activity
can be hidden by the MemCompression-process. As Section 4.2 states, console and web
browser activity are important pieces of evidence that can reveal crucial information in a
digital investigation. Console activity is tested by typing some commands that can easily
be found in a memory dump. Browser activity is tested by visiting a website with with a
web browser that is easily found in a memory dump. After creating the evidence, the goal
is to simulate other activity with a tool called ”TestLimit.exe” (Microsoft, 2012). This tool
has the option to create a high memory demand, which should force the Windows 10 mem-
ory manager to compress pages from idle processes to make space. A memory snapshot
is taken after running TestLimit.exe, and Volatility is used to extract the VAD-segments.
The MemoryDecompression tool is then used on the VAD-segments to decompress the
obfuscated data. After the data is decompressed, string searches for the activity on the
compressed and decompressed VAD-segments is performed. In the browser experiment,
the page file is also included.

The same virtual machine used in Section 5.3 was used when testing MemoryDecom-
pression.

5.5.1 Scenario: Console Activity
The following console activities were performed on the virtual machine.

• Opened Bash.exe

• Typed ’echo "Hello Olashamann!"’

• Opened Powershell.exe

• Typed ’echo "Hello Duriell!"’

• Ran TestLimit.exe -m 100 in the Powershell console

• Memory snapshot taken
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5.5.2 Scenario: Browser Activity
The following web browser activities were performed on the virtual machine.

• Opened web browser Microsoft Edge

• Went to nrk.no, and clicked an article containing the word, ”farenivået”

• Memory snapshot 1 taken

• Opened Powershell.exe

• Ran TestLimit.exe -m 100

• Memory snapshot 2 taken

Figure 5.8 shows a screenshot taken from the virtual machine, showing how the web site
looked for the user.

Figure 5.8: Screenshot from the web browser activity.
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Chapter 6
Results

This chapter contains the results produced by testing the MemoryDecompression tool on
Windows 10 memory data. The findings are briefly discussed in both experiments.

6.1 Results: Console Activity
This section contains the results of the scenario described in Section 5.5.1. The first step
of decompressing memory is extracting the VAD-segments from the MemCompression
process. This can be done using the vaddump-plugin available for Volatility. To use this
plugin, the process ID of the MemCompression-process is needed. This can be found
by running Volatility with the pslist-plugin. The output is trimmed to only show the
relevant information.
# volatility -f Windev1802Eval-214c0030.vmem --profile=Win10x64 16299

pslist

Name PID Start

-------------- ---- ------

MemCompression 1536 2018-10-27 13:37:02 UTC+0000

The vaddump-plugin can now be run on the process ID 1536. The content is ex-
tracted to a specific directory with the -D-parameter.
# volatility -f Windev1802Eval-214c0030.vmem --profile=Win10x64 16299

vaddump -p 1536 -D Duriell-Olashamann-vaddump

To get the size of the compressed data, the command du -h command is used.
This shows Disk Usage in ”M”, which means Mega Bytes. The amount of VAD-segments
are found by listing the directory contents with ls -l, using grep to make sure only
relevant lines are counted, and wc -l to count the amount of lines printed. # du -h

Duriell-Olashamann-vaddump/

494M Duriell-Olashamann-vaddump/
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# ls -l Duriell-Olashamann-vaddump | grep MemComp | wc -l

3947

MemoryDecompression.exe is then run in a PowerShell-console on the 3947 VAD-
files. The tool prints the file it is currently decompressing to the console output, so the
output is trimmed.
PS C:\Users\User\MASTER-THESIS-TESTING> .\MemoryDecompression.exe

.\Duriell-Olashamann-vaddump\.\Duriell-Olashamann-all-vads-decompressed

Decompressing MemCompression.4afa580.0x0000000000010000-0x000000000002ffff.dmp

Decompressing MemCompression.4afa580.0x0000000000030000-0x000000000004ffff.dmp

Decompressing MemCompression.4afa580.0x0000000000050000-0x000000000006ffff.dmp

Decompressing MemCompression.4afa580.0x0000000000070000-0x000000000008ffff.dmp

Decompressing MemCompression.4afa580.0x0000000000090000-0x00000000000affff.dmp

Decompressing MemCompression.4afa580.0x00000000000b0000-0x00000000000cffff.dmp

...

Decompressing MemCompression.4afa580.0x000000001f0f0000-0x000000001f10ffff.dmp

Decompressing MemCompression.4afa580.0x000000001f110000-0x000000001f12ffff.dmp

Decompressing MemCompression.4afa580.0x000000001f130000-0x000000001f14ffff.dmp

Decompressing MemCompression.4afa580.0x000000001f150000-0x000000001f16ffff.dmp

Decompressing MemCompression.4afa580.0x000000001f170000-0x000000001f18ffff.dmp

Decompressing MemCompression.4afa580.0x000000001f190000-0x000000001f1affff.dmp

Decompressing MemCompression.4afa580.0x000000001f1b0000-0x000000001f1cffff.dmp

Total decompressed pages: 340227

Total compressed data: 462025832 bytes

Total decompressed data: 1393569792 bytes

Decompression completed in:

Total Microseconds: 3864607933

Total Seconds: 3864

Total Minutes: 64

Total Hours: 1

The output shows that it took 1 hour and 4 minutes to complete the decompression.
It also shows that 462025832 bytes of compressed data was found, and it decompressed
to 1393569792 bytes of decompressed data.

Total compressed bytes

Total decompressed bytes
=

462025832B

1393569792B
= 0.3315 ≈ 33%

This means that the data in this experiment is compressed to approximately 33% of the
original size by the memory manager, which corresponds to the numbers 30-50% from
Windows Internals 7 mentioned in Section 3.3.

To determine if potentially important artifacts is obfuscated as a result of memory
compression, a string search for the relevant words will be conducted. The results from
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the compressed data will be compared with the results from the decompressed data.

6.1.1 String search on compressed data
The string search is conducted using both unicode and ascii characters. Unicode is
accounted for with the -el parameter passed to strings. The keywords that is
expected to be found are searched for with grep -E ’Duriell|Olashamann’.
This tells grep to use regular expression, and return results that contains ”Duriell” OR
”Olashamann”.
# strings -el Duriell-Olashamann-vaddump/* | grep -E ’Duriell|Olashamann’

Duriell

# strings Duriell-Olashamann-vaddump/* | grep -E ’Duriell|Olashamann’

"Hello Olashamann!"

echo "Hello Olashamann!"

$ echo "Hello Olashamann!"

/cho "Hello Olashamann!"b

The string search returned one hit on ”Duriell” with Unicode-characters, and four
hits on ”Olashamann” with ASCII-characters.

6.1.2 String search on the decompressed data
The same process is conducted on the decompressed data as in Section 6.1.1.
# strings -el Duriell-Olashamann-all-vads-decompressed | grep -E

’Duriell|Olashamann’

Hello Olashamann!

Duriell

Duriell

Hello Duriell!

"Hello Duriell!@

"Hello Duriell

"Hello Duriell!:

Hello Duriell!

Hello Duriell!

"Hello Duriell!@

Hello Duriell!

promptDuriell!

echo "Hello Duriell!"

echo "Hello Duriell

Hello Duriell

Hello Duriell

Hello Duriell
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Hello Duriell

echo "Hello Duriell!

Hello Duriell!

Hello Duriell!

Hello Duriell!

Hello Duriell!

echo "Hello Duriell!@

Hello Duriell!@

Hello Duriell!@

Hello Duriell!@

Hello Duriell!@

echo "Hello Duriell!

Hello Duriell!

Hello Duriell!

Hello Duriell!

Hello Duriell!

echo "Hello Duriell!:

Hello Duriell!:

Hello Duriell!:

Hello Duriell!:

Hello Duriell!:

echo "Hello Duriell!

Hello Duriell!

Hello Duriell!

Hello Duriell!

Hello Duriell!

Hello Duriell!

echo "Hello Duriell!"

Hello Duriell!

Hello Duriell!

Hello Duriell!

Hello Duriell!

echo "Hello Duriell!"

Hello Duriell!

Hello Duriell!

Hello Duriell!

Hello Duriell!

echo "Hello Duriell!"

echo "Hello Duriell!"

echo "Hello Duriell!"

promptDuriell!

Hello Duriell!

Hello Duriell!

Windows PowerShell Copyright (C) Microsoft Corporation. All rights

reserved.
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PS C:\Users\User> echo "Hello Duriell!"

Hello Duriell!

PS C:\Users\User>
To run a command as administrator (user "root"), use "sudo <command>".

See "man sudo\root" fo

user@WinDev1802Eval:/mnt/c/Windows/System32$

user@WinDev1802Eval:/mnt/c/Windows/System32$

user@WinDev1802Eval:/mnt/c/Windows/System32$ echo "Hello Olashamann!"

Hello Olashamann!

user@WinDev1802Eval:/mnt/c/Windows/System32$

# strings Duriell-Olashamann-all-vads-decompressed | grep -E

’Duriell|Olashamann’

cho "Hello Olashamann"

"Hello Olashamann!"

echo "Hello Olashamann!"

[00m$ echo "Hello Olashamann!"

echo "Hello Duriell!"

echo "Hello Duriell!"

[DHello Olashamann!

Hello Olashamann!

echo "Hello Olashamann!"

echo "Hello Olashamann!"

echo "Hello Olashamann!"

The string searches returned 60 hits for Unicode strings and 11 hits for ASCII on
the uncompressed data. Note that the last eleven lines of the Unicode output are two lines,
but the output is slightly prettified for visual purposes.

6.1.3 Discussion
The results clearly shows that data is being obfuscated by the memory manager. An inter-
esting finding is that Unicode strings seems to be more ”vulnerable” to obfuscation, as the
compressed content only contains one result for Unicode and the decompressed content
contains 60. This could be related to how the compression algorithm works. When ASCII
words are used by the compression algorithm, they remain in cleartext. This may work
differently with Unicode characters.

The Unicode output from the uncompressed data also gives some concrete indications
that a console was used type the commands. The decompressed strings shows the mes-
sage displayed when opening a Powershell console. The string PS C:\Users\User>
echo "Hello Duriell!" shows the Powershell command being executed. This
data was not available in compressed form, and shows that decompressing memory
gives valuable information. Ubuntu console usage can also be found. The decom-
pressed string user@WinDev1802Eval:/mnt/c/Windows/System32$ echo
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"Hello Olashamann!" shows indications of a Linux console being used. It also gives
some valuable information about what user was logged on and executing commands.

There are a lot of uncertainty factors with this experiment that will be discussed in
Section 7.
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6.2 Results: Browser Activity
This section contains the results of the scenario described in Section 5.5.2.
In this experiment, two memory dumps were extracted to see how much data was
obfuscated by simulating user activity. In addition, the VAD-segments from the Mem-
Compression process were extracted and decompressed. The page file was also extracted
and decompressed after the simulation. One before the TestLimit.exe tool was run, and
one after. To find the relevant string, Strings.exe from SysInternals (Russinovich, 2018)
was used. In the previous experiment, Ubuntu in Windows was used to present the results.
In this experiment, Powershell is used. Testing with slightly different tools that supposedly
does the same job is desirable, as the tools potentially could be a source of misinformation.

The three sources of evidence used in this experiment are:

• Before-compress-Windev1802Eval-c165348a.vmem

• After-compress-Windev1802Eval-c165348a.vmem

• pagefile.sys after TestLimit.exe was run

6.2.1 Before TestLimit.exe
To find out how many strings related to the browser activity that can be found, a few
different commands were used. First, the strings.exe tool was run and the output written
to the file ”before-strings.txt”.

PS> strings.exe Before-compress-Windev1802Eval-c165348a.vmem >
before-strings.txt↪→

All strings containing ”fareniv” is then extracted from ”before-strings.txt”, and written
to the file ”before-strings-fareniv.txt”

PS> Get-Content .\before-strings.txt | Select-String fareniv >
.\before-strings-fareniv.txt↪→

To find the amount of lines in the file ”before-strings-fareniv.txt”, Powershell command
Measure-Object -Line is used. The output shows that 706 lines contained the rele-
vant string. The results of all the string searches is presented in table 6.1 in Section 6.2.4.

PS> Get-Content .\before-strings-fareniv.txt | Measure-Object -Line

Lines Words Characters Property
----- ----- ---------- --------

706

In addition to strings from the memory snapshot, the VAD-segments from the MemCom-
pression process were also extracted and decompressed using the MemoryDecompression
tool. This was executed in the same way as described in Section 6.1.
# volatility -f Before-compress-Windev1802Eval-c165348a.vmem
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--profile=Win10x64 16299 pslist

Name PID Start

-------------- ---- ------

MemCompression 1708 2018-10-28 13:30:49 UTC+0000

# volatility -f After-compress-Windev1802Eval-c165348a.vmem

--profile=Win10x64 16299 vaddump -p 1708 -D vaddump-before/

MemoryDecompression was run on the vaddump-before folder. Output file named
vaddump-before-decompressed.bin.

PS> .\MemoryDecompression.exe .\vaddump-before
vaddump-before-decompressed.bin↪→

The relevant strings were then extracted.

PS> strings.exe vaddump-before-decompressed.bin >
vaddump-before-decompressed-strings.txt↪→

PS> Get-Content vaddump-before-decompressed-strings.txt | Select-String
fareniv > .\vaddump-before-decompressed-strings-fareniv.txt↪→

PS> Get-Content .\vaddump-before-decompressed-strings-fareniv.txt |
Measure-Object -Line↪→

Lines Words Characters Property
----- ----- ---------- --------

42

Strings was also run on the VAD-segments in compressed form.

PS> strings.exe vaddump-before/* > vaddump-before-strings.txt
PS> Get-Content vaddump-before-strings.txt | Select-String fareniv >

.\vaddump-before-strings-fareniv.txt↪→

PS> Get-Content .\vaddump-before-strings-fareniv.txt | Measure-Object
-Line↪→

Lines Words Characters Property
----- ----- ---------- --------

3

6.2.2 After TestLimit.exe
The exact same procedure is executed on the memory snapshot after TestLimit.exe is
run. The files containing the strings were named ”after-strings.txt” and ”after-strings-
fareniv.txt”
PS> strings.exe After-compress-Windev1802Eval-c165348a.vmem >

after-strings.txt↪→

PS> Get-Content after-strings.txt | Select-String fareniv >
.\after-strings-fareniv.txt↪→

PS> Get-Content .\after-strings-fareniv.txt | Measure-Object -Line

Lines Words Characters Property
----- ----- ---------- --------

172
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The amount of lines containing ”fareniv” are significantly reduced after TestLimit.exe is
run.

In addition to strings from the memory snapshot, the VAD-segments from the
MemCompression process were also extracted and decompressed using the MemoryDe-
compression tool. This was executed in the same way as described in Section 6.1.
# volatility -f After-compress-Windev1802Eval-c165348a.vmem

--profile=Win10x64 16299 vaddump -p 1708 -D vaddump-after/

MemoryDecompression was run on the vaddump-after folder. Output file named
vad-segments-decompressed.bin.

PS> .\MemoryDecompression.exe .\vaddump-after
vaddump-after-decompressed.bin↪→

PS> Get-Content .\decompressed-strings-fareniv.txt
| Measure-Object -Line

Lines Words Characters Property
----- ----- ---------- --------

372

6.2.3 Pagefile.sys
To analyze the page file, it must first be extracted from the hard drive of the virtual ma-
chine. To do this, tools from The Sleutkit will be used. Mmls is used for listing the
partitions.

PS> mmls.exe Windev1802Eval-disk1.vmdk
DOS Partition Table
Offset Sector: 0
Units are in 512-byte sectors

Slot Start End Length Description
000: Meta 0000000000 0000000000 0000000001 Primary Table (#0)
001: ------- 0000000000 0000002047 0000002048 Unallocated
002: 000:000 0000002048 0001126399 0001124352 NTFS / exFAT (0x07)
003: 000:001 0001126400 0266336255 0265209856 NTFS / exFAT (0x07)
004: ------- 0266336256 0266338303 0000002048 Unallocated

The partition containing the data is the second NTFS-partition. To list the root directory of
the hard disk file, fls.exe is used with the -o parameter specifying what sector offset
to start reading from.

PS> fls.exe -o 0001126400 Windev1802Eval-disk1.vmdk
r/r 4-128-1: $AttrDef
r/r 8-128-2: $BadClus
r/r 8-128-1: $BadClus:$Bad
r/r 6-128-4: $Bitmap
r/r 7-128-1: $Boot
d/d 11-144-4: $Extend
r/r 2-128-1: $LogFile
r/r 0-128-6: $MFT
r/r 1-128-1: $MFTMirr
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d/d 58-144-1: $Recycle.Bin
r/r 9-144-17: $Secure:$SDH
r/r 9-144-16: $Secure:$SII
r/r 9-128-18: $Secure:$SDS
r/r 10-128-1: $UpCase
r/r 10-128-4: $UpCase:$Info
r/r 3-128-3: $Volume
d/d 85484-144-1: Documents and Settings
r/r 336645-128-1: pagefile.sys
d/d 59-144-1: PerfLogs
d/d 60-144-6: Program Files
d/d 1151-144-6: Program Files (x86)
d/d 1251-144-6: ProgramData
d/d 85665-144-1: Recovery
d/d 117052-144-1: samples
d/d 59919-144-8: scripts
r/r 39847-128-1: swapfile.sys
d/d 52343-144-6: System Volume Information
d/d 1407-144-5: Users
d/d 1464-144-6: Windows
V/V 341504: $OrphanFiles

The file is extracted using the icat-tool with the inode-number of the pagefile.sys,
336645-128-1.

PS> icat.exe -o 0001126400 Windev1802Eval-disk1.vmdk 336645-128-1 >
pagefile.sys↪→

To view the size of the file, the dir-command is used. The -hidden parameter is nec-
essary as the pagefile.sys is hidden by default in Windows.

PS> dir -hidden pagefile.sys

Mode LastWriteTime Length Name
---- ------------- ------ ----
-a-hs- 29.10.2018 12.33 6442450944 pagefile.sys

The page file is approximately 6GB. MemoryDecompression is then run on the page file.

PS > .\MemoryDecompression.exe .\pagefile.sys
.\page-file-decompressed.bin↪→

Decompressing .\pagefile.sys

Total decompressed pages: 803827
Total compressed data: 1111505498 bytes
Total decompressed data: 3292475392 bytes

Decompression completed in:
Microseconds: 16731799969
Seconds: 16731
Minutes: 278
Hours: 4
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MemoryDecompression spent 4 hours and 38 minutes to decompress approximately 1GB
of compressed data to 3GB of decompressed data.

Total compressed bytes

Total decompressed bytes
=

1111505498B

3292475392B
= 0.3376 ≈ 34%

This experiment also corresponds to the tested compression rate of 30-50% from Windows
Internals 7 mentioned in Section 3.3.

Next, strings was run on the decompressed data from the page file to see how many
strings that matched ”fareniv” would be found.

PS> strings.exe page-file-decompressed.bin >
pagefile-decompressed-strings.txt↪→

PS> Get-Content .\pagefile-decompressed-strings.txt | Select-String
fareniv > .\pagefile-decompressed-strings-fareniv.txt↪→

PS C:\Users\Aleks-Forensics\Documents\Master-thesis\Browser-artifact-test>
Get-Content .\pagefile-decompressed-strings-fareniv.txt |
Measure-Object -Line

↪→

↪→

Lines Words Characters Property
----- ----- ---------- --------

897

The exact same procedure was executed on the original page file to see the amount of
relevant strings that could be found with no decompression. The text file containing the
results from the ”fareniv”-strings was named ”pagefile-strings-fareniv.txt”.

PS > Get-Content pagefile-strings-fareniv.txt | Measure-Object -Line

Lines Words Characters Property
----- ----- ---------- --------

24
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6.2.4 Discussion
The results clearly shows that data is being obfuscated by the memory manager. This
experiment also shows that the page file contains lots of potentially interesting data that
is obfuscated as a result of compression. 1GB of compressed data was decompressed to
3GB, which means that the 6GB page file contained 8GB of potentially interesting data
after decompression. This is just an assumption, what the remaining 5GB of page file data
contains has not been examined in this experiment.

Table 6.1 shows that the amount of strings related to ”fareniv” found in the different
locations. The amount of relevant strings in the memory dump was reduced to approxi-
mately 20% after running TestLimit.exe. A few of the relevant strings could be found in the
MemCompression address space. 6 relevant strings before decompressing the MemCom-
pression process contents, and 372 after. As the page file was only tested after TestLimit
was run, there it is possible that it coincidentally contained strings related to ”fareniv”.

Memory
Snapshot

VAD-
segments
PID 1708

VAD-segments
Decompressed
PID 1708

Page File Page File
Decom-
pressed

Before TestLimit 706 3 42 - -
After TestLimit 172 6 372 24 897

Table 6.1: Shows the amount of strings related to ”fareniv” that were found in the different loca-
tions.
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Chapter 7
Discussion

In this chapter, the results are discussed more in depth. The results from the applied exper-
iments are discussed, followed by two initial strategies that were considered for solving
the problem. The MemoryDecompression tool is evaluated, and potential improvements
is presented The submission and result of the Volatility Plugin contest is mentioned as an
indication of quality in regards to MemoryDecompression. Future work is discussed with
some possible alternatives, and finally the two hypotheses are evaluated in regards to the
applied experiments and existing literature on the topic.

7.1 Applied Experiments

This section contains discussion about the practical experiments performed in this thesis.
The impact of the findings, the impact of the tool and general weaknesses of the applied
experiments are discussed.

7.1.1 Findings

The results from the practical experiments shows that potentially important data is being
obfuscated by the Windows memory manager. Both experiments show that memory is
being compressed and obfuscated when applying high memory pressure. The first exper-
iment shows that Unicode strings could be more at risk for being compressed than ASCII
characters. The second experiment confirms that specific strings can be found in the page
file by decompressing its compressed contents.

7.1.2 Forensic Soundness

Forensic soundness was discussed in Section 2.3, and speaks to the repeatability of the re-
sults that a tool or technique produces. The experiments in this thesis should be repeatable
by following the same methodology. It is expected that the results will differ to a certain
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degree, but the results should show that interesting strings are being obfuscated. The re-
sults will differ due to countless unreliable factors caused by the operating system running
normally.

As an attempt of validating the results with dual tool verification, mentioned in Section
2.3, the experiments were performed with slightly different tools. Using both Linux and
Windows tools to extract strings from the output file reduces the chance of incorrect results.
There is no other tools that has similar functionality to MemoryDecompression, so any tool
validation in that regard is not possible. The experiments could have been performed with
both Volatility and Rekall to see if the results differed.

The forensic soundness of MemoryDecompression is quite poor at this time. The tool
requires a lot of testing before it can trusted in real-life cases.

7.1.3 Impact
The results demonstrates that the MemoryDecompression tool could be useful in cyber
crime investigations and incident response. As discussed in Section 2.4, Windows is by
far the most used operating system. As the awareness of the importance of analyzing com-
puter memory in computer forensics becomes better, the more relevant memory forensics
will become. As this tool also works on page files, it will also be useful on disk images.
As MemoryDecompression is only applicable to Windows 10 memory samples and disk
images, the value of the tool will increase over time as Windows 10 replaces more and
more Windows 7 systems. Though the transition is going faster than previous upgrades
of Windows versions, likely according to the free upgrade Microsoft offered, it is still ex-
pected to increase further (Knight, 2018). The Windows Server series could also be getting
the memory compression feature as a default or optional setting, which also expands the
usefulness of MemoryDecompression.

The practical experiments show that more data will be available for analysis than with
previous versions of Windows. As compressed memory data is resident both in the page
files and memory dumps, there is potential for a lot more evidence data available to the
analyst. As the compression algorithm compresses data to approximately 30-50% of its
original size, decompressing will lead to approximately two to three times more data for
the analyst. In cases where the malicious actor has made successful efforts in hiding their
activity, MemoryDecompression could become the extra factor that makes it possible to
solve the case.

7.1.4 Weaknesses
There are a number of weaknesses with the practical experiments that needs to be ad-
dressed.

Number of experiments

The results are based on two experiments, which is a small number in the sense of statisti-
cal significance. There could be coincidences in these two experiments that creates faulty
results. As the experiments take significant time to plan and perform, it was limited to
two experiments. The time was prioritized to make a working decompression program.
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The consequence of this is that the results should be subject to experimental and statistical
validations as part of future work.

Faulty Program

As the MemoryDecompression tool was used to create the results, it must be taken into
consideration that the tool could be a source of error. There could be mistakes made by
the student while programming the tool that makes the result faulty. It could potentially
make the result more extreme than if a normal user had used it.

TestLimit to demonstrate memory pressure

The TestLimit tool was used to simulate user activity over time by overloading physical
memory, making the memory manager compress pages to make space. This technique
could be an unrealistic way of simulating the average user, as it uses significant memory
space over a very short time.

Virtual Machine as lab environment

Virtual environments does not always act the same way as physical machines would. They
are often more stable and reliable, and could therefore be a source of faulty results. Testing
on a variety of environments is desirable to take more variables into account when doing
research.

2GB of Physical Memory

As the experiments are performed on a virtual machine with almost the minimum amount
of memory required to run Windows 10 in a satisfying way, it could also give unrealistic
results. A computer with 4GB of memory or above would probably require a significantly
high memory pressure to compress the amounts of data as seen in the experiments.

7.2 Evaluation of MemoryDecompression
The MemoryDecompression tool performs as intended, but it is still a proof-of-concept
tool. A lot of time and effort went into making it fast enough so that speed would not be
an eliminating factor when considering this tool. Visual Studio was used to benchmark
performance try to improve. Early tests showed that MemoryDecompression would use
108 hours on a 2.5GB page file, which would be unacceptable. Some memory leaks were
also dealt with, leading to filling memory after running for a while. This was mostly due
to memory allocations that were not properly de-allocated.

7.2.1 Integrity
A few experiments have been performed testing the integrity of MemoryDecompression.
The integrity is tested by running the tool multiple times with the same parameters to see
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if the exact same results are produced. The tests included comparing the SHA256-hashes
from the output files. The size of the files in bytes was also compared.

7.2.2 Improvements
This section contains the potential for improvement of the MemoryDecompression tool.

Multi Processing

To increase performance, adding support for multi processing for MemoryDecompression
should be implemented. Computer forensics workstations often need to have more power
than the average user to handle processing disk images and memory dumps. As they
often have powerful CPUs with several cores, this makes them great for utilizing multi
processing applications.

Better Input Handling

The tool currently reads the whole input file into memory before the decompression is
performed. This means that it will fail if the file is larger than the available physical
memory. As both page files and memory samples can be quite large, this is an improvement
that is highly prioritized. The 32-bit version is unable to handle files bigger than 2GB, as
this is the limit of its virtual memory size. This need for improvement was brought to the
student’s attention through the participation in the Volatility Plugin Contest, which will be
further discussed in section 7.2.3.

Variable Page Size

The memory manager compresses one page at a time. As the page size is configurable,
the tool might not work on all configurations of Windows 10. This could be improved by
making an input parameter that could set the page size, if not 4096 bytes.

More Statistical Output

Especially in digital forensics related to law-enforcement cases, rigid documentation is
necessary. MemoryDecompression could output more data in a report format, that would
avoid manual documentation. Timestamps of files, hashes of the input and the output files,
and data sizes in more human readable formats are some potential candidates.

Some improvements requires further research into how the memory manager handles
memory compression, and will be covered in Section 7.4.

7.2.3 Volatility Plugin Contest
The Volatility Plugin Contest is a contest by the Volatility Foundation hosted for the 6th
time as of this year (Walters, 2018). The purpose is to encourage research and development
in the field of memory analysis.

The MemoryDecompression tool was submitted to the Volatility Plugin Contest 2018.
The main reason for the submission was to get some of the best people in the world to try
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the tool, and thus getting some quality feedback. The submission ended up as 2nd place
(Hale Ligh, 2018a). This is a good indication of quality, and a positive result regarding the
potential usefulness of the tool.

7.3 Strategies for Decompressing Memory
The main goal of this thesis was to solve the issue of memory compression in Windows
10 in digital forensics, and creating a tool that could be utilized by examiners in investiga-
tions. To do so, it was necessary to have a concrete strategy. The student considered two
approaches as strategies for achieving the main objective.

7.3.1 Strategy 1: Decompression using a Brute Force approach
By gaining knowledge about how Windows compresses and decompresses memory, it
could be possible to utilize this knowledge to create a tool that can decompress data from
any file containing compressed data. The tool could be used to decompress data from
memory dumps, page files, or hibernation files. This strategy requires finding where the
compressed memory is located, and finding out how the Windows memory compression
works in detail. The end goal would be a tool that finds compressed data in a file or folder
and decompresses it.

Strengths(+):

• More likely to result in a positive outcome as the level of complexity is lower

Weaknesses(-):

• Only gives the examiner raw paged data with no process context

7.3.2 Strategy 2: Reverse Engineering Windows kernel code
The second strategy was an extension of first one. As the memory compression process is
only an empty process space used for storing compressed pages outswapped from other
processes, it does not contain any meta data. To correctly swap compressed memory back
from the memory compression process into the process space of the owning process, it
would be necessary for the operating system to have stored this information about the
compressed data somewhere in memory. Experiments in Section 5.2 have shown that this
data resides in the memory space belonging to the kernel. As the kernel space is largely
undocumented by Microsoft, it would require reverse engineering of the kernel code to
get an understanding of the meta data that relates to the MemCompression process. This
strategy requires finding data structures in kernel memory containing this meta data, and
finding the correct way of decompressing the data. The end goal would be a tool that
locates these meta data structures, finds the locations of compressed data in memory and
decompresses data. This approach would also potentially display process information
about the originating process of the compressed pages.

Strengths(+):
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• For memory dumps, this strategy could result in a more sophisticated tool.

• More valuable information, such as process context for the decompressed content.

Weaknesses(-):
• As reverse engineering undocumented parts of the Windows kernel is a very com-

plex task, this strategy has a higher chance of failure.

• Analyzing page files would still require a brute force approach, so this strategy
would possibly only work on memory dumps.

7.3.3 Evaluation
The two strategies were both valid methods of reaching the end goal of the thesis. The
best outcome would be achieving the goals of both strategies, and create a tool that cov-
ers all required aspects of memory decompression in computer forensics. However, the
student’s skill and knowledge in reverse engineering makes achieving this approach un-
realistic within the time frame. Attempts were made by the student to analyze the kernel
structures necessary, but the conclusion after tens of hours of work was that this approach
could potentially jeopardize the goal of the thesis by spending too much time without
actionable findings.

7.3.4 Conclusion
Considering the strengths and weaknesses of the two strategies, in addition to the limita-
tions of the student, Strategy 1 was chosen. The risk of spending too much time on reverse
engineering complex code was regarded as substantial. Taking that risk could potentially
jeopardized the creation of the tool, as this was also considered a time consuming task.

7.4 Future Work
Future work is required to improve the understanding of how memory compression affects
digital forensics, and to improve capabilities of the forensics community. This section
presents potential areas where further research is required.

7.4.1 Volatility Extension
One aspect of the need for future work in relation to memory compression has been cov-
ered in Section 7.3.2. The MemoryDecompression tool works as intended by giving in-
vestigators access to more data otherwise hidden. However, it only gives access to raw
data with no context. Future work could focus on creating a more sophisticated tool that
sorts the decompressed data into process context. A possible end-result could be an ex-
tension to a tool like Volatility that automatically locates and decompresses pages from
the MemCompression process. When parsing a memory sample, this extension should
locate and decompress pages from the MemCompression process and sort them into their
original process address space. The process should be transparent to the investigator using
Volatility.
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7.4.2 Pattern Searching for compressed data
A potential for future work is to research ways to locate the compressed data in a big file,
like a page file or memory dump. As the MemoryDecompression tool parses all data it
is presented with, a more sophisticated way of approaching the input file or folder could
be to only target compressed data within them. Some way of finding higher entropy than
usual, or finding a signature of the data compressed with Microsoft’s Xpress Algorithm.

7.4.3 MemoryDecompression platform-agnostic
Future work could also include the following. As the MemoryDecompression tool uses
the Windows API to perform decompression, it could be useful for the community to get
it re-written to a platform-agnostic version working on all platforms.

For example, msuhanov wrote a blog post showing that registry keys can be found
in compressed form in Windows 10 memory and page files (MSUHANOV, 2018). More
research in the same category is needed to fully understand the impact and potential of
memory compression.

7.4.4 Pooltag Analysis
During this thesis, the student attempted to find consistent meta data sources of the mem-
ory compression process. By using WinDbg, the pooltags related to the Store Manager
were analyzed. The pooltags are sorted into categories, and by listing the ones starting
with ”sm”, it was possible to find all of them. As it is possible to scan for pooltags in a
memory sample, this could be a valid method for parsing the meta data (Case and Walters,
2014d).

kd> !poolused 2 sm*

Sorting by NonPaged Pool Consumed

NonPaged Paged
Tag Allocs Used Allocs Used

smNp 794 3252224 0 0 store node pool allocations
smCB 611 2502656 0 0 allocations
smWw 512 2097152 0 0 allocations
smBt 390 1597440 0 0 various B+Tree allocations
smSt 117 1407856 0 0 various store allocations
smRg 15 524224 0 0 in-memory store region array
...
smPS 13 832 0 0 allocations
smSw 1 560 0 0 allocations
smFp 12 448 0 0 virtual forward progress entry
smKG 1 160 0 0 encryption key registry path buffer
smHT 1 80 0 0 allocations
TOTAL 3703 11604624 0 0

No consistencies were found that could make this a valid search method. However, it is
possible that further research on the topic can make some useful contributions the analysis
of compressed memory.
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7.4.5 Reverse Engineering WinDbg libraries
The file DbgEng.dll used by WinDbg was attempted reverse engineered by the student to
find out where the meta data structures of the compressed data were present in memory.
Some interesting functions were found during these attempts, for example ”ReadCom-
pressedPageDataAndDecompress” which also seems to use an instance of RtlDecompress-
BufferEx. Fully reverse engineering this code and rewriting it to a forensics tool could
potentially lead to a more sophisticated solution to decompressing memory in computer
forensics. The reason for attempting to analyze DbgEng.dll was because of a tips from
Alex Ionescu1 by e-mail. ”The deepest way to create a tool for decompressing memory
would be to reverse engineer the Windows debugger. It has code to deal with compressed
pages. This code is either in kdexts.dll or DbgEng.dll. Look for structures related to the
”store” and nt! SM *”.

7.4.6 Statistical Verification
One of the weaknesses regarding the practical testing was the amount of experiments.
Ideally, the experiments should have been performed with various techniques, various
environments and with a broader spectre of artifacts than simply strings. Future work
should include a larger scale of experiments with more diverse artifacts. Having a large
statistical data basis of how the tool performs in various scenarios would increase the
statistical significance. The goal is to increase the forensic soundness, covered in Section
2.3, of MemoryDecompression. Insufficient testing increases the chance that the results
was affected by factors outside the students control.

7.4.7 Further Development of MemoryDecompression
Future work includes further development on the proof-of-concept tool. Section 7.2.2
covers potential improvements, but this list is likely to expand as more experiments are
performed.

Further development also implies keeping the tool updated. Microsoft applies changes
to the operating system frequently, and forensics tools must be maintained. Minor changes
to how memory compression works can make the tool useless.

7.5 Hypothesis Discussion
The two hypothesis presented in Section 1.3 will be discussed in this section.

• Hypothesis 1: By analyzing operating system behaviour, it is possible to create a
method for decompressing, and thus de-obfuscating, data from memory samples or
page files that has been compressed by the Windows 10 memory manager.

• Hypothesis 2: De-obfuscating the data compressed by Windows 10 memory man-
ager can uncover digital evidence for computer forensics investigators.

1Co-author of Windows Internals and Chief Architect at Crowdstrike. World-class security architect and
expert in low-level system software, kernel development, security training and reverse engineering (CROWD-
STRIKE, 2018)
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7.5.1 Hypothesis 1
Hypothesis 1 could get a definitive answer in this thesis. If the kernel debugging and re-
verse engineering returned no actionable results of finding the decompression mechanism,
the hypothesis would not have been confirmed. By finding the correct algorithm and using
it successfully on memory data, the hypothesis has been proven.

Taking the weaknesses of the practical work into consideration, it is still safe to say
that the thesis has proven that it is possible to de-obfuscate the compressed data. Even
without the practical experiments from chapter 6, the experiments performed with the
CompressDecompress tool on the extracted memory pages in Section 5.3.6 would be a
good indicator that it would also work on memory samples and page files.

7.5.2 Hypothesis 2
The practical experiment in Section 6.1 showed that digital evidence was obfuscated by
memory compression. When MemoryDecompression was run on the memory data, digital
evidence was de-obfuscated. In a digital investigation, this type of information could have
been used as actionable digital evidence of console activity.

All literature that relates to computer forensics on page files is relevant in this discus-
sion. When extracting and de-obfuscating data from memory samples or page files, the
examiner is presented with the same data they would see in cleartext in a page file on ear-
lier versions of Windows. The existing literature on page files confirms that they can be
used to find digital evidence, which speaks in favor of Hypothesis 2. As covered in Section
1.4 and Section 4.2.3, the page file is traditionally analyzed using unstructured methods.
Artifacts can be found using strings-, anti-virus- and Yara-searches. Also running carving
tools like Foremost and Bulk-extractor can uncover a wealth of important data. These sec-
tions also presents various artifacts and scenarios where this analyzing the page file can
uncover digital evidence.

The practical experiments from Section 6.2 shows that the disk images also yields
valuable information, as the number of strings relating to the scenario was significantly
higher after decompression.

Through the work in this thesis and the existing literature, Hypothesis 2 is supported.
However, further research and testing is required to find out if digital evidence will be
found in real-life cases.
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Chapter 8
Conclusion

This thesis was based upon two hypotheses. This section will provide the conclusions of
the thesis.

• Hypothesis 1: By analyzing operating system behaviour, it is possible to create a
method for decompressing, and thus de-obfuscating, data from memory samples or
page files that has been compressed by the Windows 10 memory manager.

Hypothesis 1 has been confirmed, and the conclusion is that decompressing and de-
obfuscating memory from memory dumps and page files is in fact possible. This was
proven with the development of the decompression tool, and the practical experiments
on Windows 10. The experiments performed through kernel debugging revealed the
actual function used in decompressing memory, which made it possible to create a tool
that successfully decompressed data from memory dumps and page files. The practical
experiments showed that MemoryDecompression de-obfuscated strings in memory,
making them available for analysis.

• Hypothesis 2: De-obfuscating the data compressed by Windows 10 memory man-
ager can uncover digital evidence for computer forensics investigators.

Previous research, existing literature and the practical work in this thesis supports Hypoth-
esis 2 in that decompressing and de-obfuscating data from memory can uncover digital
evidence. Taking the weaknesses of the practical experiments into consideration, the
results indicates that MemoryDecompression can be a valuable tool in memory and disk
forensics. The tool should be considered as proof-of-concept software, and still requires
extensive testing and improvements before it can be relied upon in an investigation.

The practical experiments has shown that potentially interesting strings can be found in
compressed parts of memory both in memory samples and in page files. It also shows
some indications that Unicode-characters are more vulnerable to obfuscation through
memory compression.
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Finally, the thesis concludes that submitting the MemoryDecompression tool to
Volatility Plugin Contest and achieving a 2nd place is a good indicator that the results
from this thesis will bring value to the digital forensics community. Although, it is not to
be misinterpreted as scientific proof in any regard.
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Appendix A

Source Code

Listing 8.1: MemoryDecompression.cpp

1 #include "pch.h"
2 #include <iostream>
3 #include <Windows.h>
4 #include <fstream>
5 #include <string>
6 #include <strsafe.h>
7 #include <chrono>
8
9

10 #define STATUS_SUCCESS ((NTSTATUS)0x00000000UL)
11 #define STATUS_BUFFER_ALL_ZEROS ((NTSTATUS)0x00000117UL)
12 #define STATUS_INVALID_PARAMETER ((NTSTATUS)0xC000000DUL)
13 #define STATUS_UNSUPPORTED_COMPRESSION ((NTSTATUS)0xC000025FUL)
14 #define STATUS_NOT_SUPPORTED_ON_SBS ((NTSTATUS)0xC0000300UL)
15 #define STATUS_BUFFER_TOO_SMALL ((NTSTATUS)0xC0000023UL)
16 #define STATUS_BAD_COMPRESSION_BUFFER ((NTSTATUS)0xC0000242UL)
17
18 // ntdll.dll is loaded to utilize the RtlDecompressBuffer function
19 HMODULE ntdll = GetModuleHandle(TEXT("ntdll.dll"));
20
21 typedef NTSTATUS(__stdcall *_RtlDecompressBuffer)(
22 USHORT CompressionFormat,
23 PUCHAR UncompressedBuffer,
24 ULONG UncompressedBufferSize,
25 PUCHAR CompressedBuffer,
26 ULONG CompressedBufferSize,
27 PULONG FinalUncompressedSize
28 );
29
30 // roundUp is used for finding the next sensible offset for a new chunk of

data to decompress
31 int roundUp(int numToRound, int multiple)
32 {
33 int remainder = abs(numToRound) % multiple;
34 return numToRound + multiple - remainder;
35 }
36
37 // --------------------------------------
38
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39 // decompress_buffer uses RtlDecompressBuffer with the proper input
parameters to decompress the buffer

40 BOOL decompress_buffer(UCHAR *buffer, const int bufferLen, const int
uncompBufferLen, ULONG *uncompBufferSize, UINT *nextOffset, UCHAR *
uncompBuffer)

41 {
42 BOOL success = false;
43 _RtlDecompressBuffer RtlDecompressBuffer = (_RtlDecompressBuffer)

GetProcAddress(ntdll, "RtlDecompressBuffer");
44
45 //UCHAR *uncompBuffer = new UCHAR[uncompBufferLen];
46 NTSTATUS result = RtlDecompressBuffer(
47 COMPRESSION_FORMAT_XPRESS | COMPRESSION_ENGINE_STANDARD, //

CompressionFormat, found through kernel debugging
48 uncompBuffer, // UncompressedBuffer
49 uncompBufferLen, // UncompressedBufferSize
50 buffer, // CompressedBuffer
51 bufferLen, // CompressedBufferSize
52 uncompBufferSize // FinalUncompressedSize
53 );
54
55 // Checks if the decompression succeeds, and that the uncompressed

size is correctly 4096. If the conditions are correct, the roundUp
function is used to find the next offset to compressed data.

56 if (result == STATUS_SUCCESS) {
57 if (*uncompBufferSize == (ULONG)4096) {
58 *nextOffset = roundUp(bufferLen, 16);
59 success = true;
60 }
61 }
62 return success;
63 }
64
65 // --------------------------------------
66
67 // decompress_file performs the decompression and writes the decompressed

contents to the output file
68 BOOL decompress_file(const WCHAR *input_filename, HANDLE hFileInput, UCHAR

&zero_buffer, HANDLE hFileOutput, UINT *compressed_total, UINT *
decompressed_pages)

69 {
70 // NextOffset keeps track of the offset within the current buffer
71 UINT nextOffset = 0;
72
73 // NextOffsetTotal keeps track of the offset within the file
74 UINT nextOffsetTotal = 0;
75
76 DWORD fileSizeHi = 0;
77 DWORD fileSize = GetFileSize(hFileInput, &fileSizeHi);
78 BYTE *fileBuffer = new BYTE[fileSize];
79 DWORD bytesRead;
80 BOOL readSuccess = ReadFile(hFileInput, fileBuffer, fileSize, &

bytesRead, NULL);
81 if (!readSuccess) return 0;
82
83 // Loops through the contents of the input file until it reaches the

end
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84 LOOP: while (nextOffsetTotal < fileSize) {
85
86 UCHAR *buffer = new UCHAR[4096];
87 UCHAR *uncompBuffer = new UCHAR[4096];
88
89 // Buffer needs to start at j = 0, since "i" starts at

nextOffsetTotal which is only 0 at the first page
90 UINT j = 0;
91 for (int i = nextOffsetTotal; i < 4096 + nextOffsetTotal; i++) {
92 buffer[j] = (UCHAR)fileBuffer[i];
93 j++;
94 }
95 // Returns an error message if the buffer somehow fails to be

allocated
96 if (!buffer) {
97 std::cout << "An error occurred while reading the bytes of the

input file into the buffer." << std::endl;
98 return 1;
99 }

100
101 // Checks if the current buffer is all zeroes, if that is the case

it jumps 4096 bytes in the input file.
102 int ifNull = memcmp(buffer, &zero_buffer, 4096);
103 if (ifNull == 0) {
104 nextOffsetTotal += 4096;
105 goto LOOP;
106 }
107
108 // Sets the initial buffer size to 15, as 16 bytes is the smallest

size a 4096 page can be compressed to by RtlDecompressBuffer
with 16-byte chunk size.

109 int bufferLen = 15;
110
111 // Loops while the length of the buffer is below 4096. The buffer

increments with one after each failed attempt, and tries again
until it successfully decompresses or the buffer reaches 4095
bytes.

112 while (bufferLen < 4096) {
113 bufferLen++;
114 ULONG realDecompSize = 0;
115
116 // Calls decompress_buffer with the given parameters
117 BOOL decompressed_buffer = decompress_buffer(buffer, bufferLen

, 4096, &realDecompSize, &nextOffset, uncompBuffer);
118
119
120 // Writes to file if a 4096 bytes page is successfully

decompressed
121 if (decompressed_buffer) {
122 BOOL WriteFile_result = WriteFile(hFileOutput,

uncompBuffer, realDecompSize, &realDecompSize, NULL);
123
124 // Checks if the output file was successfully written to,

and returns an error message if it was not
125 if (!WriteFile_result) {
126 std::cout << "An error occurred while writing to the

output file." << std::endl;
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127 return 0;
128 }
129
130 // Increments the total amount of compressed bytes that

has been decompressed for use in the console output
statistics

131 *compressed_total += bufferLen;
132 nextOffsetTotal += nextOffset;
133
134 // Increments the total amount of compressed pages
135 *decompressed_pages += 1;
136 break;
137 }
138
139 // Checks if the buffer has reached 4096 bytes, and skips 16

bytes ahead
140 if (bufferLen == 4096) {
141 nextOffsetTotal += 16;
142 break;
143 }
144
145 }
146 // Clears any allocated buffers to avoid a memory leak
147 delete[]uncompBuffer;
148 delete[]buffer;
149 }
150 // Clears the allocated buffer to avoid a memory leak, and closes the

file handle
151 delete[]fileBuffer;
152 CloseHandle(hFileInput);
153 }
154
155 // --------------------------------------
156
157 // Main function.
158 int main(int argc, wchar_t* argv[])
159 {
160 // std::chrono is used for measuring the duration of the program from

start to finish
161 std::chrono::high_resolution_clock::time_point t1 = std::chrono::

high_resolution_clock::now();
162
163 // Error check for correct number of arguments
164 if (argc != 3)
165 {
166 printf("Incorrect parameters\n\nUsage: MemoryDecompression.exe <

input file or directory> <output-file>");
167 return 0;
168 }
169
170 // Defines argument one and two as the input and output file
171 const WCHAR *input_filename = argv[1];
172 const WCHAR *output_filename = argv[2];
173
174 // Creates handle to output file
175 HANDLE hFileOutput = CreateFile((LPCSTR)output_filename,

FILE_APPEND_DATA, FILE_SHARE_WRITE, NULL, CREATE_ALWAYS,
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FILE_ATTRIBUTE_NORMAL, NULL);
176 if (hFileOutput == INVALID_HANDLE_VALUE) {
177 printf("Failed to create output file");
178 }
179
180 UINT decompressed_pages = 0;
181 UINT compressed_total = 0;
182
183 // Creates a zero buffer later used to skip empty parts of input files

, mostly relevant on page files.
184 UCHAR zero_buffer[4096] = { 0 };
185 DWORD input_file_attribute = GetFileAttributesA((LPCSTR)input_filename

);
186
187 // If the input file is a directory
188 if (input_file_attribute & FILE_ATTRIBUTE_DIRECTORY)
189 {
190 WIN32_FIND_DATA ffd;
191 TCHAR szDir[MAX_PATH];
192 HANDLE hFind = INVALID_HANDLE_VALUE;
193
194 // Converts the directory name to a string that can be read by

FindFirstFile and FindNextFile
195 StringCchCopy(szDir, MAX_PATH, (STRSAFE_LPCSTR)input_filename);
196 StringCchCat(szDir, MAX_PATH, TEXT("\\*"));
197
198 // Creates a handle to the first file in the input directory
199 hFind = FindFirstFile(szDir, &ffd);
200
201 // To skip the "." and ".." that is present in all directories,

FindNextFile is used once here
202 FindNextFile(hFind, &ffd);
203
204 SetCurrentDirectory((LPCSTR)input_filename);
205
206 // Loops through all files in the input directory
207 while (FindNextFile(hFind, &ffd) != 0) {
208
209 // Creates handle to input file with read-only privileges
210 printf("Decompressing\t %s\n", ffd.cFileName);
211 HANDLE hFileInput = CreateFile((LPCSTR)&ffd.cFileName,

GENERIC_READ, FILE_SHARE_READ, NULL, OPEN_EXISTING,
FILE_ATTRIBUTE_NORMAL, NULL);

212
213 // Checks if the file handle is valid, else it prints an error

message
214 if (hFileInput == INVALID_HANDLE_VALUE) {
215 printf("Failed to open file input file\n");
216 }
217
218 // Calls function decompress_file_result with the given

parameters
219 BOOL decompress_file_result = decompress_file(input_filename,

hFileInput, *zero_buffer, hFileOutput, &compressed_total,
&decompressed_pages);

220 }
221 }
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222
223 // If the input file is not a directory
224 else
225 {
226 // Creates a handle to the input file
227 HANDLE hFileInput = CreateFile((LPCSTR)input_filename,

GENERIC_READ, FILE_SHARE_READ, NULL, OPEN_EXISTING,
FILE_ATTRIBUTE_NORMAL, NULL);

228
229 // Checks if the file handle is valid, else it prints an error

message
230 if (hFileInput == INVALID_HANDLE_VALUE) {
231 printf("Failed to open input file");
232 }
233 printf("Decompressing \t %s\n", input_filename);
234
235 // Calls function decompress_file_result with the given parameters
236 BOOL decompress_file_result = decompress_file(input_filename,

hFileInput, *zero_buffer, hFileOutput, &compressed_total, &
decompressed_pages);

237 }
238
239 // Printing the statistics to console output
240 std::cout << "\n" << "Total decompressed pages: \t" <<

decompressed_pages << std::endl;
241 std::cout << "Total compressed data: \t\t" << compressed_total << "

bytes" << std::endl;
242 std::cout << "Total decompressed data: \t" << decompressed_pages *

4096 << " bytes" << std::endl;
243 CloseHandle(hFileOutput);
244
245 // Creating duration statistics, and prints it to console output
246 std::chrono::high_resolution_clock::time_point t2 = std::chrono::

high_resolution_clock::now();
247 auto duration_ms = std::chrono::duration_cast<std::chrono::

microseconds>(t2 - t1).count();
248 auto duration_sec = std::chrono::duration_cast<std::chrono::seconds>(

t2 - t1).count();
249 auto duration_min = std::chrono::duration_cast<std::chrono::minutes>(

t2 - t1).count();
250 auto duration_hrs = std::chrono::duration_cast<std::chrono::hours>(t2

- t1).count();
251
252 std::cout << "\n\nDecompression completed in:\nTotal Microseconds:\t"

<< duration_ms;
253 std::cout << "\nTotal Seconds:\t"<< duration_sec;
254 std::cout << "\nTotal Minutes:\t" << duration_min;
255 std::cout << "\nTotal Hours:\t" << duration_hrs;
256 }
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Appendix B

Source Code

Listing 8.2: CompressDecompress.cpp

1 #include "stdafx.h"
2 #include <iostream>
3 #include <Windows.h>
4 #include <fstream>
5
6 #define STATUS_SUCCESS ((NTSTATUS)0x00000000UL)
7 #define STATUS_BUFFER_ALL_ZEROS ((NTSTATUS)0x00000117UL)
8 #define STATUS_INVALID_PARAMETER ((NTSTATUS)0xC000000DUL)
9 #define STATUS_UNSUPPORTED_COMPRESSION ((NTSTATUS)0xC000025FUL)

10 #define STATUS_NOT_SUPPORTED_ON_SBS ((NTSTATUS)0xC0000300UL)
11 #define STATUS_BUFFER_TOO_SMALL ((NTSTATUS)0xC0000023UL)
12 #define STATUS_BAD_COMPRESSION_BUFFER ((NTSTATUS)0xC0000242UL)
13
14 HMODULE ntdll = GetModuleHandle(TEXT("ntdll.dll"));
15
16 typedef NTSTATUS(__stdcall *_RtlCompressBuffer)(
17 USHORT CompressionFormatAndEngine,
18 PUCHAR UncompressedBuffer,
19 ULONG UncompressedBufferSize,
20 PUCHAR CompressedBuffer,
21 ULONG CompressedBufferSize,
22 ULONG UncompressedChunkSize,
23 PULONG FinalCompressedSize,
24 PVOID WorkSpace
25 );
26
27 typedef NTSTATUS(__stdcall *_RtlDecompressBuffer)(
28 USHORT CompressionFormat,
29 PUCHAR UncompressedBuffer,
30 ULONG UncompressedBufferSize,
31 PUCHAR CompressedBuffer,
32 ULONG CompressedBufferSize,
33 PULONG FinalUncompressedSize
34 );
35
36 typedef NTSTATUS(__stdcall *_RtlGetCompressionWorkSpaceSize)(
37 USHORT CompressionFormatAndEngine,
38 PULONG CompressBufferWorkSpaceSize,
39 PULONG CompressFragmentWorkSpaceSize
40 );
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41
42 //

----------------------------------------------------------------------------------------------------

43 char *get_file_buffer(const char *filepath, int &buffer_len)
44 {
45 std::ifstream ifs(filepath, std::ofstream::binary);
46 if (!ifs.is_open()) return 0;
47 ifs.seekg(0, ifs.end);
48 buffer_len = ifs.tellg();
49 ifs.seekg(0, ifs.beg);
50 char *buffer = new char[buffer_len];
51 ifs.read(buffer, buffer_len);
52 return buffer;
53 }
54
55 //

----------------------------------------------------------------------------------------------------

56 int write_file_buffer(const char *filepath, char *buffer, int buffer_len)
57 {
58 std::ofstream ofs(filepath, std::ofstream::binary);
59 if (!ofs.is_open()) return 1;
60 ofs.write(buffer, buffer_len);
61 ofs.close();
62 return 0;
63 }
64 //

----------------------------------------------------------------------------------------------------

65 UCHAR *compress_buffer(const char *buffer, const ULONG bufferLen, ULONG
compBufferLen, ULONG *compBufferSize)

66 {
67 _RtlCompressBuffer RtlCompressBuffer = (_RtlCompressBuffer)

GetProcAddress(ntdll, "RtlCompressBuffer");
68 _RtlGetCompressionWorkSpaceSize RtlGetCompressionWorkSpaceSize = (

_RtlGetCompressionWorkSpaceSize) GetProcAddress(ntdll, "
RtlGetCompressionWorkSpaceSize");

69
70 ULONG bufWorkspaceSize; // Workspace Size
71 ULONG fragWorkspaceSize; // Fragmented Workspace Size (Unused)
72 NTSTATUS ret = RtlGetCompressionWorkSpaceSize(
73 COMPRESSION_FORMAT_XPRESS | COMPRESSION_ENGINE_STANDARD, //

CompressionFormatAndEngine
74 &bufWorkspaceSize, // CompressBufferWorkSpaceSize
75 &fragWorkspaceSize // CompressFragmentWorkSpaceSize
76 );
77
78 if (ret != STATUS_SUCCESS) {
79 std::cout << "An error ocurred while trying to calculate the

compression workspace size." << std::endl;
80 get_ntstatus_err(ret);
81 return 0;
82 }
83
84 std::cout << "Compression Workspace Size: 0x" << std::hex <<

bufWorkspaceSize

82



85 << std::dec << " (" << bufWorkspaceSize << ")" << std::endl;
86
87 VOID *workspace = (VOID *)LocalAlloc(LMEM_FIXED, bufWorkspaceSize);
88 if (workspace == NULL) {
89 std::cout << "Failed to allocate space for workspace" << std::endl;
90 return 0;
91 }
92
93 UCHAR *compBuffer = new UCHAR[compBufferLen];
94 NTSTATUS result = RtlCompressBuffer(
95 COMPRESSION_FORMAT_XPRESS | COMPRESSION_ENGINE_STANDARD, //

CompressionFormatAndEngine
96 (UCHAR *)buffer, // UncompressedBuffer
97 bufferLen, // UncompressedBufferSize
98 compBuffer, // CompressedBuffer
99 compBufferLen, // CompressedBufferSize

100 16, // UncompressedChunkSize
101 compBufferSize, // FinalCompressedSize
102 workspace // WorkSpace
103 );
104
105 LocalFree(workspace);
106 if (result != STATUS_SUCCESS) {
107 get_ntstatus_err(result);
108 return 0;
109 }
110
111 // std::cout << "Compressed DATA: " << compBuffer << std::endl;
112 std::cout << "Compressed Length: " << compBufferSize << std::endl;
113 return compBuffer;
114 }
115
116 //

----------------------------------------------------------------------------------------------------

117 UCHAR *decompress_buffer(const char *buffer, const int bufferLen, const
int uncompBufferLen, ULONG *uncompBufferSize)

118 {
119 _RtlDecompressBuffer RtlDecompressBuffer = (_RtlDecompressBuffer)

GetProcAddress(ntdll, "RtlDecompressBuffer");
120
121 UCHAR *uncompBuffer = new UCHAR[uncompBufferLen];
122 NTSTATUS result = RtlDecompressBuffer(
123 COMPRESSION_FORMAT_XPRESS | COMPRESSION_ENGINE_STANDARD, //

CompressionFormat
124 uncompBuffer, // UncompressedBuffer
125 uncompBufferLen, // UncompressedBufferSize
126 (UCHAR *)buffer, // CompressedBuffer
127 bufferLen, // CompressedBufferSize
128 uncompBufferSize // FinalUncompressedSize
129 );
130
131 if (result != STATUS_SUCCESS) {
132 get_ntstatus_err(result);
133 return 0;
134 }
135
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136 // std::cout << "Uncompressed DATA: " << uncompBuffer << std::endl;
137 std::cout << "Uncompressed Length: " << uncompBufferSize << std::endl;
138 return uncompBuffer;
139 }
140
141 //

----------------------------------------------------------------------------------------------------

142
143 // #define COMPRESS
144
145 int main()
146 {
147 #ifdef COMPRESS
148 const char originalFile[] = "C:\\Users\\User\\MASTER-THESIS-TESTING\\

test-dbg-uncompressed.bin";
149 #endif
150 const char compressedFile[] = "C:\\Users\\User\\MASTER-THESIS-TESTING

\\test-dbg-compressed.bin";
151 #ifndef COMPRESS
152 const char decompressedFile[] = "C:\\Users\\User\\MASTER-THESIS-TESTING

\\test-tool-decompressed.bin";
153 #endif
154
155 #ifdef COMPRESS
156 int bufferLen;
157 char *buffer = get_file_buffer(originalFile, bufferLen);
158 if (buffer == 0) {
159 std::cout << "An error ocurred while trying to read the bytes of the

specified file into the buffer." << std::endl;
160 return 1;
161 }
162 ULONG realCompSize;
163 UCHAR *compressed_buffer = compress_buffer(buffer, bufferLen, bufferLen

+ 512, &realCompSize);
164 if (compressed_buffer == 0) return 1;
165
166 if (write_file_buffer(compressedFile, (char *)compressed_buffer, (int)

realCompSize) != 0) {
167 std::cout << "An error ocurred while trying to write the bytes of

the compressed buffer to a file." << std::endl;
168 return 1;
169 }
170 std::cout << compressed_buffer << std::endl;
171 #else
172 int bufferLen;
173 char *buffer = get_file_buffer(compressedFile, bufferLen);
174 if (buffer == 0) {
175 std::cout << "An error ocurred while trying to read the bytes of the

specified file into the buffer." << std::endl;
176 return 1;
177 }
178
179 ULONG realDecompSize;
180 UCHAR *decompressed_buffer = decompress_buffer(buffer, bufferLen,

bufferLen * 100, &realDecompSize);
181 if (decompressed_buffer == 0) return 1;
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182
183 if (write_file_buffer(decompressedFile, (char *)decompressed_buffer, (

int)realDecompSize) != 0) {
184 std::cout << "An error ocurred while trying to write the bytes of

the compressed buffer to a file." << std::endl;
185 return 1;
186 }
187 #endif
188
189 return 0;
190 }
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