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Abstract 
This thesis consists of the evaluation of subsea risk management against oil spills based 

on the analysis of information received from sensors in an underwater distributed sensor 

network. The work starts by highlighting the importance of having a performing leak 

detection system either from an environmental or safety point of view. The Goliat FPSO is 

considered as a case study. This FPSO is located in the Barents Sea, which is a sensitive 

environment and has to meet requirements dictated by Norwegian authorities in order to 

prevent oil spills. An innovative technology is used on this platform to detect possible 

subsea oil spills: the use of passive acoustic sensors. A sensor network like the one 

present here is composed of different sensors which transmit information (a local 

decision) to a fusion center which takes a global decision on whether the leakage is 

occurring or not. This work will evaluate how the choice of different fusion rules 

(Counting Rule and Weighted Fusion Rule adapted for this work) can affect the 

performances of the leak detection system in its current configuration. Also, it will be 

discussed how different thresholds, selected for a specific fusion rule or sensor test, can 

change the final performance from a detection point of view. Methods used for detection 

are based on statistical signal processing and decision theory, often exploiting 

methodologies already in use in other fields (telecommunication engineering, medical 

sciences, military sciences), which have to be adapted to fit this application within the 

Oil&Gas industry. A further step is to develop a method able to localize the leakage point 

in a subsea template. This work proposes some methods which could be useful in order 

to localize the equipment responsible for the leakage. These proposed methods for leak 

localization are developed so that they can be coupled with the proposed methods for 

leak detection, giving a coherent set of operations that the sensors and the fusion center 

must perform. Performances of detection techniques are assessed balancing the need of 

having higher values of parameters like the True Positive Rate and the Precision, 

maintaining low values of False Positive Rate. Whereas, performances of localization 

techniques will be assessed according to their ability to localize leakage points in the 

shortest amount of time possible; if this is not possible, other parameters like the 

difference between the estimated position and the real leakage position will be 

considered. Some other simulations are carried out to test the proposed local and global 

thresholds coupled with specific fusion rules for detection and localization of the leakage. 

Performances of the different configurations will be graded according to global indexes 

necessary to gather together the above-mentioned detection performance parameters. 

These indexes can be based on either the ROC curve (like the Youden's Index) or the PR 

curve (like the F-scores). 
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Sammendrag 
Denne masteroppgaven omhandler evalueringen av undervannsrisikostyring for å 

forhindre oljeutslipp basert på analyse av informasjon mottatt fra sensorer i et 

underwater distributed sensor network. Oppgaven begynner med en fremheving av 

viktigheten av et velfungerende lekkasjedeteksjonssystem både fra et miljø- og et 

sikkerhetsperspektiv. Goliat FPSO betraktes som en casestudie. Gjeldende FPSO er 

plassert i Barentshavet, hvilket er et sensitivt område og må oppfylle krav diktert av 

norske myndigheter for å forhindre oljeutslipp. En innovativ teknologi benyttes på denne 

plattformen for å detektere mulig oljeutslipp under vann: bruken av passive akustiske 

sensorer. Et sensornettverk slik som dette består av ulike sensorer som sender 

informasjon (lokal beslutning) til et fusjonssenter som tar en global beslutning 

vedrørende om lekkasjen pågår eller ikke. Denne oppgaven vil evaluere hvordan valget 

av ulike fusjonsregler (Counting Rule og Weighted Fusion Rule tilpasset denne oppgaven) 

kan påvirke yteevnen til lekkasjedeteksjonssystemet i dets gjeldende konfigurasjon. Det 

vil også bli diskutert hvordan forskjellige terskler, valgt for en spesifikk fusjonsregel eller 

sensortest, kan endre den endelige yteevnen sett fra et deteksjonsperspektiv. 

Deteksjonsmetoder baseres på statistisk signalprosessering og beslutningsteori, ofte ved 

utnyttelse av allerede eksisterende metoder brukt i andre felt 

(telekommunikasjonsteknologi, medisin, krigsvitenskap), som må tilpasses til dette 

bruksområdet innen olje -og gassindustrien. Et steg videre er å utvikle en metode som 

kan lokalisere lekkasjepunktet i en havbunnsramme. Denne oppgaven foreslår noen 

metoder som kan være nyttige for å lokalisere utstyret ansvarlig for lekkasjen. Disse 

foreslåtte metodene for lekkasjelokalisering er utviklet så de kan jobbe sammen med de 

foreslåtte metodene for lekkasjedeteksjon, hvilket vil gi et koherent sett av operasjoner 

som sensorene og fusjonssenteret må utføre. Yteevnen til deteksjonsteknikkene 

bestemmes ut ifra en balanse mellom behovet for høyere verdier av parametere som 

Sanne Positive Rate og Presisjon, og å beholde lave verdier av Falske Positive Rate. 

Yteevnen til lokaliseringsteknikkene vil bli evaluert ut ifra deres evne til å lokalisere 

lekkasjepunkter i løpet av kortest mulig tid. Hvis dette ikke er mulig vil andre parametere 

tas i betraktning, som for eksempel differansen mellom estimert posisjon og faktisk 

lekkasjeposisjon. Noen flere simuleringer utføres for å teste de foreslåtte lokale og 

globale tersklene brukt sammen med spesifikke fusjonsregler for deteksjon og 

lokalisering av lekkasjen. Yteevnen til de ulike konfigurasjonene vil bli rangert i henhold 

til globale indekser nødvendige for å samle ovennevnte deteksjonsevneparametere. Disse 

indeksene kan baseres enten på ROC-kurven (som Youdens indeks) eller på PR-kurven 

(som F-mål).  
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Over the years, the Oil&Gas industry has increased its interest in the exploitation of 

offshore reservoirs making the offshore production around one-third of the global crude 

oil output (U.S. Energy Information Administration, 2016). This interest comes from the 

need for unlocking new reserves as a consequence of the high demand for crude oil 

products which cannot be satisfied by only exploiting onshore (or shallow offshore) fields. 

There are several advantages related to the offshore O&G production (Shafer et al., 

2013; Speight, 2014): 

• Governments see an increase in revenues due to royalties; 

• Offshore drilling and production provide jobs and stimulate the local economy; 

• Less dependence on foreign oil; 

• Oil market price may reduce as a consequence of domestic production. 

Going offshore surely has some main disadvantages: 

• The cost of an offshore project is much higher compared to onshore (A. 

Rasmussen and J. Piette, 1984); 

• It is challenging from an engineering and management point of view (Speight, 

2014); 

• A loss of containment may result in severe damage to the environment (Hong and 

Yanjie, 2009). 

The last issue has become increasingly important over time especially after events like 

the Deepwater Horizon oil spill (Beyer et al., 2016; Girard and Fisher, 2018; Hester et 

al., 2016).  

Over the last years, a trend to explore areas which are more sensitive from an 

environmental point of view has developed. It is the case of the Barents Sea whose 

undiscovered resources have been estimated to be around 1165 million standard cubic 

meters of oil equivalent in Barents Sea South and 1370 million standard cubic meters of 

oil equivalent in Barents Sea North (Norwegian Petroleum Directorate, 2018). The 

concern about hydrocarbon exploration and exploitation in this area is due to the 

extreme value of its eco-system, also recognized by the WWF (WWF, 2004). Some 

characteristics of this area have been identified as:  

• Naturalness: the lack of disturbance or degradation caused by human activities 

made species and biotopes be still in a very natural state; 

• Representativity: some areas contain several species, ecological processes or 

other natural characteristics that are representative for the whole ecoregion or 

their specific sub-region; 

• High natural biological diversity: some areas contain a naturally wide variety of 

species or include highly varied habitats and communities; 

• Productivity: some area has naturally high productivity of species or features 

represented, contributing to sustain species or the ecosystem; 

• Ecological significance for species: some areas are essential during fundamental 

phases of life of some species (breeding areas, nursery areas, feeding areas, 

resting areas, etc.); 

1 Introduction 
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• Dependency: some species depend on specific processes occurring in some 

specific areas; 

• Presence of Source Areas: these areas contribute to the maintenance of essential 

processes or systems; 

• Uniqueness: some areas present unique characteristics like the presence of 

endemic, rare or endangered species or because of outstanding ecological or 

evolutionary phenomena;  

• Sensitivity: some areas contain a proportion of sensitive (or very sensitive) 

habitats or species. 

This means this area could be severely damaged in case of a major oil spill (Hasselström 

et al., 2012; Loeng and Drinkwater, 2007). Oil production from fields located in the 

Barents Sea, in fact, faces the opposition of part of the Norwegian population as reported 

by newspapers and surveys (Milne, 2017; Wijnen, 2017).  

Currently, there are only two producing fields in the Norwegian Barents Sea: Snøhvit 

(natural gas) and Goliat (containing both crude oil and natural gas) which started their 

production phase in 2007 and 2016, respectively (Norwegian Petroleum Directorate, 

2019a). Figure 1.1 shows a map of their positions together with the new discoveries in 

that region: 

 

Figure 1.1 Fields and discoveries in the Barents Sea (Norwegian Petroleum Directorate, 
2019a) 
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Companies operating in the Norwegian Continental Shelf (NCS) are required to perform 

continuous environmental monitoring during petroleum activities. This can be read from 

the guidelines of the Norwegian Environmental Agency, which summarize the duty of oil 

companies operating in the NCS concerning environmental monitoring (Norwegian 

Environment Agency, 2016). These guidelines make explicit reference to Section 49 of 

the Pollution Control Act which states that  

“On orders from the pollution control authority, any person that possesses, does, or 
initiates anything that may generate pollution or result in waste problems has a duty, 
notwithstanding any duty of secrecy, to provide the pollution control authority or other 

public bodies with any information necessary to enable them to carry out their tasks 
pursuant to this Act […]” (Ministry of Climate and Environment, 1981). 

Also, guidelines refer to Section 51 which states that  

“The pollution control authority may order any person that possesses, does, or initiates 

anything that results in or that there is reason to believe may result in pollution to 

arrange or pay for any investigations or similar measures that may reasonably be 

required in order to: determine whether and to what extent the activity results in or may 

result in pollution, ascertain the cause of or impact of pollution that has occurred, 

ascertain how the pollution is to be combated. […]” (Ministry of Climate and 

Environment, 1981). 

References are also made in Chapter 10 of “Regulations relating to conducting petroleum 

activities (the activities regulations)” (Petroleum Safety Authority Norway et al., 2016), 

which is about monitoring the external environment, and Section 34 of “Regulations 

relating to management and the duty to provide information in the petroleum activities 

and at certain onshore facilities (the management regulations)” (Petroleum Safety 

Authority Norway et al., 2017), which is about reporting information on monitoring, 

emission, discharges, and risk of pollution-related to offshore petroleum activities. 

There is an explicit reference in Section 57 of “The Activities Regulations” about the 

detection of oil spills: 

“Operators shall establish remote sensing systems to detect and map the position, area, 
quantity, and properties of acute pollution. The remote sensing system shall as 
independent of visibility, light and weather conditions as possible, provide sufficient 
information to ensure that acute pollution from the activity is detected and mapped as 
quickly as possible. Leak detection based on process monitoring, monitoring of the water 
column and benthic habitats, among other things, shall be assessed as part of the 
remote sensing system. […]” (Petroleum Safety Authority Norway et al., 2016). 

It is clear how environmental monitoring is a necessary action required by the Norwegian 
Law in order to avoid oil spills. A Joint Industry Project (JIP) has been put in place by 
DNV-GL in collaboration with other industries: Biota Guard, BP, Contros, Eni Norge, 
Engie, FMC Technologies, ICD Industries, Kongsberg Maritime, KSAT, Lundin, Metas, 
Miros, Naxys, Norbit Subsea, Petrobras, Phaze Technologies, Sonardyne, Stinger, Vissim 
and others three observers (Norwegian Oil & Gas, Norwegian Ministry of Climate and 
Environment and the Petroleum Safety Authority Norway). This project was born to 
develop a best practice for designing and implementing offshore Leak Detection Systems 
(LDS) (DNV-GL, 2014). This JIP led to the development of a set of recommendations 
regarding offshore leak detection (DNV-GL, 2016), which is an update of the previously 
published set of recommendations (DNV-GL, 2010). The newer version recommends 
using the Best Available Technique (BAT) when it comes to the selection of the Leak 
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Detection System. Especially, Section 3.5 identifies critical parameters to improve in 
order to satisfy high-level functional requirements: 

• Minimum leakage rate or volume to be detected; 
• Ability to locate leakage source; 
• Ability to declare the extent of the leaked fluid; 
• Maximum detection range; 
• Detection time for minimum leakage within the specified detection range; 
• Ability to detect the type of fluid and its concentration; 
• Ability to classify the leaking fluid; 

• Availability of the detector.  

Goliat field is the only field producing crude oil in the Barents Sea. A Subsea Production 
System (SPS) is used to exploit this field where different technologies have been 
combined to form the LDS. One technology will be taken into consideration and analyzed 
in this work: the use of passive acoustic sensors. The present work analyzes the behavior 
of this typology of sensors when it comes to detection and localization of leakage on a 
subsea template. The analysis will focus on how to manage the information transmitted 
by the sensors in order to increase performances; this will be done by testing different 
methods and developing new ones. For each method (for either detection or localization), 
different configurations and settings will be examined.  

In particular: 

• Chapter 2 is an overview of the oil spill risk from a management point of view, 
and it describes the state-of-the-art of subsea leak detection systems. 

• Chapter 3 gives an introduction on the Goliat field, especially on oil spill 
preparedness, with a focus on the subsea oil detection system used to monitor the 
marine environment. 

• Chapter 4 is a theoretical chapter whose aim is to explain how the underwater 

acoustic signal was modeled and the existing methods for an efficient signal 
processing in case of a possible leak detection either at single sensor level (local) 
or sensor network level (global). 

• Chapter 5 proposes a method for tuning the passive acoustic sensors placed on 
the templates present in the Goliat field. Where tuning, in this case, means to fix 
the main input parameters needed for ensuring good performances. It also 
proposes two methodologies for fixing the main parameters necessary when 
fusing all the information received from the sensors. In this chapter, some new 
leak localization techniques are proposed which, together with detection 
techniques, can be used by an algorithm that either sensors or the fusion center 
must perform during operating conditions. 

• Chapter 6 describes the simulations that were carried out by exploiting the results 
and the algorithms from Chapter 5. Results are shown too. 

• Chapter 7 discusses the results present in Chapter 6. 

• Chapter 8 is dedicated to the conclusions, and it addresses possible further works 
that could be carried out to complete and improve the results of this study. 
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2.1 Dynamic Risk Management 

Subsea Risk Management can be used to identify hazardous scenarios and model their 

development. Leakage is not a concern only from an environmental point of view, but 

also from a safety perspective. It is known that many accidents in the chemical and 

process industry are caused by LOC (loss of containment), so it is for the offshore 

industry, either topside or subsea. The probabilities and the consequences of these 

events to happen can be lowered by paying more attention to early warnings 

(Konstantinidou et al., 2012). These early warnings can be either small leaks or near-

misses. This can be done applying the Dynamic Risk Management Framework (DRMF), 

which is represented in Figure 2.1: 

 

Figure 2.1 Dynamic Risk Management Framework (clockwise) (Paltrinieri et al., 2014) 

Two general phases are present: Understanding and Deciding. Two sequential sub-

phases compose each phase:  

• Understanding: it is the phase regarding knowledge and information 
management. It is divided in Horizon Screening and Identification: in the first 
sub-phase risk issues are framed, and the system is studied and analyzed; the 
second one refers to the identification of hazard related to the process, the 
equipment, and the substances used, in order to define the potential accident 
scenarios. 

• Deciding: it is the phase where the elaboration and judgment of produced 
information occur, and intervention is carried out. More specifically, Assessment is 

2 Subsea Risk Management 
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the sub-phase where the previously identified scenarios are evaluated, and risk is 
estimated (Dynamic Risk Assessment can be used). The value of risk is later 
compared to thresholds dictated by risk matrices or other criteria. Decision and 
Action is the decision-making process and the consequent implementation of 

actions for non-acceptable risks. 

Monitoring, Review & Continuous Improvement, together with Communication & 
Consultation, are two tasks that must be continuously carried out. The first one is 
particularly emphasized during the Understanding phase. 

The DRMF is a continuous and circular process and needs regular reviews and updates to 
use as evidence. Moreover, it is open to new external experience and early warnings. 

It is clear how the DRMF gets more effective as the knowledge of the system is higher 
(which is part of the Horizon Screening phase). Knowledge, in fact, can influence risk 
estimation. Aven and Krohn proposed the level of knowledge as a new variable in the 
definition of risk (Aven and Krohn, 2014): 

𝑅 = 𝑓(𝑠, 𝑝, 𝑐, 𝑘) 

Where 𝑅 is the risk estimation, 𝑠 is the scenario, 𝑝 is the probability of occurrence, and 𝑘 
is the level of knowledge. This is a change from the traditional definition of risk proposed 
by Kaplan and Garrick, often applied in the Quantitative Risk Assessments (QRA), which 

does not consider the level of knowledge (Kaplan and Garrick, 1981): 

𝑅 = 𝑓(𝑠, 𝑝, 𝑐) 

It is now clear the importance of a reliable subsea leak detection system within the DRMF 
as part of the continuous monitoring phase. In fact, any early warning (in the form of a 
small oil spill) will contribute to increasing the level of knowledge which will directly affect 

the risk estimation (since new evidence is provided when these minor events occur), so 
that more effective actions can be taken. 

2.2 State-of-the-art of Subsea Leak Detection 

This section focuses on the external sensors that are used to monitor the external 

environment of the template (internal LDSs are only introduced).  

The currently available technologies are the following (DNV-GL, 2016): 

• Active acoustic sensors;  
• Biosensors; 
• Capacitive sensors; 

• Fiber optic;  
• Fluorescent sensors; 
• Internal LDS / mass balance;  
• Volumetric collection;  
• Methane sniffers:  

o Semi-conductor,  
o Optical nondispersive infrared (NDIR),  
o Laser absorptiometry;  

• Optical cameras;  
• Passive acoustic sensors; 
• Combination of multiple technologies can be implemented. 

Table 2.1 describes the abovementioned techniques. 
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 Principle HC Coverage Localiz. Limitations 

Active 

Acoustic 

Sensor 

It is based on the 

same principles 

as sonars. An 

acoustic signal is 

emitted and is 

reflected between 

different media. 

All 

Local 

(single 

sensor) 

- 

Area 

(sensor 

network) 

No (single 

sensor) 

- 

Yes (sensor 

network) 

Sensitive to shadowing 

and background noise. 

Biosensor 

It uses a living 
organism. 
Biosensor 

response is 
measured by 

monitoring heart 
activity and 
frequency of 

opening/closing 
the clam. 

Oil Local No 

Seawater currents and 
buoyancy may move 
leaking oil away from 
the sensor. Additional 
sensors are needed. 

Capacitive 

Sensor 

It measures the 
change in the 

dielectric 
constant of the 
medium around 

the sensor. 

All Local No 

Biological growth can 
affect performances 

that are also depending 
upon the size and 

shape of the collector. 
If polymerized material 
is used, it can absorb 
water and sensitivity 

can be affected. 

Fiber Optic 

Cable 

It can be based 
on either 

temperature or 
acoustics 

measurement. 

All 
Area of 

installation 
Yes 

Fiber optic cable has a 
limited bend radius. 

Fluorescent 

It uses a light 
source of a 

specific 
wavelength for 

exciting 
molecules in the 
target fluid to a 
higher energy 

level. The 
molecules then 
relax to a lower 
state and light is 

emitted at a 
different 

wavelength which 
can be sensed by 

a detector. 

Oil Local No 

Marine growth can 
affect performances. 

Medium to be detected 
must naturally 

fluoresce, or a marker 
must be added. 
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Internal 

LDS/Mass 

Balance 

It monitors 
pressure and flow 

rate using 
instrumentation 
installed in the 
SPS. Measured 

values are 
compared to 

expected 
pressure and flow 
given no leaks. 
The significant 

deviation 
between 

measured and 
predicted values 

indicate a 
possible leak in 

the system. 

All 
Area of 

installation 

No, but 

some 

estimation 

can be 

carried out 

(Geiger, 

2006) 

Inaccurate when the 
production is unstable. 
Not able to detect small 

leaks. 

 

Volumetric 

Collection 

Leak detection is 
based on 
volumetric 

measurements. 
When a 

predetermined 
volume is 

collected, an 
action is initiated 
in the system and 

will give an 
alarm. 

All Local Yes 

Marine growth can 
affect performances. 
Trawls from fishing 

activity can be an issue. 

Methane 

Sniffer 

Dissolved 
methane diffuses 
over a membrane 
and into a sensor 
chamber. Three 
measurement 

principles can be 
used: Semi-
conductor, 

Optical NDIR, and 
Laser 

absorptiometry. 

All Local No 

Quantification of the 
leak is difficult. 

Measurement depends 
on diffusion towards the 

sensor and seawater 
currents. The latter 

may move the leaking 
medium away from the 

sensor. 

Optical 

Camera 

It uses a video 
camera for the 
surveillance of 

the SPS. 

All Local Yes 

Line of sight sensor, 
depending on lightning. 
It is sensitive to marine 
growth, water turbidity, 

and pollution. 

Passive 

Acoustic 

Sensor 

A hydrophone 
listens for sounds 

resulting from 
leakage. 

All Area Yes 
Background noise can 
limit the sensitivity of 

the sensor. 

Combination 

of 

technologies 

Combination of 

the listed 

techniques. 

It depends on which 

technologies have been 

combined. 

It requires higher 
power consumption and 
increased data. It may 

result in additional 
complexity relating to 

the subsea control 
system. 

Table 2.1 Summary of existing techniques for subsea leak detection (DNV-GL, 2016) 
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2.3 Technology Selection 

The recommended practice of DNV-GL on offshore leak detection (DNV-GL, 2016) 

recommends using the BAT following the European directive on industrial emissions 

(European Union, 2010). 

The BAT is, in this context, defined as the “most effective and advanced stage in the 

development of activities and their methods of operation which indicates the practical 

suitability of particular techniques for providing the basis for emission limit values and 

other permit conditions designed to prevent and, where that is not practicable, to reduce 

emissions and the impact on the environment as a whole […]“ (DNV-GL, 2016). 

A two-steps BAT process is suggested. The first step is where single techniques are 
assessed, and the second is where configurations of different techniques are compared. 

Another driver for efficient leak detection (that can be used together with BAT) is the 

ALARP (As Low As Reasonably Possible) principle and refers to the continuous effort for 
minimizing hazards and risks also considering time and money needed (Health and 
Safety Executive, 2019). This approach is required for companies operating in the UK 
Continental Shelf (DNV-GL, 2016). 

Either the BAT or the ALARP can be used simultaneously. This work, in fact, focuses on 
step 2 of the BAT where different techniques for subsea leak detection are compared. 

The comparison will be based on performances consideration using the ALARP as the 
primary driver. 

2.4 Economic Aspect 

So far, only the environmental and safety aspects related to the LDSs have been 

discussed. However, the economic side must be strongly taken into consideration. 

The first issue is the economic damage that an oil company faces in case of an oil spill: 

production stops, maintenance must be carried out, remediation is required, possible 

compensation to third parties may be paid for, and the company experiences a loss of 

reputation (Gyo Lee et al., 2018).  

A second issue is that LDSs are susceptible to false alarms. These events should be 

minimized because when topside operators receive an alarm from the LDS, an inspection 

is carried out using ROVs causing an unplanned and unnecessary shutdown which is 

critical for an oil and gas company (Bucelli et al., 2018).  

However, during the implementation of a LDS, it is necessary to consider either CAPEX or 

OPEX associated with it. In order to achieve high performances, it would be enough to 

have a significant number of high-performance sensors. However, minimizing costs is 

one of the goals of any investment. In order to balance the need for having both a good 

dependability of the LDS and keeping costs under control, a Cost-Benefit Analysis (CBA) 

is often carried out.  

CBA can be used to perform a judgment on whether to implement a specific configuration 

of LDS or not to implement it. Then results among different configurations can be 

compared. The following inequality (Paltrinieri and Khan, 2016) can be used for a 

preliminary evaluation. The left-hand side represents the Benefits of implementing a 

LDS, while the right-hand side represents the Costs of implementing a LDS. When this 

inequality is verified, it is suggested to implement a LDS: 
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[(𝐶𝑜𝑠𝑡wo_LDS ∙ 𝐹wo_LDS) − (𝐶𝑜𝑠𝑡w_LDS ∙ 𝐹w_LDS)] ∙ 𝑃control > 𝐶𝑜𝑠𝑡LDS 

• 𝐶𝑜𝑠𝑡wo_LDS is the present cost of an accident when no LDS is present; 

• 𝐶𝑜𝑠𝑡w_LDS is the present cost of an accident when a LDS is present (as seen, 

continuous monitoring can improve mitigation in case of an accident); 
• 𝐹wo_LDS is the frequency of the initiating event in case no LDS is present; 

• 𝐹w_LDS is the frequency of the initiating event in case a LDS is present; 

• 𝑃control is the probability that the LDS performs as required; 

• 𝐶𝑜𝑠𝑡LDS is the present cost of the LDS (either CAPEX or OPEX can be accounted for 
when estimating this value). 

If frequencies are not available, assume 𝐹wo_LDS = 𝐹w_LDS = 𝐹accident; where 𝐹accident is the 

frequency of the accident. 

The outcome of this analysis has the limitation of being highly dependent on the 

frequencies of an accident, which may be extremely low and uncertain. To overcome this 

numerical issue, a Disproportion Value (𝑋DV) can be used to display an intentional bias in 

favor of the implementation of a LDS:  

[(𝐶𝑜𝑠𝑡wo_LDS ∙ 𝐹wo_LDS) − (𝐶𝑜𝑠𝑡w_LDS ∙ 𝐹w_LDS)] ∙ 𝑃control ∙ 𝑋DV > 𝐶𝑜𝑠𝑡LDS 

𝑋DV > 10 only when risk is very high.  

This CBA is strictly related to the principle of reducing risk ALARP (Rushton and Reston, 

2006). 

The CBA needs knowledge of many specific economic and financial data. A stand-alone 

study would be necessary for a correct use of this tool applied to this case study; for this 

reason, in this work, CBA is not used as an indicator for technology selection. 
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3.1 Overview on the Goliat Field 

As previously introduced, the Barents Sea is ground of new explorations carried out by oil 

companies. So far, two are the productive fields, but only one of them is producing crude 

oil: the Goliat Field.  

 

Figure 3.1 Location of Goliat FPSO and its SPS (“Mareano,” 2019) 

The Goliat Field was discovered in 2000 and, after the approval for production in 2009, 

started the production on 18th June 2019. It is operated by Vår Energi AS (formerly Eni 

Norge) which owns 65% of the license; the remaining 35% is owned by Equinor Energy 

AS (formerly Statoil Petroleum). This field is estimated to contain 93.10 𝑀𝑆𝑚3 of original 

oil-in-place, among which 31.45 𝑀𝑆𝑚3 are recoverable (Norwegian Petroleum Directorate, 

2019b).  

The field is developed by using the cylindrical-shaped Sevan 1000 FPSO designed by 

Sevan SSP and built by Hyundai Heavy Industries in South Korea. It is electrically 

powered by a 110 𝑘𝑚 long AC cable which provides 60 𝑀𝑊 and by a 30 𝑀𝑊 turbine 

generator, while it is thermally powered by a waste heat recovery unit which provides 

35 𝑀𝑊 and by 15 𝑀𝑊 from electrical heaters (Bjørnbom et al., 2016). Sevan 1000 FPSO 

has the following design capacities (Eni, 2015; Vårdal, 2010): 

• Oil: 104 𝑘𝑏𝑜𝑝𝑑; 

• Gas: 3.9 𝑀𝑆𝑚3/𝑑; 

3 Goliat Field 
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• Additional spare capacities (space and weight) for possible future tie-ins. 

 

Figure 3.2 Sevan 1000 FPSO during the transportation operation (Sevan SSP, 2019) 

The reservoir is multiphase, but the associated gas is entirely re-injected, which means 
that only crude oil is produced. Production is made by using water injection as pressure 
support. Additional pressure support results from the gas reinjection (avoiding gas 
flaring). 

The oil transportation is carried out by offloading it to shuttle tankers. The supply base is 

located in Hammerfest, 85 𝑘𝑚 southeast of the FPSO. 

Eight templates are tied-back to the FPSO and placed in different locations around the 
field so that different reservoirs can be exploited (Figure 3.3) (Norwegian Petroleum 
Directorate, 2019b).  

 

Figure 3.3 Close up of the template positions (“Mareano,” 2019) 
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Each template has four well slots located between 360 and 420 meters of depth (from 

sea surface). 22 wells are currently present, and 11 of them take oil from different 

geological formations (Nordbø, 2010): 

Realgrunnen main/central: 

• Three production wells; 

• Three water injection wells. 

Realgrunnen south: 

• One production well; 

• One water injection well. 

Kobbe: 

• Seven production wells; 

• Five water injection wells; 

• Two gas injection wells. 

 

Figure 3.4 Underground representation of the reservoirs and their connections with the 
templates (Nordbø, 2010) 

In Table 3.1, some of the specifications of the field are reported (Eni Norge, 2015; 

Vårdal, 2010): 

 Realgrunnen Kobbe 

API gravity (@ 𝟏𝟓°𝑪) 32.3 (medium oil) 43.3 (light oil) 

Pressure 120 𝑏𝑎𝑟 180 𝑏𝑎𝑟 

Temperature 30 − 35°𝐶 48°𝐶 

Underground Depth ~1200 𝑚 ~1800 𝑚 

Table 3.1 Reservoir specifications 
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Figure 3.5 Goliat FPSO connected to the eight templates (Wulff, 2016) 

3.2 Subsea Production System  

About the SPS, the FEED phase was carried out by Eni Norge (now Vår Energi), while the 

Detail Design, the Procurement, and the Construction were performed by Aker Subsea 

(Vårdal, 2010). 

These slots can be used for three different tasks: 

• Production; 

• Water Injection; 

• Gas Injection. 

The layout of a template can be seen in Figure 3.6, where the distinct positions of the 

four slots are visible. 

5
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Figure 3.6 Main components of a template (Bjørnbom, 2011; Røsby, 2011) 

In each template, some primary components are present: 

• Manifold: well outlet and inlet streams are collected in the manifold present in the 

template. It aims to minimize the use of pipelines and risers and to optimize the 

flow of the different fluids in the system (Bai and Bai, 2010a); 

• Subsea Trees (XMT): it is the set of valves, pipes, fittings, and connection on top 

of a wellbore. It is necessary to direct the crude oil to the manifold or to canalize 

the injection of water or gas inside the reservoir as well as other auxiliary 

chemicals. It can also be used to monitor process parameters and to safely stop 

the flow of fluids (Bai and Bai, 2010b); 

• Subsea Control Module (SCM): it is used to provide well-control functions during 

production phase by the actuation of valves. It also monitors parameters like 

pressure (measured by pressure transducers PT), temperature (measured by 

temperature transducers TT); pressure-temperature transducers (PTT) can also 

be used for these measurements, and flow rate (measured by flowmeters). It 

receives electrical power, communication signal, and hydraulic power from the 

surface; 

• Flow Control Module (FCM): the SCM actuates it. It consists of a choke valve 

whose task is to regulate the flow rate by regulating the diameter of its orifice 

(Bai and Bai, 2010c); 

• The HIPPS Control Module (HCM): it monitors the transmitters and acts on the 

High-Integrity Pressure Protection System (HIPPS) by closing the valve in case of 

an excessive increase of pressure. This system protects downstream equipment 

(Bai and Bai, 2010c); 

• Subsea Router Module (SRM): it is the communication link between the subsea 

equipment and the topside equipment (through umbilical); 

Some other essential components of the subsea system are connected to the template: 

• Subsea Umbilical System: it consists of electrical cables, fiber optic cables, steel 

tubes, and thermoplastic hoses. It may include two or three of these four 

components for executing specific functions like power, communication/signal 

transmissions, and fluid injections (Bai and Bai, 2010d). 
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• Subsea Production Riser System: it consists of pipes connected to floaters on the 

surface and the wellheads. It is the primary device of the production system to 

convey fluids to and from the vessel (Bai and Bai, 2010e).  

3.3 Goliat Oil Spill Detection and Monitoring 

Oil spill preparedness involves a large number of actors. Oil spills involve either public 

authorities or offshore workers. Each of these subjects has specific tasks and contributes 

to giving useful information about the oil spill according to its expertise.  

 

Figure 3.7 Different actors are involved in the monitoring of the surrounding 
environment of the FPSO (Vårdal, 2010) 

This remote sensing system can be summarized with the scheme in Figure 3.8: 

 

Figure 3.8 Oil spill remote sensing system of Goliat (Bjørnbom, 2017) 

3.3.1 Onshore Level 

When a possible oil spill is detected, an exchange of information begins between the 

personnel on the platform and the onshore departments. Main onshore departments are 

Vår Energi (either Hammerfest or Stavanger headquarters) and NOFO (Norsk 

Oljevernforening for Operatørselskaper - Norwegian Clean Seas Association for Operating 

Companies) which both give assistance and support during the mitigation phase.  
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3.3.2 Space Level 
Goliat has access to satellite images via NOFO in collaboration with KSAT (Kongsberg 
Satellite Services). These two entities have signed an extended agreement for satellite-
based remote sensing of the NCS for the detection of acute pollution from petroleum 
activity (Kongsberg, 2016). The satellite cannot directly detect oil. It only captures the 
effect of oil on the surface level. The real presence of oil must be confirmed with 
additional verifications (Bjørnbom, 2011). 

3.3.3 Airborne Level 

The Norwegian Coastal Administration is responsible for this service providing 

surveillance airplanes (Beechcraft Super King Air B350) with dedicated instrumentation 

finalized to the detection of oil spills. Instruments mounted on the aircraft consist of:  

• Forward-Looking Infrared (FLIR) cameras (only on primary aircraft) which can 

sense infrared radiations (Richards, 2012); 

• Side-Looking Airborne Radar (SLAR) which can produce images through active 

sensors mounted on the side of the aircraft. Oil has an absorbing effect on these 

waves, which reduces backscatter on the water surface. This means lower radar 

return will be generated when oil is present on the water surface (Gil and Alacid, 

2018); 

• Geographic Information Systems (GIS), this is useful because it can integrate 
different geographical data which improve the understanding of those data 

received by other technologies (Ivanov and Zatyagalova, 2008); this system is 
integrated with Automatic Identification System (AIS) used to identify ships and 
vessels present in the area (Norwegian Coastal Administration, 2011); 

• Airplanes also have access to NOFO downlink system; 
• Photo and video can be produced together with visual information. 

Bristow Helicopters EC225 (transport helicopter and All-Weather Search and Rescue 

helicopter) are also used together with Airplanes. AWSAW helicopter can provide 
information through: 

• Synthetic-Aperture Radar (SAR) is a technique similar to SLAR involving active 
sensors, and its measure is based on the backscattering produced by microwaves 
on the sea surface (Topouzelis, 2008); 

• FLIR camera; 
• Photo and video can be produced together with visual information. 

Transport Helicopter can be used for: 

• Transporting supporting items or personnel from the coast to the FPSO; 
• Giving visual information. 

Airborne collected information is also sent to the FPSO. 

3.3.4 Marine Level 
Goliat can take advantage of either Safety Stand-by Vessels (Esvagt Aurora) or Supply 

Vessels (Stril Barents) built under specific indications of Vår Energi. Both vessels are 

equipped with 

• Oil Spill Detection (OSD) radars; 

• IR cameras; 
• Dispersion system; 

The Safety Stand-by Vessel will also be provided with an observation Remotely Operated 
Vehicle (ROV).  
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During the offloading phase, the platform can also take advantage of the shuttle tanker, 
which is provided of some detection systems: 

• 3 IR cameras; 

• OSD radars. 

AIS buoys are present in order to facilitate the identification and localization of vessels 

that, in case of a collision or dropped object, may cause significant oil spills. 

 

Figure 3.9 AIS buoy detecting the transit of a shuttle tanker (Vårdal, 2010) 

3.3.5 FPSO Level 

Goliat FPSO is provided with some sensors placed topside among which: 

• OSD radars; 

• IR cameras. 

The FPSO can receive all the necessary information collected by the previous systems. 

3.3.6 Subsea Level 
Below the sea surface, there are several sensors which monitor the marine environment 

(and the process streams) looking for possible oil spills. Moreover, ROVs from safety 

stand-by vessels are available for ordinary (and extraordinary) inspections. Sensors are 

placed so that the main components of the subsea production system can be monitored. 

Pipelines and risers are monitored using process sensors which measure parameters like 

pressure, temperature, and flow rate. Monitoring these parameters can be useful when 

the aim is to detect and locate a possible oil spill from a pipeline (Geiger, 2006).  

The templates use five different technologies that may help detect anomalies that can be 

caused by an oil spill: 

• Internal LDS (also used for pipelines and risers): they monitor the streams and 

measure temperature and pressure (using PTTs), and flow rate. When a difference 

in measured data between two near sensors is detected, a possible leak is 

present.   

• External sensors: they monitor the surrounding environment. Goliat templates use 

two typologies of sensors: 

- Capacitive sensors; 

- Passive acoustic sensors. 
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Next section will focus on analyzing the use of sensors to monitor the subsea 

environment.   

3.4 Goliat Subsea Leak Detection System 

As seen in the introduction of the FPSO, Goliat has been using a combination of three 

technologies listed before: 

• Internal LDS; 

• Capacitive Sensors; 

• Passive Acoustic Sensors.  

According to Vår Energi (Bjørnbom, 2017), either BAT or ALARP principles were applied 

during the design phase of the LDS. Design took into account principles present in DNV-

RP-302 guideline (Røsby, 2011): 

• Integration of the LDS into the design of the SPS; 

• Technology selection: use of risk assessment for hotspot selection; 
• Combining technologies: area and point detectors. 

3.4.1 Internal Leak Detection System 

Internal LDS consists of PTTs and flowmeters having the function to monitor possible 

anomalies from normal conditions in the streams passing through the pipelines, valves 

and the risers. Some methods can be used to estimate the leakage position and to 

estimate the amount of spilled oil (Geiger, 2006). These sensors are not sufficiently 

accurate when it comes to leak detection since flow rate changes over time, making 

small leakages undetectable for these sensors (DNV-GL, 2016).  

3.4.2 Capacitive Sensors  

Hydrocarbon Leak Detectors (HLD) are capacitive sensors produced by Phaze (Røsby, 

2011).  

 

Figure 3.10 HLD by Phaze (Benestad, 2019) 

They are based on the principle that oil (or gas), once leaking, tends to flow upwards 
because of its density (which is lower than water). While flowing upwards, the collector 
will trap it (the roof of the XMT forms the collector) making the oil cover the sensor 
window. As a consequence, the sensor measures a different dielectric constant. An 
exhaust port is present on the collector in order to reduce false alarms (Benestad, 2019; 
DNV-GL, 2016; Phaze, 2019).  

HLDs are connected to the SCM. The HLDs are installed in the ceiling of the XMTs. Data 
are then transmitted topside via fiber optic cables. These sensors monitor the wellhead, 
the XMT, the FCM, and the connection point between the XMT and the manifold (Phaze, 
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2019; Røsby, 2011). Four sensors (one per slot) are present in case of a fully populated 
template (four producing wells). 

 

Figure 3.11 Leak detection operated by a HLD connected to the SCM (Benestad, 2019) 

3.4.3 Passive Acoustic Sensors 

Single Acoustic Leak Detectors (SALD) are passive acoustic sensors produced by Naxys 

(Naxys, 2019; Røsby, 2011).  

 

Figure 3.12 SALD by Naxys (Naxys, 2011) 

A spill creates an acoustic signal as the fluid is passing through a hole. When a leak 

occurs, a low-frequency acoustic signal is detected by a hydrophone and analyzed. 

Deviations from what the SALD classifies as noise will produce a local alarm (Austine, 

2017). 

This typology of sensors should be placed close to the hotspots in order to be able to 

improve its detection performance as this is strictly related to the distance between 

leakage source and sensor. 

The function of a SALD is to monitor the template, especially those areas not covered by 

the capacitive sensors. They are mounted on the manifold and connected to the SRM 

which will transmit data topside via optical fiber cables. A total number of three SALDs is 

present for any template. 



38 
 

 

Figure 3.13 Positioning of a SALD on the manifold (Røsby, 2011) 

3.5 Hotspots Identification and Sensors Positioning 

3.5.1 Christmas Trees and HLDs Positioning 
As reported in Table 2.1, which summarizes different technologies, HLDs are sensors 

which provide point coverage, which means they are specifically useful in those spots 

corresponding to specific critical equipment (like the XMTs). Positioning these sensors in 

non-critical spots would not give effective results, as the leak detection only occurs in 

case the HLD is placed over the leakage point. The XMTs are suitable locations for HLDs 

positioning as the following critical equipment are present (Bjørnbom, 2017): 

• The Spool connection; 

• The Annulus Wing Block; 

• The Production Block; 

• The FCM. 

HLDs cannot localize the leakage; this means that it will not be possible to know which 

exact component is experiencing a leakage, but only that the leakage is located below 

the area of the collectors. 
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Figure 3.14 Identification of hotspots in a XMT (Bjørnbom, 2017) 

3.5.2 Manifold and SALDs Positioning 

Multiple SALDs create a network of sensors able to extend the coverage from a single 

local point to an entire area. This characteristic makes it reasonable to install these 

sensors in a way that they can monitor critical hotspots that, in case of leakage, would 

release fluid that HLD collectors could not trap. These hotspots correspond to a set of 

valves and connections: 

• Header Isolation Valves; 

• Branch Valves; 

• Hub connections. 

 

Figure 3.15 Identification of hotspots in the manifold (Bjørnbom, 2017) 



40 
 

The use of passive acoustic sensors working in a network for either detection or 

localization of oil spills in a subsea template is a technique whose accumulated field 

experience is limited.  

3.5.3 Global Layout 

In case of a fully populated template (four production wells), seven sensors are present 

(four HLDs and three SALDs).  

In Figure 3.16 and Figure 3.17, it is possible to see the actual position of the SALDs 

around the template and the collection areas above the XMTs:   

 

Figure 3.16 Side view of a template (Røsby, 2011) 

 

Figure 3.17 Top view of a template (Bjørnbom, 2017; Røsby, 2011) 
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This chapter has the aim to introduce the mathematical and physical models and theories 

used in order to develop this study. 

4.1 Acoustic Signal Modelling 

The generic acoustic signal received by the 𝑘th sensor is modeled using the following 

equation (Ciuonzo and Salvo Rossi, 2017):  

{
𝐻0:     𝑦𝑘 = 𝑤𝑘                                        

𝐻1:     𝑦𝑘 = 𝜉𝑘 ∙ 𝐴𝐴𝐹 (𝑥𝑇 , 𝑥𝑆
𝑘
) + 𝑤𝑘

 

• 𝑦𝑘 is the normalized received acoustic amplitude at the 𝑘th sensor; 

• 𝑤𝑘 is a Gaussian distributed random variable representing the amplitude of the 

thermal noise (modeled as Additive White Gaussian Noise (AWGN)) due to the 

molecular agitation at the 𝑘th sensor (Kularia et al., 2016). More specifically 

𝑤𝑘~𝒩(0, 𝜎𝑤,𝑘
2 ) (Kosta, 2002). Noise variance is assumed as equal for any sensor 

(only one model of SALD is used). Noise variance is normalized to a unitary value: 

𝜎𝑤,𝑘
2 = 1; 

• 𝜉𝑘 is a Gaussian distributed random variable representing the fluctuation in the 

received signal amplitude (fading coefficient); more specifically 𝜉𝑘~𝒩(0, 𝜎𝜉
2) 

(Kosta, 2002). Defining the sensing signal-to-noise ratio as 𝑆𝑁𝑅 = 𝜎𝜉
2 𝜎𝑤,𝑘

2⁄ , due to 

the previous simplification, 𝜎𝜉
2 = 𝑆𝑁𝑅 ∙ 𝜎𝑤,𝑘

2 = 𝑆𝑁𝑅 ∙ 1 = 𝑆𝑁𝑅. 

• 𝐴𝐴𝐹 (𝑥𝑇 , 𝑥𝑆
𝑘
) is the distance-dependent amplitude attenuation function which, in 

this case, is uniquely determined by the distance between the target (whose 

position is 𝑥𝑇) and the 𝑘th sensor (whose position is 𝑥𝑆
𝑘
). In the case of this work, 

all distances are calculated neglecting differences in height between two points 

assuming a 2D model. AAF is retrieved based on either absorption by seawater or 

spreading loss using physical models (a specific chapter is dedicated to how the 

AAF is obtained in this study). It is fixed as 𝐴𝐴𝐹 = 1 in the case where the distance 

coincides with a reference distance 𝑙ref. 

Being the components of the signal two Gaussian distributed random variables, the signal 

itself is also a Gaussian distributed random variable (Ciuonzo and Salvo Rossi, 2017; 

Salvo Rossi, 2019): 

{
 
 
 
 

 
 
 
 

𝐻0:     𝑦𝑘~𝒩(0, 𝜎𝑤,𝑘
2 )                                           

𝐻1:     𝑦𝑘~𝒩(0, 𝜎𝜉
2 ∙ 𝐴𝐴𝐹2 (𝑥𝑇 , 𝑥𝑆

𝑘
) + 𝜎𝑤,𝑘

2 )
⇒

{
 
 
 
 

 
 
 
 

𝑝(𝑦𝑘|𝐻0) =
𝑒
−

𝑦𝑘
2

2𝜎𝑤,𝑘
2

√2𝜋𝜎𝑤,𝑘
2

                                               

𝑝(𝑦𝑘|𝐻1) =
𝑒
−

𝑦𝑘
2

2(𝜎𝜉
2∙𝐴𝐴𝐹2(𝑥𝑇 ,𝑥𝑆

𝑘
)+𝜎𝑤,𝑘

2 )

√2𝜋 (𝜎𝜉
2 ∙ 𝐴𝐴𝐹2 (𝑥𝑇 , 𝑥𝑆

𝑘
) + 𝜎𝑤,𝑘

2 )

 

4 Underwater Acoustic Signal Modelling and 

Processing 
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which, considering the previous simplifications can be re-written as: 

{
 
 
 

 
 
 

𝐻0:     𝑦𝑘~𝒩(0,1)                                                  

𝐻1:     𝑦𝑘~𝒩(0, 𝑆𝑁𝑅2 ∙ 𝐴𝐴𝐹2 (𝑥𝑇 , 𝑥𝑆
𝑘
) + 1)

⇒

{
 
 
 

 
 
 𝑝(𝑦𝑘|𝐻0) =

𝑒−𝑦𝑘
2 2⁄

√2𝜋
                                                    

𝑝(𝑦𝑘|𝐻1) =
𝑒
−

𝑦𝑘
2

2(𝑆𝑁𝑅2∙𝐴𝐴𝐹2(𝑥𝑇,𝑥𝑆
𝑘
)+1)

√2𝜋 (𝑆𝑁𝑅2 ∙ 𝐴𝐴𝐹2 (𝑥𝑇 , 𝑥𝑆
𝑘
)+ 1)

 

Figure 4.1 is a plot showing an example of the distribution probabilities of 𝑦𝑘. It can be 

seen the broader distribution of the value of 𝑦𝑘 in the case of hypothesis 𝐻1 due to its 

higher variance with respect to the hypothesis 𝐻0. In this example, for the hypothesis 𝐻1: 

𝑦𝑘~𝒩(0,5). 

 

Figure 4.1 Example of distribution of the value of the normalized signal amplitude  

4.1.1 Amplitude Attenuation Function 

The Amplitude Attenuation Function (AAF) is, as previously introduced, a function that 

describes the decrease (attenuation) of a wave amplitude over space. This phenomenon, 

in case of an underwater acoustic wave (where the amplitude represents the sound 

pressure), is a consequence of multiple factors (Brennan, 2017): 

• Geometric Spreading Loss; 

• Absorption; 

• Reverberation; 

• Scattering. 

AAF of a signal in a medium typically obeys an exponential law that can be written in the 

following general form (Chen and Holm, 2003): 

𝐴𝐴𝐹 (𝑥2, 𝑥1) =
𝐴𝑚𝑝𝑙 (𝑥2)

𝐴𝑚𝑝𝑙 (𝑥1)
= 𝑒−𝑇𝐿

(𝑥2 ,𝑥1) 
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Therefore AAF is the ratio between the amplitude 𝐴𝑚𝑝𝑙 of a signal in two different points 

in space. In the previous equation 𝐴𝐴𝐹 (𝑥2, 𝑥1) is the ratio of the amplitude of a signal 

traveling from the point represented by the vector 𝑥1 to the point represented by the 

vector 𝑥2. What determines the value of AAF is the value of Transmission Loss (TL), 

which must be reported in Nepers (𝑁𝑝). 

TL can be obtained summing all the previous listed contributions. In this work, only two 

contributions are considered: Spreading Loss and Absorption by seawater: 

𝑇𝐿 (𝑥2, 𝑥1) = 𝑇𝐿seawater_absorption (𝑥2, 𝑥1) + 𝑇𝐿spreading_loss (𝑥2, 𝑥1) 

This simplification is necessary since this model is used to simulate all the signals in this 

work. In order to account for reverberation and scattering and contribution of sediments, 

more specific information would be necessary (such as the precise positions of both leak 

source and sensor, their respective distances from the sea bottom and the sea surface, 

the exact tridimensional configuration of the subsea template to account possible 

obstacles). Moreover, to account for sediment contribution to TL, specific morphological 

information about the seafloor would be necessary. 

4.1.1.1 Seawater Absorption 

Transmission Loss per unit length due to seawater absorption is called absorption 

coefficient (indicated as 𝛼 and often measured in 𝑑𝐵/𝑘𝑚 or 𝑁𝑝/𝑘𝑚). It usually depends on 

either the environmental conditions (later represented by the factor 𝛼0) or the sound 

frequency (𝑓 usually in 𝐻𝑧 or 𝑘𝐻𝑧). It obeys to the following simplified equation (Szabo, 

1994): 

𝛼 = 𝛼0 ∙ 𝑓
𝑛 

From this expression, it is immediate that: 

𝑇𝐿seawater_absorption (𝑥2, 𝑥1) = 𝛼 ∙ ‖𝑥2 − 𝑥1‖ 

There are several ways to estimate the absorption coefficient for underwater sound; 

here, the most known and used are reported. Thorp proposed the most straightforward 

equation by carrying out field measurements in the Bahamas (Thorp, 1967). It has no 

other dependencies than 𝑓. It does not catch variations in the absorption as a 

consequence of the presence of Boric Acid (𝐻3𝐵𝑂3) and Magnesium Sulphate (𝑀𝑔𝑆𝑂4) and 

other specific properties of the seawater like acidity (𝑝𝐻), salinity (𝑆), temperature (𝑇) 

and depth (𝐷) leading to poorly accurate results (Kularia et al., 2016). Lower errors can 

be obtained at 𝑇 ≈ 4°𝐶 and 𝐷 ≈ 1000 𝑚 (Sehgal et al., 2010). It is meant to be used at low 

sound frequencies of 100 𝐻𝑧 ≤ 𝑓 ≤ 10 𝑘𝐻𝑧 (Al-Dharrab et al., 2013; Domingo, 2008). 

A further method is proposed by Schulkin & Marsh (Schulkin and Marsh, 1962) based on 

measurements in the North Atlantic Ocean. It depends on 𝑓, 𝑇, 𝑆 and 𝐷. It has a 

suggested range of validity of 2 𝑘𝐻𝑧 ≤ 𝑓 ≤ 25 𝑘𝐻𝑧 (Al-Dharrab et al., 2013). 

A more accurate method is the one proposed by Fisher & Simmons (Fisher and Simmons, 

1977). This method, unlike the Thorp Equation, takes into account the sound absorption 

caused by 𝐻3𝐵𝑂3 and 𝑀𝑔𝑆𝑂4 together with other parameters like  𝑇, pressure (𝑃) (which 

can be easily obtained knowing 𝐷 and the average density of the seawater). This model 

should not be used at 𝐷 ≥ 8000 𝑚 and was obtained assuming fixed values of salinity (𝑆 =
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35 𝑝𝑝𝑡) and acidity (𝑝𝐻 = 8) (Sehgal et al., 2010). It has a suggested range of validity of 

10 𝑘𝐻𝑧 ≤ 𝑓 ≤ 400 𝑘𝐻𝑧 (Al-Dharrab et al., 2013). 

Ainslie & McColm is probably the best method in terms of accuracy with respect to its 

simplicity. The absorption coefficient in this model, in fact, also depends on 𝑆 and 𝑝𝐻 

(Ainslie and McColm, 1998). It increases the chances of obtaining more accurate results 

(Sehgal et al., 2010). 

The method used in this work is the one proposed by Francois & Garrison (Francois and 

Garrison, 1982a, 1982b). This method is the most complex in terms of calculations, but 

because of its complexity and, since it is based on ocean measurements taken in the 

Arctic, Northeast Pacific Ocean, Atlantic Ocean, Mediterranean, Red Sea, and the Gulf of 

Aden, it is considered one of the most accurate models. Moreover, it introduces the 

dependency on the sound speed (𝑐) which has never been explicitly considered as a 

variable in the previous methods. 𝑓, 𝑐, 𝑆, 𝐷, 𝑇 and 𝑝𝐻 are the explicit variables on which 

this method is based. Its optimal range of validity is the following (Etter, 2018):  

• 0.16 𝑘𝐻𝑧 ≤ 𝑓 ≤ 650 𝑘𝐻𝑧; 

• 7.69 ≤ 𝑝𝐻 ≤ 8.18; 

• 8 𝑝𝑝𝑡 ≤ 𝑆 ≤ 40.5 𝑝𝑝𝑡; 

• −17.5°𝐶 ≤ 𝑇 ≤ 22°𝐶; 

• 0.013 𝑘𝑚 ≤ 𝐷 ≤ 3.35 𝑘𝑚. 

Francois & Garrison’s method is what it is used in this research because its optimal range 

of value is vast making this method very versatile and usable even in case of significant 

changes in seawater conditions or in case a different reference 𝑓 is used. It also has the 

highest number of variables among all the methods, and it is considered a reliable and 

accurate method. Moreover, it is based on actual field measurements in different seas 

and oceans among which the Arctic Area. 

Francois & Garrison’s method is based on the following expression which can be 

separated into three different additive contributions given by 𝐻3𝐵𝑂3 and 𝑀𝑔𝑆𝑂4 and pure 

water: 

𝛼 =
𝐴1𝑃1

∗𝑓1𝑓
2

𝑓1
2 + 𝑓2

+
𝐴2𝑃2

∗𝑓2𝑓
2

𝑓1
2 + 𝑓2

+ 𝐴3𝑃3
∗𝑓2 

• 𝛼 is the seawater absorption (
𝑑𝐵

𝑘𝑚
); 

• 𝑓 is the sound frequency (𝑘𝐻𝑧); 

• 𝐴1, 𝐴2, 𝐴3 are parameters depending on various variables (
𝑑𝐵

𝑘𝑚 𝑘𝐻𝑧
): 

𝐴1 =
8.86

𝑐
∙ 10(0.78∙𝑝𝐻−5) 

𝐴2 = 21.44
𝑆

𝑐
(1 + 0.025 ∙ 𝑇) 

𝐴3 = {
3.964 ∙ 10−4 − 1.146 ∙ 10−5𝑇 + 1.45 ∙ 10−7𝑇2 − 6.5 ∙ 10−10𝑇3, 𝑇 > 20°𝐶

4.937 ∙ 10−4 − 2.59 ∙ 10−5𝑇 + 9.11 ∙ 10−7𝑇2 − 1.50 ∙ 10−8𝑇3, 𝑇 ≤ 20°𝐶
 

• 𝑃1
∗, 𝑃2

∗, 𝑃3
∗ are nondimensional pressure correlation factors: 

𝑃1
∗ = 1 

𝑃2
∗ = 1− 1.37 ∙ 10−4𝐷 + 6.2 ∙ 10−9𝐷2 

𝑃3
∗ = 1− 3.83 ∙ 10−5𝐷 + 4.9 ∙ 10−10𝐷2  

• 𝑓1 , 𝑓2 are relaxation frequencies of 𝐻3𝐵𝑂3 and 𝑀𝑔𝑆𝑂4 (𝑘𝐻𝑧): 

𝑓1 = 2.8 (
𝑆

35
)
0.5

∙ 10
(4−

1245
273+𝑇

)
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𝑓2 =
8.17 ∙ 10

(8−
1990
273+𝑇

)

1 + 0.0018(𝑆 − 35)
 

Where 𝑐 is in 𝑚 𝑠⁄ , 𝑇 is in °𝐶, 𝑆 is in 𝑝𝑝𝑡 and 𝐷 is in 𝑚. 

Francois & Garrison’s method needs knowledge of 𝑐. In order to calculate this parameter 

in the underwater condition, a few methods exist. Those reported here are among the 

most popular methods to obtain sound speed (Talib et al., 2011). 

Medwin’s equation (Medwin, 1975), which is the simplest method that can be 

implemented, shows how sound speed depends on 𝑇, 𝑆 and 𝐷. Medwin proposed a range 

of validity of −17.5°𝐶 ≤ 𝑇 ≤ 22°𝐶; 0 𝑝𝑝𝑡 ≤ 𝑆 ≤ 45 𝑝𝑝𝑡; 0 𝑚 ≤ 𝐷 ≤ 1000 𝑚. 

Mackenzie’s equation (Mackenzie, 1981) is a very popular nine-terms equation. It 

depends on 𝑇, 𝑆 and 𝐷. Its range of validity is −2°𝐶 ≤ 𝑇 ≤ 30°𝐶; 25 𝑝𝑝𝑡 ≤ 𝑆 ≤ 40 𝑝𝑝𝑡; 0 𝑚 ≤

𝐷 ≤ 8000 𝑚. It makes results more reliable than Medwin’s equations when deep water 

conditions apply. 

Del Grosso’s equation (Del Grosso, 1974) is among the most reliable methods to obtain 

𝑐. It depends on 𝑇, 𝑆 and 𝑃 (which can be calculated knowing 𝐷 and the average density 

of seawater). Its range of validity is 0°𝐶 ≤ 𝑇 ≤ 30°𝐶; 30 𝑝𝑝𝑡 ≤ 𝑆 ≤ 40 𝑝𝑝𝑡; 0 𝑚 ≤ 𝐷 ≤ 1000 𝑚. 

Chen & Millero’s equation (Chen and Millero, 1977) is a method which is commonly 

known as the UNESCO equation since it was endorsed by UNESCO itself (Fofonoff and 

Millard Jr., 1983). It depends on 𝑇, 𝑆 and 𝑃 and has a range of validity of 0°𝐶 ≤ 𝑇 ≤ 40°𝐶; 

0 𝑝𝑝𝑡 ≤ 𝑆 ≤ 40 𝑝𝑝𝑡; 0 𝑏𝑎𝑟𝑔 ≤ 𝑃 ≤ 1000 𝑏𝑎𝑟𝑔 even though there exists a correction to make it 

more accurate at lower temperatures (0°𝐶 ≤ 𝑇 ≤ 15°𝐶) and higher pressures (300 𝑏𝑎𝑟𝑔 ≤

𝑃 ≤ 1000 𝑏𝑎𝑟𝑔) (Millero and Li, 1994). This wide range of validity makes it the state-of-the-

art in sound speed calculations in underwater conditions. The equation is the following: 

𝑐 = 𝐶𝑤(𝑇, 𝑃) + 𝐴(𝑇, 𝑃) ∙ 𝑆 + 𝐵(𝑇, 𝑃) ∙ 𝑆
3 2⁄ + 𝐷(𝑇, 𝑃) ∙ 𝑆2 

• 𝐶𝑤(𝑇, 𝑃) = (𝐶00 + 𝐶01 ∙ 𝑇 + 𝐶02 ∙ 𝑇
2 + 𝐶03 ∙ 𝑇

3 + 𝐶04 ∙ 𝑇
4 + 𝐶05 ∙ 𝑇

5) 

+(𝐶10 + 𝐶11 ∙ 𝑇 + 𝐶12 ∙ 𝑇
2 + 𝐶13 ∙ 𝑇

3 + 𝐶14 ∙ 𝑇
4) ∙ 𝑃 

+(𝐶20 + 𝐶21 ∙ 𝑇 + 𝐶22 ∙ 𝑇
2 + 𝐶23 ∙ 𝑇

3 + 𝐶24 ∙ 𝑇
4) ∙ 𝑃2 

+(𝐶30 + 𝐶31 ∙ 𝑇 + 𝐶32 ∙ 𝑇
2) ∙ 𝑃3 

• 𝐴(𝑇, 𝑃) = (𝐴00 + 𝐴01 ∙ 𝑇 + 𝐴02 ∙ 𝑇
2 + 𝐴03 ∙ 𝑇

3 + 𝐴04 ∙ 𝑇
4) 

+(𝐴10 +𝐴11 ∙ 𝑇 + 𝐴12 ∙ 𝑇
2 +𝐴13 ∙ 𝑇

3 +𝐴14 ∙ 𝑇
4) ∙ 𝑃 

+(𝐴20 +𝐴21 ∙ 𝑇 + 𝐴22 ∙ 𝑇
2 +𝐴23 ∙ 𝑇

3) ∙ 𝑃2 

+(𝐴30 +𝐴31 ∙ 𝑇 + 𝐴32 ∙ 𝑇
2) ∙ 𝑃3 

• 𝐵(𝑇, 𝑃) = 𝐵00 +𝐵01 ∙ 𝑇 + (𝐵10 +𝐵11 ∙ 𝑇) ∙ 𝑃 

• 𝐷(𝑇, 𝑃) = 𝐷00 + 𝐷10 ∙ 𝑃 

Where 𝑐 is in 𝑚 𝑠⁄ , 𝑇 is in °𝐶, 𝑆 is in 𝑝𝑝𝑡 while 𝑃 is in 𝑘𝑃𝑎. This equation experienced some 

changes of coefficients once the International Temperature Scale has been adopted. The 

new coefficients are those used in this work. Updated coefficients 𝐴𝑥𝑥,  𝐵𝑥𝑥,  𝐶𝑥𝑥, 𝐷𝑥𝑥 can 

be found in the specific article (Wong and Zhu, 1995). 

Other equations that have not been introduced here exist (Etter, 2018). They can be 

used as alternatives but may not be as accurate and versatile as Chen & Millero’s 

equation. These methods are those of Wilson (Wilson, 1960), Leroy (Leroy, 1969), Frye 

& Pugh (Leroy, 1969), Lovett (Lovett, 1978), Coppens (Coppens, 1981), Leroy et al. 

(Leroy et al., 2008). 
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4.1.1.2 Geometric Spreading Loss 

Spreading in space must be considered when calculating transmission loss. The simplest 

case involves the assumption of an infinite medium with a point-source radiating in all 

directions. In this case, the energy transmitted is conserved, but it is spread over 

spheres having a larger and larger radius (Lurton, 2010). The increase of transmission 

loss (in 𝑑𝐵) as the radius increases is: 

𝑇𝐿spreading_loss(𝑅2, 𝑅1) = 𝑘spr ∙ 10log (
𝑅2
𝑅1
) 

 

Figure 4.2 Spherical Spreading 

In the specific case of spherical spreading 𝑘spr = 2 and it can be used to model spreading 

in deep water condition. For cylindrical spreading instead 𝑘spr = 1 which is used to model 

spreading in shallow water condition. A common practice is to set an intermediate value 

𝑘spr = 1.5. This is called “practical spreading” (Al-Dharrab et al., 2013; Joshy, 2010; 

Sehgal et al., 2010; Xiao, 2010). 

4.1.1.3 Overall Transmission Loss 

Adding the two just examined contributions, the following equation for TL (in 𝑑𝐵) can be 

written down: 

𝑇𝐿𝑑𝐵(𝑙) = 𝛼 ∙ (𝑙 − 𝑙ref) ∙ 10
−3 + 𝑘spr ∙ 10log(

𝑙

𝑙ref

) 

This equation is valid assuming that 𝑙 (which is the distances of the sensor from the 

target) and 𝑙𝑟𝑒𝑓 (which is a reference distance from the target making sure 𝑙ref ≤ 𝑙) are in 

𝑚 and 𝛼 is in 𝑑𝐵/𝑘𝑚. Transmission Loss must then be converted from 𝑑𝐵 to 𝑁𝑝 so it can 

be used to obtain the AAF: 

𝐴𝐴𝐹(𝑙) = 𝑒−𝑇𝐿𝑁𝑝(𝑙) 

It is clear how 𝐴𝐴𝐹 = 1 in the case in which the distance between the sensor and the 

target is equal to the reference distance: 𝑙 = 𝑙ref. 
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4.2 Wireless Sensor Network 

The present work uses the model of an underwater acoustic wireless sensor network 

(UAWSN). A Wireless Sensor Network (WSN) is an expression describing a group of 

spatially dispersed and dedicated sensors for monitoring and recording the physical 

conditions of the environment and organizing the collected data at a central location 

(Jawarkar et al., 2013). Those used in a template are not wirelessly connected (cables 

are used instead). This will not result in any change as the communication channel is 

assumed as perfect with no communication errors. 

WSN can be classified in different typologies. The scheme in Figure 4.3 represents the 

most straightforward classification for a WSN (Carlos-Mancilla et al., 2016): 

 

Figure 4.3 Classification of WSNs 

These two architectures can be defined as follows (Ling et al., 2009): 

• Centralized WSNs are infrastructures in which sensors send a raw measurement 

data to a Processing Center which has the task to perform a final decision;  

• Distributed WSNs are infrastructures in which sensors transmit a local decision 

obtained from the analysis of raw data to a Fusion Center (FC) which will take a 

final global decision. 

Classification of
WSNs

Centralized

Distributed
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Figure 4.4 Scheme of a centralized (1) and a distributed (2) WSN with NK sensors 

A Distributed WSN is used in the present work. According to the previous definition, this 

means that each sensor is responsible for a local decision which is transmitted to the FC 

(Salvo Rossi, 2019): 

 

Figure 4.5 Sensor model in the WSN 

The target generates a signal 𝑠𝑘, so each sensor performs a test based on the received 

signal 𝑦𝑘, and a local decision 𝑑𝑘 is taken.  

The target follows under the category of the non-cooperative targets (NCT), which refers 

to those targets whose state and attributes are unknown (Jing et al., 2018). The 

architecture of a WSN is shown in Figure 4.6 (Yan et al., 2015): 
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Figure 4.6 Model of the WSN 

From the scheme in Figure 4.6, it is possible to see that the considered distributed WSN 

has only one sink node with sensors placed in a star configuration with no hierarchical- or 

cluster-based structures. It is also necessary to account the virtual presence of a 

communication channel between each sensor and the FC. The FC gives the overall 

decision after applying a fusion rule (FR) whose result is compared with a threshold. The 

decision is indicated as 𝑑 and, in case of a positive detection, an estimated target 

position is calculated. 

To conclude, it is possible to summarize all the characteristics and assumptions regarding 

either the acoustic signals or the WSN modeled in this work: 

• The system is a distributed WSN working with a decode-then-fuse (DtF) 

approach; 

• Either acoustic signals due to the leak or thermal noise are assumed as having 

amplitudes normally distributed over time with zero mean and are statistically 

independent; 

• Target is non-cooperative (unknown position and state), but its position is fixed; 

• Sensors are in a fixed and known position; 

• Sensors are omnidirectional (they can receive the signal from any direction); 

• Amplitudes have been normalized assuming noise variance equal to one for any 

sensor and assuming AAF equal to 1 (no attenuation of amplitude) when the 

distance between from the target is equal to a reference distance 𝑙ref; 

• Sensors do not collaborate, and their decisions are taken independently; 

• Sensors send a local binary hard decision: 𝑑𝑘 = {0,1} where 𝑘 ∈ {1,2,… ,𝑁𝐾} to limit 

energy consumption; 

• The communication channel is assumed perfect: 𝑟𝑘 = 𝑑𝑘  where 𝑘 ∈ {1,2,… , 𝑁𝐾}. 
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4.3 Statistical Signal Processing 

Signal processing at sensor level and decision fusion at FC level are both based on binary 

statistical classification. Classification is the action of dividing a set of data into different 

classes, and it is carried out by a classifier. In this specific case, classification is said to 

be binary since the set of hypothesis has two elements 𝐻 = {𝐻0, 𝐻1}, where 𝐻0 is the null 

hypothesis and 𝐻1 is the alternative hypothesis. Confusion matrixes (Table 4.1) are used 

to summarize the results of a classification process (Fawcett, 2006): 

 Assigned Class 

Actual Class 

 Positive (𝐻1) Negative (𝐻0) 

Positive (𝐻1) 𝑃 𝑇𝑃 𝐹𝑁 

Negative (𝐻0) 𝑁 𝐹𝑃 𝑇𝑁 

Table 4.1 Confusion Matrix for Binary Classification 

Where: 

• True Positive (𝑇𝑃) is the number of positive events correctly classified as positive. 

• False Positive (𝐹𝑃) is the number of negative events wrongly classified as 

positive. 

• False Negative (𝐹𝑁) is the number of positive events wrongly classified as 

positive. 

• True Negative (𝑇𝑁) is the number of negative events correctly classified as 

negative. 

If 𝑃 and 𝑁 are the numbers of positive events and negative events, respectively, it is 

possible to introduce some useful metrics:  

{
True Positive Rate ⟹𝑇𝑃𝑅 =

𝑇𝑃

𝑃
=

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
   

False Negative Rate⟹ 𝐹𝑁𝑅 =
𝐹𝑁

𝑃
=

𝐹𝑁

𝑇𝑃 + 𝐹𝑁

⟹ 𝑇𝑃𝑅 + 𝐹𝑁𝑅 = 1

{
False Positive Rate ⟹ 𝐹𝑃𝑅 =

𝐹𝑃

𝑁
=

𝐹𝑃

𝐹𝑃 + 𝑇𝑁
 

True Negative Rate⟹ 𝑇𝑁𝑅 =
𝑇𝑁

𝑁
=

𝑇𝑁

𝐹𝑃 + 𝑇𝑁

⟹ 𝐹𝑃𝑅 + 𝑇𝑁𝑅 = 1 

 

These parameters can be seen through a probabilistic approach. Let 𝜆 be the result of a 

test performed by the classifier on a set of data and 𝛾 the value of a threshold such that, 

if 𝜆 ≥ 𝛾, the classifier declares the event as positive, otherwise as negative. That said, 

𝑇𝑃𝑅 and 𝐹𝑃𝑅 can be re-written as the following conditional probability mass functions 

(pmf) (Kay, 1998): 

{
Probability of Detection ⟹ 𝑃𝑑 = 𝑃(𝜆 ≥ 𝛾|𝐻1)    

Probability of False Alarm ⟹𝑃𝑓 = 𝑃(𝜆 ≥ 𝛾|𝐻0)
 

What a binary classifier does is to perform a test in order to assign a class. A test is 

defined as Uniformly Most Powerful (UMP) when, once 𝑃𝑓 is fixed, it has the highest value 

of 𝑃𝑑 among all possible tests. A useful theorem can be used to highlight which test is the 

UMP (if present): this theorem is known as Neyman-Pearson Lemma (Neyman and 

Pearson, 1933) which can be written in the form (Kay, 1998) where it says that for a 

hypothesis test between two simple hypotheses (𝐻0 as the null hypothesis and 𝐻1 as the 

alternative hypothesis), in order to maximize 𝑃𝑑 for a fixed 𝑃𝑓, decide 𝐻1 if 
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𝜆LR =
𝑝(𝑥|𝐻1)

𝑝(𝑥|𝐻0)
≥ 𝛾 

Where 𝑥 is the data measured by the test, 𝜆LR is the result of the test called Likelihood 

Ratio (LR) and 𝛾 is a threshold found from the following integral (after fixing 𝑝𝑓): 

∫ 𝑝(𝑥|𝐻0)𝑑𝑥

{𝑥:𝜆LR≥𝛾}

= 𝑝𝑓 

With these premises, LR is the uniformly most powerful test possible. This approach will 

be recalled later to evaluate different decision rules. It is often a common practice to 

perform a Log-Likelihood Ratio (LLR) instead of a LR. There are some advantages in 

doing a LLR instead of a LR (Jurafsky and Martin, 2009): 

• It increases the numerical stability since the logarithms of probabilities will less 

likely cause an underflow with respect to probabilities (which would result in 

smaller numbers); 

• It is faster since the summation of the logarithms of probabilities is performed 

instead of a multiplication of those (sum is faster than multiplication); 

• Many pdfs have an exponential form; such form is analytically eliminated applying 

a natural logarithm. 

This means the test present in the Neyman-Pearson Lemma can be written using the 

LLR:  

𝜆LLR = ln [
𝑝(𝑥|𝐻1)

𝑝(𝑥|𝐻0)
] = ln[𝑝(𝑥|𝐻1)] − ln[𝑝(𝑥|𝐻0)] ≥ 𝛾 

4.3.1 Sensor Level 

Each sensor has to continuously perform a hypothesis test in order to declare whether 

the measured signal corresponds to a positive event or negative event. The goal of a 

passive acoustic sensor, in fact, is to be able to successfully distinguish between a 

received signal due to a positive event (like the sound produced by an oil leak) and a 

received signal generated by the molecular vibrations at the receiver (thermal noise). In 

order to decide which test to perform, it is useful to apply a local LLR to look for the most 

powerful test. According to the pdfs used to represent the signal amplitude, the result of 

the test may change. This is the scenario evaluated (as reported in the section dedicated 

to the signal modeling): 

{
 
 
 
 

 
 
 
 

𝑝(𝑦𝑘|𝐻0) =
𝑒
−

𝑦𝑘
2

2𝜎𝑤,𝑘
2

√2𝜋𝜎𝑤,𝑘
2

                            

𝑝(𝑦𝑘|𝐻1) =
𝑒
−

𝑦𝑘
2

2(𝜎𝜉
2∙𝐴𝐴𝐹𝑘

2+𝜎𝑤,𝑙
2 )

√2𝜋(𝜎𝜉
2 ∙ 𝐴𝐴𝐹𝑘

2+ 𝜎𝑤,𝑘
2 )

 

The following is the outcome of the LLR (Ciuonzo and Salvo Rossi, 2017): 

𝜆LLR,𝑘 = ln [
𝑝(𝑦𝑘|𝐻1)

𝑝(𝑦𝑘|𝐻0)
] =

1

2
ln [

𝜎𝑤,𝑘
2

𝜎𝜉
2 ∙ 𝐴𝐴𝐹𝑘

2 + 𝜎𝑤,𝑘
2 ] +

𝜎𝜉
2 ∙ 𝐴𝐴𝐹𝑘

2

𝜎𝑤,𝑘
2 [𝜎𝜉

2 ∙ 𝐴𝐴𝐹𝑘
2+ 𝜎𝑤,𝑘

2 ]
𝑦𝑘
2 
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The result shows how this LLR is an increasing function of 𝑦𝑘
2. This result means that the 

following energy test (ET) is UMP: 

𝜆ET,𝑘 = 𝑦𝑘
2
𝐻1
≷
𝐻0

𝛾𝑘 

With this test, it is possible to exploit the difference in the variance of the two pdfs. The 

diagram in Figure 4.7 shows how the threshold 𝛾𝑘 interacts with the pdfs (less 

information is shown compared to that in Figure 4.1 for illustrative reasons): 

 

Figure 4.7 Example of Energy Test 

It is clear that each possible value of 𝛾𝑘 leads to a non-perfect classification as there is 

always an overlap between the two pdfs. Different methods are available in order to 

decide a suitable threshold for each sensor (this will be discussed later). Knowing 𝛾𝑘 and 

the pdfs, it is possible to obtain two analytical equations which calculate 𝑃𝑑,𝑘 and 𝑃𝑓,𝑘 

exploiting the knowledge of the complementary cumulative distribution function (ccdf). In 

this case (Kay, 1998): 

{
  
 

  
 
𝑃𝑑,𝑘 = 𝑃(𝜆ET,𝑘 ≥ 𝛾𝑘|𝐻1) = 2𝒬 (√

𝛾𝑘
𝜎𝜉
2 ∙ 𝐴𝐴𝐹𝑘

2 + 𝜎𝑤,𝑘
2 )

𝑃𝑓,𝑘 = 𝑃(𝜆ET,𝑘 ≥ 𝛾𝑘|𝐻0) = 2𝒬(√
𝛾𝑘
𝜎𝑤,𝑘
2 )                        

 

Where 𝒬(∙) is the Q-function, which is defined as (Kay, 1998): 

𝒬(𝑥) =
1

2𝜋
∫ 𝑒

(−
𝑡2

2
)+∞

𝑥
𝑑𝑡 =

1

2
erfc(

𝑥

√2
). 



53 
 

As previously introduced, each sensor takes a binary decision that will be sent to the FC. 

This local decision is based upon the ET, more specifically: 

𝑑𝑘 = {
1, 𝑦𝑘

2 ≥ 𝛾𝑘
0, 𝑦𝑘

2 < 𝛾𝑘
 

4.3.2 Fusion Center Level 

The FC has the aim to collect all the data received from each sensor and elaborate a 

more reliable decision through increasing the global probability of detection and 

decreasing the global probability of false alarm. In analogy with the test taken at Sensor 

Level, the FC applies a Fusion Rule (FR). At sensor level, the processed information was 

𝑦𝑘 which was the variable of the ET. At FC level, instead, the variable of the test is the 

collection of decisions received from the sensors. This variable can be written using the 

following notation: 𝑑 = [𝑑1, 𝑑2, … , 𝑑𝑁𝐾]
𝑇
.  

4.3.2.1 Weighted Fusion Rule 

It is possible to apply the Neyman-Pearson Lemma in order to be able to retrieve the 

UMP FR: 

ΛLLR = ln [
𝑃(𝑑|𝐻1)

𝑃(𝑑|𝐻0)
] = ln [

∏ 𝑃(𝑑𝑘|𝐻1)
𝑁𝐾
𝑘=1

∏ 𝑃(𝑑𝑘|𝐻0)
𝑁𝐾
𝑘=1

] = ln [
∏ (𝑃𝑑,𝑘)

𝑑𝑘𝑁𝐾
𝑘=1 (1 − 𝑃𝑑,𝑘)

(1−𝑑𝑘)

∏ (𝑃𝑓,𝑘)
𝑑𝑘𝑁𝐾

𝑘=1
(1 − 𝑃𝑓,𝑘)

(1−𝑑𝑘)
]

=∑ ln [
(𝑃𝑑,𝑘)

𝑑𝑘(1 − 𝑃𝑑,𝑘)
(1−𝑑𝑘)

(𝑃𝑓,𝑘)
𝑑𝑘(1 − 𝑃𝑓,𝑘)

(1−𝑑𝑘)
]

𝑁𝐾

𝑘=1

=∑{𝑑𝑘 ln [
𝑃𝑑,𝑘
𝑃𝑓,𝑘

] + (1 − 𝑑𝑘) ln [
1 − 𝑃𝑑,𝑘
1 − 𝑃𝑓,𝑘

]}

𝑁𝐾

𝑘=1

 

This FR is commonly known as Chair-Varshney Rule (Chair and Varshney, 1986) or 

Weighted Fusion Rule (WFR) since each decision is weighted considering the 

performances of the sensor (obtained in the previous section): 

ΛWFR =∑{𝑑𝑘 ln [
𝑃𝑑,𝑘
𝑃𝑓,𝑘

] + (1 − 𝑑𝑘) ln [
1 − 𝑃𝑑,𝑘
1 − 𝑃𝑓,𝑘

]}

𝑁𝐾

𝑘=1

𝐻1
≷
𝐻0

𝛾 

where Λ is the symbol used for the result of the FR used in the FC and 𝛾 is the applied 

global threshold. The problem of this FR is its applicability: 𝑃𝑑,𝑘 and 𝑃𝑓,𝑘 are parameters 

that can be calculated only by knowing the constituent parameters of the amplitude pdfs. 

Many of them may be assumed as typical (statistical CSI, SNR level). The one that 

cannot be assumed is the target position because it is a NCT. In fact, the position is a 

variable in the AAF, which is necessary for local performance calculations. For this 

reason, WFR cannot be exploited in all its effectiveness when dealing with NCTs. In this 

work, 𝑃𝑑,𝑘 and 𝑃𝑓,𝑘 have been estimated a priori (they may be updated).  

The global probability of detection (𝑄𝑑) and the global probability of false alarm (𝑄𝑓) for a 

given threshold can be obtained through numerical methods. 

4.3.2.2 Counting Rule 

A way to avoid the problem of having the target position unknown is by applying the 

Counting Rule (CR) (Ruixin Niu and Varshney, 2005). In this FR, decisions are not 

weighted: 
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ΛCR =∑𝑑𝑘

𝑁𝐾

𝑘=1

{
≥ 𝛾 ⟹ 𝐻1
< 𝛾 ⟹ 𝐻0

 

Because of how 𝑑𝑘 is calculated, it is clear how this FR works: the number of sensors that 

declared the event as positive is counted, and this number is compared to a threshold. 

For example, if 𝛾 = 1 at least one sensor must declare the event as positive to make the 

FC declare the event as positive as well. It is clear that when using this FR, 𝛾 needs to be 

an integer number going from 0 to 𝑁𝐾 + 1 (which are the limit cases). 𝑄𝐷 and 𝑄𝐹 for a 

given threshold can be obtained through numerical methods (Salvo Rossi et al., 2015). 

A more straightforward case is the homogeneous scenario, where all the sensors have 

the same performances 𝑃𝑑 = 𝑃𝑑,𝑘 and 𝑃𝑓 = 𝑃𝑓,𝑘 for any 𝑘 = 1,2,… , 𝑁𝐾. In this case, 

performances can be written in a closed-form according to the ccdf of the binomial 

distribution (Salvo Rossi et al., 2015): 

{
  
 

  
 
𝑄𝑑 =∑(

𝑁𝐾
𝛾
)𝑃𝑑

𝑖(1 − 𝑃𝑑)
𝑁𝐾−𝑖−1

𝑁𝐾

𝑖=𝛾

𝑄𝑓 =∑(
𝑁𝐾
𝛾
)𝑃𝑓

𝑖(1 − 𝑃𝑓)
𝑁𝐾−𝑖−1

𝑁𝐾

𝑖=𝛾

 

To be able to compute all the possible values of 𝑄𝐷 and 𝑄𝐹, it is possible to use the form 

involving the regularized incomplete beta function (Aludaat, 2018): 

{
 
 

 
 𝑄𝑑 =

∫ 𝑥𝛾(1 − 𝑥)𝑁𝐾−𝛾𝑑𝑥
𝑃𝑑
0

∫ 𝑥𝛾(1 − 𝑥)𝑁𝐾−𝛾𝑑𝑥
1

0

𝑄𝑓 =
∫ 𝑥𝛾(1 − 𝑥)𝑁𝐾−𝛾𝑑𝑥
𝑃𝑓
0

∫ 𝑥𝛾(1 − 𝑥)𝑁𝐾−𝛾𝑑𝑥
1

0

 

Also in this case, some numerical methods or approximation to calculate global 

performances exist. The CR is useful in case there is not enough information to be able to 

know the different performances of the sensors, and when one wants to apply a simple 

FR. Nevertheless, as the assumption of homogeneity gets closer to the real case, CR 

becomes more and more reliable. This because the CR is the UMP test in case of 

homogeneous scenario. In such a scenario the WFR would not benefit of the presence of 

weights since they would all be equal, becoming as powerful as the CR, which would 

provide the further advantage of being more efficient to perform (multiplications and 

logarithm would no longer be present). 

In this work, the situation cannot be considered homogeneous; the only way would have 

been to continually have the target at the centroid of the sensor positions. This is not the 

case since the leak may come from different positions in the template. 

In this work, in order to know the global probabilities, a brute force method was 

proposed (Candy and Breitfeller, 2013): 

• Generate two series of signals (one corresponding to a series of positive events, 

the other one to a series of negative events according to the signal model 

introduced previously). These series must be made of a sufficiently high number 

of instants to approximate the exact solution better; 

• For each instant, apply the FR and compare it with a threshold; 
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• Estimate the probability of detection and false alarm. 

Two FRs were introduced in this section. These are two among the most essential and 

common FRs. 

4.3.3 Evaluation of Detection Performance  
There are many ways to evaluate the performances of a detection system; each of them 

sees the problem of binary classification from a different perspective. Parameters used 

are mainly those that can be retrieved from the confusion matrix. Performance 

evaluation may regard the FR/test from a general point of view, without focusing on a 

specific threshold (this can be good when the FR must be selected), or may regard both 

the FR/test and a specific threshold (this can be good for picking up a suitable threshold 

after the FR/test is chosen). 

4.3.3.1 Receiver Operating Characteristic curve  

Among the most popular tools that are used when evaluating FR/test performances is the 

Receiver Operating Characteristic (ROC) curve. This tool consists of a two-dimensional 

graph in which the FPR is plotted on the x-axis (𝐹𝑃𝑅 = 𝑃𝑓 or 𝐹𝑃𝑅 = 𝑄𝑓 according to 

whether the evaluation is made at sensor level or FC level) whereas the TPR is plotted on 

the y-axis (𝑇𝑃𝑅 = 𝑃𝑑 or 𝑇𝑃𝑅 = 𝑃𝑑 for the same reason) (Fawcett, 2006).  

 

Figure 4.8 Structure of the ROC space 

Each point of the ROC space has certain specific features. In Figure 4.8, some peculiar 

points have been highlighted: 

• 𝐴 = (0,0) This point represents the situation in which either 𝑇𝑃𝑅 = 0 or 𝐹𝑃𝑅 = 0. The 

explanation to this may be a too high value of threshold that leads the FC/sensor 
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to never declare the event as positive. It is located on the bottom-left corner of 

the graph. 

• 𝐵 = (1,1) This point conceptually represents the opposite of 𝐴. In this scenario, the 

threshold is set so small that the FC/sensor always declares the event as positive 

leading to 𝑇𝑃𝑅 = 1 and 𝐹𝑃𝑅 = 1. It is located on the top-right corner of the graph. 

Both points 𝐴 and 𝐵 can be obtained by having the highest and the lowest possible value 

of the threshold, regardless of the applied test/FR. This explains why these two points 

are located on the so-called chance line. The chance line (or line of-no-discrimination), 

here represented as a dotted line, is a line going from 𝐴 to 𝐵 which is the locus of points 

obtained by a random classifier, in fact the probability of having a correct detection is 

equal to the probability of having a false alarm (𝑇𝑃𝑅 = 𝐹𝑃𝑅). An example of such a 

scenario is the one represented by point 𝐸. Above this line, in the north-west section of 

the ROC space, it is possible to find points representing a more desirable situation, in 

that section, in fact, 𝑇𝑃𝑅 > 𝐹𝑃𝑅. On the other hand, the south-east section of the plot 

represents the area in which 𝑇𝑃𝑅 < 𝐹𝑃𝑅, which is the worst area since even a random 

classifier would be preferable. 𝐹 is a point in that area.  

• 𝐶 = (0,1) This point represents a perfect binary classification, in fact, 𝑇𝑃𝑅 = 1 and 

𝐹𝑃𝑅 = 0, meaning that no detection errors occur. It is located on the top-left 

corner of the graph. 

• 𝐺 = (1,0) This point represents the worst-case scenario. In this situation, the 

classifier completely reverses what the correct output should be. Positive events 

are classified as negative, while negative events are classified as positive. 

Now that ROC space is defined, it is possible to introduce the ROC curve. Once a FR/test 

and a threshold are fixed, it is possible to apply those to a set of data. The produced 

confusion matrix corresponds to a point in the ROC space. Varying the threshold, it is 

possible to see how this point progressively moves towards point 𝐴 or 𝐵 (increasing the 

value of the threshold the point will move towards 𝐴, otherwise towards 𝐵). This change 

of threshold value produces a curve called the ROC curve (Figure 4.9): 
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Figure 4.9 Example of ROC curve 

The ROC curve is more useful when classes are balanced (Saito and Rehmsmeier, 2015). 

Through the knowledge of the ROC curve of a FR/test applied to a dataset, it is possible 

to retrieve some useful parameters like the Area Under the Curve (AUC). 

4.3.3.2 Area Under the Curve 

The Area Under the Curve (AUC) is a parameter that has the aim of synthesizing the 

performance of the ROC curve by using one scalar value. This scalar value is the area 

below the ROC curve, and has the following mathematical expression (Ciuonzo et al., 

2013): 

𝐴𝑈𝐶 = ∫ 𝑃𝑑(𝛾)𝑑𝑃𝑓(𝛾)
1

0

 

Of course, the equation is correct also for 𝑄𝑑(𝛾) and 𝑄𝑓(𝛾) when evaluating FC 

performances. The integral form may not be applicable since an explicit form for 𝑃𝑑(𝛾) 

and 𝑃𝑓(𝛾) may not exist or may not be available. Another way it is to use the trapezoidal 

rule (Bradley, 1997) as an approximation of the previously introduced definite integral. 

Considering how a ROC space is structured: 𝐴𝑈𝐶 ∈ [0,1]. 𝐴𝑈𝐶 = 0 when the FR/test is such 

that, by increasing the threshold, the point moves from 𝐵 to 𝐴 passing through point 𝐺. 

This FR/test is the worst possible, and, when coupled with the threshold resulting in point 

𝐺, it is the least accurate binary classification method. When 𝐴𝑈𝐶 = 1 it means that 

FR/test is such that, by increasing the threshold, the point moves from 𝐵 to 𝐴 passing 

through point 𝐶. This FR/test is the best possible, and, when coupled with the threshold 

resulting in point 𝐶, it is the most accurate binary classification method that may be 

used. A 𝐴𝑈𝐶 = 0.5 is the same as a ROC curve overlapping the chance line; this makes a 

binary classification with such value of AUC be classified as a random classifier. Assuming 

that the classifier performs at least as accurate as a random classifier, it is reasonable to 

assume that 𝐴𝑈𝐶 ∈ [0.5,1]. In this case, AUC can be adjusted so that its range of value 
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moves from [0.5,1] to [0,1] by using the Gini coefficient defined the following equation 

(Hand, 2001): 

𝐺𝑖𝑛𝑖 = 2 ∙ 𝐴𝑈𝐶 − 1 

A rule of thumb to make a preliminary judgment after obtaining an AUC value can be the 

following (Hosmer and Lemeshow, 2004): 

• 𝐴𝑈𝐶 = 0.5  it suggests no classification; 

• 0.7 ≤ 𝐴𝑈𝐶 < 0.8 acceptable classification; 

• 0.8 ≤ 𝐴𝑈𝐶 < 0.9 excellent classification; 

• 𝐴𝑈𝐶 ≥ 0.9  outstanding classification. 

AUC is a method that has some drawbacks: it considers the entire domain of the ROC 

curve even in those areas which are less likely to be of interest. Techniques like partial-

AUC can be used to overcome this problem (but it introduces other issues like how to 

evaluate the arbitrary choice of the range of values considered for its calculation) (Ma et 

al., 2013). Also, the value of AUC weights the probability of detection and false alarm 

equally (Lobo et al., 2008). 

4.3.3.3 Threshold Selection based on the ROC curve 

The choice of the threshold that must be applied to a particular FR/test depends mainly 

on the specific application/field in which the classifier is supposed to work. The reason is 

that a different threshold will be displayed as a different point in the ROC and PR space 

with different values of TPR and FPR and different applications may have different 

requirements that could lead to the choice of a specific threshold rather than another.  

Some parameters are here introduced to have a brief overview of the possible indexes 

that can be used to evaluate the performance of a FR/test coupled with a certain numeric 

threshold. Of course, many others exist. However, this list contains only those 

parameters that are used in this work. This because they are among the most popular 

and are not specific for certain applications. 

• Youden’s Index (𝐽) (Youden, 1950) 

This value can be calculated with the following equation: 

𝐽(𝛾) = 𝑃𝑑(𝛾) − 𝑃𝑓(𝛾) 

Looking at the ROC curve, 𝐽(𝛾) represents the length of the vertical segment starting 

from (𝑃𝑑(𝛾), 𝑃𝑓(𝛾)) up to the chance line. This means 𝐽 ∈ [−1,1]. It is one of the most used 

indexes, and it is known for giving good performances (Rota and Antolini, 2014). The 

optimal threshold 𝛾∗ can be obtained when the generated performances 𝑃𝑑(𝛾
∗ ) and 𝑃𝑓(𝛾

∗  ) 

lead to the maximum possible value of Youden’s index: 

𝛾∗ ∶  𝐽(𝛾∗) = max
𝛾
[𝑃𝑑(𝛾) − 𝑃𝑓(𝛾)] 

• The closest-to-(0,1) criterion (𝑑) (Perkins and Schisterman, 2006) 

This criterion is based on the feature of the ROC curve in which the perfect classifier is 

identified with the point (0,1). This method measures the distance from the top-left 

corner point to the point on the ROC curve that the considered threshold has identified. 

This is done using the Pythagorean Theorem: 
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𝑑(𝛾) = √(1− 𝑃𝑑(𝛾))
2
+ 𝑃𝑓(𝛾)

2 

It means 𝑑 ∈ [0, √2]. Alternatively (like in this work) 𝑑2 can be used: 

𝑑2(𝛾) = (1 − 𝑃𝑑(𝛾))
2
+ 𝑃𝑓(𝛾)

2 

𝑑2 ∈ [0,2]. In this case, the optimal threshold 𝛾∗ can be obtained when the generated 

performances 𝑃𝑑(𝛾
∗ ) and 𝑃𝑓(𝛾

∗ ) lead to the minimum possible value of the distance from 

(0,1): 

𝛾∗ ∶  𝑑2(𝛾∗) = min
𝛾
[(1 − 𝑃𝑑(𝛾))

2
+ 𝑃𝑓(𝛾)

2] 

• Concordance Probability Objective Function (𝐶𝑍) (Liu, 2012) 

This parameter is conceptually similar to the idea of AUC. In fact, it measures the area of 

the rectangle whose angles are (0, 𝑃𝑓(𝛾)) , (𝑃𝑓(𝛾), 𝑃𝑑(𝛾)) , (1, 𝑃𝑑(𝛾)), (1,0) ∶ 

𝐶𝑍(𝛾) = 𝑃𝑑(𝛾) ∙ (1 − 𝑃𝑓(𝛾)) 

𝐶𝑍 ∈ [0,1]. In this case, the optimal threshold 𝛾∗ can be obtained when the generated 

performances 𝑃𝑑(𝛾
∗ ) and 𝑃𝑓(𝛾

∗ ) lead to the maximum possible value of 𝐶𝑍: 

𝛾∗ ∶  𝐶𝑍(𝛾∗) = max
𝛾
[𝑃𝑑(𝛾) ∙ (1− 𝑃𝑓(𝛾))] 

The following ROC curve in Figure 4.10 shows the graphical representation of the three 

parameters just shown applied to a generic point of the curve: 

 

Figure 4.10 Indexes for optimal threshold choice 
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A significant limitation of 𝐶𝑍 and 𝑑2 is that two points on the ROC space having the same 

values of 𝐶𝑍 or 𝑑2 could be on the opposite side of the ROC space with respect to the 

chance line; this does not happen using 𝐽. In this case, two points having the same value 

of 𝐽 will be on the same half of the ROC space. The only way for these points to be on 

opposite sides of the ROC space is by having 𝐽 with different signs. 

4.3.3.4 Precision-Recall Curve 

In order to introduce the Precision-Recall (PR) curve, some parameters called Precision 

and Recall needs an introduction (also known as PPV - Positive Predicted Value): 

{
Precision = 𝑃𝑃𝑉 =

𝑇𝑃

𝑇𝑃 + 𝐹𝑃

Recall = 𝑇𝑃𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
      

 

Precision describes how good is the model at predicting the positive class. The recall is 

equal to the 𝑇𝑃𝑅. It is possible to see the advantages over the PR-curve: precision does 

not depend on 𝑇𝑁 focusing its attention on how the model predicts the positive class. 

This can be useful when the classes are unbalanced, meaning that there is not a uniform 

distribution between positive and negative events. An example can be a situation when 

the negative class is the dominant class of events. In this case, a large number of FP 

may lead to a small change in the ROC curve since 𝐹𝑃𝑅 =
𝐹𝑃

𝐹𝑃+𝑇𝑁
. This scenario would lead 

to a more visible change in the value of precision (Davis and Goadrich, 2006). In Figure 

4.11, it is shown how a PR space looks like: 

 

Figure 4.11 Structure of the PR space 
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• 𝐴 = (0,1) is a point which represents a threshold so high that the Recall is equal to 

0. Precision, in this case, is meaningless because no estimated positive events are 

present. As the threshold slightly decreases, precision gets closer to 1.  

• 𝐵 = (1,1) is a point in which the threshold is lower than the previous one, and the 

recall is maximum, but at the same time, precision is maintained at its maximum 

value too: this is a situation of a perfect classifier. 

• 𝐶 = (1,0.5) is a point representing a very low threshold. In this case, Recall is equal 

to 1 since every event is classified as positive, but precision is equal to 0.5. 

• 𝐷 is a point representing a lower threshold compared to the one generating point 

𝐴. In 𝐷 recall increases with a decrease in precision (unlike point 𝐵 where 

precision is kept maximum). 

In analogy with the ROC curve, also PR curve is generated by varying the threshold of 

the FR/test (as shown in Figure 4.12):  

 

Figure 4.12 Example of PR curve 

The area under the curve can also be calculated for the case of the PR curve (Boyd et al., 

2013).   

4.3.3.5 Threshold Selection Based on the PR-curve 

F-measure (or F-score) (Sasaki, 2007) is a method to give a score based on the PR 

curve. When 𝛽 = 1, the F-score becomes the harmonic mean between precision and 

recall: 

𝐹1 = 2 ∙
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∙ 𝑟𝑒𝑐𝑎𝑙𝑙

𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
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𝐹1 ∈ [0,1]. The reason for the harmonic mean, rather than an arithmetic mean, is because 

the arithmetic mean would tend to compensate a low value of one of the two variable by 

having the other parameter high. The harmonic mean, instead, would give as a result a 

low value even if only one between precision and recall is low. The F-score can be written 

in its general form: 

𝐹𝛽 = (𝛽
2 + 1) ∙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∙ 𝑟𝑒𝑐𝑎𝑙𝑙

𝛽2 ∙ 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
 

𝛽 is used to weight the variables: when 𝛽 > 1, F-score becomes more recall-oriented (e.g. 

𝐹2); when 𝛽 < 1, it becomes more precision-oriented (e.g. 𝐹0.5). 
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5.1 Sensor Tuning 

It is possible to perform the tuning of the SALDs using the mathematical and physical 

models introduced so far. These sensors will perform an ET, but an adequate threshold 

must be chosen for each of them. The tuning algorithm as the aim of retrieving these 

values. Moreover, the algorithm can be used to estimate performances that will be used 

as local performances by the FC in case of application of the WFR (as FR for detection) 

and BBM (for localization).  

An algorithm is proposed for the tuning of sensors. It consists of faking the presence of a 

possible oil spill at any HS. The SNR associated with any of these events will be the same 

(but it could be improved by simulating different scenarios for any HS according to its 

technical specifications). This means that the only difference among the different positive 

events (generated from the different HSs) is dictated by the AAF. A loop will then 

calculate local performances by continuously changing the local threshold. For each 

iteration, performances will be calculated for each sensor, assuming different HSs as 

sources of leakage. In the same iteration, performances will be graded (using an index). 

Therefore, for each threshold, each sensor has collected multiple grades (one for any 

HS). However, the aim is to obtain one single result for any sensor at different local 

thresholds. The suggestion is to average, for any sensor, all the grades associated with 

the same threshold. A weighted mean accounting for different probabilities of failure of 

the different HSs is suggested. In this case, since these probabilities are not available, an 

arithmetic mean is performed. This arithmetic mean will generate an average grade for 

any sensor at a specific value of the local threshold. The optimal local threshold for a 

sensor will be the one which generated the best grade. 

Figure 5.1 shows the flowchart representing the proposed algorithm for the tuning of 

sensors: 

5 Methods for Sensor Tuning, Fusion Center 

Tuning and Real-time Algorithm  
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Figure 5.1 Flowchart of the algorithm for tuning of sensors 

A detailed step-by-step procedure reporting results is shown in the next section. All the 

results have been obtained using a MATLAB R2019 script created specifically for this 

simulation (see Appendix). 

5.1.1 Data and Assumptions 

The 2D scenario can be seen in Figure 5.2: 
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Figure 5.2 Graphical representation of the template top-view from which it is possible to 
obtain cartesian coordinates. Green dots represent the three SALDs, and red dots 

represent the hotspots. The reference distance is also indicated. Numbers are used to 
recognize different HSs and sensors.    

Cartesian coordinates are used to simplify calculations. All the calculations made (here 

and in the next chapters) refer to coordinates obtained from Figure 5.2.  

In order to perform the required calculations, it is necessary to know (or suppose) 

specific data to use as a reference. These are the assumptions and data used in this 

work: 

• Reference distance (𝑙ref) 

The smallest sensor-hotspot distance is used to define the reference distance: in this 

case, it is the distance between the north-east sensor (sensor 2) and the hotspot 

corresponding to a 5 1/8’’ hydraulic branch valve (HS number 17): 

𝑙ref = 1.47 𝑚 

• SNR 

It is necessary to assume the average value of SNR in case of leakage at 𝑙ref to simulate 

the behavior of a sensor; this would require tests and the knowledge of the thermal noise 

at the receiver. The hypothesized value is: 

𝑆𝑁𝑅ref = 𝜎𝜉,ref
2 𝜎𝑤,𝑘,ref

2⁄ = 20 

The value of acoustic power produced by an oil spill varies according to different 

parameters (internal and external pressure, the diameter of the hole, nature of the 

fluid,…); a separated study should be made to be able to predict this value.  
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• Reference frequency 

It is necessary to know the frequency detected by the sensor to be able to obtain the 

seawater absorption coefficient from Francois & Garrison method (Francois and Garrison, 

1982a, 1982b) which is needed to model the AAF. The AAF is an increasing function of 𝑓, 

for this reason, a low value of sensed frequency is suggested. This will increase the 

received SNR since thermal noise is also an increasing function of 𝑓 (Joshy, 2010). It is 

suggested to have hydrophones able to sense frequencies below 20 𝐻𝑧 (Hamilton and 

Charalambous, 2013). The latter value is taken as reference for this study: 

𝑓ref = 20 𝐻𝑧 

• Reference depth 

𝐷ref = 350 𝑚 

• Reference temperature 

The value of bottom seawater temperature has been taken from Mareano (“Mareano,” 

2019): 

𝑇ref = 3.8°𝐶 

• Reference salinity 

The value of bottom seawater salinity has been taken from Mareano (“Mareano,” 2019): 

𝑆ref = 35 𝑝𝑝𝑡 

• Reference pH 

Note that the value of pH of bottom seawater in the Barents Sea is decreasing over time 

(Wallhead et al., 2017). However, an estimation of its typical value in that area is used 

(Vetrov and Romankevich, 2004): 

𝑝𝐻ref = 8 

• Spreading coefficient for the geometric spreading loss 

The “practical value” is used as suggested in the literature: 

𝑘sprref
= 1.5 

5.1.2 Coordinates of Sensors and Hotspots  

According to Figure 5.2, it is possible to obtain positions of both sensors and HSs.  

The next steps will use the following notation: 

𝑥𝑆
𝑘
 where 𝑘 = 1, … ,𝑁𝐾 indicates the 𝑘th sensor position; 

𝑥𝐻𝑆
ℎ
 where ℎ = 1, … ,𝑁𝐻𝑆 indicates the ℎth HS position; 

Table 5.1 reports all the coordinates of the case study: 
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Horizontal 
axis (𝒎) 

Vertical 
axis (𝒎) 

Sensor 

1 13.97 15.30 

2 29.35 14.66 

3 21.86 9.42 

Hotspot 

1 11.50 11.75 

2 11.50 12.75 

3 11.50 13.75 

4 15.00 11.75 

5 15.00 12.75 

6 15.00 13.75 

7 18.00 11.75 

8 18.00 12.75 

9 19.00 11.75 

10 19.00 12.75 

11 24.50 11.75 

12 24.50 12.75 

13 25.50 11.75 

14 25.50 12.75 

15 28.20 11.75 

16 28.20 12.75 

17 28.20 13.75 

18 31.70 11.75 

19 31.70 12.75 

20 31.70 13.75 

Table 5.1 Coordinates of sensors and hotspots 

5.1.3 Calculation of Reference AAFs 

For any sensor, a reference value of AAF must be calculated with respect to all the 

identified hotspots. 

𝐴𝐴𝐹refℎ,𝑘 = 𝐴𝐴𝐹(𝑥𝐻𝑆ℎ
, 𝑥𝑆

𝑘
, 𝑙ref, 𝑘sprref

, 𝑓ref, 𝛼(𝐷ref, 𝑇ref , 𝑆ref, 𝑝𝐻ref, 𝑐(𝐷ref, 𝑇ref, 𝑆ref)))  

Results below were obtained using the equation of Francois & Garrison for calculation of 

seawater absorption coefficient (Francois and Garrison, 1982a, 1982b) and UNESCO 

equation for sound speed calculation (Wong and Zhu, 1995). 

As it can be seen from Table 5.2, 𝐴𝐴𝐹refℎ=17,𝑘=2 = 1 since the distance between sensor 2 

and HS 17 corresponds to 𝑙ref = 1.47 𝑚. 
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  Sensor 

  1 2 3 

Hotspot 

1 0.4444 0.1520 0.2265 

2 0.5153 0.1528 0.2224 

3 0.5972 0.1533 0.2173 

4 0.4999 0.1780 0.3018 

5 0.6240 0.1796 0.2904 

6 0.8364 0.1805 0.2772 

7 0.3777 0.2104 0.4307 

8 0.4129 0.2133 0.3928 

9 0.3410 0.2244 0.5006 

10 0.3642 0.2281 0.4394 

11 0.2190 0.3634 0.5184 

12 0.2232 0.3863 0.4503 

13 0.2059 0.4093 0.4446 

14 0.2092 0.4465 0.4026 

15 0.1778 0.5664 0.3181 

16 0.1797 0.7304 0.3044 

17 0.1811 1.0000 0.2889 

18 0.1520 0.4955 0.2350 

19 0.1531 0.5805 0.2303 

20 0.1538 0.6663 0.2245 

Table 5.2 Reference AAF for any sensor with respect to any hotspot 

5.1.4 Vector of Possible Local Thresholds 

A vector of the possible values of the local threshold (𝛾) must be created. Since the ET is 

the test the sensors will perform, it is reasonable that this vector has the following form: 

[0,… , 𝛾max]
𝑇 

Of course, the higher 𝛾max the easier it will be not to miss any potential optimal value of 

the local thresholds. Once 𝛾max is chosen, it will be necessary to make sure that 

intermediate values are in a sufficient number to be able to get an accurate final result. 

5.1.5 Computation of Reference Performances and Indexes 

This step is a loop that must be computed for any value of threshold present in the 

previously created vector. 

It is required to calculate the local probabilities of detection and false alarm of any sensor 

given that the target may be located on any HS. This means that for any 𝑘𝑡h sensor, 𝑁𝐻𝑆 

local probabilities of detection must be calculated and only one probability of false alarm 

(since the latter does not depend on the AAF). 
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{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

for any 𝑘 = 1, … , 𝑁𝐾

{
 
 
 
 
 
 
 

 
 
 
 
 
 
 

𝑃𝑑,refℎ=1,𝑘|𝛾=0
= 2𝒬(√

𝛾[= 0]

𝜎𝑤,ref
2 + 𝜎𝜉,ref

2 ∙ 𝐴𝐴𝐹refℎ=1,𝑘
2 ) = 2𝒬(√

𝛾[= 0]

1 + 𝑆𝑁𝑅ref ∙ 𝐴𝐴𝐹refℎ=1,𝑘
2 )

⋮

𝑃𝑑,refℎ=⋯,𝑘|𝛾=0
= 2𝒬(√

𝛾[= 0]

𝜎𝑤,ref
2 + 𝜎𝜉,ref

2 ∙ 𝐴𝐴𝐹refℎ=⋯,𝑘
2 ) = 2𝒬(√

𝛾[= 0]

1 + 𝑆𝑁𝑅ref ∙ 𝐴𝐴𝐹refℎ=⋯,𝑘
2 )

⋮

𝑃𝑑,refℎ=𝑁𝐻𝑆,𝑘
|
𝛾=0

= 2𝒬 (√
𝛾[= 0]

𝜎𝑤,ref
2 + 𝜎𝜉,ref

2 ∙ 𝐴𝐴𝐹refℎ=𝑁𝐻𝑆,𝑘
2 ) = 2𝒬 (√

𝛾[= 0]

1+ 𝑆𝑁𝑅ref ∙ 𝐴𝐴𝐹refℎ=𝑁𝐻𝑆,𝑘
2 )

𝑃𝑓,ref𝑘
|
𝛾=0

= 2𝒬 (√
𝛾[= 0]

𝜎𝑤,ref
2 ) = 2𝒬 (√𝛾[= 0])

⋮

{
 
 
 
 
 
 
 

 
 
 
 
 
 
 

𝑃𝑑,refℎ=1,𝑘|𝛾=⋯
= 2𝒬(√

𝛾[= ⋯ ]

𝜎𝑤,ref
2 + 𝜎𝜉,ref

2 ∙ 𝐴𝐴𝐹refℎ=1,𝑘
2 ) = 2𝒬(√

𝛾[= ⋯ ]

1 + 𝑆𝑁𝑅ref ∙ 𝐴𝐴𝐹refℎ=1,𝑘
2 )

⋮

𝑃𝑑,refℎ=⋯,𝑘|𝛾=⋯
= 2𝒬(√

𝛾[= ⋯ ]

𝜎𝑤,ref
2 + 𝜎𝜉,ref

2 ∙ 𝐴𝐴𝐹refℎ=⋯,𝑘
2 ) = 2𝒬(√

𝛾[= ⋯ ]

1 + 𝑆𝑁𝑅ref ∙ 𝐴𝐴𝐹refℎ=⋯,𝑘
2 )

⋮

𝑃𝑑,refℎ=𝑁𝐻𝑆,𝑘
|
𝛾=⋯

= 2𝒬 (√
𝛾[= ⋯ ]

𝜎𝑤,ref
2 + 𝜎𝜉,ref

2 ∙ 𝐴𝐴𝐹refℎ=𝑁𝐻𝑆,𝑘
2 ) = 2𝒬 (√

𝛾[= ⋯ ]

1+ 𝑆𝑁𝑅ref ∙ 𝐴𝐴𝐹refℎ=𝑁𝐻𝑆,𝑘
2 )

𝑃𝑓,ref𝑘
|
𝛾=⋯

= 2𝒬(√
𝛾[= ⋯ ]

𝜎𝑤,ref
2 ) = 2𝒬 (√𝛾[= ⋯ ])

⋮

{
 
 
 
 
 
 
 

 
 
 
 
 
 
 
𝑃𝑑,refℎ=1,𝑘|𝛾=𝛾max

= 2𝒬(√
𝛾[= 𝛾max]

𝜎𝑤,𝑟𝑒𝑓
2 + 𝜎𝜉,𝑟𝑒𝑓

2 ∙ 𝐴𝐴𝐹𝑟𝑒𝑓ℎ=1,𝑘
2 ) = 2𝒬 (√

𝛾[= 𝛾max]

1 + 𝑆𝑁𝑅𝑟𝑒𝑓 ∙ 𝐴𝐴𝐹𝑟𝑒𝑓ℎ=1,𝑘
2 )

⋮

𝑃𝑑,refℎ=⋯,𝑘|𝛾=𝛾max
= 2𝒬(√

𝛾[= 𝛾max]

𝜎𝑤,ref
2 + 𝜎𝜉,ref

2 ∙ 𝐴𝐴𝐹refℎ=⋯,𝑘
2 ) = 2𝒬(√

𝛾[= 𝛾max]

1 + 𝑆𝑁𝑅ref ∙ 𝐴𝐴𝐹refℎ=⋯,𝑘
2 )

⋮

𝑃𝑑,refℎ=𝑁𝐻𝑆,𝑘
|
𝛾=𝛾max

= 2𝒬(√
𝛾[= 𝛾max]

𝜎𝑤,ref
2 + 𝜎𝜉,ref

2 ∙ 𝐴𝐴𝐹refℎ=𝑁𝐻𝑆,𝑘
2 ) = 2𝒬 (√

𝛾[= 𝛾max]

1 + 𝑆𝑁𝑅ref ∙ 𝐴𝐴𝐹refℎ=𝑁𝐻𝑆,𝑘
2 )

𝑃𝑓,ref𝑘
|
𝛾=𝛾max

= 2𝒬 (√
𝛾[= 𝛾max]

𝜎𝑤,ref
2 ) = 2𝒬 (√𝛾[= 𝛾max])

 

Once all these values are gathered, it is possible to apply one of the indexes 𝑋 for the 

selection of a threshold (where 𝑋 can be 𝐽, 𝑑2, 𝐶𝑍 which were introduced in the section 

about threshold selection). Though, for any sensor, 𝑁𝐻𝑆 local probabilities of detection 

were calculated. As a consequence, 𝑁𝐻𝑆 different values of 𝑋 will be obtained for any 

sensor: each of them considering a different HS. In this work, all the HS present in the 

manifold have been assumed to have an equal probability of failure. For this reason, all 

the values of 𝑋 obtained for a single sensor (𝑁𝐻𝑆 values) can be reduced to a single 𝑋 

value using an arithmetic mean: 
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{
 
 
 
 

 
 
 
 

𝐽ref𝑘|𝛾=0
=

∑ [𝑃𝑑,refℎ,𝑘
|
𝛾=0

−𝑃𝑓,ref𝑘
|
𝛾=0

]  
𝑁𝐻𝑆
ℎ=1

𝑁𝐻𝑆

⋮

𝐽ref𝑘|𝛾=⋯
=

∑ [𝑃𝑑,refℎ,𝑘
|
𝛾=⋯

−𝑃𝑓,ref𝑘
|
𝛾=⋯

]  
𝑁𝐻𝑆
ℎ=1

𝑁𝐻𝑆

⋮

𝐽ref𝑘|𝛾=𝛾max
=

∑ [𝑃𝑑,refℎ,𝑘
|
𝛾=𝛾max

−𝑃𝑓,ref𝑘
|
𝛾=𝛾max

]  
𝑁𝐻𝑆
ℎ=1

𝑁𝐻𝑆

 or weighted means (if possible) 

{
 
 
 
 
 

 
 
 
 
 

𝑑2ref𝑘|𝛾=0
=

∑ [(1−𝑃𝑑,refℎ,𝑘
|
𝛾=0

)

2

+(𝑃𝑓,ref𝑘
|
𝛾=0

)
2
]

𝑁𝐻𝑆
ℎ=1

𝑁𝐻𝑆

⋮

𝑑2ref𝑘|𝛾=⋯
=

∑ [(1−𝑃𝑑,refℎ,𝑘
|
𝛾=⋯

)

2

+(𝑃𝑓,ref𝑘
|
𝛾=⋯

)
2
]

𝑁𝐻𝑆
ℎ=1

𝑁𝐻𝑆

⋮

𝑑2ref𝑘|𝛾=𝛾max
=

∑ [(1−𝑃𝑑,refℎ,𝑘
|
𝛾=𝛾max

)

2

+(𝑃𝑓,ref𝑘
|
𝛾=𝛾max

)

2

]
𝑁𝐻𝑆
ℎ=1

𝑁𝐻𝑆

 or weighted means (if possible) 

{
 
 
 
 

 
 
 
 

𝐶𝑍ref𝑘|𝛾=0
=

∑ [𝑃𝑑,refℎ,𝑘
|
𝛾=0

∙(1−𝑃𝑓,ref𝑘
|
𝛾=0

)]  
𝑁𝐻𝑆
ℎ=1

𝑁𝐻𝑆

⋮

𝐶𝑍ref𝑘|𝛾=⋯
=

∑ [𝑃𝑑,refℎ,𝑘
|
𝛾=⋯

∙(1−𝑃𝑓,ref𝑘
|
𝛾=⋯

)]  
𝑁𝐻𝑆
ℎ=1

𝑁𝐻𝑆

⋮

𝐶𝑍ref𝑘|𝛾=𝛾max
=

∑ [𝑃𝑑,refℎ,𝑘
|
𝛾=𝛾max

∙(1−𝑃𝑓,ref𝑘
|
𝛾=𝛾max

)]  
𝑁𝐻𝑆
ℎ=1

𝑁𝐻𝑆

 or weighted means (if possible) 

5.1.6 Selection of Optimal Local Threshold 

Now, for any sensor, there exists a set of value of 𝑋 (𝑋 may be any of the three indices 

indicated before), this set has its cardinality equal to the number of components of  

[0,… , 𝛾max]
𝑇 since values of 𝑋 has been generated from the different values of 𝛾.  

The selected local threshold will be the one yielding the highest value 𝑋 among all those 

generated (highest value in case of  𝐽 and 𝐶𝑍, lowest in case of 𝑑2).  

For any sensor 𝑘 = 1, … , 𝑁𝐾, the optimal local threshold will be: 

𝛾𝑘 = 𝛾 ( max
𝛾=0,…,𝛾max

{𝐽ref𝑘|𝛾
}) 

𝛾𝑘 = 𝛾 ( min
𝛾=0,…,𝛾max

{𝑑2ref𝑘|𝛾
}) 

𝛾𝑘 = 𝛾 ( max
𝛾=0,…,𝛾max

{𝐶𝑍ref𝑘|𝛾
}) 

Table 5.3 summarizes the obtained thresholds with the three different indexes: 
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  Sensor 

  1 2 3 

𝑱ref  
Index value 0.2566 0.2735 0.2687 

Threshold 1.8336 1.9239 1.7378 

𝑪𝒁ref 
Index value 0.3799 0.3895 0.3894 

Threshold  1.0346 1.0921 1.0592 

𝒅𝟐ref 
Index value 0.3116 0.3038 0.2906 

Threshold  0.8942   0.9217    0.9432 

Table 5.3 Optimal local thresholds for ET according to different indexes 

These values were obtained with a threshold vector [0,… , 𝛾max]
𝑇 where the distance 

between two consecutive elements was 0.00001.   

It is worth to remind that reported values are normalized values since 𝜎𝑤,𝑘
2 = 1 for each 

sensor (as the sensors are the same model); this means those values reported in Table 

5.3 are not the real values but, once known the value of thermal noise associated to the 

receivers, it is possible to know the real values of thresholds that are going to be used in 

the LDS.   

5.2 Fusion Center Tuning 

Unlike the proposed method for sensor tuning, in this phase, in order to compute the 

global probabilities at different threshold values, a brute force method is proposed 

(Candy and Breitfeller, 2013). The reason is that the possibility of using equations in a 

closed-form is not always possible, and using a brute force method makes it easier to 

change input parameters without having to elaborate a new mathematical expression.  

The methods change according to the kind of FR the FC is expected to perform in 

operating conditions: the CR or the WFR. Both methods start with the simulation of a set 

of negative events and a set of positive events by generating samples of reference 

signals. The choice of FC global threshold will be based on the analysis of different 

performances yielded by continuously trying new values of the global threshold. FC 

tuning encompasses the sensor tuning phase, from which specific results must be 

retrieved.  

The results shown in the next sections are based on the results and method explained in 

the previous chapter.  
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5.2.1 Tuning of a Fusion Center Performing the Counting Rule 

 

Figure 5.3 Flowchart of the algorithm for tuning of a FC using CR 
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5.2.1.1 Calculation of Reference AAFs 

Before the procedure starts, it is required that the tuning of the sensors has already been 

carried out, and its results are available. 

For any sensor, 𝑁𝐻𝑆 values of AAF were calculated. In order to have a performing 

algorithm (from a computational perspective), it was decided to calculate a global value 

of AAF for any sensor instead of iterating all the steps for any different HS. For any 

sensor, this global value is calculated by averaging all the AAFs obtained accounting for 

the different HSs. The average should take into consideration the probability of failure of 

the equipment associated with the HSs but, as this information is not available now, the 

arithmetic mean will be performed: 

𝐴𝐴𝐹ref𝑘 =
∑ 𝐴𝐴𝐹refℎ,𝑘
𝑁𝐻𝑆
ℎ=1

𝑁𝐻𝑆
 or weighted mean (if possible) 

Table 5.4 shows the result of the previous equation based on values shown in Table 5.2: 

 Sensor 

 1 2 3 

𝑨𝑨𝑭ref 0.3434 0.3758 0.3358 

Table 5.4 Reference AAFs for any sensor 

5.2.1.2 Generation of Samples of Signals 

It is required to create two sets of signals for any sensor. Every set corresponds to a 

class of events (positive and negative). Both sets will be made of 𝑡test consecutive instants 

represented by 𝑡test signal amplitudes. The value of 𝑡test must be sufficiently high to 

guarantee a final solution as accurate as possible with respect to the theoretical one. 

{

                                       

𝐻1:     𝑦𝑘,𝑡 = 𝜉𝑘,𝑡 ∙ 𝐴𝐴𝐹𝑘 +𝑤𝑘,𝑡            𝑡 = 1,… , 𝑡test               

𝐻0:     𝑦𝑘,𝑡 = 𝑤𝑘,𝑡                                     𝑡 = 𝑡test + 1,… , 2𝑡test
 

Where {

                                       
𝜉𝑘~𝒩(0, 𝑆𝑁𝑅)

𝑤𝑘~𝒩(0,1)
 

Of course, other pdfs can be used, but this also means that the equations used during 

the sensor tuning should be changed accordingly, since they were based on the same 

pdfs written above.  

5.2.1.3 Sensor Test and Decision 

Each sensor has to perform the ET on each signal of its sets (one made of signals 

belonging to positive events, the other of signals belonging to negative events) and make 

a local binary decision based on the threshold calculated after tuning the sensors (Table 

5.3). 

For each sensor 𝑘 = 1, … ,𝑁𝐾: 

𝑑𝑘,𝑡 = {
1, 𝑦𝑘,𝑡

2 ≥ 𝛾𝑘
0, 𝑦𝑘,𝑡

2 < 𝛾𝑘
   𝑡 = 1,… , 2𝑡test 

5.2.1.4 Fusion Rule 

A FR is applied to summarize all the local decisions simulating the behavior of the FC. In 

this case, the CR is used. 

For each instant 𝑡 = 1, … , 2𝑡test:  
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ΛCR𝑡 =∑𝑑𝑘,𝑡

𝑁𝐾

𝑘=1

 

This step creates a vector of 2𝑡test elements. 

5.2.1.5 Vector of Possible Global Thresholds 

Due to the nature of the CR, the vector containing all the possible values of the global 

threshold will be: 

[0,1,… , 𝑁𝐾 + 1]
𝑇 

These elements are those values of global threshold 𝛾 sufficient to create a complete ROC 

curve. 

5.2.1.6 Global Decision 

For any value of the global threshold 𝛾, a global decision 𝑑FC for each instant will be taken 

based on the results of the CR previously obtained.  

For each instant 𝑡 = 1, … , 2𝑡test: 

{
 
 
 

 
 
 𝑑FC𝑡|𝛾=0

= {
1, ΛFC𝑡 ≥ 𝛾[= 0]

0, ΛFC𝑡 < 𝛾[= 0]

𝑑FC𝑡|𝛾=1
= {

1, ΛFC𝑡 ≥ 𝛾[= 1]

0, ΛFC𝑡 < 𝛾[= 1]

⋮

𝑑FC𝑡|𝛾=𝑁𝐾+1
= {

1, ΛFC𝑡 ≥ 𝛾[= 𝑁𝐾 + 1]

0, ΛFC𝑡 < 𝛾[= 𝑁𝐾 + 1]

 

Note that it is possible to use this alternative version: 𝑑FC𝑡|𝛾
= {

1, ΛFC𝑡 > 𝛾

0, ΛFC𝑡 ≤ 𝛾
 

In that case, the threshold vector should be [−1,0,… , 𝑁𝐾]
𝑇. 

5.2.1.7 Performance Evaluation and Threshold Selection 

After computing the previous loop, results generated using the different threshold must 

be evaluated: global probabilities of detection and global probabilities of false alarm have 

to be calculated for any threshold. These couples of values can then be graded using 

either one of the indexes shown during the tuning of the sensors or a PR-based index like 

the F-score (𝐹𝛽). However, PR-based indexes should be used only when the disproportion 

between instants in the positive and negative classes is close to the real scenario, in this 

case 𝑡test instants were used for both scenarios, meaning that a ROC-based index (𝐽, 𝑑2, 

or 𝐶𝑍) is more suitable. 
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{
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

{
 
 
 
 

 
 
 
 

𝑄𝑑,ref|𝛾=0 =
∑ [𝑑FC𝑡|𝛾=0

]
𝑡test
𝑡=1

𝑡test

𝑄𝑑,ref|𝛾=1 =
∑ [𝑑FC𝑡|𝛾=1

]𝑡test
𝑡=1

𝑡test
⋮

𝑄𝑑,ref|𝛾=𝑁𝐾+1
=
∑ [𝑑FC𝑡|𝛾=𝑁𝐾+1

]𝑡test
𝑡=1

𝑡test

{
 
 
 
 

 
 
 
 

𝑄𝑓,ref|𝛾=0
=
∑ [𝑑FC𝑡|𝛾=0

]2𝑡test
𝑡test+1

𝑡test

𝑄𝑓,ref|𝛾=1
=
∑ [𝑑FC𝑡|𝛾=1

]2𝑡test
𝑡test+1

𝑡test
⋮

𝑄𝑓,ref|𝛾=𝑁𝐾+1
=
∑ [𝑑FC𝑡|𝛾=𝑁𝐾+1

]
𝑡test
𝑡test+1

𝑡test

 

From Figure 5.4, the ROC curves generated by applying the CR can be seen. The 

difference among these curves is derived from the different indexes used to select the 

optimal local threshold for any sensor. The local thresholds used for the sensors, in fact, 

are those reported in Table 5.3. Values were obtained assuming 𝑡test = 5000. 

 

Figure 5.4 ROC curves of the performance test carried out during the FC tuning (in case it 
will perform the CR). Different colors represent different indexes used for sensor tuning. 

The indexes must be calculated for any threshold, which means that nine results of 

possible optimal global thresholds will be calculated (because the three indexes will be 

applied for each point of the three ROC curves). However, as the CR applied was applied, 

the number of possible optimal global thresholds will be undoubtedly lower than nine.   
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{
 
 

 
 

𝐽ref|𝛾=0 = 𝑄𝑑,ref|𝛾=0 −𝑄𝑓,ref
|
𝛾=0

𝐽ref|𝛾=1 = 𝑄𝑑,ref|𝛾=1 −𝑄𝑓,ref|𝛾=1
⋮

𝐽ref|𝛾=𝑁𝐾+1 = 𝑄𝑑,ref|𝛾=𝑁𝐾+1
− 𝑄𝑓,ref|𝛾=𝑁𝐾+1

 

{
  
 

  
 𝑑2ref|𝛾=0 = (1 − 𝑄𝑑,ref|𝛾=0

)
2

+ (𝑄𝑓,ref|𝛾=0
)
2

𝑑2ref|𝛾=1 = (1 − 𝑄𝑑,ref|𝛾=1)
2

+ (𝑄𝑓,ref|𝛾=1
)
2

⋮

𝑑2ref|𝛾=𝑁𝐾+1 = (1 − 𝑄𝑑,ref|𝛾=𝑁𝐾+1
)
2

+ (𝑄𝑓,ref|𝛾=𝑁𝐾+1
)
2

  

{
 
 

 
 𝐶𝑍ref|𝛾=0 = 𝑄𝑑,ref|𝛾=0 ∙ (1 − 𝑄𝑓,ref|𝛾=0

)

𝐶𝑍ref|𝛾=1 = 𝑄𝑑,ref|𝛾=1 ∙ (1 − 𝑄𝑓,ref|𝛾=1
)

⋮

𝐶𝑍ref|𝛾=𝑁𝐾+1 = 𝑄𝑑,ref|𝛾=𝑁𝐾+1
∙ (1 − 𝑄𝑓,ref|𝛾=𝑁𝐾+1

)

 

The chosen global threshold (𝛾
FC

) will be the one which maximizes one of the indexes 

(minimizes in case 𝑑2 is chosen): 

𝛾
FC
= 𝛾 ( max

𝛾=0,1,…,𝑁𝐾+1
{𝐽ref|𝛾}) 

𝛾
FC
= 𝛾 ( min

𝛾=0,1,…,𝑁𝐾+1
{𝑑2ref|𝛾}) 

𝛾
FC
= 𝛾 ( max

𝛾=0,1,…,𝑁𝐾+1
{𝐶𝑍ref|𝛾}) 

5.2.1.8 Results  

• Results in Case 𝐽 is used for Local Threshold Selection 

In Table 5.5, performances of the FC are reported in case the tuning of the sensors was 

carried out applying 𝐽 index. 

In this scenario, regardless of the index used for the FC tuning, 𝛾 = 1 is the optimal local 

threshold (as in the previous case). The point on the ROC curve can be graphically seen 

in Figure 5.5. 

  Performances Index 
AUC 

  𝑄𝑑,ref 𝑄𝑓,ref 𝐽ref 𝑑2 𝐶𝑍 

Threshold 

0 1 1 0 1 0 

0.7704 

1 0.8480   0.4431     0.4049 0.2194   0.4723 

2 0.4496 0.0816 0.3680 0.3096   0.4129 

3 0.1018 0.0055   0.0963 0.8067 0.1013   

4 0 0 0 1 0 

Table 5.5 FC performances (in case it will perform the CR) at different thresholds 
evaluated by J, d2, and CZ. Optimal global threshold is reported in bold. These results are 

generated when sensor local thresholds have been selected using J. 
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Figure 5.5 ROC curve of the performance test carried out during the tuning of the FC (in 
case it will perform the CR) when local thresholds have been selected using J. Red dot on 

the curve is the optimal global threshold. 

• Results in Case 𝑑2 is used for Local Threshold Selection 

in Table 5.6, performances of the FC are reported in case the tuning of the sensors was 

carried out applying 𝑑2 index, are reported. 

In this scenario, regardless of the index used for the FC tuning, 𝛾 = 2 is the optimal 

threshold. The point on the ROC curve can be graphically seen in Figure 5.6. 

  Performances Index 
AUC 

  𝑄𝑑,ref 𝑄𝑓,ref 𝐽ref 𝑑2ref 𝐶𝑍 

Threshold 

0 1 1 0 1 0 

0.7393 

1 0.9397 0.7102 0.2296 0.5080 0.2724 

2 0.6591     0.2689 0.3902 0.1885    0.4819 

3 0.2236 0.0401   0.1835 0.6044 0.2146   

4 0 0 0 1 0 

Table 5.6 FC performances (in case it will perform the CR) at different thresholds 
evaluated by J, d2, and CZ. The optimal global threshold is reported in bold. These results 

are generated when sensor local thresholds have been selected using d2. 
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Figure 5.6 ROC curve of the performance test carried out during the tuning of the FC (in 
case it will perform the CR) when local thresholds have been selected using d2. Red dot 

on the curve is the optimal global threshold. 

• Results in Case 𝐶𝑍 is used for Local Threshold Selection 

In Table 5.7, performances of the FC, in case the tuning of the sensors was carried out 

applying 𝐶𝑍 index, are reported. 

In this scenario, regardless of the index used for the FC tuning, 𝛾 = 2 is the optimal one 

(as in the previous case). The point on the ROC curve can be graphically seen in Figure 

5.7. 

  Performances Index 
AUC 

  𝑄𝑑,ref 𝑄𝑓,ref 𝐽ref 𝑑2ref 𝐶𝑍ref 

Threshold 

0 1 1 0 1 0 

0.7473 

1 0.9247    0.6628 0.2619 0.4450 0.3118 

2 0.6192     0.2192   0.4000 0.1931 0.4834   

3 0.1912   0.0272      0.1640 0.6549 0.1860 

4 0 0 0 1 0 

Table 5.7 FC performances (in case it will perform the CR) at different thresholds 
evaluated by J, d2, and CZ. The optimal global threshold is reported in bold. These results 

are generated when sensor local thresholds have been selected using CZ. 
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Figure 5.7 ROC curve of the performance test carried out during the tuning of the FC 
(index in case it will perform the CR) when local thresholds have been selected using CZ. 

Red dot on the curve is the optimal global threshold. 
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5.2.2 Tuning of a Fusion Center Performing the Weighted Fusion Rule 

 

Figure 5.8 Flowchart of the algorithm for tuning of a FC using WFR 
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The algorithm for the tuning of a FC that is expected to perform a WFR is the same as 

the one used in case of CR, except for some steps: 

• A different FR is applied when testing any possible value of the global threshold 

(the WFR instead of the CR). 

 

• The possible values of the global threshold are different. 

Unlike the CR which produces a non-negative integer number as an outcome, the 

WFR produces a real number as a result (either positive or negative). For this 

reason, like in the case of the sensor local threshold, a tentative vector must be 

provided. 

Given a value 𝛾
max

, the vector will be: 

[−|𝛾
max
|, … , |𝛾

max
|]
𝑇
 

Also in this case, the higher |𝛾
max
| the easier it will be not to miss any potential 

optimal value of the global threshold. Also, the higher the number of elements 

present in this vector, the easier it will be to have an accurate final result. 

 

• When the WFR is applied, it is necessary to know the sensor performances; this, 

as already explained, cannot be theoretically done because the leakage position is 

unknown (leakage point is a NCT). To overcome this issue, average reference 

performances for every sensor are considered. These performances can be 

obtained from the tuning of the sensors. 

When performances of each threshold for any sensor were calculated (during the 

tuning of the sensors), for each threshold there were 𝑁𝐻𝑆 values of reference local 

probability of detection and one value of reference local probability of false alarm. 

The proposed solution is to gather all the performances of any sensor that are 

associated with its selected optimal local threshold and calculate a global value of 

performances: 

For any 𝑘 = 1,… ,𝑁𝐾 

{
 
 

 
 
𝑃𝑑,𝐹𝐶𝑘 =

∑ (𝑃𝑑,refℎ,𝑘
|
𝛾𝑘

)  
𝑁𝐻𝑆
ℎ=1

𝑁𝐻𝑆

𝑃𝑓,𝐹𝐶𝑘
= 𝑃𝑓,ref𝑘

|
𝛾𝑘

 or weighted mean (if possible) 

These values of probability of detection are arithmetic means of all the 

probabilities calculated with respect to different HSs. The arithmetic mean 

assumes that all the HSs are equally likely to be leaking sources. Again, a 

weighted average based on equipment failure probabilities as weights would be 

more suitable. The performances used are shown in Table 5.8 where different 

performances were calculated according to the index used for the selection of the 

local threshold.  
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  Sensor 1 

  𝑃𝑑,FC 𝑃𝑓,FC ln (
𝑃𝑑,FC
𝑃𝑓,FC

) 
Index 
value 

Index 
used 

𝑱 0.4323 0.1757 0.9002 𝐽 = 0.2566 
𝑪𝒁 0.5499 0.3091 0.5761 𝐶𝑍 = 0.3563 
𝒅𝟐 0.5774 0.3443 0.5169 𝑑2 = 0.3532 

  Sensor 2 

  𝑃𝑑,FC 𝑃𝑓,FC ln (
𝑃𝑑,𝐹𝐶
𝑃𝑓,FC

) 
Index 
value 

Index 
used 

𝑱 0.4389 0.1654 0.9758 𝐽 = 0.2735 
𝑪𝒁 0.5533 0.2960 0.6255 𝐶𝑍 = 0.3663 
𝒅𝟐 0.5847 0.3370 0.5510 𝑑2 = 0.3422 

  Sensor 3 

  𝑃𝑑,FC 𝑃𝑓,FC ln (
𝑃𝑑,FC
𝑃𝑓,FC

) 
Index 
value 

Index 
used 

𝑱 0.4561 0.1874 0.8893 𝐽 = 0.2687 
𝑪𝒁 0.5591 0.3034 0.6112 𝐶𝑍 = 0.3706 
𝒅𝟐 0.5812 0.3315 0.5615 𝑑2 = 0.3310 

Table 5.8 Reference performances that are used for FC tuning in case it will perform the 
WFR and are also used by the FC for either detection or localization.  

The WFR gives priority to that information coming from sensors whose performance is 

higher but, it is visible (from Table 5.8) that, once selected a specific index for the 

selection of local thresholds, performances do not change too much among different 

sensors. This can be explained as the centroid of sensor positions is near the centroid of 

HS positions. Also, it must be accounted that these performances are yielded from 

average local indexes, making those differences among sensor performances even more 

insignificant; this can compromise the benefits of using the WFR as these performances 

will also be used by the FC during either real-time detection or localization in operating 

condition. 

The equations related to this method are the following: 
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{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

From sensor tuning 

{
 
 
 

 
 
 𝐴𝐴𝐹𝑘 =

∑ 𝐴𝐴𝐹ℎ,𝑘
𝑁𝐻𝑆
ℎ=1

𝑁𝐻𝑆

𝑃𝑑,FC𝑘 =

∑ (𝑃𝑑,refℎ,𝑘|𝛾𝑘
)  

𝑁𝐻𝑆
ℎ=1

𝑁𝐻𝑆

𝑃𝑓,FC𝑘
= 𝑃𝑓,ref𝑘

|
𝛾𝑘

Events simulation

{
 
 

 
 {

                                       

𝐻1:     𝑦𝑘,𝑡 = 𝜉𝑘,𝑡 ∙ 𝐴𝐴𝐹𝑘 + 𝑤𝑘,𝑡            𝑡 = 1,… , 𝑡test               

𝐻0:     𝑦𝑘,𝑡 = 𝑤𝑘,𝑡                                     𝑡 = 𝑡test + 1,… , 2𝑡test                                       
𝜉𝑘~𝒩(0, 𝑆𝑁𝑅)

𝑤𝑘~𝒩(0,1)

Sensor detection
and FR

{
 
 

 
 𝑑𝑘,𝑡 = {

1, 𝑦𝑘,𝑡
2 ≥ 𝛾𝑘

0, 𝑦𝑘,𝑡
2 < 𝛾𝑘

     𝑘 = 1, … , 𝑁𝐾

ΛFC𝑡 =∑[𝑑𝑘,𝑡 ∙ ln (
𝑃𝑑,FC𝑘
𝑃𝑓,FC𝑘

)+ (1 − 𝑑𝑘,𝑡) ∙ ln (
1 − 𝑃𝑑,FC𝑘
1 − 𝑃𝑓,FC𝑘

)]

𝑁𝐾

𝑘=1

 𝑡 = 1, … , 2𝑡test

FC detection

{
 
 

 
 𝑑FC𝑡|𝛾=−|𝛾max|

= {
1, ΛFC𝑡 ≥ 𝛾[= −|𝛾max|]

0, ΛFC𝑡 < 𝛾[= −|𝛾max|]

⋮

𝑑FC𝑡|𝛾=|𝛾max|
= {

1, ΛFC𝑡 ≥ 𝛾[= |𝛾max|]

0, ΛFC𝑡 < 𝛾[= |𝛾max|]

     𝑡 = 1, … , 2𝑡𝑡𝑒𝑠𝑡

FC performances

{
 
 
 
 
 
 
 

 
 
 
 
 
 
 

{
  
 

  
 
𝑄𝑑,ref|𝛾=−|𝛾max|

=

∑ [𝑑FC𝑡|𝛾=−|𝛾max|
]𝑡test

𝑡=1

𝑡test
⋮

𝑄𝑑,ref|𝛾=|𝛾max|
=

∑ [𝑑FC𝑡|𝛾=|𝛾max|
]𝑡test

𝑡=1

𝑡test

{
  
 

  
 
𝑄𝑓,ref|𝛾=−|𝛾max|

=

∑ [𝑑FC𝑡|𝛾=−|𝛾max|
]2𝑡test

𝑡test+1

𝑡test
⋮

𝑄𝑓,ref|𝛾=|𝛾𝑡𝑒𝑠𝑡|
=

∑ [𝑑FC𝑡|𝛾=|𝛾max|
]2𝑡test

𝑡test+1

𝑡test

Threshold selection

{
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

{
  
 

  
 
{

𝐽ref|𝛾=−|𝛾max|
= 𝑄𝑑,ref|𝛾=−|𝛾max|

− 𝑄𝑓,ref|𝛾=−|𝛾max|
⋮

𝐽ref|𝛾=|𝛾max| = 𝑄𝑑,ref
|
𝛾=|𝛾max|

−𝑄𝑓,ref|𝛾=|𝛾max|

𝛾
FC
= 𝛾 ( max

𝛾=−|𝛾max|,…,|𝛾max|
{𝐽ref|𝛾})

{
 
 
 

 
 
 

{
 
 

 
 𝑑2ref|𝛾=−|𝛾max| =

(1 − 𝑄𝑑,ref|𝛾=−|𝛾max|
)
2

+ (𝑄𝑓,ref|𝛾=−|𝛾max|
)
2

⋮

𝑑2ref|𝛾=|𝛾max| =
(1 − 𝑄𝑑,ref|𝛾=|𝛾max|

)
2

+ (𝑄𝑓,ref|𝛾=|𝛾max|
)
2

𝛾
FC
= 𝛾 ( min

𝛾=−|𝛾max|,…,|𝛾max|
{𝑑2ref|𝛾})

{
  
 

  
 

{
 
 

 
 𝐶𝑍ref|𝛾=−|𝛾max| = 𝑄𝑑,ref

|
𝛾=−|𝛾max|

∙ (1 − 𝑄𝑓,ref|𝛾=−|𝛾max|
)

⋮

𝐶𝑍ref|𝛾=|𝛾max| = 𝑄𝑑,ref
|
𝛾=−|𝛾max|

∙ (1 − 𝑄𝑓,ref|𝛾=|𝛾max|
)

𝛾
FC
= 𝛾 ( max

𝛾=−|𝛾max|,…,|𝛾max|
{𝐶𝑍ref|𝛾})
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5.2.2.1 Results 

Figure 5.9 shows the ROC curves obtained during the performance evaluation carried out 

during the tuning of the FC. Also in this case, results are different according to what kind 

of index was used when selecting the optimal local threshold. Reported results were 

obtained using a threshold vector [−|𝛾
max
|, … , |𝛾

max
|]
𝑇
 where two consecutive values have 

distance equal to 0.001 and 𝑡test = 5000. 

 

Figure 5.9 ROC curves of the performance test carried out during the FC tuning (in case it 
will perform the WFR). Different colors represent different indexes used for sensor 

tuning. 

The analysis of the single curves will follow the same procedure seen for the tuning of a 

FC expected to perform the CR.  

• Results in Case 𝐽 is used for Local Threshold Selection 

In Table 5.9, performances of the FC, in case the tuning of the sensors was carried out 

applying 𝐽 index, are reported. 

It can be seen that the optimal global threshold changes according to what index was 

used for the FC tuning: 𝛾 = 0.1200 in case 𝐽 is used and : 𝛾 = 0.1020 in case 𝑑2 or 𝐶𝑍 is 

used. The results can be graphically seen in Figure 5.10, where the ROC curve is 

reported. 
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  Performances Index 
AUC 

  𝑄𝑑,ref 𝑄𝑓,ref 𝐽 𝑑2 𝐶𝑍 

Threshold 

-∞ 1 1 0 1 0 

0.7783 

-1.1710 0.8494 0.4417 0.4077 0.2178 0.4742 

0.1020 0.7196 0.3183 0.4013 0.1799   0.4906 

0.1200 0.5980 0.1905 0.4075 0.1979 0.4841 

0.2020 0.4750 0.0857 0.3893 0.2830   0.4343 

1.3930 0.3603 0.0573 0.3029 0.4125 0.3396 

1.4750 0.2442 0.0306 0.2136 0.5722 0.2367 

1.4930 0.1105 0.0048 0.1057 0.7913 0.1100 

+∞ 0 0 0 1 0 

Table 5.9 FC performances (in case it will perform the WFR) at different thresholds 
evaluated by J, d2, and CZ. The optimal global thresholds are reported in bold. These 

results are generated when sensor local thresholds have been selected using J. 

 

Figure 5.10 ROC curve of the performance test carried out during the tuning of the FC (in 
case it will perform the WFR) when local thresholds have been selected using J. Red dots 

on the curve are the optimal global thresholds. 

• Results in Case 𝑑2 is used for Local Threshold Selection 

In Table 5.10, performances of FC, in case the tuning of the sensors was carried out 

applying 𝑑2 index, are reported. 

It can be seen that the optimal global threshold is the same for any index used for the FC 

tuning: 𝛾 = −0.3450. Results can be graphically seen in Figure 5.11, where the ROC curve 

is reported. 
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  Performances Index 
AUC 

  𝑄𝑑,ref 𝑄𝑓,ref 𝐽ref 𝑑2 𝐶𝑍 

Threshold 

-∞ 1 1 0 1 0 

0.7418 

-1.3740 0.9423 0.7084 0.2339 0.5052 0.2748 

-0.4180 0.8478 0.5520 0.2958 0.3278 0.3798 

-0.3550 0.7533 0.4060 0.3473 0.2257 0.4475 

-0.3450 0.6642 0.2693 0.3950 0.1853 0.4854 

0.6010 0.5059 0.1936 0.3122 0.2817 0.4079 

0.6110 0.3626 0.1166 0.2460 0.4198 0.3203 

0.6740 0.2162 0.0366     0.1796 0.6156 0.2083 

+∞ 0 0 0 1 0 

Table 5.10 FC performances (in case it will perform the WFR) at different thresholds 
evaluated by J, d2, and CZ. The optimal global threshold is reported in bold. These results 

are generated when sensor local thresholds have been selected using d2. 

 

Figure 5.11 ROC curve of the performance test carried out during the tuning of the FC (in 
case it will perform the WFR) when local thresholds have been selected using d2. Red dot 

on the curve is the optimal global threshold. 

• Results in Case 𝐶𝑍 is used for Local Threshold Selection 

In Table 5.11, performances of FC, in case the tuning of the sensors was carried out 

applying 𝐶𝑍 index, are reported. 

It can be seen that the optimal global threshold is the same for any index used for the FC 

tuning: 𝛾 = −0.2600. Results can be graphically seen in Figure 5.12, where the ROC curve 

is reported. 
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   Performances Index 
AUC 

  𝑄𝑑,ref 𝑄𝑓,ref 𝐽ref 𝑑2 𝐶𝑍 

Threshold 

-∞ 1 1 0 1 0 

0.7637 

-1.3400 0.9273 0.6470 0.2803 0.4239 0.3273   

-0.3360 0.8306 0.4923 0.3382 0.2711 0.4216 

-0.2720 0.7374 0.3514 0.3860 0.1924 0.4783 

-0.2600 0.6269    0.2088 0.4181 0.1828 0.4960   

0.7330 0.4944 0.1490 0.3454 0.2778 0.4208 

0.7450 0.3462 0.0826 0.2637   0.4342 0.3177 

0.8090 0.2054 0.0256 0.1798   0.6320 0.2002          

+∞ 0 0 0 1 0 

Table 5.11 FC performances (in case it will perform the WFR) at different thresholds 
evaluated by J, d2, and CZ. The optimal global threshold is reported in bold. These results 

are generated when sensor local thresholds have been selected using CZ. 

 

Figure 5.12 ROC curve of the performance test carried out during the tuning of the FC (in 
case it will perform the WFR) when local thresholds have been selected using CZ. Red 

dot on the curve is the optimal global threshold. 

5.2.3 Observations 

A general observation is on the choice of the threshold, more specifically on which index 

to use when select it. The choice of the index should be made knowing the system as a 

whole, not only focusing on the LDS. The choice should be based on the requirements 

dictated by a specific reliability study. Some examples could be to decide the threshold 

that ensures a specific minimum value of the probability of detection or a specific 

maximum value of the probability of false alarm. 

In this study, this information is not available. However, a final threshold must be 

chosen. As explained in section 4.3.3.2, 𝐶𝑍 and 𝑑2 have the limitation of having little 

theoretical meaning (they are only based on the geometrical features of the ROC space). 

As already said, the same value of index may be referring to points on the opposite side 

of the chance line. Whereas, 𝐽 is the only index among these from which, only by looking 
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at the sign of the index, it is possible to tell whether the threshold will have 𝑄𝑑 > 𝑄𝑓 or 

not. For this reason, 𝐽 will be used for the selection of the optimal global threshold. 

Looking at Table 5.12 and Table 5.13, it can be seen how a FC tuned to perform the WFR 

should be able to provide slightly better results than the CR case (as global indexes for 

optimal thresholds shows more performing values). This may not be true in an absolute 

way since the real target position will alter the results. In fact, it is vital to remember 

that these results are not representative of a real scenario; they are only average values 

based on the assumption that all the HSs have the same failure probability. Also, tuning 

is based on physical models for signal simulation to which reference parameters were 

applied. These assumptions make these results different from a real scenario. 

5.2.3.1 Observations on the Tuning of a FC performing the CR 

From what observed, in order to maximize an index at FC level when the CR is expected 

to be performed (or minimize it, as in the case of 𝑑2), the required action is to use the 

same index to select the local threshold at sensors level; for example, if the tuning of the 

FC aims to find the global threshold able to maximize 𝐽, the best idea is to tune the 

sensors selecting those local thresholds able to maximize 𝐽 at local level also. In Table 

5.12, it is possible to see how it can be obtained the optimal global threshold according 

to the different indexes starting from an appropriate tuning of the sensors: 

 Case 1 Case 2 Case 3 

 Sen 1 Sen 2 Sen 3 Sen 1 Sen 2 Sen 3 Sen 1 Sen 2 Sen 3 

Local  
Thr. 

𝟏. 𝟖𝟑𝟑𝟔 𝟏. 𝟗𝟐𝟑𝟗 𝟏. 𝟕𝟑𝟕𝟖 0.8942 0.9217 0.9432 1.0346 1.0921 1.0592 

Sensor 
Index 

𝑱 = 
𝟎. 𝟐𝟓𝟔𝟔 

𝑱 = 
𝟎. 𝟐𝟕𝟑𝟓 

𝑱 = 
𝟎. 𝟐𝟔𝟖𝟕 

𝑑2 = 
0.3116 

𝑑2 = 
0.3038 

𝑑2 = 
0.2906 

𝐶𝑍 = 
0.3799 

𝐶𝑍 = 
0.3895 

𝐶𝑍 = 
0.3894 

Global 
Thr. 

𝟏 2 2 

FC  
Index 

𝑱 = 𝟎. 𝟒𝟎𝟒𝟗 𝑑2 = 0.1885 𝐶𝑍 = 0.4688 

Table 5.12 Table showing three different cases. Each case aims to obtain the optimal 
global threshold according to a specific index in case the FC performs the CR. 

The suggested procedure is to select the sensor thresholds using 𝐽 and use the same 

index to select the global threshold at FC level. 

5.2.3.2 Observations on the Tuning of a FC Performing the WFR 

In Table 5.13, it is possible to see how the optimal global threshold can be obtained 

according to the different indexes starting from an appropriate tuning of the sensors if 

the FC is expected to perform the WFR. It is visible that in order to be able to get the 

best value of a specified index at FC level, it may be necessary to tune sensors through 

the optimization of a different index. This introduces the fact that it would have been 

more accurate to perform an iterative loop where the sensor local thresholds were not 

selected to maximize (or minimize) a specific index at sensor level but at FC level. 

However, this would have required great computational effort. This because not only any 

non-negative value is a possible sensor local threshold, but also because when applying 

the WFR, any real value is a possible global threshold. Performing an iterative loop trying 

out any possible combination may result cumbersome. This is the main reason why local 

indexes were used for sensor tuning.  

The suggested procedure is to select the sensor thresholds using 𝐶𝑍 and use 𝐽 to select 

the global threshold at FC level. 
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 Case 1 Case 2 Case 3 

 Sen 1 Sen 2 Sen 3 Sen 1 Sen 2 Sen 3 Sen 1 Sen 2 Sen 3 

Local  
Thr. 

𝟏. 𝟎𝟑𝟒𝟔 𝟏. 𝟎𝟗𝟐𝟏 𝟏. 𝟎𝟓𝟗𝟐 1.7555 1.8183 1.7347 1.0346 1.0921 1.0592 

Sensor 
Index 

𝑪𝒁 = 
𝟎. 𝟑𝟕𝟗𝟗 

𝑪𝒁 = 
𝟎. 𝟑𝟖𝟗𝟓 

𝑪𝒁 = 
𝟎. 𝟑𝟖𝟗𝟒 

𝐽 = 
0.2398 

𝐽 = 
0.2520 

𝐽 = 
0.2684 

𝐶𝑍 = 
0.3799 

𝐶𝑍 = 
0.3895 

𝐶𝑍 = 
0.3894 

Global 
Thr. 

𝟎. 𝟎𝟔𝟒𝟎 0.1020 −0.2600 

FC  
Index 

𝑱 = 𝟎. 𝟒𝟏𝟖𝟏 𝑑2 = 0.1799 𝐶𝑍 = 0.4815 

Table 5.13 Table showing three different cases. Each case aims to obtain the optimal 
global threshold according to a specific index in case the FC performs the WFR. 

5.3 Real-time Algorithm 

Once the tuning of either the sensors or the FC is completed, the LDS can be tested in a 

real/simulated scenario. An algorithm for real-time detection and localization must be 

developed and will consist of a set of operations the sensors and the FC must perform 

during the operating condition. 

The algorithm will be instant-based, it assumes perfect instant coordination among the 

sensors and the FC where every action, operation, or computation is instantaneous (no 

transmission latency or processing time is taken into consideration).  

Also in this case, it is necessary to remember that the reported equations refer to a 

notation where values are normalized considering 𝜎𝑤,𝑘
2 = 1. 

5.3.1 Sensor Level 
As seen, each sensor performs a test on the received signal. Many tests could be carried 

out. In this work, the pdfs of the signals in case of either leak or no leak, were modeled 

in such a way that the ET is the UMP test. 

The algorithm for the 𝑘th sensor is shown in Figure 5.13: 
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Figure 5.13 Flowchart of the algorithm that a sensor must perform each instant 

Each instant 𝑡, the sensor must perform a series of actions that can be written in the 

following mathematical form: 

𝑑𝑘,𝑡 = {
1, 𝑦𝑘,𝑡

2 ≥ 𝛾𝑘
0, 𝑦𝑘,𝑡

2 < 𝛾𝑘
   𝑘 = 1, … , 𝑁𝐾 

This means that at any instant 𝑡, any sensor transmits its local decision 𝑑𝑘,𝑡 to the FC. 

This algorithm repeats itself each instant. 

5.4 Fusion Center Level (Detection and Localization) 

5.4.1 Localization Techniques 

Localization is a fundamental task when it comes to WSN dealing with NCT. ROVs 

inspections can constitute a large part of maintenance costs (Mai et al., 2016). An 

efficient localization system may increase the ability to use ROVs in a more efficient way 

leading to a reduction of its associated operating cost. Here is explained the principles on 

which some proposed methods to localize the oil spill have been developed in this work. 

How these methods can be applied will be discussed in the section dedicated to the real-
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time algorithm, which will focus on how to use these methods in the detection of an oil 

spill. Four methods have been developed. They are summarized in the scheme in Figure 

5.14: 

 

Figure 5.14 Summary of the developed localization techniques 

TISP is the acronym for Target Inside Sensors’ Perimeter, while TOSP is the acronym for 

Target Outside Sensors’ Perimeter. These localization methods are all applied when the 

FC has declared the event as positive. If FC declares the event as negative, there will not 

be any attempt to estimate the target position. 

• Centroid-based method (CBM-TISP) 

When FC declares the event as positive, it also calculates an instantaneous position 

averaging the cartesian coordinates of the sensors that declared the event as positive, 

neglecting those that declared it as negative using the following equation: 

𝑥𝑇
estimated

=
∑ (𝑑𝑘 ∙ 𝑥𝑆

𝑘
)𝑁𝐾

𝑘=1

∑ 𝑑𝑘
𝑁𝐾
𝑘=1

 

In Figure 5.15, the graphical representation of an example of an application of the 

previous equation is reported. 

 

Figure 5.15 Centroid-based Method/Target Inside Sensors’ Perimeter (CBM/TISP). Red 
dots are sensors declaring the event as positive, blue dots are sensors declaring the 

event as negative, and the cross is the estimated target position. 
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• Barycentric-based method (BBM-TISP) 

In this case, the mean is not arithmetic, but it is weighted on the ratio of the sensor 

performances. The reason why this method is an improvement is that in the CBM the 

position is only dependent on the sensor declaration 𝑑𝑘 and on its position. Let us 

suppose one sensor decided 𝑑𝑘 = 1. If that sensor had been closer to the target, it would 

still have decided 𝑑𝑘 = 1. Using BBM, this change of position would result in a different 

result as this change of sensor position would have been compensated with a change of 

performances, which are used as weights in barycenter calculation. Also in this case, only 

the sensors declaring the event as positive are taken into consideration: 

𝑥𝑇
estimated

=

∑ (𝑑𝑘 ∙ 𝑥𝑆
𝑘
∙
𝑃𝑑,𝑘
𝑃𝑓,𝑘

)𝑁𝐾
𝑘=1

∑ (𝑑𝑘 ∙
𝑃𝑑,𝑘
𝑃𝑓,𝑘

)𝑁𝐾
𝑘=1

 

Figure 5.16 is the graphical representation showing how the estimation may be affected 

in case the bottom-left dot represents a sensor whose performances (𝑃𝑑,𝑘 𝑃𝑓,𝑘⁄ ) are higher 

than the bottom-right one.  

 

Figure 5.16 Barycenter-based Method/Target Inside Sensors’ Perimeter (BBM/TISP). 
The bottom-left dot is a sensor whose performances (Pd,k/Pf,k) are higher than the 

bottom-right one. Red dots are sensors declaring the event as positive, blue dots are 
sensors declaring the event as negative, and the cross is the estimated target position. 

The estimated target location has moved towards the bottom-left sensor.  

To obtain the graphical representation above these performances were considered: 

(
𝑃𝑑
𝑃𝑓
)

Bottom-right sensor

< (
𝑃𝑑
𝑃𝑓
)

Bottom-left sensor

 

The two methods showed above have the mathematical limit that the estimated target 

position can never be outside the perimeter of the polygon formed by using the sensors 

as vertices. This methods (TISP), in fact, should only be used in case the desired 

outcome is to find a position inside the sensors’ perimeter. Variations of the TISP 

methods are those in which it is possible to find a target which is outside the sensors’ 

perimeter (TOSP) by giving importance also to those sensors that declared the event as 

negative. 
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• Centroid-based method (CBM-TOSP) 

As before, this CBM is based on averaging the positions of the sensors. The step-by-step 

description of the final equation is the following: 

- The centroid of the sensors that declared the event as positive is calculated 

with the following equation (same as CBM-TISP): 

 

 

 

∑ (𝑑𝑖 ∙ 𝑥𝑆
𝑖
)

𝑁𝐾
𝑖=1

∑ 𝑑𝑖
𝑁𝐾
𝑖=1

 

 

 

 

 

 

 

- For each sensor declaring the event as negative, a position symmetrically 

located on the opposite side of the line passing through the sensor and the 

previously obtained position is calculated. The following equation represents 

the calculation of the abovementioned position for the 𝑘th sensor. (1 − 𝑑𝑘) is 

used to keep the result only when the calculation is applied to the 𝑘th sensor if 

it declared the event as negative: 

 

 

 

[2 ∙
∑ (𝑑𝑖 ∙ 𝑥𝑆

𝑖
)𝑁𝐾

𝑖=1

∑ 𝑑𝑖
𝑁𝐾
𝑖=1

− 𝑥𝑆
𝑘
] ∙ (1 − 𝑑𝑘) 

 

 

 

 

 

As it is possible to see from Figure 5.18, the green dots represent the newly 

calculated positions, each of them is located on the line passing through the 

corresponding sensor and the position calculated in step 1 maintaining the 

same distance from it. 

Figure 5.17 Step 1 of CBM-
TOSP. Red dots are sensors 

declaring the event as 
positive, blue dots are 

sensors declaring the event as 
negative. 

Figure 5.18 Step 2 of CBM-
TOPS. Red dots are the newly 
calculated positions, blue dots 

are sensors declaring the 
event as negative. 
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- Now the centroid of the positions of the sensors that declared the event as 

positive plus the newly calculated positions must be obtained. This is done by 

averaging their coordinates, and the result will represent the estimated target 

position : 

𝑥𝑇
estimated

=

∑ {𝑑𝑘 ∙ 𝑥𝑆
𝑘
+ [2 ∙

∑ (𝑑𝑖 ∙ 𝑥𝑆
𝑖
)𝑁𝐾

𝑖=1

∑ 𝑑𝑖
𝑁𝐾
𝑖=1

− 𝑥𝑆
𝑘
] ∙ (1 − 𝑑𝑘)}

𝑁𝐾
𝑘=1

𝑁𝐾
 

 

Figure 5.19 Step 3 of CBM-TOSP. Red dots are sensors declaring the event as positive, 
blue dots are sensors declaring the event as negative, and the double circle is the 

estimated target position. 

As it is possible to observe from the graphical representation in Figure 5.20, this method 

can give a result outside the sensors’ perimeter. This is done by faking the existence of 

some sensors (declaring the event as positive) outside the perimeter. According to the 

mathematics used to build the method, it is clear that TOPS methods do not extend the 

localization up to unlimited distances outside the sensors’ perimeter. The comparison can 

be seen below: 
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Figure 5.20 Comparison between CBM-TISP (on the left) and CBM-TOSP (on the right). 
Red dots are sensors declaring the event as positive, blue dots are sensors declaring the 

event as negative, and the double circles are the estimated positions of the target. 

• Barycenter-based method (BBM-TOSP) 

In analogy to what explained so far, this method can give the estimated target position 

outside of the sensors’ perimeter with the additional feature of weighting any position 

based on the sensor performances. Also in this case, a step-by-step procedure on how 

the equation is built is presented: 

- The barycenter of the sensors that declared the event as positive is calculated 

as the following (same as BBM-TISP): 

 

 

∑ (𝑑𝑖 ∙ 𝑥𝑆
𝑖
∙
𝑃𝑑,𝑖
𝑃𝑓,𝑖

)𝑁𝐾
𝑖=1

∑ (𝑑𝑖 ∙
𝑃𝑑,𝑖
𝑃𝑓,𝑖

)𝑁𝐾
𝑖=1

 

 

 

 

 

 

- For each sensor that declared the event as negative, a position symmetrically 

located on the opposite side of the line passing through the sensor and the 

CBM-TISP CBM-TOSP

Figure 5.21 Step 1 of 
BBM-TOPS. Red dots are 

sensors declaring the 
event as positive, blue 

dots are sensors 
declaring the event as 

negative. 
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previously obtained position is calculated, this fakes the existence of sensors 

declaring the event as positive. The following equation represents the 

calculation of the abovementioned position for the 𝑘th sensor. (1 − 𝑑𝑘) is used 

to keep the result only when the calculation is applied to the 𝑘th sensor if it 

declared the event as negative:  

 

 

[
 
 
 
2 ∙

∑ (𝑑𝑖 ∙ 𝑥𝑆
𝑖
∙
𝑃𝑑,𝑖
𝑃𝑓,𝑖

)
𝑁𝐾
𝑖=1

∑ (𝑑𝑖 ∙
𝑃𝑑,𝑖
𝑃𝑓,𝑖

)
𝑁𝐾
𝑖=1

− 𝑥𝑆
𝑘

]
 
 
 
∙ (1 − 𝑑𝑘) 

 

 

 

 

 

 

- Now the barycenter of the positions of the sensors that declared the event as 

positive plus the newly calculated positions must be obtained. This is done by 

carrying out a weighted average of their coordinates using 𝑃𝑑,𝑘 𝑃𝑓,𝑘⁄  as weights. 

Positions calculated in the previous step are weighted using performances of 

the correspondent sensors from which they have been obtained. The result will 

represent the estimated target position: 

𝑥𝑇
estimated

=

∑ {𝑑𝑘 ∙ 𝑥𝑆
𝑘
∙
𝑃𝑑,𝑘
𝑃𝑓,𝑘

+ [2 ∙

∑ (𝑑𝑖 ∙ 𝑥𝑆
𝑖
∙
𝑃𝑑,𝑖
𝑃𝑓,𝑖

)𝑁𝐾
𝑖=1

∑ (𝑑𝑖 ∙
𝑃𝑑,𝑖
𝑃𝑓,𝑖

)𝑁𝐾
𝑖=1

− 𝑥𝑆
𝑘
] ∙ (1 − 𝑑𝑘) ∙

𝑃𝑑,𝑘
𝑃𝑓,𝑘

}𝑁𝐾
𝑘=1

∑
𝑃𝑑,𝑘
𝑃𝑓,𝑘

𝑁𝐾
𝑘=1

 

 

Figure 5.23 Step 3 of BBM-TOSP. Red dots are sensors declaring the event as positive, 
blue dots are sensors declaring the event as negative, and the double circle is the 

estimated target position. 

To obtain the graphical representation above these performances were considered: 

Figure 5.22 Step 2 of 
BBM-TOPS. Red dots are 

sensors declaring the 
event as positive, blue 

dots are sensors declaring 
the event as negative, and 
green dots are the newly 

calculated positions  
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(
𝑃𝑑
𝑃𝑓
)

Top-left sensor

< (
𝑃𝑑
𝑃𝑓
)

Top-right sensor

< (
𝑃𝑑
𝑃𝑓
)

Bottom-right sensor

< (
𝑃𝑑
𝑃𝑓
)

Bottom-left sensor

 

Like before, it is possible to make a graphical comparison between the BBM-TISP and 

BBM-TOSP where it is possible to see how BBM-TOSP can give results outside the 

sensors’ perimeter (Figure 5.24): 

 

Figure 5.24 Comparison between BBM-TISP and BBM-TOSP. Red dots are sensors 
declaring the event as positive, blue dots are sensors declaring the event as negative, 

and the double circles are the estimated positions of the target. 

What described so far are four techniques that can estimate the target position in those 

instants in which FC declares the event as positive. The calculated positions may be 

inaccurate since the sensors have 𝑃𝑑 < 1 and 𝑃𝑓 > 0 making the fusion center have global 

performances 𝑄𝑑 < 1 and 𝑄𝑓 > 0. This may lead to unreliable results. To have a more 

reliable estimated position as a result, it is possible to calculate the centroid (arithmetic 

mean) of all the obtained position up to the instant of interest. This can be done since 

the target does not move, which means all instantaneous FC decisions can be considered 

equally reliable (it is the reason why the arithmetic mean is performed). Let us then have 

𝑁 instants in which FC declared the event as positive. This means that 𝑁 instantaneous 

positions have been calculated so far by one of the four methods above reported. For the 

𝑁th instant, the calculated position (𝑥𝑇
estimated,𝑁

) will not be the final positions, but it will 

be part of the arithmetic mean among all the calculated positions up to that instant 

leading to a more reliable position (𝑋𝑇
estimated,𝑁

): 

{
  
 

  
 
𝑋𝑇

estimated,1
= 𝑥𝑇

estimated,1
                                                                    

𝑋𝑇
estimated,2

=
𝑥𝑇

estimated,1
+ 𝑥𝑇

estimated,2

2
                                     

⋮                                                               

𝑋𝑇
estimated,𝑁

=
𝑥𝑇

estimated,1
+ 𝑥𝑇

estimated,2
+⋯+ 𝑥𝑇

estimated,𝑁

𝑁

 

BBM-TISP BBM-TOSP
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The latter system can be re-written in a way in which it is not necessary to have 𝑁 

positions memorized, but only two positions plus a scalar value (𝑁): 

{
 
 
 

 
 
 
𝑋𝑇

estimated,1
= 𝑥𝑇

estimated,1
                                                      

𝑋𝑇
estimated,2

=
1 ∙ 𝑋𝑇

estimated,1
+ 𝑥𝑇

estimated,2

2
                   

⋮                                                   

𝑋𝑇
estimated,𝑁

=

(𝑁 − 1) ∙ 𝑋𝑇
estimated,𝑁−1

+ 𝑥𝑇
estimated,𝑁

𝑁

 

To conclude, four are the developed localization techniques. It is clear how CBM is 

inspired by CR, which considers sensors equally performing, and CBM is inspired by WFR, 

where positions/decisions are combined and weighted. As in the case of the FRs for 

detection, where WFR ends up being equivalent to CR when sensor performances are 

equal, BBM ends up being equivalent to CBM in such a scenario. For this reason, it is 

coherent to use CBM when the FC bases its decision on the CR while BBM should be used 

when FC uses the WFR. Moreover, TISP methods should be used when there is no doubt 

that the target position will be inside the sensors’ perimeter, while TOSP methods should 

be used when the target may be located outside the sensors’ perimeter. Table 5.14 

summarizes what said so far: 

 CBM-TISP CBM-TOSP BBM-TISP BBM-TOSP 

Suggested coupled FR CR CR WFR WFR 

Performance-based No No Yes Yes 

Possible results outside 

sensors’ perimeter 
No Yes No Yes 

Table 5.14 Summary of localization techniques properties 

A comment that could be raised is that the real target position is unknown, but either the 

WFR or the BBM are based on the knowledge of sensor performances which strictly 

depends on their distance to the target. This is a clear limitation; in fact, the ideal 

scenario would be to know the exact performance of any single sensor. The proposed 

solution is to use either the WFR or the BBM with the same a priori estimation of sensor 

performances. 

In this work, two families of methods are proposed for the algorithm that must be 

performed by the FC: 

• FC performing the CR for detection and the CBM for localization (TISP or TOSP 

method); 

• FC performing the WFR for detection and the BBM for localization (TISP or TOSP 

method). 

In case the CR is used, it is reasonable to assume that reference sensor performances 

are not available, or they are not considered reliable enough to be used. In this scenario, 

CBM can be used for localization as it is not based on sensor performances, but only on 

positions. The second method, instead, consists of coupling the WFR with the BBM and it 

is the most complex as it introduces the knowledge of reference performances, which can 

be obtained from the sensor tuning (Table 5.8) by assessing the probabilities of failure of 

manifold components. 
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5.4.2 Fusion Center performing the Counting Rule and the Centroid-Based 

Method (CR+CBM) 

Figure 5.25 shows the algorithm the FC must perform if the CR and the CBM are applied. 

This must be performed each instant. Instants are synchronized with those used in the 

algorithm dedicated to local detection. 

 

Figure 5.25 Flowchart of the real-time algorithm the FC must perform. CR and CBM are 
applied in this case 
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The algorithm in Figure 5.25 can be written in a mathematical form. 

For any instant 𝑡, the FC must perform the CR: 

{
 
 

 
 

ΛCR𝑡 =∑𝑑𝑘,𝑡

𝑁𝐾

𝑘=1

𝑑FC𝑡 = {
1, ΛCR𝑡 ≥ 𝛾

0, ΛCR𝑡 < 𝛾

 

In case a spill is detected (𝑑FC𝑡 = 1), the FC updates the number of instants in which it 

declared a positive event (𝑡∗ indicates the counter):  

𝑡∗ =∑𝑖 ∙ 𝑑FC𝑖

𝑡

𝑖=1

 

In this case, the FC can proceed with the localization of the leakage point by application 

of the CBM in one of its two forms (TISP or TOSP): 

TISP:     𝑥𝑇
estimated𝑡∗

=
∑ (𝑑𝑘,𝑡 ∙ 𝑥𝑆

𝑘
)𝑁𝐾

𝑘=1

∑ 𝑑𝑘,𝑡
𝑁𝐾
𝑘=1

 

TOSP:     𝑥𝑇
estimated𝑡∗

=

∑ {𝑑𝑘,𝑡 ∙ 𝑥𝑆
𝑘
+ [2 ∙

∑ (𝑑𝑖,𝑡 ∙ 𝑥𝑆
𝑖
)𝑁𝐾

𝑖=1

∑ 𝑑𝑖,𝑡
𝑁𝐾
𝑖=1

− 𝑥𝑆
𝑘
] ∙ (1 − 𝑑𝑘,𝑡)}

𝑁𝐾
𝑘=1

𝑁𝐾
 

The FC can now take a more reliable decision regarding the position based on previously 

estimated positions and positions of the HSs: 

{
 
 

 
 
𝑋𝑇

estimated𝑡∗
= {

𝑥𝑇
estimated𝑡∗

, 𝑡∗ = 1

(𝑡∗ − 1) ∙ 𝑥𝑇
estimated𝑡∗−1

+ 𝑥𝑇
estimated𝑡∗

𝑡∗
, 𝑡∗ ≠ 1

𝑋𝑇
localized𝑡∗

= 𝑥𝐻𝑆 ( min
ℎ=1,…,𝑁𝐻𝑆

‖𝑋𝑇
estimated𝑡∗

− 𝑥𝐻𝑆
ℎ
‖)

 

- 𝑡∗ is the number of instants the FC declared the existence of a leakage; 

- 𝑥𝑇
estimated𝑡∗

 is the position calculated by the FC considering the information 

received by the sensors in that specific moment; 

- 𝑋𝑇
estimated𝑡∗

 is the overall position calculated by also accounting for the previous 

estimations (this assumes the target does not change its position over time). 

This calculation is done by performing an arithmetic mean; 

- 𝑋𝑇
localized𝑡∗

 is the closest HS to 𝑋𝑇
estimated𝑡∗

 and it is the final position declared by 

the FC. The method is based on the principle that only HSs can experience a 

leakage. 

5.4.3 Fusion Center performing the Weighted Fusion Rule and the 

Barycenter-Based Method (WFR+BBM)  

Figure 5.26 shows the algorithm the FC must perform if the WFR and the BBM are 

applied. This must be performed each instant by the FC. Instants are synchronized with 

those used in the algorithm dedicated to local detection.    
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Figure 5.26 Flowchart of the real-time algorithm the FC must perform. WFR and BBM are 
applied in this case 

The algorithm in Figure 5.26 can be written in the following mathematical form. 

For any instant 𝑡, the FC must perform the WFR: 

{
 
 

 
 
ΛWFR𝑡 =∑[𝑑𝑘,𝑡 ∙ ln (

𝑃𝑑,FC𝑘
𝑃𝑓,FC𝑘

)+ (1 − 𝑑𝑘,𝑡) ∙ ln (
1 − 𝑃𝑑,FC𝑘
1 − 𝑃𝑓,FC𝑘

)]

𝑁𝐾

𝑘=1

𝑑FC𝑡 = {
1, ΛWFR𝑡 ≥ 𝛾

0, ΛWFR𝑡 < 𝛾

 

In case a spill is detected (𝑑FC𝑡 = 1), the FC updates 𝑡∗: 
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𝑡∗ =∑𝑖 ∙ 𝑑FC𝑖

𝑡

𝑖=1

 

In this case, the FC can proceed with the localization of the leakage point by applying the 

BBM in one of its two forms (TISP or TOSP): 

TISP:     𝑥𝑇
estimated𝑡∗

=

∑ (𝑑𝑘,𝑡 ∙ 𝑥𝑆
𝑘
∙
𝑃𝑑,FC𝑘
𝑃𝑓,FC𝑘

)𝑁𝐾
𝑘=1

∑ (𝑑𝑘,𝑡 ∙
𝑃𝑑,FC𝑘
𝑃𝑓,FC𝑘

)𝑁𝐾
𝑘=1

 

TOSP:     𝑥𝑇
estimated𝑡∗

=

∑

{
 
 

 
 

𝑑𝑘,𝑡 ∙ 𝑥𝑆
𝑘
∙
𝑃𝑑,FC𝑘
𝑃𝑓,FC𝑘

+

[
 
 
 
 

2 ∙

∑ (𝑑𝑖,𝑡 ∙ 𝑥𝑆
𝑖
∙
𝑃𝑑,FC𝑖
𝑃𝑓,FC𝑖

)
𝑁𝐾
𝑖=1

∑ (𝑑𝑖,𝑡 ∙
𝑃𝑑,FC𝑖
𝑃𝑓,FC𝑖

)𝑁𝐾
𝑖=1

− 𝑥𝑆
𝑘

]
 
 
 
 

∙ (1 − 𝑑𝑘,𝑡) ∙
𝑃𝑑,FC𝑘
𝑃𝑓,FC𝑘

}
 
 

 
 

𝑁𝐾
𝑘=1

∑
𝑃𝑑,FC𝑘
𝑃𝑓,FC𝑘

𝑁𝐾
𝑘=1

 

The FC can now take a more reliable decision regarding the position based on previously 

calculated positions and positions of the HSs: 

{
 
 

 
 
𝑋𝑇

estimated𝑡∗
= {

𝑥𝑇
estimated𝑡∗

, 𝑡∗ = 1

(𝑡∗ − 1) ∙ 𝑥𝑇
estimated𝑡∗−1

+ 𝑥𝑇
estimated𝑡∗

𝑡∗
, 𝑡∗ ≠ 1

𝑋𝑇
localized𝑡∗

= 𝑥𝐻𝑆 ( min
ℎ=1,…,𝑁𝐻𝑆

‖𝑋𝑇
estimated𝑡∗

− 𝑥𝐻𝑆
ℎ
‖)

 

- 𝑃𝑑,FC𝑘 and 𝑃𝑓,FC𝑘
 are the reference performances of the 𝑘th sensor; 

- 𝑡∗ is the number of instants the FC declared the existence of a leakage; 

- 𝑥𝑇
estimated𝑡∗

 is the position calculated by the FC considering the information 

received by the sensors in that specific moment; 

- 𝑋𝑇
estimated𝑡∗

 is the overall position calculated by also accounting for the previous 

estimations (this assumes the target does not change its position over time). 

This calculation is done by performing an arithmetic mean; 

- 𝑋𝑇
localized𝑡∗

 is the closest HS to 𝑋𝑇
estimated𝑡∗

 and it is the final position declared by 

the FC. The method is based on the principle that only HSs can experience a 

leakage. 



103 
 

6.1 Oil Spill Modeling 

The simulation is carried out modeling the scenario as binary: 

{
𝐻1: positive event (leak)       

𝐻0: negative event (no leak) 
 

Note that the adjectives “positive” and “negative” only refer to the presence or absence 

of the spill, respectively. This means, according to the binary assumption, that all the 

releases are considered equally over time despite differences in flow rate (or other 

physical specifications). The model used to create a sequence of binary event is the 

Binary Markov Chain (BMC). The fundamental property of a time-discrete Markov Chain 

of 𝑛 successive instants is the Markov Property (Ruebeck et al., 2018): 

𝑝(𝑋𝑛 = 𝑥𝑛|𝑋𝑛−1 = 𝑥𝑛−1, . . . , 𝑋1 = 𝑥1) = 𝑝(𝑋𝑛 = 𝑥𝑛|𝑋𝑛−1 = 𝑥𝑛−1) 

which indicates that the conditional probability density of the system of being in a specific 

state at instant 𝑛, once known the value 𝑋𝑛−1 = 𝑥𝑛−1, is uniquely determined and not 

affected by the knowledge of the values at earlier instants (Van Kampen, 2011).  

In the specific case of this study (BMC), the Markov Property has the further condition 

that 𝑋𝑖 (where 𝑖 ∈ {1,… , 𝑛}) can only assume two values {𝐻0, 𝐻1}. The scheme in Figure 6.1 

clearly shows these properties: 

 

Figure 6.1 Binary Markov Chain 

Values next to arrows are the probabilities of the Markov process for a system to change 

from a state to another. The diagram also shows that only two values (𝐴01 and 𝐴10) are 

necessary to define a BMC. In this study, two different values (𝑝 and 𝑟) were used to 

define the process: 

{
 

 𝑝 =
𝐴01

𝐴01 + 𝐴10

𝑟 =
1 − 𝐴01
𝐴10

⇒

{
 

 𝐴10 =
1− 𝑝

𝑝 + 𝑟 − 𝑝𝑟

𝐴01 =
𝑝

𝑝 + 𝑟 − 𝑝𝑟

 

𝑝 represents the steady-state probability of a system to be in the state 𝐻1 (in analogy 

with steady-state availability for reparable components used in reliability engineering 

(O’Connor and Kleyner, 2012)).   

6 Test Results 
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𝑟 is the ratio between the probability of the system to remain in state 𝐻0 and the 

probability of switching from state 𝐻1 to 𝐻0. It represents the trend of the system to stay 

in the same state with respect to a transition between two states.  

Using a BMC to simulate the pattern of underwater hydrocarbon leaks over time has 

some advantages and disadvantages (Kushner and Dupuis, 2001; O’Connor and Kleyner, 

2012): 

• Markov Analysis is fast to simulate (acceptable amount of computational work); 

• It makes the problem depend only on two variables (𝑝 and 𝑟); 

• The binary pattern can be easily modeled, acting on variables (𝑝 and 𝑟), which 

directly shape the release pattern. 

However, on the other hand: 

• The probability of the system to changes from 𝐻1 to 𝐻0 and vice versa is constant 

in time (degradation of the system is not accounted); 

• The use of a stochastic model like a BMC rather than a deterministic physical 

model makes the simulation independent from physical data (such as template 

conditions, PVT properties, environmental conditions, etc.). 

• BMC approximation can only simulate the presence of an oil spill or its absence 

without giving any further information (such as leak flow rate, acoustic 

information associated with the leak, etc.). 

Simulations of possible oil spills were carried out using MATLAB. 

As the simulation is carried out by using the software, and not employing a real test, 

some assumptions were made: 

• The release generates an acoustic signal which has the same specifications of the 

one used during the tuning of the sensors and the FC; this is the equivalent of 

assuming that the models for signal modeling used for the tuning of the sensors 

and the FC are perfectly accurate; 

• The leakage point will be located in one of the HSs identified during the analysis of 

the SPS; 

• Only a single point will experience leakage. 

A BMC was used to create a sequential pattern of events. The values used to define it 

were: 

{𝑝 = 1 3⁄

𝑟 = 2
⇒ {

𝐴10 = 0.4
𝐴01 = 0.2

 

According to Figure 6.1, these values mean that an event, either positive or negative, 

which is occurring at a precise instant has 80% of probabilities of being in the same state 

the next instant if the event is negative, while it has 60% of probabilities if the event is 

positive. This pattern was chosen in order to create an imbalance oriented towards 

negative events (no leak). The imbalance will not influence the outcome of the ROC 

curve. Figure 6.2 shows an example of one hundred seconds modeled according to the 

above-described pattern. Each second correspond to an instant. 
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Figure 6.2 Release pattern generated through a BMC (p=1/3; r=2) 

For each instant (lasting one second), a different signal is received by any sensor. The 

nature of these signals depends on the class of the event corresponding to that instant: 

{
𝐻0:     𝑦𝑘 = 𝑤𝑘                                        

𝐻1:     𝑦𝑘 = 𝜉𝑘 ∙ 𝐴𝐴𝐹 (𝑥𝑇 , 𝑥𝑆
𝑘
) + 𝑤𝑘

 

Where: 

 {
𝜉𝑘~𝒩(0, 𝑆𝑁𝑅 = 20)

𝑤𝑘~𝒩(0,1)
 

Therefore, for each instant, sensors perform the ET while the FC performs the FR for 

either detection or localization based on one of the real-time algorithms shown in the 

previous chapter. 

Each simulation consists of 104 instants. Since one instant corresponds to 1 𝑠, this 

number of instants is equivalent to 2ℎ 46𝑚𝑖𝑛 40𝑠. 

With the above-mentioned release pattern, it is possible to show the estimated PR curves 

based on the values obtained during the tuning of the FC either in case of use of the CR 

or the WFR. This was not possible during the tuning procedure of both sensors and FC, as 

the release pattern was unknown. As explained in Section 4.3.3.5, the F-score can be 

used to evaluate the capacity of the leak detection system to increase the recall 

maintaining a good value of precision. Here, 𝐹1 and 𝐹0.5 were calculated even though 

further analysis may show which value of 𝛽 is considered optimal for this application.  

Oil spill detection is an application in which the imbalance between classes of events is 

supposed to be in favor of the negative one (overall time in which spills happen is 

hopefully lower than the time no leaks are experienced). This makes precision a vital 

parameter (difficult to estimate a priori as the imbalance between classes may not be 

easily predictable). The severity of an oil spill makes the precision even more important; 

this is the reason why the value of 𝐹0.5 is also shown. 𝐹0.5 in fact weights precision more 

than recall.  
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Table 6.1 and Figure 6.3 show, for any value of the global threshold, the expected values 

of precision and recall and the resulting 𝐹1 and 𝐹0.5 values for a FC applying the CR. It is 

interesting to notice that 𝛾 = 1 (the chosen threshold) maximize 𝐹1 too, while 𝛾 = 2 should 

maximize 𝐹0.5. 

  Precision Recall 𝑭𝟏 𝑭𝟎.𝟓 

Threshold 

0 0.3285 1 0.4945 0.3795 

1 0.4844 0.8480 0.6166 0.5298 

2 0.7396 0.4497 0.5593 0.6551 

3 0.9088 0.1018 0.1832 0.3516 

4 1 0 0 0 

Table 6.1 Expected values of precision, recall, F1 and F0.5 at different thresholds for the 
FC using the CR. 

 

Figure 6.3 Expected PR curve when the FC applies the CR. 

Table 6.2 and Figure 6.4 show, for any value of the global threshold, the expected values 

of precision and recall and the resulting 𝐹1 and 𝐹0.5 values for a FC applying the WFR. It is 

interesting to notice that 𝛾 = −0.2600 (the chosen threshold), not only it maximizes 𝐽, but 

it also maximizes either 𝐹1 or 𝐹0.5. 

  Precision Recall 𝑭𝟏 𝑭𝟎.𝟓 

Threshold 

-∞ 0.3317 1 0.4982 0.3829 

-1.3400 0.4098 0.9273 0.5684 0.4612 

-0.3360 0.4479 0.8306 0.5819 0.4933 

-0.2720 0.4998 0.7374 0.5958 0.5342 

-0.2600 0.5931 0.6269    0.6095 0.5995 

0.7330 0.6136 0.4944 0.5476 0.5854 

0.7450 0.6661 0.3462 0.4556 0.5622 

0.8090 0.7764 0.2054 0.3250 0.4997 

+∞ 1 0 0 0 

Table 6.2 Expected values of precision, recall, F1 and F0.5 at different thresholds for the 
FC using the WFR. 
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Figure 6.4 Expected PR curve when the FC applies the WFR. 

This simulation tested different HSs as leakage source using four different methods: 

• Detection: CR  + Localization: CBM-TISP 

Index for the selection of the optimal sensor thresholds: 𝐽 

• Detection: CR  + Localization: CBM-TOSP 

Index for the selection of the optimal sensor thresholds: 𝐽 

• Detection: WFR  + Localization: BBM-TISP 

Index for the selection of the optimal sensor thresholds: 𝐶𝑍 

• Detection: WFR  + Localization: BBM-TOSP 

Index for the selection of the optimal sensor thresholds: 𝐶𝑍 

About the Sensors/FC, tuning was carried out to have maximum reference value of 𝐽 (the 

word “reference” is used because being the leakage point is a NCT, the index value is 

only an estimation based on the HSs). 

For this reason, values reported in bold in Table 5.12, and Table 5.13 will be used when 

applying CR and WFR, respectively. 

6.2 Leak Sources Tested 

Three different HSs have been considering as leakage sources: the connection with the 

gas lift line (HS 3), a 5 1/8’’ Hydraulic Valve functioning as Branch Valve (HS 10), and a 

12’’ Header Isolation Valve used for ROV connection (HS 17). Numbers are given 

according to Figure 5.2. These were for some specific reasons: 

• The connection with the gas lift line (HS 3) is outside sensors’ perimeter. This will 

evaluate how TOSP methods may improve localization with respect to TISP 

methods; 

• The 5 1/8’’ Hydraulic Valve - Branch Valve (HS 10) is in a central position, which 

means that no sensor is close to that HS. Detection could be affected in this case 
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because of the acoustic attenuation. Moreover, many HSs are present close to HS 

10. This issue will check how the localization techniques perform when many HSs 

are close to the leaking one; 

• The 12’’ Header Isolation Valve - ROV Valve (HS 17) is the closest to a sensor 

(Sensor 2). The distance between HS 17 and Sensor 2, in fact, corresponds to 𝑙ref. 

The fact of being close to a sensor will test if the WFR brings any improvement to 

the CR in this scenario.  

6.3 Leak Detection Results 

6.3.1 Leak from Connection with Gas Lift Line (Hotspot 3) 

 

 

Figure 6.5 Close-up on the connection with the gas lift line (Røsby, 2011)  

Signal amplitude features are shown: Figure 6.6 shows AAF over the distance target-

sensor, while Figure 6.7 shows the received amplitudes at the different sensors. It is 

visible that sensors which are more distant to the target (experiencing a higher 

amplitude attenuation) tend to have a higher noise contribution. 
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Figure 6.6 AAF vs. Distance. Hotspot 3 is the leakage source. From left to right, first 
vertical line is distance to Sens 1, second vertical line is distance to Sens 3, third vertical 

line is distance to Sens 2. 

  

Figure 6.7 Time-domain (in seconds). Hotspot 3 is the leakage source. Red line is the 
signal associated with a positive event (leakage + noise). Blue line is the signal 

associated with a negative event (noise only). 
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6.3.1.1 Hotspot 3: Counting Rule 

Table 6.3 shows the estimated performances of the sensors (average values obtained 

during tuning): 

 Estimated 

 Sensor 1 Sensor 2 Sensor 3 

Local Threshold 1.8336 1.9239 1.7378 

Sensor Index 𝐽 = 0.2566 𝐽 = 0.2735 𝐽 = 0.2687 

Table 6.3 Local index J estimated during tuning of sensors in case of a FC performing CR. 

Table 6.4 shows the real performances of the sensors: 

 Real 

 Sensor 1 Sensor 2 Sensor 3 

Local Threshold 1.8336 1.9239 1.7378 
𝑷𝒇 0.1757 0.1654 0.1874 

𝑷𝒅 0.6349 0.2526 0.3444 

Sensor Index 𝐽 = 0.4952 𝐽 = 0.0872 𝐽 = 0.1570 

Table 6.4 Real sensor performances in case Hotspot 3 is the leakage point and FC has to 
perform CR.  

These performances can be plotted in the ROC space. Figure 6.8 shows the different ROC 

curves of the three sensors. Points represent real performances reported in Table 6.4. 

The curves show how local performances would have been in case sensors had been 

tuned using different local thresholds. 

 

Figure 6.8 ROC curves of the three sensors when Hotspot 3 is the leakage source and FC 
uses CR. Red dots are the actual performances with the current local thresholds.  

Figure 6.9 shows the probability distribution of the received signal amplitude dividing 

signals in positive (𝐻1) and negative (𝐻0) for any sensor. As shown in Figure 4.7, also 

here local thresholds for the ET are reported as vertical lines. 
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Figure 6.9 Amplitude distribution probability of received signals among the different 
sensors when Hotspot 3 is the leakage source when FC uses CR. Vertical lines represent 

the ET thresholds of each sensor.  

Table 6.5 reports the estimated performances obtained during the tuning phase of the 

FC. Real values from the simulation are reported. Figure 6.10 shows, whereas, the 

estimated ROC curve obtained during the tuning phase where the estimated and the real 

performances have been highlighted.  

 
Global Threshold 

Performances Index 

 𝑄𝑑 𝑄𝑓 𝐽 

Estimated 
1 

0.8480 0.4431 0.4049 

Real 0.8241 0.4295 0.3946 

Table 6.5 Comparison between estimated and real FC performances in case Hotspot 3 is 
the leakage source and FC performs CR.  
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Figure 6.10 ROC curve of performances estimated during tuning of FC in case of CR. Red 
dot is the expected performance at the selected optimal threshold. Green dot is the real 

performance when Hotspot 3 is the leakage source. 

Now that the imbalance between the two types of event is known, also precision can be 

evaluated. Table 6.6 shows two different values of 𝐹1 and 𝐹0.5. The estimated value is in 

case FC performances were as estimated during the tuning phase; the real value is the 

one obtained from the simulation. Moreover, Figure 6.11 shows the entire PR-curve for 

all the thresholds in case FC performances were those estimated during the tuning 

phase.   

 Global Threshold Precision Recall 𝑭𝟏 𝑭𝟎.𝟓 

Estimated 
1 

0.4844 0.8480 0.6166 0.5298 

Real 0.5084 0.8241 0.6289 0.5506 

Table 6.6 Comparison between estimated and real FC values of precision and recall in 
case Hotspot 3 is the leakage source and FC performs CR.   
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Figure 6.11 PR curve in case Hotspot 3 is the leakage source and FC is performing CR 
with the performances estimated during FC tuning. Red dot is the expected performance 

at the selected optimal threshold. Green dot is the real performance. 

6.3.1.2 Hotspot 3: Weighted Fusion Rule 

Table 6.7 shows the estimated performances of the sensors (average values obtained 

during tuning): 

 Estimated 

 Sensor 1 Sensor 2 Sensor 3 

Local Threshold 1.0346 1.0921 1.0592 

Sensor Index 𝐶𝑍 = 0.3799 𝐶𝑍 = 0.3895 𝐶𝑍 = 0.3894 

Table 6.7 Local index CZ estimated during tuning of sensors in case of a FC performing 
WFR. 

Table 6.8 shows the real performances of the sensors: 

 Real 

 Sensor 1 Sensor 2 Sensor 3 

Local Threshold 1.0346 1.0921 1.0592 
𝑷𝒇 0.3091 0.2960 0.3034 

𝑷𝒅 0.7213 0.3887 0.4604 

Sensor Index 𝐶𝑍 = 0.4983 𝐶𝑍 = 0.2736 𝐶𝑍 = 0.3207 

Table 6.8 Real sensor performances in case Hotspot 3 is the leakage point and FC has to 
perform WFR.  

These performances can be plotted in the ROC space. Figure 6.12 shows the different 

ROC curves of the three sensors. Points represent real performances reported in Table 

6.8. The curves show how local performances would have been in case sensors had been 

tuned using different local thresholds. 
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Figure 6.12 ROC curves of the three sensors when Hotspot 3 is the leakage source and 
FC uses WFR. Red dots are the actual performances with the current local thresholds.  

Figure 6.13 shows the probability distribution of the received signal amplitude dividing 

signals in positive (𝐻1) and negative (𝐻0) for any sensor. As shown in Figure 4.7, also 

here local thresholds for the ET are reported as vertical lines. 

 

Figure 6.13 Amplitude distribution probability of received signals among the different 
sensors when Hotspot 3 is the leakage source when FC uses WFR. Vertical lines 

represent the ET thresholds of each sensor.  

Table 6.9 reports the estimated performances obtained during the tuning phase of the 

FC. Real values from the simulation are reported. Figure 6.14 shows, whereas, the 

estimated ROC curve obtained during the tuning phase where the estimated and the real 

performances have been highlighted.  

 
Global Threshold 

Performances Index 

 𝑄𝑑 𝑄𝑓 𝐽 

Estimated 
-0.2600 

0.6269 0.2088 0.4181 

Real 0.5453 0.2251 0.3202 

Table 6.9 Comparison between estimated and real FC performances in case Hotspot 3 is 
the leakage source and FC performs WFR.  
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Figure 6.14 ROC curve of performances estimated during tuning of FC in case of WFR. 
Red dot is the expected performance at the selected optimal threshold. Green dot is the 

real performance when Hotspot 3 is the leakage source. 

Now that the imbalance between the two types of events is known, also precision can be 

evaluated. Table 6.10 shows two different values of 𝐹1. The estimated value is in case FC 

performances were as estimated during the tuning phase; the real value is the one 

obtained from the simulation. Moreover, Figure 6.11 shows the entire PR-curve for all the 

thresholds in case FC performances were those estimated during the tuning phase.   

 Global Threshold Precision Recall 𝑭𝟏 𝑭𝟎.𝟓 

Estimated 
-0.2600 

0.5931 0.6269 0.6095 0.5995 

Real 0.5390 0.5453 0.5421 0.5403 

Table 6.10 Comparison between estimated and real FC values of precision and recall in 
case Hotspot 3 is the leakage source and FC performs WFR.   
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Figure 6.15 PR curve in case Hotspot 3 is the leakage source and FC is performing WFR 
with the performances estimated during FC tuning. Red dot is the expected performance 

at the selected optimal threshold. Green dot is the real performance. 

6.3.2 Leak from Branch Valve (Hotspot 10) 

 

 

Figure 6.16 Close-up on the 5 1/8’’ Hydraulic Valve - Branch Valve (Røsby, 2011) 

Signal amplitude features are shown: Figure 6.17 shows AAF over the distance target-

sensor, while Figure 6.18 shows the received amplitudes at the different sensors. It is 

visible that sensors which are more distant to the target (experiencing a higher 

amplitude attenuation) tend to have a higher noise contribution. 
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Figure 6.17 AAF vs Distance. Hotspot 10 is the leakage source. From left to right, first 
vertical line is distance to Sens 3, second vertical line is distance to Sens 1, third vertical 

line is distance to Sens 2. 

 

Figure 6.18 Time-domain (in seconds). Hotspot 10 is the leakage source. Red line is the 
signal associated with a positive event (leakage + noise). Blue line is the signal 

associated with  a negative event (noise only). 
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6.3.2.1 Hotspot 10: Counting Rule 

Table 6.11 shows estimated performances of the sensors (average values obtained 

during tuning): 

 Estimated 

 Sensor 1 Sensor 2 Sensor 3 

Local Threshold 1.8336 1.9239 1.7378 

Sensor Index 𝐽 = 0.2566 𝐽 = 0.2735 𝐽 = 0.2687 

Table 6.11 Local index J estimated during tuning of sensors in case of a FC performing 
CR. 

Table 6.12 shows real performances of the sensors: 

 Real 

 Sensor 1 Sensor 2 Sensor 3 

Local Threshold 1.8336 1.9239 1.7378 
𝑷𝒇 0.1757 0.1654 0.1874 

𝑷𝒅 0.4786 0.3315 0.5499 
Sensor Index 𝐽 = 0.3029 𝐽 = 0.1661 𝐽 = 0.3625 

Table 6.12 Real sensor performances in case Hotspot 10 is the leakage point and FC has 
to perform CR.  

These performances can be plotted in the ROC space. Figure 6.19 shows the different 

ROC curves of the three sensors. Points represent real performances reported in Table 

6.12. The curves show how local performances would have been in case sensors had 

been tuned using different local thresholds. 

 

Figure 6.19 ROC curves of the three sensors when Hotspot 10 is the leakage source and 
FC uses CR. Red dots are the actual performances with the current local thresholds. 

Figure 6.20 shows the probability distribution of the received signal amplitude dividing 

signals in positive (𝐻1) and negative (𝐻0) for any sensor. As shown in Figure 4.7, also 

here local thresholds for the ET are reported as vertical lines. 
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Figure 6.20 Amplitude distribution probability of received signals among the different 
sensors when Hotspot 10 is the leakage source when FC uses CR. Vertical lines represent 

the ET thresholds of each sensor.  

Table 6.13 reports the estimated performances obtained during the tuning phase of the 

FC. Real values from the simulation are reported. Figure 6.21 shows, whereas, the 

estimated ROC curve obtained during the tuning phase where the estimated and the real 

performances have been highlighted.  

 
Global Threshold 

Performances Index 

 𝑄𝑑 𝑄𝑓 𝐽 

Estimated 
1 

0.8480 0.4431 0.4049 

Real 0.8375 0.4557 0.3818 

Table 6.13 Comparison between estimated and real FC performances in case Hotspot 3 is 
the leakage source and FC performs CR.  
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Figure 6.21 ROC curve of performances estimated during tuning of FC in case of CR. Red 
dot is the expected performance at the selected optimal threshold. Green dot is the real 

performance when Hotspot 10 is the leakage source. 

Now that the imbalance between the two types of event is known, also precision can be 

evaluated. Table 6.14 shows two different values of 𝐹1 and 𝐹0.5. The estimated value is in 

case FC performances were as estimated during the tuning phase; the real value is the 

one obtained from the simulation. Moreover, Figure 6.22 shows the entire PR-curve for 

all the thresholds in case FC performances were those estimated during the tuning 

phase.   

 Global Threshold Precision Recall 𝑭𝟏 𝑭𝟎.𝟓 

Estimated 
1 

0.4844 0.8480 0.6166 0.5298 

Real 0.4737 0.8375 0.6051 0.5188 

Table 6.14 Comparison between estimated and real FC values of precision and recall in 
case Hotspot 10 is the leakage source and FC performs CR.   
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Figure 6.22 PR curve in case Hotspot 10 is the leakage source and FC is performing CR 
with the performances estimated during FC tuning phase. Red dot is the expected 
performance at the selected optimal threshold. Green dot is the real performance. 

6.3.2.2 Hotspot 10: Weighted Fusion Rule  

Table 6.15 shows estimated performances of the sensors (average values obtained 

during tuning): 

 Estimated 

 Sensor 1 Sensor 2 Sensor 3 

Local Threshold 1.0346 1.0921 1.0592 

Sensor Index 𝐶𝑍 = 0.3799 𝐶𝑍 = 0.3895 𝐶𝑍 = 0.3894 

Table 6.15 Local index CZ estimated during tuning of sensors in case of a FC performing 
WFR. 

Table 6.16 shows real performances of the sensors: 

 Real 

 Sensor 1 Sensor 2 Sensor 3 

Local Threshold 1.0346 1.0921 1.0592 
𝑷𝒇 0.3091 0.2960 0.3034 

𝑷𝒅 0.5946 0.4644 0.6407 

Sensor Index 𝐶𝑍 = 0.4108 𝐶𝑍 = 0.3269 𝐶𝑍 = 0.4463 

Table 6.16 Real sensor performances in case Hotspot 10 is the leakage point and FC has 
to perform WFR.  

These performances can be plotted in the ROC space. Figure 6.23 shows the different 

ROC curves of the three sensors. Points represent real performances reported in Table 

6.16. The curves show how local performances would have been in case sensors had 

been tuned using different local thresholds. 
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Figure 6.23 ROC curves of the three sensors when Hotspot 10 is the leakage source and 
FC uses WFR. Red dots are the actual performances with the current local thresholds.  

Figure 6.24 shows the probability distribution of the received signal amplitude dividing 

signals in positive (𝐻1) and negative (𝐻0) for any sensor. As shown in Figure 4.7, also 

here local thresholds for the ET are reported as vertical lines. 

 

Figure 6.24 Amplitude distribution probability of received signals among the different 
sensors when Hotspot 10 is the leakage source when FC uses WFR. Vertical lines 

represent the ET thresholds of each sensor.  

Table 6.17 reports the estimated performances obtained during the tuning phase of the 

FC. Real values from the simulation are reported. Figure 6.25 shows, whereas, the 

estimated ROC curve obtained during the tuning phase where the estimated and the real 

performances have been highlighted.  

 
Global Threshold 

Performances Index 

 𝑄𝑑 𝑄𝑓 𝐽 

Estimated 
-0.2600 

0.6269 0.2088 0.4181 

Real 0.6005 0.2234 0.3771 

Table 6.17 Comparison between estimated and real FC performances in case Hotspot 10 
is the leakage source and FC performs WFR.  
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Figure 6.25 ROC curve of performances estimated during tuning of FC in case of WFR. 
Red dot is the expected performance at the selected optimal threshold. Green dot is the 

real performance when Hotspot 10 is the leakage source. 

Now that the imbalance between the two types of events is known, also precision can be 

evaluated. Table 6.10 shows two different values of 𝐹1 and 𝐹0.5. The estimated value is in 

case FC performances were as estimated during the tuning phase; the real value is the 

one obtained from the simulation. Moreover, Figure 6.11 shows the entire PR-curve for 

all the thresholds in case FC performances were those estimated during the tuning 

phase.   

 Global Threshold Precision Recall 𝑭𝟏 𝑭𝟎.𝟓 

Estimated 
-0.2600 

0.5931 0.6269 0.6095 0.5995 

Real 0.5682 0.6005 0.5839 0.5744 

Table 6.18 Comparison between estimated and real FC values of precision and recall in 
case Hotspot 10 is the leakage source and FC performs WFR.   
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Figure 6.26 PR curve in case Hotspot 10 is the leakage source and FC is performing WFR 
with the performances estimated during FC tuning. Red dot is the expected performance 

at the selected optimal threshold. Green dot is the real performance. 

6.3.3 Leak from Header Isolation Valve – ROV Valve (Hotspot 17) 

 

 

Figure 6.27 Close-up on the 12’’ Header Isolation Valve - ROV Valve (Røsby, 2011) 

Signal amplitude features are shown: Figure 6.28 shows AAF over the distance target-

sensor, while Figure 6.29 shows the received amplitudes at the different sensors. It is 

visible that sensors which are more distant to the target (experiencing a higher 

amplitude attenuation) tend to have a higher noise contribution. 
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Figure 6.28 AAF vs Distance. Hotspot 17 is the leakage source. From left to right, first 
vertical line is distance to Sens 2, second vertical line is distance to Sens 3, third vertical 

line is distance to Sens 1. 

 

Figure 6.29 Time-domain (in seconds). Hotspot 17 is the leakage source. Red line is the 
signal associated with a positive event (leakage + noise). Blue line is the signal 

associated with a negative event (noise only). 



126 
 

6.3.3.1 Hotspot 17: Counting Rule 

Table 6.19 shows estimated performances of the sensors (average values obtained 

during tuning): 

 Estimated 

 Sensor 1 Sensor 2 Sensor 3 

Local Threshold 1.8336 1.9239 1.7378 

Sensor Index 𝐽 = 0.2566 𝐽 = 0.2735 𝐽 = 0.2687 

Table 6.19 Local index J estimated during tuning of sensors in case of a FC performing 
CR. 

Table 6.20 shows real performances of the sensors: 

 Real 

 Sensor 1 Sensor 2 Sensor 3 

Local Threshold 1.8336 1.9239 1.7378 
𝑷𝒇 0.1757 0.1654 0.1874 

𝑷𝒅 0.2927 0.7621 0.4198 
Sensor Index 𝐽 = 0.1170 𝐽 = 0.5967 𝐽 = 0.2324 

Table 6.20 Real sensor performances in case Hotspot 17 is the leakage point and FC has 
to perform CR.  

These performances can be plotted in the ROC space. Figure 6.30 shows the different 

ROC curves of the three sensors. Points represent real performances reported in Table 

6.20. The curves show how local performances would have been in case sensors had 

been tuned using different local thresholds. 

 

Figure 6.30 ROC curves of the three sensors when Hotspot 17 is the leakage source and 
FC uses CR. Red dots are the actual performances with the current local thresholds. 

Figure 6.31 shows the probability distribution of the received signal amplitude dividing 

signals in positive (𝐻1) and negative (𝐻0) for any sensor. As shown in Figure 4.7, also 

here local thresholds for the ET are reported as vertical lines. 
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Figure 6.31 Amplitude distribution probability of received signals among the different 
sensors when Hotspot 17 is the leakage source when FC uses CR. Vertical lines represent 

the ET thresholds of each sensor.  

Table 6.21 reports the estimated performances obtained during the tuning phase of the 

FC. Real values from the simulation are reported. Figure 6.32 shows, whereas, the 

estimated ROC curve obtained during the tuning phase where the estimated and the real 

performances have been highlighted.  

 
Global Threshold 

Performances Index 

 𝑄𝑑 𝑄𝑓 𝐽 

Estimated 
1 

0.8480 0.4431 0.4049 

Real 0.9083 0.4332 0.4751 

Table 6.21 Comparison between estimated and real FC performances in case Hotspot 17 
is the leakage source and FC performs CR.  
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Figure 6.32 ROC curve of performances estimated during tuning of FC in case of CR. Red 
dot is the expected performance at the selected optimal threshold. Green dot is the real 

performance when Hotspot 17 is the leakage source. 

Now that the imbalance between the two types of event is known, also precision can be 

evaluated. Table 6.22 shows two different values of 𝐹1 and 𝐹0.5. The estimated value is in 

case FC performances were as estimated during the tuning phase; the real value is the 

one obtained from the simulation. Moreover, Figure 6.33 shows the entire PR-curve for 

all the thresholds in case FC performances were those estimated during the tuning 

phase.   

 Global Threshold Precision Recall 𝑭𝟏 𝑭𝟎.𝟓 

Estimated 
1 

0.4844 0.8480 0.6166 0.5298 

Real 0.5097 0.9083 0.6530 0.5587 

Table 6.22 Comparison between estimated and real FC values of precision and recall in 
case Hotspot 17 is the leakage source and FC performs CR.   
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Figure 6.33 PR curve in case Hotspot 17 is the leakage source and FC is performing CR 
with the performances estimated during FC tuning. Red dot is the expected performance 

at the selected optimal threshold. Green dot is the real performance. 

6.3.3.2 Hotspot 17: Weighted Fusion Rule 

Table 6.23 shows estimated performances of the sensors (average values obtained 

during tuning): 

 Estimated 

 Sensor 1 Sensor 2 Sensor 3 

Local Threshold 1.0346 1.0921 1.0592 

Sensor Index 𝐶𝑍 = 0.3799 𝐶𝑍 = 0.3895 𝐶𝑍 = 0.3894 

Table 6.23 Local index CZ estimated during tuning of sensors in case of a FC performing 
WFR. 

Table 6.24 shows real performances of the sensors: 

 Real 

 Sensor 1 Sensor 2 Sensor 3 

Local Threshold 1.0346 1.0921 1.0592 
𝑷𝒇 0.3091 0.2960 0.3034 

𝑷𝒅 0.4293 0.8196 0.5288 

Sensor Index 𝐶𝑍 = 0.2966 𝐶𝑍 = 0.5770 𝐶𝑍 = 0.3684 

Table 6.24 Real sensor performances in case Hotspot 17 is the leakage point and FC has 
to perform WFR.  

These performances can be plotted in the ROC space. Figure 6.34 shows the different 

ROC curves of the three sensors. Points represent real performances reported in Table 

6.24. The curves show how local performances would have been in case sensors had 

been tuned using different local thresholds. 
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Figure 6.34 ROC curves of the three sensors when Hotspot 17 is the leakage source and 
FC uses WFR. Red dots are the actual performances with the current local thresholds.  

Figure 6.35 shows the probability distribution of received signal amplitude dividing 

signals in positive (𝐻1) and negative (𝐻0) for any sensor. As shown in Figure 4.7, also 

here local thresholds for the ET are reported as vertical lines. 

 

Figure 6.35 Amplitude distribution probability of received signals among the different 
sensors when Hotspot 17 is the leakage source when FC uses WFR. Vertical lines 

represent the ET thresholds of each sensor.  

Table 6.25 reports the estimated performances obtained during the tuning phase of the 

FC. Real values from the simulation are reported. Figure 6.36 shows, whereas, the 

estimated ROC curve obtained during the tuning phase where the estimated and the real 

performances have been highlighted.  

 
Global Threshold 

Performances Index 

 𝑄𝑑 𝑄𝑓 𝐽 

Estimated 
-0.2600 

0.6269 0.2088 0.4181 

Real 0.6378 0.2343 0.3035 

Table 6.25 Comparison between estimated and real FC performances in case Hotspot 17 
is the leakage source and FC performs WFR.  
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Figure 6.36 ROC curve of performances estimated during tuning of FC in case of WFR. 
Red dot is the expected performance at the selected optimal threshold. Green dot is the 

real performance when Hotspot 17 is the leakage source. 

Now that the imbalance between the two types of event is known, also precision can be 

evaluated. Table 6.26 shows two different values of 𝐹1 and 𝐹0.5. The estimated value is in 

case FC performances were as estimated during the tuning phase; the real value is the 

one obtained from the simulation. Moreover, Figure 6.37 shows the entire PR-curve for 

all the thresholds in case FC performances were those estimated during the tuning 

phase.   

 Global Threshold Precision Recall 𝑭𝟏 𝑭𝟎.𝟓 

Estimated 
-0.2600 

0.5931 0.6269 0.6095 0.5995 

Real 0.5722 0.6478 0.6032 0.5842 

Table 6.26 Comparison between estimated and real FC values of precision and recall in 
case Hotspot 17 is the leakage source and FC performs WFR.   
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Figure 6.37 PR curve in case Hotspot 17 is the leakage source and FC is performing WFR 
with the performances estimated during FC tuning. Red dot is the expected performance 

at the selected optimal threshold. Green dot is the real performance. 

6.4 Leak Localization Results 

Leak localization performances will be evaluated on the basis of different parameters; 

one of these is time. The reason why time is important is that most of the localization 

techniques were able to identify the same hotspots as possible leakage sources during 

the different tests but in a different amount of time. The time needed to reach a stable 

result will be then a key performance indicator together with the distance between the 

identified hotspot and the actual leak source. 

A necessary remark must be made: localization performances are influenced by the 

specific order in which events happen; this does not happen when evaluating detection 

performances. The reason is that when calculating TPR, FPR and precision, time is not a 

variable; moreover the FRs/tests adopted here do not change parameters or thresholds 

dynamically on the basis of new evidence. Two independent tests leading to the same 

values of true positive rate, false positive rate, and precision will likely lead to two 

different values of time needed for localization.  

This characteristic of the localization techniques had to be taken into account in order not 

to discriminate a technique with respect to another only because one single test was 

carried out. For each hotspot (HS 3, HS 10 and HS 17), any technique (CR+CBM and 

WFR+BBM) is evaluated by applying 20 tests to make sure the abovementioned problem 

can be overcome. Any test is based on a BMC having 𝑝 = 1 3⁄  and 𝑟 = 2. The BMC will 

dictate the release pattern, which will be different every time because of the probabilistic 

nature of the BMC.  

The localization procedure takes place those instants in which the FC declare a positive 

event; this makes the localization procedure “inactive” all the other instants. For this 

reason, the time necessary for the localization will only take into account those instants 

-0.2600

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
re

c
is

io
n

Recall

Estimated PR vs Real Performances



133 
 

where the FC declared the event as positive, and the localization procedure was ongoing; 

this aims to better evaluate localization performances without having them unnecessarily 

too much affected by other external variables. 

Hotspot Technique 
Target 

Localized 

Final 
Distance 

(m) 

Positive Detections  
Needed for 

Stabilization 

Mean 

Corrected  
Sample 

Standard  

Deviation 

 

(3) 
Connection 
With Gas 
Lift Line 

CR+CBM-TISP 

No 7.56 

21 17 

CR+CBM-TOSP 1648 1885 

WFR+BBM-TISP 40 51 

WFR+BBM-TOSP 20 23 

 

(10) 
Branch 
Valve 

CR+CBM-TISP 

Yes 0 

61 60 

CR+CBM-TOSP 622 615 

WFR+BBM-TISP 8 7 

WFR+BBM-TOSP 97 106 

 

(17) 

Header 
Isolation 

Valve 

CR+CBM-TISP 

No 3.83 

22 14 

CR+CBM-TOSP 1358 1998 

WFR+BBM-TISP 4 5 

WFR+BBM-TOSP 14 10 

Table 6.27 Evaluation of localization performances of different techniques after 20 tests 
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Table 7.1 reports a summary of the results obtained at sensor level during the 

simulation. 

   𝜸 𝑷𝒅 𝑷𝒇 
Local 
Index 

FC 
performing 

CR 

Sen 1 

HS 3 

1.8336 

0.6349 

0.1757 

J=0.4952 

HS 10 0.4786 J=1.8336 

HS 17 0.2927 J=0.1170 

Sen 2 

HS 3 

1.9239 

0.2526 

0.1654 

J=0.0872 

HS 10 0.3315 J=0.1661 

HS 17 0.7621 J=0.5967 

Sen 3 

HS 3 

1.7378 

0.3444 

0.1874 

J=0.1570 

HS 10 0.5499 J=0.3625 

HS 17 0.4198 J=0.2324 

FC 

performing 
WFR 

Sen 1 

HS 3 

1.0346 

0.7213 

0.3091 

CZ=0.4983 

HS 10 0.5946 CZ=0.4108 

HS 17 0.4293 CZ=0.2966 

Sen 2 

HS 3 

1.0921 

0.3887 

0.2960 

CZ=0.2736 

HS 10 0.4644 CZ=0.3269 

HS 17 0.8196 CZ=0.5770 

Sen 3 

HS 3 

1.0592 

0.4604 

0.3034 

CZ=0.3207 

HS 10 0.6407 CZ=0.4463 

HS 17 0.5288 CZ=0.3684 

Table 7.1 Summary of the results obtained at sensor level after the tests 

As seen in the chapter dedicated to the FC tuning, the procedure starts by selecting an 

index for FC performances evaluation (it can be ROC-based or PR-based). This would 

mean sensors have to be tuned looking for the best combination of local thresholds. This 

best combination should be the one generating a FC level- ROC curve (or PR curve) that, 

varying the global threshold, can maximize the previously decided index.  

In this simulation, the local thresholds are obtained maximizing 𝐽 if FC performs the CR, 

and maximizing 𝐶𝑍 if FC performs the WFR. The ideal case would have been not to use 

indexes for the selection of the local thresholds, but to test any possible combination of 

local threshold among the different sensors as previously said. Nonetheless, this would 

have required excessive computational power. The values reported in Table 7.1 show the 

real performances of the sensors with the selected local thresholds which, according to 

what said before, should be able to maximize 𝐽 at FC level (assuming that FC works with 

an appropriate global threshold). Of course, this may not be true as the selection of all 

the thresholds (local and global) was made during the tuning phase when some 

assumptions had to be carried out.  

𝐽 has been selected as the index for global threshold selection as it is the only index 

(among the most popular that could fit this simulation) able to ensure specific conditions: 

• It has a meaning even if examined outside of the ROC space. Unlike 𝑑2 (which is a 

square distance in the ROC space), and 𝐶𝑍 (which is the measure of an area in the 

ROC space), 𝐽 represents either the length of a segment in the ROC space (see 

7 Discussion  
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Figure 4.10), or the difference, in terms of probability of detection, between the 

examined classifier and a random classifier having both the same probabilities of 

false alarm. 

• Two points of a ROC curve yielding the same values of 𝐽 both represent points on 

the same half of the ROC space (where the chance line is dividing the space). This 

may not be true with 𝑑2 and 𝐶𝑍 in which two equal values could be located on the 

opposite side of the ROC space with respect to the chance line. 

As two different indexes were used at sensor level (according to the FR to be used), it is 

clear from Table 7.1 how this produced a visible difference among the values of local 

thresholds. In case 𝐽 is used (for FC performing the CR) the interval goes from 1.74 to 

1.92, while in case 𝐶𝑍 is used (for FC performing the WFR) the interval goes from 1.03 to 

1.09. Being the centroid of the hotspots close to the centroid of the sensors, the 

difference of local thresholds among the different sensors is not too vast (both the 

abovementioned ranges of values are pretty narrow). 

About local performances, all the registered values of local probability of false alarm were 

lower or equal to 0.3, local probabilities of detection varied a lot according to the distance 

between sensor and target. HS 3 has Sensor 1 as its closest sensor: 𝑃𝑑s of Sensor 1, in 

case HS 3 was the target, were always greater or equal to 0.63, while they were always 

lower or equal to 0.46 for the other two sensors. Same for HS 17 as target and Sensors 

2: its 𝑃𝑑s were always greater or equal to 0.76, while they were always lower or equal to 

0.53 for other sensors. HS 10 is close to the centroid of the sensors. For this reason, all 

the values of 𝑃𝑑 ranged from 0.33 to 0.64 for all sensors (higher values can be found for 

Sensor 3 being closer to HS 10 than the other two sensors). 

Table 7.2, instead, reports a summary of the results obtained carrying out the 

simulations. Expected values are those obtained during the FC tuning (except for 

expected values of precision which were available only after the release pattern was 

known) and can be considered as average values among all HSs as both the tuning 

procedure and the test are based on the same starting hypothesis (and since failure 

probability of the different HSs are assumed equal). 

  𝜸 𝑸𝒅 𝑸𝒇 Precision 𝑱 𝑭𝟏 𝑭𝟎.𝟓 

CR 

Estim. 

1 

0.8480 0.4431 0.4844 0.4049 0.6166 0.5298 

HS 3 0.8241 0.4295 0.5084 0.3946 0.6289 0.5506 

HS 10 0.8375 0.4557 0.4373 0.3818 0.6051 0.5188 

HS 17 0.9083 0.4332 0.5097 0.4751 0.6530 0.5587 

WFR 

Estim. 

-0.2600 

0.6269 0.2088 0.5931 0.4181 0.6095 0.5995 

HS 3 0.5453 0.2251 0.5390 0.3202 0.5421 0.5403 

HS 10 0.6005 0.2234 0.5682 0.3771 0.5839 0.5744 

HS 17 0.6378 0.2343 0.5722 0.3035 0.6032 0.5842 

Table 7.2 Summary of the results obtained at FC level (detection) 

From Table 7.2, it is possible to notice that slightly higher values of 𝐽 are expected to be 

obtained when the WFR is used; this seems not to match the indexes obtained with the 

tested HSs, where indexes are higher in case the CR is used. This difference between the 

average indexes and the indexes obtained during the tests shows there is not an 

absolute superiority of the WFR with respect to the CR in this case study. Looking at the 

performances, it can be seen how those obtained with the CR are very different with 

respect to those obtained with the WFR: this is due to the different indexes used for 

sensor tuning (𝐽 for the CR, 𝐶𝑍 for the WFR). Generally speaking, when WFR was used, 
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lower values of global probabilities of detection and global probability of false alarm were 

present. 

Precision faced better results when WFR was applied, nevertheless 𝐹1 is lower. This 

decrease is due to the lower values of 𝑄𝑑 with respect to the CR. It is interesting to notice 

that the chosen values of global thresholds (either for the CR or the WFR) are those that 

would have also led to the highest estimated values of 𝐹1 (Table 6.1 and Table 6.2). A 

way to improve precision could be by giving higher priority to precision with respect to 

recall by using 𝛽 < 1 (for example 𝐹0.5) and to take into account this index during the 

selection of threshold (if the release pattern is known). As it can be seen, 𝐹0.5 gives better 

results when the WFR is applied as recall becomes less important than precision, even 

though it is important to remind that sensors and FC were tuned to optimize neither 𝐹1 

nor 𝐹0.5, but 𝐽. 

From Table 6.27, a summary of the results of localization is provided.  

Simulations concerning HS 10 were always successful from a localization point of view 

using any method, this because of its central position. None of the other methods could 

correctly localize the other leakage sources. 

All methods gave the same results in terms of the final distance between the estimated 

position and the target, so what can be evaluated is the number of positive FC detection 

needed for the stabilization. Stabilization occurs since all these methods base their 

estimations at a precise instant, also taking into account the estimations obtained the 

instants before. 

The worst result is given by CR+CBM-TOSP method, which was not able to give stable 

results in reasonable mean times in any tested HS. Moreover, using this method, 

standard deviations for the different HSs were the highest, making this method 

unreliable.  

It is worth to mention how in HS 10 and HS 17, which were both inside the sensors’ 

perimeter, WFR+BBM-TISP method gave the best results from either a stabilization time 

point of view or a standard deviation point of view (meaning that test has a good 

reproducibility).  

HS 3, instead, is outside the sensors’ perimeter; in this case, WFR+BBM-TOSP method 

gave the best result. CR+CBM-TISP gave good results in all cases. 

As explained, every localization method used here averages the position calculated at a 

certain instant with all the previously calculated positions up to that moment in order to 

obtain a more reliable final position to declare. This, together with the fact that attempts 

of localization are only made when FC declares the event as positive, makes it vital to 

have a good value of precision when it comes to detection performances. In fact, if the 

FC declares a false alarm, an estimated leakage position will be calculated and, not only 

this position will be wrong, but it will affect next estimated positions.  

From what observed from these results, the WFR should be preferred as on an average it 

should give better values of 𝐽 (as seen during FC tuning). Nonetheless, performances 

obtained using the WFR and using the CR may overlap according to the specific target 

position (this because the centroid of the sensors is close to the centroid of the HSs), and 

in some cases (as shown by the tests) they may be lower if using the WFR. The WFR 

brings an advantage also from a management point of view: new sensors can be 
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installed in any position by just registering their values of estimated performance so that 

FC can consider their local decisions with the appropriate weights. 

About the leakage source localization, it is suggested to use either WFR+BBM-TISP 

method or WFR+BBM-TOSP method as they both showed good performances (TISP 

method when the target was inside sensor’s perimeter, TOSP method when it was 

outside sensors’ perimeter). 

A different sensor configuration is suggested after the analysis of this case study when it 

comes to localization performances. The reason is that HSs which are far from the 

centroid of the sensors, in case of leakage, cannot be localized accurately, especially 

those outside the sensors’ perimeter. Adding one sensor in order to form a rectangular 

perimeter able to include all the HSs may be a good idea to improve localization when 

using the TISP method. HSs can also be outside the perimeter; this would improve 

performances of detection since average distances between sensors and hot spots would 

reduce, but in such a scenario the TOSP method should be used for localization. In case 

three sensors are used, it is suggested to modify the geometry according to the desired 

final performances; this would mean to encompass the positioning of the sensors as part 

of the tuning procedure. 
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The idea of this work was to study, analyze, compare, and finally propose techniques for 

the detection and localization of oil spills from subsea templates using the Goliat FPSO as 

a case study. In this work, only one kind of technology was taken into consideration; this 

means there was not the claim to assess whether or not the actual overall leak detection 

system can be considered reliable since, in order to affirm this, also other LDSs used 

should have been considered. The aim was to focus on the performances of passive 

acoustic sensors using a statistical signal processing approach for the study of the 

detection performances. Localization performances were also studied, even though such 

sensors were not installed to locate leakages. Detection using sensor networks is an 

existing field; for this reason, enough theoretical literature was present to support out 

the study. Less literature was present when detection is applied to subsea oil spill 

detection systems. This kind of study can be considered interdisciplinary and needs the 

know-how from either a statistical signal processing or safety & reliability and risk 

management point of view. The present study showed how the detection techniques 

already existing from other fields can be adapted, improved, and then implemented in a 

subsea leak detection system, and how these detection techniques can be furtherly 

improved with appropriate sensor tuning and FC tuning. Localization by using distributed 

sensor networks is a relatively new field, which means that localization techniques are 

subjected to continuous improvements. At the time of this work, the literature concerning 

the localization of subsea oil spills using distributed sensor networks is extremely poor 

and what present was not able to fit this case study since based on different premises 

and different technologies; for this reason, some new methods for localizations have 

been developed. These methods were developed in a way that they could be coherent 

with the proposed detection methods and showed good performances as long as the 

geometrical disposition of the sensors is adequate for this task. In this work it was shown 

how the current number of sensors and their geometrical disposition is not optimal for an 

efficient oil spill localization. 

The simulations showed a system which needs to be supported by other leak detection 

systems (capacitive sensors and internal leak detection systems in this case). This 

system alone, in fact, can satisfyingly detect oil spills, but the current geometrical 

configuration does not allow an accurate localization in all areas of the template.  

A successful localization is possible only when leakage is close to the centroid of the 

sensors; in all the other cases, the FC estimated some positions which were close to the 

leakage point but did not match it. 

This work can be furtherly developed. These are some suggestions regarding topics that 

can be developed and added to complete the present work: 

• Integrate the proposed tuning techniques with an algorithm for an optimal sensor 

positioning; 

• Model the AAFs in a more accurate way accounting for the real geometry of the 

template and accounting for other phenomena causing the transmission loss; 

• Model the entire LDS so that the fusion center can take advantage of different 

technologies; 

8 Conclusion and Further Works 
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• Assign weights to the different hotspots: 

All the hotspots were considered to have the same probability of failure. A 

reliability study is suggested to obtain more performing local and global 

thresholds during the tuning phases and to have more reliable reference 

performances when carrying out the WFR, and the BBM; 

• Any hotspot corresponds to some equipment having precise technical and process 

specifications. Leakages should be different from an acoustic point of view when 

considering different hotspots. A study in order to have different values of SNR for 

different hotspots should be carried out; 

• A study aimed at obtaining more realistic amplitude pdfs associated with the 

underwater oil spill, and underwater noise (not only thermal noise) should be 

carried out; this may be carried out together with a study on the optimal sensed 

frequency able to maximize the SNR; 

• A study on the behavior of oil spills over time to be able to shape the release 

pattern should be carried out in a way that real scenario could be better 

simulated; this would allow better use of parameters like precision during the 

tuning phase. If this is done, a study on which value of 𝛽 to use when calculating 

the F-score should be performed; 

• A study on which index for the selection of the thresholds for this application 

should be made (a reliability study on the entire system may be useful); 

• A study focused on the CBA as a driver for configuration selection;  

• Through the fusion center, being able to update reference local performances 

(used when carrying out the WFR and the BBM), global threshold, and local 

thresholds based on the current estimated position. The sensor and FC tuning 

were performed using mean values corresponding to different hotspots. A 

dynamic approach would change the previously listed parameters as new evidence 

is obtained. In order to avoid error propagation, this updating procedures may be 

carried out only after a certain number of events are collected.  

This work aims to give a contribution to the Oil&Gas industry by introducing new 

methodologies for subsea oil spill risk management, which is critical nowadays, especially 

in a sensitive area like the Barents Sea. These methodologies have been successfully 

adapted from different fields (often wholly extraneous to the O&G industry) or specifically 

developed for this work creating a starting point for further studies.   
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Appendix 1: MATLAB Script (Hotspot 10: CR + CBM-TISP) 

Appendix 2: MATLAB Script (Hotspot 10: CR + CBM-TOSP) 

Appendix 3: MATLAB Script (Hotspot 10: WFR + BBM-TISP) 

Appendix 4: MATLAB Script (Hotspot 10: WFR + BBM-TOSP) 
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Appendix 1: MATLAB Script (Hotspot 10: CR + CBM-TISP) 

This MATLAB script was written using MATLAB R2019; it simulates the release in HS 10, 

the FC performs the CR for detection and CBM-TISP for localization. All the settings are 

those described in the previous chapters. 

MATLAB, in order to run the animation, must have the following picture in a folder 

accessible by MATLAB. The file must be named “template.png”. 

 

%%%%%  Oil Spill Detection and Localization    %%%% 

%%%%%               CR + CBM-TISP              %%%% 

%%%%%                Hotspot 10                %%%% 

%%%%%         Author: Gianluca Tabella         %%%% 

  

clear 

close all 

clc 

  

%% Release Modelling 

  

disp('Release Modelling') % display the progress 

  

p=1/3;  % parameter for release shape 

r=2;    % parameter for release shape 

N=10000; % number of instants 

X=binary_source(p,r,N); % function giving an array that simulates the 

events before the continuous release 

tot=length(X); % total number of records 

rel=nnz(X); % number of releases (positive events)   

non_rel=tot-rel; % number of non-releases (negative events) 

  

%% Signal Modelling 

  

disp('Signal Modelling') % display the progress 
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f=20e-3; % kHz - sound frequency 

T=3.8; % ∞C - temperature (T=3.8∞C at Goliat) 

S=35; % ppt - salinity (S=35 ppt at Goliat) 

D=350; % m - depth (D=350-400 m at Goliat) 

pH=8; % pH of water (pH=8 at Goliat) 

spread_cf=1.5; % spreading coeff. (spherical=2;cylindrical=1;practical=1.5) 

  

c=speed_sound(D,T,S); % m/s - speed of sound underwater 

alpha_water=absorption_FG(f,T,S,D,pH,c); % dB/km - absorption due to water 

hotspot_crd=[11.5,11.75 ; 11.5,12.75 ; 11.5,13.75 ; 15,11.75 ; 15,12.75 ; 

15,13.75 ; 18,11.75 ; 18,12.75 ; 19,11.75 ; 19,12.75 ; 24.5,11.75 ; 

24.5,12.75 ; 25.5,11.75 ; 25.5,12.75 ; 28.2,11.75 ; 28.2,12.75 ; 28.2,13.75 

; 31.7,11.75 ; 31.7,12.75; 31.7,13.75]; % m - hotspots' coordinates  

HS=length(hotspot_crd(:,1)); % number of hot spots 

target=10; 

target_crd=hotspot_crd(target,:); % m - target coordinates  

sensors_crd=[13.97,15.3 ; 29.35,14.66 ; 21.86,9.42]; % m - sensor 

coordinates 

l=transpose(sqrt((target_crd(1)-sensors_crd(:,1)).^2+(target_crd(2)-

sensors_crd(:,2)).^2)); % m - distance of sensors from target 

K=length(l); % number of sensors 

l_FC=zeros(length(hotspot_crd(:,1)),K); 

for i=1:length(hotspot_crd(:,1))  % m - (HSxK matrix) distances between HS 

hot spots and K sensors 

    for j=1:K 

        l_FC(i,j)=sqrt((hotspot_crd(i,1)-

sensors_crd(j,1))^2+(hotspot_crd(i,2)-sensors_crd(j,2))^2); 

    end 

end 

l0=min(min(l_FC)); % m - reference distance 

TL=alpha_water*(l-l0)*10^-3+spread_cf*10*log10(l/l0); % dB - Transmission 

Loss 

AAF=exp(-TL./(20*log10(exp(1)))); % AAF (TL converted in Nepers) 

var_noise=1; % variance of noise (gaussian) 

SNR=20; % signal-to-noise ratio at closest (sensor/hot spot) 

var_fadsig=var_noise*SNR; % variance of fading (gaussian) 

  

noise_ampl=zeros(K,non_rel); 

for i=1:K 

    noise_ampl(i,:)=sqrt(var_noise)*randn(1,non_rel); 

end 

rel_ampl=zeros(K,rel); 

for i=1:K 

    

rel_ampl(i,:)=AAF(i)*sqrt(var_fadsig)*randn(1,rel)+sqrt(var_noise)*randn(1,

rel); 

end 

u=1; 

v=1; 

ampl=zeros(K,tot); % pre-allocation for final scenario  

for i=1:tot 

    switch X(i) 

        case 1 

            for j=1:K  

                ampl(j,i)=rel_ampl(j,u); 

            end 

            u=u+1; 

        case 0 

            for j=1:K  

                ampl(j,i)=noise_ampl(j,v); 
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            end 

            v=v+1; 

    end 

end 

  

%% Sensors' Settings 

  

disp('Sensors setting calculation') % display the progress 

  

th_loc_poss=0:.0001:10; % threshold for local decision (non-negative) 

  

f_FC=f; % kHz - sound frequency 

T_FC=T; % ∞C - temperature (T=3.8∞C at Goliat) 

S_FC=S; % ppt - salinity (S=35 ppt at Goliat) 

D_FC=D; % m - depth (D=350-400 m at Goliat) 

pH_FC=pH; % pH of water (pH=8 at Goliat) 

spread_cf_FC=spread_cf; % spreading coeff. 

(spherical=2;cylindrical=1;practical=1.5) 

c_FC=speed_sound(D_FC,T_FC,S_FC); % m/s - speed of sound underwater 

alpha_water_FC=absorption_FG(f_FC,T_FC,S_FC,D_FC,pH_FC,c_FC); % dB/km - 

absorption due to water 

TL_FC=alpha_water_FC*(l_FC-l0)*10^-3+spread_cf_FC*10*log10(l_FC/l0); % dB - 

Transmission Loss 

AAF_FC=exp(-TL_FC/(20*log10(exp(1)))); % AAF (TL converted in Nepers) 

var_noise_FC=1; % variance of noise (gaussian) 

SNR_FC=20; % signal-to-noise ratio at closest (sensor/hot spot) 

var_fadsig_FC=var_noise_FC*SNR_FC; % variance of fading (gaussian) 

j_loc=zeros(HS,K); 

j_loc_db=zeros(length(th_loc_poss),K); 

th_loc=zeros(1,K); 

for i=1:length(th_loc_poss) 

    pfa_FC_poss=2*qfunc(sqrt(th_loc_poss(i)/var_noise_FC)); % array of 

probabilities of false alarm for the single sensors 

    

pd_FC_poss=2*qfunc(sqrt(th_loc_poss(i)./(var_fadsig_FC*AAF_FC.^2+var_noise_

FC))); % array of the corresponing probabilities of detection 

    j_loc=pd_FC_poss-pfa_FC_poss; 

    j_loc_db(i,:)=mean(j_loc); 

end 

  

for i=1:K    

    th_loc(i)=th_loc_poss(j_loc_db(:,i)==max(j_loc_db(:,i))); 

end 

  

pfa_FC=2*qfunc(sqrt(th_loc/var_noise_FC)); % array of probabilities of 

false alarm for the single sensors 

pd_FC=zeros(HS,K); 

for i=1:K 

pd_FC(:,i)=2*qfunc(sqrt(th_loc(i)./(var_fadsig_FC*AAF_FC(:,i).^2+var_noise_

FC))); % array of the corresponing probabilities of detection 

end 

pd_FC=mean(pd_FC); 

  

%% FC's Settings 

  

disp('FC Settings Calculation') % display the progress 

  

p_FC=p;  % parameter for release shape 

r_FC=r;    % parameter for release shape 

N_FC=N; % number of instants 
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X_FC=binary_source(p_FC,r_FC,N_FC); % function giving an array that 

simulates the events before the continuous release 

tot_FC=length(X_FC); % total number of records 

rel_FC=nnz(X_FC); % number of releases (positive events)   

non_rel_FC=tot_FC-rel_FC; % number of non-releases (negative events) 

noise_ampl_FC=zeros(K,non_rel_FC); 

for i=1:K 

    noise_ampl_FC(i,:)=sqrt(var_noise_FC)*randn(1,non_rel_FC); 

end 

rel_ampl_FC=zeros(K,rel_FC); 

for i=1:K 

    

rel_ampl_FC(i,:)=mean(AAF_FC(:,i))*sqrt(var_fadsig_FC)*randn(1,rel_FC)+sqrt

(var_noise_FC)*randn(1,rel_FC); 

end 

u=1; 

v=1; 

ampl_FC=zeros(K,tot_FC); % pre-allocation for final scenario  

for i=1:tot_FC 

    switch X_FC(i) 

        case 1 

            for j=1:K  

                ampl_FC(j,i)=rel_ampl_FC(j,u); 

            end 

            u=u+1; 

        case 0 

            for j=1:K  

                ampl_FC(j,i)=noise_ampl_FC(j,v); 

            end 

            v=v+1; 

    end 

end 

  

detect_FC=zeros(K,tot_FC); % matrix containing all the decisions of any 

sensor during the simulation (every row is a sensor) 

for i=1:K 

    for j=1:tot_FC 

        if ampl_FC(i,j)^2>=th_loc(i) 

            detect_FC(i,j)=1; 

        else 

            detect_FC(i,j)=0; 

        end 

    end 

end 

  

th=-1:K; % array of possibile thresholds 

no_thr=length(th); % number of possible thresholds 

  

result_FC=zeros(no_thr,tot_FC); % matrix containing all the decisions of 

the FC for different thresholds 

lambda_FC=zeros(1,tot_FC); % vector containing all the FR's results 

  

for j=1:no_thr % for each threshold 

    sentence=['FC setting calculation: elaboration threshold number ' 

,num2str(j), ' of ' ,num2str(no_thr)]; 

    disp(sentence) 

    for i=1:tot_FC % for each instant    

        lambda_FC(i)=sum(detect_FC(:,i)); % value of FR 

        if lambda_FC(i)>th(j) % for-loop determining the decision of the FC 

based on CR 

            result_FC(j,i)=1; 



154 
 

        else 

            result_FC(j,i)=0; 

        end 

    end   

end 

  

%% FC's Performances  

  

FP=zeros(1,no_thr); % array of number of false alarms at different 

thresholds  

TP=zeros(1,no_thr); % array of number of detections at different thresholds  

FN=zeros(1,no_thr); % array of number of false negatives at different 

thresholds  

TN=zeros(1,no_thr); % array of number of true negatives at different 

thresholds  

Q_F=zeros(1,no_thr); % array of probabilities of false alarm at different 

thresholds 

Q_D=zeros(1,no_thr); % array of probabilities of detecion at different 

thresholds 

precision=zeros(1,no_thr); % array of precisions at different thresholds 

  

for i=1:no_thr % for each threshold  

        sentence=['FC setting calculation: evaluation threshold number ' 

,num2str(i), ' of ' ,num2str(no_thr)]; 

        disp(sentence) % display the progress 

     

        fa=find((X_FC==0)&(result_FC(i,:)==1));  

        FP(i)=length(fa);    % number of false alarms FP 

        Q_F(i)=FP(i)/non_rel_FC; % FPR 

     

        d=find((X_FC==1)&(result_FC(i,:)==1)); 

        TP(i)=length(d); % number of detection (true positives) 

        Q_D(i)=TP(i)/rel_FC; % TPR - True Positive Rate - Probability of 

Detection 

         

        FN(i)=rel_FC-TP(i); % False negatives 

        TN(i)=non_rel_FC-FP(i); % True Negatives 

     

        precision(i)=TP(i)/(TP(i)+FP(i)); % precision 

end     

precision(isnan(precision))=1; % built to overcome the presence of NaN 

results when precision converges to 1 

  

%% Removal of Useless Thresholds 

  

disp('Removal of Useless Thresholds from FC setting calculation history') 

j=2; % loop used to remove results when no change was determined varying 

the threshold 

result_FC_new(1,:)=result_FC(1,:); 

Q_D_new(1)=Q_D(1); 

Q_F_new(1)=Q_F(1); 

precision_new(1)=precision(1); 

th_new(1)=th(1); 

TP_new(1)=TP(1); 

FP_new(1)=FP(1); 

FN_new(1)=FN(1); 

TN_new(1)=TN(1); 

for i=2:no_thr 

    if Q_D(i)==Q_D(i-1) && Q_F(i)==Q_F(i-1) && precision(i)==precision(i-1) 

    else 

        Q_D_new(j)=Q_D(i); 
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        Q_F_new(j)=Q_F(i); 

        precision_new(j)=precision(i); 

        th_new(j)=th(i); 

        TP_new(j)=TP(i); 

        FP_new(j)=FP(i); 

        FN_new(j)=FN(i); 

        TN_new(j)=TN(i); 

        result_FC_new(j,:)=result_FC(i,:); 

        j=j+1; 

    end 

end 

Q_D=Q_D_new; 

Q_F=Q_F_new; 

precision=precision_new; 

th=th_new; 

TP=TP_new; 

FP=FP_new; 

FN=FN_new; 

TN=TN_new; 

result_FC=result_FC_new; 

no_thr=length(th); 

clearvars Q_D_new Q_F_new precision_new th_new TP_new FP_new FN_new TN_new 

result_FC_new 

  

%% Analysis of Parameters 

  

disp('Analysis of Parameters for FC setting') 

  

AUC=-trapz(Q_F,Q_D); % calculation of Area Under the Curve 

  

% the matrix called "perf" has rows representing each indicator 

% for each raw of the matrix the 1st value is the cut-off threshold at 

indicator¥s maximum value 

% the 2nd value is the Prob. of Detection at cut off threshold 

% the 3rd value is the Prob. of False Alarm at cut off threshold 

% the 4th value is the indicator¥s maximum value 

  

J=Q_D-Q_F; % calculation of Youden's indexes 

perf(1,4)=max(J); % maximum value of Youden's indexes 

ind=find(J==perf(1,4)); % array's index for max Youden's index 

perf(1,1)=th(ind); % cut off threshold at max J value 

perf(1,3)=Q_F(ind); % Prob. of False Alarm at cut off threshold 

perf(1,2)=Q_D(ind); % Prob. of Detection at cut off threshold 

  

beta_value=1; % 1: pr and rec equally weighted, 2: recall weighted higher 

than precision, 0.5: precision weighted higher than recall 

F_beta=(1+beta_value^2)*(precision.*Q_D)./(beta_value^2*precision+Q_D); % 

F_value (armonic mean between precision and recall, with weight) 

perf(2,4)=max(F_beta); % maximum value of F_beta 

ind=find(F_beta==perf(2,4)); % array's index for max F_beta 

perf(2,1)=th(ind); % cut off threshold at max F_beta 

perf(2,3)=Q_F(ind); % Prob. of False Alarm at cut off threshold 

perf(2,2)=Q_D(ind); % Prob. of Detection at cut off threshold 

  

dist_roc=(1-Q_D).^2+Q_F.^2; % sq. distance to (0,1) 

perf(3,4)=min(dist_roc); % minimum sq. distance to (0,1) 

ind=find(dist_roc==perf(3,4)); % array's index for min sq. distance to 

(0,1) 

perf(3,1)=th(ind); % cut off threshold at min sq. distance to (0,1) 

perf(3,3)=Q_F(ind); % Prob. of False Alarm at cut off threshold 

perf(3,2)=Q_D(ind); % Prob. of Detection at cut off threshold 
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CZ=Q_D.*(1-Q_F); % CZ index 

perf(4,4)=max(CZ); % maximum value of CZ index 

ind=find(CZ==perf(4,4)); % array's index for max CZ index 

perf(4,1)=th(ind); % cut off threshold at max CZ index 

perf(4,3)=Q_F(ind); % Prob. of False Alarm at cut off threshold 

perf(4,2)=Q_D(ind); % Prob. of Detection at cut off threshold 

  

%% Sensors' Detection 

  

detect=zeros(K,tot); % matrix containing all the decisions of any sensor 

during the simulation (every row is a sensor) 

for i=1:K 

    sentence=['simulating detection: sensor ' ,num2str(i), ' of ' 

,num2str(K)]; % display the progress 

    disp(sentence) 

    for j=1:tot 

        if ampl(i,j)^2>=th_loc(i) 

            detect(i,j)=1; 

        else 

            detect(i,j)=0; 

        end 

    end 

end 

  

Q_F_test_loc=zeros(1,K); 

Q_D_test_loc=zeros(1,K); 

  

for i=1:K 

    fa_test_loc=find((X==0)&(detect(i,:)==1)); 

    FP_test_loc=length(fa_test_loc);    % number of false alarms FP 

    Q_F_test_loc(i)=FP_test_loc/non_rel; % FPR 

     

    d_test_loc=find((X==1)&(detect(i,:)==1)); 

    TP_test_loc=length(d_test_loc); % number of detection (true positives) 

    Q_D_test_loc(i)=TP_test_loc/rel; % TPR - True Positive Rate - 

Probability of Detection 

end 

  

%% Fusion Center's Detection and Localization 

  

inst_FC=1; % number of instants to take into account in the TCR 

time_th=0; % threshold used in TCR  

SP_calc_inst=zeros(tot,2); 

index_rel=0; 

SP_calc_db=zeros(tot,2); 

SP_num_db(1:2,1:tot)=NaN; 

SP_calc=[0 0]; 

  

dist_SP_HS=zeros(1,HS); 

result=zeros(1,tot); % matrix containing all the decisions of the FC for 

different thresholds 

lambda=zeros(1,tot); % vector containing all the FR's results 

lambda_time=zeros(1,tot); % vector containing all the TCR's results 

final_result=zeros(1,tot); % matrix containing final decision (WFR+TCR) 

  

for i=1:tot % for each instant 

        if rem(i,100)==0 || i==1 % display the progress 

        sentence=['Instant simulated by FC: ' ,num2str(i), ' of ' 

,num2str(tot)]; 

        disp(sentence) 
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        end     

        lambda(i)=sum(detect(:,i)); % value of FR 

        if lambda(i)>perf(1,1) % for-loop determining the decision of the 

FC based on CR 

            result(i)=1; 

        else 

            result(i)=0; 

        end 

  

        if result(i)==0 

            inst=inst_FC; 

            if inst>i % necessary for the first instants (when there aren't 

enough previous data)   

                inst=i; 

            end           

            lambda_time(i)=sum(result(i-inst+1:i));           

            if lambda_time(i)>time_th % for-loop determining the final 

decision of the FC 

                final_result(i)=1; 

            else 

                final_result(i)=0; 

            end 

            else 

             final_result(i)=1; 

        end 

     

        if result(i)==1 && sum(detect(:,i))>=1 

            index_rel=index_rel+1; 

            

SP_calc_inst(index_rel,:)=sum(sensors_crd.*detect(:,i))/sum(detect(:,i)); 

            if index_rel==1 

                SP_calc=[SP_calc_inst(index_rel,1) 

SP_calc_inst(index_rel,2)]; 

            else 

                SP_calc=[((index_rel-

1)*SP_calc(1)+SP_calc_inst(index_rel,1))/index_rel ((index_rel-

1)*SP_calc(2)+SP_calc_inst(index_rel,2))/index_rel]; 

            end 

            for count_HS=1:HS 

                dist_SP_HS(count_HS)=sqrt((SP_calc(1)-

hotspot_crd(count_HS,1))^2+(SP_calc(2)-hotspot_crd(count_HS,2))^2); 

            end 

            SP_num=find(dist_SP_HS==min(dist_SP_HS));  

            SP_calc_db(i,:)=SP_calc; 

            SP_num_db(1:length(SP_num),i)=transpose(SP_num); 

        else 

            if sum(sum(SP_calc_inst))==0 

                SP_calc_db(i,:)=NaN; 

            else 

                SP_calc_db(i,:)=SP_calc_db(i-1,:); 

            end 

        end 

        if final_result(i)==1 && result(i)==0 

            SP_calc_db(i,:)=SP_calc; 

            SP_num_db(1:length(SP_num),i)=transpose(SP_num); 

        end          

end 

  

fa_test=find((X==0)&(final_result==1)); 

FP_test=length(fa_test);    % number of false alarms FP 

Q_F_test=FP_test/non_rel; % FPR 
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d_test=find((X==1)&(final_result==1)); 

TP_test=length(d_test); % number of detection (true positives) 

Q_D_test=TP_test/rel; % TPR - True Positive Rate - Probability of Detection 

     

precision_test=TP_test/(TP_test+FP_test); % precision 

  

%% Animation 

  

answer = questdlg('Do you want to see the animation?','Yes','No'); 

switch answer 

    case 'Yes' 

        answer = 1; 

    case 'No' 

        answer = 0; 

end 

if answer==1 

sentence='Show Animation'; 

disp(sentence) 

img=imread('template.png'); 

figure(1) 

for i=1:tot 

hold off 

imagesc([0 41.26],[0 27.45],flipud(img)); 

set(gca,'ydir','normal'); 

set(gcf, 'Position', get(0, 'Screensize')); 

xlim([0 41.26]) 

ylim([0 27.45]) 

xlabel('x (meters)') 

ylabel('y (meters)') 

grid on 

hold on 

scatter(hotspot_crd(:,1),hotspot_crd(:,2),400,'filled','r') 

if X(i)==1 

    scatter(target_crd(1),target_crd(2),400,'filled','b') 

end 

scatter(sensors_crd(:,1),sensors_crd(:,2),400,'filled','g') 

    if isnan(SP_calc_db(i,1))==0 

        scatter(SP_calc_db(i,1),SP_calc_db(i,2),100,'filled','m') 

    end 

    if isnan(SP_num_db(1,i))==0 && isnan(SP_num_db(2,i))==1 

        

scatter(hotspot_crd(SP_num_db(1,i),1),hotspot_crd(SP_num_db(1,i),2),100,'fi

lled','y') 

    else 

        if isnan(SP_num_db(1,i))==0 && isnan(SP_num_db(2,i))==0 

            

scatter(hotspot_crd(SP_num_db(1:size(SP_num_db,1),i),1),hotspot_crd(SP_num_

db(1:size(SP_num_db,1),i),2),100,'filled','y') 

        end 

    end 

title(['2D Scenario. Instant number: ' num2str(i) ' of ' num2str(tot)]) 

drawnow 

end  

end 

  

%% Plot 

  

disp('Plot and curves generation') 

  

figure(1) % release plot 
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plot(X)  

xlabel('time (s)') 

ylabel('0 = Non-release / 1 = Release') 

xlim([0 tot]) 

ylim([0 1]) 

  

figure(2) % Square attenuation vs. Distance 

x_plot=l0:.1:max(l); 

x_plot=[x_plot max(l)]; 

TL_plot=alpha_water*(x_plot-l0)*10^-3+spread_cf*10*log10(x_plot/l0); 

AAF_plot=exp(-TL_plot./(20*log10(exp(1)))); 

plot(x_plot,AAF_plot,'b') 

xlabel('Distance (m)') 

ylabel('Attenuation (AAF)') 

for i=1:K 

hold on 

line([l(i) l(i)],[0 1]) % vertical lines representing sensors position 

end 

hold off 

xlim([l0-1 max(l)+1]) 

ylim([0 max(AAF_plot)]) 

title('Attenuation vs Distance') 

  

figure(3) % wave amplitude vs time plot 

for i=1:K 

    z0=ampl(i,:); 

    z1=ampl(i,:); 

    for j=1:tot 

        switch X(j) 

            case 0 

                z1(j)=NaN; 

            case 1 

                z0(j)=NaN; 

        end 

    end 

    subplot(K,1,i) 

    plot(z0,'b') 

    hold on 

    plot(z1,'r') 

    xlabel('time (s)') 

    ylabel('y (Amplitude)') 

    title(['Received Signal, sensor ' num2str(i) ', coordinates: (' 

num2str(sensors_crd(i,1)) ',' num2str(sensors_crd(i,2)) ')']) 

    hold off 

end 

  

figure(4) % Amplitude Distribution Plot 

for i=1:K 

subplot(1,K,i) 

histogram(noise_ampl(i,:),'Normalization','pdf') 

hold on 

histogram(rel_ampl(i,:),'Normalization','pdf') 

hold on 

line([sqrt(th_loc(i)) 

sqrt(th_loc(i))],get(gca,'ylim'),'LineWidth',2,'Color','k') 

line([-sqrt(th_loc(i)) -

sqrt(th_loc(i))],get(gca,'ylim'),'LineWidth',2,'Color','k') 

legend('p(y|H0)','p(y|H1)') 

title(['Amplitude pdf, sensor ' num2str(i) ', coordordinates: (' 

num2str(sensors_crd(i,1)) ',' num2str(sensors_crd(i,2)) ')']) 

xlabel('y (Amplitude)') 
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hold off 

end 

  

figure(5) 

for i=1:K 

    subplot(1,K,i) 

    th_loc_poss=0:.01:10; 

    

plot(2*qfunc(sqrt(th_loc_poss/var_noise)),2*qfunc(sqrt(th_loc_poss/(var_fad

sig*AAF_FC(target,i)^2+var_noise)))) 

    hold on 

    

scatter(2*qfunc(sqrt(th_loc(i)/var_noise)),2*qfunc(sqrt(th_loc(i)/(var_fads

ig*AAF_FC(target,i)^2+var_noise))),'filled') 

    line([0 1],[0 1],'LineStyle','--') 

    hold off 

    title(['ROC sensor ' num2str(i) ', coordinates: (' 

num2str(sensors_crd(i,1)) ',' num2str(sensors_crd(i,2)) ')']) 

    xlabel('Local Probability of False Alarm') 

    ylabel('Local Probability of Detection') 

    xlim([0 1]) 

    ylim([0 1]) 

    pbaspect([1 1 1]) 

end 

  

figure(6) % ROC curve - linear 

plot(Q_F,Q_D,'-or')  

hold on 

line([0 1],[0 1],'LineStyle','--') % chance line 

scatter(Q_F_test,Q_D_test,'filled') 

hold off 

title('ROC CURVE - linear') 

xlabel('Global Probability of False Alarm') 

ylabel('Global Probability of Detection') 

xlim([0 1]) 

ylim([0 1]) 

  

figure(7) % ROC curve - semilog 

semilogx(Q_F,Q_D,'-or') 

hold on 

scatter(Q_F_test,Q_D_test,'filled') 

hold off 

title('ROC CURVE - semilog') 

xlabel('Global Probability of False Alarm') 

ylabel('Global Probability of Detection') 

xlim([Q_F(end-1) 1]) 

ylim([Q_D(end-1)-0.05 1]) 

  

figure(8) % PR curve - linear 

plot(Q_D,precision,'-or')  

hold on 

scatter(Q_D_test,precision_test,'filled') 

hold off 

title('PR CURVE') 

xlabel('Recall') 

ylabel('Precision') 

xlim([0 1]) 

ylim([0 1]) 

  

SP_num_db_plot=zeros(1,index_rel); 

dist_plot=zeros(1,index_rel); 
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j=1; 

for i=1:N 

    if result(i)==1 

        SP_num_db_plot(j)=SP_num_db(1,i); 

        dist_plot(j)=sqrt((target_crd(1)-

hotspot_crd(SP_num_db_plot(j),1))^2+(target_crd(2)-

hotspot_crd(SP_num_db_plot(j),2))^2); 

        j=j+1; 

    end 

end 

AUC_localization=trapz(1:index_rel,dist_plot); 

figure(9) 

plot(1:index_rel,dist_plot) 

title(['Distance from Target. Area under curve (no. of instants: ' 

num2str(index_rel) ') = ' num2str(AUC_localization) '']) 

xlabel('Time (s) / Fusion Center Positive Detection') 

ylabel('Distance from Target (m)') 

xlim([1 index_rel]) 

ylim([0 max(dist_plot)]) 

  

%% Memory Cleaning 

  

disp('Memory Cleaning') 

clearvars x_plot TL_plot AAF_plot x d fa j i q s sentence img u v 

noise_ampl_FC rel_ampl_FC ind th_loc_poss pfa_FC_poss pd_FC_poss 

fa_test_loc FP_test_loc d_test_loc TP_test_loc % deleting variables 

  

%% Functions 

  

function x=binary_source(p,r,N) 

  

A10=(1-p)/(p+r-p*r); 

A01=p/(p+r-p*r); 

  

x=zeros(1,N); % pre-allocation of memory to improve code performances 

  

for n=2:N % it starts from 2 because we want the initial state n=1 to be 

without release  

    switch x(n-1) 

        case 0 

            x(n)=(rand<A01); 

        case 1 

            x(n)=(rand<1-A10); 

    end 

end 

end 

  

function y=speed_sound(D,T,S) 

  

% it calculates sound speed using corrected UNESCO algorithm  

  

c0=1402.388+5.03711*T-5.80852e-2*T^2+3.3420e-4*T^3-1.47800e-6*T^4+3.1464e-

9*T^5; 

c1=0.153563+6.8982e-4*T-8.1788e-6*T^2+1.3621e-7*T^3-6.1185e-10*T^4; 

c2=3.1260e-5-1.7107e-6*T+2.5974e-8*T^2-2.5335e-10*T^3+1.0405e-12*T^4; 

c3=-9.7729e-9-3.8504e-10*T-2.3643e-12*T^2; 

A0=1.389-1.262e-2*T+7.164e-5*T^2+2.006e-6*T^3-3.21e-8*T^4; 

A1=9.4742e-5-1.2580e-5*T-6.4885e-8*T^2+1.0507e-8*T^3-2.0122e-10*T^4; 

A2=-3.9064e-7+9.1041e-9*T-1.6002e-10*T^2+7.988e-12*T^3; 

A3=1.100e-10+6.649e-12*T-3.389e-13*T^2; 

P=D/10; 
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A=A0+A1*P+A2*P^2+A3*P^3; 

B=-1.922e-2-4.42e-5*T+(7.3637e-3+1.7945e-7*T)*P; 

C=-7.9836e-6*P+1.727e-3; 

y=c0+c1*P+c2*P^2+c3*P^3+A*S+B*S^(3/2)+C*S^2; 

end 

  

function y=absorption_FG(f,T,S,D,pH,c) 

  

% this function calculates the attenuation coefficient in bB/km 

% using Francois-Garrison method 

% "f" is the frequency of the sound in kHz 

% "T" is the temperature in ∞C 

% "S" is the salinity in parts-per-thousand 

% "D" is the depth in m 

% "pH" is the indicator of water acidity 

  

theta=273.15+T; % K, temperature 

  

% excess absorption due to Boric Acid (H3BO3) 

A1=(8.86/c)*10^(0.78*pH-5); % dB/(km*kHz) 

P1=1; % nondimensional pressure correction factor 

f1=2.8*sqrt(S/35)*10^(4-1245/theta); % kHz, relaxation frequencies of H3BO3 

alpha1=(A1*P1*f1*f.^2)/(f1^2+f.^2); % dB/km 

  

% excess absorption due to Magnesium Sulfate (MgSO4) 

A2=21.44*(S/c)*(1+0.025*T); % dB/(km*kHz) 

P2=1-1.37e-4*D+6.2e-9*D^2; % nondimensional pressure correction factor 

f2=(8.17*10^(8-1990/theta))/(1+0.0018*(S-35)); % kHz, relaxation 

frequencies of MgSO4 

alpha2=(A2*P2*f2*f.^2)/(f2^2+f.^2); % dB/km 

  

% absorption due to water 

if T<=20 

    A3=4.937e-4-2.59e-5*T+9.11e-7*T^2-1.5e-8*T^3; % dB/(km*kHz^2) 

else 

    A3=3.964e-4-1.146e-5*T+1.45e-7*T^2-6.5e-10*T^3; % dB/(km*kHz^2) 

end 

P3=1-3.83e-5*D+4.9e-10*D^2; % nondimensional pressure correction factor 

alpha3=A3*P3*f.^2; % dB/km 

  

y=alpha1+alpha2+alpha3; 

end 

function y=absorption_FS(f,T,D) 

  

% this function calculates the attenuation coefficient in bB/km 

% using Fisher-Simmons method 

% "f" is the frequency of the sound in kHz 

% "T" is the temperature in ∞C 

% "D" is the depth in m 

  

f=f*1000; % method is written using Hz  

theta=273.15+T; % K, temperature 

P=D/10+1; % atm, absolute pressure estimation (supposing 10 m_seawater = 1 

atm) 

  

% excess absorption due to Boric Acid (H3BO3) 

A1=1.03e-8+2.36e-10*T-5.22e-12*T^2; % Np/(m*Hz) 

P1=1; % nondimensional pressure correction factor 

f1=1.32e3*theta*exp(-1700/theta); % Hz, relaxation frequencies of H3BO3 

alpha1=(A1*P1*f1*f.^2)/(f1^2+f.^2); % Np/m 
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% excess absorption due to Magnesium Sulfate (MgSO4) 

A2=5.62e-8+7.52e-10*T; % Np/(m*Hz) 

P2=1-10.3e-4*P+3.7e-7*P^2; % nondimensional pressure correction factor 

f2=1.55e7*theta*exp(-3052/theta); % Hz, relaxation frequencies of MgSO4 

alpha2=(A2*P2*f2*f.^2)/(f2^2+f.^2); % Np/m 

  

% absorption due to water 

A3=(55.9-2.37*T+4.77e-2*T^2-3.48e-4*T^3)*10^-15; % Np/(m*Hz^2) 

P3=1-384e-4*P+7.57e-8*P^2; % nondimensional pressure correction factor 

alpha3=A3*P3*f.^2; % Np/m 

  

y=alpha1+alpha2+alpha3; % Np/m 

y=y*1000*20*log10(exp(1)); % dB/km 

end 

function y=absorption_SM(f,T,S,D) 

  

% this function calculates the attenuation coefficient in bB/km 

% using Shulkin-Marsh method 

% "f" is the frequency of the sound in kHz 

% "T" is the temperature in ∞C 

% "S" is the salinity in parts-per-thousand 

% "D" is the depth in m 

  

theta=273.15+T; % K, temperature 

P=D/10+1; % atm, absolute pressure estimation (supposing 10 m_seawater = 1 

atm) 

A=2.34e-6; 

B=3.38e-6; 

fT=21.9*10^(6-1520/theta); % kHz 

y=((S*A*fT*f.^2)/(fT^2+f.^2)+(B*f.^2)/fT)*(1-6.54e-4*P); % Np/m 

y=y*1000*20*log10(exp(1)); % dB/km 

end 

function y=absorption_AM(f,T,S,D,pH) 

  

% this function calculates the attenuation coefficient in bB/km 

% using Ainslie-McColm method 

% "f" is the frequency of the sound in kHz 

% "T" is the temperature in ∞C 

% "S" is the salinity in parts-per-thousand 

% "D" is the depth in m 

% "pH" is the indicator of water acidity 

  

D=D/1000; % method is written using km  

  

% excess absorption due to Boric Acid (H3BO3) 

f1=0.78*exp(T/26)*sqrt(S/35); % kHz, relaxation frequencies of H3BO3 

alpha1=0.106*(f1*f.^2)/(f1^2+f.^2)*exp((pH-8)/0.56); % dB/km 

  

% excess absorption due to Magnesium Sulfate (MgSO4) 

f2=42*exp(T/17); % kHz, relaxation frequencies of MgSO4 

alpha2=0.52*(1+T/43)*(S/35)*(f2*f.^2)/(f2^2+f.^2)*exp(-D/6); % dB/km 

  

% absorption due to water 

alpha3=4.9e-4*f.^2*exp(-T/27+D/17); % dB/km 

  

y=alpha1+alpha2+alpha3; 

end 

function y=absorption_T(f) 

  

% this function calculates the attenuation coefficient in bB/km 

% using Thorp method 
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% "f" is the frequency of the sound in kHz 

  

y=1.0936132983*(0.1*f.^2/(1+f.^2)+40*f.^2/(4100+f.^2)); 

end 
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Appendix 2: MATLAB Script (Hotspot 10: CR + CBM-TOSP) 

This MATLAB script was written using MATLAB R2019; it simulates the release in HS 10, 

the FC performs the CR for detection and CBM-TOSP for localization. All the settings are 

those described in the previous chapters. 

MATLAB, in order to run the animation, must have the following picture in a folder 

accessible by MATLAB. The file must be named “template.png”. 

 

%%%%%  Oil Spill Detection and Localization    %%%% 

%%%%%               CR + CBM-TOSP              %%%% 

%%%%%                Hotspot 10                %%%% 

%%%%%         Author: Gianluca Tabella         %%%% 

  

clear 

close all 

clc 

  

%% Release Modelling 

  

disp('Release Modelling') % display the progress 

  

p=1/3;  % parameter for release shape 

r=2;    % parameter for release shape 

N=10000; % number of instants 

X=binary_source(p,r,N); % function giving an array that simulates the 

events before the continuous release 

tot=length(X); % total number of records 

rel=nnz(X); % number of releases (positive events)   

non_rel=tot-rel; % number of non-releases (negative events) 

  

%% Signal Modelling 

  

disp('Signal Modelling') % display the progress 
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f=20e-3; % kHz - sound frequency 

T=3.8; % ∞C - temperature (T=3.8∞C at Goliat) 

S=35; % ppt - salinity (S=35 ppt at Goliat) 

D=350; % m - depth (D=350-400 m at Goliat) 

pH=8; % pH of water (pH=8 at Goliat) 

spread_cf=1.5; % spreading coeff. (spherical=2;cylindrical=1;practical=1.5) 

  

c=speed_sound(D,T,S); % m/s - speed of sound underwater 

alpha_water=absorption_FG(f,T,S,D,pH,c); % dB/km - absorption due to water 

hotspot_crd=[11.5,11.75 ; 11.5,12.75 ; 11.5,13.75 ; 15,11.75 ; 15,12.75 ; 

15,13.75 ; 18,11.75 ; 18,12.75 ; 19,11.75 ; 19,12.75 ; 24.5,11.75 ; 

24.5,12.75 ; 25.5,11.75 ; 25.5,12.75 ; 28.2,11.75 ; 28.2,12.75 ; 28.2,13.75 

; 31.7,11.75 ; 31.7,12.75; 31.7,13.75]; % m - hotspots' coordinates  

HS=length(hotspot_crd(:,1)); % number of hot spots 

target=10; 

target_crd=hotspot_crd(target,:); % m - target coordinates  

sensors_crd=[13.97,15.3 ; 29.35,14.66 ; 21.86,9.42]; % m - sensor 

coordinates 

l=transpose(sqrt((target_crd(1)-sensors_crd(:,1)).^2+(target_crd(2)-

sensors_crd(:,2)).^2)); % m - distance of sensors from target 

K=length(l); % number of sensors 

l_FC=zeros(length(hotspot_crd(:,1)),K); 

for i=1:length(hotspot_crd(:,1))  % m - (HSxK matrix) distances between HS 

hot spots and K sensors 

    for j=1:K 

        l_FC(i,j)=sqrt((hotspot_crd(i,1)-

sensors_crd(j,1))^2+(hotspot_crd(i,2)-sensors_crd(j,2))^2); 

    end 

end 

l0=min(min(l_FC)); % m - reference distance 

TL=alpha_water*(l-l0)*10^-3+spread_cf*10*log10(l/l0); % dB - Transmission 

Loss 

AAF=exp(-TL./(20*log10(exp(1)))); % AAF (TL converted in Nepers) 

var_noise=1; % variance of noise (gaussian) 

SNR=20; % signal-to-noise ratio at closest (sensor/hot spot) 

var_fadsig=var_noise*SNR; % variance of fading (gaussian) 

  

noise_ampl=zeros(K,non_rel); 

for i=1:K 

    noise_ampl(i,:)=sqrt(var_noise)*randn(1,non_rel); 

end 

rel_ampl=zeros(K,rel); 

for i=1:K 

    

rel_ampl(i,:)=AAF(i)*sqrt(var_fadsig)*randn(1,rel)+sqrt(var_noise)*randn(1,

rel); 

end 

u=1; 

v=1; 

ampl=zeros(K,tot); % pre-allocation for final scenario  

for i=1:tot 

    switch X(i) 

        case 1 

            for j=1:K  

                ampl(j,i)=rel_ampl(j,u); 

            end 

            u=u+1; 

        case 0 

            for j=1:K  

                ampl(j,i)=noise_ampl(j,v); 
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            end 

            v=v+1; 

    end 

end 

  

%% Sensors' Settings 

  

disp('Sensors setting calculation') % display the progress 

  

th_loc_poss=0:.0001:10; % threshold for local decision (non-negative) 

  

f_FC=f; % kHz - sound frequency 

T_FC=T; % ∞C - temperature (T=3.8∞C at Goliat) 

S_FC=S; % ppt - salinity (S=35 ppt at Goliat) 

D_FC=D; % m - depth (D=350-400 m at Goliat) 

pH_FC=pH; % pH of water (pH=8 at Goliat) 

spread_cf_FC=spread_cf; % spreading coeff. 

(spherical=2;cylindrical=1;practical=1.5) 

c_FC=speed_sound(D_FC,T_FC,S_FC); % m/s - speed of sound underwater 

alpha_water_FC=absorption_FG(f_FC,T_FC,S_FC,D_FC,pH_FC,c_FC); % dB/km - 

absorption due to water 

TL_FC=alpha_water_FC*(l_FC-l0)*10^-3+spread_cf_FC*10*log10(l_FC/l0); % dB - 

Transmission Loss 

AAF_FC=exp(-TL_FC/(20*log10(exp(1)))); % AAF (TL converted in Nepers) 

var_noise_FC=1; % variance of noise (gaussian) 

SNR_FC=20; % signal-to-noise ratio at closest (sensor/hot spot) 

var_fadsig_FC=var_noise_FC*SNR_FC; % variance of fading (gaussian) 

j_loc=zeros(HS,K); 

j_loc_db=zeros(length(th_loc_poss),K); 

th_loc=zeros(1,K); 

for i=1:length(th_loc_poss) 

    pfa_FC_poss=2*qfunc(sqrt(th_loc_poss(i)/var_noise_FC)); % array of 

probabilities of false alarm for the single sensors 

    

pd_FC_poss=2*qfunc(sqrt(th_loc_poss(i)./(var_fadsig_FC*AAF_FC.^2+var_noise_

FC))); % array of the corresponing probabilities of detection 

    j_loc=pd_FC_poss-pfa_FC_poss; 

    j_loc_db(i,:)=mean(j_loc); 

end 

  

for i=1:K    

    th_loc(i)=th_loc_poss(j_loc_db(:,i)==max(j_loc_db(:,i))); 

end 

  

pfa_FC=2*qfunc(sqrt(th_loc/var_noise_FC)); % array of probabilities of 

false alarm for the single sensors 

pd_FC=zeros(HS,K); 

for i=1:K 

pd_FC(:,i)=2*qfunc(sqrt(th_loc(i)./(var_fadsig_FC*AAF_FC(:,i).^2+var_noise_

FC))); % array of the corresponing probabilities of detection 

end 

pd_FC=mean(pd_FC); 

  

%% FC's Settings 

  

disp('FC Settings Calculation') % display the progress 

  

p_FC=p;  % parameter for release shape 

r_FC=r;    % parameter for release shape 

N_FC=N; % number of instants 
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X_FC=binary_source(p_FC,r_FC,N_FC); % function giving an array that 

simulates the events before the continuous release 

tot_FC=length(X_FC); % total number of records 

rel_FC=nnz(X_FC); % number of releases (positive events)   

non_rel_FC=tot_FC-rel_FC; % number of non-releases (negative events) 

noise_ampl_FC=zeros(K,non_rel_FC); 

for i=1:K 

    noise_ampl_FC(i,:)=sqrt(var_noise_FC)*randn(1,non_rel_FC); 

end 

rel_ampl_FC=zeros(K,rel_FC); 

for i=1:K 

    

rel_ampl_FC(i,:)=mean(AAF_FC(:,i))*sqrt(var_fadsig_FC)*randn(1,rel_FC)+sqrt

(var_noise_FC)*randn(1,rel_FC); 

end 

u=1; 

v=1; 

ampl_FC=zeros(K,tot_FC); % pre-allocation for final scenario  

for i=1:tot_FC 

    switch X_FC(i) 

        case 1 

            for j=1:K  

                ampl_FC(j,i)=rel_ampl_FC(j,u); 

            end 

            u=u+1; 

        case 0 

            for j=1:K  

                ampl_FC(j,i)=noise_ampl_FC(j,v); 

            end 

            v=v+1; 

    end 

end 

  

detect_FC=zeros(K,tot_FC); % matrix containing all the decisions of any 

sensor during the simulation (every row is a sensor) 

for i=1:K 

    for j=1:tot_FC 

        if ampl_FC(i,j)^2>=th_loc(i) 

            detect_FC(i,j)=1; 

        else 

            detect_FC(i,j)=0; 

        end 

    end 

end 

  

th=-1:K; % array of possibile thresholds 

no_thr=length(th); % number of possible thresholds 

  

result_FC=zeros(no_thr,tot_FC); % matrix containing all the decisions of 

the FC for different thresholds 

lambda_FC=zeros(1,tot_FC); % vector containing all the FR's results 

  

for j=1:no_thr % for each threshold 

    sentence=['FC setting calculation: elaboration threshold number ' 

,num2str(j), ' of ' ,num2str(no_thr)]; 

    disp(sentence) 

    for i=1:tot_FC % for each instant    

        lambda_FC(i)=sum(detect_FC(:,i)); % value of FR 

        if lambda_FC(i)>th(j) % for-loop determining the decision of the FC 

based on CR 

            result_FC(j,i)=1; 
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        else 

            result_FC(j,i)=0; 

        end 

    end   

end 

  

%% FC's Performances  

  

FP=zeros(1,no_thr); % array of number of false alarms at different 

thresholds  

TP=zeros(1,no_thr); % array of number of detections at different thresholds  

FN=zeros(1,no_thr); % array of number of false negatives at different 

thresholds  

TN=zeros(1,no_thr); % array of number of true negatives at different 

thresholds  

Q_F=zeros(1,no_thr); % array of probabilities of false alarm at different 

thresholds 

Q_D=zeros(1,no_thr); % array of probabilities of detecion at different 

thresholds 

precision=zeros(1,no_thr); % array of precisions at different thresholds 

  

for i=1:no_thr % for each threshold  

        sentence=['FC setting calculation: evaluation threshold number ' 

,num2str(i), ' of ' ,num2str(no_thr)]; 

        disp(sentence) % display the progress 

     

        fa=find((X_FC==0)&(result_FC(i,:)==1));  

        FP(i)=length(fa);    % number of false alarms FP 

        Q_F(i)=FP(i)/non_rel_FC; % FPR 

     

        d=find((X_FC==1)&(result_FC(i,:)==1)); 

        TP(i)=length(d); % number of detection (true positives) 

        Q_D(i)=TP(i)/rel_FC; % TPR - True Positive Rate - Probability of 

Detection 

         

        FN(i)=rel_FC-TP(i); % False negatives 

        TN(i)=non_rel_FC-FP(i); % True Negatives 

     

        precision(i)=TP(i)/(TP(i)+FP(i)); % precision 

end     

precision(isnan(precision))=1; % built to overcome the presence of NaN 

results when precision converges to 1 

  

%% Removal of Useless Thresholds 

  

disp('Removal of Useless Thresholds from FC setting calculation history') 

j=2; % loop used to remove results when no change was determined varying 

the threshold 

result_FC_new(1,:)=result_FC(1,:); 

Q_D_new(1)=Q_D(1); 

Q_F_new(1)=Q_F(1); 

precision_new(1)=precision(1); 

th_new(1)=th(1); 

TP_new(1)=TP(1); 

FP_new(1)=FP(1); 

FN_new(1)=FN(1); 

TN_new(1)=TN(1); 

for i=2:no_thr 

    if Q_D(i)==Q_D(i-1) && Q_F(i)==Q_F(i-1) && precision(i)==precision(i-1) 

    else 

        Q_D_new(j)=Q_D(i); 
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        Q_F_new(j)=Q_F(i); 

        precision_new(j)=precision(i); 

        th_new(j)=th(i); 

        TP_new(j)=TP(i); 

        FP_new(j)=FP(i); 

        FN_new(j)=FN(i); 

        TN_new(j)=TN(i); 

        result_FC_new(j,:)=result_FC(i,:); 

        j=j+1; 

    end 

end 

Q_D=Q_D_new; 

Q_F=Q_F_new; 

precision=precision_new; 

th=th_new; 

TP=TP_new; 

FP=FP_new; 

FN=FN_new; 

TN=TN_new; 

result_FC=result_FC_new; 

no_thr=length(th); 

clearvars Q_D_new Q_F_new precision_new th_new TP_new FP_new FN_new TN_new 

result_FC_new 

  

%% Analysis of Parameters 

  

disp('Analysis of Parameters for FC setting') 

  

AUC=-trapz(Q_F,Q_D); % calculation of Area Under the Curve 

  

% the matrix called "perf" has rows representing each indicator 

% for each raw of the matrix the 1st value is the cut-off threshold at 

indicator¥s maximum value 

% the 2nd value is the Prob. of Detection at cut off threshold 

% the 3rd value is the Prob. of False Alarm at cut off threshold 

% the 4th value is the indicator¥s maximum value 

  

J=Q_D-Q_F; % calculation of Youden's indexes 

perf(1,4)=max(J); % maximum value of Youden's indexes 

ind=find(J==perf(1,4)); % array's index for max Youden's index 

perf(1,1)=th(ind); % cut off threshold at max J value 

perf(1,3)=Q_F(ind); % Prob. of False Alarm at cut off threshold 

perf(1,2)=Q_D(ind); % Prob. of Detection at cut off threshold 

  

beta_value=1; % 1: pr and rec equally weighted, 2: recall weighted higher 

than precision, 0.5: precision weighted higher than recall 

F_beta=(1+beta_value^2)*(precision.*Q_D)./(beta_value^2*precision+Q_D); % 

F_value (armonic mean between precision and recall, with weight) 

perf(2,4)=max(F_beta); % maximum value of F_beta 

ind=find(F_beta==perf(2,4)); % array's index for max F_beta 

perf(2,1)=th(ind); % cut off threshold at max F_beta 

perf(2,3)=Q_F(ind); % Prob. of False Alarm at cut off threshold 

perf(2,2)=Q_D(ind); % Prob. of Detection at cut off threshold 

  

dist_roc=(1-Q_D).^2+Q_F.^2; % sq. distance to (0,1) 

perf(3,4)=min(dist_roc); % minimum sq. distance to (0,1) 

ind=find(dist_roc==perf(3,4)); % array's index for min sq. distance to 

(0,1) 

perf(3,1)=th(ind); % cut off threshold at min sq. distance to (0,1) 

perf(3,3)=Q_F(ind); % Prob. of False Alarm at cut off threshold 

perf(3,2)=Q_D(ind); % Prob. of Detection at cut off threshold 
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CZ=Q_D.*(1-Q_F); % CZ index 

perf(4,4)=max(CZ); % maximum value of CZ index 

ind=find(CZ==perf(4,4)); % array's index for max CZ index 

perf(4,1)=th(ind); % cut off threshold at max CZ index 

perf(4,3)=Q_F(ind); % Prob. of False Alarm at cut off threshold 

perf(4,2)=Q_D(ind); % Prob. of Detection at cut off threshold 

  

%% Sensors' Detection 

  

detect=zeros(K,tot); % matrix containing all the decisions of any sensor 

during the simulation (every row is a sensor) 

for i=1:K 

    sentence=['simulating detection: sensor ' ,num2str(i), ' of ' 

,num2str(K)]; % display the progress 

    disp(sentence) 

    for j=1:tot 

        if ampl(i,j)^2>=th_loc(i) 

            detect(i,j)=1; 

        else 

            detect(i,j)=0; 

        end 

    end 

end 

  

Q_F_test_loc=zeros(1,K); 

Q_D_test_loc=zeros(1,K); 

  

for i=1:K 

    fa_test_loc=find((X==0)&(detect(i,:)==1)); 

    FP_test_loc=length(fa_test_loc);    % number of false alarms FP 

    Q_F_test_loc(i)=FP_test_loc/non_rel; % FPR 

     

    d_test_loc=find((X==1)&(detect(i,:)==1)); 

    TP_test_loc=length(d_test_loc); % number of detection (true positives) 

    Q_D_test_loc(i)=TP_test_loc/rel; % TPR - True Positive Rate - 

Probability of Detection 

end 

  

%% Fusion Center's Detection and Localization 

  

inst_FC=1; % number of instants to take into account in the TCR 

time_th=0; % threshold used in TCR  

SP_calc_inst=zeros(tot,2); 

index_rel=0; 

SP_calc_db=zeros(tot,2); 

SP_num_db(1:2,1:tot)=NaN; 

SP_calc=[0 0]; 

  

dist_SP_HS=zeros(1,HS); 

result=zeros(1,tot); % matrix containing all the decisions of the FC for 

different thresholds 

lambda=zeros(1,tot); % vector containing all the FR's results 

lambda_time=zeros(1,tot); % vector containing all the TCR's results 

final_result=zeros(1,tot); % matrix containing final decision (WFR+TCR) 

  

for i=1:tot % for each instant 

        if rem(i,100)==0 || i==1 % display the progress 

        sentence=['Instant simulated by FC: ' ,num2str(i), ' of ' 

,num2str(tot)]; 

        disp(sentence) 
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        end     

        lambda(i)=sum(detect(:,i)); % value of FR 

        if lambda(i)>perf(1,1) % for-loop determining the decision of the 

FC based on CR 

            result(i)=1; 

        else 

            result(i)=0; 

        end 

  

        if result(i)==0 

            inst=inst_FC; 

            if inst>i % necessary for the first instants (when there aren't 

enough previous data)   

                inst=i; 

            end           

            lambda_time(i)=sum(result(i-inst+1:i));           

            if lambda_time(i)>time_th % for-loop determining the final 

decision of the FC 

                final_result(i)=1; 

            else 

                final_result(i)=0; 

            end 

            else 

             final_result(i)=1; 

        end 

     

        if result(i)==1 && sum(detect(:,i))>=1 

            index_rel=index_rel+1; 

            

SP_calc_inst(index_rel,:)=sum((sensors_crd.*detect(:,i))+((2*sum(sensors_cr

d.*detect(:,i))/sum(detect(:,i))-(1-detect(:,i)).*sensors_crd).*(1-

detect(:,i))))/K; 

            if index_rel==1 

                SP_calc=[SP_calc_inst(index_rel,1) 

SP_calc_inst(index_rel,2)]; 

            else 

                SP_calc=[((index_rel-

1)*SP_calc(1)+SP_calc_inst(index_rel,1))/index_rel ((index_rel-

1)*SP_calc(2)+SP_calc_inst(index_rel,2))/index_rel]; 

            end 

            for count_HS=1:HS 

                dist_SP_HS(count_HS)=sqrt((SP_calc(1)-

hotspot_crd(count_HS,1))^2+(SP_calc(2)-hotspot_crd(count_HS,2))^2); 

            end 

            SP_num=find(dist_SP_HS==min(dist_SP_HS));  

            SP_calc_db(i,:)=SP_calc; 

            SP_num_db(1:length(SP_num),i)=transpose(SP_num); 

        else 

            if sum(sum(SP_calc_inst))==0 

                SP_calc_db(i,:)=NaN; 

            else 

                SP_calc_db(i,:)=SP_calc_db(i-1,:); 

            end 

        end 

        if final_result(i)==1 && result(i)==0 

            SP_calc_db(i,:)=SP_calc; 

            SP_num_db(1:length(SP_num),i)=transpose(SP_num); 

        end          

end 

  

fa_test=find((X==0)&(final_result==1)); 
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FP_test=length(fa_test);    % number of false alarms FP 

Q_F_test=FP_test/non_rel; % FPR 

     

d_test=find((X==1)&(final_result==1)); 

TP_test=length(d_test); % number of detection (true positives) 

Q_D_test=TP_test/rel; % TPR - True Positive Rate - Probability of Detection 

     

precision_test=TP_test/(TP_test+FP_test); % precision 

  

%% Animation 

  

answer = questdlg('Do you want to see the animation?','Yes','No'); 

switch answer 

    case 'Yes' 

        answer = 1; 

    case 'No' 

        answer = 0; 

end 

if answer==1 

sentence='Show Animation'; 

disp(sentence) 

img=imread('template.png'); 

figure(1) 

for i=1:tot 

hold off 

imagesc([0 41.26],[0 27.45],flipud(img)); 

set(gca,'ydir','normal'); 

set(gcf, 'Position', get(0, 'Screensize')); 

xlim([0 41.26]) 

ylim([0 27.45]) 

xlabel('x (meters)') 

ylabel('y (meters)') 

grid on 

hold on 

scatter(hotspot_crd(:,1),hotspot_crd(:,2),400,'filled','r') 

if X(i)==1 

    scatter(target_crd(1),target_crd(2),400,'filled','b') 

end 

scatter(sensors_crd(:,1),sensors_crd(:,2),400,'filled','g') 

    if isnan(SP_calc_db(i,1))==0 

        scatter(SP_calc_db(i,1),SP_calc_db(i,2),100,'filled','m') 

    end 

    if isnan(SP_num_db(1,i))==0 && isnan(SP_num_db(2,i))==1 

        

scatter(hotspot_crd(SP_num_db(1,i),1),hotspot_crd(SP_num_db(1,i),2),100,'fi

lled','y') 

    else 

        if isnan(SP_num_db(1,i))==0 && isnan(SP_num_db(2,i))==0 

            

scatter(hotspot_crd(SP_num_db(1:size(SP_num_db,1),i),1),hotspot_crd(SP_num_

db(1:size(SP_num_db,1),i),2),100,'filled','y') 

        end 

    end 

title(['2D Scenario. Instant number: ' num2str(i) ' of ' num2str(tot)]) 

drawnow 

end  

end 

  

%% Plot 

  

disp('Plot and curves generation') 
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figure(1) % release plot 

plot(X)  

xlabel('time (s)') 

ylabel('0 = Non-release / 1 = Release') 

xlim([0 tot]) 

ylim([0 1]) 

  

figure(2) % Square attenuation vs. Distance 

x_plot=l0:.1:max(l); 

x_plot=[x_plot max(l)]; 

TL_plot=alpha_water*(x_plot-l0)*10^-3+spread_cf*10*log10(x_plot/l0); 

AAF_plot=exp(-TL_plot./(20*log10(exp(1)))); 

plot(x_plot,AAF_plot,'b') 

xlabel('Distance (m)') 

ylabel('Attenuation (AAF)') 

for i=1:K 

hold on 

line([l(i) l(i)],[0 1]) % vertical lines representing sensors position 

end 

hold off 

xlim([l0-1 max(l)+1]) 

ylim([0 max(AAF_plot)]) 

title('Attenuation vs Distance') 

  

figure(3) % wave amplitude vs time plot 

for i=1:K 

    z0=ampl(i,:); 

    z1=ampl(i,:); 

    for j=1:tot 

        switch X(j) 

            case 0 

                z1(j)=NaN; 

            case 1 

                z0(j)=NaN; 

        end 

    end 

    subplot(K,1,i) 

    plot(z0,'b') 

    hold on 

    plot(z1,'r') 

    xlabel('time (s)') 

    ylabel('y (Amplitude)') 

    title(['Received Signal, sensor ' num2str(i) ', coordinates: (' 

num2str(sensors_crd(i,1)) ',' num2str(sensors_crd(i,2)) ')']) 

    hold off 

end 

  

figure(4) % Amplitude Distribution Plot 

for i=1:K 

subplot(1,K,i) 

histogram(noise_ampl(i,:),'Normalization','pdf') 

hold on 

histogram(rel_ampl(i,:),'Normalization','pdf') 

hold on 

line([sqrt(th_loc(i)) 

sqrt(th_loc(i))],get(gca,'ylim'),'LineWidth',2,'Color','k') 

line([-sqrt(th_loc(i)) -

sqrt(th_loc(i))],get(gca,'ylim'),'LineWidth',2,'Color','k') 

legend('p(y|H0)','p(y|H1)') 
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title(['Amplitude pdf, sensor ' num2str(i) ', coordordinates: (' 

num2str(sensors_crd(i,1)) ',' num2str(sensors_crd(i,2)) ')']) 

xlabel('y (Amplitude)') 

hold off 

end 

  

figure(5) 

for i=1:K 

    subplot(1,K,i) 

    th_loc_poss=0:.01:10; 

    

plot(2*qfunc(sqrt(th_loc_poss/var_noise)),2*qfunc(sqrt(th_loc_poss/(var_fad

sig*AAF_FC(target,i)^2+var_noise)))) 

    hold on 

    

scatter(2*qfunc(sqrt(th_loc(i)/var_noise)),2*qfunc(sqrt(th_loc(i)/(var_fads

ig*AAF_FC(target,i)^2+var_noise))),'filled') 

    line([0 1],[0 1],'LineStyle','--') 

    hold off 

    title(['ROC sensor ' num2str(i) ', coordinates: (' 

num2str(sensors_crd(i,1)) ',' num2str(sensors_crd(i,2)) ')']) 

    xlabel('Local Probability of False Alarm') 

    ylabel('Local Probability of Detection') 

    xlim([0 1]) 

    ylim([0 1]) 

    pbaspect([1 1 1]) 

end 

  

figure(6) % ROC curve - linear 

plot(Q_F,Q_D,'-or')  

hold on 

line([0 1],[0 1],'LineStyle','--') % chance line 

scatter(Q_F_test,Q_D_test,'filled') 

hold off 

title('ROC CURVE - linear') 

xlabel('Global Probability of False Alarm') 

ylabel('Global Probability of Detection') 

xlim([0 1]) 

ylim([0 1]) 

  

figure(7) % ROC curve - semilog 

semilogx(Q_F,Q_D,'-or') 

hold on 

scatter(Q_F_test,Q_D_test,'filled') 

hold off 

title('ROC CURVE - semilog') 

xlabel('Global Probability of False Alarm') 

ylabel('Global Probability of Detection') 

xlim([Q_F(end-1) 1]) 

ylim([Q_D(end-1)-0.05 1]) 

  

figure(8) % PR curve - linear 

plot(Q_D,precision,'-or')  

hold on 

scatter(Q_D_test,precision_test,'filled') 

hold off 

title('PR CURVE') 

xlabel('Recall') 

ylabel('Precision') 

xlim([0 1]) 

ylim([0 1]) 
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SP_num_db_plot=zeros(1,index_rel); 

dist_plot=zeros(1,index_rel); 

j=1; 

for i=1:N 

    if result(i)==1 

        SP_num_db_plot(j)=SP_num_db(1,i); 

        dist_plot(j)=sqrt((target_crd(1)-

hotspot_crd(SP_num_db_plot(j),1))^2+(target_crd(2)-

hotspot_crd(SP_num_db_plot(j),2))^2); 

        j=j+1; 

    end 

end 

AUC_localization=trapz(1:index_rel,dist_plot); 

figure(9) 

plot(1:index_rel,dist_plot) 

title(['Distance from Target. Area under curve (no. of instants: ' 

num2str(index_rel) ') = ' num2str(AUC_localization) '']) 

xlabel('Time (s) / Fusion Center Positive Detection') 

ylabel('Distance from Target (m)') 

xlim([1 index_rel]) 

ylim([0 max(dist_plot)]) 

  

%% Memory Cleaning 

  

disp('Memory Cleaning') 

clearvars x_plot TL_plot AAF_plot x d fa j i q s sentence img u v 

noise_ampl_FC rel_ampl_FC ind th_loc_poss pfa_FC_poss pd_FC_poss 

fa_test_loc FP_test_loc d_test_loc TP_test_loc % deleting variables 

  

%% Functions 

  

function x=binary_source(p,r,N) 

  

A10=(1-p)/(p+r-p*r); 

A01=p/(p+r-p*r); 

  

x=zeros(1,N); % pre-allocation of memory to improve code performances 

  

for n=2:N % it starts from 2 because we want the initial state n=1 to be 

without release  

    switch x(n-1) 

        case 0 

            x(n)=(rand<A01); 

        case 1 

            x(n)=(rand<1-A10); 

    end 

end 

end 

  

function y=speed_sound(D,T,S) 

  

% it calculates sound speed using corrected UNESCO algorithm  

  

c0=1402.388+5.03711*T-5.80852e-2*T^2+3.3420e-4*T^3-1.47800e-6*T^4+3.1464e-

9*T^5; 

c1=0.153563+6.8982e-4*T-8.1788e-6*T^2+1.3621e-7*T^3-6.1185e-10*T^4; 

c2=3.1260e-5-1.7107e-6*T+2.5974e-8*T^2-2.5335e-10*T^3+1.0405e-12*T^4; 

c3=-9.7729e-9-3.8504e-10*T-2.3643e-12*T^2; 

A0=1.389-1.262e-2*T+7.164e-5*T^2+2.006e-6*T^3-3.21e-8*T^4; 

A1=9.4742e-5-1.2580e-5*T-6.4885e-8*T^2+1.0507e-8*T^3-2.0122e-10*T^4; 
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A2=-3.9064e-7+9.1041e-9*T-1.6002e-10*T^2+7.988e-12*T^3; 

A3=1.100e-10+6.649e-12*T-3.389e-13*T^2; 

P=D/10; 

A=A0+A1*P+A2*P^2+A3*P^3; 

B=-1.922e-2-4.42e-5*T+(7.3637e-3+1.7945e-7*T)*P; 

C=-7.9836e-6*P+1.727e-3; 

y=c0+c1*P+c2*P^2+c3*P^3+A*S+B*S^(3/2)+C*S^2; 

end 

  

function y=absorption_FG(f,T,S,D,pH,c) 

  

% this function calculates the attenuation coefficient in bB/km 

% using Francois-Garrison method 

% "f" is the frequency of the sound in kHz 

% "T" is the temperature in ∞C 

% "S" is the salinity in parts-per-thousand 

% "D" is the depth in m 

% "pH" is the indicator of water acidity 

  

theta=273.15+T; % K, temperature 

  

% excess absorption due to Boric Acid (H3BO3) 

A1=(8.86/c)*10^(0.78*pH-5); % dB/(km*kHz) 

P1=1; % nondimensional pressure correction factor 

f1=2.8*sqrt(S/35)*10^(4-1245/theta); % kHz, relaxation frequencies of H3BO3 

alpha1=(A1*P1*f1*f.^2)/(f1^2+f.^2); % dB/km 

  

% excess absorption due to Magnesium Sulfate (MgSO4) 

A2=21.44*(S/c)*(1+0.025*T); % dB/(km*kHz) 

P2=1-1.37e-4*D+6.2e-9*D^2; % nondimensional pressure correction factor 

f2=(8.17*10^(8-1990/theta))/(1+0.0018*(S-35)); % kHz, relaxation 

frequencies of MgSO4 

alpha2=(A2*P2*f2*f.^2)/(f2^2+f.^2); % dB/km 

  

% absorption due to water 

if T<=20 

    A3=4.937e-4-2.59e-5*T+9.11e-7*T^2-1.5e-8*T^3; % dB/(km*kHz^2) 

else 

    A3=3.964e-4-1.146e-5*T+1.45e-7*T^2-6.5e-10*T^3; % dB/(km*kHz^2) 

end 

P3=1-3.83e-5*D+4.9e-10*D^2; % nondimensional pressure correction factor 

alpha3=A3*P3*f.^2; % dB/km 

  

y=alpha1+alpha2+alpha3; 

end 

function y=absorption_FS(f,T,D) 

  

% this function calculates the attenuation coefficient in bB/km 

% using Fisher-Simmons method 

% "f" is the frequency of the sound in kHz 

% "T" is the temperature in ∞C 

% "D" is the depth in m 

  

f=f*1000; % method is written using Hz  

theta=273.15+T; % K, temperature 

P=D/10+1; % atm, absolute pressure estimation (supposing 10 m_seawater = 1 

atm) 

  

% excess absorption due to Boric Acid (H3BO3) 

A1=1.03e-8+2.36e-10*T-5.22e-12*T^2; % Np/(m*Hz) 

P1=1; % nondimensional pressure correction factor 
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f1=1.32e3*theta*exp(-1700/theta); % Hz, relaxation frequencies of H3BO3 

alpha1=(A1*P1*f1*f.^2)/(f1^2+f.^2); % Np/m 

  

% excess absorption due to Magnesium Sulfate (MgSO4) 

A2=5.62e-8+7.52e-10*T; % Np/(m*Hz) 

P2=1-10.3e-4*P+3.7e-7*P^2; % nondimensional pressure correction factor 

f2=1.55e7*theta*exp(-3052/theta); % Hz, relaxation frequencies of MgSO4 

alpha2=(A2*P2*f2*f.^2)/(f2^2+f.^2); % Np/m 

  

% absorption due to water 

A3=(55.9-2.37*T+4.77e-2*T^2-3.48e-4*T^3)*10^-15; % Np/(m*Hz^2) 

P3=1-384e-4*P+7.57e-8*P^2; % nondimensional pressure correction factor 

alpha3=A3*P3*f.^2; % Np/m 

  

y=alpha1+alpha2+alpha3; % Np/m 

y=y*1000*20*log10(exp(1)); % dB/km 

end 

function y=absorption_SM(f,T,S,D) 

  

% this function calculates the attenuation coefficient in bB/km 

% using Shulkin-Marsh method 

% "f" is the frequency of the sound in kHz 

% "T" is the temperature in ∞C 

% "S" is the salinity in parts-per-thousand 

% "D" is the depth in m 

  

theta=273.15+T; % K, temperature 

P=D/10+1; % atm, absolute pressure estimation (supposing 10 m_seawater = 1 

atm) 

A=2.34e-6; 

B=3.38e-6; 

fT=21.9*10^(6-1520/theta); % kHz 

y=((S*A*fT*f.^2)/(fT^2+f.^2)+(B*f.^2)/fT)*(1-6.54e-4*P); % Np/m 

y=y*1000*20*log10(exp(1)); % dB/km 

end 

function y=absorption_AM(f,T,S,D,pH) 

  

% this function calculates the attenuation coefficient in bB/km 

% using Ainslie-McColm method 

% "f" is the frequency of the sound in kHz 

% "T" is the temperature in ∞C 

% "S" is the salinity in parts-per-thousand 

% "D" is the depth in m 

% "pH" is the indicator of water acidity 

  

D=D/1000; % method is written using km  

  

% excess absorption due to Boric Acid (H3BO3) 

f1=0.78*exp(T/26)*sqrt(S/35); % kHz, relaxation frequencies of H3BO3 

alpha1=0.106*(f1*f.^2)/(f1^2+f.^2)*exp((pH-8)/0.56); % dB/km 

  

% excess absorption due to Magnesium Sulfate (MgSO4) 

f2=42*exp(T/17); % kHz, relaxation frequencies of MgSO4 

alpha2=0.52*(1+T/43)*(S/35)*(f2*f.^2)/(f2^2+f.^2)*exp(-D/6); % dB/km 

  

% absorption due to water 

alpha3=4.9e-4*f.^2*exp(-T/27+D/17); % dB/km 

  

y=alpha1+alpha2+alpha3; 

end 

function y=absorption_T(f) 
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% this function calculates the attenuation coefficient in bB/km 

% using Thorp method 

% "f" is the frequency of the sound in kHz 

  

y=1.0936132983*(0.1*f.^2/(1+f.^2)+40*f.^2/(4100+f.^2)); 

end 
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Appendix 3: MATLAB Script (Hotspot 10: WFR + BBM-TISP) 

This MATLAB script was written using MATLAB R2019; it simulates the release in HS 10, 

the FC performs the WFR for detection and BBM-TISP for localization. All the settings are 

those described in the previous chapters. 

MATLAB, in order to run the animation, must have the following picture in a folder 

accessible by MATLAB. The file must be named “template.png”. 

 

%%%%%  Oil Spill Detection and Localization    %%%% 

%%%%%              WFR + BBM-TISP              %%%% 

%%%%%                Hotspot 10                %%%% 

%%%%%         Author: Gianluca Tabella         %%%% 

  

clear 

close all 

clc 

  

%% Release Modelling 

  

disp('Release Modelling') % display the progress 

  

p=1/3;  % parameter for release shape 

r=2;    % parameter for release shape 

N=10000; % number of instants 

X=binary_source(p,r,N); % function giving an array that simulates the 

events before the continuous release 

tot=length(X); % total number of records 

rel=nnz(X); % number of releases (positive events)   

non_rel=tot-rel; % number of non-releases (negative events) 

  

%% Signal Modelling 

  

disp('Signal Modelling') % display the progress 
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f=20e-3; % kHz - sound frequency 

T=3.8; % ∞C - temperature (T=3.8∞C at Goliat) 

S=35; % ppt - salinity (S=35 ppt at Goliat) 

D=350; % m - depth (D=350-400 m at Goliat) 

pH=8; % pH of water (pH=8 at Goliat) 

spread_cf=1.5; % spreading coeff. (spherical=2;cylindrical=1;practical=1.5) 

  

c=speed_sound(D,T,S); % m/s - speed of sound underwater 

alpha_water=absorption_FG(f,T,S,D,pH,c); % dB/km - absorption due to water 

hotspot_crd=[11.5,11.75 ; 11.5,12.75 ; 11.5,13.75 ; 15,11.75 ; 15,12.75 ; 

15,13.75 ; 18,11.75 ; 18,12.75 ; 19,11.75 ; 19,12.75 ; 24.5,11.75 ; 

24.5,12.75 ; 25.5,11.75 ; 25.5,12.75 ; 28.2,11.75 ; 28.2,12.75 ; 28.2,13.75 

; 31.7,11.75 ; 31.7,12.75; 31.7,13.75]; % m - hotspots' coordinates  

HS=length(hotspot_crd(:,1)); % number of hot spots 

target=10; 

target_crd=hotspot_crd(target,:); % m - target coordinates  

sensors_crd=[13.97,15.3 ; 29.35,14.66 ; 21.86,9.42]; % m - sensor 

coordinates 

l=transpose(sqrt((target_crd(1)-sensors_crd(:,1)).^2+(target_crd(2)-

sensors_crd(:,2)).^2)); % m - distance of sensors from target 

K=length(l); % number of sensors 

l_FC=zeros(length(hotspot_crd(:,1)),K); 

for i=1:length(hotspot_crd(:,1))  % m - (HSxK matrix) distances between HS 

hot spots and K sensors 

    for j=1:K 

        l_FC(i,j)=sqrt((hotspot_crd(i,1)-

sensors_crd(j,1))^2+(hotspot_crd(i,2)-sensors_crd(j,2))^2); 

    end 

end 

l0=min(min(l_FC)); % m - reference distance 

TL=alpha_water*(l-l0)*10^-3+spread_cf*10*log10(l/l0); % dB - Transmission 

Loss 

AAF=exp(-TL./(20*log10(exp(1)))); % AAF (TL converted in Nepers) 

var_noise=1; % variance of noise (gaussian) 

SNR=20; % signal-to-noise ratio at closest (sensor/hot spot) 

var_fadsig=var_noise*SNR; % variance of fading (gaussian) 

  

noise_ampl=zeros(K,non_rel); 

for i=1:K 

    noise_ampl(i,:)=sqrt(var_noise)*randn(1,non_rel); 

end 

rel_ampl=zeros(K,rel); 

for i=1:K 

    

rel_ampl(i,:)=AAF(i)*sqrt(var_fadsig)*randn(1,rel)+sqrt(var_noise)*randn(1,

rel); 

end 

u=1; 

v=1; 

ampl=zeros(K,tot); % pre-allocation for final scenario  

for i=1:tot 

    switch X(i) 

        case 1 

            for j=1:K  

                ampl(j,i)=rel_ampl(j,u); 

            end 

            u=u+1; 

        case 0 

            for j=1:K  

                ampl(j,i)=noise_ampl(j,v); 
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            end 

            v=v+1; 

    end 

end 

  

%% Sensors' Settings 

  

disp('Sensors setting calculation') % display the progress 

  

th_loc_poss=0:.00001:10; % threshold for local decision (non-negative) 

  

f_FC=f; % kHz - sound frequency 

T_FC=T; % ∞C - temperature (T=3.8∞C at Goliat) 

S_FC=S; % ppt - salinity (S=35 ppt at Goliat) 

D_FC=D; % m - depth (D=350-400 m at Goliat) 

pH_FC=pH; % pH of water (pH=8 at Goliat) 

spread_cf_FC=spread_cf; % spreading coeff. 

(spherical=2;cylindrical=1;practical=1.5) 

c_FC=speed_sound(D_FC,T_FC,S_FC); % m/s - speed of sound underwater 

alpha_water_FC=absorption_FG(f_FC,T_FC,S_FC,D_FC,pH_FC,c_FC); % dB/km - 

absorption due to water 

TL_FC=alpha_water_FC*(l_FC-l0)*10^-3+spread_cf_FC*10*log10(l_FC/l0); % dB - 

Transmission Loss 

AAF_FC=exp(-TL_FC/(20*log10(exp(1)))); % AAF (TL converted in Nepers) 

var_noise_FC=1; % variance of noise (gaussian) 

SNR_FC=20; % signal-to-noise ratio at closest (sensor/hot spot) 

var_fadsig_FC=var_noise_FC*SNR_FC; % variance of fading (gaussian) 

CZ_loc=zeros(HS,K); 

CZ_loc_db=zeros(length(th_loc_poss),K); 

th_loc=zeros(1,K); 

for i=1:length(th_loc_poss) 

    pfa_FC_poss=2*qfunc(sqrt(th_loc_poss(i)/var_noise_FC)); % array of 

probabilities of false alarm for the single sensors 

    

pd_FC_poss=2*qfunc(sqrt(th_loc_poss(i)./(var_fadsig_FC*AAF_FC.^2+var_noise_

FC))); % array of the corresponing probabilities of detection 

    CZ_loc=pd_FC_poss.*(1-pfa_FC_poss); 

    CZ_loc_db(i,:)=mean(CZ_loc); 

end 

  

for i=1:K    

    th_loc(i)=th_loc_poss(CZ_loc_db(:,i)==max(CZ_loc_db(:,i))); 

end 

  

pfa_FC=2*qfunc(sqrt(th_loc/var_noise_FC)); % array of probabilities of 

false alarm for the single sensors 

pd_FC=zeros(HS,K); 

for i=1:K 

pd_FC(:,i)=2*qfunc(sqrt(th_loc(i)./(var_fadsig_FC*AAF_FC(:,i).^2+var_noise_

FC))); % array of the corresponing probabilities of detection 

end 

pd_FC=mean(pd_FC); 

  

%% FC's Settings 

  

disp('FC Settings Calculation') % display the progress 

  

p_FC=p;  % parameter for release shape 

r_FC=r;    % parameter for release shape 

N_FC=N; % number of instants 



183 
 

X_FC=binary_source(p_FC,r_FC,N_FC); % function giving an array that 

simulates the events before the continuous release 

tot_FC=length(X_FC); % total number of records 

rel_FC=nnz(X_FC); % number of releases (positive events)   

non_rel_FC=tot_FC-rel_FC; % number of non-releases (negative events) 

noise_ampl_FC=zeros(K,non_rel_FC); 

  

for i=1:K 

    noise_ampl_FC(i,:)=sqrt(var_noise_FC)*randn(1,non_rel_FC); 

end 

rel_ampl_FC=zeros(K,rel_FC); 

for i=1:K 

    

rel_ampl_FC(i,:)=mean(AAF_FC(:,i))*sqrt(var_fadsig_FC)*randn(1,rel_FC)+sqrt

(var_noise_FC)*randn(1,rel_FC); 

end 

u=1; 

v=1; 

ampl_FC=zeros(K,tot_FC); % pre-allocation for final scenario  

for i=1:tot_FC 

    switch X_FC(i) 

        case 1 

            for j=1:K  

                ampl_FC(j,i)=rel_ampl_FC(j,u); 

            end 

            u=u+1; 

        case 0 

            for j=1:K  

                ampl_FC(j,i)=noise_ampl_FC(j,v); 

            end 

            v=v+1; 

    end 

end 

  

detect_FC=zeros(K,tot_FC); % matrix containing all the decisions of any 

sensor during the simulation (every row is a sensor) 

for i=1:K 

    for j=1:tot_FC 

        if ampl_FC(i,j)^2>=th_loc(i) 

            detect_FC(i,j)=1; 

        else 

            detect_FC(i,j)=0; 

        end 

    end 

end 

  

th=-4:0.001:4; % array of possibile thresholds 

no_thr=length(th); % number of possible thresholds 

  

result_FC=zeros(no_thr,tot_FC); % matrix containing all the decisions of 

the FC for different thresholds 

lambda_FC=zeros(1,tot_FC); % vector containing all the FR's results 

  

for j=1:no_thr % for each threshold 

    sentence=['FC setting calculation: elaboration threshold number ' 

,num2str(j), ' of ' ,num2str(no_thr)]; 

    disp(sentence) 

    for i=1:tot_FC % for each instant    

        

lambda_FC(i)=sum(transpose(detect_FC(:,i)).*log(pd_FC./pfa_FC)+transpose((1

-detect_FC(:,i))).*log((1-pd_FC)./(1-pfa_FC))); % value of FR 
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        if lambda_FC(i)>th(j) % for-loop determining the decision of the FC 

based on WFR 

            result_FC(j,i)=1; 

        else 

            result_FC(j,i)=0; 

        end 

    end   

end 

  

%% FC's Performances  

  

FP=zeros(1,no_thr); % array of number of false alarms at different 

thresholds  

TP=zeros(1,no_thr); % array of number of detections at different thresholds  

FN=zeros(1,no_thr); % array of number of false negatives at different 

thresholds  

TN=zeros(1,no_thr); % array of number of true negatives at different 

thresholds  

Q_F=zeros(1,no_thr); % array of probabilities of false alarm at different 

thresholds 

Q_D=zeros(1,no_thr); % array of probabilities of detecion at different 

thresholds 

precision=zeros(1,no_thr); % array of precisions at different thresholds 

  

for i=1:no_thr % for each threshold  

        sentence=['FC setting calculation: evaluation threshold number ' 

,num2str(i), ' of ' ,num2str(no_thr)]; 

        disp(sentence) % display the progress 

     

        fa=find((X_FC==0)&(result_FC(i,:)==1));  

        FP(i)=length(fa);    % number of false alarms FP 

        Q_F(i)=FP(i)/non_rel_FC; % FPR 

     

        d=find((X_FC==1)&(result_FC(i,:)==1)); 

        TP(i)=length(d); % number of detection (true positives) 

        Q_D(i)=TP(i)/rel_FC; % TPR - True Positive Rate - Probability of 

Detection 

         

        FN(i)=rel_FC-TP(i); % False negatives 

        TN(i)=non_rel_FC-FP(i); % True Negatives 

     

        precision(i)=TP(i)/(TP(i)+FP(i)); % precision 

end     

precision(isnan(precision))=1; % built to overcome the presence of NaN 

results when precision converges to 1 

  

%% Removal of Useless Thresholds 

  

disp('Removal of Useless Thresholds from FC setting calculation history') 

j=2; % loop used to remove results when no change was determined varying 

the threshold 

result_FC_new(1,:)=result_FC(1,:); 

Q_D_new(1)=Q_D(1); 

Q_F_new(1)=Q_F(1); 

precision_new(1)=precision(1); 

th_new(1)=th(1); 

TP_new(1)=TP(1); 

FP_new(1)=FP(1); 

FN_new(1)=FN(1); 

TN_new(1)=TN(1); 

for i=2:no_thr 
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    if Q_D(i)==Q_D(i-1) && Q_F(i)==Q_F(i-1) && precision(i)==precision(i-1) 

    else 

        Q_D_new(j)=Q_D(i); 

        Q_F_new(j)=Q_F(i); 

        precision_new(j)=precision(i); 

        th_new(j)=th(i); 

        TP_new(j)=TP(i); 

        FP_new(j)=FP(i); 

        FN_new(j)=FN(i); 

        TN_new(j)=TN(i); 

        result_FC_new(j,:)=result_FC(i,:); 

        j=j+1; 

    end 

end 

Q_D=Q_D_new; 

Q_F=Q_F_new; 

precision=precision_new; 

th=th_new; 

TP=TP_new; 

FP=FP_new; 

FN=FN_new; 

TN=TN_new; 

result_FC=result_FC_new; 

no_thr=length(th); 

clearvars Q_D_new Q_F_new precision_new th_new TP_new FP_new FN_new TN_new 

result_FC_new 

  

%% Analysis of Parameters 

  

disp('Analysis of Parameters for FC setting') 

  

AUC=-trapz(Q_F,Q_D); % calculation of Area Under the Curve 

  

% the matrix called "perf" has rows representing each indicator 

% for each raw of the matrix the 1st value is the cut-off threshold at 

indicator¥s maximum value 

% the 2nd value is the Prob. of Detection at cut off threshold 

% the 3rd value is the Prob. of False Alarm at cut off threshold 

% the 4th value is the indicator¥s maximum value 

  

J=Q_D-Q_F; % calculation of Youden's indexes 

perf(1,4)=max(J); % maximum value of Youden's indexes 

ind=find(J==perf(1,4)); % array's index for max Youden's index 

perf(1,1)=th(ind); % cut off threshold at max J value 

perf(1,3)=Q_F(ind); % Prob. of False Alarm at cut off threshold 

perf(1,2)=Q_D(ind); % Prob. of Detection at cut off threshold 

  

beta_value=1; % 1: pr and rec equally weighted, 2: recall weighted higher 

than precision, 0.5: precision weighted higher than recall 

F_beta=(1+beta_value^2)*(precision.*Q_D)./(beta_value^2*precision+Q_D); % 

F_value (armonic mean between precision and recall, with weight) 

perf(2,4)=max(F_beta); % maximum value of F_beta 

ind=find(F_beta==perf(2,4)); % array's index for max F_beta 

perf(2,1)=th(ind); % cut off threshold at max F_beta 

perf(2,3)=Q_F(ind); % Prob. of False Alarm at cut off threshold 

perf(2,2)=Q_D(ind); % Prob. of Detection at cut off threshold 

  

dist_roc=(1-Q_D).^2+Q_F.^2; % sq. distance to (0,1) 

perf(3,4)=min(dist_roc); % minimum sq. distance to (0,1) 

ind=find(dist_roc==perf(3,4)); % array's index for min sq. distance to 

(0,1) 
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perf(3,1)=th(ind); % cut off threshold at min sq. distance to (0,1) 

perf(3,3)=Q_F(ind); % Prob. of False Alarm at cut off threshold 

perf(3,2)=Q_D(ind); % Prob. of Detection at cut off threshold 

  

CZ=Q_D.*(1-Q_F); % CZ index 

perf(4,4)=max(CZ); % maximum value of CZ index 

ind=find(CZ==perf(4,4)); % array's index for max CZ index 

perf(4,1)=th(ind); % cut off threshold at max CZ index 

perf(4,3)=Q_F(ind); % Prob. of False Alarm at cut off threshold 

perf(4,2)=Q_D(ind); % Prob. of Detection at cut off threshold 

  

%% Sensors' Detection 

  

detect=zeros(K,tot); % matrix containing all the decisions of any sensor 

during the simulation (every row is a sensor) 

for i=1:K 

    sentence=['simulating detection: sensor ' ,num2str(i), ' of ' 

,num2str(K)]; % display the progress 

    disp(sentence) 

    for j=1:tot 

        if ampl(i,j)^2>=th_loc(i) 

            detect(i,j)=1; 

        else 

            detect(i,j)=0; 

        end 

    end 

end 

  

Q_F_test_loc=zeros(1,K); 

Q_D_test_loc=zeros(1,K); 

  

for i=1:K 

    fa_test_loc=find((X==0)&(detect(i,:)==1)); 

    FP_test_loc=length(fa_test_loc);    % number of false alarms FP 

    Q_F_test_loc(i)=FP_test_loc/non_rel; % FPR 

     

    d_test_loc=find((X==1)&(detect(i,:)==1)); 

    TP_test_loc=length(d_test_loc); % number of detection (true positives) 

    Q_D_test_loc(i)=TP_test_loc/rel; % TPR - True Positive Rate - 

Probability of Detection 

end 

  

%% Fusion Center's Detection and Localization 

  

inst_FC=1; % number of instants to take into account in the TCR 

time_th=0; % threshold used in TCR  

SP_calc_inst=zeros(tot,2); 

index_rel=0; 

SP_calc_db=zeros(tot,2); 

SP_num_db(1:2,1:tot)=NaN; 

SP_calc=[0 0]; 

  

dist_SP_HS=zeros(1,HS); 

result=zeros(1,tot); % matrix containing all the decisions of the FC for 

different thresholds 

lambda=zeros(1,tot); % vector containing all the FR's results 

lambda_time=zeros(1,tot); % vector containing all the TCR's results 

final_result=zeros(1,tot); % matrix containing final decision (WFR+TCR) 

  

for i=1:tot % for each instant 

        if rem(i,100)==0 || i==1 % display the progress 



187 
 

        sentence=['Instant simulated by FC: ' ,num2str(i), ' of ' 

,num2str(tot)]; 

        disp(sentence) 

        end     

        

lambda(i)=sum(transpose(detect(:,i)).*log(pd_FC./pfa_FC)+transpose((1-

detect(:,i))).*log((1-pd_FC)./(1-pfa_FC))); % value of FR 

        if lambda(i)>perf(1,1) % for-loop determining the decision of the 

FC based on WFR 

            result(i)=1; 

        else 

            result(i)=0; 

        end 

        

        if result(i)==0 

            inst=inst_FC; 

            if inst>i % necessary for the first instants (when there aren't 

enough previous data)   

                inst=i; 

            end           

            lambda_time(i)=sum(result(i-inst+1:i));           

            if lambda_time(i)>time_th % for-loop determining the final 

decision of the FC 

                final_result(i)=1; 

            else 

                final_result(i)=0; 

            end 

            else 

             final_result(i)=1; 

        end 

     

        if result(i)==1 && sum(detect(:,i))>=1 

            index_rel=index_rel+1; 

            

SP_calc_inst(index_rel,:)=sum((repmat(transpose(pd_FC./pfa_FC),1,size(2,2))

).*sensors_crd.*detect(:,i))/sum((repmat(transpose(pd_FC./pfa_FC),1,size(2,

2))).*detect(:,i)); 

            if index_rel==1 

                SP_calc=[SP_calc_inst(index_rel,1) 

SP_calc_inst(index_rel,2)]; 

            else 

                SP_calc=[((index_rel-

1)*SP_calc(1)+SP_calc_inst(index_rel,1))/index_rel ((index_rel-

1)*SP_calc(2)+SP_calc_inst(index_rel,2))/index_rel]; 

            end 

            for count_HS=1:HS 

                dist_SP_HS(count_HS)=sqrt((SP_calc(1)-

hotspot_crd(count_HS,1))^2+(SP_calc(2)-hotspot_crd(count_HS,2))^2); 

            end 

            SP_num=find(dist_SP_HS==min(dist_SP_HS));  

            SP_calc_db(i,:)=SP_calc; 

            SP_num_db(1:length(SP_num),i)=transpose(SP_num); 

        else 

            if sum(sum(SP_calc_inst))==0 

                SP_calc_db(i,:)=NaN; 

            else 

                SP_calc_db(i,:)=SP_calc_db(i-1,:); 

            end 

        end 

        if final_result(i)==1 && result(i)==0 

            SP_calc_db(i,:)=SP_calc; 
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            SP_num_db(1:length(SP_num),i)=transpose(SP_num); 

        end          

end 

  

fa_test=find((X==0)&(final_result==1)); 

FP_test=length(fa_test);    % number of false alarms FP 

Q_F_test=FP_test/non_rel; % FPR 

     

d_test=find((X==1)&(final_result==1)); 

TP_test=length(d_test); % number of detection (true positives) 

Q_D_test=TP_test/rel; % TPR - True Positive Rate - Probability of Detection 

     

precision_test=TP_test/(TP_test+FP_test); % precision 

  

%% Animation 

  

answer = questdlg('Do you want to see the animation?','Yes','No'); 

switch answer 

    case 'Yes' 

        answer = 1; 

    case 'No' 

        answer = 0; 

end 

if answer==1 

sentence='Show Animation'; 

disp(sentence) 

img=imread('template.png'); 

figure(1) 

for i=1:tot 

hold off 

imagesc([0 41.26],[0 27.45],flipud(img)); 

set(gca,'ydir','normal'); 

set(gcf, 'Position', get(0, 'Screensize')); 

xlim([0 41.26]) 

ylim([0 27.45]) 

xlabel('x (meters)') 

ylabel('y (meters)') 

grid on 

hold on 

scatter(hotspot_crd(:,1),hotspot_crd(:,2),400,'filled','r') 

if X(i)==1 

    scatter(target_crd(1),target_crd(2),400,'filled','b') 

end 

scatter(sensors_crd(:,1),sensors_crd(:,2),400,'filled','g') 

    if isnan(SP_calc_db(i,1))==0 

        scatter(SP_calc_db(i,1),SP_calc_db(i,2),100,'filled','m') 

    end 

    if isnan(SP_num_db(1,i))==0 && isnan(SP_num_db(2,i))==1 

        

scatter(hotspot_crd(SP_num_db(1,i),1),hotspot_crd(SP_num_db(1,i),2),10,'fil

led','y') 

    else 

        if isnan(SP_num_db(1,i))==0 && isnan(SP_num_db(2,i))==0 

            

scatter(hotspot_crd(SP_num_db(1:size(SP_num_db,1),i),1),hotspot_crd(SP_num_

db(1:size(SP_num_db,1),i),2),10,'filled','y') 

        end 

    end 

title(['2D Scenario. Instant number: ' num2str(i) ' of ' num2str(tot)]) 

drawnow 

end  
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end 

  

%% Plot 

  

disp('Plot and curves generation') 

  

figure(1) % release plot 

plot(X)  

xlabel('time (s)') 

ylabel('0 = Non-release / 1 = Release') 

xlim([0 tot]) 

ylim([0 1]) 

  

figure(2) % Square attenuation vs. Distance 

x_plot=l0:.1:max(l); 

x_plot=[x_plot max(l)]; 

TL_plot=alpha_water*(x_plot-l0)*10^-3+spread_cf*10*log10(x_plot/l0); 

AAF_plot=exp(-TL_plot./(20*log10(exp(1)))); 

plot(x_plot,AAF_plot,'b') 

xlabel('Distance (m)') 

ylabel('Attenuation (AAF)') 

for i=1:K 

hold on 

line([l(i) l(i)],[0 1]) % vertical lines representing sensors position 

end 

hold off 

xlim([l0-1 max(l)+1]) 

ylim([0 max(AAF_plot)]) 

title('Attenuation vs Distance') 

  

figure(3) % wave amplitude vs time plot 

for i=1:K 

    z0=ampl(i,:); 

    z1=ampl(i,:); 

    for j=1:tot 

        switch X(j) 

            case 0 

                z1(j)=NaN; 

            case 1 

                z0(j)=NaN; 

        end 

    end 

    subplot(K,1,i) 

    plot(z0,'b') 

    hold on 

    plot(z1,'r') 

    xlabel('time (s)') 

    ylabel('y (Amplitude)') 

    title(['Received Signal, sensor ' num2str(i) ', coordinates: (' 

num2str(sensors_crd(i,1)) ',' num2str(sensors_crd(i,2)) ')']) 

    hold off 

end 

  

figure(4) % Amplitude Distribution Plot 

for i=1:K 

subplot(1,K,i) 

histogram(noise_ampl(i,:),'Normalization','pdf') 

hold on 

histogram(rel_ampl(i,:),'Normalization','pdf') 

hold on 
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line([sqrt(th_loc(i)) 

sqrt(th_loc(i))],get(gca,'ylim'),'LineWidth',2,'Color','k') 

line([-sqrt(th_loc(i)) -

sqrt(th_loc(i))],get(gca,'ylim'),'LineWidth',2,'Color','k') 

legend('p(y|H0)','p(y|H1)') 

title(['Amplitude pdf, sensor ' num2str(i) ', coordordinates: (' 

num2str(sensors_crd(i,1)) ',' num2str(sensors_crd(i,2)) ')']) 

xlabel('y (Amplitude)') 

hold off 

end 

  

figure(5) 

for i=1:K 

    subplot(1,K,i) 

    th_loc_poss=0:.01:10; 

    

plot(2*qfunc(sqrt(th_loc_poss/var_noise)),2*qfunc(sqrt(th_loc_poss/(var_fad

sig*AAF_FC(target,i)^2+var_noise)))) 

    hold on 

    

scatter(2*qfunc(sqrt(th_loc(i)/var_noise)),2*qfunc(sqrt(th_loc(i)/(var_fads

ig*AAF_FC(target,i)^2+var_noise))),'filled') 

    line([0 1],[0 1],'LineStyle','--') 

    hold off 

    title(['ROC sensor ' num2str(i) ', coordinates: (' 

num2str(sensors_crd(i,1)) ',' num2str(sensors_crd(i,2)) ')']) 

    xlabel('Local Probability of False Alarm') 

    ylabel('Local Probability of Detection') 

    xlim([0 1]) 

    ylim([0 1]) 

    pbaspect([1 1 1]) 

end 

  

figure(6) % ROC curve - linear 

plot(Q_F,Q_D,'-or')  

hold on 

line([0 1],[0 1],'LineStyle','--') % chance line 

scatter(Q_F_test,Q_D_test,'filled') 

hold off 

title('ROC CURVE - linear') 

xlabel('Global Probability of False Alarm') 

ylabel('Global Probability of Detection') 

xlim([0 1]) 

ylim([0 1]) 

  

figure(7) % ROC curve - semilog 

semilogx(Q_F,Q_D,'-or') 

hold on 

scatter(Q_F_test,Q_D_test,'filled') 

hold off 

title('ROC CURVE - semilog') 

xlabel('Global Probability of False Alarm') 

ylabel('Global Probability of Detection') 

xlim([Q_F(end-1) 1]) 

ylim([Q_D(end-1)-0.05 1]) 

  

figure(8) % PR curve - linear 

plot(Q_D,precision,'-or')  

hold on 

scatter(Q_D_test,precision_test,'filled') 

hold off 
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title('PR CURVE') 

xlabel('Recall') 

ylabel('Precision') 

xlim([0 1]) 

ylim([0 1]) 

  

SP_num_db_plot=zeros(1,index_rel); 

dist_plot=zeros(1,index_rel); 

j=1; 

for i=1:N 

    if result(i)==1 

        SP_num_db_plot(j)=SP_num_db(1,i); 

        dist_plot(j)=sqrt((target_crd(1)-

hotspot_crd(SP_num_db_plot(j),1))^2+(target_crd(2)-

hotspot_crd(SP_num_db_plot(j),2))^2); 

        j=j+1; 

    end 

end 

AUC_localization=trapz(1:index_rel,dist_plot); 

figure(9) 

plot(1:index_rel,dist_plot) 

title(['Distance from Target. Area under curve (no. of instants: ' 

num2str(index_rel) ') = ' num2str(AUC_localization) '']) 

xlabel('Time (s) / Fusion Center Positive Detection') 

ylabel('Distance from Target (m)') 

xlim([1 index_rel]) 

ylim([0 max(dist_plot)]) 

  

%% Memory Cleaning 

  

disp('Memory Cleaning') 

clearvars x_plot TL_plot AAF_plot x d fa j i q s sentence img u v 

noise_ampl_FC rel_ampl_FC ind th_loc_poss pfa_FC_poss pd_FC_poss 

fa_test_loc FP_test_loc d_test_loc TP_test_loc % deleting variables 

  

%% Functions 

  

function x=binary_source(p,r,N) 

  

A10=(1-p)/(p+r-p*r); 

A01=p/(p+r-p*r); 

  

x=zeros(1,N); % pre-allocation of memory to improve code performances 

  

for n=2:N % it starts from 2 because we want the initial state n=1 to be 

without release  

    switch x(n-1) 

        case 0 

            x(n)=(rand<A01); 

        case 1 

            x(n)=(rand<1-A10); 

    end 

end 

end 

  

function y=speed_sound(D,T,S) 

  

% it calculates sound speed using corrected UNESCO algorithm  

  

c0=1402.388+5.03711*T-5.80852e-2*T^2+3.3420e-4*T^3-1.47800e-6*T^4+3.1464e-

9*T^5; 
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c1=0.153563+6.8982e-4*T-8.1788e-6*T^2+1.3621e-7*T^3-6.1185e-10*T^4; 

c2=3.1260e-5-1.7107e-6*T+2.5974e-8*T^2-2.5335e-10*T^3+1.0405e-12*T^4; 

c3=-9.7729e-9-3.8504e-10*T-2.3643e-12*T^2; 

A0=1.389-1.262e-2*T+7.164e-5*T^2+2.006e-6*T^3-3.21e-8*T^4; 

A1=9.4742e-5-1.2580e-5*T-6.4885e-8*T^2+1.0507e-8*T^3-2.0122e-10*T^4; 

A2=-3.9064e-7+9.1041e-9*T-1.6002e-10*T^2+7.988e-12*T^3; 

A3=1.100e-10+6.649e-12*T-3.389e-13*T^2; 

P=D/10; 

A=A0+A1*P+A2*P^2+A3*P^3; 

B=-1.922e-2-4.42e-5*T+(7.3637e-3+1.7945e-7*T)*P; 

C=-7.9836e-6*P+1.727e-3; 

y=c0+c1*P+c2*P^2+c3*P^3+A*S+B*S^(3/2)+C*S^2; 

end 

  

function y=absorption_FG(f,T,S,D,pH,c) 

  

% this function calculates the attenuation coefficient in bB/km 

% using Francois-Garrison method 

% "f" is the frequency of the sound in kHz 

% "T" is the temperature in ∞C 

% "S" is the salinity in parts-per-thousand 

% "D" is the depth in m 

% "pH" is the indicator of water acidity 

  

theta=273.15+T; % K, temperature 

  

% excess absorption due to Boric Acid (H3BO3) 

A1=(8.86/c)*10^(0.78*pH-5); % dB/(km*kHz) 

P1=1; % nondimensional pressure correction factor 

f1=2.8*sqrt(S/35)*10^(4-1245/theta); % kHz, relaxation frequencies of H3BO3 

alpha1=(A1*P1*f1*f.^2)/(f1^2+f.^2); % dB/km 

  

% excess absorption due to Magnesium Sulfate (MgSO4) 

A2=21.44*(S/c)*(1+0.025*T); % dB/(km*kHz) 

P2=1-1.37e-4*D+6.2e-9*D^2; % nondimensional pressure correction factor 

f2=(8.17*10^(8-1990/theta))/(1+0.0018*(S-35)); % kHz, relaxation 

frequencies of MgSO4 

alpha2=(A2*P2*f2*f.^2)/(f2^2+f.^2); % dB/km 

  

% absorption due to water 

if T<=20 

    A3=4.937e-4-2.59e-5*T+9.11e-7*T^2-1.5e-8*T^3; % dB/(km*kHz^2) 

else 

    A3=3.964e-4-1.146e-5*T+1.45e-7*T^2-6.5e-10*T^3; % dB/(km*kHz^2) 

end 

P3=1-3.83e-5*D+4.9e-10*D^2; % nondimensional pressure correction factor 

alpha3=A3*P3*f.^2; % dB/km 

  

y=alpha1+alpha2+alpha3; 

end 

function y=absorption_FS(f,T,D) 

  

% this function calculates the attenuation coefficient in bB/km 

% using Fisher-Simmons method 

% "f" is the frequency of the sound in kHz 

% "T" is the temperature in ∞C 

% "D" is the depth in m 

  

f=f*1000; % method is written using Hz  

theta=273.15+T; % K, temperature 
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P=D/10+1; % atm, absolute pressure estimation (supposing 10 m_seawater = 1 

atm) 

  

% excess absorption due to Boric Acid (H3BO3) 

A1=1.03e-8+2.36e-10*T-5.22e-12*T^2; % Np/(m*Hz) 

P1=1; % nondimensional pressure correction factor 

f1=1.32e3*theta*exp(-1700/theta); % Hz, relaxation frequencies of H3BO3 

alpha1=(A1*P1*f1*f.^2)/(f1^2+f.^2); % Np/m 

  

% excess absorption due to Magnesium Sulfate (MgSO4) 

A2=5.62e-8+7.52e-10*T; % Np/(m*Hz) 

P2=1-10.3e-4*P+3.7e-7*P^2; % nondimensional pressure correction factor 

f2=1.55e7*theta*exp(-3052/theta); % Hz, relaxation frequencies of MgSO4 

alpha2=(A2*P2*f2*f.^2)/(f2^2+f.^2); % Np/m 

  

% absorption due to water 

A3=(55.9-2.37*T+4.77e-2*T^2-3.48e-4*T^3)*10^-15; % Np/(m*Hz^2) 

P3=1-384e-4*P+7.57e-8*P^2; % nondimensional pressure correction factor 

alpha3=A3*P3*f.^2; % Np/m 

  

y=alpha1+alpha2+alpha3; % Np/m 

y=y*1000*20*log10(exp(1)); % dB/km 

end 

function y=absorption_SM(f,T,S,D) 

  

% this function calculates the attenuation coefficient in bB/km 

% using Shulkin-Marsh method 

% "f" is the frequency of the sound in kHz 

% "T" is the temperature in ∞C 

% "S" is the salinity in parts-per-thousand 

% "D" is the depth in m 

  

theta=273.15+T; % K, temperature 

P=D/10+1; % atm, absolute pressure estimation (supposing 10 m_seawater = 1 

atm) 

A=2.34e-6; 

B=3.38e-6; 

fT=21.9*10^(6-1520/theta); % kHz 

y=((S*A*fT*f.^2)/(fT^2+f.^2)+(B*f.^2)/fT)*(1-6.54e-4*P); % Np/m 

y=y*1000*20*log10(exp(1)); % dB/km 

end 

function y=absorption_AM(f,T,S,D,pH) 

  

% this function calculates the attenuation coefficient in bB/km 

% using Ainslie-McColm method 

% "f" is the frequency of the sound in kHz 

% "T" is the temperature in ∞C 

% "S" is the salinity in parts-per-thousand 

% "D" is the depth in m 

% "pH" is the indicator of water acidity 

  

D=D/1000; % method is written using km  

  

% excess absorption due to Boric Acid (H3BO3) 

f1=0.78*exp(T/26)*sqrt(S/35); % kHz, relaxation frequencies of H3BO3 

alpha1=0.106*(f1*f.^2)/(f1^2+f.^2)*exp((pH-8)/0.56); % dB/km 

  

% excess absorption due to Magnesium Sulfate (MgSO4) 

f2=42*exp(T/17); % kHz, relaxation frequencies of MgSO4 

alpha2=0.52*(1+T/43)*(S/35)*(f2*f.^2)/(f2^2+f.^2)*exp(-D/6); % dB/km 
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% absorption due to water 

alpha3=4.9e-4*f.^2*exp(-T/27+D/17); % dB/km 

  

y=alpha1+alpha2+alpha3; 

end 

function y=absorption_T(f) 

  

% this function calculates the attenuation coefficient in bB/km 

% using Thorp method 

% "f" is the frequency of the sound in kHz 

  

y=1.0936132983*(0.1*f.^2/(1+f.^2)+40*f.^2/(4100+f.^2)); 

end 
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Appendix 3: MATLAB Script (Hotspot 10: WFR + BBM-TOSP) 

This MATLAB script was written using MATLAB R2019; it simulates the release in HS 10, 

the FC performs the WFR for detection and BBM-TOSP for localization. All the settings are 

those described in the previous chapters. 

MATLAB, in order to run the animation, must have the following picture in a folder 

accessible by MATLAB. The file must be named “template.png”. 

 

%%%%%  Oil Spill Detection and Localization    %%%% 

%%%%%              WFR + BBM-TOSP              %%%% 

%%%%%                Hotspot 10                %%%% 

%%%%%         Author: Gianluca Tabella         %%%% 

  

clear 

close all 

clc 

  

%% Release Modelling 

  

disp('Release Modelling') % display the progress 

  

p=1/3;  % parameter for release shape 

r=2;    % parameter for release shape 

N=10000; % number of instants 

X=binary_source(p,r,N); % function giving an array that simulates the 

events before the continuous release 

tot=length(X); % total number of records 

rel=nnz(X); % number of releases (positive events)   

non_rel=tot-rel; % number of non-releases (negative events) 

  

%% Signal Modelling 

  

disp('Signal Modelling') % display the progress 
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f=20e-3; % kHz - sound frequency 

T=3.8; % ∞C - temperature (T=3.8∞C at Goliat) 

S=35; % ppt - salinity (S=35 ppt at Goliat) 

D=350; % m - depth (D=350-400 m at Goliat) 

pH=8; % pH of water (pH=8 at Goliat) 

spread_cf=1.5; % spreading coeff. (spherical=2;cylindrical=1;practical=1.5) 

  

c=speed_sound(D,T,S); % m/s - speed of sound underwater 

alpha_water=absorption_FG(f,T,S,D,pH,c); % dB/km - absorption due to water 

hotspot_crd=[11.5,11.75 ; 11.5,12.75 ; 11.5,13.75 ; 15,11.75 ; 15,12.75 ; 

15,13.75 ; 18,11.75 ; 18,12.75 ; 19,11.75 ; 19,12.75 ; 24.5,11.75 ; 

24.5,12.75 ; 25.5,11.75 ; 25.5,12.75 ; 28.2,11.75 ; 28.2,12.75 ; 28.2,13.75 

; 31.7,11.75 ; 31.7,12.75; 31.7,13.75]; % m - hotspots' coordinates  

HS=length(hotspot_crd(:,1)); % number of hot spots 

target=10; 

target_crd=hotspot_crd(target,:); % m - target coordinates  

sensors_crd=[13.97,15.3 ; 29.35,14.66 ; 21.86,9.42]; % m - sensor 

coordinates 

l=transpose(sqrt((target_crd(1)-sensors_crd(:,1)).^2+(target_crd(2)-

sensors_crd(:,2)).^2)); % m - distance of sensors from target 

K=length(l); % number of sensors 

l_FC=zeros(length(hotspot_crd(:,1)),K); 

for i=1:length(hotspot_crd(:,1))  % m - (HSxK matrix) distances between HS 

hot spots and K sensors 

    for j=1:K 

        l_FC(i,j)=sqrt((hotspot_crd(i,1)-

sensors_crd(j,1))^2+(hotspot_crd(i,2)-sensors_crd(j,2))^2); 

    end 

end 

l0=min(min(l_FC)); % m - reference distance 

TL=alpha_water*(l-l0)*10^-3+spread_cf*10*log10(l/l0); % dB - Transmission 

Loss 

AAF=exp(-TL./(20*log10(exp(1)))); % AAF (TL converted in Nepers) 

var_noise=1; % variance of noise (gaussian) 

SNR=20; % signal-to-noise ratio at closest (sensor/hot spot) 

var_fadsig=var_noise*SNR; % variance of fading (gaussian) 

  

noise_ampl=zeros(K,non_rel); 

for i=1:K 

    noise_ampl(i,:)=sqrt(var_noise)*randn(1,non_rel); 

end 

rel_ampl=zeros(K,rel); 

for i=1:K 

    

rel_ampl(i,:)=AAF(i)*sqrt(var_fadsig)*randn(1,rel)+sqrt(var_noise)*randn(1,

rel); 

end 

u=1; 

v=1; 

ampl=zeros(K,tot); % pre-allocation for final scenario  

for i=1:tot 

    switch X(i) 

        case 1 

            for j=1:K  

                ampl(j,i)=rel_ampl(j,u); 

            end 

            u=u+1; 

        case 0 

            for j=1:K  

                ampl(j,i)=noise_ampl(j,v); 
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            end 

            v=v+1; 

    end 

end 

  

%% Sensors' Settings 

  

disp('Sensors setting calculation') % display the progress 

  

th_loc_poss=0:.00001:10; % threshold for local decision (non-negative) 

  

f_FC=f; % kHz - sound frequency 

T_FC=T; % ∞C - temperature (T=3.8∞C at Goliat) 

S_FC=S; % ppt - salinity (S=35 ppt at Goliat) 

D_FC=D; % m - depth (D=350-400 m at Goliat) 

pH_FC=pH; % pH of water (pH=8 at Goliat) 

spread_cf_FC=spread_cf; % spreading coeff. 

(spherical=2;cylindrical=1;practical=1.5) 

c_FC=speed_sound(D_FC,T_FC,S_FC); % m/s - speed of sound underwater 

alpha_water_FC=absorption_FG(f_FC,T_FC,S_FC,D_FC,pH_FC,c_FC); % dB/km - 

absorption due to water 

TL_FC=alpha_water_FC*(l_FC-l0)*10^-3+spread_cf_FC*10*log10(l_FC/l0); % dB - 

Transmission Loss 

AAF_FC=exp(-TL_FC/(20*log10(exp(1)))); % AAF (TL converted in Nepers) 

var_noise_FC=1; % variance of noise (gaussian) 

SNR_FC=20; % signal-to-noise ratio at closest (sensor/hot spot) 

var_fadsig_FC=var_noise_FC*SNR_FC; % variance of fading (gaussian) 

CZ_loc=zeros(HS,K); 

CZ_loc_db=zeros(length(th_loc_poss),K); 

th_loc=zeros(1,K); 

for i=1:length(th_loc_poss) 

    pfa_FC_poss=2*qfunc(sqrt(th_loc_poss(i)/var_noise_FC)); % array of 

probabilities of false alarm for the single sensors 

    

pd_FC_poss=2*qfunc(sqrt(th_loc_poss(i)./(var_fadsig_FC*AAF_FC.^2+var_noise_

FC))); % array of the corresponing probabilities of detection 

    CZ_loc=pd_FC_poss.*(1-pfa_FC_poss); 

    CZ_loc_db(i,:)=mean(CZ_loc); 

end 

  

for i=1:K    

    th_loc(i)=th_loc_poss(CZ_loc_db(:,i)==max(CZ_loc_db(:,i))); 

end 

  

pfa_FC=2*qfunc(sqrt(th_loc/var_noise_FC)); % array of probabilities of 

false alarm for the single sensors 

pd_FC=zeros(HS,K); 

for i=1:K 

pd_FC(:,i)=2*qfunc(sqrt(th_loc(i)./(var_fadsig_FC*AAF_FC(:,i).^2+var_noise_

FC))); % array of the corresponing probabilities of detection 

end 

pd_FC=mean(pd_FC); 

  

%% FC's Settings 

  

disp('FC Settings Calculation') % display the progress 

  

p_FC=p;  % parameter for release shape 

r_FC=r;    % parameter for release shape 

N_FC=N; % number of instants 
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X_FC=binary_source(p_FC,r_FC,N_FC); % function giving an array that 

simulates the events before the continuous release 

tot_FC=length(X_FC); % total number of records 

rel_FC=nnz(X_FC); % number of releases (positive events)   

non_rel_FC=tot_FC-rel_FC; % number of non-releases (negative events) 

noise_ampl_FC=zeros(K,non_rel_FC); 

for i=1:K 

    noise_ampl_FC(i,:)=sqrt(var_noise_FC)*randn(1,non_rel_FC); 

end 

rel_ampl_FC=zeros(K,rel_FC); 

for i=1:K 

    

rel_ampl_FC(i,:)=mean(AAF_FC(:,i))*sqrt(var_fadsig_FC)*randn(1,rel_FC)+sqrt

(var_noise_FC)*randn(1,rel_FC); 

end 

u=1; 

v=1; 

ampl_FC=zeros(K,tot_FC); % pre-allocation for final scenario  

for i=1:tot_FC 

    switch X_FC(i) 

        case 1 

            for j=1:K  

                ampl_FC(j,i)=rel_ampl_FC(j,u); 

            end 

            u=u+1; 

        case 0 

            for j=1:K  

                ampl_FC(j,i)=noise_ampl_FC(j,v); 

            end 

            v=v+1; 

    end 

end 

  

detect_FC=zeros(K,tot_FC); % matrix containing all the decisions of any 

sensor during the simulation (every row is a sensor) 

for i=1:K 

    for j=1:tot_FC 

        if ampl_FC(i,j)^2>=th_loc(i) 

            detect_FC(i,j)=1; 

        else 

            detect_FC(i,j)=0; 

        end 

    end 

end 

  

th=-4:0.001:4; % array of possibile thresholds 

no_thr=length(th); % number of possible thresholds 

  

result_FC=zeros(no_thr,tot_FC); % matrix containing all the decisions of 

the FC for different thresholds 

lambda_FC=zeros(1,tot_FC); % vector containing all the FR's results 

  

for j=1:no_thr % for each threshold 

    sentence=['FC setting calculation: elaboration threshold number ' 

,num2str(j), ' of ' ,num2str(no_thr)]; 

    disp(sentence) 

    for i=1:tot_FC % for each instant    

        

lambda_FC(i)=sum(transpose(detect_FC(:,i)).*log(pd_FC./pfa_FC)+transpose((1

-detect_FC(:,i))).*log((1-pd_FC)./(1-pfa_FC))); % value of FR 



199 
 

        if lambda_FC(i)>th(j) % for-loop determining the decision of the FC 

based on WFR 

            result_FC(j,i)=1; 

        else 

            result_FC(j,i)=0; 

        end 

    end   

end 

  

%% FC's Performances  

  

FP=zeros(1,no_thr); % array of number of false alarms at different 

thresholds  

TP=zeros(1,no_thr); % array of number of detections at different thresholds  

FN=zeros(1,no_thr); % array of number of false negatives at different 

thresholds  

TN=zeros(1,no_thr); % array of number of true negatives at different 

thresholds  

Q_F=zeros(1,no_thr); % array of probabilities of false alarm at different 

thresholds 

Q_D=zeros(1,no_thr); % array of probabilities of detecion at different 

thresholds 

precision=zeros(1,no_thr); % array of precisions at different thresholds 

  

for i=1:no_thr % for each threshold  

        sentence=['FC setting calculation: evaluation threshold number ' 

,num2str(i), ' of ' ,num2str(no_thr)]; 

        disp(sentence) % display the progress 

     

        fa=find((X_FC==0)&(result_FC(i,:)==1));  

        FP(i)=length(fa);    % number of false alarms FP 

        Q_F(i)=FP(i)/non_rel_FC; % FPR 

     

        d=find((X_FC==1)&(result_FC(i,:)==1)); 

        TP(i)=length(d); % number of detection (true positives) 

        Q_D(i)=TP(i)/rel_FC; % TPR - True Positive Rate - Probability of 

Detection 

         

        FN(i)=rel_FC-TP(i); % False negatives 

        TN(i)=non_rel_FC-FP(i); % True Negatives 

     

        precision(i)=TP(i)/(TP(i)+FP(i)); % precision 

end     

precision(isnan(precision))=1; % built to overcome the presence of NaN 

results when precision converges to 1 

  

%% Removal of Useless Thresholds 

  

disp('Removal of Useless Thresholds from FC setting calculation history') 

j=2; % loop used to remove results when no change was determined varying 

the threshold 

result_FC_new(1,:)=result_FC(1,:); 

Q_D_new(1)=Q_D(1); 

Q_F_new(1)=Q_F(1); 

precision_new(1)=precision(1); 

th_new(1)=th(1); 

TP_new(1)=TP(1); 

FP_new(1)=FP(1); 

FN_new(1)=FN(1); 

TN_new(1)=TN(1); 

for i=2:no_thr 
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    if Q_D(i)==Q_D(i-1) && Q_F(i)==Q_F(i-1) && precision(i)==precision(i-1) 

    else 

        Q_D_new(j)=Q_D(i); 

        Q_F_new(j)=Q_F(i); 

        precision_new(j)=precision(i); 

        th_new(j)=th(i); 

        TP_new(j)=TP(i); 

        FP_new(j)=FP(i); 

        FN_new(j)=FN(i); 

        TN_new(j)=TN(i); 

        result_FC_new(j,:)=result_FC(i,:); 

        j=j+1; 

    end 

end 

Q_D=Q_D_new; 

Q_F=Q_F_new; 

precision=precision_new; 

th=th_new; 

TP=TP_new; 

FP=FP_new; 

FN=FN_new; 

TN=TN_new; 

result_FC=result_FC_new; 

no_thr=length(th); 

clearvars Q_D_new Q_F_new precision_new th_new TP_new FP_new FN_new TN_new 

result_FC_new 

  

%% Analysis of Parameters 

  

disp('Analysis of Parameters for FC setting') 

  

AUC=-trapz(Q_F,Q_D); % calculation of Area Under the Curve 

  

% the matrix called "perf" has rows representing each indicator 

% for each raw of the matrix the 1st value is the cut-off threshold at 

indicator¥s maximum value 

% the 2nd value is the Prob. of Detection at cut off threshold 

% the 3rd value is the Prob. of False Alarm at cut off threshold 

% the 4th value is the indicator¥s maximum value 

  

J=Q_D-Q_F; % calculation of Youden's indexes 

perf(1,4)=max(J); % maximum value of Youden's indexes 

ind=find(J==perf(1,4)); % array's index for max Youden's index 

perf(1,1)=th(ind); % cut off threshold at max J value 

perf(1,3)=Q_F(ind); % Prob. of False Alarm at cut off threshold 

perf(1,2)=Q_D(ind); % Prob. of Detection at cut off threshold 

  

beta_value=1; % 1: pr and rec equally weighted, 2: recall weighted higher 

than precision, 0.5: precision weighted higher than recall 

F_beta=(1+beta_value^2)*(precision.*Q_D)./(beta_value^2*precision+Q_D); % 

F_value (armonic mean between precision and recall, with weight) 

perf(2,4)=max(F_beta); % maximum value of F_beta 

ind=find(F_beta==perf(2,4)); % array's index for max F_beta 

perf(2,1)=th(ind); % cut off threshold at max F_beta 

perf(2,3)=Q_F(ind); % Prob. of False Alarm at cut off threshold 

perf(2,2)=Q_D(ind); % Prob. of Detection at cut off threshold 

  

dist_roc=(1-Q_D).^2+Q_F.^2; % sq. distance to (0,1) 

perf(3,4)=min(dist_roc); % minimum sq. distance to (0,1) 

ind=find(dist_roc==perf(3,4)); % array's index for min sq. distance to 

(0,1) 
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perf(3,1)=th(ind); % cut off threshold at min sq. distance to (0,1) 

perf(3,3)=Q_F(ind); % Prob. of False Alarm at cut off threshold 

perf(3,2)=Q_D(ind); % Prob. of Detection at cut off threshold 

  

CZ=Q_D.*(1-Q_F); % CZ index 

perf(4,4)=max(CZ); % maximum value of CZ index 

ind=find(CZ==perf(4,4)); % array's index for max CZ index 

perf(4,1)=th(ind); % cut off threshold at max CZ index 

perf(4,3)=Q_F(ind); % Prob. of False Alarm at cut off threshold 

perf(4,2)=Q_D(ind); % Prob. of Detection at cut off threshold 

  

%% Sensors' Detection 

  

detect=zeros(K,tot); % matrix containing all the decisions of any sensor 

during the simulation (every row is a sensor) 

for i=1:K 

    sentence=['simulating detection: sensor ' ,num2str(i), ' of ' 

,num2str(K)]; % display the progress 

    disp(sentence) 

    for j=1:tot 

        if ampl(i,j)^2>=th_loc(i) 

            detect(i,j)=1; 

        else 

            detect(i,j)=0; 

        end 

    end 

end 

  

Q_F_test_loc=zeros(1,K); 

Q_D_test_loc=zeros(1,K); 

  

for i=1:K 

    fa_test_loc=find((X==0)&(detect(i,:)==1)); 

    FP_test_loc=length(fa_test_loc);    % number of false alarms FP 

    Q_F_test_loc(i)=FP_test_loc/non_rel; % FPR 

     

    d_test_loc=find((X==1)&(detect(i,:)==1)); 

    TP_test_loc=length(d_test_loc); % number of detection (true positives) 

    Q_D_test_loc(i)=TP_test_loc/rel; % TPR - True Positive Rate - 

Probability of Detection 

end 

  

%% Fusion Center's Detection and Localization 

  

inst_FC=1; % number of instants to take into account in the TCR 

time_th=0; % threshold used in TCR  

SP_calc_inst=zeros(tot,2); 

index_rel=0; 

SP_calc_db=zeros(tot,2); 

SP_num_db(1:2,1:tot)=NaN; 

SP_calc=[0 0]; 

  

dist_SP_HS=zeros(1,HS); 

result=zeros(1,tot); % matrix containing all the decisions of the FC for 

different thresholds 

lambda=zeros(1,tot); % vector containing all the FR's results 

lambda_time=zeros(1,tot); % vector containing all the TCR's results 

final_result=zeros(1,tot); % matrix containing final decision (WFR+TCR) 

  

for i=1:tot % for each instant 

        if rem(i,100)==0 || i==1 % display the progress 
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        sentence=['Instant simulated by FC: ' ,num2str(i), ' of ' 

,num2str(tot)]; 

        disp(sentence) 

        end     

        

lambda(i)=sum(transpose(detect(:,i)).*log(pd_FC./pfa_FC)+transpose((1-

detect(:,i))).*log((1-pd_FC)./(1-pfa_FC))); % value of FR 

        if lambda(i)>perf(1,1) % for-loop determining the decision of the 

FC based on WFR 

            result(i)=1; 

        else 

            result(i)=0; 

        end 

       

        if result(i)==0 

            inst=inst_FC; 

            if inst>i % necessary for the first instants (when there aren't 

enough previous data)   

                inst=i; 

            end           

            lambda_time(i)=sum(result(i-inst+1:i));           

            if lambda_time(i)>time_th % for-loop determining the final 

decision of the FC 

                final_result(i)=1; 

            else 

                final_result(i)=0; 

            end 

            else 

             final_result(i)=1; 

        end 

  

        if result(i)==1 && sum(detect(:,i))>=1 

            index_rel=index_rel+1; 

            

SP_calc_inst(index_rel,:)=(sum(((repmat(transpose(pd_FC./pfa_FC),1,size(2,2

))).*sensors_crd.*detect(:,i))+((repmat(transpose(pd_FC./pfa_FC),1,size(2,2

))).*(repmat(1-

(detect(:,i)),1,size(2,2))).*(2*(sum((repmat(transpose(pd_FC./pfa_FC),1,siz

e(2,2))).*sensors_crd.*detect(:,i))/sum((repmat(transpose(pd_FC./pfa_FC),1,

size(2,2))).*detect(:,i)))-sensors_crd.*(1-

detect(:,i))))))/(sum(pd_FC./pfa_FC)); 

            if index_rel==1 

                SP_calc=[SP_calc_inst(index_rel,1) 

SP_calc_inst(index_rel,2)]; 

            else 

                SP_calc=[((index_rel-

1)*SP_calc(1)+SP_calc_inst(index_rel,1))/index_rel ((index_rel-

1)*SP_calc(2)+SP_calc_inst(index_rel,2))/index_rel]; 

            end 

            for count_HS=1:HS 

                dist_SP_HS(count_HS)=sqrt((SP_calc(1)-

hotspot_crd(count_HS,1))^2+(SP_calc(2)-hotspot_crd(count_HS,2))^2); 

            end 

            SP_num=find(dist_SP_HS==min(dist_SP_HS));  

            SP_calc_db(i,:)=SP_calc; 

            SP_num_db(1:length(SP_num),i)=transpose(SP_num); 

        else 

            if sum(sum(SP_calc_inst))==0 

                SP_calc_db(i,:)=NaN; 

            else 

                SP_calc_db(i,:)=SP_calc_db(i-1,:); 
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            end 

        end 

        if final_result(i)==1 && result(i)==0 

            SP_calc_db(i,:)=SP_calc; 

            SP_num_db(1:length(SP_num),i)=transpose(SP_num); 

        end          

end 

  

fa_test=find((X==0)&(final_result==1)); 

FP_test=length(fa_test);    % number of false alarms FP 

Q_F_test=FP_test/non_rel; % FPR 

     

d_test=find((X==1)&(final_result==1)); 

TP_test=length(d_test); % number of detection (true positives) 

Q_D_test=TP_test/rel; % TPR - True Positive Rate - Probability of Detection 

     

precision_test=TP_test/(TP_test+FP_test); % precision 

  

%% Animation 

  

answer = questdlg('Do you want to see the animation?','Yes','No'); 

switch answer 

    case 'Yes' 

        answer = 1; 

    case 'No' 

        answer = 0; 

end 

if answer==1 

sentence='Show Animation'; 

disp(sentence) 

img=imread('template.png'); 

figure(1) 

for i=1:tot 

hold off 

imagesc([0 41.26],[0 27.45],flipud(img)); 

set(gca,'ydir','normal'); 

set(gcf, 'Position', get(0, 'Screensize')); 

xlim([0 41.26]) 

ylim([0 27.45]) 

xlabel('x (meters)') 

ylabel('y (meters)') 

grid on 

hold on 

scatter(hotspot_crd(:,1),hotspot_crd(:,2),400,'filled','r') 

if X(i)==1 

    scatter(target_crd(1),target_crd(2),400,'filled','b') 

end 

scatter(sensors_crd(:,1),sensors_crd(:,2),400,'filled','g') 

    if isnan(SP_calc_db(i,1))==0 

        scatter(SP_calc_db(i,1),SP_calc_db(i,2),100,'filled','m') 

    end 

    if isnan(SP_num_db(1,i))==0 && isnan(SP_num_db(2,i))==1 

        

scatter(hotspot_crd(SP_num_db(1,i),1),hotspot_crd(SP_num_db(1,i),2),100,'fi

lled','y') 

    else 

        if isnan(SP_num_db(1,i))==0 && isnan(SP_num_db(2,i))==0 

            

scatter(hotspot_crd(SP_num_db(1:size(SP_num_db,1),i),1),hotspot_crd(SP_num_

db(1:size(SP_num_db,1),i),2),100,'filled','y') 

        end 
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    end 

title(['2D Scenario. Instant number: ' num2str(i) ' of ' num2str(tot)]) 

drawnow 

end  

end 

  

%% Plot 

  

disp('Plot and curves generation') 

  

figure(1) % release plot 

plot(X)  

xlabel('time (s)') 

ylabel('0 = Non-release / 1 = Release') 

xlim([0 tot]) 

ylim([0 1]) 

  

figure(2) % Square attenuation vs. Distance 

x_plot=l0:.1:max(l); 

x_plot=[x_plot max(l)]; 

TL_plot=alpha_water*(x_plot-l0)*10^-3+spread_cf*10*log10(x_plot/l0); 

AAF_plot=exp(-TL_plot./(20*log10(exp(1)))); 

plot(x_plot,AAF_plot,'b') 

xlabel('Distance (m)') 

ylabel('Attenuation (AAF)') 

for i=1:K 

hold on 

line([l(i) l(i)],[0 1]) % vertical lines representing sensors position 

end 

hold off 

xlim([l0-1 max(l)+1]) 

ylim([0 max(AAF_plot)]) 

title('Attenuation vs Distance') 

  

figure(3) % wave amplitude vs time plot 

for i=1:K 

    z0=ampl(i,:); 

    z1=ampl(i,:); 

    for j=1:tot 

        switch X(j) 

            case 0 

                z1(j)=NaN; 

            case 1 

                z0(j)=NaN; 

        end 

    end 

    subplot(K,1,i) 

    plot(z0,'b') 

    hold on 

    plot(z1,'r') 

    xlabel('time (s)') 

    ylabel('y (Amplitude)') 

    title(['Received Signal, sensor ' num2str(i) ', coordinates: (' 

num2str(sensors_crd(i,1)) ',' num2str(sensors_crd(i,2)) ')']) 

    hold off 

end 

  

figure(4) % Amplitude Distribution Plot 

for i=1:K 

subplot(1,K,i) 

histogram(noise_ampl(i,:),'Normalization','pdf') 
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hold on 

histogram(rel_ampl(i,:),'Normalization','pdf') 

hold on 

line([sqrt(th_loc(i)) 

sqrt(th_loc(i))],get(gca,'ylim'),'LineWidth',2,'Color','k') 

line([-sqrt(th_loc(i)) -

sqrt(th_loc(i))],get(gca,'ylim'),'LineWidth',2,'Color','k') 

legend('p(y|H0)','p(y|H1)') 

title(['Amplitude pdf, sensor ' num2str(i) ', coordordinates: (' 

num2str(sensors_crd(i,1)) ',' num2str(sensors_crd(i,2)) ')']) 

xlabel('y (Amplitude)') 

hold off 

end 

  

figure(5) 

for i=1:K 

    subplot(1,K,i) 

    th_loc_poss=0:.01:10; 

    

plot(2*qfunc(sqrt(th_loc_poss/var_noise)),2*qfunc(sqrt(th_loc_poss/(var_fad

sig*AAF_FC(target,i)^2+var_noise)))) 

    hold on 

    

scatter(2*qfunc(sqrt(th_loc(i)/var_noise)),2*qfunc(sqrt(th_loc(i)/(var_fads

ig*AAF_FC(target,i)^2+var_noise))),'filled') 

    line([0 1],[0 1],'LineStyle','--') 

    hold off 

    title(['ROC sensor ' num2str(i) ', coordinates: (' 

num2str(sensors_crd(i,1)) ',' num2str(sensors_crd(i,2)) ')']) 

    xlabel('Local Probability of False Alarm') 

    ylabel('Local Probability of Detection') 

    xlim([0 1]) 

    ylim([0 1]) 

    pbaspect([1 1 1]) 

end 

  

figure(6) % ROC curve - linear 

plot(Q_F,Q_D,'-or')  

hold on 

line([0 1],[0 1],'LineStyle','--') % chance line 

scatter(Q_F_test,Q_D_test,'filled') 

hold off 

title('ROC CURVE - linear') 

xlabel('Global Probability of False Alarm') 

ylabel('Global Probability of Detection') 

xlim([0 1]) 

ylim([0 1]) 

  

figure(7) % ROC curve - semilog 

semilogx(Q_F,Q_D,'-or') 

hold on 

scatter(Q_F_test,Q_D_test,'filled') 

hold off 

title('ROC CURVE - semilog') 

xlabel('Global Probability of False Alarm') 

ylabel('Global Probability of Detection') 

xlim([Q_F(end-1) 1]) 

ylim([Q_D(end-1)-0.05 1]) 

  

figure(8) % PR curve - linear 

plot(Q_D,precision,'-or')  
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hold on 

scatter(Q_D_test,precision_test,'filled') 

hold off 

title('PR CURVE') 

xlabel('Recall') 

ylabel('Precision') 

xlim([0 1]) 

ylim([0 1]) 

  

SP_num_db_plot=zeros(1,index_rel); 

dist_plot=zeros(1,index_rel); 

j=1; 

for i=1:N 

    if result(i)==1 

        SP_num_db_plot(j)=SP_num_db(1,i); 

        dist_plot(j)=sqrt((target_crd(1)-

hotspot_crd(SP_num_db_plot(j),1))^2+(target_crd(2)-

hotspot_crd(SP_num_db_plot(j),2))^2); 

        j=j+1; 

    end 

end 

AUC_localization=trapz(1:index_rel,dist_plot); 

figure(9) 

plot(1:index_rel,dist_plot) 

title(['Distance from Target. Area under curve (no. of instants: ' 

num2str(index_rel) ') = ' num2str(AUC_localization) '']) 

xlabel('Time (s) / Fusion Center Positive Detection') 

ylabel('Distance from Target (m)') 

xlim([1 index_rel]) 

ylim([0 max(dist_plot)]) 

  

%% Memory Cleaning 

  

disp('Memory Cleaning') 

clearvars x_plot TL_plot AAF_plot x d fa j i q s sentence img u v 

noise_ampl_FC rel_ampl_FC ind th_loc_poss pfa_FC_poss pd_FC_poss 

fa_test_loc FP_test_loc d_test_loc TP_test_loc % deleting variables 

  

%% Functions 

  

function x=binary_source(p,r,N) 

  

A10=(1-p)/(p+r-p*r); 

A01=p/(p+r-p*r); 

  

x=zeros(1,N); % pre-allocation of memory to improve code performances 

  

for n=2:N % it starts from 2 because we want the initial state n=1 to be 

without release  

    switch x(n-1) 

        case 0 

            x(n)=(rand<A01); 

        case 1 

            x(n)=(rand<1-A10); 

    end 

end 

end 

  

function y=speed_sound(D,T,S) 

  

% it calculates sound speed using corrected UNESCO algorithm  
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c0=1402.388+5.03711*T-5.80852e-2*T^2+3.3420e-4*T^3-1.47800e-6*T^4+3.1464e-

9*T^5; 

c1=0.153563+6.8982e-4*T-8.1788e-6*T^2+1.3621e-7*T^3-6.1185e-10*T^4; 

c2=3.1260e-5-1.7107e-6*T+2.5974e-8*T^2-2.5335e-10*T^3+1.0405e-12*T^4; 

c3=-9.7729e-9-3.8504e-10*T-2.3643e-12*T^2; 

A0=1.389-1.262e-2*T+7.164e-5*T^2+2.006e-6*T^3-3.21e-8*T^4; 

A1=9.4742e-5-1.2580e-5*T-6.4885e-8*T^2+1.0507e-8*T^3-2.0122e-10*T^4; 

A2=-3.9064e-7+9.1041e-9*T-1.6002e-10*T^2+7.988e-12*T^3; 

A3=1.100e-10+6.649e-12*T-3.389e-13*T^2; 

P=D/10; 

A=A0+A1*P+A2*P^2+A3*P^3; 

B=-1.922e-2-4.42e-5*T+(7.3637e-3+1.7945e-7*T)*P; 

C=-7.9836e-6*P+1.727e-3; 

y=c0+c1*P+c2*P^2+c3*P^3+A*S+B*S^(3/2)+C*S^2; 

end 

  

function y=absorption_FG(f,T,S,D,pH,c) 

  

% this function calculates the attenuation coefficient in bB/km 

% using Francois-Garrison method 

% "f" is the frequency of the sound in kHz 

% "T" is the temperature in ∞C 

% "S" is the salinity in parts-per-thousand 

% "D" is the depth in m 

% "pH" is the indicator of water acidity 

  

theta=273.15+T; % K, temperature 

  

% excess absorption due to Boric Acid (H3BO3) 

A1=(8.86/c)*10^(0.78*pH-5); % dB/(km*kHz) 

P1=1; % nondimensional pressure correction factor 

f1=2.8*sqrt(S/35)*10^(4-1245/theta); % kHz, relaxation frequencies of H3BO3 

alpha1=(A1*P1*f1*f.^2)/(f1^2+f.^2); % dB/km 

  

% excess absorption due to Magnesium Sulfate (MgSO4) 

A2=21.44*(S/c)*(1+0.025*T); % dB/(km*kHz) 

P2=1-1.37e-4*D+6.2e-9*D^2; % nondimensional pressure correction factor 

f2=(8.17*10^(8-1990/theta))/(1+0.0018*(S-35)); % kHz, relaxation 

frequencies of MgSO4 

alpha2=(A2*P2*f2*f.^2)/(f2^2+f.^2); % dB/km 

  

% absorption due to water 

if T<=20 

    A3=4.937e-4-2.59e-5*T+9.11e-7*T^2-1.5e-8*T^3; % dB/(km*kHz^2) 

else 

    A3=3.964e-4-1.146e-5*T+1.45e-7*T^2-6.5e-10*T^3; % dB/(km*kHz^2) 

end 

P3=1-3.83e-5*D+4.9e-10*D^2; % nondimensional pressure correction factor 

alpha3=A3*P3*f.^2; % dB/km 

  

y=alpha1+alpha2+alpha3; 

end 

function y=absorption_FS(f,T,D) 

  

% this function calculates the attenuation coefficient in bB/km 

% using Fisher-Simmons method 

% "f" is the frequency of the sound in kHz 

% "T" is the temperature in ∞C 

% "D" is the depth in m 
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f=f*1000; % method is written using Hz  

theta=273.15+T; % K, temperature 

P=D/10+1; % atm, absolute pressure estimation (supposing 10 m_seawater = 1 

atm) 

  

% excess absorption due to Boric Acid (H3BO3) 

A1=1.03e-8+2.36e-10*T-5.22e-12*T^2; % Np/(m*Hz) 

P1=1; % nondimensional pressure correction factor 

f1=1.32e3*theta*exp(-1700/theta); % Hz, relaxation frequencies of H3BO3 

alpha1=(A1*P1*f1*f.^2)/(f1^2+f.^2); % Np/m 

  

% excess absorption due to Magnesium Sulfate (MgSO4) 

A2=5.62e-8+7.52e-10*T; % Np/(m*Hz) 

P2=1-10.3e-4*P+3.7e-7*P^2; % nondimensional pressure correction factor 

f2=1.55e7*theta*exp(-3052/theta); % Hz, relaxation frequencies of MgSO4 

alpha2=(A2*P2*f2*f.^2)/(f2^2+f.^2); % Np/m 

  

% absorption due to water 

A3=(55.9-2.37*T+4.77e-2*T^2-3.48e-4*T^3)*10^-15; % Np/(m*Hz^2) 

P3=1-384e-4*P+7.57e-8*P^2; % nondimensional pressure correction factor 

alpha3=A3*P3*f.^2; % Np/m 

  

y=alpha1+alpha2+alpha3; % Np/m 

y=y*1000*20*log10(exp(1)); % dB/km 

end 

function y=absorption_SM(f,T,S,D) 

  

% this function calculates the attenuation coefficient in bB/km 

% using Shulkin-Marsh method 

% "f" is the frequency of the sound in kHz 

% "T" is the temperature in ∞C 

% "S" is the salinity in parts-per-thousand 

% "D" is the depth in m 

  

theta=273.15+T; % K, temperature 

P=D/10+1; % atm, absolute pressure estimation (supposing 10 m_seawater = 1 

atm) 

A=2.34e-6; 

B=3.38e-6; 

fT=21.9*10^(6-1520/theta); % kHz 

y=((S*A*fT*f.^2)/(fT^2+f.^2)+(B*f.^2)/fT)*(1-6.54e-4*P); % Np/m 

y=y*1000*20*log10(exp(1)); % dB/km 

end 

function y=absorption_AM(f,T,S,D,pH) 

  

% this function calculates the attenuation coefficient in bB/km 

% using Ainslie-McColm method 

% "f" is the frequency of the sound in kHz 

% "T" is the temperature in ∞C 

% "S" is the salinity in parts-per-thousand 

% "D" is the depth in m 

% "pH" is the indicator of water acidity 

  

D=D/1000; % method is written using km  

  

% excess absorption due to Boric Acid (H3BO3) 

f1=0.78*exp(T/26)*sqrt(S/35); % kHz, relaxation frequencies of H3BO3 

alpha1=0.106*(f1*f.^2)/(f1^2+f.^2)*exp((pH-8)/0.56); % dB/km 

  

% excess absorption due to Magnesium Sulfate (MgSO4) 

f2=42*exp(T/17); % kHz, relaxation frequencies of MgSO4 
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alpha2=0.52*(1+T/43)*(S/35)*(f2*f.^2)/(f2^2+f.^2)*exp(-D/6); % dB/km 

  

% absorption due to water 

alpha3=4.9e-4*f.^2*exp(-T/27+D/17); % dB/km 

  

y=alpha1+alpha2+alpha3; 

end 

function y=absorption_T(f) 

  

% this function calculates the attenuation coefficient in bB/km 

% using Thorp method 

% "f" is the frequency of the sound in kHz 

  

y=1.0936132983*(0.1*f.^2/(1+f.^2)+40*f.^2/(4100+f.^2)); 

end 
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