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Abstract 

This paper uses confidence intervals from sample average approximation (SAA) and stability tests to 

evaluate the quality of the solution of a long-term energy system model with stochastic wind power 

production. Using poorly designed scenarios can give stochastic model results that depend on the 

scenario representation rather than the actual underlying uncertainty. Nevertheless, there is little focus 

on the quality of the solutions of stochastic energy models in the applied literature. Our results 

demonstrate how too small a sample size can give a poor energy system design and misrepresent the 

value of the stochastic solution (VSS).  

 

We demonstrate how to evaluate the number of scenarios needed to ensure in-sample and out-of- sample 

stability. We also show how replication and testing of many candidate solutions using SAA iterations 

can provide a solution with a satisfactory confidence interval, including when the samples contain fewer 

scenarios than required for stability. An important observation, though, is that if SAA repeatedly solves 

the model with a sample size that satisfies in-sample and out-of-sample stability, the confidence interval 

is narrow, and the solutions are of high quality in terms of providing a tight bound for the optimal 

solution.  
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1. Introduction 

The Integrated MARKAL EFOM System (TIMES) is a widely used optimisation framework for long-term 

energy system planning [1-5]. With a higher share of intermittent energy generation from renewables, 

the focus on how to handle short-term uncertainty in such models is increased [6-8]. Stochastic 

programming [9] is a mathematical framework that enables us to consider uncertainty and to value 

flexibility in optimisation models. A stochastic approach to incorporating short-term uncertainty in 

TIMES was first introduced in [10] and is demonstrated in a user guide in [11]. From an application 

perspective, this TIMES approach was first used in [12] to take into account the short-term uncertainty 

related to the intermittent wind power production for Denmark. Since then, the approach has also been 

used in two other TIMES analyses: a study on the impact of zero energy buildings in the Scandinavian 

energy system [13] and a study on the impact of policy actions and energy prices on the cost-optimal 

development of the energy system in Norway and Sweden [14].  

The stochastic programming approach provides cost-optimal investment decisions that explicitly 

consider different outcomes of short-term uncertainty. Nevertheless, most of the TIMES literature, see 

for example [15-21], does not consider uncertainty but uses a deterministic approach in which 

investments are based on one operational scenario only. Clearly, a deterministic modelling of short-term 

uncertainty in long-term energy system models can provide sub-optimal investments, as demonstrated 

in [12, 22-24], amongst others. However, a major challenge of introducing stochasticity in long-term 

energy models, like TIMES models, is that the computational effort increases with the number of discrete 

scenarios used to represent the uncertain parameters. 

Most of the stochastic models in the energy systems literature include little or no discussion of the quality 

of the solution and the number of scenarios used. This is also the case for studies using long-term energy 

models, such as [13, 14, 22-25], covering the energy sector or sub-systems, such as the electricity sector. 

This paper uses confidence intervals from sample average approximation (SAA) and stability tests to 

evaluate the quality of the solution of a long-term energy system model with stochastic wind power 

production. Stochastic programming provides solutions that value flexibility by using scenarios to 

represent possible realisations of the uncertainty. The literature on long-term energy models often uses 

either a deterministic model or a stochastic model with a small number of scenarios. For both stochastic 

models and deterministic models in applied energy system analysis, there is rarely a discussion about 

the quality of the solution they provide, or, in fact, what defines a good quality solution.  
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A premise of our work is that the real world is uncertain and that a true probability distribution 

representing this real-world uncertainty exists. The quality of a model solution should then ideally be 

assessed in terms of how it deviates from the optimal solution in the real world. Obviously, a 

deterministic model, ignoring stochasticity, may lead to arbitrarily poor analyses. It is less reflected on 

that analyses based on stochastic models may suffer from the same problem. This is because the 

representation of uncertainty in these models is an approximation (often in terms of a limited number of 

discrete scenarios) of the true distribution (which can be continuous). If a model uses a poor 

representation of the true distribution, the results from the stochastic model can depend on the scenario 

representation rather than the real-world uncertainty.  

In this paper, we assume that the true probability distribution can be represented by S discrete scenarios. 

Our results demonstrate how using too few scenarios to approximate the true distribution can give a 

poor energy system design and misrepresent the value of the stochastic solution (VSS). One of the 

reasons that stochastic models often use too small a scenario tree is that the computational efforts increase 

with the number of scenarios. One method developed to overcome this is the sample average 

approximation (SAA) method, which uses random sampling from the true distribution, and replication 

over several iterations, to identify candidate solutions.  

The main contribution of this paper is to illustrate the errors that result from an inadequate 

representation of uncertainty in terms of objective function value, model solutions and estimate of the 

VSS. In this process, we demonstrate the use of confidence intervals for the optimality gap provided by 

the SAA [26, 27] algorithm and stability tests [28] to evaluate the quality of the solution provided by a 

TIMES model of Denmark with stochastic wind power production. The purpose of the paper is to 

illustrate the typical errors a misrepresentation of uncertainty can lead to, and to discuss how these can 

be eliminated. 

Below, we give a brief methodological overview of methods that are used to generate scenarios and to 

evaluate the quality of the model solution. Thereafter, we give an overview of energy models that use 

these methods.  

There are several methods to generate a limited number of scenarios from either a specified continuous 

distribution or a large data set that describes the uncertain parameters. These include random sampling 

[29], moment matching [30-32] and scenario reduction by distance measures [33-38]. The purpose of 

using a statistical approach for scenario generation, such as moment matching and distance measures, 
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rather than random sampling is to reduce the number of scenarios required to provide a good quality 

solution. However, the statistical approaches are more complex, as they use mathematical algorithms to 

generate scenarios. 

Moment matching generates a pre-specified number of scenarios that match for example the first four 

statistical moments (mean, variance, skewness and kurtosis) of an underlying data set that describe the 

uncertainty. Consequently, this method presupposes that these moments give an adequate 

representation of the uncertain parameters. The moments can, however, be insufficient to describe all the 

characteristics of the uncertain parameters, as completely different distributions can have the same first 

four moments [39]. The advantage, though, is that the number of scenarios required to represent the first 

four moments is, by construction, generally lower when using moment matching than when using 

randomly sampled scenarios. 

Methods based on scenario reduction using distance measures take a different approach. They start with 

a high number of scenarios, created for example by sampling, where the large scenario set represents the 

true distribution of the uncertainty. Next, the number of scenarios is reduced without distorting these 

properties. In general, distance-based methods reduce the number of scenarios to a pre-specified size 

while minimising the distance between the final scenarios and the original distribution (see for example 

[33, 34, 38]). Distance measures can also be used to find the optimal discretisation of a continuous 

distribution [40]. 

The energy literature applies a variety of scenario generation methods. Random sampling is applied to 

a unit commitment problem in [41], to a power generation expansion in [42] and to an energy system 

model in [13, 14]. In the latter studies, the sampled scenarios are adjusted to the mean value of the 

uncertainty. Scenario reduction by distance measures are used in power generation expansion problems 

in [23, 24, 43, 44], in maintenance scheduling in [45] and in unit commitment problems in [46, 47]. 

Moment matching is used in a power generation expansion problem in [48], and a combined moment 

matching and sampling methodology is applied in an energy system model of Denmark in [12] and in 

an energy system of buildings in [49]. There is also literature that generates scenarios in a different 

manner and/or does not describe the applied scenario generation method. For example, for power 

expansion models, [22] pick ten scenarios from the distribution of wind and photovoltaic power (PV) 

production according to occurrence, and [50] uses the hydro inflow of 75 different climate years  to cover 

outcomes of the uncertainty.  



6

The quality of the scenarios can only be measured by the quality of the resulting solution. In this paper 

we define this quality based on how close the model optimal solution value is to the optimal solution 

value for the true distribution defined by S discrete scenarios. Most of the stochastic energy literature 

lacks a discussion on the quality of the presented model results. This is a methodological weakness since 

poor scenario representations can give results that depend on the scenario representation rather than the 

characteristics of the uncertain parameters. There are, however, studies that acknowledge this weakness. 

The authors in [23] discuss the shortcomings of using few scenarios, including that they do not cover the 

total range of fluctuations in renewable resources generation, and [13, 14] state that using a higher 

number of scenarios can improve the quality of the model results.  

To evaluate solution quality, stability tests on in-sample and out-of-sample stability are useful [28]. These 

stability tests indicate whether the optimal solution value is skewed by a misrepresentation of the true 

underlying stochasticity. Stability tests are used only in a small share of the applied stochastic energy 

literature. For example, [12] applies both in-sample and out-of-sample stability tests in a Danish TIMES 

model with uncertain wind power production. Further, there are studies that use in-sample stability 

only, like [51] with a model for optimal bidding and scheduling in the electricity market and [52] with a 

stochastic unit commitment model. Although it is not explicitly mentioned, a variant of in-sample 

stability is also tested in numerous studies that evaluate the model solution value as a function of sample 

size. This is done in a power expansion problem in [44, 48] and in a bi-level investment problem for a 

wind power producer in [53]. Stability tests are also applied in other types of models, including supply 

chain design [54], portfolio selection model [55] and network design [56].  

Other solution evaluation methods are directly linked to the scenario generation method. These include 

the sample average approximation (SAA) method, which uses randomly sampled scenarios. SAA 

quantifies the quality of a model solution using replication, by repeatedly solving the model using 

samples with a limited number of scenarios. SAA thereby provides a confidence interval of the 

optimality gap of a given model solution. SAA is used in a few energy models, including the unit 

commitment problems in [57, 58], with uncertain wind power production, and a power expansion model 

in [42], with uncertain natural gas price and electricity demand. The use of SAA is however more 

prevalent in other types of models, including supply chain design [59, 60], routing problems [61], 

inventory problems [62] and empty container repositioning [63].  

The optimality gap of clustered scenarios [43] is another solution evaluation method that is linked to 

distance measures. With this method, the value of a stochastic model is the lower bound of the optimal 
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value, whereas the upper bound of the optimality gap is derived by fixing the first-stage solution to a 

large scenario tree. However, the lower bound is only feasible for a model with a fixed recourse, 

implying, for example, that it cannot be used in stochastic models where the uncertainty is related to 

energy supply efficiency. For energy models, the use of optimality gap of clustered scenarios is limited 

to [43], a power expansion model covering the west of the Unites States with uncertain hydropower 

production, PV production, wind power production and electricity demand.  

The contribution of this paper is the use of both SAA optimality gap estimates and stability tests to 

evaluate the quality of the model’s solution. We apply SAA to a TIMES model with three different sample 

sizes to examine how the number of scenarios affects the quality of the investment decisions. To our 

knowledge, this is the first study that compares and relates stability tests and confidence intervals from 

SAA to evaluate the quality of the model solution in an energy model. It is also the first time the SAA 

method has been used in a long-term energy system model with multiple end-use sectors, such as TIMES 

energy system models.  

The remainder of this paper is structured as follows: Section 2 gives a brief introduction of the stochastic 

methods used in this paper. Section 3 is devoted to a description of the model and the scenario generation 

methodology. Section 4 shows the computational results of SAA and stability tests and Section 5 details 

the conclusions.  

 

Abbreviations 

bEUR, billion euro; CHP, combined heat and power; DH, district heat; EV, expected value; PV, 

photovoltaic power; SAA, sample average approximation; TIMES, the Integrated MARKAL-EFOM 

System; VSS, the value of stochastic solution 

 

2. Stochastic methods 

This section describes the stochastic methods that are used in this paper.  
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2.1 Two-stage model 

SAA is primarily used as a solution approach for two-stage stochastic programmes with recourse [9], 

although it is possible to extend the methodology to a multi-stage setting, as demonstrated by [64].  

Here, the true uncertainty distribution is represented by S discrete scenarios that occur with equal 

probability. The objective function of a two-stage model is shown in Eq.(1). The first-stage variables, x , 

are independent of the scenarios and the second stage variables, sy , are scenario dependent. Similarly, 

the first stage cost parameters, c, are deterministic, while the second-stage costs, sd , are scenario 

dependent. In addition, the optimisation considers both scenario independent constraints, ( )f x , and 

scenario dependent constraints, sg ( , )sx y . Further, the true optimal value, using the S discrete scenarios, 

is denoted, v , with a corresponding optimal first-stage solution, x , and we refer to Eq.(1) as the true 

distribution problem. 

1

1
min

.

( ) 0

(x, ) 0 1,2,....,

S

s s
s

s s

v c x d y
S

s t

f x

g y s S






 


 


   (1)   

In TIMES models, both the constraints and the objective are typically linear, although this is not always 

the case for energy system models. Hence, in what follows, when discussing bounds, we assume that (i) 

the objective has finite mean and variance, (ii) i.i.d. samples of scenarios can be generated and (iii) the 

objective can be evaluated exactly for specific values of x , y  and realizations of the stochastic 

parameters.  

2.2 The value of stochastic solution  

A deterministic model is equivalent to a stochastic model with one scenario, and a model using the 

expected value of the uncertain parameters as a model input, is denoted the expected value (EV) 

problem. The value of the stochastic solution (VSS) [65, 66] measures the benefit of using a stochastic 

model compared to a deterministic approach.   
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The first step in calculating VSS is to find the first-stage decisions from the EV model, denoted x . Second, 

the stochastic model is solved with first-stage decisions fixed to x ,  taken from the EV model as shown 

in Eq.(2). Finally, VSS is the difference in optimal objective function value of this stochastic model with 

fixed first-stage decisions, v , and the optimal value of the stochastic model with endogenous first-stage 

decisions, as defined in Eq.(3).  

1

1
min

.

( ) 0

(x, ) 0 1,2,..,

S

S s s
s

s s

v c x d y
S

s t

f x

g y s S






 


 


   (2)  

   

*
SVSS v v            (3) 

2.3 SAA algorithm 

The SAA algorithm works by repeatedly solving the two-stage model with a limited number of scenarios, 

N, sampled from the S scenarios of the true distribution. Below we give a stepwise procedure for the 

SAA algorithm that is based on [26, 67, 68] and the applied literature in [59, 60, 69]. In this paper and in 

the following notation, the N scenarios are generated by a crude Monte Carlo sampling method. It is, 

however, also possible to apply variance reduction techniques within the SAA algorithm, as 

demonstrated in [62, 67].  

 

Lower bound estimate 

Below we describe the SAA used iteratively with M replications for a stochastic two-stage model with 

recourse. The bounds and algorithm are taken from [26, 67, 68]. First, we discuss how to estimate the 

lower bound for the optimal value of the true problem with S scenarios. The lower bound estimate is 

found by solving M two-stage problems each with N samples scenarios, where N< S. This lower bound 

estimate, with its variance, is derived as follows:  

a. Generate M independent candidate samples each with N scenarios from the S scenarios. 
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b. Solve the corresponding optimisation problem for all M candidate samples according to 

Eq.(4). Here, the optimal objective function value of each sample, m, is denoted ,m Nv :  

              

, , ,
1

,

1
min

.

( ) 0

(x, ) 0 1,2...,

N

m N m n m n
n

n m n

v c x d y
N

s t

f x

g y n N






 
   

 


 



  
(4) 

and the corresponding optimal first-stage candidate solution is represented by ,m Nx . 

Calculate the estimated lower bound, ,M NLB , that is the average of the optimal objective function value 

of all M samples, see Eq. (5). The estimated lower bound converges to the true lower bound as M goes 

to infinity: 

, ,
1

1 M

M N m N
m

LB v
M 

         (5) 

 

c. Estimate the variance of the lower bound  2
LB M by the variance estimator  2

LBs M , in 

Eq.(6):  

   22
, M,N

1

1

M( 1)

M

LB m N
m

s M v LB
M 

 
      (6) 

d. Derive the confidence interval of the lower bound estimate according to Eq.(7), where /2z  

is the critical value of the normal distribution function for a given percentile:  

, /2 , /2( ), ( )M N LB M N LBLB z s M LB z s M         (7)   

Upper bound estimate 

An upper bound for a given first-stage solution, x̂ , is provided by using this first-stage solution in a two-

stage model with N’ scenarios, called the reference sample. The N’ scenarios are derived by random 
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sampling from the S scenarios, and S ≥ N’ > N. Ideally, we wish this reference sample to be the true 

distribution, but normally this is not possible. Hence, N’ is chosen as large as computationally feasible, 

and significantly larger than N. This is possible because a two-stage model with a fixed first-stage 

variable, x̂ , can be solved as N’ separate models, such that the computational efforts related to calculating 

the upper bound are in most cases moderate compared to solving the full stochastic model.  

In the following, x̂  is one of the candidate solutions obtained, ,m Nx . An estimate of the upper bound,

' ˆ(x)NUB , with its variance, is derived as follows: 

a. Find the optimal value of the problem with N’ scenarios and a fixed first-stage solution, x̂ , as 

described in Eq.(8). This is the estimated upper bound, ' ˆ(x)NUB , of this first-stage solution, and 

the estimated upper bound converges to the true upper bound as N’ goes to S. 

 

' '

' ' ' '
' 1 ' 1

' '

1 1
ˆ ˆ ˆ(x) x min( ) (x)

' '

.

ˆ(x) 0

ˆ(x, ) 0 ' 1,2,.., '

N N

N n n n
n n

n n

UB c d y v
N N

s t

f

g y n N

 

 

  


 

 
    (8) 

 

b. Apply Eq.(9) to calculate the estimator,  
'

2ˆ x̂
NUBs  of the variance of the upper bound  2ˆ x̂UB  : 

   
'

'
22

' '
' 1

1
ˆ ˆ ˆ ˆx (x) (x)

N'(N' 1)N

N

UB n N
n

s v UB


 
     (9) 

This formula assumes that the sample with N´ scenarios is independent of the M previous samples. In 

[26] an alternative bound based on using all the scenarios in the M samples as the reference is given 

instead.  

c. Derive the confidence interval of the upper bound estimate according to Eq.(10), where /2z  is 

the critical value of the normal distribution function for a given percentile: 

 

' '' /2 ' /2ˆ ˆ ˆ ˆ(x) (x),UB (x) (x)
N NN UB N UBUB z s z s        (10) 
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Optimality gap estimate 

Based on the estimated bounds, an estimator of the optimality gap, , , ' ˆ(x)M N NGAP , and its variance is in 

accordance to Eq.(11) and Eq.(12) respectively, and the confidence interval of the optimality gap is 

calculated according to Eq.(13). 

 

, , ' ' ,ˆ ˆ(x) ( )M N N N M NGAP UB x LB       (11) 

 

   
, , ' '

2 2 2ˆ ˆ ˆ( ) x
N M N NGAP UB LBs x s s M       (12) 

 

, , ' , , '

2 2
, , ' /2 , , ' /2ˆ ˆ ˆ ˆ(x) ( ), (x) ( )

M N N M N NM N N GAP M N N GAPGAP z s x GAP z s x      (13)  

  

2.4 In-sample and out-of-sample stability 

Stability tests are used to evaluate the quality of the scenarios in a stochastic program. If the scenarios 

result in optimal solutions that satisfy in-sample and out-of-sample stability, the optimal solutions are of 

good quality [28].  

The in-sample stability test [28] investigates whether a scenario generation method creates a set of 

scenarios that consistently result in similar optimal values. Based on our previous notation, the in-sample 

stability is defined according to Eq.(14). If M scenario sets are created with N scenarios each, the optimal 

values, derived by using the different scenario sets, are required to be similar. In addition, it is desirable 

that the optimal value remain the same when the sample size increases from N to N´. If this is the case, 

the scenario trees are in-sample stable. Note that the average and standard deviation of in-sample 

stability values in Eq. 14, for a given sample size N, is identical with the SAA lower bound estimate and 

standard deviation, and thereby also confidence interval. 

  𝑣 , 𝑣 ,     . . . . . . . . . . . . . . . . . . . . . 𝑣 ,   (14) 

The out-of-sample stability test [28] investigates whether a scenario generation method, with the selected 

sample size, creates scenario trees that provide optimal solutions that give approximately the same 
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optimal value as when using the true probability distribution. One way of checking this is to insert the 

fixed first-stage solution of each sample m with size N into an optimization problem that uses the S 

scenarios, representing the true distribution. In some cases, this is too challenging, due to the 

computational effort or because it is not possible to represent the true distribution. In these situations, 

an approximation of out-of-sample stability can still be useful. A main purpose of out-of-sample-type 

tests is to test the solutions on different samples/trees than were used to find them.  

If a reference sample, consisting of N’<S scenarios, gives an adequate representation of the underlying 

uncertainty, out-of-sample stability implies that the estimator for the upper bound, ' ,( )N m NUB x , should 

have approximately the same value for all candidate samples m, where the optimal first-stage candidate 

solution is represented by ,m Nx : 

' 1, ' 2, ' ,(x ) (x ) (x )N N N N N M NUB UB UB        (15) 

For a given sample size, N, the average of the values in Eq.(15) and the its standard deviation can be 

used to derive the confidence interval of the out-of-sample stability.  In this paper we use Eq. (15) to 

derive the out-of-sample stability. An alternative formulation, presented in [26], not using a reference 

sample based on N´ scenarios but rather using the N*M sampled scenarios, is to compare the upper 

bound for all k l:  

    𝑈𝐵 𝑥 , 𝑈𝐵 𝑥 ,  ,    𝑈𝐵 𝑥 , 𝑈𝐵 𝑥 ,  and finally  𝑈𝐵 𝑥 , 𝑈𝐵 𝑥 ,     (16) 

where 1,...., 1,.....,k M l M k l    

In any case, as stated for the upper bound calculations for SAA, a two-stage model with a fixed first-

stage variable, x̂  , can then be solved as separate model for each scenario, making the out-of-sample 

stability test computationally tractable.   

2.5 Link between SAA algorithm and stability tests  

Based on the description above, this section further elaborates the link between the SAA algorithm and 

the stability tests. Assume that the M samples with N scenarios are used for both the SAA lower bound 

calculations and in-sample stability tests. The reference sample with N´ scenarios is used for both the 

SAA upper bound calculation and the out-of-sample stability test. 



14

Observation 1:   

i. The calculation of the SAA lower bound estimate (See Section 2.3) provides M different 

candidate solutions indexed from 1,…, M  and corresponding optimal solution values ,m Nv . 

These corresponds exactly to the ,m Nv  in the in-sample stability tests in Eq.(14). 

ii. The variance estimator of the SAA lower bound,  2
LBs M  from Eq.(6), is identical with the  

variance  for ,m Nv , with m=1,…,M in the in-sample stability test.  

Observation 2: 

i. Each of the first stage solutions ,m Nx  can be used to calculate an upper bound as described 

in Eq.(8). For sample m this corresponds exactly to the ' ,( )N m NUB x  used in the out-of-sample 

stability test in Eq.(15) for a reference scenario set with N´ scenarios. 
ii. There is no immediate link between the out-of-sample stability criteria, requiring that the 

upper bound estimator ' ,( )N m NUB x  for each sample m=1,…,M be approximately the same 

(Eq.(15) ), and the SAA upper bound based on the  sample variance  
'

2ˆ x̂
NUBs of a single 

' ˆ(x)NUB . 

iii. If the M samples with N scenarios are out-of-sample stable, the upper bound estimator from 

SAA, ' ˆ(x)NUB , equals the upper bound estimator from the stability test for all m. Still, if the   

sample variance  
'

2ˆ x̂
NUBs is significantly large, this does not guarantee a small enough 

confidence interval for the optimality gap in SAA according to a user-defined criterion.   

iv. Vice versa,  if the M samples with N scenarios are not out-of-sample stable when tested on 

the N´ scenario set, the confidence interval for the best candidate solution , x̂ , can be within 

a user-defined criterion and only depending on  
'

2ˆ x̂
NUBs . 

Observation 3: 

i. In SAA, the requirement is that the confidence interval for the in-sample stability in the M 

samples corresponds to  2
LBs M     with   as an user-defined criterion, approaching zero. 

If these M sampled scenario sets are used in the SAA, the width of the confidence interval 
for the lower bound approaches zero.  

 



15

ii. If the M samples are not in-sample stable, the SAA lower bound may still be acceptable, in 
terms of a user defined criterion, with the width of the confidence interval depending on 

 2
LBs M . 

3. Model description and scenario generation  

First, this section gives an overview of the model structure and assumptions of our TIMES model. 

Thereafter, we present the stochastic modelling approach, including the generation of the wind 

scenarios.   

3.1 TIMES model structure and assumptions 

TIMES is a bottom-up modelling framework, providing a detailed techno-economic description of 

resources, energy carriers, conversion technologies and energy demand from a social welfare 

perspective. The model minimises the total discounted cost of the energy system to meet the demand for 

energy services for the analysed model horizon. The energy system cost includes investments in both 

supply and demand technologies, expenses related to operation of capacity, fuel costs, income from 

electricity export and cost of electricity import from external countries.  

The model decisions are made with full knowledge of all future events and their probabilities. Each 

model period is five years within the time horizon from 2010 to 2050. Each model period is divided into 

48 time-slices, structured in four seasons, each with a representative day with 12 two-hour periods. 

Winter is defined as December, January and February, spring is defined as March, April, May, summer 

is June, July and August and autumn is September, October and November. Investment decisions are 

made in each model period, and operational decisions are made at the time-slice level. The operational 

decisions include activity levels for each capacity type, fuel consumption and electricity trade. The model 

is regionally divided into the two Danish spot price areas: DK1 and DK2. The annual discount rate is set 

to 4%, and policy instruments like subsidies and tax are excluded. 

The heat demand and the non-substitutable electricity demand are exogenous input to the model and is 

based on energy projections from the Danish Energy Agency [70]. The heat demand is split into three 

different categories: central heat demand, de-central heat demand and individual heat demand. Central 

heat is produced in large combined heat and power (CHP) plants, with a flexible heat to electricity 

production ratio, and is delivered to large district heat (DH) networks. De-central heat is produced in 

smaller CHP plants, with a fixed heat to power ratio, and in DH plants, and is delivered in smaller and 
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more remote DH grid networks. Individual heat is the remaining heat demand that is met by heating 

technologies located within buildings, like wood stoves, heat pumps and boilers. The heat demand split 

does not capture the competition between the different heating options, e.g. whether it is profitable to 

expand the DH grid to replace the natural gas grid.   

The characterisation of energy technologies, with cost data and efficiencies, are input to the model and 

are primarily based on [71, 72]. The model includes a set of technologies used to transform energy sources 

to final demand. It is optional to use electricity in heat and transport technologies and consequently the 

total electricity consumption is a model decision. Future annual energy prices for biomass, fossil fuels 

and electricity in the neighbouring countries to Denmark are based on [73]. Further, we use hourly 

electricity prices from 2014 for Germany, Sweden and Norway, provided by Nord Pool Spot and the 

European Energy Exchange, to map how the electricity prices in these countries vary within a year. The 

electricity prices in the two Danish regions are endogenous in the model, as they are the dual values of 

the electricity balance equation, while the electricity prices in neighbouring countries are exogenous. The 

Danish transmission capacity to its neighbouring countries, Germany, Norway and Sweden, is provided 

by [73].  

3.2 Stochastic modelling approach 

The described stochastic modelling approach is applicable to long-term investment models with short-

term uncertainty in general and is not limited to the TIMES modelling framework. In our two-stage 

model, the first-stage decision variables are investments in new capacity and the second-stage variables 

are operational decisions. Figure 1 illustrates a scenario tree with this information structure. In the first 

stage, the realisation of the wind scenarios is unknown, and investments in new capacity for the entire 

model horizon, from 2010 to 2050, are made. In the second stage, starting after the branching point of the 

scenario tree, the outcomes of the wind scenarios are known, and operational decisions are made for 

each of the scenarios for all model periods. Consequently, the investments are identical for all scenarios, 

whereas the operational decisions are scenario dependent. To consider the different operational 

situations in the optimisation, the model minimises the investment costs and the expected operational 

costs over all scenarios. This provides investment decisions that both recognise the expected operational 

cost and that are feasible for all the scenario realisations of wind power production. The investment and 

operational decisions are made simultaneously, and we apply a multi-horizon model structure [74], 

where operational decisions are independent between the 5-year model periods.  
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Figure 1: Illustration of the two-stage scenario tree. 

3.3 Scenario generation 

The only uncertain parameter in our model is wind power availability, which equals the hourly wind 

power production over the installed capacity. We use historical production and capacity data from 2000 

to 2014 for the two Danish Nord Pool regions to estimate the characteristics of this uncertain parameter. 

As wind turbine design and layout have become more efficient with time, we adjust the wind availability 

data according to the time, such that the average availability data for the entire historical period equals 

the annual availability of 2014. We use every second hour from the data set to comply with the time-slice 

structure of the model with 12 two-hour steps daily. Further, we assume that each historical day of the 

data set has the same probability to occur (and correspondingly every hour).  

The wind scenarios are based on a selection of historical days. First, all the days from 2000 to 2014 are 

sorted by month and season. Thereafter, a scenario is generated by randomly sampling days within each 

season, where the model input is the corresponding hourly availability factors of the sampled days. The 

days are sampled independently for the four seasons, assuming there is no seasonal dependence of wind 

availability. This procedure is repeated for each five-year period, meaning that each scenario consists of 

a randomly sampled sequence of days (each with 12 hours). The scenario generation approach ensures 

a consistent daily correlation since a sampled day consists of 12 chronological two-hour blocks for wind 

availability that captures the regional correlations, as the same sampled days are used to derive the 

model input on wind power availability in both model regions. With four seasons and 12 two-hour 

periods, a scenario consists of 48 stochastic wind parameters for each region and model period. Finally, 
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to cover the monthly variations of wind availability within a season, the scenarios consist of an equal 

number of days within each month of the four seasons.  

The statistical properties of the wind power availability in a sample, using only a limited number of 

scenarios, can potentially deviate from the true distribution for wind power availability. Figure 2 plots 

the mean daily wind power availability in fall for the Danish region DK1 for the period for which we 

have data. We assume the observations represent the outcomes of the true distribution. The figure also 

shows the maximum, minimum and 75/25 quantile of 1000 different scenario trees generated by random 

sampling with the following sample sizes, N = 3, 30, 60 and 600. The corresponding variance is plotted 

in Figure 3. These figures show that the mean value and variance converges to the true distribution when 

the number of scenarios increases. With a low sample size, the mean value and variance can be identical 

to the true distribution for one scenario tree but vary highly among the randomly generated scenario 

trees. We observe a similar trend for all seasons in both model regions. For the sample size of N = 600, 

the sampled scenarios have approximately the same mean and variance as the true distribution for all 

scenario trees. Further, we suppose that a reference sample with N’ = 600 is adequate to calculate the 

confidence interval of the model solution with the SAA algorithm.  

 

Figure 2: Mean availability factor for fall DK1 for the true distribution as well as the maximum, 

minimum and 75/25 quantile of 1000 different scenario trees for N = 3, 30, 60 and 600. 
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Figure 3: Variance in availability factor for fall DK1 for the true distribution, the maximum, 

minimum and 75/25 quantile of 1000 different scenario trees for N = 3, 30, 60 and 600. 
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4. Computational results  

We applied the SAA algorithm and the stability tests for ten different candidate samples (M = 10) and 

for three different sample sizes of N = 3, 30 and 60 scenarios, for a total of 30 different problem instances. 

Thereafter we evaluated the in-sample and out-of-sample stability for the different scenario tree sizes 

measured in number of scenarios. The calculations were carried out with a 2.9 GHz CoreI7 Intel processor 

with 32 GB RAM using the XPRESS solver in GAMS.  

4.1 SAA 

For a given sample size, N, the scenario set of each candidate sample of the SAA provides a candidate 

solution to the optimisation problem with a corresponding optimal value. The first-stage decisions from 

each problem instance and a reference sample at N’ = 600, representing a large sample of scenarios are 

used to estimate the gap between the estimate of the optimal value using N scenarios and the true value. 

Table 1 shows the optimal value (v), estimated lower bound (LB), estimated upper bound (UB) and 

estimated optimality gap (GAP) with a 90% confidence interval for all problem instances. For each N=3, 

30 and 60, and the number of sample M = 10, the best value of the 10 candidate samples in terms of 

lowest UB and GAP is highlighted. The instances are also sorted by ascending UB. 

Among the instances, LB varies only with N as it is an average of all candidate values for that sample 

size, and LB is highest for N = 30. A UB estimate is calculated by fixing first-stage decisions of all N*M=30 

problem instances in the reference sample, by Eq.(8), and the best UB estimate is approximately identical 

for N = 30 and N = 60. The optimal value improves with an increased sample size as the confidence 

interval of the optimality gap (GAP) narrows as N increases. This is primarily because the variance of the 

LB is reduced with a higher number of scenarios. Note that there is a negative GAP for some instances, 

where LB has a larger value than the UB. This is because the calculated bounds are estimates of the true 

bounds. This can be avoided by increasing the value of M and/or N’, as the estimated bounds converge 

to the true bounds when M goes to infinity and N’ goes to S.  

Among the candidate values, the variance of optimal value v decreases with sample size, and the 

difference between the maximum and minimum value is 4.0 billion euro (bEUR), 1.0 bEUR and 0.8 bEUR 

for N = 3, 30 and 60 respectively. The percentage difference among the candidate values is low, however, 

as the objective function includes a significant share of costs that are not related to the intermittent 

characteristics of wind power.  
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The endogenous wind power capacity in 2020, 2030, 2040 and 2050, as well as estimates of VSS for all 

problem instances, are given in Table 2. For each N, the best candidate solution is highlighted, and the 

instances are sorted by ascending UB, as in Table 1. For comparison, we also include the wind capacities 

provided by a deterministic model, where the expected value of the wind power availability is used as 

model input.  

We estimate VSS for each instance, assuming each scenario sample, with size N, is an estimate of the true 

distribution, providing a solution, xm,N, that estimates the true solution, see Eq.(17). This corresponds to 

a situation where the modeller only solves one model instance of sample size N, believing the sample 

gives a good representation of the true distribution. However, this estimate can deviate significantly 

from the true VSS as the used sample does not necessarily capture the statistical properties of the 

uncertainty since N < S.   

, , ,( )m N m N m NVSS x v v                                      (17) 

For all sample sizes N, the best stochastic solution, from the problem instance with the lowest UB, has 

lower wind capacities compared to the capacities provided by the deterministic model. For example, in 

2050, the deterministic capacity is 10.9 GW and the best capacity is 9.5 GW, 8.9 GW and 8.8 GW for N = 3, 

30 and 60, respectively. The spread of the wind power capacity among the instances is significant. For 

example, in 2040, the wind capacity ranging from – 29% to + 87% compares to the best stochastic solution 

among the different problem instances. Furthermore, the spread of the wind capacity for the various 

candidate samples decreases with the size of N. For example, in 2030, the wind capacity ranges from 4.2 

GW to 8.9 GW for N = 3, 4.7 GW to 7.0 GW for N = 30 and from 6.6 GW to 8.5 GW for N = 60. The results 

imply that the stochastic solutions are significantly different than the deterministic solution and that the 

stochastic solution is highly dependent on the scenario representation. This emphasizes the importance 

of using a stochastic model and the necessity of evaluating the quality of the stochastic solution.  

Table 2 also shows that the estimated VSS depends greatly on the scenario representation. The VSS 

ranges from 0.11 bEUR to 0.84 bEUR for N = 3, from 0.13 bEUR to 0.43 bEUR for N = 30 and from 0.10 

bEUR to 0.21 bEUR for N = 60. Further, VSS of the best candidate solutions decreases with number of 

scenarios, with 0.18 bEUR, 0.16 bEUR and 0.14 bEUR for N = 3, 30 and 60 respectively.  

These results demonstrate that if too few scenarios are used, solving a single stochastic instance can lead 

to substantial and arbitrary errors. Also, the VSS can be considerably misrepresented if we fail to 
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recognise that the scenario number used is too small to give an appropriate representation of the 

uncertainty. Our computational tests show that this problem is reduced when selecting the best 

candidate solution However, for our results, VSS is only a small share of the total energy system cost, 

including the wind power costs (investments and operational costs). For N = 60, VSS of the best candidate 

solution is 1.4% of the wind power costs. Note that this low relative VSS cannot be used to justify using 

a deterministic modelling approach in general since VSS depends on the model assumptions and 

methodology. Further, to evaluate the VSS, a stochastic optimisation is required. 
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Table 1: Optimal objective function (v), estimated lower bound (LB), estimated upper bound (UB) and 

estimated optimality gap (GAP) for a 90 % confidence interval for all problem instances [billion euro] where 

the best value in terms of lowest GAP is highlighted. 

N = 3 m V LB   UB   GAP   

 5 148.90 147.79 ± 0.74 148.75 ± 0.14 0.97 ± 0.75 

 9 148.44 147.79 ± 0.74 148.79 ± 0.16 1.00 ± 0.76 

 4 149.26 147.79 ± 0.74 148.81 ± 0.15 1.03 ± 0.75 

 6 147.58 147.79 ± 0.74 148.84 ± 0.15 1.06 ± 0.75 

 8 146.97 147.79 ± 0.74 148.87 ± 0.14 1.08 ± 0.75 

 3 145.50 147.79 ± 0.74 148.87 ± 0.16 1.08 ± 0.76 

 10 147.86 147.79 ± 0.74 148.96 ± 0.16 1.18 ± 0.76 

 1 145.48 147.79 ± 0.74 148.98 ± 0.17 1.19 ± 0.76 

 7 149.45 147.79 ± 0.74 149.20 ± 0.11 1.42 ± 0.75 

 2 148.42 147.79 ± 0.74 149.36 ± 0.15 1.57 ± 0.75 

N = 30 m V LB   UB   GAP   

 9 148.48 148.76 ± 0.57 148.72 ± 0.15 -0.04 ± 0.59 

 10 148.46 148.76 ± 0.57 148.73 ± 0.15 -0.04 ± 0.59 

 1 148.34 148.76 ± 0.57 148.73 ± 0.15 -0.04 ± 0.59 

 7 148.34 148.76 ± 0.57 148.73 ± 0.15 -0.03 ± 0.59 

 4 148.86 148.76 ± 0.57 148.77 ± 0.13 0.01 ± 0.58 

 3 149.12 148.76 ± 0.57 148.78 ± 0.14 0.02 ± 0.58 

 5 148.92 148.76 ± 0.57 148.79 ± 0.13 0.02 ± 0.58 

 8 149.01 148.76 ± 0.57 148.82 ± 0.13 0.05 ± 0.58 

 6 148.78 148.76 ± 0.57 148.82 ± 0.13 0.06 ± 0.58 

 2 149.33 148.76 ± 0.57 148.85 ± 0.13 0.09 ± 0.58 

N = 60 m V LB   UB   GAP   

 5 148.48 148.70 ± 0.37 148.72 ± 0.15 0.03 ± 0.40 

 1 148.91 148.70 ± 0.37 148.72 ± 0.14 0.03 ± 0.40 

 7 148.74 148.70 ± 0.37 148.73 ± 0.15 0.03 ± 0.40 

 8 148.33 148.70 ± 0.37 148.74 ± 0.15 0.04 ± 0.40 

 9 148.61 148.70 ± 0.37 148.74 ± 0.14 0.04 ± 0.39 

 6 148.66 148.70 ± 0.37 148.74 ± 0.15 0.04 ± 0.40 
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 10 149.09 148.70 ± 0.37 148.75 ± 0.14 0.05 ± 0.39 

 3 148.60 148.70 ± 0.37 148.75 ± 0.14 0.05 ± 0.39 

 4 148.62 148.70 ± 0.37 148.76 ± 0.14 0.06 ± 0.40 

 2 148.91 148.70 ± 0.37 148.76 ± 0.14 0.07 ± 0.39 

 

Table 2:  Estimated value of stochastic solution, VSS [billion euro] and wind capacity in 2020, 2030, 2040 and 

2050 [GW] for all problem instances where the best value in terms of lowest GAP is highlighted. 

   Wind capacity, GW  Estimated VSS 

N = 3 m 2020 2030 2040 2050 bEUR   

 5 4.7 4.7 8.6 9.5 0.18 

 9 4.4 4.4 9.0 8.8 0.11 

 4 6.5 6.5 9.0 5.3 0.21 

 6 6.3 6.3 10.5 10.4 0.34 

 8 4.2 4.2 11.1 10.6 0.21 

 3 4.2 4.2 9.7 9.2 0.27 

 10 8.9 8.9 8.9 8.6 0.38 

 1 7.6 7.6 9.7 6.8 0.30 

 7 4.6 4.6 8.5 8.6 0.85 

 2 8.3 8.3 4.4 7.5 0.84 

N = 30 m 2020 2030 2040 2050 VSS 

 9 5.7 5.7 8.9 8.9 0.16 

 10 6.3 6.3 8.7 8.7 0.13 

 1 4.5 4.5 8.9 8.9 0.15 

 7 6.3 6.3 8.9 9.5 0.13 

 4 4.7 4.7 8.7 8.7 0.23 

 3 4.7 4.7 8.6 7.5 0.23 

 5 4.7 4.7 8.6 8.7 0.25 

 8 6.3 6.3 9.0 8.7 0.24 

 6 5.3 5.3 8.8 8.8 0.30 

 2 7.0 7.0 8.3 8.3 0.43 

N = 60 m 2020 2030 2040 2050 VSS 
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 5 5.9 7.9 8.8 8.8 0.14 

 1 6.3 6.9 8.6 8.6 0.21 

 7 4.7 8.4 8.6 8.8 0.15 

 8 5.0 8.6 9.1 9.5 0.10 

 9 5.0 8.4 9.1 9.1 0.21 

 6 6.3 7.8 8.7 9.3 0.13 

 10 5.0 7.6 8.6 8.6 0.21 

 3 6.0 6.6 9.1 9.1 0.18 

 4 6.3 8.2 8.9 7.8 0.15 

 2 4.8 8.5 8.6 8.5 0.19 

   Wind capacity, GW  

  2020 2030 2040 2050  

 Det. 6.3 8.6 10.9 10.9  

 

4.2 Stability test 

This section demonstrates the in-sample and out-of-sample stability of the wind availability scenarios 

with sample size N =3, 30 and 60. The in-sample stability is illustrated in Figure 4, where the optimal 

values for all problem instances are plotted relative to the optimal value of the best candidate solution 

for N = 60. Here, the in-sample stability is improved with a higher sample size, and the relative value 

ranges from 0.980 to 1.007 for N = 3, 0.999 to 1.006 for N = 30 and from 0.999 to 1.004 for N = 60. Further, 

the out-of-sample stability is illustrated in Figure 5, which shows the UB for all problem instances, 

relative to the UB of the best candidate solution (from the SAA) for N=60. The out-of-sample stability 

ranges from 1.000 to 1.004 for N = 3, 1.000 to 1.001 for N = 30 and from 1.000 to 1.000 for N = 60. The 

figures show a higher variance in the in-sample stability than in the out-of-sample stability. The results 

for this study show that using 60 scenarios to describe short-term uncertainty in wind power production 

provides both in-sample and out-of-sample stability.  

Since the wind power costs are only a small part of the total energy system cost, the influence of the wind 

availability scenario on the in-sample and out-of-sample stability is marginal. It is therefore more 

appropriate to show the wind power expenses to isolate the effect of the different model instances. This 

is illustrated in Figure 6, where the sum of the investment and maintenance costs of the new wind power 

capacity towards 2050 for all problem instances is plotted. Here, the stability in the wind power costs is 
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improved with a higher sample size, and the costs range from 6.8 bEUR to 12.8 bEUR for N = 3, 8.4 bEUR 

to 10.2 bEUR for N = 30 and from 9.3 bEUR to 10.4 bEUR for N = 60. Note that the wind power costs are 

identical for the in-sample and out-of-sample tests since the first-stage decisions, including wind power 

investments, are set identical in both tests.  

   

Figure 4: Illustration of in-sample stability.   

 

Figure 5: Illustration of out-of-sample stability. 
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Figure 6: Illustration of wind power costs. 

 

4.3 Comparison of SAA and stability tests 

We observe from the calculations of the SAA confidence intervals that the SAA algorithm also provides 

the information required to perform the stability tests. The stability tests examine the required sample 

size needed to provide stability. This implies that the in-sample and out-of-sample tests find the 

necessary number of scenarios needed to ensure that the solution is not distorted by the scenario 

representation. The SAA algorithm provides confidence intervals of the optimality gap for a given model 

solution, and these depend on both the sample sizes used in the iterative process and the number of 

candidate iterations.  

A solution approach where the model is solved once, for a specific sample size, requires a given number 

of scenarios to achieve stability. In that context, we have two important observations. First, the SAA 

algorithm does not necessarily require in-sample and out-of-sample stability for the solved sample 

problems to provide a solution that has an optimality gap that is within a user-defined acceptance level.    
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This is because a solution an acceptable confidence interval can be produced by testing many candidate 

solutions identified in the iterations. Second, and equally important, if SAA repeatedly solves the model 

with a sample size that satisfies in-sample stability, the confidence interval of the best candidate value is 

narrow, and the solution is thereby of high quality. 

 

5. Conclusions 

This paper applies SAA and stability tests to evaluate the quality of the investment decisions provided 

by a long-term energy system model of Denmark with stochastic wind power production. Whereas the 

stability tests are applicable to all scenario generation methods, SAA uses randomly sampled scenarios.   

In a stability perspective, the scenario quality is satisfactory when the solution satisfies in-sample and 

out-of-sample stability. SAA provides confidence intervals of the optimality gap for given model 

solutions, and the optimality gap depends both on the sample sizes used in the iterative SAA method 

and the number of replications. A solution approach whereby the model is solved only once, for a specific 

sample size, requires a given number of scenarios to achieve stability.  

The main contributions of the paper are as follows. First, we address a typical situation in the energy 

literature wherein a stochastic model is solved with a limited number of scenarios instead of a 

deterministic model. We show that these stochastic models can provide an arbitrary and wrong estimate 

of the VSS, compared to a stochastic model with a larger number of scenarios. Second, the scenario 

representation affects the actual solutions. This is illustrated in our examples with wind power capacity 

ranging from –29% to +87% compared to the best stochastic solution in 2040 among the different problem 

instances. Third, we demonstrate that this problem is reduced when applying SAA since the quality of 

different candidate solutions are tested based on candidates from independent samples, evaluated using 

the reference sample. Fourth, we illustrate that when solving single instances instead of using sampling 

methods like SAA, stability tests offer a good way of ensuring that solutions are meaningful. The 

challenge, however, is that the number of scenarios needed to achieve stability may be problem specific.  

Our results demonstrate how the quality of the model solution and the estimated VSS are improved with 

a larger sample size. The results of this study show that using 60 scenarios to describe the short-term 

uncertainty related to wind power production provides both in-sample and out-of-sample stability. We 

also demonstrate that a solution with a satisfactory user-defined confidence interval, provided by SAA, 
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does not necessarily require stability in the sample size. The quality, in terms of a low confidence interval, 

is ensured by iteration. On the other hand, a solution with a confidence interval that is lower than a user-

defined limit, generated by testing many candidate solutions identified in the SAA iterations, does not 

necessarily require in-sample and out-of-sample stability for each iteration. An important observation, 

though, is that if SAA repeatedly solves the model, with a sample size that satisfies in-sample stability, 

the confidence interval is narrow, and the solutions are of high quality in terms of in-sample and out-of-

sample stability as well as providing a tight bound for the optimal solution. Another observation is that 

there are significant similarities between the calculation of SAA bounds and the stability tests.  
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