
Electronic version of an article published in International Journal of Cooperative Information Sys-
tems, Volume 20, Issue 2, 2011, Pages 177-200, DOI http://dx.doi.org/10.1142/S0218843011002195
c� World Scientific Publishing Company, http://www.worldscinet.com/ijcis

UNIFIED MODELING OF SERVICE LOGIC WITH USER
INTERFACES

FRANK ALEXANDER KRAEMER

SURYA BAHADUR KATHAYAT

ROLV BRÆK

Department of Telematics, Norwegian University of Science and Technology (NTNU)

O.S. Bragstads plass 2a, 7491 Trondheim, Norway

{kraemer, surya, rolv.braek}@item.ntnu.no

We describe a method based on UML activities for the unified specification of collab-
orative service behavior and local user interfaces. The method enables a model-driven
development process, which effectively combines the need to express service collabora-
tions involving several components with the need to provide detailed operations for user
interfaces. Our service models use activities as the primary building blocks that encap-
sulate self-contained functionalities. We show, how a complete distributed system can be
decomposed into such building blocks, how this decomposition leads to a separation of
user interface concerns from service collaboration concerns, and how they may be com-
bined with an event-driven composition mechanism based on activity parameter nodes.
We also demonstrate how different UI frameworks can be supported, and illustrate the
method with a case study of a situated collaborative learning service.

Keywords: Model-Driven Development; Service-Oriented Architecture; User Interfaces;
UML Activities; UML Collaborations.

1. Introduction

During the development of mobile services for end-users, a major challenge is the
difference of perspective that some parts of the system demand. On the one hand,
cross-cutting service behaviors need to be specified so that each component of the
system may interact consistently with the other parts. A challenge here is the com-
plexity that arises from the coordination of distributed behavior in general and
asynchronous, multi-initiative peer-to-peer interaction in particular. On the other
hand, end-users expect highly sophisticated and responsive user interfaces. Not only
do these depend on the availability of certain libraries for user interfaces, like for
instance Java Swing or Android, but they should also fit perfectly with the de-
vice they are executed on, to match screen size and input methods, for example.
This implies a level of details that, using conventional modeling and programming
techniques, is hard to combine with the cross-cutting view on service interactions
needed to get the overall system right.

1



2 F.A. Kraemer et al.

What unites these two perspective is their reactive nature; both user interfaces
as well as distributed communication must react on events from an environment,
that means user input or the reception of signals. Furthermore, they are tightly
coupled by such events: user inputs may trigger communication with other devices,
and, vice versa, the arrival of signals triggers changes in the user interface.

Our method, first described in [1] and complemented in [2], therefore focuses
on the specification of reactive behavior, how it may be encapsulated in the form
of special building blocks, and how it may be composed effectively to achieve the
desired overall system functionality. In this paper, we focus on the combination of
collaborative behavior with local user interfaces, and introduce a separation between
two kinds of building blocks:

• Collaborative Service Blocks model cross-cutting behavior among sev-
eral components. The major concern with these building blocks is the spec-
ification of the coordination necessary to accomplish distributed tasks and
communicate data.

• User Interface Blocks are executed locally on a device, and encapsulate
all interactions from and to the users, as well as the detailed operations on
user interface elements, like windows or buttons.

Both kinds of building blocks are equipped with parameter nodes that can be used
to compose them together, either to pass data or to notify a block about an event
detected by another block. Due to this composition style, the construction of sys-
tem specifications resembles that of wiring together blocks. Further, we observed
that the data types and events needed for composing blocks together, usually cor-
respond to concepts from the problem domain, which makes specifications easier to
understand by application developers familiar with a certain domain. The encapsu-
lation of building blocks makes it possible that applications refer to abstract tasks
(for example to provide user credentials), and that dedicated implementations may
realize this task in the best way for the corresponding platform. To exemplify this,
we show two implementations of a UI building block realized for both Java Swing
and Android. For the latter we detail a step-by-step method that integrates with
the layout editor for user interfaces of the Android SDK.

The novelty of our approach is the way in which collaborative service logic is
represented together with the local user interfaces: on the one hand, these concerns
are separated into different specification units (the blocks), but on the other hand
their events can be composed on the necessary level of detail to build responsive
applications. Moreover, the use of building blocks leads to an incremental working
process, since they can be developed and analyzed in isolation, and serve as inter-
faces between experts of different domains. These benefits are further discussed in
Sect. 10. The rest of the paper is organized as follows: We describe the system that
is subject of our case study in Sect. 2 and continue with a brief introduction to our
engineering method in Sect. 3. Then, we describe how the system can be decom-
posed into subordinate building blocks in Sect. 4. The modeling of collaborative



Unified Modeling of Service Logic with User Interfaces 3

pu
u

Chat
p

u user

point of interestp

u

Social Matching

p
p

Quiz

Fig. 1. Mapping of domain objects to system entities and collaborations

services by means of UML collaborations and activities is presented in Sect. 5, fol-
lowed by the encapsulation of user interfaces in UML activities explained in Sect. 6.
After that, Sect. 7 and 8 outline the automated verification and implementation
of the specifications. In Sect. 9, we summarize and discuss related approaches and
close in Sect. 10 with concluding remarks.

2. Case Study: Exploring the City

As an example, we specify a service for students to learn about different historical
places in a city using mobile devices. It is based on the situated learning service
introduced in [3]. The system tracks the position of the students and responds
when students with similar interests are closely located. Based on this feedback,
users may create groups to cooperate. When a user comes close to a point of in-
terest, a location-specific service can be started. Such a service can simply provide
information and also engage students in learning activities. For our example, we
realized an interactive quiz. During a quiz session, users are asked questions related
to the particular point of interest. Users can interact with each other to answer the
questions.

As illustrated in Fig. 1, the system is composed of objects reflecting domain
entities, such as users, user groups, and different types of point of interests like
museums. Between these objects, we identified the following services:

• A social matching service helps to create groups based on user interests.
• A position update service tracks the location of a user and makes it available

to other users, for instance other members of the same group.
• A chat service allows the users to interact.
• A number of learning services associated with a particular point of interest

are used to support the actual learning, in our case the quiz service.

Figure 2 shows two of the user interfaces involved in the realized system. For our
application, we have built user interfaces in Java Swing for laptop computers, as well
as user interfaces running on Android for mobile devices. There are considerable
differences between these user interfaces, but the service logic is the same. Therefore



4 F.A. Kraemer et al.

Quiz UI

Position Update UI

Fig. 2. User interfaces for the individual services

it is desirable to separate these two concerns of the system such that they may later
be composed. In the following sections, we describe our service engineering approach
that enables a controlled composition of these concerns.

3. The SPACE Engineering Method

The main specification units in our engineering method are special building blocks
that are expressed as UML models combined with Java code covering the details of
operations. Building blocks may describe the local behavior executed by only one
component, but they may also span across several components and describe collab-
orations among them. This flexibility is the key to the approach presented in this
paper, since we will later use building blocks to encapsulate both local user interface
behavior (as single-component blocks) as well as the collaborative service behavior
involving several components (as collaborative blocks). Our building blocks have
previously proven to enable a high degree of reuse (see [4] for a survey). Therefore,
the development of a system starts with the consideration of libraries of reusable

Transformation and Code Generation

Analysis
Collaborations

Activities

JJJ
Executable Java Code and
Runtime Support System

Group-Based
Services

Learning
Services

Location-Based 
Services

User Interface
Blocks

Composition

Fig. 3. The SPACE engineering method



Unified Modeling of Service Logic with User Interfaces 5

server

server

l: LoginService

s: CityExploration
Service

user [0..*]

user

user
chatServer,
userServer,

positionServer,
poiServer

System
«system»

Fig. 4. Collaboration for the complete system

server chatServerc1: 
ChatService

user [0..*]
user

user

City Exploration Service

userServer

positionServer

poiServer

c2: Social
MatchingService

c3: Group
PositionService

c4: 
QuizService

user

user

server

server

group,
learningObject

Fig. 5. City Exploration Service Collaboration

building blocks for different domains, as illustrated in Fig. 3. This leads to a drag-
and-drop-like specification style, in which building blocks are composed to more
comprehensive ones, until a complete system specification is obtained. Function-
ality not yet available is provided by new building blocks that may be stored for
later reuse. Due to the formal semantics underlying our specification style, building
blocks can be analyzed by means of model checking, which we explain further in
Sect. 7. Once a system specification is complete and sound, it may be implemented
in an automated process detailed in Sect. 8.

To capture behavior involving several components, we use collaborations as ma-
jor specification units. Fig. 4 shows the city exploration system on its highest de-
composition level in the form of a UML collaboration. It consists of a number of
users connected to a central server, represented by the rectangular collaboration
roles. The ellipses between them refer to subordinate collaboration uses, namely l
to a login service and s to the actual city exploration service. The latter is defined
as a composition of collaboration uses, as shown in Fig. 5. The server is partitioned



6 F.A. Kraemer et al.

serveruser [0..*]

System

cancel ok: Credentials

s: City Exploration Service

«system»

start: Credentials

u: Login UI
login: LoginData

denied

granted: Credentials

start

l: Login Service

granted: Credentials

denied

start: LoginData

Fig. 6. System activity

start/

idle

/login

«esm» Login UI

active

denied/

cancel/

granted/
ok

ok/

Fig. 7. ESM of the Login UI block

into four collaboration roles: a separate chat server, a user server, a position server
and a point-of-interest server. The interactions of these servers with the users are
in turn described by collaboration uses c1...c4 for chat, social matching, group po-
sitioning and the quiz service. The labels on the lines that connect collaboration
uses to collaboration roles are role bindings.

While the UML collaborations in Fig. 4 and 5 already document some aspects of
the system structure and the distribution of responsibilities among the components,
they do not specify any detailed behavior. The behavior of each UML collaboration
is defined by a corresponding UML activity, shown in Fig. 6 for System. The activity
contains one partition for each collaboration role, (i.e., user and server for the top-
level system), which are usually assigned to different executable components. Each
subordinate collaboration is represented by a call behavior action. For example, the
login service l and the city exploration service s in Fig. 4 are represented by the
call behavior actions l and s in Fig. 6. Note that they cross the partition borders
since they are executed by users as well as a server. Lighter shaded blocks, such
as u: Login UI refer to local building blocks, which are only represented in the
activity perspective. Building blocks defined as UML activities have pins labeled
by detailed events. These refer to the externally visible events that can be used
to link blocks together, possibly inserting some control logic between them. The
additional shadow at the server side of the login service indicates that the server
handles several instances of them, as we detail later.

Users start their services by activating the user interface for the login, repre-
sented by block u that is started via initial pin start following the initial node. On
this level, we are not interested in the internal details of the login user interface.
Instead, it is sufficient to consider the external view provided by the special state
machine in Fig. 7. It is a so-called external state machine (ESM), that defines the
allowed sequences of tokens passing through pins. From this ESM we read that,
after the login block has been started, it will emit a token via pin login. This pin
is drawn filled, denoting that it is a streaming pin, which can pass tokens while an



Unified Modeling of Service Logic with User Interfaces 7

userServer

chatServer

poiServer

positionServeruser [0..*]

City Exploration Service

ui1: Position Update UI

l1: Position Module

ui2: Quiz UI

ui3: Chat UI

ui4: User Info UI c2: Social Matching Service

c1: Chat Service

c4: Quiz Service

c3: Group Position Service

position: MainUI

myPosition: Position

othersPosition: Position

groupPosition: Position

question: Question

groupSuggestions: Answer

mySuggestion: Answer

start

finished

sendMessage: Message

receiveMessage: Message

statusIn: Status

statusOut: Status

init: UserProfile

matchedUsers: User[]

update: UserProfile

init: MainUI

init: MainUI

init: MainUI

init: MainUI

start

Position

myPosition: Position

question: Question

groupSuggestions: Answer

mySuggestions: Answer

send: Message

receive: Message

statusIn: Status

statusOut: Status

quiz: MainUI

chat: MainUI

userInfo: MainUI

m: Main

submission: Answersubmission: Answer

matchingUsers: User[]

check Position

update

position: Position

position: Position

othersPosition:

start: Credentials

st
ar

t:
 C

re
d
en

ti
al

s

elsetrue

: boolean

Fig. 8. Activity for the City Exploration Service

activity is active. The provided login data is used to start the actual login service
as a collaboration with the server. As shown in Fig. 6, this collaborative building
block has no streaming pins, and may only terminate in two alternative ways, rep-
resented by the two pins granted and denied. (These are mutually exclusive and
belong to different parameter sets, noted by the additional box around them.) The
corresponding result is fed back to the login user interface block, which will either
forward a successful login via ok or eventually cancel. In the latter case, the flow
simply ends in the flow final node. In case of success, the actual city exploration
service is started via its pin start.

The decomposition of the login phase into a Login UI and a Login Service from
Fig. 6 is a typical example for the general pattern that we ise for the separation
of service logic from user interface logic. The local block Login UI encapsulates all
logic specific for user interfaces, and the Login Service block models the collaborative
behavior. We explain the internals of these blocks in Sect. 5 and 6.



8 F.A. Kraemer et al.

4. System Decomposition

The decomposition of the city exploration service into its sub-services was already
introduced in Fig. 5 with respect to the collaborations between the entities; Fig. 8
shows the corresponding decomposition in the activity diagram view, which also
adds details about the coupling of events between the sub-services, and, as the
main focus in this paper, the detailed user interface blocks. Each user interface
part as the ones illustrated in Fig. 2 is represented by a separate UI block in the
activity for the city exploration. In the Java Swing UI framework, these correspond
to separate windows. For Android applications running on mobile phones, these
correspond to different application screens, as we shall later see.

When a user successfully logs into the system, a user component of the city
exploration service is started via starting node start, which activates the life-cycle
controller of the city explore service m: Main, from which the other UI elements
are controlled. At the beginning, the position module l1 and the UI block for the
position update UI are activated. The position module is continuously forwarding
the position of the user to the UI via pin position. The group positioning service
receives position updates from every user and forwards them to the other members
of the group via the othersPosition streaming output pin. The Position Update UI
then refreshes the position information of the user and other group members on the
map.

The position server checks with operation checkPosition if any member of a
group is close to a point of interest. In such a case, it informs the point of interest
server to start the quiz service. The Quiz service then forwards the question via its
streaming outpin question to all members of the group (detailed in Sect. 5). During
the quiz service, all the user can suggest an answer via mySuggestion streaming
output pin of the quiz UI block which is connected to the streaming input pin
mySuggestion of the quiz service. This suggestion is then forwarded to the other
members of the group and group suggestions are updated to the quiz UI. One group
member is assigned to be the group leader and submits the final answer via output
pin submission of the quiz UI.

In parallel with the quiz and positioning services runs the social matching ser-
vice. Users specify their interests and create profiles via User Info UI. The social
matching service then returns the list of matched users through its output stream-
ing pin matchingUsers. A list of matched users is also made available to the chat
user interface component Chat UI, so that users can communicate with each other
using chat service c1.

5. Collaborative Service Blocks

Fig. 9 shows the activity for the Login Service. It is activated by providing the login
credentials via pin start, which are forwarded to the server role. There, the login
data is checked, whereupon the service eventually terminates at the client side by
either granted or denied.



Unified Modeling of Service Logic with User Interfaces 9

serverclient

Login Service

start:
LoginData

: boolean

: LoginData

: Credentials

true else

granted:
Credentials

denied

checkLogin

createCredentials

Fig. 9. Activity for the Login Service

learningObjectgroupuser [0..*]

c1: AnsweringSession

submitted: Answer

question: Question

groupSugg: Answer

mySugg: Answer

submit: Answer

start: Question

suggOut: Answer

grpSugg: Answer

submission: 
Answer

question: 
Question

groupSuggestion: 
Answer

mySuggestion: 
Answer

select.all

select all/self

c0: QuestionHandler

question: Question

answer: Answer finished

start

Quiz Service

start

finished

Fig. 10. Quiz Service

The Quiz Service is shown in Fig. 10. Within one execution of the service, one
learning object and one group object participate, as well as any number of users in a
group, here emphasized by the multiplicity [0..∗]. Note that due to the role binding
in Fig. 5, the groups and learning objects are provided by the partition poiServer
in Fig. 8. The question handler service c0 is responsible for providing the questions
and evaluating the answers. Once a question is provided, it is sent to the answering
session service. As indicated by the shadow, this collaboration is executed separately
for each participating user and the group therefore handles multiple instances of it.
The question is provided to all users, declared by the operator select all. The
question is then forwarded within the answering session. Suggestions by the users
are picked up via pin mySugg, internally forwarded to pin suggOut within the group
partition. From there, they are distributed to all other users, declared by operator
select all/self. These selection operators work as symbolic address filters and are
further explained in [5].



10 F.A. Kraemer et al.

Interface Blocks 
(External Behavior only)

Implementation for Java Swing 
(Sect. 6.1)

Implementation for Android 
(Sect. 6.2)

Fig. 11. Realizations of Login UI for Swing and Android

6. User Interface Blocks

Just as the behavior of the distributed services, the behavior of user interfaces is
triggered by distinct events. In addition to the triggers from signal receptions and
timeouts, also direct actions from users (like the tap on a button) must be taken
into account. In contrast to the distributed service behavior, however, the internal
behavior for user interfaces is highly dependent on the specific devices they are
executed on: not only do different platforms (like Java Swing or Android) offer
different user interface elements and layouts, they also assume different life cycles
of these elements which has influence on their overall behavior. Interestingly, we
observe that the external events often are the same so that these differences may
be encapsulated. User interface blocks may therefore have the same pins and the
same ESMs while having very different internal realizations. For this reason, user
interfaces may in the first place be described by an abstract block that only defines
their external behavior such as the one from Fig. 7. Other building blocks may
implement this external behavior, expressed in UML as the realization dependencies
depicted in Fig. 11. This means that an application can be ported to different devices
by exchanging only the internals of the specific building blocks, while the overall
composition and especially the coupling to the service logic can stay unchanged.
Our transformation tool therefore selects implementations of the Login UI block
depending on the desired target platform. (The actual selection mechanism is part
of the deployment and not detailed here.) Since the ESMs are identical, the overall
applications will behave equivalent.

In the following, we will start in Sect. 6.1 by presenting one such implementation
of Login UI with a simple building block for Java Swing, which introduces the
mechanisms for the coupling to user interface elements. In Sect. 6.2 we extend
our method and design another implementation of Login UI, specific for Android,
which makes use of the layout editor of the Android SDK and takes care of the
particularities of mobile devices.



Unified Modeling of Service Logic with User Interfaces 11

Login UI for Java Swing

add listener

BUTTON_PUSHED

remove listener

start

remove listener

Button

stop

listener: 
ActionListener

show window

hide window

stopped

stop

pushed

pushed

pushed stopped

pushed

reset fields denied

cancel

granted: 
Credentials

start

login:
LoginData

:LoginData

ok: Credentials
stoppedpushed

login: Button

create login data

cancel: Button

stop

Fig. 12. Activities for Login UI and Button

6.1. Simple User Interface Block for Java Swing

Figure 12 shows the Login UI building block specific to Java Swing. It contains
two buttons, one for sending the login data and one for canceling, each represented
by a corresponding building block. The internals of the buttons are presented to
the right. Once a button is started, it registers a listener to the graphical element.
When this listener is activated, it sends an internal signal BUTTON PUSHED to
the underlying runtime scheduler. The behavior triggered by this signal follows after
the accept signal action for BUTTON PUSHED : the listener is removed and the
button block terminates via pushed. To deactivate a button, a token may be sent
via stop, upon which the block is terminated. The text field is created together with
the window and the other elements, but since it does not trigger any events, no
further elements are necessary for it in the model.

The external behavior of Login UI is defined by the ESM given in Fig. 7. After
its start, it shows the window illustrated at the right hand side of Fig. 12, with
the login button activated. When the user presses login, a token leaves block login
via pushed, whereupon the login data is created from the user name and password
provided and sent out. From then on, the block awaits the arrival of either denied
or granted. In the denied case, users may select to retry or to cancel using the then
activated cancel button. In the granted case, the Login UI block terminates via ok.a

A similar approach works for all the other user interface blocks as well, for
instance the Quiz UI. Its external behavior is shown in Fig. 13. Once it is started,
it goes to the idle state and changes into active once it receives a question. In this
state, users may suggest the answer to the question while they receive suggestions
from the group members. Once the final answer is submitted, the quiz UI enters
into the submitted state and waits for the result. The internals of the block are
similar to the ones from the Login UI in Fig. 12. Operations are used to update the

aThe ESM from Fig. 7 demands that parameters granted and ok are part of separate execution
steps, for instance to leave time for releasing resources. Since the operation to hide a window in
Fig. 12 is executed within one step, an intermediate delay element is added.



12 F.A. Kraemer et al.

init/
idle

«esm» Quiz UI

question/

question/

groupSuggestions/

submitted
/submission

/mySuggestions

active

Fig. 13. ESM of the QuizUI building block

Android
Activity

Progress Dialog

Toast

Fig. 14. Screenshot of the login user interface on Android

state of the UI elements and register listeners to them, which send events back to
the building block.

6.2. User Interface Blocks for Android

Figure 14 shows the login user interface on Android. Screen layouts as the one
illustrated are called activities. (To distinguish them from UML activities, we always
refer to them as Android activities in the following.) In addition, a progress dialog
is shown during the login, and the result is displayed with an Android-specific user
notification, called toast. While the different user interface elements may look similar
to those for Java Swing, there are some important differences:

• Only a single Android activity can be displayed on the screen at once. This
means in particular that displaying several windows as on desktops is not
possible.

• Since applications may be interrupted by other tasks, for instance an in-
coming call, any Android activity must be prepared to be moved into the
background. In case the memory gets low, Android activities also have to
be prepared to store their state and wait for a later re-activation.

• The appearance of user interfaces is determined by rather general layout
files, which are created by graphical tools like the ones provided by the
Android SDK. The instantiation of the user interfaces in terms of an ob-
ject structure is done by the operating system based on this file, taking



Unified Modeling of Service Logic with User Interfaces 13

into account the current device configuration, regarding screen size and
orientation, for instance.

For a modeling approach, this imposes several challenges, since the lifecycle of An-
droid activities has to be taken into account, and the layout files somehow have to
be connected to the building blocks in UML. To meet these additional challenges,
we use the method depicted in Fig. 15, which first produces a building block to
encapsulate the Android activity and then composes this block further.

(1) The layout file is created with a graphical editor. In the example, this file
arranges the text fields and buttons shown in Fig. 14.

(2) Events are identified that originate at the user interface and that trigger service
logic (such as the activation of the button OK ). Vice-versa, events are identified
that update the user interface, such as the arrival of a login denial.

(3) With an ESM, constrains on the sequence of the events identified above are
described. In the example, the ESM is similar to the one in Fig. 7.

The result of these steps is the external shell of a layout control block that encapsu-
lates the user interface elements of the Android activity, in our example called Login
Activity Control. Since all steps are focused on the visible part of user interfaces
and in which sequence users should interact with them, they can be accomplished
by a user interface designer without specific programming skills. In the following, a
programmer adds the internals to this block and composes it with other blocks to
form the final UI block:

(4) The internals are added to the layout control block. These are methods and
listeners that interact with the elements defined in the layout file, similar to
how the listeners and operations work in the block of Fig. 12.

(5) The contents of the methods is edited to update the user interface elements
upon events (for incoming events) and listeners are registered to catch events
originating at the user interface.

(6) In a final step, the layout control block is combined with other user interface
elements such as dialogs from a UI library to create a comprehensive Android
UI block. A special block taking care of the lifecycle of an Android activity is
added as well.

As a result of this method, we obtain the Login UI block for Android shown in
Fig. 16. From an external view, it behaves as described by Login UI from Fig. 7.
Internally, it is composed from several blocks and adheres to Android’s particular-
ities:

• Block ALC (for Android Lifecycle Controller) creates the Android activity for
the login screen. Since the creation must be done by the operating system,
only the class is passed to it. The instance is returned via the pin onCreate.
Furthermore, ALC monitors the lifecycle of the activity. If another application
is coming to the foreground, the pins onPause and onResume trigger an event



14 F.A. Kraemer et al.

1

UI Library

Android SDK 
Layout Editor

2 List of all UI events
and data types

3 ESM for the 
sequence of 
events

Login Activity Control
(external)

4 Methods and listeners 
for the events.

5
Code as link to the
layout elements.

6
Composition with
other UI blocks

login.xml

Login UI for Android

Fig. 15. Method to create Android UI Blocks

upon which data can be persisted. (Not shown here.) Eventually, the Android
activity can be terminated via finish, or is destroyed by the operating system
via onDestroy.

• Block Login Activity Control makes the user interface elements of the Android
activity available, as described above. Input pins update the text fields and
output pins forward events that originate from the buttons.

• Block Progress Dialog displays a dialog while the login credentials are evaluated
by the server. The user may also cancel the login process using this dialog, which
is expressed by the corresponding pin.

• Block Toast displays a message in case the login was denied.

The blocks Gate and Crossover are taken from our standard library and are used
to intercept two alternative flows that arrive to them via in1 and in2. Crossover
terminates the progress dialog upon the arrival of either denied or ok via flow, and
Gate forwards ok or cancel to the termination but intercepts this forwarding by a
termination of the Android activity via block ALC.

7. Validation and Automatic Verification

Due to the formal semantics [6], the specifications expressed by the UML activities
can be analyzed by the model checking tools described in [7, 8]. The encapsulation
of building blocks in their ESMs leads to a compositional verification style, in which
each building block can be analyzed separately. When a specification is composed
of several blocks, for instance several services and UI blocks as in Fig. 8, then all
its subordinate blocks are abstracted by their ESMs. This keeps the state space of
the analysis rather small, as shown in [7]. In addition, it is possible to study design
solutions that are not completely finished yet. For instance, the block for the login
on Android in Fig. 16 can be validated even if the internals of Login UI Control
are not yet finished. This can provide feedback at earlier stages of the development,
which reduces costs for changes.



Unified Modeling of Service Logic with User Interfaces 15

main

Login UI for Android

onStop

onPause

onResume

onRestart

onStart

onDestroy

Login Activity Control

Toast
show

closed canceled

Progress Dialog

close
start

flow

Crossover

in1out1

in2out2

denied

ok: Credentials canceled

ok

login: 
LoginData

cancel

denied

granted

ALC

Gate

start: ActivityonCreate

finish

finished

onDestroy

request

grant

in1

getClass

start: Class

:Class

in2

out1 out2

start

ok: Credentials

login:
LoginData

Takes care of 
the Android 
activity life cycle.

Encapsulates the
text fields for username 
and password and the 
buttons.

Intercepts the 
two flows by the 
termination via 
ALC.

Terminates the 
progress dialog 
upon the arrival of 
either of the two 
flows.

onPause

onResume

Fig. 16. Android version for the login block

As a means of validation, i.e., whether a behavior is suitable to solve a certain
problem, the behavior of a building block may be simulated by means of a graphical
animation, as shown in [8]. In such a simulation, designers can step through possible
behaviors by looking at the sequences of actions and states. The actions are triggered
by events and the states are defined by the ESM states of the inner blocks and other
elements of the UML activities.

In addition to the validation that relies on the judgement of the designer exam-
ining selected paths through the state space implied by a specification, a thorough
and automatic verification is possible that takes the entire state space into account.
Such an analysis reveals errors in the interactions within collaborations, for example
unbounded queues, deadlocks, race conditions and inconsistent terminations, i.e.,
situations that are generally undesired and that are most likely design flaws. (This
means the given specification is verified against a set of desirable properties.) With
respect to the user interface blocks proposed here, two properties deserve special
attention:

• A building block must obey its own ESM description. For instance, the Login
UI block may push a token through ok if (and only if) it received a granted,



16 F.A. Kraemer et al.

since its ESM allows these events only in that order.
• A composition of building blocks must obey the ESMs of all the blocks. For
instance, the login gui block may only be composed in such a way that, once
it has emitted a login, it will eventually receive either a denied or granted (but
not both of them). This is very useful for user interfaces that maintain a certain
state (for example if a UI element is enabled or not) and relieves the developer
of ensuring these conditions manually.

Once errors are detected, the model is annotated and may be animated to help the
designer to understand the error situation and correct it, as shown in [8].

8. Automatic Implementation

To implement the specifications given in terms of UML activities and the com-
plementing Java methods for the call operation actions, we developed a two-step
process. In a first step, the activities are transformed into UML state machines.
Each partition of the system activity in Fig. 6 denotes a separate component, for
which we generate a UML class. The transformation considers which collaboration
roles are bound to the respective components and generates state machines for the
respective activity partitions. This transformation is detailed in [2].

In a second step, code is generated from the UML state machines. The state
machine logic is translated to special transition methods that execute the state
machine transition actions, such as sending signals to other machines, setting timers
or executing the Java operations that have been copied directly from the building
blocks. Our code generators produce code for different platforms, such as standard
Java [9], embedded Sun SPOT devices [10], as well as Android [11].

9. Related Work

In general, we observe that some service engineering approaches ignore the details
of user interfaces completely and leave such aspects to the implementations. Other
approaches have user interfaces as their primary focus, but treat the service logic
as secondary.

The possibilities of model-driven user-interface development have been explored
for instance in [12–14]. Most of these approaches focus on web applications. In [12],
user interface behavior is modeled with UML use case diagrams which are detailed
with activity diagrams showing the interactions between users and the system.
User interface components such as Java applets are then generated. Link et. al [13]
use extended UML activity diagrams to capture UI aspects both from the user
and the system perspective. UI models are used to specify the assembly of user
interfaces components, from which code can be generated. In [14], user interfaces
are modeled using several types of UML diagrams. Class diagrams are used for the
domain model representing domain entities and their relationships, while activity
diagrams are used for task modeling. In contrast to these approaches, we do not



Unified Modeling of Service Logic with User Interfaces 17

try to automate UI development as such, but provide a way to factor out and
encapsulate UI elements from services and use them in application composition at
the modeling level.

UWE [15, 16], WebML [17], OO-H [18], and MIDAS [19] are model-driven ap-
proaches for the domain of web-based systems. In [15], user interfaces are modeled
and implemented by code generation. This approach considers only web services
which are mapped to Java methods. UI components just invoke a web service and
wait for the result in order to present it. In UWE, information aspects are specified
by content models using UML class diagrams. Nodes and links of the hypertext
structure are specified in a navigation model using UML class diagrams. Com-
position of the presentation elements are specified in a presentation model using
stereotyped UML class and interaction diagrams. Behavior is specified by the pro-
cess flow model using UML activity diagrams. Similar to UWE, WebML also has
the concepts of structural model for data modeling, composition model for the page
contents, and personalization model for the customizing features. All the concepts of
WebML are associated with a graphic notation and WebML specifications can also
be translated into web pages. In OO-H, structural domain information is captured
using UML class diagrams. From there, different navigation models are created for
each user type. Then, using different mapping steps, a default web-interface is gen-
erated. Presentation models based on templates are combined with the aid of a
set of patterns to improve the quality of the generated interfaces. A model com-
piler is used to generate the user-interfaces for internet applications. The MIDAS
approach has a system core that defines domain and business models. Over this
central core, it defines structural and behavioral dimensions of the web-application
using conceptual and platform-specific models for content, hypertext and presen-
tation. A common and interesting feature of these methods is the modeling of the
application in different orthogonal levels and aspects such as content, hypertext,
composition and presentation modeling. One limitation of these approaches is that
they consider only web applications and client-server type of services. In contrast,
we provide an approach for reactive services in general without technology bindings.
Our service models are collaborative and encapsulate the details of interactions and
distribution. We also treat UI elements in the same way as service behavior.

SoaML [20] is a UML profile for the structural aspects of the service. Services
contracts are modeled in a way similar to your approach of specifying collaborative
services. UML4SOA [21] is a profile for specifying behavioral aspects of services. It
contains specialized elements for modeling service interactions, compensation, event
and exception handling. Neither of these UML profiles, however, deal with details
of user-interfaces.

Since UML in general does not provide any dedicated concepts or diagrams for
developing user interfaces, some approaches use profiles specifically for user interface
design. For instance, [22] presents how UML activity diagrams can be used to show
the flow of windows and other UI elements, by representing actions that a user can
invoke while working with the user interface. The approach introduces stereotypes



18 F.A. Kraemer et al.

to further categorize these actions. In comparison to our work the focus lies on
the navigation between local windows, but no connection to service logic or its
coupling with events. Van den Berg and Coninx [23] propose a UML profile for
the description of user interfaces in relation to context models that represent the
situations and environment in which the interface is used. Similar to our approach
is the use of UML activity diagrams, but the emphasis on what they represent
differs. Our models are focused on the technicalities of user interfaces and are very
detailed with respect to the event-driven behavior, to an extend that allows code
generation from these models. In contrast, their models pay more attention to the
relations between the system, the user and the environment by representing the
latter explicitly in the diagrams.

App Inventor [24] is a visual programming environment for creating mobile ap-
plications by connecting visual boxes like puzzle pieces. Instead of writing code,
the programmer specifies application logic using boxes for specific functionalities
along with control constructs that realize programming structures like conditions
and loops. Its development environment is similar to StarLogo TNG [25], and Lego
Mindstorms [26] but targeting mobile applications for Android. The diagrams of
App Inventor resemble Nassi-Shneiderman diagrams known from structured pro-
gramming, while the activity diagrams underlying our approach model general data
flows, which also offer synchronizing elements like join nodes. It is therefore not clear
to us how more general reactive behaviors, in which reactions on events depend on
complex states, can be expressed, especially if more than one event need to be syn-
chronized. In our approach, the internal details of the services and UI blocks are
encapsulated with their external behavior specified using ESM. This allows replace-
ment of internal details while keeping the external behavior. Moreover, our building
blocks are composed together by using different types of pins such as initiating, ter-
minating and streaming pins linked together by arbitrary synchronizing logic. We
also separate user interface and service concerns but compose in a unified way such
that their composition can be verified and validated (automatically) early at the
design time. As in our approach, the layouts for graphical user interfaces need to
be designed by hand in App Inventor, and their association with corresponding
functionality blocks is done manually.

10. Concluding Remarks

We proposed a method to integrate collaborative service behavior with the local
control of user interfaces using building blocks based on UML activities. We observe
that the demonstrated specification style leads to a system decomposition in which
user interface elements are represented by separate, self-contained building blocks
that may be developed by UI experts. These may be combined with collaborative
service blocks to form the complete system specification, which can then be analyzed
and implemented in automated processes. Since the proposed specification style is
an extension of our existing method for reactive system engineering, it inherits



Unified Modeling of Service Logic with User Interfaces 19

several properties that we consider as beneficial for the development of services in
general:

• The decomposition into collaborative building blocks based on activities mod-
els systems in reasonably compact but readable form. Our case study involves
multiple users and mobile devices communicating with each other using a va-
riety of services each involving several system participants. The complexity of
the system therefore goes beyond that of simple toy examples. However, we are
still able to present its overall specifications on a few pages, as shown by Fig. 6
and 8.

• Interactions and coordination of collaborative behavior is handled explicitly on
the service model level, with activities that provide an overview of the cross-
cutting behavior executed by several components.

• The automated and incremental verification encourages developers to formally
analyze their specifications often and from the beginning, block by block.

• The automated implementation makes the service specifications the canonical
description from which everything else is derived. This avoids inconsistencies.

With respect to the integration of user interface behavior, our approach has several
important properties:

• Encapsulation of UI details. The building blocks encapsulate detailed opera-
tions on user interfaces, which would otherwise obstruct the overall specification
and which would make it difficult to understand the cross-cutting services.

• Separation of expertise. Due to the separation of concerns enabled by the
decomposition into building blocks, developers with different fields of expertise
may work largely independently from each other.

• Protection of operation call sequences. The above mentioned separation
could also be achieved by object-oriented techniques with classes separated by
interfaces. But by using building blocks, we also ensure that operations are
called in the right order, secured by the ESMs. Furthermore, since building
blocks are at the service model level, the analysis of the overall behavior is
easier than at the code level.

• Application-Oriented Composition. The coupling by means of activity
flows is application-oriented: data types and events correspond to concepts of
the domain, like the types Position and User in Fig. 8. This makes specifications
easier to understand.

• Interchangeability of UI Frameworks. Since operations and resources be-
longing to a certain UI are encapsulated as building blocks, they can be ex-
changed easily so that a system may use different UI frameworks. If the new
building blocks adhere to the same ESMs, they will behave consistently.

So far, we encapsulate user interfaces into building blocks in a manual, although
highly structured method as outlined in Fig. 15. Since this invokes recurring pat-
terns, we see potential for the automation of this process and think of solutions



20 F.A. Kraemer et al.

that encapsulates artifacts produced by GUI builders for different UI frameworks
automatically. Especially the creation of building blocks controlling the Android
activities can be automated further, taking the layout files created by the Android
SDK as input.

References

1. Frank Alexander Kraemer and Peter Herrmann. Service Specification by Composition
of Collaborations — An Example. In Proceedings of the 2006 WI-IAT Workshops
(2006 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent
Agent Technology), pp. 129–133. IEEE Computer Society, 2006. 2nd International
Workshop on Service Composition (Sercomp), Hong Kong.

2. Frank Alexander Kraemer. Engineering Reactive Systems: A Compositional and
Model-Driven Method Based on Collaborative Building Blocks. PhD thesis, Norwegian
University of Science and Technology, August 2008.

3. Surya Bahadur Kathayat and Rolv Bræk. Platform Support for Situated Collaborative
Learning. In International Conference on Mobile, Hybrid, and On-line Learning, 2009.
ELML ’09., 2009.

4. F. A. Kraemer and P. Herrmann. Automated Encapsulation of UML Activities for
Incremental Development and Verification. In A. Schürr and B. Selic, editors, Pro-
ceedings of the 12th Int. Conference on Model Driven Engineering, Languages and
Systems (Models), Denver, Colorado, USA, October 4-9, 2009, volume 5795 of Lec-
ture Notes in Computer Science, pages 571–585. Springer-Verlag, 2009.

5. Frank Alexander Kraemer, Rolv Bræk, and Peter Herrmann. Synthesizing Compo-
nents with Sessions from Collaboration-Oriented Service Specifications. In Emmanuel
Gaudin, Elie Najm, and Rick Reed, editors, SDL 2007, volume 4745 of Lecture Notes
in Computer Science, pages 166–185. Springer, September 2007.

6. F. A. Kraemer and P. Herrmann. Reactive Semantics for Distributed UML Activities.
In J. Hatcliff and E. Zucca, editors, Formal Techniques for Distributed Systems, volume
6117 of Lecture Notes in Computer Science, pages 17–31. Springer, 2010.

7. Frank Alexander Kraemer, Vidar Sl̊atten, and Peter Herrmann. Tool Support for the
Rapid Composition, Analysis and Implementation of Reactive Services. Journal of
Systems and Software, 2009.

8. Frank Alexander Kraemer, Rolv Bræk, and Peter Herrmann. Compositional Service
Engineering with Arctis. Telektronikk, 105(1), 2009.

9. Marius Bjerke. Runtime Support for Executable Components with Sessions. Master’s
thesis, Norwegian University of Science and Technology, July 2009.

10. Frank Alexander Kraemer, Vidar Sl̊atten, and Peter Herrmann. Model-Driven Con-
struction of Embedded Applications based on Reusable Building Blocks – An Exam-
ple. In Attila Bilgic, Reinhard Gotzhein, and Rick Reed, editors, SDL 2009, volume
5719 of Lecture Notes in Computer Science, pp. 1–18. Springer, 2009.

11. Stephan Haugsrud. Developing Android Applications with Arctis. Master’s thesis,
Norwegian University of Science and Technology, June 2009.

12. J.M. Almendros-Jimenez and L. Iribarne. Designing GUI Components from UML
Use Cases. Engineering of Computer-Based Systems, 2005. ECBS ’05. 12th IEEE
International Conference and Workshops on the, pp. 210–217, April 2005.

13. Stefan Link, Thomas Schuster, Philip Hoyer, and Sebastian Abeck. Focusing Graphical
User Interfaces in Model-Driven Software Development. In ACHI ’08: Proceedings of
the First International Conference on Advances in Computer-Human Interaction, pp.
3–8, Washington, DC, USA, 2008. IEEE Computer Society.



Unified Modeling of Service Logic with User Interfaces 21

14. Paulo Pinheiro Da Silva and Norman W. Paton. User Interface Modelling with UML.
In In Proceedings of the 10th European-Japanese Conference on Information Modelling
and Knowledge Representation, pp. 203–217. IOS Press, 2000.

15. Peter Braun and Ronny Eckhaus. Experiences on Model-Driven Software Develop-
ment for Mobile Applications. In ECBS ’08: Proceedings of the 15th Annual IEEE
International Conference and Workshop on the Engineering of Computer Based Sys-
tems, pages 490–493, Washington, DC, USA, 2008. IEEE Computer Society.

16. N. Koch, H. Baumeister, R. Hennicker and L. Mandel. Extending UML to Model
Navigation and Presentation in Web Applications. In UML, 2000.

17. S. Ceri, P. Fraternali, and A. Bongio. Web Modeling Language (WebML): A Modeling
Language for Designing Web Sites. Computer Networks, 33(1-6), pp. 137–157, 2000.

18. Jaime Gómez, Cristina Cachero, and Oscar Pastor. Conceptual Modeling of Device-
Independent Web Applications. IEEE MultiMedia, 8(2), pp. 26–39, 2001.

19. P. Caceres, E. Marcos, and B. Vela. A MDA-based Approach for Web Information
System Development. Proceedings of WISME, 2003.

20. Object Management Group. Service Oriented Architecture Modeling Language
(SoaML) - Specification for the UML Profile and Metamodel for Services, Novem-
ber 2008.

21. Nora Koch, Philip Mayer, Reiko Heckel, L. Gönczy, and C. Montangero. UML for
Service-Oriented Systems. Technical report, Deliverable 4.14a of the SENSORIA
Project, 2007.

22. Benjamin Lieberman. UML Activity Diagrams: Detailing User Interface Navigation.
IBM DeveloperWorks Article, 2004.
http://www.ibm.com/developerworks/rational/library/4697.html (Accessed Decem-
ber 2010).

23. Jan Van den Bergh and Karin Coninx. Towards Modeling Context-Sensitive Interac-
tive Applications: The Context-Sensitive User Interface Profile (CUP). Proceedings
of the 2005 ACM symposium on Software visualization, pp. 87–94, ACM Press, 2005.

24. Google App Inventor Website. http://appinventor.googlelabs.com/ (Accessed Decem-
ber 2010).

25. Wang, Kevin and McCaffrey, Corey and Wendel, Daniel and Klopfer, Eric. 3D game
design with programming blocks in StarLogo TNG. In ICLS ’06: Proceedings of the 7th
international conference on Learning sciences, pp. 1008–1009, Bloomington, Indiana,
USA, 2006. International Society of the Learning Sciences.

26. Lego Mindstorms Website. http://mindstorms.lego.com/ (Accessed December 2010).


