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Abstract 
 
The application of the Least-Squares Monte Carlo (LSM) algorithm in the oil and gas industry 
is increasing. Its use with a production model has been demonstrated to be insightful by Hong 
et al. (2018) in terms of optimizing the initiation time of an Improved Oil Recovery (IOR) 
process. This demonstration also reflects the application of decision analysis (DA) in solving 
the IOR initiation time problem, which is a sequential decision problem in reservoir 
management. In this context, DA provides a framework that can systematically address the 
sequential decision problem in reservoir management and generate insights in reservoir 
decision making.  
 
The production model used in Hong et al. (2018) was the two-factor production model, which 
is developed by Parra-Sanchez (2010). This production model is a decline curve-based model 
and thus, it is computationally attractive. Additionally, it is formulated in terms of the recovery 
factor of a recovery phase. In this context, for each phase, this model depends on two 
parameters, namely theoretical ultimate recovery factor and time constant (Parra-Sanchez, 
2010). Aside from this, pertaining to the use of LSM algorithm, the state variables used are 
generally modeled as Markovian processes (Longstaff and Schwartz, 2001; Smith, 2005; 
Willigers and Bratvold, 2009). However, in Hong et al. (2018), the state variable cannot be 
modeled as a Markovian process (the measured oil production rate is used as a state variable 
in this case and the details will follow later). Therefore, Hong et al. (2018) have slightly 
modified the LSM algorithm to handle non-Markovian processes.   
 
The modified LSM algorithm used by Hong et al. (2018) as well as in this work is an 
approximate dynamic programming (ADP) approach that can provide a near-optimal solution 
to the IOR initiation time problem. The need for approximation stems from the fact that 
dynamic programming (DP) suffers from the curse of dimensionality when the state space 
grows. We call this ADP as a Sequential Reservoir Decision Making (SRDM) approach. 
SRDM is also referred to as a method in which future learning is considered in reservoir 
decision making. Besides that, for any sequential decision problem, taking uncertainty and 
information into account is important to support a person’s decision making. Regarding this, 
Closed-Loop Reservoir Management (CLRM) has been a state-of-the-art method to solve the 
IOR initiation time problem. However, in this context, CLRM yields a suboptimal solution as 
compared to SRDM. This is because CLRM only considers outcomes and decisions based on 
current information whereas SRDM considers outcomes and decisions based on current and 
future information (Hong et al., 2018). In other words, as compared to CLRM, SRDM captures 
the additional value of learning. In this aspect, the value of learning can be estimated by the 
Value-Of-Information (VOI) framework, which is a robust tool used for decision analysis 
(Hong et al., 2018).  
 
There are several works done and presented for discussion. These include the replication of the 
use of the two-factor production model with the modified LSM algorithm as shown in Hong et 
al. (2018). Its purpose was to develop the present author’s understanding and validate the 
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implementation of the modified LSM algorithm. A sensitivity analysis was conducted to verify 
if using a richer (more terms as well as nonlinear terms) regression function in the modified 
LSM algorithm would provide significant improvements to the results. Then, sensitivity 
analysis on certain parameters related to the algorithm was also performed to generate some 
useful insights regarding the IOR initiation time problem. This work was also adding to the 
work by Hong et al. (2018) by including the uncertainties in economic parameters in the 
modified LSM algorithm that was not done in Hong et al. (2018). Additionally, the application 
of this modified algorithm with a reservoir simulation model was illustrated. This brief 
illustration aims at showing the applicability of the modified LSM method with a different type 
of production model and providing a foundation on which further works can be developed upon.  
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Chapter 1  
 
Introduction  
 
Good reservoir management is essential for creating value from oil and gas reservoirs. In 
general, reservoir management can be defined as the application of available technology, 
financial and labor resources to maximize the economic performance and the recovery of a 
reservoir (Wiggins and Startzman, 1990). In this aspect, Wiggins and Startzman (1990) has 
also stated that “reservoir management can be understood as a series of operations and 
decisions from the initial stage of discovery of a reservoir to the final stage of abandonment of 
that reservoir”. Oil and gas companies are maximizing the value creation from the reservoirs 
by making a good decision. A lot of decision problems in reservoir management are sequential1. 
This sequential nature enables the companies to learn from the information gathered, support 
their future decision making, and maximize the value creation from the reservoirs. Hence, 
reservoir management is about making decisions. To successfully conduct a reservoir 
management, decision analysis (DA) has been recommended due to its numerous advantages 
(Evans, 2000). Fundamentally, Howard (1988) has opined that “DA involves a systematic 
methodology to convert opaque 2  decision problems into transparent 3  decision problems 
through a series of transparent procedures”. In terms reservoir management, DA is illustrated 
as a systematic means of evaluating different alternatives and finding the optimal one with the 
goal of maximizing the net present value (NPV) of a project (Evans, 2000). Pertaining to this, 
the application of DA in reservoir management (Hong et al., 2018) is discussed and extended 
in this work.  
 
Improved Oil Recovery (IOR) is an important phase in reservoir management. It is a method 
applied in the oil and gas industry to recover or produce additional amount of hydrocarbon 
beyond primary recovery (Schlumberger, 2019b). The mechanism of primary recovery 
includes natural drive, gas cap drive, gravitational drainage, and so forth (Lake, 1989). Besides 
that, IOR methods include waterflooding, gas-flooding, polymer flooding, surfactant flooding, 
CO2 flooding, thermal flooding, and so on. IOR is implemented when the primary recovery 
mechanism is insufficient to produce the hydrocarbon from the remaining reserve. However, 
IOR process might not be conducted if it is not economical. Therefore, there is a very important 
and practical decision regarding the implementation of IOR, namely when is the best time to 
initiate an IOR process? Scheduling an IOR process is essential because it pertains to the 
development plan of a field (Hong et al., 2018). For example, by having determined the optimal 
time to initiate an IOR, the oil company can estimate the period of the license for production 
that it should get in order to maximize the NPV of the related project. 
 

                                                           
1 A decision problem is sequential if there is a series of decisions to be made as time proceeds. “Sequential decision 
making” describes the situation of solving a sequential decision problem.   
2 “Opaque” means difficult to understand in this context (Howard, 1988). 
3 “Transparent” means easier to understand or clear in this context (Howard, 1988). 
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Hong et al. (2018) built a useful and tractable decision model for analyzing an IOR initiation 
problem. In this context, they applied the two-factor production model proposed by Parra-
Sanchez (2010). Hong et al. (2018) explained that “useful” implied that the model was relevant 
to provide insightful results upon the resolution of the decision whereas “tractable” denoted 
that the relevant analysis was computationally attractive. The details of the formulation of the 
production model will follow later. Besides that, regarding the production model parameters, 
there is a lack of knowledge of the reservoir properties and the impacts of recovery mechanism 
(Parra-Sanchez, 2010; Hong et al., 2018). Probability distributions are then used to capture the 
uncertainty and have been assigned to each of uncertain production model parameters (Hong 
et al., 2018).    
 
Apart from these, Hong et al. (2018) explained that the application of two-factor production 
model did not consider the effect of future information. This effect can be understood as the 
impact of learning over time (Hong et al., 2018). They further mentioned that as production 
began, more data would be available and used to update the knowledge to support the decision 
(Hong et al., 2018). In the oil and gas industry, there are two different approaches used to 
include the impact of information: Closed-Loop Reservoir Management (CLRM) and 
Sequential Reservoir Decision Making (SRDM). These approaches serve as a priori analysis 
in which each of them is implemented before additional information is collected. Thus, 
whenever additional data is collected, both CLRM and SRDM can be readily applied to make 
use of these data. Although both approaches involve the process of data assimilation4, the 
optimization aspect differs. The CLRM (Chen et al., 2009; Jansen et al., 2009; Wang et al., 
2009) has been the state-of-the-art method used to integrate the effect of information on 
decision problems related to reservoir management (Hong et al., 2018). The CLRM approach 
includes a cycle of consistently updating a relevant model via history matching5 to achieve 
optimization of production when there is additional data (Hong et al., 2018). By having 
matched the historical data, decision making is involved to determine the optimal production 
strategy. This will be explained more comprehensively later along with the theoretical and 
implementation details of the CLRM approach. Additionally, solving a CLRM problem 6 
requires forward calculation and it will be discussed later as well.  
 
SRDM is an approach that explicitly exploits the full structure 7  of a sequential decision 
problem (Hong et al., 2018; Alyaev et al., 2018). Therefore, as discussed in Hong et al. (2018), 
it would lead to additional value of learning as compared to CLRM. The CLRM is suboptimal 

                                                           
4 Aanonsen et al. (2009) has counseled that a person aims to integrate empirical information into a numerical 
model in the work of data assimilation. Additionally, Hermant and Oilver (2011) has stated that if this integration 
of information is carried out sequentially in time, the process is known as “data assimilation”.  
5 History matching involves the adjustment of a reservoir model to replicate the historical behavior of a reservoir 
(Schlumberger, 2019a). It is equivalently data assimilation as it is done sequentially in time (Hermant and Oilver, 
2011). With respect to this, the ensemble Kalman filter (EnKF) is used for history matching. Refer to Aanonsen 
et al. (2009) and Hermant and Oilver (2011) for the details regarding the use of EnKF in history matching.  
6 A simple CLRM problem can be represented by a decision tree. It is illustrated later in Fig. 1.  
7 The full structure of a decision tree represents all the sequences of the uncertainties and decisions of the tree 
(Bratvold and Begg, 2010; Hong et al. 2018). A decision problem that can be represented by this full structure of 
decision tree is addressed as the SRDM problem in this work.  



CHAPTER 1: INTRODUCTION 
 

3 
 

because it only takes the effect of current (at the time when the current decision is being made) 
information into account when making a decision. It does not consider the effect of information 
that will be available for future decisions. This explanation highlights the difference between 
the optimization aspect of SRDM and that of CLRM. The SRDM approach can be structured 
as a decision tree8 and solved by using the standard decision tree roll back approach. However, 
for a complicated decision problem with a lot of uncertain outcomes, alternatives, and decision 
points, the decision tree would grow exponentially and not be very useful for communication. 
Furthermore, for such rich decision contexts, the decision tree roll-back procedure is not very 
efficient. This phenomenon is known as the “curse of dimensionality” (Powell, 2011). More 
details on this will follow later. To mitigate this curse, a method of approximate dynamic 
programming (ADP), specifically the Least-Squares Monte Carlo (LSM) algorithm, which was 
proposed by Longstaff and Schwartz (2001), is used. Due to approximation, LSM may generate 
a near-optimal solution9. Its main drawback is that it still suffers the curse of dimensionality in 
the action space in which the computation effort of LSM would increase exponentially with 
the number of both alternatives and decision points10  (Powell, 2011; Hong et al. 2018).    
      
Following this introduction, the theoretical basis regarding CLRM and SRDM 11 is discussed. 
After that, the background and the general framework of the LSM algorithm is explained. 
Thereafter, the author presents the formulation of the two-factor production model, the 
economic model used in Hong et al. (2018), and the steps of implementing the modified LSM 
algorithm. The results of the replication of the implementation of the modified LSM algorithm 
with the two-factor production model are then illustrated and compared to those shown in Hong 
et al. (2018). This replication contributes to a verification of the implementation of the modified 
LSM algorithm12. Next, the author conducts sensitivity analysis on different aspects, such as 
the choice of regression function, the production model parameters, the economic parameters, 
the number of decision points, the number of data points, and the standard deviation (SD) of 
measurement error, and discusses the results obtained from the corresponding sensitivity 
analysis. The results of these sensitivity analyses provide additional insights for the decisions 
of when to initiate IOR methods. Then, the author demonstrates an extension of the modified 
LSM algorithm by including the uncertainties in economic parameters and discusses the 
respective results. This extension is also implemented for the CLRM approach. Again, 
                                                           
8 A decision tree is an approach used to visualize and solve a sequential decision problem (Bratvold and Begg, 
2010; Hong et al. 2018). Refer to Bratvold and Begg (2010) for the detailed use of decision tree for calculation 
and communication.  
9 It is very computationally prohibitive to directly solve for the true optimum of a complex decision problem. The 
best approach to solve for the true optimal solution is hitherto by approximation in which the accuracy can be 
improved to enable the estimated solution to be as close as possible to the true solution. This improvement process 
is addressed as the convergence to the global optimum. In this work, “near-optimal” is sometimes interchangeably 
referred to as “optimal”. 
10 Alternatives are the available options to be chosen in a decision making. Decision point means the point of time 
when a person is making a decision. For example, when the decision point is placed at Year 2, it means the person 
has to make a decision at Year 2.  
11 This is to reiterate that in Hong et al. (2018), the modified LSM algorithm is applied to solve the SRDM problem 
through approximation with the help of regression analysis. For CLRM, it involves the use of regression analysis 
in the form of forward calculation. The details of the implementation of each approach follow later.  
12 The author also explains and replicates the implementation of CLRM as presented in Hong et al. (2018). 
However, emphasis is placed on the implementation of the modified LSM in this work.  



CHAPTER 1: INTRODUCTION 
 

4 
 

including economic uncertainties, the difference between SRDM and CLRM solutions are also 
illustrated and discussed. The author then uses a different problem setting to further illustrate 
the suboptimality of CLRM as compared to SRDM. The author also provides a brief 
demonstration on how the modified LSM algorithm can be applied in tandem with a simple 
reservoir simulation model to provide useful insights. The author delivers an overall discussion 
about the works presented and some suggestions for further works. Finally, conclusions follow.
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Chapter 2  
 
Optimization Methods for Data Assimilation 
Application  
 
Uncertainty is inseparable from all significant decisions (Bratvold and Begg, 2010). In general, 
when we are investigating a problem with uncertain outcomes, we can reduce uncertainty by 
gathering more information (Bratvold and Begg, 2010). In reservoir management, there are 
many decision problems which involve a lot of uncertainties. This is also why Thakur (1996) 
opined that the data collection and management were vital to ensure the success of reservoir 
management. Therefore, one of the important questions regarding the use of information in 
reservoir management is how the data collected can be integrated to optimize decision 
policies13?  
 
Production optimization is an essential part of reservoir management. A lot of production 
optimization problems involve sequential decision making because there is a series of decisions 
to be made as the production time advances (Hong et al., 2018). When production continues, 
more information, such as production data, are gathered. Thereafter, the data can be applied to 
communicate the uncertainties via history matching (Hong et al., 2018). In other words, as 
information is gathered, we learn what we did not know before having the information. As we 
learn more, our uncertainty is reduced. Thus, the effect of information should be included, and 
it can be done through the respective implementation of CLRM and SRDM to support the 
decision making in production optimization. In addition, each of these approaches is in fact the 
representation of a type of decision policy. The following briefly explains these two approaches 
and their corresponding types of decision policies.  
 
 
2.1 Closed-Loop Reservoir Management  
CLRM approach has been a cutting-edge method that is used to solve a decision problem in 
reservoir management. This approach applies the mechanism of model-based optimization in 
tandem with the assimilation of data to maximize the value creation from a reservoir over the 
lifetime of production (Jansen et al., 2009). There are two fundamental steps pertaining to this 
approach. The first step is history matching (computer-assisted) in which data is assimilated 
and the second step is adjusting some control parameters based upon the history-matched 
model (updated model) to optimize production (Wang et al., 2009). Moreover, this approach 
gets its name “closed-loop” because it is done to complete a loop: whenever new data is 
collected, a reservoir or production model would be updated and reservoir performance 
optimization would be carried out (Jansen et al., 2009; Wang et al., 2009; Hong et al., 2018). 
For as long as new data is available, this loop would continue to optimize production settings.  
 
                                                           
13 Decision policies can be understood as the solutions to a decision problem.  
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Hong et al. (2018) discussed the general framework of the CLRM approach by using 
production optimization as an example. Basically, optimizing the expected value (EV) over the 
realizations of a production model is done to determine the corresponding production strategy 
(Hong et al., 2018). The essence of this approach is that different sets of realizations14 of the 
model are used based upon where the decision stage is. For instance, at the initial stage (no 
data is available yet), prior distributions of relevant reservoir properties is applied to develop 
the initial realizations (Hong et al., 2018). The initial production strategy can then be 
determined based on those realizations. At later stages where new data is available, the 
realizations of the model are updated and used to determine the new production strategy for 
the remaining production time (Jansen et al., 2009; Wang et al., 2009; Hong et al., 2018). From 
this framework, we can understand that the CLRM approach includes the impact of information, 
and learning from that information, by utilizing the additional data to update the model to 
produce an optimal policy based on the knowledge the decision makers have at any point in 
time.  
 
Hong et al. (2018) argued that the CLRM approach is a naïve decision policy. A decision policy 
is naïve when a sequential decision making problem is solved based on a priori knowledge 
without accounting for the sequential information gathered (Martinelli et al. 2013; Alyaev et 
al., 2018). The CLRM approach only takes future decisions into account but does not consider 
any learning over time15 (Alyaev et al., 2018). To include future learning, uncertainties have to 
be solved based on both current and future data. In CLRM, the uncertainties are only associated 
with the currently available data and there is no continuous resolution of future uncertainties. 
This formulation is clearly shown by using a schematic decision tree in Fig. 1 as shown below.   
 

 
Fig. 1 – Schematic Decision Tree of the CLRM approach (Hong et al., 2018). 

                                                           
14 Realization means a set of random variables or data. It is explained in detail later.  
15 It does not continuously resolve the uncertainties in future (Alyaev et al., 2018). 
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In Fig. 1, the square (denoted by the letter D) is the decision node whereas the circle (denoted 
by the letter C) is the chance node (also known as uncertainty node). As it can be observed, 
when a person makes a decision at the initial stage (indicated as D1), he or she would use the 
initial uncertainty (indicated as C1), which represents the currently available information. Only 
after he or she has made the decision at the initial stage and proceeded to next stage, the 
uncertainty would be updated accordingly as shown in Fig. 1. Hence, Fig. 1 illustrates that this 
approach only considers the effect of the information obtained before a decision is made but it 
does not take into account of the impact of the information that will be available on the future 
decisions. Thus, the remaining decisions are optimized by using the current information or data 
(Alyaev et al., 2018). This is why such approach is naïve. At each decision node, we naively 
assume that the information required for future decisions cannot be considered (Alyaev et al., 
2018). In other words, we do not account for the fact that we learn more about the reservoir 
over time. 
 
Through this decision tree illustration, it can be deduced that the CLRM approach does not 
represent the full decision structure in reservoir management and omits the learning over time. 
In this context, Hong et al. (2018) demonstrated that CLRM might lead to the suboptimal 
decision policy as compared to SRDM. This demonstration will be discussed later.  
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2.2 Sequential Reservoir Decision Making  
Being different from CLRM, SRDM is an approach that represents the full decision structure 
of reservoir management. It is a farsighted policy because it solves a sequential decision 
making problem based upon both past and future information (Alyaev et al., 2018). Therefore, 
both uncertainties corresponding to the currently available data and future data are considered 
in SRDM. In this context, the future uncertainties are continuously resolved and conditioned 
on the information collected beforehand. To illustratively show the framework of SRDM, the 
decision tree for the approach is shown in Fig. 2. As it can be observed, it explicitly considers 
all possible information or data to yield an optimal policy. In this aspect, the optimal decision 
policy corresponding to SRDM can be solved by rolling back the decision tree.  
 
 

 
Fig. 2 – Schematic Decision Tree of the SRDM approach (Hong et al., 2018). 

 
 
Based on the decision tree above, SRDM takes both the uncertainties corresponding to current 
and future data into account. Thus, at the decision stage of time step t, the decision maker 
makes a decision that is influenced by the uncertainty that has been resolved at time step t and 
the uncertainties which would be resolved in future (time step t +1 onwards until the end). 
Besides that, the responses corresponding to the decision nodes at different points of time are 
also integrated. With respect to this, SRDM exploits the full structure of a decision problem 
and thus, solving it would lead to the globally optimal decision policy (Hong et al., 2018). 
However, its drawback is its relatively more intensive computation as compared to CLRM 
(Hong et al., 2018).  
 
 
 
 
 
 
 
 
 
 
 
 
 



CHAPTER 2: OPTIMIZATION METHODS FOR DATA ASSIMILATION APPLICATION 
 

9 
 

2.3 Background of Least-Squares Monte Carlo (LSM) 
In Dynamic Programming (DP)16, the main problem is divided into smaller sub-problems 
which are solved backwards (Howard, 1960; Jafarizadeh and Bratvold, 2009). Therefore, a 
decision tree approach is a method of DP. In decision making, a decision tree is a useful tool 
used to solve a sequential decision problem (Bratvold and Begg, 2010). As discussed earlier, a 
SRDM problem can be expressed as a decision tree and solved accordingly. However, such an 
approach only works well with a limited number of possible outcomes, alternatives, and 
decision points. This is because the curse of dimensionality17 would cause the decision problem 
to be computationally too expensive to be solved by using the decision tree approach.  
 
LSM algorithm, which is an ADP, is constructed to overcome the curse of dimensionality (but 
not the curse of action space). The SRDM approach is utilizing the LSM algorithm to solve the 
decision problem. However, the LSM approach is still only useful in optimizing decision 
problems with limited number of alternatives and decision points. As the curse of action space 
occurs (increase in the number of alternatives or the number of decision points), the 
computational time of the LSM method would increase exponentially (Hong et al., 2018). This 
method was initially used to value American options18 in the financial markets. It is essentially 
a combination of two steps, namely a Monte Carlo Simulation (MCS) step19 and a Least-
Squares step. Thus, it is important to understand the fundamentals of these two steps in order 
to appreciate the implementation of the LSM algorithm  
 
 
2.3.1 Monte Carlo Simulation  
Bratvold and Begg (2010) provides a good introduction of MCS with emphasis on its 
application in oil and gas industry. MCS is a very prevalent and robust method used in 
uncertainty analysis (Bratvold and Begg, 2010). In this context, it plays a pivotal role in 
decision analysis. This is due to the challenge of decision analysis in terms of the assessment 
of the uncertainty in the attributes20 used to compute the values of decision options (Bratvold 
and Begg, 2010). By implementing MCS, the values of these attributes can be calculated from 
a model, which can relate the input variables to the attributes of interest (Bratvold and Begg, 
2010).  
 
In this context, MCS is termed to be the propagation of uncertainty from variables that can be 
assessed to variables used to make decisions (Bratvold and Begg, 2010). The “propagation of 
uncertainty” can be perceived by briefly explaining the example of production project in Smith 
                                                           
16 Refer to Howard (1960) for the details of Dynamic Programming. 
17 The curse of dimensionality is made up of the curse of state space, the curse of outcome space, and the curse of 
action space (Powell, 2011). In the use of decision tree, when the numbers of uncertain outcomes, alternatives, 
and decision nodes increase, the curse of dimensionality would happen. Thus, the size of a decision tree would 
increase, and it would be computationally difficult to solve the tree. 
18 An option that can be exercised any time before expiry. 
19 The use of Monte Carlo Simulation is not only limited to the LSM method. It can be used in any ensemble-
based method, including CLRM approach.  
20 Measurement scale used to quantify how well a decision option meets the given objective (Bratvold and Begg, 
2010).  
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(2005). In the project, he aimed to maximize the economic performance of the project by 
selecting one of the three available options namely, to buy out the project (to fully own it), to 
continue with his current share of the project or to divest (to sell his share). Thus, he chose to 
use the net present value (NPV) as the attribute to determine the values of available options. 
However, the NPV could not be assessed directly. Thus, he implemented MCS to generate 
many samples of oil price and costs, which were the variables he used to calculate the NPV 
and determine the values of options.  
 
Using the decision tree approach to solve a sequential decision problem is not viable because 
of the curse of dimensionality. The curse is indeed commonly encountered in the use of 
decision tree when it comes to the real option valuation (Smith, 2005). Therefore, the method 
of simulation has been proposed to mitigate it. Boyle (1977) suggested the use of MCS to solve 
the option valuation problem. It has been implemented to solve European options21 for years 
(Stentoft, 2004). The curse of dimensionality is not incurred in valuing the European option 
despite using the uncertainty space with high order of magnitude (Stentoft, 2004). In this case, 
MCS can be aptly used to value options, which are path-dependent or have a lot of underlying 
uncertainties (Willigers and Bratvold, 2009). However, there is difficulty when MCS is applied 
to value American option. This is because while using the MCS to value American option, 
there is a simultaneous need to find out the optimal exercise policy (Stentoft, 2004). Thus, the 
LSM algorithm, which makes use of the forward modeling22 of MCS, is suggested.  
 
In general, in order to conduct MCS, a relevant model is required for the problem being 
investigated beforehand (Bratvold and Begg, 2010). Then, the uncertainty in the input variables 
is described in terms of the probability distributions (Bratvold and Begg, 2010). In this case, 
MCS randomly retrieves samples from the distributions and uses them to calculate the output 
variables based on the chosen model. Then, these output variables are stored for further analysis. 
The histogram of the output variables can be built and normalized to yield a probability 
distribution from which the statistical parameters, including means, variances, and so on, are 
computed (Bratvold and Begg, 2010). A set of input and output variables is known as 
realization and a loop of getting a realization is called as iteration (Bratvold and Begg, 2010).   
 
 
 
 
 
 
 
 
 
 
 

                                                           
21 An option that can only be exercised at a predetermined time. 
22 Simulation of variables forward in time.  
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2.3.2 Principle of Least-Squares 
Regression analysis is a statistical method that is utilized to investigate the relationship between 
two or more variables in a nondeterministic manner (Devore, 2010). These variables are 
categorized into two groups, namely the dependent variable and the independent variable. In 
general, the independent variable is denoted by x whereas the dependent variable is denoted by 
y. In this aspect, principle of least-squares is used to conduct the regression analysis. For LSM 
method, the linear regression analysis is most commonly done where the dependent variable is 
assumed to have a linear relationship with the independent variable (Longstaff and Schwartz, 
2001; Smith, 2005; Jafarizadeh and Bratvold, 2009). In a deterministic model, when the 
relationship between the independent variable and the dependent variable is linear, such 
relationship is mathematically presented as shown below. 
 

 y =  α0 + α1x (1) 
 
where α0 is the y-intercept and α1 is the slope. This means that fixing the independent variable 
at a certain value will result in an observed value of the dependent variable (Devore, 2010). 
Thus, the dependent variable is associated with the independent variable. However, if this 
model is generalized to a probabilistic model, the EV of y (denoted as Y) is assumed to be a 
linear function of x (Devore, 2010). For a fixed value of x, its dependent variable is different 
from its EV by a random amount. Such random amount is represented by ε and known as 
random error term. Therefore, in a probabilistic linear regression model, there are parameters 
𝛼𝛼0, 𝛼𝛼1, and ε in the regression function of relating y to x as described.  
 

 y =  α0 + α1x + ε (2) 
 
To relate Y to x, the equation is expressed as  
 

 Y =  α0 + α1x  (3) 
 
The line corresponding to the equation above without the random error term is known as true 
regression line of Y (Devore, 2010). With the random error term, the points of (x, y) would 
scatter about the line. So, the principle of least squares is used to estimate the values of 
parameters α0 and α1 in Equation (3). Based on this principle, a regression line provides a good 
fit to the data if there is are small vertical deviations between the points and the line (Devore, 
2010). Mathematically, the vertical deviation of a point (xi, yi) from the regression line is: 
 

 height of point − height of line = yi − (α0 + α1xi) (4) 
 
The sum of the squared vertical deviations from the points (x1, y1) to (xi, yi) to the regression 
line is  
 

 
f(α0,α1) = �[yi − (α0 + α1xi)]2

m

i=1

 
 

(5) 
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The regression coefficients of α0 and α1 (that minimize the Equation (5)) are determined by 
finding the partial derivatives of f(α0,α1) with respect to both α0 and α1 (Devore, 2010). Then, 
both of the partial derivatives are equated to be zero and these yield a set of normal equations 
(Devore, 2010). Solving the normal equations would result in the values of α0 and α1. Refer to 
Devore (2010) for the comprehensive explanation of this step.  
 
However, the regression analysis can also be a bit more complicated when it comes to non-
linear regression and multiple regression. For multiple regression, it involves more than one 
dependent variable and the interaction term between these dependent variables can be included 
into the regression function. Nonlinear regression is simply performing the same analysis by 
using higher order of polynomial functions or more complicated basis function, such as 
Hermite, Legendre, Chebyshev, Jacobi polynomials, and so forth (Longstaff and Schwartz, 
2001). Finding the regression coefficient of those slightly sophisticated regression function is 
also done by using the same step as explained for the simple linear regression model. However, 
the sum of the squared vertical deviations from the points to the regression line is different 
depending on the type of regression function. Refer to Devore (2010) for the details of this step 
for more complicated regression function.  
 
This is a brief explanation of how the least-squares method is applied in regression analysis. 
Although finding the regression coefficients can be more demanding as the type of regression 
function becomes more complicated, the whole regression analysis can be easily conducted 
with the help of a software package. For instance, in MATLAB R2019a (2019), regression 
analysis can be done by using the function regress().  
 
 
2.3.3 General Workflow of the LSM method  
Jafarizadeh and Bratvold (2009) and Alkhatib et al. (2013) provided a meticulous step-by-step 
procedure of the LSM method. Fundamentally, the LSM method is approximating the 
conditional EV by using regression analysis. Its general workflow begins by performing the 
MCS to sample many possible outcomes23 (can be known as realizations) and compute the 
objective function24. Then, in order to compute the optimal exercise policy at a decision node, 
the expected future values for each alternative (conditional on the resolution of all uncertainties 
up to that time) are determined by using the least squares regression (Jafarizadeh and Bratvold, 
2009). The expected future values are also known as the continuation25 values. After that, 
beginning recursively from the last decision node, the optimal policy is attained by choosing 
the alternative that produces the highest continuation value given known information.

                                                           
23 Sets of data which are usually used to compute the state variables which are used in regression analysis if these 
variables are not readily available (or are not sampled directly).  
24 Function or function value in which maximizing it is the purpose of the optimization. Objective function would 
be regressed on state variables during the regression analysis.  
25 It is essential to understand that the option of continuation here only applies to the option of continuing with 
current state of decision.  
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Chapter 3 
 
Least-Squares Monte Carlo Algorithm for the 
IOR Initiation Time Problem  
 
The application of the LSM method in the petroleum industry has been increasing for the past 
decade. Several studies have been conducted to demonstrate its robust application in the oil 
and gas industry (Smith, 2005; Willigers and Bratvold, 2009; Jafarizadeh and Bratvold, 2009; 
Jafarizadeh and Bratvold, 2012; Jafarizadeh and Bratvold, 2013; Alkhatib et al., 2013; Thomas 
and Bratvold, 2015; Hong et al., 2018). In reservoir management, IOR is implemented to 
increase hydrocarbon production over the lifetime of a field. In order to optimize an IOR 
process, one of the important criteria to be considered is the optimal time to start the IOR 
process. In this context, Hong et al. (2018) showed that optimizing the initiation time of an 
IOR method was a sequential decision making problem. The generalization of this decision 
problem is that a decision maker must decide if he or she should either keep the current phase 
of recovery or shift to the next phase of recovery (Hong et al., 2018).  
 
With respect to this, Hong et al. (2018) demonstrated how the LSM algorithm could be used to 
solve this sequential decision problem. They applied this algorithm along with a simple 
production model and economic model to illustrate how the optimal IOR initiation time could 
be determined26. The production model used is the two-factor production model which was 
developed by Parra-Sanchez (2010). For simplicity, the use of either the modified LSM method 
(SRDM approach) or CLRM approach along with two-factor production model and economic 
model as shown in Hong et al. (2018) would be referred to as “HBL’s model” in this work. 
This chapter mainly discusses the two-factor production model and the economic model 
implemented in the HBL’s model and explains the problem setting of the case study in Hong 
et al. (2018) to illustrate how this model is replicated for further analysis.  
 
 
3.1 Two-Factor Production Model 
Parra-Sanchez (2010) developed this production model based on the exponential declines. This 
model is powerful because it can be used to include multiple phases of recovery to achieve the 
production optimization over the lifetime of the production (Parra-Sanchez, 2010; Hong et al., 
2018). The general formulation of the recovery factor of this model is shown below. 
 

 ER(t) = ER0 + (ER∞  − ER0) × �1 − e
−t
τ � 

 

(6) 

 

                                                           
26 To reiterate, Hong et al. (2018) also implemented the CLRM approach to solve the IOR initiation time problem. 
The implementation of CLRM in Hong et al. (2018) would be replicated as well and the corresponding details 
will follow later.  
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The descriptions of the parameters of the production model are shown in Table 1. The 
production model parameters are also addressed as the petrophysical parameters in this work.  
 

 
 

Table 1 – Explanation of Production Model Parameters (Parra-Sanchez, 2010). 
 
Recovery factor, ER is the fraction of Original Oil In-Place (OOIP) that has been produced. 
Besides that, this model gets its name to be “two-factor” because its formulation relies upon 
two parameters, namely ER∞ and τ. Both parameters depend on the properties of reservoir and 
recovery mechanism (Parra-Sanchez, 2010; Hong et al., 2018). In this context, ER∞  is the 
theoretical recovery factor that a recovery mechanism can ultimately attain whereas τ is the 
description of how fast the increment of the recovery factor is for a recovery mechanism (Parra-
Sanchez, 2010; Hong et al., 2018).  For simplicity, these two parameters are normally assumed 
to be time-invariant for a certain recovery phase. However, the values of these two parameters 
can be time-variant for different recovery phases or even within the same phase.  
 
Besides that, Hong et al. (2018) considered only two recovery phases for the IOR initiation 
problem, namely primary recovery and secondary recovery. Therefore, based on two-factor 
production model, the primary recovery can be mathematically described as shown below. 
  

 
ER1(t) = ER10 + (ER1∞  − ER10 ) × �1 − e

−t
τ1� 

 

(7) 

 
The subscript R1 indicates the primary recovery in the equation above. The primary recovery 
factor at time 0 (t = 0), ER10  is zero. Then, the primary recovery phase would be switched to the 
secondary phase at time tR1. So, the period of the primary recovery phase is tR1 and the period 
of the secondary recovery phase is tR2 (The subscript R2 indicates secondary recovery). This 
results in the total lifetime of both recovery phases to be t = tR1 + tR2. The secondary recovery 
factor can then be computed using the formula below.  
 

 
ER2(t) = ER1(tR1) + ∆ER2∞ × �1 − e

−(t−tR1)
τ2 � 

 

(8) 

 
where ER1(tR1) is the primary recovery factor at the end of primary recovery and ∆ER2∞  is the 
theoretical ultimate increment of secondary recovery factor when there is a shift from primary 
recovery phase to secondary recovery phase. Having the recovery factor calculated, the oil 
production rate is calculated to be 

Parameters

τ

Recovery Factor until time 0 (t = 0). 

Recovery Factor until time t 

Theoretical ultimate recovery factor

Time constant 

Description
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qo,j =  
No × �ER�tj� − ER(tj−1)�

∆tj
 

 
(9) 

 
where qo,j is the oil production rate at the time step j, No is the estimated OOIP, and ∆tj is the 
period between two time steps j and j – 1 in which ∆tj = tj − tj−1.  
 
 
3.2 Economic Model 
In Hong et al. (2018), the objective function used is the NPV. In order to compute the NPV, an 
economic model is required. The economic model is developed based upon the other essential 
parameters, such as the oil price per barrel, Po, the oil production rate, qo, the capital 
expenditure, CAPEX, and the operating cost, OPEX. The total cashflow from time steps j-1 to 
j, CFj, is mathematically expressed as 
 

 CFj = qo,jPo∆tj − �CAPEXj + OPEXj� (10) 
 
where the subscript j indicates the time step. Then, the NPV is calculated by using the equation 
as shown below. 
 

 
NPV =  �

CFj
(1 + r)tj

nt

j = 0

 
 

(11) 

 
where nt indicates the total number of time steps and r is the discount rate. Based on this 
objective function, the NPV is a function of the lifetime (duration or period) of a recovery 
method (Hong et al., 2018). So, the main goal of optimizing the production is attained by 
determining the best time to switch from the current recovery method to another one to 
maximize the NPV (Hong et al., 2018). In other words, the lifetimes of both primary and 
secondary recovery have to be adjusted to yield the maximum NPV. It is important to 
emphasize that in Hong et al. (2018), only the effect of uncertainties pertaining to the reservoir 
properties are considered. This means that the economic parameters are assumed to be known 
and invariant over time. This assumption is not realistic because the economic parameters vary 
over time in real life and are material27 to the decisions. Therefore, the inclusion of economic 
uncertainties has been done in this work and would be discussed later. Besides that, it can be 
noticed that taxation, which is also material, is not included in this economic model. Thus, this 
can be another drawback of this model. 
  

                                                           
27 According to Bratvold and Begg (2010), there are four criteria which makes the information gathered to be 
worthwhile. These criteria include observable, relevant, material, and economic. The information is material if 
considering it would change the decision made. Refer to Bratvold and Begg (2010) for the details of the other 
three criteria. 
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3.3 Problem Setting of the Case Study in Hong et al. (2018)  
This section mainly discusses the problem setting of the example used to be solved by HBL’s 
model. In this example, Hong et al. (2018) considered two recovery phases and aimed at finding 
the optimal time to switch from primary recovery to secondary recovery in an oil field. The 
lifetime of the production is assumed to be 50 years. There are three available alternatives in 
this example, which are continuing with the current recovery phase, switching to secondary 
recovery phase, and terminating the production. The switch of recovery phases can occur any 
time during the lifetime of production but only for once. The same situation applies to option 
of terminating the production. Additionally, termination can occur either before or after the 
switch and once it happens, the oil field is entirely abandoned, and production would not be 
reinitiated.  
 
 
3.3.1 Measured Oil Production Rates (State Variables) 
Two-factor production model is used to model the oil production. In this case, since only 2 
recovery phases are considered, there are five production model parameters to be used in this 
example and each of the parameters is assigned with its corresponding probability distribution 
(Hong et al., 2018). Hong et al. (2018) used the truncated normal distributions for all the 
production model parameters. This type of distribution can avoid some unrealistic values of 
production model parameters to be sampled and used for further analysis. To truncate the 
normal distribution, the maximum and minimum boundaries have to be defined. Then, if a 
sample of parameter is randomly retrieved from the normal distribution and its value exceeds 
the maximum of the boundaries (is less than the minimum of the boundaries), the sampled 
value is then changed to be the maximum (minimum) (Hong et al., 2018). The respective mean, 
SD and boundaries for each parameter are shown in Table 2.  
 

 
 

Table 2 – Means, SDs, and boundaries for the truncated normal distribution of each petrophysical 
parameters (Hong et al., 2018).  

 
Besides that, the production model parameters are also correlated to each other. Therefore, the 
correlation coefficients between the parameters, which are used to develop the multi-variate 
normal distribution, are built and shown in Table 3.  
 

Parameter No (MMbbl)          (fraction) τ1 (years)            (fraction) τ2 (years)

Mean 240 0.2 16 0.15 7

SD 35 0.05 2 0.05 1.5

Minimum 10 0.05 1 0.01 1

Maximum 1000 0.5 30 0.31 13
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Table 3 – Correlation coefficients matrix of the petrophysical parameters (Hong et al., 2018).  
 
After sampling the production model parameters, they are used to calculate the oil production 
rates. However, these oil rates are the modeled rates. In this case, the measured oil rates are 
used as state variables in the LSM algorithm. Thus, the measurement errors are sampled from 
the normal distribution with the mean of zero and the SD of 10% of the modeled rates. Then, 
the sampled errors are added accordingly to the modeled rates to yield the measured oil rates.  
 
 
3.3.2 Economic Parameters for NPV Calculation (Objective Function) 
The economic parameters used to calculate the NPV in HBL’s model are listed in the table 
below.   
 

 
 

Table 4 – Values of the economic parameters28 (Hong et al., 2018).  
 
In Hong et al. (2018), for secondary recovery phase, there are two types of capital expenditure, 
namely, the capital cost of initiating secondary recovery without having primary recovery 
(indicated as CAPEX_2No1) and the capital cost of initiating secondary recovery after having 
primary recovery (indicated as CAPEX_2After1). The CAPEX is only deducted at the year 
when the recovery phase is started whereas the OPEX is deducted every year depending upon 
which recovery mechanism is being used.  
 

 

 

                                                           
28 The dollar sign “$” means US dollar (USD).  

No          τ1              τ2

No 1.00 -0.80 0.16 0.56 -0.08
-0.80 1.00 0.20 -0.70 0.10

τ1 0.16 0.20 1.00 -0.30 -0.20
0.56 -0.70 -0.30 1.00 -0.30

τ2 -0.08 0.10 -0.20 -0.30 1.00

Economic Parameters Values Units
Oil Price 50 $/bbl

CAPEX (Primary) 50 $ million
CAPEX_2After1 (Secondary) 40 $ million
CAPEX_2No1 (Secondary) 75 $ million

OPEX (Primary) 20 $ million/ year
OPEX (Secondary) 30 $ million/ year

Discount Rate 12% per year
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3.4 Implementation of the HBL’s Model 
To apply the HBL’s model, MCS is first used to generate the N samples of the five production 
model parameters (Hong et al., 2018). The forward modeling is conducted to generate the 
modeled data (modeled oil rates) from Year 1 to Year 50. Then, the measurement errors are 
generated and added to the modeled rates to yield the measured rates. This sample set of 
measured data (measured oil rates) is known as a path of measured data because it has a series 
of data point in time (For each path, there are 50 measured rates being generated). In order to 
have N paths of measured data, the same procedure is repeated for each of the N sample sets 
of the production model parameters. After the MCS step, Hong et al. (2018) proceed to the 
least-squares step. For each path of measured oil rates, the NPV of each alternative is also 
calculated. Since risk neutrality 29 is assumed in this example, the goal is to optimize the 
Expected NPV (ENPV) over the uncertain parameters (Hong et al., 2018). To approximate the 
ENPV of each alternative (conditioned on the measured data), for every path, the NPV of each 
alternative is regressed on the measured data accordingly.  
 
In addition, Hong et al. (2018) have made a slight modification in the least-squares step. When 
the LSM algorithm is first introduced to value American option, the decision maker only needs 
to decide if he or she should instantly exercise the option at current stock price or hold the 
option and exercise it at a future stock price (Longstaff and Schwartz, 2001; Hong et al., 2018). 
In this aspect, the stock price, which is the uncertainty, is modeled as a Markovian process30. 
However, uncertainties regarding the reservoir properties and recovery mechanism are 
essentially not Markovian processes as they are influenced by both most recent and previous 
values (Hong et al. 2018). Thus, Hong et al. (2018) did a modification in which the NPV are 
regressed on a path of measured data (previous and current data) to approximate the ENPV.  
 
 
3.4.1 Use of Value-Of-Information (VOI) Framework  
As it has been mentioned earlier, the SRDM approach would induce additional value of 
learning as compared to the CLRM approach because it considers learning over time to produce 
an optimal decision policy. In this case, how can this value of learning be quantified? Pertaining 
to this question, Hong et al. (2018) used the VOI framework31 to estimate the value of learning.  
                                                           
29 There are three types of risk attitudes, namely risk-neutral, risk-averse, and risk-seeking (Hillson and Murray-
Webster, 2005). Consult Hillson and Murray-Webster (2005) for a more comprehensive explanation of risk 
attitudes. For a risk-neutral person, only the expect values are used in decision making (Hong et al., 2018). This 
means when there are two options with equal expected value, he or she would not have any preference on any of 
these options.   
30 Markov process is a stochastic model used to describe a series of events whose respective probability only relies 
upon the state in the previous event (Gagniuc, 2017). Refer to Gagniuc (2017) for the details of Markov process. 
31  The Value-Of-Information (VOI) is a well-known concept in decision making. It is used to indicate the 
maximum buying price that is spent to acquire information or data. VOI is generally Value of Imperfect 
Information. This means that the information gathered does not reveal the truth (or can be known as state of 
nature). Refer to Bratvold and Begg (2010) for details of imperfect information. Besides that, VOI is referred to 
VOI corresponding to the globally optimal decision policy that is SRDM in this example (Hong et al., 2018). 
However, Hong et al. (2018) use this term loosely by referring to the VOI corresponding to CLRM as “special 
VOI”. In this work, special VOI is referred as to VOI of CLRM. Consult Howard (1966) and Bratvold et al. (2009) 
for more comprehensive discussion about VOI framework.  
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To implement the VOI framework in HBL’s model, the Decision Without Information (DWOI) 
of the IOR initiation problem must be determined first and the corresponding ENPV of DWOI 
is known as EV Without Information (EVWOI). The ENPV of every alternative is calculated 
by averaging the NPV corresponding to each alternative over all the paths based on prior 
realizations. Then, the alternative with the highest ENPV is the DWOI and the respective 
ENPV is the EVWOI.  
 
After calculating the EVWOI, the EV with Imperfect Information (EVWII) must solved to 
estimate the VOI. This is where CLRM and SRDM are respectively implemented. By using 
any of these two approaches, the optimal decision would be identified for every information 
path. Then, all the optimal NPVs (corresponding to this optimal decision on path-by-path basis) 
are averaged over all the paths and this would result in the EVWII. The decision corresponding 
to EVWII is Decision With Imperfect Information (DWII or DWI). Then, the VOI is simply 
computed by finding the difference between EVWII and EVWOI. The difference between the 
VOI estimated by using SRDM and the VOI estimated by using CLRM can be thought as the 
value of learning.  
 
Apart from these, the Decision With Perfect Information (DWPI) can also be determined in 
this sequential decision problem. In the context of reservoir engineering, perfect information 
is the information that reveals the true reservoir properties and impacts of recovery mechanism 
(Hong et al., 2018). In this IOR initiation problem, the EV With Perfect Information (EVWPI) 
can be determined by first identifying the maximum NPV for every path based on prior 
realizations or distributions. Then, averaging these NPVs over the paths would result in the 
EVWPI. In this aspect, every path would have its optimal decision with perfect information. 
The difference between EVWPI and EVWOI is the value of perfect information (VOPI)32.  
 
 
3.4.2 Integrating the Effect of Information in Hong et al. (2018) 
As it has been explained earlier, both CLRM and SRDM approaches are optimization methods 
for data assimilation application in reservoir management. In this aspect, how are these 
approaches practically implemented in the case study presented in Hong et al. (2018)? 
Basically, the implementation of these approaches depends on how the measured oil production 
rates are used in the regression analysis. During the regression analysis, the CLRM approach 
is applied based on the forward calculation whereas the SRDM approach is included by using 
the backward calculation (similar to the rolling-back procedure used to solve for a decision 
tree). The detailed explanation is as follow.  
 
 
 

                                                           
32 Perfect information is the information that is always correct as it reflects the state of nature or the truth. Thus, 
VOPI is the upper limit of VOI. In this case, any VOI estimated in decision making should never exceed VOPI.   
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3.4.2.1 CLRM Approach  
In the IOR initiation problem, Hong et al. (2018) determined both the switch time and the 
corresponding stopping time of a recovery phase (conditioned on the switch time). This attempt 
is logical because after the switch from the primary recovery to secondary recovery has been 
found out, the corresponding stopping time of secondary recovery needs to be determined as 
well. Since CLRM is applying forward calculation, the algorithm starts at Year 1. At Year 1, 
Hong et al. (2018) calculate the ENPVs of all 1326 alternatives33 based on the prior information 
(averaging the NPV corresponding to every alternative over all the paths). Then, the largest 
ENPV is selected (Regression analysis is done to calculate the conditional EV given additional 
information. At Year 1, there is no additional information. Thus, the EV is estimated based on 
prior distribution). In this case, there would be three possibilities.  
 
1. If the largest ENPV corresponds to the option of “stopping at Year 1,” the optimal decision 

is to terminate production immediately. 
2. If the largest ENPV corresponds to any option that suggests to “switch at Year 1” (switch 

at Y1 and stop at any time between Year 1 and Year 50), the optimal decision is to switch 
immediately and proceed to Year 2 for further analysis. 

3. If the largest ENPV corresponds to any option that suggests to “switch at any time apart 
from Year 1”, the optimal decision is to not switch at Y1 and proceed to Year 2 for further 
analysis. 

 
At Year 2, there are two possibilities: 
1. If the optimal decision is to switch at Year 1 (the second situation at the previous step), 

then the decision maker only needs to decide if he or she should stop instantly. There are 
now only 50 options left (stop at Year 2, Year 3, and so forth). Then, the NPVs of these 50 
options are regressed accordingly on the data at Year 1 to calculate the respective ENPVs. 
For each path, the largest ENPV is chosen. After that, if the optimal decision is to stop at 
Year 2, then the production should be terminated instantly. If not, the regression analysis 
is performed again, but only 49 options are considered and the data used are at Year 1 and 
Year 2. This loop is repeated until the optimal decision is determined.  

2. If the optimal decision is not to switch at Year 1 (the third situation at the previous step), 
there are 1275 options left. The NPVs of these 1275 options are regressed on the data at 
Year 1 to calculate the respective ENPVs. For each path, the largest ENPV is chosen. In 
this case, there are three possibilities follow: to stop at Year 2, to switch at Year 2 and 
proceed to Year 3, or to not switch at Year 2 and proceed to Year 3. 

                                                           
33 There are 1326 alternatives available in this example (with all possible combinations of the lifetime of primary 
recovery and the lifetime of secondary recovery) because the lifetime of the oil field is assumed to be 50 years. 
Then, when the switch time is at Year 1, this indicates the lifetime of primary recovery is zero and there are 51 
corresponding choices of stopping time (to stop the secondary recovery at Year 1, Year 2 and until Year 51). In 
this case, to stop the secondary recovery at Year 51 means that the secondary recovery is not terminated until the 
end of production. By using this logic, there would be 52-n options for the switch time at Year n. This totals up 
to 1326 alternatives (knowing that the switch time at Year 51 is to continue with primary recovery for the lifetime 
of production).  
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At Year 3, the similar procedure done at Year 2 needs to be performed again, but the data used 
is at Year 1 and Year 2. As the time moves forward by a year, the number of data points used 
in regression analysis increases by one. This is the essence of forward calculation.  
 
 
3.4.2.2 SRDM Approach  
The implementation of SRDM is the demonstration of backward calculation. However, when 
SRDM is being applied, the stopping time given a particular switch time also has to be 
determined. Since it is a backward calculation, the algorithm begins at Year 50. At Year 50, 
the decision maker needs to determine the stopping time by assuming that he or she has 
switched at this year. In this case, there are only two available options, namely “stop at Year 
50” and “continue with secondary recovery at Year 50”. Thus, the NPVs corresponding to these 
2 options are regressed on the data from Year 1 to Year 49 given there is a switch at Year 50 
to estimate the ENPVs. After that, the highest ENPV is chosen for each path. The same analysis 
is done for other previous years. As the time moves backward by a year, the number of data 
points used in regression analysis decreases by one and the number of available alternatives 
increases by one. This step mainly determines the best stopping time for each year based on 
the assumption that the switch is done at that year.  
 
After this, the decision maker determines whether he or she should continue with primary 
recovery or switch to secondary recovery with its corresponding optimal stopping time 
(determined at the previous step). Thus, at Year 50, the NPVs of  “switching to secondary 
recovery at Year 50 with its respective optimal stopping time” and “only having primary 
continue until Year 50” are regressed correspondingly on the measured data from Year 1 to 
Year 50 (conditioned on having only primary recovery) to estimate the ENPVs. Then, the 
largest ENPV is chosen for each path. At Year 49, the NPVs of these optimal decisions at Year 
50 and the alternative of switching to secondary recovery at Year 49 with its respective optimal 
stopping time are regressed correspondingly on the data from Year 1 to Year 49 (conditioned 
on having only primary recovery). The same process is repeated until the time reaches Year 1. 
As the time moves backward by a year, the number of data points used in regression analysis 
also reduces by one. The number of available alternatives also increases by one.  
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3.5 Results of Replication of the HBL’s Model 
Upon having explained the application of the LSM algorithm in Hong et al (2018), the HBL’s 
model (considering CLRM and SRDM) is first implemented (or replicated) in this work. To 
validate if this replicated model is correct, the EVWIIs (considering both CLRM and SRDM), 
EVWOI, EVWPI, and VOIs (considering both CLRM and SRDM) estimated by this replicated 
model are compared to those approximated in Hong et al. (2018). Prior to conducting the 
comparison, 100000 samples of the five petrophysical parameters are first retrieved by using 
the statistical parameters listed in Table 2 and the correlation coefficients shown in Table 3 in 
the replicated model. After that, these sampled sets of petrophysical parameters are used along 
with the economic parameters described in Table 4 to estimate the abovementioned values in 
the replicated HBL’s model. The comparison of these results with those estimated in Hong et 
al. (2018) is shown below.  
 

 
 

Table 5 – Comparison of EVWOI, EVWPI, EVWIIs, and VOIs estimated in Hong et al. (2018) and 
by the replicated model in this work.   

 
Based on the results of comparison, it can be deduced that the replicated HBL’s model has the 
correct implementation of the modified LSM algorithm (and CLRM) as presented in Hong et 
al. (2018). In addition, the negligible difference between the results from the replicated model 
and those presented in Hong et al. (2018) is caused by the Monte-Carlo sampling error (as 
different sets of samples are used). It can also be noticed that SRDM induces an additional 
value of learning of $1.8 million as compared to CLRM. This illustrates the suboptimality34 of 
the CLRM solution. After validating the correctness of this replicated model, there is another 
analysis being done on it. In this aspect, Jafarizadeh and Bratvold (2009) explained that using 
larger number of paths enabled the convergence of the result to the global optimum in LSM 
algorithm. In other words, it denotes that using higher number of paths can improve the 
accuracy of the VOI estimate (whether it be CLRM or SRDM). To illustrate the trend of this 
improvement of the VOI estimate, the sensitivity analysis of the number of paths on the VOI 
estimate is conducted by using 100, 500, 1000, 5000, and 10000 paths. Each number of paths 

                                                           
34 Both SRDM and CLRM provide approximate solutions, but the one estimated by SRDM is theoretically closer 
to the true optimum due to the additional value of learning. Albeit the value of learning induced by SRDM might 
not be significant in this case, for certain problem setting, this value can be significant. Refer to Hong et al. (2018) 
for details. Additionally, in this work, the author uses a different problem setting to show the significance of the 
value of learning in later chapter.  

Hong et al. (2018) Replicated Model
EVWOI 756.20 756.19
EVWPI 909.00 909.01

EVWIISRDM 805.90 805.90
EVWIICLRM 804.10 804.09

VOISRDM 49.70 49.71
VOICLRM 47.90 47.90

(million USD)
Results
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is run 100 times and the respective means and standard deviation (SD) of the estimated VOI 
are calculated. This analysis is done for both SRDM and CLRM approaches. The result of this 
sensitivity analysis for CLRM is shown in Fig. 3 whereas that of SRDM is shown in Fig. 4.  
 

 
 

Fig. 3 – Average and SD of 100 approximated VOIs for different number of paths (CLRM approach). 
 
 

 
 

Fig. 4 – Average and SD of 100 approximated VOIs for different number of paths (SRDM approach). 
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For both CLRM and SRDM approaches, it can be seen that the estimation of VOI is becoming 
unbiased as the number of paths is increasing. This means that the average of the estimated 
VOIs over 100 runs for different number of paths is converging to the VOI estimated in Hong 
et al. (2018), which is more accurate35 (closer to the exact VOI). Furthermore, the SD of the 
estimated VOIs over 100 runs for different number of paths also reduces when the number of 
paths increases. When 10000 paths are run for 100 times, the SD for CLRM approach is $1.29 
million whereas that of SRDM is $1.24 million. As compared to the VOIs (of both CLRM and 
SRDM) estimated using 100000 paths, these SDs are considered to be not significant. Thus, 
this shows that using 10000 paths provides a sufficiently good estimation of VOI. However, 
using number of paths more than 10000 as done in Hong et al. (2018) provides even higher 
accuracy of estimated VOI as discussed.

                                                           
35 VOI estimated in Hong et al. (2018) has higher accuracy because it is approximated using higher number of 
MCS paths, which is 100000. Thus, this VOI is closer to the global optimum that is the exact VOI.  



CHAPTER 4: SENSITIVITY ANALYSIS ON THE CHOICE OF REGRESSION FUNCTION 
 

25 
 

Chapter 4  
 
Sensitivity Analysis on the Choice of 
Regression Function 
 
In the least-squares approach (regression analysis), an approximate value function is 
determined to relate the expected future value of an option to the uncertain parameters. Most 
of the studies showed that in LSM, the use of simple linear regression as the approximate value 
function was sufficient to provide a good estimation due to the linear relationship between the 
objective function and the state variables (Smith, 2005; Hong et al., 2018). Additionally, some 
studies also illustrated that the use of higher order functions yielded a similar result as the 
simplified linear function does (Moreno and Navas, 2003). In this case, Moreno and Navas 
(2003) discussed that in real option valuation, the choice of basis function did not affect the 
results significantly for simple decision problems, such as American option and European 
option. However, for more complicated decision problems, such as American-Bermuda-Asian 
option36, the choice of basis function would significantly affect the results. Therefore, Alkhatib 
et al. (2013) opined that it was important to conduct the sensitivity analysis to the choice of 
regression function to evaluate if there was any significant impact on the results obtained.  
 
The sensitivity analysis to the choice of regression function has been done with the purpose of 
generating insights about the use of regression function37 to solve the IOR initiation time 
problem. For this sensitivity analysis, more sophisticated regression functions are established 
by including different types of dependency term among the production rates and an exponential 
term with the use of Laguerre polynomials. A detailed analysis on an exception case is also 
done and will be discussed later.  
 
 
4.1 Inclusion of Dependency Among Production Rates 
For the case study problem in Hong et al. (2018), the relationship between the NPV (objective 
function) and the measured oil production rates (uncertain parameter or state variables) is linear. 
Thus, it can be deduced that using higher orders regression function would not enhance the 
results significantly. In Hong et al. (2018), multiple linear regression function is used to 
approximate ENPV of an alternative which y� = ENPV("alternative") | 𝐪𝐪 (in which q is a 

                                                           
36  Bermudan option is in between American and European options which it can be exercised either at the 
predetermined date or any time before expiry. Asian option is an exotic option whose payoff is determined by 
averaging the underlying price over a period of time (Martinkutė-Kaulienė, 2012).  
37 A good regression function should correctly approximate the true conditional EV. However, the true conditional 
EV is unknown in the real world. So, another criterion used to check if a regression function is good is how close 
the function can lead to a near-optimal decision policy. For example, given two regression functions, RF1 and 
RF2, if RF2 yields a higher EVWII than RF1 does, then RF2 is generally better (provides more accurate 
estimation). 
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vector that consists of a series of measured oil production rates in time) due to the modeling of 
state variables as non-Markovian processes.  
 

 y� = β0 + β1q1 + β2q2 + β3q3 + ⋯+ βtqt (12) 
 
where βt is the regression coefficient and qt is the measured oil production rate at time t. Albeit 
the dependency of the expected future value on current and previous data has been included by 
conducting multiple linear regression (Hong et al., 2018), there is undeniably a dependency 
(interaction) among the measured oil rates. Such interaction reflects the occurrence of a change 
in NPV when there is a change in the measured oil production rate at time t+1, which relies on 
the change in the measured oil production rate at time t. Would a great improvement of results 
be achieved if the interaction among the production rates is included in regression analysis? In 
addition to this, there are not many works done in the literature to substantiate if in a non-
Markovian process, integrating dependency terms would provide much better results, 
especially in the context of the IOR initiation time problem. In order to conduct this analysis, 
six different types of dependency terms have been included. Each type of dependency terms is 
included accordingly to yield the corresponding regression function for the analysis in this 
section as shown.  
 

 y� = β0 + β1q1 + β2q2 + β3q3 + ⋯+ βtqt + β�1�q1q2 + β�2�q2q3 + ⋯
+ β�t−1�qt−1qt 

 

(13) 

 
 y� = β0 + β1q1 + β2q2 + ⋯+ βtqt + β�1�q1q2q3 + β�2�q2q3q4 + ⋯

+ β�t−2�qt−2qt−1qt 

 

(14) 

 
 y� = β0 + β1q1 + ⋯+ βtqt + β�1�q1q2 + ⋯+ β�t−1�qt−1qt + β�1�q1q2q3

+ ⋯+ β�t−2�qt−2qt−1qt 

 

(15) 

 
 y� = β0 + β1q1 + β2q2 + ⋯+ βtqt + β�1q1q2 + β�2q2q3 + ⋯+ β�t−1qt−1qt (16) 

 
 y� = β0 + β1q1 + β2q2 + ⋯+ βtqt + β�1q1q2q3 + β�2q2q3q4 + ⋯

+ β�t−2qt−2qt−1qt 

 

(17) 

 
 y� = β0 + β1q1 + β2q2 + ⋯+ βtqt + β�1q1q2 + ⋯+ β�t−1qt−1qt + β�1q1q2q3

+ ⋯+ β�t−2qt−2qt−1qt 

 

(18) 

 
 

4.1.1 Results  
To analyze the impact of having dependency terms (with uncertainties being modeled as non-
Markovian process), the sampling is first done with 10000 paths by using the same problem 
setting stated in Table 2, Table 3, and Table 4. Prior to including these dependency terms, a 
simple linear regression without any dependency terms is used to estimate the EVWIIs by 
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applying SRDM and CLRM approach (these are EVWIIs of the base case in this subsection). 
EVWII estimated using SRDM is $807.49 million whereas EVWII approximated using CLRM 
is $805.24 million. EVWIIs estimated by the linear regression function with the corresponding 
dependency terms are tabulated as shown below.  
 

 
 

Table 6 – Results of Comparison of EVWIIs (considering both SRDM and CLRM) estimated by the 
linear regression function with 6 different dependency terms. 

 
The percentage of value of improvement38 is also calculated for each EVWII by computing the 
percentage of the fraction of the difference between the newly estimated EVWII and the EVWII 
of the base case to the EVWII of the base case. The results are presented in Fig. 5 and Fig. 6.  
 
 

 
 

Fig. 5 – Plot of the Percentage of Improvement on EVWII estimate (SRDM).  

                                                           
38 The author uses the word of “improvement” in this chapter to indicate the increase of the EVWIIs estimated by 
the more complicated regression functions from the EVWIIs of the base case as shown in Table 6.  

EVWIISRDM EVWIICLRM

Equation (13) 807.74 805.46
Equation (14) 808.07 806.29
Equation (15) 808.42 806.93
Equation (16) 808.16 806.81
Equation (17) 808.07 806.52
Equation (18) 807.98 806.46

million USDDependency 
Term
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Fig. 6 – Plot of the Percentage of Improvement on EVWII estimate (CLRM).  
 
 
From this analysis, it can be deduced that including the dependency terms would improve the 
estimation of the EVWII. However, such improvement is insignificant (not even up to 1% of 
improvement). Moreover, including these dependency terms would also induce higher 
computational time as the terms become more complicated. This shows that using the linear 
regression without the dependency terms already provides a sufficiently good approximation.  
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4.2 Inclusion of Exponential Term in the Regression 
Function 
Albeit using a more complicated type of polynomial (by increasing the order) would not 
enhance the result significantly, it has not been demonstrated yet if having a more complex 
type of term, such as an exponential term, in the regression function would yield much better 
improvement of results. In this aspect, Laguerre polynomials, which consist of the exponential 
terms, are used as the basis function in regression analysis for the estimation of the ENPV of 
an alternative. For the purpose of illustration, only the first three Laguerre polynomials are 
used, and they are expressed as shown below: 
 

 L0(𝐪𝐪) = e−(𝐪𝐪/2) (19) 
 

 L1(𝐪𝐪) = e−(𝐪𝐪/2) × (1 − 𝐪𝐪) (20) 
 

 L2(𝐪𝐪) = e−(𝐪𝐪/2) × [1 − 2𝐪𝐪 + (𝐪𝐪2/2)] (21) 
 
Then, the ENPV of the alternative can be expressed using the polynomials above. 
 

 
ENPV("alternative") | 𝐪𝐪 = �𝛃𝛃jLj(𝐪𝐪)

2

j=0

 
 

(22) 

 
 
4.2.1 Analysis of the Impact of Renormalization 
Prior to estimating the EVWIIs by using Laguerre polynomials, there is an important issue to 
be considered regarding its application. Directly applying the Laguerre polynomials might 
cause the occurrence of either the computational underflows or overflows (during regression) 
because of the exponential terms (Longstaff and Schwartz, 2001). In Longstaff and Schwartz 
(2001), computational underflows would happen because the stock price ranged from 36 to 44 
and directly substituting these values into the exponential terms would result in very small 
values. To mitigate this problem, they divided the cashflow and prices by the strike price. This 
recommended approach is termed as renormalization. Thus, for the example in Hong et al. 
(2018), how can the renormalization be done? As the measured oil production rates are 
represented as the exponential term, the goal of renormalization is to make the measured rates 
in the exponential term to be neither too big nor too small.  
 
To achieve this goal, these rates can be divided by an arbitrary value. With respect to this, there 
is no standardized approach used to determine this arbitrary value. Thus, a few values can be 
used and one of them is the average of the measured rates corresponding to the DWOI. To 
obtain this value, the DWOI must be first determined and the measured rates corresponding to 
it are averaged over all the paths. Besides that, another arbitrary value suggested is the mean 
of the maximum measured production rate (over all the paths) and the minimum measured 
production rate (over all the paths). Then, any value in the range between average measured 
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rate of DWOI and the mean measured rate of the maximum and minimum rates can be used as 
the arbitrary value as well.  
 
 
4.2.2 Results  
To analyze the impact of including a more complicated term, the sampling of realization is 
redone by using the same problem setting as shown in Table 2, Table 3, and Table 4 with 10000 
MCS paths. In this context, EVWIIs are respectively estimated by applying SRDM and CLRM 
approach (these are the EVWIIs of the base case in this subsection). Thus, the EVWII estimated 
using SRDM is $809.05 million whereas the EVWII approximated using CLRM is $806.89 
million39. Then, the DWOI corresponds to having 5 years of primary recovery and 15 years of 
secondary recovery. For renormalization, the average rate corresponding to the DWOI is found 
out to be 1.30 MMbbl/year. Besides that, the mean of the maximum and the minimum 
measured production rate (over all the paths) is computed to be 21.40 MMbbl/year. Two other 
values are arbitrarily chosen between 1.30 MMbbl/year and 21.40 MMbbl/year and they are 7 
MMbbl/year and 14 MMbbl/year. EVWIIs estimated by using the arbitrary values for 
renormalization are shown below.  
 

 
 

Table 7 – Results of Comparison of EVWIIs (considering both SRDM and CLRM) by using Laguerre 
Polynomials with and without renormalization.  

 
Based on the result above, it can be deduced that for this case study, including the impact of 
renormalization would not improve the results significantly. This indicates that directly 
applying the Laguerre polynomials would neither induce computational underflows or 
overflows for the case study in Hong et al. (2018). This is because the exponential terms of the 
measured oil production rates without renormalization are already neither too big nor too small 
to cause either the overflows or underflows. In other words, the regression analysis with the 
direct use of Laguerre polynomials works well in this case study problem. However, 
renormalization is still recommended prior to using Laguerre polynomials in LSM, especially 
when the range between the variables is small and the exponential values of those variables 
would be either too large or too small.  

                                                           
39 EVWIIs of SRDM and CLRM here are different from those in Section 4.1.1 due to sampling error.  

Laguerre Polynomials
EVWIISRDM EVWIICLRM

810.24 810.07

EVWIISRDM EVWIICLRM

1.30 MMbbl/year 810.25 810.08
7.00 MMbbl/year 810.51 810.17
14.00 MMbbl/year 810.44 810.21
21.40 MMbbl/year 810.64 810.23

Without Renormalization

(million USD)

Arbitrary Value (With 
Renormalization) 

(million USD)
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In addition, the percentage of improvement on EVWIIs (as compared to EVWII of the base 
case here) are computed and plotted in Fig. 7 and Fig. 8. It can be observed that using the 
Laguerre polynomials (either without or without renormalization) also does not result in 
significant improvement of EVWIIs. This further substantiates that linear regression is a good 
approximation in this case study.  
 

 
 

Fig. 7 – Plot of the Percentage of Improvement on EVWII estimate (SRDM) by using Laguerre 
Polynomials.  
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Fig. 8 – Plot of the Percentage of Improvement on EVWII estimate (CLRM) by using Laguerre 
Polynomials.  

 
  

4.3 Analysis on the Exceptional Case 
Hong et al. (2018) illustrated that the EVWII of SRDM would theoretically always be higher 
than that of CLRM. However, since approximate solutions to the EVWIIs are provided by 
using regression analysis, it is possible to have a case where the EVWII of SRDM is less than 
that of CLRM. In this context, another analysis has been conducted in this work to evaluate if 
adding dependency terms or including the exponential terms would improve the condition by 
making EVWII of SRDM to be higher than that of CLRM. In this context, an additional 
regression function (Laguerre polynomials with dependency terms shown in Equation (13)) is 
also used in this analysis.  
 
In order to generate a case where the EVWII of SRDM is lower than that of CLRM, the 
following economic parameters are used as shown in Table 8. By using the same statistics of 
production model parameter as shown in Table 2 and Table 3, 10000 MCS paths is used to 
perform this analysis. Then, EVWIIs are respectively estimated by applying SRDM and CLRM 
approach (these are the EVWIIs of the base case in this subsection). The EVWII estimated 
using SRDM is $329.58 million whereas the EVWII approximated using CLRM is $330.17 
million. The result of the analysis is shown in Table 9.  
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Table 8 – Value of economic parameters used to generate the exceptional case. 
 
 

 
 

Table 9 – Results of Comparison of EVWIIs (considering both SRDM and CLRM) estimated by 8 
different regression functions. “Laguerre w/o” means Laguerre polynomials without dependency 

terms whereas “Laguerre w” means the otherwise.  
 

Based on the results, it can be noted that having dependency terms or the exponential terms 
would enhance both EVWIIs. For this exceptional case, using regression analysis would still 
induce approximation error which causes the EVWII of CLRM to be slightly higher than that 
of SRDM. This can be one of the drawbacks of the LSM method in which approximation error 
would produce a theoretically unrealistic result (depending on the problem setting).

Economic Parameters Values Units
Oil Price 30 $/bbl

CAPEX (Primary) 70 $ million
CAPEX (Secondary) 70 $ million

OPEX (Primary) 20 $ million/ year
OPEX (Secondary) 40 $ million/ year

Discount Rate 12% per year

EVWIISRDM EVWIICLRM

Equation (13) 329.97 330.33
Equation (14) 330.39 330.52
Equation (15) 330.39 330.51
Equation (16) 330.20 330.29
Equation (17) 330.28 330.66
Equation (18) 330.48 330.58
Laguerre w/o 330.46 330.66
Laguerre w 330.62 330.76

million USDType of 
Equations
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Chapter 5 
 
Sensitivity Analysis on Model Parameters and 
Other Variables 
 
 
5.1 Petrophysical and Economic Parameters 
In Hong et al. (2018), there are different model parameters used to yield the decision policy 
regarding the initiation time of IOR. As discussed, these model parameters are the 
petrophysical parameters from the two-factor production model and the economic parameters 
from the simple economic model. In this context, as the estimate of any of these parameters is 
changed, the results of the decision policy would also change. Therefore, it is vital to conduct 
a detailed analysis find out how sensitive the results are to the changes of the estimate of each 
of the parameters. By doing this sensitivity analysis, we can identify which parameter would 
produce a great impact on the decision policy. This in turn helps us to determine the 
uncertainties of the parameters which can materially affect our decision (Bratvold and Begg, 
2010). Then, we can place more emphasis on collecting more information about these impactful 
parameters to reduce their uncertainties if having this additional information can add value 
(Bratvold and Begg, 2010).  
 
 
5.1.1 Procedure of Sensitivity Analysis   
The sensitivity analysis is done on the five petrophysical parameters, namely OOIP, ER1∞ , ∆ER2∞ , 
τ1, and τ2 by finding the changes of plus and minus 15% of the corresponding mean and SD of 
these parameters as listed in Table 2. In this case, when the value of a parameter changes, those 
of others remain constant. After that, EVWIIs corresponding to the change of these means and 
SDs of the parameters are estimated by using both SRDM and CLRM with 25000 paths and 
other details listed in Table 3 and Table 4. The tornado plots are then respectively made for the 
means and the SDs. To make the tornado plot, the EVWIIs corresponding to minus 15% of the 
estimate of each parameter is used as the lower limit whereas the EVWIIs corresponding to 
plus 15% of the estimate of each parameter is used as the upper limit. With respect to this, the 
EVWIIs corresponding to the original estimates is used as the base. For the base values, EVWII 
of SRDM is estimated to be $808.24 million whereas EVWII of CLRM is approximated to be 
$806.49 million. Furthermore, the difference between EVWII of SRDM and EVWII of CLRM 
for each parameter is computed and the respective tornado plot is also made by using the same 
approach as explained earlier. The base value for the tornado plot of the difference between the 
EVWIIs is $808.24 million - $806.49 million = $1.75 million.  
 
For the sensitivity analysis on the economic parameters, the changes of plus and minus 15% of 
the economic parameters listed in Table 4 are calculated. Nonetheless, in this case, the sampling 
of realizations is redone by applying 25000 paths and other details listed in Table 2 and Table 
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3 for the calculation of EVWIIs. However, the realizations are only sampled once. Then, the 
base value for the tornado plot is determined. With respect to this, EVWII of SRDM is 
estimated to be $807.84 million whereas EVWII of CLRM is approximated to be $805.78 
million40. Thus, the base value for the difference between the EVWIIs is $2.06 million. After 
that, the same approach as discussed earlier is implemented to make the respective tornado 
plots.  
 
Apart from this, for both petrophysical and economic parameters, the EVWIIs of the estimates 
of these parameters corresponding to the changes of plus and minus 10% as well as plus and 
minus 20% are also calculated. Then, the graph of the EVWIIs against the percentage change 
of the respective parameters is plotted for further analysis. The same procedure is also done for 
the cases of EVWOI, difference between EVWII of SRDM and EVWII of CLRM, and VOIs 
(considering both SRDM and CLRM).  
 
 
5.1.2 Results and Discussions 
 
5.1.2.1 Mean of the Petrophysical Parameters 
a. EVWII and EVWOI  
The tornado sensitivity plots of the EVWIIs (considering SRDM and CLRM) corresponding 
to the means of the petrophysical parameters are respectively shown in Fig. 9 and Fig. 10. Both 
figures show that the mean of OOIP is the most impactful variable and is followed by those of 
∆ER2∞ , τ1, ER1∞ , and τ2. This indicates that by changing the mean of OOIP, the EVWII would 
change more significantly in relative to the change of the mean of other parameters. Besides 
that, pertaining to the direction of the change of EVWII, it shows that when the mean of OOIP, 
∆ER2∞  or ER1∞  is increased (decreased) by 15%, the resulting EVWII is larger (smaller) than the 
base EVWII. This opposite scenario is noted for the parameters of τ1, and τ2. This demonstration 
can be explained by using the formulation of two-factor production model. When the mean of 
any of these parameters increases, the value of the respective sample retrieved from the 
distribution would generally increase. Based on the production model and the equation of 
measured oil production rates, having higher (lower) OOIP, ∆ER2∞  or ER1∞  would produce higher 
(lower) measured oil production rates. Thus, it leads to higher (lower) cashflow and results in 
higher (lower) EVWII. For τ1 and τ2, they would have an opposite effect due to the exponential 
declines in the production model.  
 
The graph of EVWIIs against the percentage change of the mean of the parameters is plotted 
in Fig. 11 for the case of SRDM and in Fig. 12 for the case of CLRM. Based on these two 
figures, it can be noted that as the means of OOIP, ∆ER2∞  and ER1∞ are respectively increased, the 
EVWIIs would monotonically increase. However, for τ1 and τ2, as their means respectively 
increase, EVWIIs would monotonically decrease. This result is another representation of the 
mechanism of the two-factor production model as expounded.  
                                                           
40 EVWIIs of SRDM and CLRM in the sensitivity analysis on economic parameters are different from those in 
the sensitivity analysis on petrophysical parameters due to sampling error.  
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Fig. 9 – Sensitivity Tornado Plot for EVWIIs of the means of Petrophysical Parameters (SRDM 
approach). 

 
 

 
 

Fig. 10 – Sensitivity Tornado Plot for EVWIIs of the means of Petrophysical Parameters (CLRM 
approach). 
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Fig. 11 – Graph of EVWIIs of the means of Petrophysical Parameters against the percentage change 
of the corresponding parameters (SRDM approach). 

 
 

 
 

Fig. 12 – Graph of EVWIIs of the means of Petrophysical Parameters against the percentage change 
of the corresponding parameters (CLRM approach). 
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EVWOIs corresponding to the change of the mean of each parameter are determined and the 
respective result is shown in Fig. 13. Based on Fig. 13, the trend of monotonicity demonstrated 
by each parameter is similar to the results shown in Fig. 11 and Fig. 12. This is also because of 
the general trend of increase (decrease) in the values of samples as the mean of parameter 
increases (decreases) and the formulation of the two-factor production model as explained for 
the case of EVWIIs.  
 
 

 
 

Fig. 13 – Graph of EVWOIs of the means of Petrophysical Parameters against the percentage change 
of the corresponding parameters. 

 
 

b. Difference between EVWIIs and VOI 
The sensitivity tornado plot regarding the difference between EVWII of SRDM and EVWII of 
CLRM (corresponding to the mean of parameters) is shown in Fig. 14. Based on this figure, it 
shows that the mean of ∆ER2∞  is the most impactful variable and is followed by those of τ2, τ1, 
OOIP, and ER1∞ . Therefore, the result demonstrates that having higher mean of ∆ER2∞  would 
yield a larger difference between EVWII of SRDM and EVWII of CLRM. However, from the 
tornado plot, it can be noted that for ER1∞ , the resulting difference between the EVWIIs shows 
that the non-monotonic behavior as the corresponding mean increases or decreases.  
 
With respect to this, Fig. 15 illustrates the graph of the difference between EVWIIs against the 
percentage change of the mean of each parameter. It shows that in general, the difference 
between EVWIIs fluctuates in response to the changes of the mean of each parameter. Thus, 
the non-monotonic behavior is also shown by changing the means of other parameters. This is 
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because when there is a change in the mean of any of these parameters, it would lead to the 
respective changes in DWII corresponding to SRDM and CLRM. Since the change in the 
difference between these two DWIIs is not easily traceable (as the mean of a parameter is 
changed, the sampling of other parameters would be influenced due to the assigned correlation 
coefficient and this would impact the resulting decision policy), the trend of the difference 
between EVWIIs with respect to changing the mean of any of these parameters is not easily 
defined. 
 
 

 
 

Fig. 14 – Sensitivity Tornado Plot for Difference between EVWIIs of SRDM and CLRM 
corresponding to the means of Petrophysical Parameters. 

 
 
Furthermore, Fig. 15 shows that as the percentage change is -20%, the difference between 
EVWIIs of the mean of  ER1∞  is relatively much higher than those of others. This is because as 
the mean of ER1∞  is reduced by -20%, the decision policy of CLRM only consists of the lifetime 
of primary recovery of 0 years41. Thus, the corresponding cashflow of this decision policy 
reduces and the resulting EVWII of CLRM becomes much lower. Thus, the difference between 
EVWII of SRDM and that of CLRM would be much higher. This also denotes that the 
corresponding VOI of CLRM would be also much lower as compared to the VOIs of CLRM 
of others.  
 

                                                           
41 Refer to Appendix A: Supplementary Figures for the details of the illustration of the decision policies of SRDM 
and CLRM for this problem setting. The supplementary figures presented in Appendix A would demonstrate more 
vividly the difference between these two decision policies which leads to a large difference between both 
estimated EVWIIs. 
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Fig. 15 – Graph of Difference between EVWIIs of the means of Petrophysical Parameters against the 
percentage change of the corresponding parameters. 

 
 

 
 

Fig. 16 – Graph of VOIs of the means of Petrophysical Parameters against the percentage change of 
the corresponding parameters (SRDM approach). 
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Fig. 17 – Graph of VOIs of the means of Petrophysical Parameters against the percentage change of 
the corresponding parameters (CLRM approach). 

 
 

Besides that, the graph of VOIs against the change of the mean of parameters is respectively 
plotted in Fig. 16 for SRDM and in Fig. 17 for CLRM. Based on Fig. 16 and Fig. 17, VOIs are 
generally not monotonic with respect to the changes of the means of parameters, except for the 
mean of OOIP. As the mean of OOIP increases, there is a monotonic increase in the respective 
VOI. VOIs are highly dependent on DWII and DWOI. In general, as the means of parameters 
change, the corresponding DWII and DWOI would also change. With respect to this, the 
change in the difference between DWII and DWOI is also not straightforward. Thus, the trend 
of the change of VOIs with respect to the change in the mean of parameters can be either 
monotonic or non-monotonic for a particular parameter.  
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5.1.2.2 SD of the Petrophysical Parameters 
a. EVWII and EVWOI  
The tornado sensitivity plots of the EVWIIs (considering SRDM and CLRM) corresponding 
to the SDs of the petrophysical parameters are respectively illustrated in Fig. 18 and Fig. 19. 
Both figures portray that the SD of ER1∞  is the most impactful variable and is followed by those 
of ∆ER2∞ , OOIP, τ2, and τ1. So, by changing the SD of ER1∞ , the EVWII would change more 
drastically in relative to the change of the SDs of other parameters. Regarding the direction of 
the change of EVWIIs in both tornado plots, it can be observed that as the SD of ER1∞ , ∆ER2∞  or 
τ2 increases, the EVWII would increase. However, for OOIP and τ2, as their SDs respectively 
reduce, the resulting EVWIIs increase. For SD, the direction of the change of EVWIIs is not 
as straightforward as that of in the case of mean. This is because as the SD increases (decreases) 
with the constant mean of distribution, it indicates that the samples retrieved from the 
distribution would be more (less) spread out from the mean. This does not mean that the values 
of the sampled variables would generally either increase or decrease.  
 
Besides that, as compared to the change of the means of the parameters, the change of the SDs 
is having less impact to the values of EVWIIs. It is because the values of the samples retrieved 
would change more significantly (which results in much tremendous change in EVWII) as the 
mean of the parameter alters. 
 
 

 
 

Fig. 18 – Sensitivity Tornado Plot for EVWIIs of the SDs of Petrophysical Parameters (SRDM 
approach). 
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Fig. 19 – Sensitivity Tornado Plot for EVWIIs of the SDs of Petrophysical Parameters (CLRM 
approach). 

 
 
The graph of EVWIIs against the percentage change is plotted in Fig. 20 for the case of SRDM 
and in Fig. 21 for the case of CLRM. These two figures show that only OOIP and ER1∞  
demonstrate the monotonic trend as the respective SD gradually increases. For the remaining 
parameters, the resulting EVWIIs fluctuate as the corresponding SD eventually increases. As 
discussed, the impact of changing the SDs of parameters on the decision policy and the 
corresponding EVWIIs cannot be easily predicted. Thus, the trend of the change of the EVWIIs 
with respect to the change of SD might not necessarily be monotonic.  
 
EVWOIs corresponding to the change of the SD of each parameter are estimated and the 
respective result is shown in Fig. 22. Fig. 22 shows that EVWOIs are fluctuating as the SD of 
parameters increases. However, the EVWOIs do not fluctuate from each other by a very large 
amount. Knowing that changing the SDs of parameters does not indicate that the values of 
samples would increase or decrease in general, its effect on the EVWOIs is also not intuitively 
predictable. Therefore, a non-monotonic behavior of EVWOI as the SD changes might be 
observed.  
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Fig. 20 – Graph of EVWIIs of the SDs of Petrophysical Parameters against the percentage change of 
the corresponding parameters (SRDM approach). 

 
 

  
 

Fig. 21 – Graph of EVWIIs of the SDs of Petrophysical Parameters against the percentage change of 
the corresponding parameters (CLRM approach). 
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Fig. 22 – Graph of EVWOIs of the SDs of Petrophysical Parameters against the percentage change of 
the corresponding parameters. 

 
 
b. Difference between the EVWIIs and VOI 
The sensitivity tornado plot regarding the difference between EVWII of SRDM and EVWII of 
CLRM (corresponding to the SD of parameters) is illustrated in Fig. 23. Based on Fig. 23, it 
shows that the SD of OOIP is the most impactful variable and is followed by those of ∆ER2∞ ,  
τ2, τ1, and ER1∞ . Therefore, the result demonstrates that having higher SD of OOIP would 
produce a larger difference between EVWII of SRDM and EVWII of CLRM. As compared to 
the change of the means of the parameters, the change of the SDs of the parameters is generally 
less impactful to the difference between EVWIIs. The reason is also due to the more drastic 
change in the values of samples retrieved as the means of distribution changes. Besides that, 
from the tornado plot, it can also be noted that for ER1∞ , the resulting difference between the 
EVWIIs shows the non-monotonic trend as the corresponding SD increases.  
 
With respect to this, the graph of the difference between the EVWIIs against the percentage 
change is plotted in Fig. 24. In general, the difference between the EVWIIs fluctuate with 
respect to the changes of the SD of each parameter. There is not a clear trend regarding the 
change of difference between the EVWIIs in response to the change of SD of the parameters 
due to the complexity of the change in terms of the difference between DWIIs of SRDM and 
CLRM.  
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Fig. 23 – Sensitivity Tornado Plot for Difference between EVWIIs corresponding to the SDs of 
Petrophysical Parameters. 

 
 

  
 

Fig. 24 – Graph of Difference between EVWIIs of the SDs of Petrophysical Parameters against the 
percentage change of the corresponding parameters. 
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Fig. 25 – Graph of VOIs of the SDs of Petrophysical Parameters against the percentage change of the 
corresponding parameters (SRDM approach). 

 
 

 
 

Fig. 26 – Graph of VOIs of the SDs of Petrophysical Parameters against the percentage change of the 
corresponding parameters (CLRM approach). 
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The graph of VOI against the change of the SD of parameters is respectively plotted in Fig. 25 
for SRDM and in Fig. 26 for CLRM. Based on Fig. 25 and Fig. 26, VOIs fluctuate slightly with 
respect to the changes of the SD of parameters, except for the SDs of OOIP, ER1∞ , and ∆ER2∞ . 
As the SD of ER1∞  increases, the corresponding VOI increases monotonically. Besides that, for 
OOIP, as the SD increases, the respective VOI decreases monotonically. For ∆ER2∞ , as the SD 
becomes higher, the respective VOIs generally increases until the percentage change is 5% at 
which a decrease in value is seen and followed by increase in value. However, the trend of 
increase is generally shown for ∆ER2∞ . When there is a monotonic increase (decrease) in VOIs, 
this indicates that the difference between EVWII and EVWOI is generally getting larger 
(smaller). Such distinct trend is observed in the cases of the SDs of OOIP, ER1∞ , and ∆ER2∞ . As 
the SD of parameters change, the corresponding DWIIs would be altered. Thus, the change in 
the difference between DWII and DWOI is also not traceable as discussed. Thus, the trend of 
the change of VOIs with respect to the change in the SD of parameters might not be distinct 
depending on the result of the sampling of the respective parameter as its SD is altered.  
 
 
5.1.2.3 Economic Parameters 
a. EVWII and EVWOI  
The tornado sensitivity plots of the EVWIIs (considering SRDM and CLRM) corresponding 
to the economic parameters are respectively shown in Fig. 27 and Fig. 28. Both figures show 
that the oil price (or as the initial oil price as listed in Table 4) is the most impactful variable 
and is followed by discount rate, OPEX of secondary recovery, OPEX of primary recovery, 
CAPEX of primary recovery, CAPEX_2After1, and CAPEX_2No1.  
 
 

  
 

Fig. 27 – Sensitivity Tornado Plot for EVWIIs of the Economic Parameters (SRDM approach). 
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Fig. 28 – Sensitivity Tornado Plot for EVWIIs of the Economic Parameters (CLRM approach). 
 
 

 
 

Fig. 29 – Graph of EVWIIs of the Economic Parameters against the percentage change of the 
corresponding parameters (SRDM approach). 
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Fig. 30 – Graph of EVWIIs of the Economic Parameters against the percentage change of the 
corresponding parameters (CLRM approach). 

 
 

So, by altering the oil price, the EVWII would change more significantly in relative to the 
change of the other economic parameters. Pertaining to the direction, it is understandable that 
as oil price increases (decreases), the cashflow would increase (decrease) and thus, the 
corresponding EVWIIs would increase (decrease). The opposite situation applies to costs and 
discount rate.  

 
Besides that, EVWIIs corresponding to the changes of plus and minus 10% as well as plus and 
minus 20% of the economic parameters are computed. The graph of EVWIIs against the 
percentage change is plotted in Fig. 29 for SRDM and in Fig. 30 for CLRM. These two figures 
show that the resulting EVWIIs would monotonically increase as the oil price increases. 
However, for the costs (except for CAPEX_2No1) and discount rate, as the respective value 
increases, the EVWIIs would decrease. For CAPEX_2No1, the EVWIIs remain constant as its 
value increases. This means that in this case, changing CAPEX_2No1 would not affect the 
decision policy at all since none of the realizations would skip primary recovery and directly 
proceed to secondary recovery.  
 
EVWOIs corresponding to each of the economic parameters are estimated and the respective 
result is shown in Fig. 31. Fig. 31 shows that the trend of the change of EVWOIs is behaving 
like the one being illustrated in the case of EVWIIs. In this aspect, higher oil price, lower costs 
(except for CAPEX_2No1), and lower discount rate would increase EVWOI and vice versa. 
EVWOI remains constant as CAPEX_2No1 changes. So, the same explanation used for the 
case of EVWIIs also applies here. 
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Fig. 31 – Graph of EVWOIs of the Economic Parameters against the percentage change of the 
corresponding parameters.  

 
 
b. Difference between the EVWIIs and VOI 
The sensitivity tornado plot regarding the difference between EVWII of SRDM and EVWII of 
CLRM (corresponding to the economic parameters) is shown in Fig. 32. Based on Fig. 32, it 
shows that the oil price is the most impactful variable and is followed by OPEX of primary 
recovery, OPEX of secondary recovery, discount rate, CAPEX_2After1, CAPEX_2No1, and 
CAPEX of primary recovery. By changing the oil price, the EVWII would change more 
significantly in relative to the change of the other economic parameters. If Fig. 32 is observed 
carefully, both CAPEX_2No1 and CAPEX of primary recovery do not create any impact to 
the difference in EVWIIs. As explained, changing CAPEX_2No1 is not impactful as all the 
realizations skip primary recovery. However, for CAPEX of primary recovery, as it changes, 
the difference between both EVWIIs stays the same. This indicates that changing CAPEX of 
primary recovery is not impactful to cause a change in DWIIs. Besides that, there is a non-
monotonic behavior shown by certain parameters, such as discount rate and OPEX of 
secondary recovery in the tornado plot. With respect to this, the graph of the difference between 
the EVWIIs against the percentage change is plotted in Fig. 33. 
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Fig. 32 – Sensitivity Tornado Plot for Difference between EVWIIs corresponding to the Economic 
Parameters. 

 
 
Fig. 33 shows that the difference between the EVWIIs fluctuates as the change of the economic 
parameters increases, except for the cases of CAPEX of primary recovery, and CAPEX_2No1. 
For CAPEX of primary recovery, since changing it would not alter the resulting decision 
policies for both SRDM and CLRM, it is perceivable that the difference between EVWIIs 
remain unchanged. For CAPEX_2No1, it is understandable that as it increases, the resulting 
difference between two EVWIIs is constant because its corresponding EVWIIs of SRDM and 
CLRM remain constant as discussed earlier. However, in general, the trend of the difference 
between the EVWIIs with respect to the change of the economic parameters relies on the 
difference between the DWIIs corresponding to both SRDM and CLRM. The influence of the 
change of the economic parameters on the DWIIs is not straightforward as discussed and thus, 
it results in the fluctuation as shown in Fig. 33. Thus, this might result in the non-monotonic 
behavior shown in Fig. 32 for some parameters depending on the problem setting. 
 
The graph of VOIs against the change of the economic parameters is respectively plotted in 
Fig. 34 for SRDM and in Fig. 35 for CLRM. Based on Fig. 34 and Fig. 35, VOIs are generally 
monotonic as the economic parameters change. This is because both EVWIIs and EVWOIs are 
monotonic with respect to the change of the parameters as explained.  
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Fig. 33 – Graph of Difference between EVWIIs of the Economic Parameters against the percentage 
change of the corresponding parameters. 

 
 

  
 

Fig. 34 – Graph of VOIs of the Economic Parameters against the percentage change of the 
corresponding parameters (SRDM approach). 
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Fig. 35 – Graph of VOIs of the Economic Parameters against the percentage change of the 
corresponding parameters (CLRM approach). 
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5.2 Number of Decision Points and Number of Data Points 
Aside from the model parameters, sensitivity analysis is also performed on the number of 
decision points and the number of data points. For the sensitivity analysis on the number of 
decision points, the decision spaces related to the lifetime of primary recovery and that of 
secondary recovery need to be changed. In this aspect, the available options to be analyzed 
consist of the lifetime of primary recovery for n-1 years if their corresponding decision points 
are placed at Year n. When the decision is made every 10 years and the first decision point is 
placed at Year 1 (the remaining decision points are placed at Year 11, Year 21, Year 31, and 
Year 41), the available options only have the lifetimes of primary recovery to be 0 year, 10 
years, 20 years, 30 years, 40 years, and 50 years. The same logic applies to the corresponding 
lifetime of the secondary recovery. For example, the options corresponding to 0 years of 
primary recovery consist of 0 years, 10 years, 20 years, 30 years, 40 years, and 50 years of 
secondary recovery.  
 
Although the decision space is changed during the sensitivity analysis on the number of 
decision points, the information space remains the same. This means that the measured oil 
production rate is still collected on yearly basis and used accordingly in the regression analysis. 
As the number of decision points increases, the EVWII would also increase42. In other words, 
when a person has more flexibility in making a decision (indicated by more decision points), 
the larger the value gain will be. If such trend is shown as the result of the sensitivity analysis, 
this further proves that the modified LSM algorithm is implemented correctly in the context of 
IOR initiation problem. Therefore, this sensitivity analysis acts as a cross-check for the validity 
of the implementation of the algorithm. The same applies to the implementation of CLRM.  
 
Pertaining to the sensitivity analysis on the number of data points43, the regression analysis is 
done by using a fixed number of data points (including the data point at current decision point) 
in which different number of data points can be applied. Hong et al. (2018) initially assumed 
that the measured oil production rates were modeled as non-Markovian processes as expounded 
earlier. Regarding this, the number of data points used would change according to the year that 
a decision point is at. This sensitivity analysis is insightful because in real life, gathering more 
data would induce additional cost. Therefore, if having more data do not create more value44, 
it is more practical and economical to use fewer data points.  
 
 
 
 
 
 
                                                           
42 Since VOI is dependent on EVWII, it would also increase with the number of decision points. However, VOI 
is also influenced by EVWOI. Thus, the relationship between VOI and number of data points is also demonstrated 
in this case for further insights.  
43 This is to reiterate that, for the sensitivity analysis on the number of data points, the number of decision points 
used is 50.  
44 Results estimated using less data points are close to those estimated using more data points.  
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5.2.1 Procedure of Sensitivity Analysis  
In Hong et al. (2018), the decision is analyzed and made every year throughout the 50 years of 
the production life of the oil field. Therefore, to conduct the sensitivity analysis, decision is 
instead analyzed and made every 2 years, every 4 years, every 6 years, every 8 years, and every 
10 years. As the sensitivity analysis is being done, the number of options (decision space) 
would need to be changed. Since the available options to be analyzed would be reduced, the 
DWOI has to be redetermined and the corresponding EVWOI has to be estimated again. The 
same logic applies to DWPI and DWIIs (considering both SRDM and CLRM approaches). 
Therefore, the corresponding EVWPI and EVWIIs have to be estimated again.  
 
Besides that, for the sensitivity analysis on the number of data points, 9 different number of 
data points are assigned, namely 1 (the measured rates are modeled as Markovian processes), 
2, 3, 4, 5, 10, 20, 30, and 40. In this aspect, the number of data points used in the regression 
analysis would be kept as defined unless the decision maker is at the point of time when he or 
she has less data points available than the number of data points defined. When such situation 
happens, all the available data points would be used in the regression analysis.  
 
A different problem setting has been used to perform the sensitivity analysis on both the 
number of decision points and the number of data points. In this new setting, the SD of OOIP 
is changed to 42 MMbbl instead of being 35 MMbbl, the SD of ∆ER2∞  is changed from 0.05 to 
0.06, and the oil price is changed from 50 USD/bbl to 52.5 USD/bbl. Other parameters remain 
the same. Then, 20000 MCS paths are used for further calculation. With respect to this, EVWII 
corresponding to SRDM is estimated to be $862.97 million whereas that of CLRM is $859.85 
million. This yields the difference between the two EVWIIs to be $3.12 million. For EVWOI, 
it is $814.72 million. Thus, the VOI corresponding to SRDM is $48.25 million and that of 
CLRM is $45.13 million.  
 
 
5.2.2 Results and Discussions 
 
5.2.2.1 Number of Decision Points 
Fig. 36 shows that the graph of EVWIIs (corresponding to SRDM) against decision made per 
10 years, 8 years, 6 years, 4 years, 2 years, and 1 year. Besides that, Fig. 37 illustrates the 
similar graph as shown in Fig. 36, but it is done with respect to CLRM. From both figures, it 
can be observed that EVWIIs increase linearly when the year between two consecutive 
decisions is shortened (the number of decision points increases). This is because as the number 
of decision points decreases, the available options would also reduce. As less options are 
available to be analyzed, the resulting EVWII (considering both SRDM and CLRM) would 
also decrease. These figures also confirm that higher flexibility in decision making would yield 
higher EVWIIs.  
 
Apart from this, Fig. 38 demonstrates that the graphs of VOIs (corresponding to SRDM) 
against decision made per 10 years, 8 years, 6 years, 4 years, 2 years, and 1 year. With this, 



CHAPTER 5: SENSITIVITY ANALYSIS ON MODEL PARAMETERS AND OTHER VARIABLES 
 

57 
 

Fig. 39 shows the similar graph as shown in Fig. 38, but it is done with respect to CLRM. From 
both figures, in general, VOIs increase exponentially when the number of decision points 
increases. However, under scrutiny, between the decisions made per 6 years and 1 year (last 4 
bars for both figures), VOIs increase linearly with the number of decision points. Such trend 
of increase is caused by the change of EVWOIs with respect to the number of decision points. 
The graph of EVWOIs against decision made per 10 years, 8 years, 6 years, 4 years, 2 years, 
and 1 year is illustrated in Fig. 40. When the number of decision points increases, EVWOIs 
increase until decision made is per 4 years and remain constant onwards (not exactly constant 
but with miniscule difference between the values). EVWOI of decision made per 4 years is 
same as that of decision made per 2 years, which is $814.59 million. However, these EVWOIs 
are different from that of decision made per year, which is $814.72 million. For this case, the 
impact of changing the number of decision points to EVWOI results in the behavior of increase 
as shown in Fig. 38 and Fig. 39. In short, these results further substantiate the correct 
implementation of the modified LSM algorithm (as well as CLRM) in the context of IOR 
initiation problem.  
 
 

 
 

Fig. 36 – Graph of EVWIIs against the number of years between two consecutive decisions (SRDM 
approach).  

 
 



CHAPTER 5: SENSITIVITY ANALYSIS ON MODEL PARAMETERS AND OTHER VARIABLES 
 

58 
 

 
 

Fig. 37 – Graph of EVWIIs against the number of years between two consecutive decisions (CLRM 
approach).  

 
 

 
 

Fig. 38– Graph of VOIs against the number of years between two consecutive decisions (SRDM 
approach).  
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Fig. 39 – Graph of VOIs against the number of years between two consecutive decisions (CLRM 
approach). 

 
 

 
 

Fig. 40 – Graph of EVWOIs against the number of years between two consecutive decisions. 
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5.2.2.2 Number of Data Points 
Fig. 41 shows that the graph of EVWII (corresponding to SRDM) against the number of data 
points of 1, 2, 3, 4, 5, 10, 20, 30, and 40 whereas Fig. 42 demonstrates the same case 
corresponding to CLRM. It can be observed that using fewer data points generally still provides 
an estimation of EVWII that is close to the one approximated by using all the available data.  
 
To more vividly illustrate this, the percentage difference is computed by finding the percentage 
of the fraction of difference between EVWII estimated using less data points and EVWII 
estimated using all available data (non-Markovian processes) to EVWII estimated using all 
available data. Then, the graph of the percentage difference against the number of data points 
is plotted in Fig. 43 for SRDM and in Fig. 44 for CLRM.  
 
 

 
 

Fig. 41 – Graph of EVWIIs against the number of data points (SRDM approach). 
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Fig. 42 – Graph of EVWIIs against the number of data points (CLRM approach). 
 
 

 
 

Fig. 43 – Graph of percentage difference against the number of data points (SRDM approach). 
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Fig. 44 – Graph of percentage difference against the number of data points (CLRM approach). 
 
 

From these two figures, modeling the measured oil production rates as Markovian processes 
would produce the EVWII of SRDM that differs from that of the base case by more than 0.45%. 
For the case of CLRM, the percentage difference is more than 0.70%. In general, this sensitivity 
analysis demonstrates that for this IOR initiation problem, using less data point is practically 
sufficient to provide a good estimation of EVWII. This might be because of the simplicity of 
the two-factor model. Due to the decline feature of this production model, using fewer data 
points is enough to determine the trend of decline. Besides that, in this aspect, it is 
recommended not to model the measured oil rates as Markovian processes as it produces the 
result that has the highest percentage difference. In addition to this, using 2 data points also 
generates a relatively high percentage difference. Therefore, from this sensitivity analysis, it 
can be deduced that using at least 3 data points is recommended for practical purposes in this 
case.  
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5.3 SD of Measurement Error  
Another sensitivity analysis is performed on the SD of measurement error. Since the mean of 
the measurement error is assumed to be zero in the problem setting of Hong et al. (2018), 
increasing (decreasing) the SD of measurement error denotes that more samples of 
measurement error further from (closer to) the mean are retrieved. In other words, the SD of 
measurement error is related to the accuracy of the measurement. Regarding this, the values of 
the samples of measurement error would generally increase (decrease) as the SD increases 
(decreases). This sensitivity analysis is important because as the SD of measurement error is 
decreasing, the corresponding VOI would increase and gradually become constant. This 
indicates that collecting more accurate data do not induce any additional value to the VOI. In 
general, it is more expensive to collect more accurate data or information because device with 
higher accuracy is usually cost-consuming. In this context, it is possible that the cost of 
acquiring a device with small measurement errors exceeds the VOI. Therefore, this sensitivity 
analysis provides an insight for the decision maker to assess if it is worthwhile to proceed in 
the information gathering activity that would result in a more accurate information.  
 
 
5.3.1 Results and Discussions  
To do the sensitivity analysis, the SDs of measurement errors of 5%, 10%, 15%, 20%, 25%, 
and 30% are used. The same problem setting as listed in Table 2, Table 3, and Table 4 has been 
used to do the sensitivity analysis. Additionally, 25000 paths are used to sample the 
corresponding variables. In this context, the sampling is only done once. With respect to this, 
EVWIIs (considering both SRDM and CLRM) and EVWOIs corresponding to each 
measurement error are estimated. Then, the respective VOIs are determined. The graph of VOI 
against the SD of measurement error is shown in Fig. 45 for SRDM and the similar case of 
CLRM is illustrated in Fig. 46.  
 
Based on both figures, as the SD of measurement error decreases, the corresponding VOI 
increases. This demonstrates that as more accurate data is gathered, this would induce 
additional value to the VOI. In the case of SRDM, the respective VOI is $53.58 million as the 
SD of measurement error is 5% whereas that of CLRM is $53.24 million. This means that if a 
device, which can measure the oil production rates with SD of measurement error of 5%, costs 
more than these VOIs, it is not worthwhile to acquire this device 
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Fig. 45 – Graph of VOIs against the SD of Measurement Error (%) (SRDM approach). 
 
 

 
 

Fig. 46 – Graph of VOIs against the SD of Measurement Error (%) (CLRM approach). 
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Chapter 6 
 
Integration of Economic Uncertainties  
 
One of the shortcomings of the HBL’s model is that it does not model the uncertainties in the 
economic parameters, which have a significant impact on the decisions as shown in the 
sensitivity analysis in the previous chapter. Therefore, in this work, economic uncertainties are 
included in HBL’s model. In this aspect, it is essential to note that not all the economic 
parameters displayed in Table 4 are treated as uncertain. This is because some of these 
economic parameters are not material as including them would not affect the decision that has 
been otherwise made. With respect to this, the economic uncertainties included in HBL’s model 
are oil price, OPEXs of both recovery phases, and CAPEX_2After1.  
 
In both CLRM and SRDM approaches, we know that the optimal stopping time given a switch 
time must be determined. In the context of finding the optimal stopping time given a switch 
time, there is an underlying fact that we are already in the secondary recovery phase. Thus, in 
the regression analysis for both CLRM and SRDM approaches, the economic uncertainties 
considered are oil price and OPEX of secondary recovery because both are material in this 
situation. Besides that, as we are determining the optimal switch time (with its respective 
optimal stopping time), we compare the ENPV of “switch option” and that of “continuation 
option”. To enable this comparison to be done on the same basis, the economic uncertainties 
are oil price, OPEXs of both recovery phases, and CAPEX_2After1. As economic uncertainties 
are integrated, regression analysis is done by adding these economic parameters (as additional 
terms) to the regression function. With respect to this, these economic variables are modeled 
as Markovian processes.  
 
 
6.1 Economic Parameters as Stochastic Processes 
Since the abovementioned economic parameters are treated as uncertain outcomes, they need 
to be modeled to be variant over time. Hence, these parameters are assumed to follow a 
stochastic process. There are two commonly used stochastic models to describe the 
uncertainties in the economic variables, which are the Geometric Brownian Motion (GBM and 
known as random-walk model) and the Ornstein-Uhlenbeck (OU) Stochastic Process (also 
known as mean-reverting model and refer to Uhlenbeck and Ornstein (1930) for more details).  
 
Regarding the use of GBM in the pricing of option, it was initially applied to model the stock 
price in the Black-Scholes model. This model was proposed by Fischer Black and Myron 
Scholes in 1973 in the context of valuing the European options (Black and Scholes, 1973). 
Since then, the GBM process has been widely used in the modeling of the prices. Copeland 
and Antikarov (2001), Brandão et al. (2005), and Smith (2005) discussed the use of GBM to 
model the prices for the analysis of real-option valuation.  
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Dias (2004) provided a brief explanation pertaining to the general mechanism of GBM. He 
used an example of the value of developed field to demonstrate the modeling of this value with 
the use of GBM. With respect to this, the process of GBM is illustrated in Fig. 47. Basically, 
in GBM, an uncertain variable at a future time has a lognormal distribution with variance that 
increases proportionally to time and drift that increases (or reduces) exponentially (Dias, 2004). 
Thus, the EV would grow exponentially over time (Dias, 2004). 
 
 

 
 

Fig. 47 – Illustration of the GBM process in terms of Developed Field Value45 (Dias, 2004).  
 
 
From this illustration, it can be observed that the GBM does not reflect the true behavior of a 
commodity price. This behavior can be expounded by understanding the microeconomic theory 
of supply and demand. Based on this theory, there is always an equilibrium price (or can be 
perceived as long-term mean price) for any product in the market (Dias, 2004; Jafarizadeh and 
Bratvold, 2012). Therefore, when the price of a product increases and becomes higher than its 
equilibrium price, the supply of the product would increase. This is because the producers of 
the product have additional incentives to increase the production in the market (Jafarizadeh and 
Bratvold, 2012). With this, the price of the product would gradually be driven down to the 
equilibrium price. By using the same logic, when the price of the product decreases and 
becomes lower than the equilibrium level, the supply would reduce, and the price would slowly 
be driven up to the equilibrium level. This behavior of price adjustment is described by the OU 
stochastic process. In general, the process can be illustrated in Fig. 48 by using oil price as an 
example (Dias, 2004).  
 

                                                           
45 Reprinted from Journal of Petroleum Science and Engineering, Volume 44/ Issues 1-2, Dias, M.A.G, Valuation 
of exploration and production assets: an overview of real options models / Stochastic processes for oil prices, 102, 
Copyright 2004, with permission from Elsevier. 
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Fig. 48 – Illustration of mean-reverting process in terms of oil price46 (Dias, 2004).  
 
 
Based on Fig. 48, when the initial oil price, Po is higher than the equilibrium oil price, P� the oil 
price would eventually decrease until it reaches P�. This is the manifestation of the theory of 
supply and demand as expounded earlier. In addition to that, it can also be noticed that the 
mean-reverting model also uses the lognormal distribution, but the variance of the distribution 
would increase until a period, ti and remain constant. As Dias (2004) has explained, it is due to 
the effect of the mean-reversion force that does not allow the values of oil price to be much 
further from P�. 
 
Apart from this, Pindyck (1999) did a thorough analysis and demonstrated that the data of oil 
price over 127 years portrayed the behavior of mean-reverting. In addition to this, the mean-
reverting model has been regularly used to model the prices in many studies related to 
petroleum industry (Dixit and Pindyck, 1994; Smith and McCardle, 1999; Dias, 2004; Begg 
and Smit, 2007; Willigers and Bratvold, 2009). Therefore, for illustrative purpose, this 
stochastic process is chosen to model the oil price, OPEXs, and CAPEX_2After1 in this 
extended HBL’s model.  
 
 
 
 
 
 
 
 
 
 
 

                                                           
46 Reprinted from Journal of Petroleum Science and Engineering, Volume 44/ Issues 1-2, Dias, M.A.G, Valuation 
of exploration and production assets: an overview of real options models / Stochastic processes for oil prices, 102, 
Copyright 2004, with permission from Elsevier. 
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6.2 Implementation of Mean-Reverting Stochastic Process  
A process “S” can be stochastically modeled using the Ornstein-Uhlenbeck process as shown 
below.  
 

 dSt =  θ (μ − St)dt +  σdWt (23) 
 
where θ is the speed of mean reversion, μ is the long-term mean which the process reverts, σ 
is the measure of process volatility, and Wt stands for a Brownian motion in which dWt ~ N 
(0,√dt). In order to implement this stochastic equation in simulation, it has to be discretized. 
Gillespie (1996) has opined that only when the discretized time, ∆t is sufficiently small, the 
simulation of the process would work well. Thus, the discretized equation is shown below.  
 

 
St = � St−1 × e−θ∆t � + μ �1 − e−θ∆t � +  �σ × �1 − e−2θ∆t

2θ
× dWt� 

 
(24) 

 
However, if any commodity price, including oil prices or any cost, is modeled using the above 
discrete-time expression, negative values might be generated. This is not realistic because 
negative commodity price never exists. To avoid this problem, the lognormal distribution of 
the commodity price is used. Thus, in this context, the logarithm of the modeled parameter, 
namely πt = ln [St], is assumed to follow the mean-reverting process. This process can then be 
mathematically described as. 
 

 dπt =  κ [π� − πt] dt +  σπdzt (25) 
 
where κ is the speed of mean reversion, π� is the long-term mean that the logarithm of the 
variable reverts, σπ stands for the volatility of process, and dzt describes the increments of the 
standard Brownian motion. After that, to numerically solve for πt, the stochastic equation is 
discretized as shown (by assuming dzt ~ N (0,√dt) in which dt = 1 year). 
 

 
πt =   [πt−1 × e−κ∆t] +  [π� ×  (1 − e−κ∆t)] +  �σπ  × �1 − e−2κ∆t 

2κ
× N(0,1)� 

 
 

(26) 

 
After calculating πt, the value of St cannot directly be obtained by using the equation of  St =
eπt. This is because the mean of the lognormal distribution is added with half of the variance, 
namely 0.5 × Var(πt), for the exponential of a normal distribution (Fu et al. 2001). Therefore, 
the half of the variance is deducted by using the equation below. 
 

 St = eπt−[0.5×Var(πt)] (27) 
 
The variance of the πt is described as 
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Var(πt) =  [1 − e−2κ∆t] ×
σπ2

2κ
 

 

(28) 

 
With respect to these, the oil prices are modeled forward in time. Besides that, the modeling of 
OPEXs of both recovery phases and the CAPEX_2After1 are not that straightforward. With 
respect to this, the cost multiplier of each of these costs is modeled instead. In this context of 
performing this forward modeling, the three essential parameters κ, π� and σπ (generally also 
known as OU parameters) used in the mean-reverting model need to be determined. These 
values could be estimated by using least-squares regression as proposed by Smith (2010). This 
procedure is termed as the calibration of the OU parameters and it is explained in the next 
section.  
 
 
6.3 Calibration of the OU Parameters 
Since the logarithm of the variables is assumed to follow the mean-reverting process, the least-
squares regression, which is suggested by Smith (2010), is conducted on the datasets of πt =
ln [St]. To calibrate the OU parameters for the modeling of the oil price, a set of oil price data 
is needed. In this context, there is no so-called “correct” set of data to be used in the calibration. 
It depends on the preference of a company or individuals if historical data, future data or the 
combination of both should be used to calibrate these parameters to model the stochastic 
process. For the purpose of illustration, the annual oil price data, namely NYMEX future 
prices47 from 1985 to 2017 (considering only historical data), which is available in the website 
of U.S. Energy Information Administration (2019), is used. 
 
To begin the procedure of calibration, the following equations are used.  
 

 xt = πt−∆t = ln [Pt−∆t] (29) 
 

 yt = πt = ln [Pt] (30) 
 
Then, the set of yt data is regressed on the set of xt data and the following equation is produced 
 

 yt = axt + b + δ (31) 
 
By using the values of a and b, the OU parameters are estimated. 
 

 
π� =  

b
1 − a

 
 

(32) 

                                                           
47 In market, crude oil is traded through two types of contract, namely spot contract and future contract. Spot price 
is the price corresponding to spot contract in which the crude oil is delivered instantly (Cardenas, 2017). Future 
price is the price corresponding to future contract in which the crude is delivered within a predetermined time at 
a specific oil price (Cardenas, 2017).  
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κ =  
− ln a
∆t

 
 

(33) 

 
 

σπ =  σδ�
−2 ln a

∆t (1− a2) 
 

(34) 

 
where δ is the approximation error induced in the least-squares regression, σδ stands for the 
standard deviation of the approximation errors, and ∆t is the difference in two time-steps. Refer 
to Smith (2010) for the derivation of the Equations (32), (33), and (34). Aside from calibrating 
the oil prices, the similar procedure is supposed to be done on the relevant costs. However, the 
sets of cost data are not accessible in public domain. Thus, for illustrative purpose, the OU 
parameters of cost multiplier used here are from Willigers (2009) and it applies to both OPEXs 
and CAPEX_2After1. Parameters used to simulate the mean-reverting stochastic processes are 
listed in in Table 1048.  
 

 
 

Table 10 – Values of parameters used in the mean-reverting model.  
 
By using the parameters in Table 10, the oil price and the cost multipliers corresponding to the 
respective costs are modeled forward in time. Fig. 49 shows the probabilistic model of the oil 
price. With respect to this, in order to correlate these economic parameters with each other, the 
correlation coefficients between these parameters need to be established. The details of this 
correlation coefficient follow later. 
 
In general, by having these correlation coefficients, the multi-variate normal distribution (from 
where 4 different sets of random samples can be retrieved) is developed by assuming the means 
to zero and the SDs to be 1. These sets of random samples are respectively used as the 
increments of the standard Brownian motion as shown in Equation (26). Thereafter, the 
logarithmic values of the oil price and cost multipliers are computed. Then, by applying 
Equations (27) and (28), the corresponding values of oil price and cost multipliers can be 
calculated. After generating the samples for oil price and the cost multipliers, the values of the 
costs need to be computed. In this case, a shift of a year is included in which the oil price at 
Year n is multiplied with the cost multiplier at Year n+1 to yield the cost at Year n+1.  
 
                                                           
48 The initial value is assumed to be the same as equilibrium value for illustrative purpose as well. 

Parameter Oil Price Cost Multiplier
Initial Value 47.48 USD/bbl 1

Equilibrium Value 47.48 USD/bbl 1
Volatility, σπ 0.2473 0.5

Mean reversion speed, κ 0.0643 0.1
dt, year 1 1
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Fig. 49 – Oil prices modeled with 100000 paths using the mean-reverting process.  

 
 
6.4 Correlation between the Uncertain Economic 
Parameters 
The oil prices and the costs can be modeled using the mean-reverting stochastic process either 
independently or through correlation. To model the oil prices and the costs through correlation, 
the correlation coefficients between these economic state variables are established and used to 
compute the co-variance that would be used to generate a multi-variate normal distribution (as 
briefly explained in previous section). By doing so, it is ensuring that random samples of 
economic variables retrieved from this distribution are correlated with each other.  
 
Devore (2010) stated that there were two types of correlation, namely positive and negative 
correlations. In this case, when variables A are positively correlated to variables B, this means 
that as variables A increase, variables B also increase. For negative correlation, as variables A 
increases, variables B would decrease. Besides that, regarding the strength of the correlation, 
Devore (2010) provided a rule of thumb as shown in Table 11 in which the correlation 
coefficient is represented by ψ.  
 

 
 

Table 11 – Rule of Thumb regarding the strength of correlation (Devore, 2010).  
 
Based on Table 11, when the correlation coefficient between two different variables is 0.85, it 
means that there is a strong positive correlation between these two variables. The square of the 

Strength
Weak

Moderate

Strong

Description
-0.5 ≤ ψ ≤ 0.5
-0.8 < ψ < -0.5
0.8 < ψ < 0.5

ψ ≥ -0.8
ψ ≥ 0.8
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correlation coefficient, ψ2 indicates the accuracy of the relationship between two different 
variables. Consult Devore (2010) for a more comprehensive explanation.  
 
Willigers (2009) did a thorough analysis showing that there was a strong correlation between 
oil prices and rig rental rates. By offsetting oil price by 1 year with respect to rig rental rates, 
the correlation coefficient was 0.87 (Willigers, 2009). Thus, the offset of a year established a 
strong positive correlation between oil prices and rig rental rates. In this case, if we want to 
find out the correlation coefficient between oil prices and OPEX of primary recovery, the sets 
of oil price data and OPEX of primary recovery are required. However, the data of OPEX of 
any kind of project in petroleum industry is not easily available in public domain. Based on the 
analysis done by Willigers (2009) and for illustrative purpose, a strong positive correlation is 
assumed between oil prices and OPEX of both recovery phases in this extended HBL’s model.  
 
Pertaining to the correlation between oil price and CAPEX, Iqbal and Shetty (2018) explained 
that an oil and gas firm would increase (reduce) CAPEX when the oil price increases 
(decreases). Thus, a positive correlation is assumed between these 2 parameters in this work. 
Additionally, Surovtsev and Sungorov (2016) stated that there was a rule of thumb49 used to 
quickly assess the annual OPEX. Based on this rule of thumb, the annual OPEX is assumed to 
be 4% of total CAPEX. According to this, a positive correlation is thus assumed between OPEX 
and CAPEX_2After1. Regarding the correlation between OPEXs of both recovery phases, 
there are not many related literatures found. Hence, for the purpose of illustration, both OPEXs 
are assumed to positively correlate to each other. The correlation coefficients50 between the 
economic parameters used in the mean-reverting stochastic model are tabulated as shown 
below.  
 

 
 

Table 12 – Correlation coefficients between the economic parameters.   
 
 
 
 
 

                                                           
49 Surovtsev and Sungorov (2016) mentioned that there were no substantiated works done to support this rule of 
thumb. However, the correlation established between OPEX and CAPEX by this rule of thumb is used in this 
work for the purpose of illustration.  
50 The economic parameters are assumed to be positively correlated to each other based on some literature reviews. 
Nonetheless, not many relevant literatures discuss the strength of the correlation among the economic parameters. 
In fact, the strength of correlation can be determined by using the dataset which are not accessible in public domain. 
For illustrative purpose, the correlation coefficients in Table 12 are built based on assumption.  

Oil Price OPEX (Primary) OPEX (Secondary) CAPEX_2After1
Oil Price 1.00 0.87 0.87 0.85

OPEX (Primary) 0.87 1.00 0.55 0.65
OPEX (Secondary) 0.87 0.55 1.00 0.70
CAPEX_2After1 0.85 0.65 0.70 1.00



CHAPTER 6: INTEGRATION OF ECONOMIC UNCERTAINTIES 
 

73 
 

6.5 Realistic Example Solved by the Extended HBL’s model 
A realistic example is solved by the extended HBL’s model to demonstrate its valid 
implementation. Basically, the problem setting of this example is similar to that of in Hong et 
al. (2018). However, the only change made is by having the mean of ER1∞  to be 0.24 instead of 
having it to be 0.20. The other parameters remain unchanged as listed in Table 2, Table 3, Table 
10, and Table 12. Discount rate, CAPEX of the primary recovery, and CAPEX_2No1 remain 
unchanged as listed in Table 4. 100000 paths are then used in solving this decision problem.  
 
 
6.5.1 Results and Discussions  
The DWOI is to have the primary recovery for 4 years and be followed by the secondary 
recovery for 8 years. This results in the total lifetime of 12 years. Thus, the EVWOI is found 
out to be $518.97 million. Besides that, the EVWPI is estimated to be $757.53 million. This 
leads to the VOPI to be $238.56 million. The EVWII corresponding to the SRDM approach is 
$624.14 million. The respective VOI is $105.17 million. This indicates that it is not economical 
to proceed with any information-gathering activity if the cost of the activity is more than 
$105.17 million. Moreover, this result also illustrates that including the effect of future 
information and decisions would improve the EV by 20.26%, which is the percentage of the 
fraction of VOI to EVWOI.   
 
The Cumulative Distribution Functions (CDFs) of NPVs associated with DWOI, DWII, and 
DWPI are plotted in Fig. 50. From this figure, the DWII moves the CDF of NPV corresponding 
to DWOI to the right.  In this aspect, integrating the effect of future information and decisions 
in decision making would increase the ENPV. In addition to this, DWPI moves the curve of 
CDF even further to the right as shown. This is because the NPVs corresponding to DWPI are 
always higher and this would lead to higher ENPV than those of DWIIs and DWOI.  
 

 
Fig. 50 – Graph of CDFs against NPVs with respect to DWOI, DWII, and DWPI.  
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Besides that, the CLRM approach is also extended and used to solve this decision problem. 
The corresponding EVWII is estimated to be $620.39 million. This yields a special VOI of 
$101.42 million and an improvement of EV by 19.54%. In this context, SRDM provides an 
additional value of learning of $3.75 million as compared to CLRM. To demonstrate the 
comparison between the DWII corresponding to SRDM and that of CLRM, the Normalized 
Frequency Distributions (NFDs) and the Normalized Cumulative Frequency Distributions 
(NCFDs) of the lifetime of primary recovery, the lifetime of secondary recovery, and the total 
lifetime are respectively illustrated in Fig. 51, Fig. 52, and Fig. 53. For the color legend shown 
in these three figures, the light brown indicates the CLRM approach, the light blue color 
denotes the SRDM approach, and the brown color shows an overlap between these two 
approaches (overlap between light brown bars and light blue bars). 
 
Fig. 51 illustrates that for the lifetime of primary recovery corresponding to SRDM, the interval 
between P10 to P90 ranges from 1 to 12 years. This indicates that there is a chance of 80% to 
switch from primary to secondary recovery between the end of Year 1 and the end of Year 12. 
For the case of CLRM, there is in fact 80% chance to perform the switch between the end of 
Year 1 and the end of Year 11. This shows that the lifetime of primary recovery proposed by 
using CLRM is slightly shorter than that of SRDM. Besides that, SRDM illustrates there is a 
chance of 14.58% that it is optimal to switch after 1 year of primary recovery. With respect to 
this, CLRM even suggests a higher frequency, which is 25.92%. SRDM proposes that there is 
6.8% chance that it is optimal to switch after 4 years of primary recovery (as suggested by 
DWOI). For CLRM, there is higher chance, which is 8.2%, So, by applying either SRDM or 
CLRM, it is recommended to have the facilities for secondary recovery ready at the end of 
Year 1 to circumvent from losing flexibility to switch before Year 4. In this case, 32.16% of 
realizations for SRDM and 51.65% of realizations for CLRM propose to switch before Year 4.  
 
Fig. 52 shows that for the lifetime of secondary recovery corresponding to SRDM, the interval 
between P10 to P90 ranges from 5 to 23 years. This means that SRDM suggest that there is 80% 
chance that the secondary recovery would last for 5 to 23 years. For CLRM, the interval 
between P10 to P90 ranges from 3 to 22 years. The 8 years of secondary recovery as indicated 
by DWOI only happens in 4.60% of the realizations for SRDM and 5.41% of the realizations 
for CLRM. For SRDM, the most frequent lifetime of secondary recovery is 12 years, which 
makes up 5.86% of the realizations. For CLRM, the most frequent lifetime of secondary 
recovery is 9 years, which also has 5.86% of the realizations. Moreover, for 20.38% of 
realizations in SRDM, the lifetime of secondary recovery is shorter than 8 years. For CLRM, 
there are 30.29% of the realizations showing similar result.  
 
Fig. 53 demonstrates that for the total lifetime corresponding to SRDM, the interval between 
P10 to P90 ranges from 10 to 30 years. For CLRM, the P10 to P90 interval of total lifetime is 
between 7 to 29 years. Therefore, if SRDM (CLRM) is applied, it is recommended to stop the 
production anytime from the end of Year 10 (Year 7) to Year 30 (Year 29). In this aspect, this 
also implies that the production license must last for at least 30 years (29 years). With respect 
to this, if the production is terminated at the end of Year 12 (as suggested by DWOI), both 
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SRDM and CLRM suggest that there is certainly a chance of more than 50% of losing the 
opportunity to have longer production.  
 
 

 
 
 

 
 

Fig. 51 – Plots of NFD and NCFD of the lifetime of primary recovery with respect to DWIIs solved 
using CLRM and SRDM.   
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Fig. 52 – Plots of NFD and NCFD of the lifetime of secondary recovery with respect to DWIIs solved 
using CLRM and SRDM.   
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Fig. 53 – Plots of NFD and NCFD of the total lifetime with respect to DWIIs solved using CLRM and 
SRDM.   
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Apart from this, the frequencies of different combinations of the lifetime of primary recovery 
and that of secondary recovery with respect to DWII are correspondingly illustrated in Fig. 54 
for SRDM and in Fig. 55 for CLRM. For SRDM, the combinations with higher frequency are 
to have primary recovery for 1 year and secondary recovery for 7 to 21 years. Besides that, for 
CLRM, the combinations with higher frequency are to have primary recovery for 1 year and 
secondary recovery for 4 to 15 years. These results are consistent with the use of the values of 
means for τ1 and τ2. The mean of τ1 is 16 years whereas that of τ2 is 7 years and this indicates 
that oil is recovered faster in secondary recovery (Hong et. al, 2018). Knowing the cashflow is 
larger at early time (indicating higher NPV), it is thus better to switch from primary recovery 
to secondary recovery earlier. 
 
In SRDM, it can be noticed that in general, for highly frequent combinations (with a frequency 
more than 0.45%), as the lifetime of primary recovery increases, the frequencies of having 
longer lifetime of secondary recovery reduce. This denotes that as the primary recovery phase 
continues for a longer time, it would be better to continue with it for some time to gather more 
data to substantiate the decision on when it is best to perform the switch. Once the switch is 
done, the corresponding lifetime of secondary recovery would be shortened to yield a higher 
NPV. The same observation is made in the case of CLRM. Additionally, it can be noted that 
the lifetime of primary recovery of highly frequent combinations corresponding to CLRM is 
generally shorter than that of SRDM. Thus, this leads to the total lifetime of highly frequent 
combinations with respect to SRDM is generally more than that of CLRM.  
 
 

 
 

Fig. 54 – Frequencies for different combinations of lifetime of primary recovery and that of secondary 
recovery corresponding to SRDM.    
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Fig. 55 – Frequencies for different combinations of lifetime of primary recovery and that of secondary 
recovery corresponding to CLRM.    

 
 
Fig. 56 shows the mean oil production rates with respect to DWOI, DWIIs corresponding to 
both SRDM and CLRM. As noted, the mean oil production rate increases significantly after 
Year 4, decreases between Year 4 and Year 12, and reduces further sharply after Year 12. This 
is because for DWOI, the decisions to switch after 4 years of primary recovery and to terminate 
production after 12 years of production (including 8 years of secondary recovery) apply to all 
realizations. Thus, a drastic change of the mean oil production rate is observed throughout the 
lifetime of production. However, the mean oil production rates corresponding to both SRDM 
and CLRM are different as every realization has its corresponding switch time. Thus, the curves 
of the mean oil production rate with respect to SRDM and CLRM are smoother. In general, the 
mean oil production rate corresponding to DWOI is higher than those of SRDM and CLRM in 
the intermediate period. Besides that, the mean oil production rate of CLRM is slightly higher 
than that of SRDM at the early time, but it eventually becomes lower at later time.  
 
To study the effect of the mean oil production rate on the economical aspect, the graph of the 
mean Cumulative Discounted Cashflow (CDCF) corresponding to DWOI and DWIIs 
(considering both SRDM and CLRM) is plotted in Fig. 57. The figure shows that the mean 
CDFC of DWOI is lower than those of SRDM and CLRM. However, at the early period, the 
CDFC corresponding to DWII of CLRM is higher than that of SRDM until Year 17 and is 
lower afterwards. In this context, the overall mean CDCF of CLRM is lower than that of SRDM. 
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As Hong et al. (2018) explained, this occurred because SRDM might omit some instant gains 
in the early times to collect more data as these additional data would enhance the decision 
making later.  
 

 
 

Fig. 56 – Graph of mean oil production rate against time with respect to DWOI and DWIIs 
corresponding to both CLRM and SRDM. 

 

 
 

Fig. 57 – Graph of mean cumulative discounted cashflow (CDCF) against time with respect to DWOI 
and DWIIs corresponding to both CLRM and SRDM. 
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6.6 Example with Significant Value of Learning 
As it has been discussed, the additional value of learning induced by SRDM is the difference 
between VOI and the special VOI of CLRM. With respect to this, the SRDM approach is 
absolutely a better approach to be used as compared to CLRM when the value of learning 
induced is significant. A new problem setting is used to demonstrate a much higher value of 
learning caused by the SRDM approach. In this context, the problem setting is the same as 
listed in Table 2, Table 3, Table 10, and Table 12. Discount rate, CAPEX of the primary 
recovery, and CAPEX_2No1 remain unchanged as listed in Table 4. However, the only change 
made is by making the SD of ER1∞  to be 0.06 instead of being 0.05.  
 
 
6.6.1 Results and Discussions  
By using this problem setting in tandem with 100000 paths, the DWOI is having 0 years of 
primary recovery and then, 8 years of secondary recovery. This leads to the total lifetime of 9 
years. Thus, the corresponding EVWOI is $471.65 million. The EVWII corresponding to the 
SRDM approach is $568.85 million. The respective VOI is $97.20 million. Moreover, this 
result also illustrates that including the effect of future information and decisions would 
improve the EV by 20.61%. Then, the EVWII with respect to CLRM is estimated to be $527.35 
million. This yields a special VOI of $55.71 million and an improvement of EV by 11.81%. 
Then, SRDM provides an additional value of learning of $41.49 million as compared to CLRM.  
 
The comparison between the DWIIs corresponding to SRDM with that of CLRM is done. 
Therefore, the NFDs and the NCFDs of the lifetime of primary recovery, the lifetime of 
secondary recovery, and the total lifetime corresponding to both SRDM and CLRM are 
respectively illustrated in Fig. 58, Fig. 59, and Fig. 60. For the color legend shown in these 
three figures, the light brown indicates the CLRM approach, the light blue color denotes the 
SRDM approach, and the brown color shows an overlap between these two approaches 
(overlap between light brown bars and light blue bars). 
 
Fig. 58 shows that for all realizations, the CLRM approach leads to 0 years of primary recovery. 
However, for SRDM, the P10-P90 interval for the lifetime of primary recovery ranges from 1 
to 13 years. Additionally, Fig. 59 shows that for CLRM, P10-P90 interval for the lifetime of 
secondary recovery is from 4 to 22 years whereas for SRDM, it ranges from 4 to 23 years. Thus, 
it can be deduced that the total lifetime corresponding to SRDM would be generally longer 
than that of CLRM. As shown in Fig. 60, SRDM leads to a chance of 80% to have a total 
lifetime for 10 to 30 years, which is much longer than that of CLRM. Thus, according to these 
DWIIs, it can be understood that there is a significant difference between the two VOIs because 
the SRDM decision policy is significantly different from that of CLRM.  
 
Based on this example, SRDM is more worthwhile to be implemented when DWOI tells us to 
switch from primary recovery to secondary recovery at the beginning of Year 1. This is because 
when DWOI suggests the lifetime of primary recovery to be 0 years, this indicates that CLRM 
would also propose the same decision in terms of the lifetime of primary recovery. However, 
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SRDM might suggest otherwise as it includes the impact of future information and decisions. 
Thus, SRDM is more robust in the identification of the near optimal decision policy because it 
would consider the possible future data (learning over time). For CLRM, it would omit future 
learning (by following the DWOI as explained) as featured in this example.  
 

 
 
 

 
 

Fig. 58 – Plot of NFD and NCFD of the lifetime of primary recovery with respect to DWIIs solved 
using CLRM and SRDM.   
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Fig. 59 – Plot of NFD and NCFD of the lifetime of secondary recovery with respect to DWIIs solved 
using CLRM and SRDM.   
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Fig. 60 – Plot of NFD and NCFD of the total lifetime with respect to DWIIs solved using CLRM and 
SRDM. 
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Chapter 7 
 
Application of Least-Squares Monte Carlo 
Method and Reservoir Simulation Model 
 
Hong et al. (2018) illustrated that the modified LSM algorithm could be implemented with a 
production model based on exponential declines to determine the optimal time to switch from 
one recovery phase to another. Theoretically, the LSM implementation is independent of 
production models, but a very computationally intensive model can cause the use of LSM to 
be computationally prohibitive. Apart from this, Alkhatib et al. (2013) showed that the LSM 
could be used to a reservoir model in the context of surfactant flooding. Therefore, this chapter 
briefly demonstrates that how the modified LSM method can be applied51 with a reservoir 
simulation model to solve the IOR initiation time problem. Pertaining to this, only the modified 
LSM algorithm developed in Hong et al. (2018) is implemented to the reservoir simulation 
model52.   
 
 
7.1 General Workflow 
To show that the modified LSM can be used alongside with a reservoir simulation model, a 
reservoir model is built. The detailed description regarding the reservoir model follows later. 
In this case, the ECLIPSE (2016) software developed by Schlumberger is used to perform the 
reservoir simulation of the model. Besides that, for HBL’s model, it has been explained that 
different realizations of the petrophysical parameters have been generated to calculate the 
corresponding measured oil production rates. Therefore, for a reservoir simulation model, 
different realizations are also required to be used as the input parameters in the modified LSM 
algorithm. With respect to this, different realizations are created by stochastically changing the 
permeability of the reservoir model (using normal distribution and its details will be presented 
later). The generation of the realization is performed by using MATLAB R2019a (2019). Then, 
the simulation corresponding to each realization is run in ECLIPSE (2016). In this case, an 
interface between MATLAB R2019a (2019) and ECLIPSE (2016) is created in which each 
generated realization is written as an -.Inc file to be included into the input file of ECLIPSE 
(2016), which is -.DATA file. MATLAB R2019a (2019) can then be used to initiate the run of 
the simulation for different realization. As there is a change in the permeability, ECLIPSE 
(2016) simulation would result in different oil production rates that can be used as the input 

                                                           
51 For the work in this chapter, the author also applied the CLRM approach to the reservoir simulation model. 
However, the focus is on the use of the modified LSM method. 
52 The author would like to emphasize that this chapter is a brief demonstration on the use of the modified LSM 
method with a reservoir simulation model. The author aims at making this section to serve as a foundation on 
which future works can be conducted upon. So, for illustrative purpose, only the modified LSM algorithm built 
in Hong et al. (2018) is implemented in the analysis for this section (not the extended one done in previous 
chapters).  
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parameters of the modified LSM algorithm. However, since MATLAB R2019a (2019) is also 
applied to implement the modified LSM algorithm, another interface between MATLAB 
R2019a (2019) and ECLIPSE (2016) is developed to import the resulting oil production rates 
(for each realization) from the output file of ECLIPSE (2016), which is -.RSM file to MATLAB 
R2019a (2019). Similar procedure is done for different switch times. In this context, the input 
file of the ECLIPSE (2016) is slightly modified to change the initiation time of the injection.   
 
 
7.2 Reservoir Model 
A 2D, vertical, 2 phases (water and black oil), and 2 layered reservoir simulation model is built 
to be used in tandem with the modified LSM algorithm. Two vertical wells are set to penetrate 
at each edge of the reservoir, namely the injector is at the left edge and the producer is at the 
right edge. Regarding the geometry of the model, the size of a grid block is cubic with length 
being 50 m, width being 50 m, and height being 1 m. Therefore, the dimension of the reservoir 
model is 2500 m × 50 m × 100 m. This dimension corresponds to 50 blocks × 1 block × 100 
blocks. In this context, both layers have the same length and width. However, the top layer has 
the height of 40 m whereas the height of the bottom layer is 60 m. With the help of the software 
of ResInsight (2019), the top view of this reservoir model is shown in Fig. 61 whereas the front 
view of the reservoir is shown in Fig. 62. The well configuration can be seen in both figures.  
 
 

 
 

Fig. 61 – The top view of the 2D reservoir model.  
 
 

 
 

Fig. 62 – The front view of the 2D reservoir model.  
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The color scale of the oil saturation is provided on both Fig. 61 and Fig. 62. The scale of 
dimension used for both figures is in the unit of meter. Besides that, the injector is indicated by 
the blue arrow whereas the producer is indicated by the green arrow.   
 
Apart from this, the horizontal permeability of each layer is assumed to be homogeneous in 
this case. This mean that the horizontal permeability of each grid block in the corresponding 
layer is the same. It is important to note that for this example, different realizations of the 
measured oil production rates are created by randomly generating a set of horizontal 
permeability for both layers. In this context, a normal distribution53 is implemented alongside 
with the respective mean and SD of the horizontal permeability for each layer. Refer to Table 
13 for the means and the SDs. The horizontal permeability of each layer is modeled 
independently54 without being correlated with each other. Moreover, the vertical permeability 
of each layer is assumed to be 0.01% of the corresponding horizontal permeability. The purpose 
of this is to minimize the effect of crossflow of fluids between the layers.  
 
Besides that, the injection and production rates of fluids are set to be the same, which are 15 
sm3/day. With respect to this, water is chosen to be the injection fluid. This denotes that the 
IOR method used in this example is waterflooding. Other important reservoir parameters and 
PVT properties are tabulated as shown in Table 14. Based on Table 14, it can be noted that 
aside from initial water saturation and porosity, the other parameters are assumed the same for 
these two layers.  
 

 
 

Table 13 – Means and SDs for the normal distribution of the horizontal permeability for each 
corresponding layer.   

 
 

                                                           
53 In general, the lognormal distribution is used to randomly generate the values of permeability to avoid any 
negative values. However, for this example, normal distribution is used for illustrative purpose. The 100 
realizations of permeability generated from the normal distribution has been checked to be positive values before 
being used in the reservoir simulation.   
54 The permeability of the layers or the permeability of the grid blocks can be correlated with each other by finding 
the co-variance. Then, by having calculated this co-variance, a multi-variate normal distribution can be established 
from where different samples of the permeability (or logarithm of permeability) can be retrieved.  

Top Layer Bottom Layer

Mean 250 178
SD 35 20

Horizontal Permeability (mD)
Parameter
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Table 14 – Values of important reservoir parameters and PVT properties.   
 
 

7.3 Problem Setting  
Regarding the problem setting of this example, a total period of 5 years of production time is 
assumed. This indicates that there would be 6 different switch times, namely at the beginning 
of Year 1, Year 2, Year 3, Year 4, Year 5, and Year 655. Besides that, the values of economic 
parameters used in this example is also listed in Table 15.  
 

 
 

Table 15 – Values of economic parameters for this example56.   
 
To illustrate how the oil production rates obtained from the reservoir simulation is used as the 
input parameters for the modified LSM method, 100 different sets of horizontal permeability 
are generated using the normal distribution as explained. With this, the ECLIPSE (2016) 
simulation is run for 100 times where each simulation corresponds to each realization. Then, 
the simulation is repeated for 100 times for different switch times. This denotes that for this 
                                                           
55 Switching at Year 6 indicates that the primary recovery continues for 5 years. 
56 The values of economic parameters used here might not be realistic (the oil price is assumed to be high whereas 
the costs are assumed to be low) because the reservoir model used does not recover sufficient amount of oil to 
produce the positive cashflow if the economic parameters listed in Table 4 are used. Thus, changes are made to 
the values of economic parameters for illustrative purpose.  

Parameter Values Units
Initial Reservoir Pressure 234 bar

Oil Density 1000 kg/m3

Water Density 1000 kg/m3

Oil Viscosity 6.4 cp
Water Viscosity 0.5 cp

Connate Water Saturation 0.05
Residual Oil Saturation 0.05

Top Layer Bottom Layer
Porosity 0.21 0.218

Initial Water Saturation 0.10 0.12

Economic Parameters Values Units
Oil Price 90 $/bbl

CAPEX (Primary) 1 $ million
CAPEX_2After1 (Secondary) 1.15 $ million
CAPEX_2No1 (Secondary) 1.15 $ million

OPEX (Primary) 1.4 $ million/ year
OPEX (Secondary) 1.6 $ million/ year

Discount Rate 5% per year
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example, the ECLIPSE (2016) simulation need to run for 600 times to gather all the necessary 
input parameters to be used in the modified LSM method. As known, the oil production rates 
generated by ECLIPSE (2016) are the modeled oil production rates. Thus, to obtain the 
measured rates, the measurement errors are assumed to be normally distributed with the mean 
of zero and the SD of 25% of the modeled rates and are added to the modeled rates.  
 
 
7.4 Results  
The DWOI is to have the primary recovery for 5 years without having the secondary recovery. 
This results in the total lifetime of 5 years. Thus, the EVWOI is found out to be $5.22 million. 
Regarding perfect information, the EVWPI is $6.37 million. This results in the VOPI to be 
$1.15 million. The EVWII corresponding to the SRDM approach is $5.437 million. The 
respective VOI is $0.221 million. Moreover, this result shows that having the effect of future 
information and decisions would improve the EV by 4.23%. Besides that, the CLRM approach 
is also used to solve this example. The corresponding EVWII is $5.425 million. This yields a 
special VOI of $0.209 million and an improvement of EV by 4%. In this aspect, SRDM creates 
an additional value of learning of $0.012 million as compared to CLRM.
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Chapter 8 
 
Discussions and Suggestions for Further 
Works 
 
Hong et al. (2018) argued that HBL’s model could provide a fast57 analysis to determine the 
optimal IOR initiation time throughout the lifetime of the production of an oil field. In this 
context, such analysis can be fast due to the relatively low computational intensiveness of the 
two-factor production model. Despite the fact that the production model used is simple, 
applying it in HBL’s model still provides useful insights about the optimal choice of the IOR 
initiation problem (a sequential decision problem). In this analysis, SRDM and CLRM 
approaches are respectively used to yield the corresponding near-optimal decision policy. As 
the SRDM approach includes the effect of future data and decisions, it represents a decision 
maker’s optimal, better than CLRM, response to information (Hong et al., 2018). The fact that 
the SRDM accounts for learning over time in which its impact of this learning and decision 
making is illustrated by its higher VOI in relative to CLRM. The difference between the VOIs 
is the value of learning. Upon replicating HBL’s model, the validity of the implementation of 
the modified LSM algorithm in tandem with two-factor production model was shown.   
 
The modified LSM algorithm is based on an ADP approach. Thus, there is always an 
approximation error induced when applying this method. In this case, Hong et al. (2018) 
explained that the accuracy of this method relied upon the number of paths (samples) of Monte 
Carlo and how close a regression function could estimate the actual EV. Regarding the number 
of Monte Carlo samples, Hong et al. (2018) demonstrated through a sensitivity analysis with 
an illustrative example that 100000 samples was sufficient to provide a highly accurate VOI. 
In this work, a similar sensitivity analysis was done (refer to Fig. 3 and Fig. 4) and the results 
illustrated that 10000 samples could provide a sufficiently good approximation of VOI. Besides 
that, using a more complicated regression function (not considering the use of a higher order 
non-linear regression function as explained) would provide a higher accuracy. Applying a more 
sophisticated regression function would also require a higher computation time. Since it has 
been shown that the percentage of improvement on EV is not significant for this example 
problem, the resulting higher accuracy is not material. As a trade-off between accuracy and 
runtime, the linear regression is still preferred. Additionally, linear regression has been shown 
to work well in LSM for the oil and gas related studies (Smith, 2005; Jafarizadeh and Bratvold, 
2009; Willigers et al., 2011; Thomas and Bratvold, 2015; Hong et al., 2018). Further works 
can be conducted to identify the effectiveness 58  of a more complicated regression in a 
                                                           
57 Generally, in the context of IOR initiation time, a decision is made every year. Therefore, the respective decision 
model is fast if its computation takes less than a year. Therefore, the HBL’s model is indeed a fast analysis and 
not “expensive” to be used as its computation time can be done within a day. However, its runtime is still subject 
to the complexity of the production model used, the number of Monte Carlo samples, the number of alternatives 
and decision points.   
58 “Effectiveness” here means the use of more complicated regression function that will result in a significant 
percentage improvement of EV.  
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sequential decision problem related to petroleum industry. We suspect that a highly non-linear 
value function may require terms in the regression function that capture such a non-linearity.  
 
Theoretically, the SRDM approach would provide additional value of learning that makes the 
corresponding VOI to be higher than the special VOI of CLRM. In this context, for a certain 
problem setting, an approximation error might produce a result in which the special VOI is 
higher than the VOI. It has been shown in this work that such unrealistic results still occur as 
more complicated regression functions are used. More detailed analysis is recommended to 
mitigate the occurrence of this unrealistic result. In this case, reducing sampling error might 
help to decrease the approximation error. Thus, different sampling methods, such as Latin 
hypercube sampling59, can be implemented. Besides that, as proposed by Alkhatib et al. (2013), 
sampling techniques can also be improved with methods like polynomial chaos theory and 
probabilistic collocation60. With respect to this, a higher number of samples can be tested along 
with these sampling methods. However, as the number of samples increases, a longer 
computation time is expected.  
 
Hong et al. (2018) focused solely on the uncertainties in petrophysical parameters of the two-
factor production model. Therefore, HBL’s model has been extended in this work to include 
uncertainties in economic parameters. Although this extension can be simply conducted by 
adding these variables into the regression, the economic parameters need to be modeled as 
stochastic processes. In this work, the OU model was selected to capture uncertainties in the 
economic parameters. The extended HBL’s model is deemed to perform well because it 
provides insightful results of the IOR initiation problem as presented in sections 6.5 and 6.6. 
Schwartz (1997) illustrated that there were two other models which could be used to describe 
the behavior of oil prices, namely two-factor model (this is another example of stochastic model 
and not to be confused with the two-factor production model) and the three-factor model61. 
Thus, for further works, two-factor or three-factor models can be applied to model the 
economic parameters stochastically. Then, the decision policies produced by implementing 
different models can be compared and analyzed. Besides that, taxation that is material to the 
decisions can be considered in the formulation of the economic model, which is not done in 
both Hong et al. (2018) and this work.   
 
Apart from this, it has been stated that using fewer data points provide a good estimation of 
results due to the simplicity of the two-factor production model. With respect to this, there is a 

                                                           
59  Refer to McKay et al. (1979) for the details. Besides that, Bratvold and Begg (2010) also provides an 
introduction of Latin hypercube sampling (LHS). Basically, LHS is a form of stratified sampling in which each 
CDF of input variable is partitioned into a fixed number of strata (Bratvold and Begg, 2010). The number of strata 
is the number of iterations needed (Bratvold and Begg, 2010). 
60 Refer to Ghanem and Spanos (1991) for the details of polynomial chaos theory and Tatang et al. (1997) for the 
details of probabilistic collocation. These methods generally enable the sampling of input variables from the high-
probability areas of distribution to be done (Alkhatib et al., 2013).  
61 Jafarizadeh and Bratvold (2012) explained that for a price model, a factor was a variable that showed a random 
behavior in a market. GBM and OU model are one-factor models as the oil price behaves randomly (Jafarizadeh 
and Bratvold, 2012). They also expounded that for two-factor or three-factor model, apart from the price, the long-
term price, interest rate, and so forth can be modeled as stochastic processes. 
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possibility that more data points might be needed to provide a more accurate estimation if the 
measurement error increases. However, this hypothesis is not investigated in this research work. 
Thus, it can be considered as one of the further studies in future. The sensitivity analysis on the 
model parameters can also be done on the extended HBL’s model to identify the variables that 
result in the largest impact on the decision policy. It is important to understand that as 
uncertainties in economic parameters are considered in the extended HBL’s model, the 
corresponding sensitivity analysis on the economic parameters is different (from the one 
performed in Section 5.1). In this case, it is recommended that the correlation coefficients in 
Table 12 are changed to analyze the resulting change in the decision policy. Nevertheless, 
assessing the correlation coefficient matrix (in Table 12) is not very straightforward. The 
correlations may be easier to be assessed if there are relevant data sets available for the 
economic parameters. Moreover, sensitivity analysis on the number of decision points, the 
number of data points, and SD of measurement error can also be conducted on the extended 
HBL’s model to obtain further insights about the decision problem. Hong et al. (2018) also 
suggested that when there was a change in the correlation coefficient matrix as shown in Table 
3, sensitivity analysis could be done to analyze the resulting change in decisions. This 
suggestion is also applicable to the extended HBL’s model.  
 
In this work, the author provides a brief illustration on how reservoir simulation can be applied 
with the modified LSM method by using a very simple reservoir model. As presented, the 
modified LSM algorithm is used to inform decisions which are based on a decision criterion, 
that is the EV. In this case, the objective was to use a simple example to show how the reservoir 
simulation model could be used to develop a cashflow model for the calculation of EV. 
Obviously, a number of future studies on the use of more advanced production models are 
possible. Applying a richer reservoir model, such as a 3D reservoir model with heterogeneity 
in permeability field, is one possibility. Besides that, the modified LSM algorithm that 
considers uncertainties in economic parameters can be applied to this more complicated 
reservoir model. Other reservoir parameters can also be modeled stochastically, for example, 
initial water saturation, porosity, etc. In addition, apart from measured oil production rates, the 
measured water production rates can be treated as another state variable in the regression 
analysis. It was not considered in Hong et al. (2018) and this work due to the formulation of 
the two-factor production model. However, this suggestion is viable as reservoir simulation 
would yield the simulated results of water production rates. Different types of IOR can also be 
tested, for instance, polymer flooding, gas flooding, etc. Upon using a richer production model 
with the modified LSM algorithm, a sensitivity analysis on the variables discussed in Chapter 
5 can also be done to get further insights.
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Chapter 9 
 
Conclusions 
 
In this work, the author briefly discussed how the sequential nature in reservoir decision 
making could help to maximize the value creation from oil and gas reservoirs. The author also 
mentioned how solving the IOR initiation problem could be understood as a sequential decision 
making in reservoir management. Thereafter, the author provided a brief review about the 
theoretical aspects of two optimization methods used to solve this problem, namely SRDM and 
CLRM. Pertaining to this, SRDM approach could be treated as the application of the modified 
LSM algorithm in reservoir management. The author also discussed and illustrated the detailed 
procedure of implementing these two approaches with the two-factor production model. For 
simplicity, the use of these methods in tandem with the production and economic models is 
referred to as “HBL’s model”. The author successfully replicated the application of SRDM and 
CLRM to solve the IOR initiation problem as shown in Hong et al. (2018) as the results 
estimated by the replicated model coincided with those presented in Hong et al. (2018). The 
validity of the implementation of the HBL’s model was thus verified. Moreover, this replication 
also substantiated that HBL’s model was indeed a useful and tractable decision model for 
optimizing the IOR initiation time throughout the lifetime of production.  
 
The author explained and demonstrated different sensitivity analysis by using both the SRDM 
and CLRM approaches. The first sensitivity analysis in this work was done on the choice of 
regression function. A more complicated regression function could provide a more accurate 
estimation of an “actual” EV62. In this work, more complex regression functions were tested 
by including different types of interaction terms in the function and an exponential term with 
the use of Laguerre polynomials. The interaction terms were included to the regression function 
because the measured oil production rates were modeled as non-Markovian processes. The 
sensitivity analysis on the choice of regression function portrayed that having a more 
complicated regression function did not result in a significant percentage of improvement of 
the EV63. Thus, such improvement is not material to the decisions. As a trade-off between 
accuracy and computation time, linear regression was chosen for further analysis in this work. 
Additionally, for certain problem settings, these complicated regression functions could not 
prevent the occurrence of the unrealistic result (VOI of CLRM is higher than VOI of SRDM) 
caused by the approximation error. Thus, further works were suggested to mitigate this problem.  
 
The author also illustrated and explained the implementation of sensitivity analysis on the 
model parameters of the two-factor production model and the economic parameters listed in 
Table 4. This sensitivity analysis is important as it could help a decision maker to identify the 

                                                           
62 To emphasize, the “actual” EV here is not the “real-world” EV. It means the approximated EV resulting from 
a full (not approximate) DP implementation. Therefore, this, of course, is still a model-based approximation to 
the “real-world” EV.  
63 Higher percentage of improvement of EV indicates higher accuracy of estimation of results.  
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material variables for the decision policy. Then, more information about these variables could 
be gathered to reduce the respective uncertainties in decision making if the additional 
information could create more value. The author also conducted a sensitivity analysis on the 
number of decision points and the number of data points. The result obtained from the 
sensitivity analysis on the number of decision points provided a further confirmation that the 
implementation of the modified LSM algorithm was correct. The same applied to CLRM. From 
the sensitivity analysis on the number of data points, we can deduce that using fewer data points 
still generates an estimation of EV that was close to the one approximated by modeling the 
measured rates as non-Markovian processes. However, for this example problem, modeling the 
measured oil rates as Markovian processes did not generate a good estimation. Therefore, for 
practical purpose, lowering the number of data points (to certain extent) can be viable to 
approximate the EV. The author also outlined the implementation of sensitivity analysis for the 
SD of measurement error. This analysis provided useful insights to help a decision maker to 
decide whether he or she should implement a more accurate but also more expensive 
information-gathering activity.  
 
Furthermore, the author extended the HBL’s model by including the uncertainties in the 
economic parameters listed in Table 4. The extended model provides realistic decision 
supporting results. Both SRDM and CLRM approaches respectively yielded a decision policy 
that could identify the near-optimal switch time. However, when compared to the CLRM 
approach, the SRDM approach resulted in a higher EV and this corresponded to a higher VOI. 
This comparison highlighted the suboptimality of CLRM. However, the value of learning 
induced by SRDM is not very significant (or is small) for some of the problem settings. This 
implies that for some cases, the model choice may not be material64. As Hong et al. (2018) 
argued, the suboptimality of CLRM is case-dependent. In Section 6.6, under a different 
problem setting, the value of learning was significant because there was a large difference 
between the decision policy of SRDM and that of CLRM. The terms “large difference” means 
that for every data path, the CLRM suggested a lifetime of primary recovery for 0 years 
whereas SRDM proposed otherwise. This resulted in a larger difference between the total 
lifetime corresponding to both SRDM and CLRM. Thus, this corresponded to a more 
significant65 value of learning, which denotes that such value is material to the decisions. 
Besides that, the author also successfully showed that the modified LSM algorithm could be 
applied with a reservoir simulation model to generate insightful results. Although the reservoir 
model used in this study was very simple, the purpose of this brief demonstration was to 
provide a foundation on which further works could be done.  
 
We can conclude that in terms of solving for the optimal IOR initiation time, the modified LSM 
algorithm is indeed robust as it can easily be changed to include uncertainties in other state 

                                                           
64 Relying upon the problem setting, the VOI estimated by using SRDM can be very close to that of CLRM. So, 
it seems to be indifferent for an individual to implement either SRDM or CLRM. However, in general, SRDM 
provides a solution that is closer to the actual optimum as compared to CLRM. In other words, SRDM guarantees 
near-optimality, but CLRM does not.  
65 It is subjective in terms of defining the threshold for the value of learning to be significant as there is no so-
called “correct” threshold. 
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variables which are material to the decisions and conveniently implemented in tandem with 
different types of production model (whether it be decline-curve based model or reservoir 
simulation model) to produce insightful results. However, its computation effort is still subject 
to limited number of alternatives and decision points.
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Appendices  
 
Appendix A: Supplementary Figures66 
 

 
 

 
 

Fig. 63 – Plot of NFD and NCFD of the lifetime of primary recovery with respect to DWIIs solved 
using CLRM and SRDM for one of the problem settings in Chapter 5. 

 
                                                           
66 These supplementary figures illustrate the comparison between the decision policies of SRDM and CLRM 
based on one of the problem settings discussed in Chapter 5. These figures show the Normalized Frequency 
Distributions (NFDs) and the Normalized Cumulative Frequency Distributions (NCFDs) of the lifetime of primary 
recovery, the lifetime of secondary recovery, and the total lifetime of the DWIIs of CLRM and SRDM. For the 
color legend shown in these figures, the additional brown color shows an overlap between light brown bars and 
light blue bars. In general, it can be deduced that the total lifetime of DWII corresponding to SRDM is much 
longer than that of CLRM. This results in a large difference between EVWII of SRDM and that of CLRM.   
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Fig. 64 – Plot of NFD and NCFD of the lifetime of secondary recovery with respect to DWIIs solved 
using CLRM and SRDM one of the problem settings in Chapter 5. 

 
 
 
 
 
 
 
 



 

103 
 

 
 

 
 
 

 
 

Fig. 65 – Plot of NFD and NCFD of the total lifetime with respect to DWIIs solved using CLRM and 
SRDM one of the problem settings in Chapter 5. 
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Appendix B: MATLAB Codes 
 
MATLAB R2019a (2019) has been applied to perform the modified LSM algorithm and other 
related computation in this research work. All the related codes would be presented along with 
some brief explanations.  
  
 
Appendix B1 
Appendix B1 consists of the codes of the replicated HBL’s model, which are the modified LSM 
algorithm and the CLRM approach, as discussed in Chapter 3. These codes are also used to 
perform the sensitivity analysis as discussed in Sections 5.1 and 5.3. For convenience, slight 
modification can be done on these codes by adding a for-loop to compute the corresponding 
sensitivity analysis in one attempt.  
 
 
Appendix B1.1: Modified LSM Algorithm  
This code performs the modified LSM algorithm in Hong et al. (2018). This is the replicated 
model of the modified LSM algorithm. 
 

% 1. Monte Carlo Sampling 

% This section initializes the necessary input parameters to perform the 

% Monte Carlo sampling of the model parameters of the two-factor production model 

 

N_MC = 100000; 

FieldLifeTime = 50; 

 

OOIP_Mean = 240; 

E_inf_Phase1_Mean = 0.2; 

Tau_Phase1_Mean = 16; 

dE_inf_Phase2_Mean = 0.15; 

Tau_Phase2_Mean = 7; 

 

OOIP_SD = 35; 

E_inf_Phase1_SD = 0.05; 

Tau_Phase1_SD = 2; 

dE_inf_Phase2_SD = 0.05; 

Tau_Phase2_SD = 1.5; 

 

ErrorMean4Rate_Pct = 0; 

ErrorSD4Rate_Pct = 0.10; 

 

% Initialization of parameters for multivariate normal distribution 

mu = [OOIP_Mean, E_inf_Phase1_Mean, Tau_Phase1_Mean, dE_inf_Phase2_Mean, Tau_Phase2_Mean]; 

ExpSigma = [OOIP_SD, E_inf_Phase1_SD, Tau_Phase1_SD, dE_inf_Phase2_SD, Tau_Phase2_SD]; 

ExpCorrC = [1 -0.8 0.16 0.56 -0.08; -0.8 1 0.2 -0.7 0.1; 0.16 0.2 1 -0.3 -0.2; 0.56 -0.7 -0.3 

1 -0.3; -0.08 0.1 -0.2 -0.3 1]; 

cov = ExpCorrC.*(ExpSigma'*ExpSigma); 

PriorRealizations = mvnrnd(mu, cov, N_MC); 
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% Prior realizations of the model parameters 

OOIP_prior = PriorRealizations(:,1); OOIP_prior(OOIP_prior<10) = 10; 

OOIP_prior(OOIP_prior>1000) = 1000; 

E_inf_Phase1_prior = PriorRealizations(:,2); E_inf_Phase1_prior(E_inf_Phase1_prior<0.05) = 

0.05; E_inf_Phase1_prior(E_inf_Phase1_prior>0.5) = 0.5; 

Tau_Phase1_prior = PriorRealizations(:,3); Tau_Phase1_prior(Tau_Phase1_prior<1) = 1; 

Tau_Phase1_prior(Tau_Phase1_prior>30) = 30; 

dE_inf_Phase2_prior = PriorRealizations(:,4); dE_inf_Phase2_prior(dE_inf_Phase2_prior<0.01) = 

0.01; dE_inf_Phase2_prior(dE_inf_Phase2_prior>0.31) = 0.31; 

Tau_Phase2_prior = PriorRealizations(:,5); Tau_Phase2_prior(Tau_Phase2_prior<1) = 1; 

Tau_Phase2_prior(Tau_Phase2_prior>13) = 13; 

 

 

%  2. Two-Factor Production Model 

%  This section performs the calculation of the recovery factors and the respective modeled 

oil production rates 

 

Recovery_Phase1_real_time = zeros(N_MC,FieldLifeTime); 

Recovery_Phase1_real_EndTime = zeros(N_MC,1); 

Recovery_Phase2_real_time = zeros(N_MC,1); 

Recovery_Phase1n2_real_time = zeros(N_MC,FieldLifeTime); 

Recovery_Phase1n2_real_time_ShiftTime = zeros(N_MC,FieldLifeTime,FieldLifeTime+1); 

Rate_Phase1n2_real_time_ShiftTime = zeros(N_MC,FieldLifeTime,FieldLifeTime+1); 

 

for i_MC = 1: N_MC 

    for time = 1: FieldLifeTime %this is the time shift in rows 

    Recovery_Phase1_real_time(i_MC,time) = (E_inf_Phase1_prior(i_MC)).*(1-exp(-

time/Tau_Phase1_prior(i_MC))); %computation of the E_R1 

    if time == 1 

        Recovery_Phase1_real_EndTime(i_MC) = 0; 

    else 

        Recovery_Phase1_real_EndTime(i_MC) = Recovery_Phase1_real_time(i_MC,time-1); 

    end 

 

    Recovery_Phase2_real_time(i_MC) = Recovery_Phase1_real_EndTime(i_MC) + 

dE_inf_Phase2_prior(i_MC).*(1-exp(-1/Tau_Phase2_prior(i_MC))); 

 

    for t = 1: FieldLifeTime %this is the time shift in columns 

      %computation of the E_R with both R1 and R2 

      if t < time 

      Recovery_Phase1n2_real_time(i_MC,t) = Recovery_Phase1_real_time(i_MC,t); 

      elseif t == time 

      Recovery_Phase1n2_real_time(i_MC,t) = Recovery_Phase2_real_time(i_MC); 

      else 

      Recovery_Phase1n2_real_time(i_MC,t) = Recovery_Phase1_real_EndTime(i_MC) + 

dE_inf_Phase2_prior(i_MC).*(1-exp(-(t-time+1)/Tau_Phase2_prior(i_MC))); 

      end 

      Recovery_Phase1n2_real_time_ShiftTime(i_MC,t,time) = 

Recovery_Phase1n2_real_time(i_MC,t); 

      Recovery_Phase1n2_real_time_ShiftTime(i_MC,t,FieldLifeTime+1) = 

Recovery_Phase1_real_time(i_MC,t); 

 

      if t == 1 %computation of the flow rate at the first year 

      Rate_Phase1n2_real_time_ShiftTime(i_MC,t,time) = 

OOIP_prior(i_MC).*Recovery_Phase1n2_real_time_ShiftTime(i_MC,t,time); 

      Rate_Phase1n2_real_time_ShiftTime(i_MC,t,FieldLifeTime+1) = 

OOIP_prior(i_MC).*Recovery_Phase1n2_real_time_ShiftTime(i_MC,t,FieldLifeTime+1); 

      else %computation of the flow rate at the following years 



 

106 
 

      Rate_Phase1n2_real_time_ShiftTime(i_MC,t,time) = 

OOIP_prior(i_MC).*(Recovery_Phase1n2_real_time_ShiftTime(i_MC,t,time)-

Recovery_Phase1n2_real_time_ShiftTime(i_MC,t-1,time)); 

      Rate_Phase1n2_real_time_ShiftTime(i_MC,t,FieldLifeTime+1) = 

OOIP_prior(i_MC).*(Recovery_Phase1n2_real_time_ShiftTime(i_MC,t,FieldLifeTime+1)-

Recovery_Phase1n2_real_time_ShiftTime(i_MC,t-1,FieldLifeTime+1)); 

      end 

 

    end 

    end 

end 

 

% Computation of the measurement error and the measured oil production rates 

ErrorSD_Matrix = ErrorSD4Rate_Pct.*Rate_Phase1n2_real_time_ShiftTime; 

ObsRate_Phase1n2_real_time_ShiftTime = 

normrnd(Rate_Phase1n2_real_time_ShiftTime,ErrorSD_Matrix); 

 

 

% 3. Calculation of Cashflow and NPV 

% This section computes te cashflow and the NPV used in the example problem 

 

N_MC = size(ObsRate_Phase1n2_real_time_ShiftTime,1); 

FieldLifeTime = size(ObsRate_Phase1n2_real_time_ShiftTime,2); 

CashFlow = zeros(N_MC,FieldLifeTime); 

DisCashFlow = zeros(N_MC,FieldLifeTime); 

DisCashFlow_ShiftTime = zeros(N_MC,FieldLifeTime,FieldLifeTime+1); 

NPV_reals = zeros(N_MC,1); 

NPVtable_LTPhase1_LTPhase2_real = zeros(FieldLifeTime+1,FieldLifeTime+1,N_MC); 

 

% Values of Economic Parameters 

OilPrice = 50; 

Capex_Phase1 = 50; 

Capex_Phase2After1 = 40; 

Capex_Phase2No1 = 75; 

Opex_Phase1 = 20; 

Opex_Phase2 = 30; 

DisRate = 0.12; 

 

for t = 1: FieldLifeTime 

    for time = 1: FieldLifeTime+1 

        if t == time 

            if time == 1 

                CashFlow(:,t) = OilPrice.*ObsRate_Phase1n2_real_time_ShiftTime(:,t,time) - 

Opex_Phase2 - Capex_Phase2No1; 

                DisCashFlow(:,t) = CashFlow(:,t)/((1+DisRate).^(t)); 

            else 

               CashFlow(:,t) = OilPrice.*ObsRate_Phase1n2_real_time_ShiftTime(:,t,time) - 

Opex_Phase2 - Capex_Phase2After1; 

               DisCashFlow(:,t) = CashFlow(:,t)/((1+DisRate).^(t)); 

            end 

        elseif t < time 

            if t == 1 

                CashFlow(:,t) = OilPrice.*ObsRate_Phase1n2_real_time_ShiftTime(:,t,time) - 

Opex_Phase1 - Capex_Phase1; 

                DisCashFlow(:,t) = CashFlow(:,t)/((1+DisRate).^(t)); 

            else 

                CashFlow(:,t) = OilPrice.*ObsRate_Phase1n2_real_time_ShiftTime(:,t,time) - 

Opex_Phase1; 
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                DisCashFlow(:,t) = CashFlow(:,t)/((1+DisRate).^(t)); 

            end 

        else 

            CashFlow(:,t) = OilPrice.*ObsRate_Phase1n2_real_time_ShiftTime(:,t,time) - 

Opex_Phase2; 

            DisCashFlow(:,t) = CashFlow(:,t)/((1+DisRate).^(t)); 

        end 

 

        DisCashFlow_ShiftTime(:,t,time) = DisCashFlow(:,t); 

 

        if time == 1 

                NPV_reals(:) = sum(DisCashFlow_ShiftTime(:,1:t,time),2); 

                NPVtable_LTPhase1_LTPhase2_real(time,t+1,:) = NPV_reals(:); 

        elseif time == FieldLifeTime+1 

                NPV_reals(:) = sum(DisCashFlow_ShiftTime(:,1:FieldLifeTime,time),2); 

                NPVtable_LTPhase1_LTPhase2_real(time,1,:) = NPV_reals(:); 

        else 

            if t == time 

                NPV_reals(:) = sum(DisCashFlow_ShiftTime(:,1:time,time),2); 

                NPVtable_LTPhase1_LTPhase2_real(time,2,:) = NPV_reals(:); 

            elseif t < time 

                NPV_reals(:) = sum(DisCashFlow_ShiftTime(:,1:time-1,time),2); 

                NPVtable_LTPhase1_LTPhase2_real(time,1,:) = NPV_reals(:); 

            else 

                NPV_reals(:) = sum(DisCashFlow_ShiftTime(:,1:t,time),2); 

                NPVtable_LTPhase1_LTPhase2_real(time,t-time+2,:) = NPV_reals(:); 

            end 

        end 

    end 

end 

 

 

% 4. Determination of DWOI, VOWI, DWPI, and VOPI 

% This section determines the Decision Without Information and Decision With Perfect 

Information 

% The corresponding Value Without Information and Value of Perfect Information are estimated 

 

N_MC = size(ObsRate_Phase1n2_real_time_ShiftTime,1); 

FieldLifeTime = size(ObsRate_Phase1n2_real_time_ShiftTime,2); 

N_Phase1n2LifeTime = sum(1:FieldLifeTime+1); 

NPVvector_1real = zeros(N_Phase1n2LifeTime,3); 

NPVmatrix_reals = zeros(N_Phase1n2LifeTime,N_MC); 

Sum_NPVvector_1real = zeros(N_Phase1n2LifeTime,1); 

meanNPVvector = zeros(N_Phase1n2LifeTime,3); 

NPV_element_vector = zeros(FieldLifeTime+1,FieldLifeTime+1); 

Phase1n2LifeTimeTable = zeros(N_Phase1n2LifeTime,2); 

 

VWPI_real = zeros(N_MC,1); 

DWPI_Phase1LifeTime_real = zeros(N_MC,1); 

DWPI_Phase2LifeTime_real = zeros(N_MC,1); 

 

for t = 1: FieldLifeTime 

    for time = 1: FieldLifeTime+1 

        NPV_element_vector(time,t+1) = t; 

        if time > 1 

            NPV_element_vector(time,FieldLifeTime-time+3:FieldLifeTime+1) = FieldLifeTime+1; 

        else 

            NPV_element_vector(time,t+1) = t; 
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        end 

    end 

end 

 

[row_NPV_element,col_NPV_element]=find(NPV_element_vector(:,:) < FieldLifeTime+1); 

 

for k = 1: N_Phase1n2LifeTime 

    NPVvector_1real(k,1) = col_NPV_element(k)-1; 

    NPVvector_1real(k,2) = row_NPV_element(k)-1; 

    meanNPVvector(k,1) = col_NPV_element(k)-1; 

    meanNPVvector(k,2) = row_NPV_element(k)-1; 

end 

 

for i_MC = 1: N_MC 

    for k = 1: N_Phase1n2LifeTime 

        NPVvector_1real(k,3) = 

NPVtable_LTPhase1_LTPhase2_real(col_NPV_element(k),row_NPV_element(k),i_MC); 

        NPVmatrix_reals(k,i_MC) = NPVvector_1real(k,3); 

        [VWPI_real(i_MC),DWPI_idx] = max(NPVvector_1real(:,3)); 

        DWPI_Phase1LifeTime_real(i_MC) = NPVvector_1real(DWPI_idx,1); 

        DWPI_Phase2LifeTime_real(i_MC) = NPVvector_1real(DWPI_idx,2); 

    end 

end 

 

meanNPV = mean(NPVmatrix_reals,2); 

 

for k = 1: N_Phase1n2LifeTime 

    meanNPVvector(k,3) = meanNPV(k,1); 

end 

 

[EVWOI,DWOI_idx] = max(meanNPVvector(:,3)); 

DWOI_Phase1LifeTime = col_NPV_element(DWOI_idx)-1; 

DWOI_Phase2LifeTime = row_NPV_element(DWOI_idx)-1; 

DWOI_LifeTime = DWOI_Phase1LifeTime + DWOI_Phase2LifeTime; 

DWPI_LifeTime_real = DWPI_Phase1LifeTime_real + DWPI_Phase2LifeTime_real; 

Phase1n2LifeTimeTable(:,1) = meanNPVvector(:,1); 

Phase1n2LifeTimeTable(:,2) = meanNPVvector(:,2); 

EVWPI = mean(VWPI_real); 

VOPI = EVWPI - EVWOI; 

 

%  5. Path Table Generation (Modified LSM algorithm) 

%  This section determines the optimal stopping time given the switch time at every year 

%  Regression Analysis is applied 

%  The NPV corresponding to the optimal stopping time is recorded into the PathTable 

 

N_MC = size(ObsRate_Phase1n2_real_time_ShiftTime,1); 

FieldLifeTime = size(ObsRate_Phase1n2_real_time_ShiftTime,2); 

SRDM_Shift_Stop_OptNPV_real = zeros(N_MC,1); 

 

PathTable = zeros(N_MC,FieldLifeTime+1); 

PathTable(:,end) = NPVtable_LTPhase1_LTPhase2_real(FieldLifeTime+1,1,:); 

Phase2_StopTime_real_Phase1LifeTime = zeros(N_MC,FieldLifeTime+1); 

 

for k_Shift_time = 1: FieldLifeTime 

        NPV_2Phases_matrix = zeros(N_MC,k_Shift_time+1); 

    for k_Stop_time = 1: k_Shift_time+1 

        NPV_2Phases_matrix(:,k_Stop_time) = NPVtable_LTPhase1_LTPhase2_real(FieldLifeTime-

k_Shift_time+1,k_Stop_time,:); 
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    end 

    for k_StopTime = 1: k_Shift_time 

        if k_StopTime == 1 

            x_data_stop_SRDM = ObsRate_Phase1n2_real_time_ShiftTime(:,1:FieldLifeTime-

k_StopTime,FieldLifeTime-k_Shift_time+1);  

            X_stop_SRDM = [ones(N_MC,1) x_data_stop_SRDM]; 

            y_data_stop_matrix = [NPV_2Phases_matrix(:,k_Shift_time-k_StopTime+1) 

NPV_2Phases_matrix(:,k_Shift_time-k_StopTime+2)]; 

            [Stop_value,Stop_idx] = 

max([X_stop_SRDM*regress(NPV_2Phases_matrix(:,k_Shift_time-k_StopTime+1),X_stop_SRDM) 

X_stop_SRDM*regress(NPV_2Phases_matrix(:,k_Shift_time-k_StopTime+2),X_stop_SRDM)],[],2); 

            for i_MC = 1: N_MC 

                SRDM_Shift_Stop_OptNPV_real(i_MC,1) = 

y_data_stop_matrix(i_MC,Stop_idx(i_MC)); 

            end 

        else 

            x_data_stop_SRDM = ObsRate_Phase1n2_real_time_ShiftTime(:,1:FieldLifeTime-

k_StopTime,FieldLifeTime-k_Shift_time+1);  

            X_stop_SRDM = [ones(N_MC,1) x_data_stop_SRDM]; 

            y_data_stop_matrix = [NPV_2Phases_matrix(:,k_Shift_time-k_StopTime+1) 

SRDM_Shift_Stop_OptNPV_real(:,1)]; 

            [Stop_value,Stop_idx] = 

max([X_stop_SRDM*regress(NPV_2Phases_matrix(:,k_Shift_time-k_StopTime+1),X_stop_SRDM) 

X_stop_SRDM*regress(SRDM_Shift_Stop_OptNPV_real(:,1),X_stop_SRDM)],[],2); 

            for i_MC = 1: N_MC 

                SRDM_Shift_Stop_OptNPV_real(i_MC,1) = 

y_data_stop_matrix(i_MC,Stop_idx(i_MC)); 

            end 

        end 

    end 

    for i_MC = 1: N_MC 

        PathTable(i_MC,FieldLifeTime-k_Shift_time+1) = SRDM_Shift_Stop_OptNPV_real(i_MC,1); 

        for k_Stop_time = 1: k_Shift_time+1 

            if SRDM_Shift_Stop_OptNPV_real(i_MC,1) == NPV_2Phases_matrix(i_MC,k_Stop_time) 

                Phase2_StopTime_real_Phase1LifeTime(i_MC,FieldLifeTime-k_Shift_time+1) = 

k_Stop_time-1; 

            end 

        end 

    end 

end 

 

% 6. SRDM Approach (Modified LSM algorithm) 

% This section determines the optimal decision policy based on SRDM approach 

 

FieldLifeTime = size(ObsRate_Phase1n2_real_time_ShiftTime,2); 

y_data_continuation = zeros(N_MC,1); 

y_data_shift = zeros(N_MC,1); 

y_reg_continuation = zeros(N_MC,1); 

y_reg_shift = zeros(N_MC,1); 

x_data = ObsRate_Phase1n2_real_time_ShiftTime(:,:,FieldLifeTime+1); 

 

ValueTable = zeros(N_MC,FieldLifeTime+1); 

ValueTable(:,end) = PathTable(:,end); 

SRDM_DecisionTable = zeros(N_MC,FieldLifeTime+1); 

SRDM_DecisionTable(:,end) = 1; 

 

for k_Shift_time = 1:FieldLifeTime 

    X = [ones(N_MC,1) x_data(:,1:FieldLifeTime-k_Shift_time)];  
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    y_data_shift(:) = PathTable(:,FieldLifeTime-k_Shift_time+1); 

    coef_shift = regress(y_data_shift,X); 

    y_reg_shift(:) = X*coef_shift; 

    y_data_continuation(:) = ValueTable(:,FieldLifeTime-k_Shift_time+2); 

    coef_continuation = regress(y_data_continuation,X); 

    y_reg_continuation(:) = X*coef_continuation; 

    ENPVTable_Comparison = [y_reg_shift, y_reg_continuation]; 

    NPV_SRDM = [y_data_shift, y_data_continuation]; 

    [ENPV_SRDM,ENPV_SRDM_idx] = max(ENPVTable_Comparison,[],2); 

 

    for i_MC = 1: N_MC 

        ValueTable(i_MC,FieldLifeTime-k_Shift_time+1) = NPV_SRDM(i_MC,ENPV_SRDM_idx(i_MC)); 

        if y_reg_continuation(i_MC) > y_reg_shift(i_MC) 

            SRDM_DecisionTable(i_MC,FieldLifeTime-k_Shift_time+1) = 0; 

        else 

            SRDM_DecisionTable(i_MC,FieldLifeTime-k_Shift_time+1) = 1; 

        end 

    end 

end 

 

ShiftValue = PathTable(:,1); 

ExpShiftValue = mean(ShiftValue); 

 

ContinuationValue = ValueTable(:,1); 

ExpContinuationValue = mean(ContinuationValue); 

EVWII = ExpContinuationValue; 

VOI = EVWII - EVWOI; 

VOI_over_EVWOI_pct = VOI/EVWOI*100; 

 

[~,DWI_Phase1LifeTime_idx] = max(SRDM_DecisionTable,[],2); 

DWI_Phase1LifeTime = DWI_Phase1LifeTime_idx-1; 

 

DWI_Phase2LifeTime = zeros(N_MC,1); 

for i_MC = 1:N_MC 

    Phase1LifeTime_idx_real = DWI_Phase1LifeTime_idx(i_MC,1); 

    DWI_Phase2LifeTime(i_MC,1) = 

Phase2_StopTime_real_Phase1LifeTime(i_MC,Phase1LifeTime_idx_real); 

end 

 

DWI_LifeTime = DWI_Phase1LifeTime+DWI_Phase2LifeTime; 
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Appendix B1.2: CLRM Approach  
This code determines the optimal decision policy by using CLRM approach. To run this 
algorithm, sections 1, 2, 3, and 4 from Modified LSM Algorithm (Appendix B1.1) have to be 
run first.  
 

N_MC = size(ObsRate_Phase1n2_real_time_ShiftTime,1); 

FieldLifeTime = size(ObsRate_Phase1n2_real_time_ShiftTime,2); 

N_Phase1n2LifeTime = sum(1:FieldLifeTime+1); 

N_LifeTimeComb = N_Phase1n2LifeTime; 

Times = 1:1:FieldLifeTime; 

CLRM_OptNPV_real = zeros(N_MC,1); 

NPV_Tab_matrix = transpose(NPVmatrix_reals); 

Prior_ENPV = meanNPVvector(:,3); 

[max_Prior_ENPV, max_Prior_ENPV_idx] = max(meanNPVvector(:,3),[],1); 

x_data_switch_CLRM = ObsRate_Phase1n2_real_time_ShiftTime(:,:,FieldLifeTime+1); 

 

CLRM_PhaseLifes_Opt_reals = zeros(N_MC,2); 

 

if max_Prior_ENPV_idx <= Times(FieldLifeTime)+1 %Finding if Switch Time is optimal at Y1 

    Shift_time = 1; 

    t_dataPhase2 = 1; 

    while t_dataPhase2 <= Times(FieldLifeTime-Shift_time+1) 

        if t_dataPhase2 == 1 && max_Prior_ENPV_idx == 1 %Switch and Stop at Y1 are optimal 

            for i_MC = 1: N_MC 

                CLRM_OptNPV_real(i_MC,1) = max_Prior_ENPV; 

            end 

            break; %The whole loop will break here 

        else %Given Switch at Y1 and Stop is not at Y1 

            x_data_stop_CLRM = ObsRate_Phase1n2_real_time_ShiftTime(:,:,Shift_time); 

            X_stop_CLRM = [ones(N_MC,1) x_data_stop_CLRM(:,1:t_dataPhase2)]; 

            y_data_stop_CLRM = NPV_Tab_matrix(:,t_dataPhase2+1:FieldLifeTime+1); 

            y_reg_stop_CLRM = zeros(N_MC,FieldLifeTime-t_dataPhase2+1); 

            for t = 1: FieldLifeTime-t_dataPhase2+1 

                y_reg_stop_CLRM(:,t) = 

X_stop_CLRM*regress(y_data_stop_CLRM(:,t),X_stop_CLRM); 

            end 

            [StopTime_reg,StopTime_idx] = max(y_reg_stop_CLRM,[],2); 

        for i_MC = 1: N_MC 

            if StopTime_reg(i_MC) == y_reg_stop_CLRM(i_MC,1) && CLRM_OptNPV_real(i_MC,1) == 0 

                CLRM_OptNPV_real(i_MC,1) = y_data_stop_CLRM(i_MC,1); 

                CLRM_PhaseLifes_Opt_reals(i_MC,1) = Shift_time-1;  

                CLRM_PhaseLifes_Opt_reals(i_MC,2) = t_dataPhase2+StopTime_idx(i_MC)-1;  

            else 

                continue; 

            end 

        end 

        end 

        t_dataPhase2 = t_dataPhase2+1; 

    end 

else 

% This part is to find the corresponding optimal stop time given Switch time is not at Y1 

    for Shift_time = 2: FieldLifeTime %Finding and recording the optimal switch time before 

determining the stop time 

        N_LifeTimeComb = N_LifeTimeComb-Times(FieldLifeTime-Shift_time+2)-1; 

        y_data_switch_CLRM = NPV_Tab_matrix(:,N_Phase1n2LifeTime-
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N_LifeTimeComb+1:N_Phase1n2LifeTime); 

        y_reg_switch_CLRM = zeros(N_MC,N_LifeTimeComb); 

        ENPVTabComp = zeros(N_MC,N_LifeTimeComb); 

        X_switch_CLRM = [ones(N_MC,1) x_data_switch_CLRM(:,1:Shift_time-1)]; 

        for i_LifeTimeComb = 1: N_LifeTimeComb 

            coef_reg_CLRM = regress(y_data_switch_CLRM(:,i_LifeTimeComb),X_switch_CLRM); 

            y_reg_switch_CLRM(:,i_LifeTimeComb) = X_switch_CLRM*coef_reg_CLRM; 

            ENPVTabComp(:,i_LifeTimeComb) = y_reg_switch_CLRM(:,i_LifeTimeComb); 

        end 

 

    [CLRM_reg,CLRM_idx] = max(ENPVTabComp,[],2); 

 

    if Shift_time == FieldLifeTime 

        [SwitchDecision_CLRM,SwitchDecision_CLRM_idx] = find(CLRM_idx <= Times(FieldLifeTime-

Shift_time+2)+1); 

        [ContinueTime_reg,ContinueTime_idx] = find(CLRM_idx == Times(FieldLifeTime-

Shift_time+2)+1); 

        for i_path = 1: length(ContinueTime_reg) 

            if CLRM_OptNPV_real(ContinueTime_reg(i_path),1) == 0 

               CLRM_OptNPV_real(ContinueTime_reg(i_path),1) = 

y_data_switch_CLRM(ContinueTime_reg(i_path),end); 

               CLRM_PhaseLifes_Opt_reals(ContinueTime_reg(i_path),1) = FieldLifeTime; 

               CLRM_PhaseLifes_Opt_reals(ContinueTime_reg(i_path),2) = 0; 

            else 

                continue; 

            end 

        end 

    else 

        [SwitchDecision_CLRM,SwitchDecision_CLRM_idx] = find(CLRM_idx <= Times(FieldLifeTime-

Shift_time+2)); 

    end 

 

    x_data_stop_CLRM = ObsRate_Phase1n2_real_time_ShiftTime(:,:,Shift_time); 

    t_dataPhase2 = 1; 

    while t_dataPhase2 <= Times(FieldLifeTime-Shift_time+1)+1 

        X_stop_CLRM = [ones(N_MC,1) x_data_stop_CLRM(:,1:t_dataPhase2+Shift_time-2)]; 

        y_data_stop_CLRM = y_data_switch_CLRM(:, t_dataPhase2:Times(FieldLifeTime-

Shift_time+1)+1); 

        y_reg_stop_CLRM = zeros(N_MC,Times(FieldLifeTime-Shift_time+1)-t_dataPhase2+2); 

        for t = 1: Times(FieldLifeTime-Shift_time+1)-t_dataPhase2+2 

            y_reg_stop_CLRM(:,t) = X_stop_CLRM*regress(y_data_stop_CLRM(:,t),X_stop_CLRM); 

        end 

            [StopTime_reg,StopTime_idx] = max(y_reg_stop_CLRM,[],2); 

        for i_path = 1: length(SwitchDecision_CLRM) 

            if StopTime_reg(SwitchDecision_CLRM(i_path)) == 

y_reg_stop_CLRM(SwitchDecision_CLRM(i_path),1) && 

CLRM_OptNPV_real(SwitchDecision_CLRM(i_path),1) == 0 

                CLRM_OptNPV_real(SwitchDecision_CLRM(i_path),1) = 

y_data_stop_CLRM(SwitchDecision_CLRM(i_path),1); 

                CLRM_PhaseLifes_Opt_reals(SwitchDecision_CLRM(i_path),1) = Shift_time-1; 

                CLRM_PhaseLifes_Opt_reals(SwitchDecision_CLRM(i_path),2) = 

t_dataPhase2+StopTime_idx(SwitchDecision_CLRM(i_path))-2;  

            else 

                continue; 

            end 

        end 

            t_dataPhase2 = t_dataPhase2+1; 

    end 
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    end 

end 

 

DWI_CLRM_Phase1LifeTime = CLRM_PhaseLifes_Opt_reals(:,1); 

DWI_CLRM_Phase2LifeTime = CLRM_PhaseLifes_Opt_reals(:,2); 

DWI_CLRM_LifeTime = DWI_CLRM_Phase1LifeTime + DWI_CLRM_Phase2LifeTime; 

 

EVWI_CLRM = mean(CLRM_OptNPV_real); 

VOI_CLRM = EVWI_CLRM-EVWOI; 
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Appendix B2 
 
 

      Appendix B2.1: Regression Function Equation (13) 
This code consists of the modified versions of the sections 5 and 6 of Modified LSM Algorithm 
(Appendix B1.1) and CLRM (Appendix B1.2). With respect to this, the modification is done 
on the regression analysis. Thus, sections 1 to 4 of Modified LSM Algorithm (Appendix B1.1) 
have to be run first before executing this code. This code corresponds to the Regression 
Function of Equation (13) in the report. 
 

% 1. Path Table Generation 

 

N_MC = size(ObsRate_Phase1n2_real_time_ShiftTime,1); 

FieldLifeTime = size(ObsRate_Phase1n2_real_time_ShiftTime,2); 

SRDM_Shift_Stop_OptNPV_real = zeros(N_MC,1); 

 

PathTable = zeros(N_MC,FieldLifeTime+1); 

PathTable(:,end) = NPVtable_LTPhase1_LTPhase2_real(FieldLifeTime+1,1,:); 

Phase2_StopTime_real_Phase1LifeTime = zeros(N_MC,FieldLifeTime+1); 

 

for k_Shift_time = 1: FieldLifeTime 

        NPV_2Phases_matrix = zeros(N_MC,k_Shift_time+1); 

    for k_Stop_time = 1: k_Shift_time+1 

        NPV_2Phases_matrix(:,k_Stop_time) = NPVtable_LTPhase1_LTPhase2_real(FieldLifeTime-

k_Shift_time+1,k_Stop_time,:); 

    end 

    for k_StopTime = 1: k_Shift_time 

        if k_StopTime == 1 

            x_data_stop_SRDM = ObsRate_Phase1n2_real_time_ShiftTime(:,1:FieldLifeTime-

k_StopTime,FieldLifeTime-k_Shift_time+1); 

            x_data_sqrt_stop_SRDM = sqrt(x_data_stop_SRDM(:,1:FieldLifeTime-k_StopTime-

1)).*sqrt(x_data_stop_SRDM(:,2:FieldLifeTime-k_StopTime)); 

            X_stop_SRDM = [ones(N_MC,1) x_data_stop_SRDM x_data_sqrt_stop_SRDM]; 

            y_data_stop_matrix = [NPV_2Phases_matrix(:,k_Shift_time-k_StopTime+1) 

NPV_2Phases_matrix(:,k_Shift_time-k_StopTime+2)]; 

            [Stop_value,Stop_idx] = 

max([X_stop_SRDM*regress(NPV_2Phases_matrix(:,k_Shift_time-k_StopTime+1),X_stop_SRDM) 

X_stop_SRDM*regress(NPV_2Phases_matrix(:,k_Shift_time-k_StopTime+2),X_stop_SRDM)],[],2); 

            for i_MC = 1: N_MC 

                SRDM_Shift_Stop_OptNPV_real(i_MC,1) = 

y_data_stop_matrix(i_MC,Stop_idx(i_MC)); 

            end 

        else 

            x_data_stop_SRDM = ObsRate_Phase1n2_real_time_ShiftTime(:,1:FieldLifeTime-

k_StopTime,FieldLifeTime-k_Shift_time+1); 

            x_data_sqrt_stop_SRDM = sqrt(x_data_stop_SRDM(:,1:FieldLifeTime-k_StopTime-

1)).*sqrt(x_data_stop_SRDM(:,2:FieldLifeTime-k_StopTime)); 

            X_stop_SRDM = [ones(N_MC,1) x_data_stop_SRDM x_data_sqrt_stop_SRDM]; 

            y_data_stop_matrix = [NPV_2Phases_matrix(:,k_Shift_time-k_StopTime+1) 

SRDM_Shift_Stop_OptNPV_real(:,1)]; 

            [Stop_value,Stop_idx] = 

max([X_stop_SRDM*regress(NPV_2Phases_matrix(:,k_Shift_time-k_StopTime+1),X_stop_SRDM) 

X_stop_SRDM*regress(SRDM_Shift_Stop_OptNPV_real(:,1),X_stop_SRDM)],[],2); 
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            for i_MC = 1: N_MC 

                SRDM_Shift_Stop_OptNPV_real(i_MC,1) = 

y_data_stop_matrix(i_MC,Stop_idx(i_MC)); 

            end 

        end 

    end 

    for i_MC = 1: N_MC 

        PathTable(i_MC,FieldLifeTime-k_Shift_time+1) = SRDM_Shift_Stop_OptNPV_real(i_MC,1); 

        for k_Stop_time = 1: k_Shift_time+1 

            if SRDM_Shift_Stop_OptNPV_real(i_MC,1) == NPV_2Phases_matrix(i_MC,k_Stop_time) 

                Phase2_StopTime_real_Phase1LifeTime(i_MC,FieldLifeTime-k_Shift_time+1) = 

k_Stop_time-1; 

            end 

        end 

    end 

end 

 

% 2. SRDM Approach 

 

FieldLifeTime = size(ObsRate_Phase1n2_real_time_ShiftTime,2); 

y_data_continuation = zeros(N_MC,1); 

y_data_shift = zeros(N_MC,1); 

y_reg_continuation = zeros(N_MC,1); 

y_reg_shift = zeros(N_MC,1); 

x_data = ObsRate_Phase1n2_real_time_ShiftTime(:,:,FieldLifeTime+1); 

 

ValueTable = zeros(N_MC,FieldLifeTime+1); 

ValueTable(:,end) = PathTable(:,end); 

SRDM_DecisionTable = zeros(N_MC,FieldLifeTime+1); 

SRDM_DecisionTable(:,end) = 1; 

 

for k_Shift_time = 1:FieldLifeTime 

    x_data_sqrt = sqrt(x_data(:,1:FieldLifeTime-k_Shift_time-

1)).*sqrt(x_data(:,2:FieldLifeTime-k_Shift_time)); 

    X = [ones(N_MC,1) x_data(:,1:FieldLifeTime-k_Shift_time) x_data_sqrt]; 

    y_data_shift(:) = PathTable(:,FieldLifeTime-k_Shift_time+1); 

    coef_shift = regress(y_data_shift,X); 

    y_reg_shift(:) = X*coef_shift; 

    y_data_continuation(:) = ValueTable(:,FieldLifeTime-k_Shift_time+2); 

    coef_continuation = regress(y_data_continuation,X); 

    y_reg_continuation(:) = X*coef_continuation; 

    ENPVTable_Comparison = [y_reg_shift, y_reg_continuation]; 

    NPV_SRDM = [y_data_shift, y_data_continuation]; 

    [ENPV_SRDM,ENPV_SRDM_idx] = max(ENPVTable_Comparison,[],2); 

 

    for i_MC = 1: N_MC 

        ValueTable(i_MC,FieldLifeTime-k_Shift_time+1) = NPV_SRDM(i_MC,ENPV_SRDM_idx(i_MC)); 

        if y_reg_continuation(i_MC) > y_reg_shift(i_MC) 

            SRDM_DecisionTable(i_MC,FieldLifeTime-k_Shift_time+1) = 0; 

        else 

            SRDM_DecisionTable(i_MC,FieldLifeTime-k_Shift_time+1) = 1; 

        end 

    end 

end 

 

ShiftValue = PathTable(:,1); 

ExpShiftValue = mean(ShiftValue); 
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ContinuationValue = ValueTable(:,1); 

ExpContinuationValue = mean(ContinuationValue); 

EVWII = ExpContinuationValue; 

VOI = EVWII - EVWOI; 

VOI_over_EVWOI_pct = VOI/EVWOI*100; 

 

[~,DWI_Phase1LifeTime_idx] = max(SRDM_DecisionTable,[],2); 

DWI_Phase1LifeTime = DWI_Phase1LifeTime_idx-1; 

 

DWI_Phase2LifeTime = zeros(N_MC,1); 

for i_MC = 1:N_MC 

    Phase1LifeTime_idx_real = DWI_Phase1LifeTime_idx(i_MC,1); 

    DWI_Phase2LifeTime(i_MC,1) = 

Phase2_StopTime_real_Phase1LifeTime(i_MC,Phase1LifeTime_idx_real); 

end 

 

DWI_LifeTime = DWI_Phase1LifeTime+DWI_Phase2LifeTime; 

 

% 3. CLRM Approach 

 

N_MC = size(ObsRate_Phase1n2_real_time_ShiftTime,1); 

FieldLifeTime = size(ObsRate_Phase1n2_real_time_ShiftTime,2); 

N_Phase1n2LifeTime = sum(1:FieldLifeTime+1); 

N_LifeTimeComb = N_Phase1n2LifeTime; 

Times = 1:1:FieldLifeTime; 

CLRM_OptNPV_real = zeros(N_MC,1); 

NPV_Tab_matrix = transpose(NPVmatrix_reals); 

Prior_ENPV = meanNPVvector(:,3); 

[max_Prior_ENPV, max_Prior_ENPV_idx] = max(meanNPVvector(:,3),[],1); 

x_data_switch_CLRM = ObsRate_Phase1n2_real_time_ShiftTime(:,:,FieldLifeTime+1); 

 

CLRM_PhaseLifes_Opt_reals = zeros(N_MC,2); 

 

if max_Prior_ENPV_idx <= Times(FieldLifeTime)+1 %Finding if Switch Time is optimal at Y1 

    Shift_time = 1; 

    t_dataPhase2 = 1; 

    while t_dataPhase2 <= Times(FieldLifeTime-Shift_time+1) 

        if t_dataPhase2 == 1 && max_Prior_ENPV_idx == 1 %Switch and Stop at Y1 are optimal 

            for i_MC = 1: N_MC 

                CLRM_OptNPV_real(i_MC,1) = max_Prior_ENPV; 

            end 

            break; %The whole loop will break here 

        else %Given Switch at Y1 and Stop is not at Y1 

            x_data_stop_CLRM = ObsRate_Phase1n2_real_time_ShiftTime(:,:,Shift_time); 

            if t_dataPhase2 == 1 

                x_data_sqrt_stop_CLRM = sqrt(x_data_stop_CLRM(:,1:t_dataPhase2)); 

                X_stop_CLRM = [ones(N_MC,1) x_data_stop_CLRM(:,1:t_dataPhase2)]; 

            else 

                x_data_sqrt_stop_CLRM = sqrt(x_data_stop_CLRM(:,1:t_dataPhase2-

1)).*sqrt(x_data_stop_CLRM(:,2:t_dataPhase2)); 

                X_stop_CLRM = [ones(N_MC,1) x_data_stop_CLRM(:,1:t_dataPhase2) 

x_data_sqrt_stop_CLRM]; 

            end 

            y_data_stop_CLRM = NPV_Tab_matrix(:,t_dataPhase2+1:FieldLifeTime+1); 

            y_reg_stop_CLRM = zeros(N_MC,FieldLifeTime-t_dataPhase2+1); 

            for t = 1: FieldLifeTime-t_dataPhase2+1 

                y_reg_stop_CLRM(:,t) = 

X_stop_CLRM*regress(y_data_stop_CLRM(:,t),X_stop_CLRM); 
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            end 

            [StopTime_reg,StopTime_idx] = max(y_reg_stop_CLRM,[],2); 

        for i_MC = 1: N_MC 

            if StopTime_reg(i_MC) == y_reg_stop_CLRM(i_MC,1) && CLRM_OptNPV_real(i_MC,1) == 0 

                CLRM_OptNPV_real(i_MC,1) = y_data_stop_CLRM(i_MC,1); 

                CLRM_PhaseLifes_Opt_reals(i_MC,1) = Shift_time-1; 

                CLRM_PhaseLifes_Opt_reals(i_MC,2) = t_dataPhase2+StopTime_idx(i_MC)-1; 

            else 

                continue; 

            end 

        end 

        end 

        t_dataPhase2 = t_dataPhase2+1; 

    end 

else 

% This part is to find the corresponding optimal stop time given Switch time is not at Y1 

    for Shift_time = 2: FieldLifeTime %Finding and recording the optimal switch time before 

determining the stop time 

        N_LifeTimeComb = N_LifeTimeComb-Times(FieldLifeTime-Shift_time+2)-1; 

        y_data_switch_CLRM = NPV_Tab_matrix(:,N_Phase1n2LifeTime-

N_LifeTimeComb+1:N_Phase1n2LifeTime); 

        y_reg_switch_CLRM = zeros(N_MC,N_LifeTimeComb); 

        ENPVTabComp = zeros(N_MC,N_LifeTimeComb); 

        if Shift_time == 2 

            x_data_sqrt_switch_CLRM = sqrt(x_data_switch_CLRM(:,1:Shift_time-1)); 

            X_switch_CLRM = [ones(N_MC,1) x_data_switch_CLRM(:,1:Shift_time-1)]; 

        else 

            x_data_sqrt_switch_CLRM = sqrt(x_data_switch_CLRM(:,1:Shift_time-

2)).*sqrt(x_data_switch_CLRM(:,2:Shift_time-1)); 

            X_switch_CLRM = [ones(N_MC,1) x_data_switch_CLRM(:,1:Shift_time-1) 

x_data_sqrt_switch_CLRM]; 

        end 

        for i_LifeTimeComb = 1: N_LifeTimeComb 

            coef_reg_CLRM = regress(y_data_switch_CLRM(:,i_LifeTimeComb),X_switch_CLRM); 

            y_reg_switch_CLRM(:,i_LifeTimeComb) = X_switch_CLRM*coef_reg_CLRM; 

            ENPVTabComp(:,i_LifeTimeComb) = y_reg_switch_CLRM(:,i_LifeTimeComb); 

        end 

 

    [CLRM_reg,CLRM_idx] = max(ENPVTabComp,[],2); 

 

    if Shift_time == FieldLifeTime 

        [SwitchDecision_CLRM,SwitchDecision_CLRM_idx] = find(CLRM_idx <= Times(FieldLifeTime-

Shift_time+2)+1); 

        [ContinueTime_reg,ContinueTime_idx] = find(CLRM_idx == Times(FieldLifeTime-

Shift_time+2)+1); 

        for i_path = 1: length(ContinueTime_reg) 

            if CLRM_OptNPV_real(ContinueTime_reg(i_path),1) == 0 

               CLRM_OptNPV_real(ContinueTime_reg(i_path),1) = 

y_data_switch_CLRM(ContinueTime_reg(i_path),end); 

               CLRM_PhaseLifes_Opt_reals(ContinueTime_reg(i_path),1) = FieldLifeTime; 

               CLRM_PhaseLifes_Opt_reals(ContinueTime_reg(i_path),2) = 0; 

            else 

                continue; 

            end 

        end 

    else 

        [SwitchDecision_CLRM,SwitchDecision_CLRM_idx] = find(CLRM_idx <= Times(FieldLifeTime-

Shift_time+2)); 
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    end 

 

    x_data_stop_CLRM = ObsRate_Phase1n2_real_time_ShiftTime(:,:,Shift_time); 

    t_dataPhase2 = 1; 

    while t_dataPhase2 <= Times(FieldLifeTime-Shift_time+1)+1 

        if t_dataPhase2 == 1 

            x_data_sqrt_stop_CLRM = sqrt(x_data_stop_CLRM(:,1:t_dataPhase2)); 

            X_stop_CLRM = [ones(N_MC,1) x_data_stop_CLRM(:,1:t_dataPhase2+Shift_time-2)]; 

        else 

            x_data_sqrt_stop_CLRM = sqrt(x_data_stop_CLRM(:,1:t_dataPhase2-

1)).*sqrt(x_data_stop_CLRM(:,2:t_dataPhase2)); 

            X_stop_CLRM = [ones(N_MC,1) x_data_stop_CLRM(:,1:t_dataPhase2+Shift_time-2) 

x_data_sqrt_stop_CLRM]; 

        end 

        y_data_stop_CLRM = y_data_switch_CLRM(:, t_dataPhase2:Times(FieldLifeTime-

Shift_time+1)+1); 

        y_reg_stop_CLRM = zeros(N_MC,Times(FieldLifeTime-Shift_time+1)-t_dataPhase2+2); 

        for t = 1: Times(FieldLifeTime-Shift_time+1)-t_dataPhase2+2 

            y_reg_stop_CLRM(:,t) = X_stop_CLRM*regress(y_data_stop_CLRM(:,t),X_stop_CLRM); 

        end 

            [StopTime_reg,StopTime_idx] = max(y_reg_stop_CLRM,[],2); 

        for i_path = 1: length(SwitchDecision_CLRM) 

            if StopTime_reg(SwitchDecision_CLRM(i_path)) == 

y_reg_stop_CLRM(SwitchDecision_CLRM(i_path),1) && 

CLRM_OptNPV_real(SwitchDecision_CLRM(i_path),1) == 0 

                CLRM_OptNPV_real(SwitchDecision_CLRM(i_path),1) = 

y_data_stop_CLRM(SwitchDecision_CLRM(i_path),1); 

                CLRM_PhaseLifes_Opt_reals(SwitchDecision_CLRM(i_path),1) = Shift_time-1; 

                CLRM_PhaseLifes_Opt_reals(SwitchDecision_CLRM(i_path),2) = 

t_dataPhase2+StopTime_idx(SwitchDecision_CLRM(i_path))-2; 

            else 

                continue; 

            end 

        end 

            t_dataPhase2 = t_dataPhase2+1; 

    end 

    end 

end 

 

DWI_CLRM_Phase1LifeTime = CLRM_PhaseLifes_Opt_reals(:,1); 

DWI_CLRM_Phase2LifeTime = CLRM_PhaseLifes_Opt_reals(:,2); 

DWI_CLRM_LifeTime = DWI_CLRM_Phase1LifeTime + DWI_CLRM_Phase2LifeTime; 

 

EVWI_CLRM = mean(CLRM_OptNPV_real); 

VOI_CLRM = EVWI_CLRM-EVWOI; 
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Appendix B2.2: Regression Function Equation (14) 
This code consists of the modified version of the sections 5 and 6 of Modified LSM Algorithm 
(Appendix B1.1) and CLRM (Appendix B1.2). With respect to this, the modification is done 
on the regression analysis. Thus, sections 1 to 4 of Modified LSM Algorithm (Appendix B1.1) 
have to be run first before executing this code. This code corresponds to the Regression 
Function of Equation (14) in the report. 
 

% 1. Path Table Generation 

 

N_MC = size(ObsRate_Phase1n2_real_time_ShiftTime,1); 

FieldLifeTime = size(ObsRate_Phase1n2_real_time_ShiftTime,2); 

SRDM_Shift_Stop_OptNPV_real = zeros(N_MC,1); 

 

PathTable = zeros(N_MC,FieldLifeTime+1); 

PathTable(:,end) = NPVtable_LTPhase1_LTPhase2_real(FieldLifeTime+1,1,:); 

Phase2_StopTime_real_Phase1LifeTime = zeros(N_MC,FieldLifeTime+1); 

 

for k_Shift_time = 1: FieldLifeTime 

        NPV_2Phases_matrix = zeros(N_MC,k_Shift_time+1); 

    for k_Stop_time = 1: k_Shift_time+1 

        NPV_2Phases_matrix(:,k_Stop_time) = NPVtable_LTPhase1_LTPhase2_real(FieldLifeTime-

k_Shift_time+1,k_Stop_time,:); 

    end 

    for k_StopTime = 1: k_Shift_time 

        if k_StopTime == 1 

            x_data_stop_SRDM = ObsRate_Phase1n2_real_time_ShiftTime(:,1:FieldLifeTime-

k_StopTime,FieldLifeTime-k_Shift_time+1); 

            x_data_sqrt_stop_SRDM = sqrt(x_data_stop_SRDM(:,1:FieldLifeTime-k_StopTime-

2)).*sqrt(x_data_stop_SRDM(:,2:FieldLifeTime-k_StopTime-

1)).*sqrt(x_data_stop_SRDM(:,3:FieldLifeTime-k_StopTime)); 

            X_stop_SRDM = [ones(N_MC,1) x_data_stop_SRDM x_data_sqrt_stop_SRDM]; 

            y_data_stop_matrix = [NPV_2Phases_matrix(:,k_Shift_time-k_StopTime+1) 

NPV_2Phases_matrix(:,k_Shift_time-k_StopTime+2)]; 

            [Stop_value,Stop_idx] = 

max([X_stop_SRDM*regress(NPV_2Phases_matrix(:,k_Shift_time-k_StopTime+1),X_stop_SRDM) 

X_stop_SRDM*regress(NPV_2Phases_matrix(:,k_Shift_time-k_StopTime+2),X_stop_SRDM)],[],2); 

            for i_MC = 1: N_MC 

                SRDM_Shift_Stop_OptNPV_real(i_MC,1) = 

y_data_stop_matrix(i_MC,Stop_idx(i_MC)); 

            end 

        else 

            x_data_stop_SRDM = ObsRate_Phase1n2_real_time_ShiftTime(:,1:FieldLifeTime-

k_StopTime,FieldLifeTime-k_Shift_time+1); 

            x_data_sqrt_stop_SRDM = sqrt(x_data_stop_SRDM(:,1:FieldLifeTime-k_StopTime-

2)).*sqrt(x_data_stop_SRDM(:,2:FieldLifeTime-k_StopTime-

1)).*sqrt(x_data_stop_SRDM(:,3:FieldLifeTime-k_StopTime)); 

            X_stop_SRDM = [ones(N_MC,1) x_data_stop_SRDM x_data_sqrt_stop_SRDM]; 

            y_data_stop_matrix = [NPV_2Phases_matrix(:,k_Shift_time-k_StopTime+1) 

SRDM_Shift_Stop_OptNPV_real(:,1)]; 

            [Stop_value,Stop_idx] = 

max([X_stop_SRDM*regress(NPV_2Phases_matrix(:,k_Shift_time-k_StopTime+1),X_stop_SRDM) 

X_stop_SRDM*regress(SRDM_Shift_Stop_OptNPV_real(:,1),X_stop_SRDM)],[],2); 

            for i_MC = 1: N_MC 

                SRDM_Shift_Stop_OptNPV_real(i_MC,1) = 
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y_data_stop_matrix(i_MC,Stop_idx(i_MC)); 

            end 

        end 

    end 

    for i_MC = 1: N_MC 

        PathTable(i_MC,FieldLifeTime-k_Shift_time+1) = SRDM_Shift_Stop_OptNPV_real(i_MC,1); 

        for k_Stop_time = 1: k_Shift_time+1 

            if SRDM_Shift_Stop_OptNPV_real(i_MC,1) == NPV_2Phases_matrix(i_MC,k_Stop_time) 

                Phase2_StopTime_real_Phase1LifeTime(i_MC,FieldLifeTime-k_Shift_time+1) = 

k_Stop_time-1; 

            end 

        end 

    end 

end 

 

% 2. SRDM Approach 

 

FieldLifeTime = size(ObsRate_Phase1n2_real_time_ShiftTime,2); 

y_data_continuation = zeros(N_MC,1); 

y_data_shift = zeros(N_MC,1); 

y_reg_continuation = zeros(N_MC,1); 

y_reg_shift = zeros(N_MC,1); 

x_data = ObsRate_Phase1n2_real_time_ShiftTime(:,:,FieldLifeTime+1); 

 

ValueTable = zeros(N_MC,FieldLifeTime+1); 

ValueTable(:,end) = PathTable(:,end); 

SRDM_DecisionTable = zeros(N_MC,FieldLifeTime+1); 

SRDM_DecisionTable(:,end) = 1; 

 

for k_Shift_time = 1:FieldLifeTime 

    x_data_sqrt = sqrt(x_data(:,1:FieldLifeTime-k_Shift_time-

2)).*sqrt(x_data(:,2:FieldLifeTime-k_Shift_time-1)).*sqrt(x_data(:,3:FieldLifeTime-

k_Shift_time)); 

    X = [ones(N_MC,1) x_data(:,1:FieldLifeTime-k_Shift_time) x_data_sqrt]; 

    y_data_shift(:) = PathTable(:,FieldLifeTime-k_Shift_time+1); 

    coef_shift = regress(y_data_shift,X); 

    y_reg_shift(:) = X*coef_shift; 

    y_data_continuation(:) = ValueTable(:,FieldLifeTime-k_Shift_time+2); 

    coef_continuation = regress(y_data_continuation,X); 

    y_reg_continuation(:) = X*coef_continuation; 

    ENPVTable_Comparison = [y_reg_shift, y_reg_continuation]; 

    NPV_SRDM = [y_data_shift, y_data_continuation]; 

    [ENPV_SRDM,ENPV_SRDM_idx] = max(ENPVTable_Comparison,[],2); 

 

    for i_MC = 1: N_MC 

        ValueTable(i_MC,FieldLifeTime-k_Shift_time+1) = NPV_SRDM(i_MC,ENPV_SRDM_idx(i_MC)); 

        if y_reg_continuation(i_MC) > y_reg_shift(i_MC) 

            SRDM_DecisionTable(i_MC,FieldLifeTime-k_Shift_time+1) = 0; 

        else 

            SRDM_DecisionTable(i_MC,FieldLifeTime-k_Shift_time+1) = 1; 

        end 

    end 

end 

 

ShiftValue = PathTable(:,1); 

ExpShiftValue = mean(ShiftValue); 

 

ContinuationValue = ValueTable(:,1); 



 

121 
 

ExpContinuationValue = mean(ContinuationValue); 

EVWII = ExpContinuationValue; 

VOI = EVWII - EVWOI; 

VOI_over_EVWOI_pct = VOI/EVWOI*100; 

 

[~,DWI_Phase1LifeTime_idx] = max(SRDM_DecisionTable,[],2); 

DWI_Phase1LifeTime = DWI_Phase1LifeTime_idx-1; 

 

DWI_Phase2LifeTime = zeros(N_MC,1); 

for i_MC = 1:N_MC 

    Phase1LifeTime_idx_real = DWI_Phase1LifeTime_idx(i_MC,1); 

    DWI_Phase2LifeTime(i_MC,1) = 

Phase2_StopTime_real_Phase1LifeTime(i_MC,Phase1LifeTime_idx_real); 

end 

 

DWI_LifeTime = DWI_Phase1LifeTime+DWI_Phase2LifeTime; 

 

% 3. CLRM Approach 

 

N_MC = size(ObsRate_Phase1n2_real_time_ShiftTime,1); 

FieldLifeTime = size(ObsRate_Phase1n2_real_time_ShiftTime,2); 

N_Phase1n2LifeTime = sum(1:FieldLifeTime+1); 

N_LifeTimeComb = N_Phase1n2LifeTime; 

Times = 1:1:FieldLifeTime; 

CLRM_OptNPV_real = zeros(N_MC,1); 

NPV_Tab_matrix = transpose(NPVmatrix_reals); 

Prior_ENPV = meanNPVvector(:,3); 

[max_Prior_ENPV, max_Prior_ENPV_idx] = max(meanNPVvector(:,3),[],1); 

x_data_switch_CLRM = ObsRate_Phase1n2_real_time_ShiftTime(:,:,FieldLifeTime+1); 

 

CLRM_PhaseLifes_Opt_reals = zeros(N_MC,2); 

 

if max_Prior_ENPV_idx <= Times(FieldLifeTime)+1 %Finding if Switch Time is optimal at Y1 

    Shift_time = 1; 

    t_dataPhase2 = 1; 

    while t_dataPhase2 <= Times(FieldLifeTime-Shift_time+1) 

        if t_dataPhase2 == 1 && max_Prior_ENPV_idx == 1 %Switch and Stop at Y1 are optimal 

            for i_MC = 1: N_MC 

                CLRM_OptNPV_real(i_MC,1) = max_Prior_ENPV; 

            end 

            break; %The whole loop will break here 

        else %Given Switch at Y1 and Stop is not at Y1 

            x_data_stop_CLRM = ObsRate_Phase1n2_real_time_ShiftTime(:,:,Shift_time); 

            if t_dataPhase2 == 1 && t_dataPhase2 == 2 

                x_data_sqrt_stop_CLRM = sqrt(x_data_stop_CLRM(:,1:t_dataPhase2)); 

                X_stop_CLRM = [ones(N_MC,1) x_data_stop_CLRM(:,1:t_dataPhase2)]; 

            else 

                x_data_sqrt_stop_CLRM = sqrt(x_data_stop_CLRM(:,1:t_dataPhase2-

2)).*sqrt(x_data_stop_CLRM(:,2:t_dataPhase2-1)).*sqrt(x_data_stop_CLRM(:,3:t_dataPhase2)); 

                X_stop_CLRM = [ones(N_MC,1) x_data_stop_CLRM(:,1:t_dataPhase2) 

x_data_sqrt_stop_CLRM]; 

            end 

            y_data_stop_CLRM = NPV_Tab_matrix(:,t_dataPhase2+1:FieldLifeTime+1); 

            y_reg_stop_CLRM = zeros(N_MC,FieldLifeTime-t_dataPhase2+1); 

            for t = 1: FieldLifeTime-t_dataPhase2+1 

                y_reg_stop_CLRM(:,t) = 

X_stop_CLRM*regress(y_data_stop_CLRM(:,t),X_stop_CLRM); 

            end 
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            [StopTime_reg,StopTime_idx] = max(y_reg_stop_CLRM,[],2); 

        for i_MC = 1: N_MC 

            if StopTime_reg(i_MC) == y_reg_stop_CLRM(i_MC,1) && CLRM_OptNPV_real(i_MC,1) == 0 

                CLRM_OptNPV_real(i_MC,1) = y_data_stop_CLRM(i_MC,1); 

                CLRM_PhaseLifes_Opt_reals(i_MC,1) = Shift_time-1; 

                CLRM_PhaseLifes_Opt_reals(i_MC,2) = t_dataPhase2+StopTime_idx(i_MC)-1; 

            else 

                continue; 

            end 

        end 

        end 

        t_dataPhase2 = t_dataPhase2+1; 

    end 

else 

% This part is to find the corresponding optimal stop time given Switch time is not at Y1 

    for Shift_time = 2: FieldLifeTime %Finding and recording the optimal switch time before 

determining the stop time 

        N_LifeTimeComb = N_LifeTimeComb-Times(FieldLifeTime-Shift_time+2)-1; 

        y_data_switch_CLRM = NPV_Tab_matrix(:,N_Phase1n2LifeTime-

N_LifeTimeComb+1:N_Phase1n2LifeTime); 

        y_reg_switch_CLRM = zeros(N_MC,N_LifeTimeComb); 

        ENPVTabComp = zeros(N_MC,N_LifeTimeComb); 

        if Shift_time == 2 && Shift_time == 3 

            x_data_sqrt_switch_CLRM = sqrt(x_data_switch_CLRM(:,1:Shift_time-1)); 

            X_switch_CLRM = [ones(N_MC,1) x_data_switch_CLRM(:,1:Shift_time-1)]; 

        else 

            x_data_sqrt_switch_CLRM = sqrt(x_data_switch_CLRM(:,1:Shift_time-

3)).*sqrt(x_data_switch_CLRM(:,2:Shift_time-2)).*sqrt(x_data_switch_CLRM(:,3:Shift_time-1)); 

            X_switch_CLRM = [ones(N_MC,1) x_data_switch_CLRM(:,1:Shift_time-1) 

x_data_sqrt_switch_CLRM]; 

        end 

        for i_LifeTimeComb = 1: N_LifeTimeComb 

            coef_reg_CLRM = regress(y_data_switch_CLRM(:,i_LifeTimeComb),X_switch_CLRM); 

            y_reg_switch_CLRM(:,i_LifeTimeComb) = X_switch_CLRM*coef_reg_CLRM; 

            ENPVTabComp(:,i_LifeTimeComb) = y_reg_switch_CLRM(:,i_LifeTimeComb); 

        end 

 

    [CLRM_reg,CLRM_idx] = max(ENPVTabComp,[],2); 

 

    if Shift_time == FieldLifeTime 

        [SwitchDecision_CLRM,SwitchDecision_CLRM_idx] = find(CLRM_idx <= Times(FieldLifeTime-

Shift_time+2)+1); 

        [ContinueTime_reg,ContinueTime_idx] = find(CLRM_idx == Times(FieldLifeTime-

Shift_time+2)+1); 

        for i_path = 1: length(ContinueTime_reg) 

            if CLRM_OptNPV_real(ContinueTime_reg(i_path),1) == 0 

               CLRM_OptNPV_real(ContinueTime_reg(i_path),1) = 

y_data_switch_CLRM(ContinueTime_reg(i_path),end); 

               CLRM_PhaseLifes_Opt_reals(ContinueTime_reg(i_path),1) = FieldLifeTime; 

               CLRM_PhaseLifes_Opt_reals(ContinueTime_reg(i_path),2) = 0; 

            else 

                continue; 

            end 

        end 

    else 

        [SwitchDecision_CLRM,SwitchDecision_CLRM_idx] = find(CLRM_idx <= Times(FieldLifeTime-

Shift_time+2)); 

    end 
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    x_data_stop_CLRM = ObsRate_Phase1n2_real_time_ShiftTime(:,:,Shift_time); 

    t_dataPhase2 = 1; 

    while t_dataPhase2 <= Times(FieldLifeTime-Shift_time+1)+1 

        if t_dataPhase2 == 1 && t_dataPhase2 == 2 

            x_data_sqrt_stop_CLRM = sqrt(x_data_stop_CLRM(:,1:t_dataPhase2)); 

            X_stop_CLRM = [ones(N_MC,1) x_data_stop_CLRM(:,1:t_dataPhase2+Shift_time-2)]; 

        else 

            x_data_sqrt_stop_CLRM = sqrt(x_data_stop_CLRM(:,1:t_dataPhase2-

2)).*sqrt(x_data_stop_CLRM(:,2:t_dataPhase2-1)).*sqrt(x_data_stop_CLRM(:,3:t_dataPhase2)); 

            X_stop_CLRM = [ones(N_MC,1) x_data_stop_CLRM(:,1:t_dataPhase2+Shift_time-2) 

x_data_sqrt_stop_CLRM]; 

        end 

        y_data_stop_CLRM = y_data_switch_CLRM(:, t_dataPhase2:Times(FieldLifeTime-

Shift_time+1)+1); 

        y_reg_stop_CLRM = zeros(N_MC,Times(FieldLifeTime-Shift_time+1)-t_dataPhase2+2); 

        for t = 1: Times(FieldLifeTime-Shift_time+1)-t_dataPhase2+2 

            y_reg_stop_CLRM(:,t) = X_stop_CLRM*regress(y_data_stop_CLRM(:,t),X_stop_CLRM); 

        end 

            [StopTime_reg,StopTime_idx] = max(y_reg_stop_CLRM,[],2); 

        for i_path = 1: length(SwitchDecision_CLRM) 

            if StopTime_reg(SwitchDecision_CLRM(i_path)) == 

y_reg_stop_CLRM(SwitchDecision_CLRM(i_path),1) && 

CLRM_OptNPV_real(SwitchDecision_CLRM(i_path),1) == 0 

                CLRM_OptNPV_real(SwitchDecision_CLRM(i_path),1) = 

y_data_stop_CLRM(SwitchDecision_CLRM(i_path),1); 

                CLRM_PhaseLifes_Opt_reals(SwitchDecision_CLRM(i_path),1) = Shift_time-1; 

                CLRM_PhaseLifes_Opt_reals(SwitchDecision_CLRM(i_path),2) = 

t_dataPhase2+StopTime_idx(SwitchDecision_CLRM(i_path))-2; 

            else 

                continue; 

            end 

        end 

            t_dataPhase2 = t_dataPhase2+1; 

    end 

    end 

end 

 

DWI_CLRM_Phase1LifeTime = CLRM_PhaseLifes_Opt_reals(:,1); 

DWI_CLRM_Phase2LifeTime = CLRM_PhaseLifes_Opt_reals(:,2); 

DWI_CLRM_LifeTime = DWI_CLRM_Phase1LifeTime + DWI_CLRM_Phase2LifeTime; 

 

EVWI_CLRM = mean(CLRM_OptNPV_real); 

VOI_CLRM = EVWI_CLRM-EVWOI; 
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Appendix B2.3: Regression Function Equation (15) 
This code consists of the modified version of the sections 5 and 6 of Modified LSM Algorithm 
(Appendix B1.1) and CLRM (Appendix B1.2). With respect to this, the modification is done 
on the regression analysis. Thus, sections 1 to 4 of Modified LSM Algorithm (Appendix B1.1) 
have to be run first before executing this code. This code corresponds to the Regression 
Function of Equation (15) in the report. 
 

% 1. Path Table Generation 

 

N_MC = size(ObsRate_Phase1n2_real_time_ShiftTime,1); 

FieldLifeTime = size(ObsRate_Phase1n2_real_time_ShiftTime,2); 

SRDM_Shift_Stop_OptNPV_real = zeros(N_MC,1); 

 

PathTable = zeros(N_MC,FieldLifeTime+1); 

PathTable(:,end) = NPVtable_LTPhase1_LTPhase2_real(FieldLifeTime+1,1,:); 

Phase2_StopTime_real_Phase1LifeTime = zeros(N_MC,FieldLifeTime+1); 

 

for k_Shift_time = 1: FieldLifeTime 

        NPV_2Phases_matrix = zeros(N_MC,k_Shift_time+1); 

    for k_Stop_time = 1: k_Shift_time+1 

        NPV_2Phases_matrix(:,k_Stop_time) = NPVtable_LTPhase1_LTPhase2_real(FieldLifeTime-

k_Shift_time+1,k_Stop_time,:); 

    end 

    for k_StopTime = 1: k_Shift_time 

        if k_StopTime == 1 

            x_data_stop_SRDM = ObsRate_Phase1n2_real_time_ShiftTime(:,1:FieldLifeTime-

k_StopTime,FieldLifeTime-k_Shift_time+1); 

            x_data_square_stop_SRDM = sqrt(x_data_stop_SRDM(:,1:FieldLifeTime-k_StopTime-

1)).*sqrt(x_data_stop_SRDM(:,2:FieldLifeTime-k_StopTime)); 

            x_data_cube_stop_SRDM = sqrt(x_data_stop_SRDM(:,1:FieldLifeTime-k_StopTime-

2)).*sqrt(x_data_stop_SRDM(:,2:FieldLifeTime-k_StopTime-

1)).*sqrt(x_data_stop_SRDM(:,3:FieldLifeTime-k_StopTime)); 

            X_stop_SRDM = [ones(N_MC,1) x_data_stop_SRDM x_data_square_stop_SRDM 

x_data_cube_stop_SRDM]; 

            y_data_stop_matrix = [NPV_2Phases_matrix(:,k_Shift_time-k_StopTime+1) 

NPV_2Phases_matrix(:,k_Shift_time-k_StopTime+2)]; 

            [Stop_value,Stop_idx] = 

max([X_stop_SRDM*regress(NPV_2Phases_matrix(:,k_Shift_time-k_StopTime+1),X_stop_SRDM) 

X_stop_SRDM*regress(NPV_2Phases_matrix(:,k_Shift_time-k_StopTime+2),X_stop_SRDM)],[],2); 

            for i_MC = 1: N_MC 

                SRDM_Shift_Stop_OptNPV_real(i_MC,1) = 

y_data_stop_matrix(i_MC,Stop_idx(i_MC)); 

            end 

        else 

            x_data_stop_SRDM = ObsRate_Phase1n2_real_time_ShiftTime(:,1:FieldLifeTime-

k_StopTime,FieldLifeTime-k_Shift_time+1); 

            x_data_square_stop_SRDM = sqrt(x_data_stop_SRDM(:,1:FieldLifeTime-k_StopTime-

1)).*sqrt(x_data_stop_SRDM(:,2:FieldLifeTime-k_StopTime)); 

            x_data_cube_stop_SRDM = sqrt(x_data_stop_SRDM(:,1:FieldLifeTime-k_StopTime-

2)).*sqrt(x_data_stop_SRDM(:,2:FieldLifeTime-k_StopTime-

1)).*sqrt(x_data_stop_SRDM(:,3:FieldLifeTime-k_StopTime)); 

            X_stop_SRDM = [ones(N_MC,1) x_data_stop_SRDM x_data_square_stop_SRDM 

x_data_cube_stop_SRDM]; 

            y_data_stop_matrix = [NPV_2Phases_matrix(:,k_Shift_time-k_StopTime+1) 
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SRDM_Shift_Stop_OptNPV_real(:,1)]; 

            [Stop_value,Stop_idx] = 

max([X_stop_SRDM*regress(NPV_2Phases_matrix(:,k_Shift_time-k_StopTime+1),X_stop_SRDM) 

X_stop_SRDM*regress(SRDM_Shift_Stop_OptNPV_real(:,1),X_stop_SRDM)],[],2); 

            for i_MC = 1: N_MC 

                SRDM_Shift_Stop_OptNPV_real(i_MC,1) = 

y_data_stop_matrix(i_MC,Stop_idx(i_MC)); 

            end 

        end 

    end 

    for i_MC = 1: N_MC 

        PathTable(i_MC,FieldLifeTime-k_Shift_time+1) = SRDM_Shift_Stop_OptNPV_real(i_MC,1); 

        for k_Stop_time = 1: k_Shift_time+1 

            if SRDM_Shift_Stop_OptNPV_real(i_MC,1) == NPV_2Phases_matrix(i_MC,k_Stop_time) 

                Phase2_StopTime_real_Phase1LifeTime(i_MC,FieldLifeTime-k_Shift_time+1) = 

k_Stop_time-1; 

            end 

        end 

    end 

end 

 

% 2. SRDM Approach 

 

FieldLifeTime = size(ObsRate_Phase1n2_real_time_ShiftTime,2); 

y_data_continuation = zeros(N_MC,1); 

y_data_shift = zeros(N_MC,1); 

y_reg_continuation = zeros(N_MC,1); 

y_reg_shift = zeros(N_MC,1); 

x_data = ObsRate_Phase1n2_real_time_ShiftTime(:,:,FieldLifeTime+1); 

 

ValueTable = zeros(N_MC,FieldLifeTime+1); 

ValueTable(:,end) = PathTable(:,end); 

SRDM_DecisionTable = zeros(N_MC,FieldLifeTime+1); 

SRDM_DecisionTable(:,end) = 1; 

 

for k_Shift_time = 1:FieldLifeTime 

    x_data_square = sqrt(x_data(:,1:FieldLifeTime-k_Shift_time-

1)).*sqrt(x_data(:,2:FieldLifeTime-k_Shift_time)); 

    x_data_cube = sqrt(x_data(:,1:FieldLifeTime-k_Shift_time-

2)).*sqrt(x_data(:,2:FieldLifeTime-k_Shift_time-1)).*sqrt(x_data(:,3:FieldLifeTime-

k_Shift_time)); 

    X = [ones(N_MC,1) x_data(:,1:FieldLifeTime-k_Shift_time) x_data_square x_data_cube]; 

    y_data_shift(:) = PathTable(:,FieldLifeTime-k_Shift_time+1); 

    coef_shift = regress(y_data_shift,X); 

    y_reg_shift(:) = X*coef_shift; 

    y_data_continuation(:) = ValueTable(:,FieldLifeTime-k_Shift_time+2); 

    coef_continuation = regress(y_data_continuation,X); 

    y_reg_continuation(:) = X*coef_continuation; 

    ENPVTable_Comparison = [y_reg_shift, y_reg_continuation]; 

    NPV_SRDM = [y_data_shift, y_data_continuation]; 

    [ENPV_SRDM,ENPV_SRDM_idx] = max(ENPVTable_Comparison,[],2); 

 

    for i_MC = 1: N_MC 

        ValueTable(i_MC,FieldLifeTime-k_Shift_time+1) = NPV_SRDM(i_MC,ENPV_SRDM_idx(i_MC)); 

        if y_reg_continuation(i_MC) > y_reg_shift(i_MC) 

            SRDM_DecisionTable(i_MC,FieldLifeTime-k_Shift_time+1) = 0; 

        else 

            SRDM_DecisionTable(i_MC,FieldLifeTime-k_Shift_time+1) = 1; 
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        end 

    end 

end 

 

ShiftValue = PathTable(:,1); 

ExpShiftValue = mean(ShiftValue); 

 

ContinuationValue = ValueTable(:,1); 

ExpContinuationValue = mean(ContinuationValue); 

EVWII = ExpContinuationValue; 

VOI = EVWII - EVWOI; 

VOI_over_EVWOI_pct = VOI/EVWOI*100; 

 

[~,DWI_Phase1LifeTime_idx] = max(SRDM_DecisionTable,[],2); 

DWI_Phase1LifeTime = DWI_Phase1LifeTime_idx-1; 

 

DWI_Phase2LifeTime = zeros(N_MC,1); 

for i_MC = 1:N_MC 

    Phase1LifeTime_idx_real = DWI_Phase1LifeTime_idx(i_MC,1); 

    DWI_Phase2LifeTime(i_MC,1) = 

Phase2_StopTime_real_Phase1LifeTime(i_MC,Phase1LifeTime_idx_real); 

end 

 

DWI_LifeTime = DWI_Phase1LifeTime+DWI_Phase2LifeTime; 

 

% 3. CLRM Approach 

 

N_MC = size(ObsRate_Phase1n2_real_time_ShiftTime,1); 

FieldLifeTime = size(ObsRate_Phase1n2_real_time_ShiftTime,2); 

N_Phase1n2LifeTime = sum(1:FieldLifeTime+1); 

N_LifeTimeComb = N_Phase1n2LifeTime; 

Times = 1:1:FieldLifeTime; 

CLRM_OptNPV_real = zeros(N_MC,1); 

NPV_Tab_matrix = transpose(NPVmatrix_reals); 

Prior_ENPV = meanNPVvector(:,3); 

[max_Prior_ENPV, max_Prior_ENPV_idx] = max(meanNPVvector(:,3),[],1); 

x_data_switch_CLRM = ObsRate_Phase1n2_real_time_ShiftTime(:,:,FieldLifeTime+1); 

 

CLRM_PhaseLifes_Opt_reals = zeros(N_MC,2); 

 

if max_Prior_ENPV_idx <= Times(FieldLifeTime)+1 %Finding if Switch Time is optimal at Y1 

    Shift_time = 1; 

    t_dataPhase2 = 1; 

    while t_dataPhase2 <= Times(FieldLifeTime-Shift_time+1) 

        if t_dataPhase2 == 1 && max_Prior_ENPV_idx == 1 %Switch and Stop at Y1 are optimal 

            for i_MC = 1: N_MC 

                CLRM_OptNPV_real(i_MC,1) = max_Prior_ENPV; 

            end 

            break; %The whole loop will break here 

        else %Given Switch at Y1 and Stop is not at Y1 

            x_data_stop_CLRM = ObsRate_Phase1n2_real_time_ShiftTime(:,:,Shift_time); 

            if t_dataPhase2 == 1 

                x_data_square_stop_CLRM = x_data_stop_CLRM(:,1:t_dataPhase2); 

                X_stop_CLRM = [ones(N_MC,1) x_data_stop_CLRM(:,1:t_dataPhase2)]; 

            elseif t_dataPhase2 == 2 

                x_data_square_stop_CLRM = sqrt(x_data_stop_CLRM(:,1:t_dataPhase2-

1)).*sqrt(x_data_stop_CLRM(:,2:t_dataPhase2)); 

                X_stop_CLRM = [ones(N_MC,1) x_data_stop_CLRM(:,1:t_dataPhase2) 
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x_data_square_stop_CLRM]; 

            else 

                x_data_square_stop_CLRM = sqrt(x_data_stop_CLRM(:,1:t_dataPhase2-

1)).*sqrt(x_data_stop_CLRM(:,2:t_dataPhase2)); 

                x_data_cube_stop_CLRM = sqrt(x_data_stop_CLRM(:,1:t_dataPhase2-

2)).*sqrt(x_data_stop_CLRM(:,2:t_dataPhase2-1)).*sqrt(x_data_stop_CLRM(:,3:t_dataPhase2)); 

                X_stop_CLRM = [ones(N_MC,1) x_data_stop_CLRM(:,1:t_dataPhase2) 

x_data_square_stop_CLRM x_data_cube_stop_CLRM]; 

            end 

            y_data_stop_CLRM = NPV_Tab_matrix(:,t_dataPhase2+1:FieldLifeTime+1); 

            y_reg_stop_CLRM = zeros(N_MC,FieldLifeTime-t_dataPhase2+1); 

            for t = 1: FieldLifeTime-t_dataPhase2+1 

                y_reg_stop_CLRM(:,t) = 

X_stop_CLRM*regress(y_data_stop_CLRM(:,t),X_stop_CLRM); 

            end 

            [StopTime_reg,StopTime_idx] = max(y_reg_stop_CLRM,[],2); 

        for i_MC = 1: N_MC 

            if StopTime_reg(i_MC) == y_reg_stop_CLRM(i_MC,1) && CLRM_OptNPV_real(i_MC,1) == 0 

                CLRM_OptNPV_real(i_MC,1) = y_data_stop_CLRM(i_MC,1); 

                CLRM_PhaseLifes_Opt_reals(i_MC,1) = Shift_time-1; 

                CLRM_PhaseLifes_Opt_reals(i_MC,2) = t_dataPhase2+StopTime_idx(i_MC)-1; 

            else 

                continue; 

            end 

        end 

        end 

        t_dataPhase2 = t_dataPhase2+1; 

    end 

else 

% This part is to find the corresponding optimal stop time given Switch time is not at Y1 

    for Shift_time = 2: FieldLifeTime %Finding and recording the optimal switch time before 

determining the stop time 

        N_LifeTimeComb = N_LifeTimeComb-Times(FieldLifeTime-Shift_time+2)-1; 

        y_data_switch_CLRM = NPV_Tab_matrix(:,N_Phase1n2LifeTime-

N_LifeTimeComb+1:N_Phase1n2LifeTime); 

        y_reg_switch_CLRM = zeros(N_MC,N_LifeTimeComb); 

        ENPVTabComp = zeros(N_MC,N_LifeTimeComb); 

        if Shift_time == 2 

            x_data_square_switch_CLRM = x_data_switch_CLRM(:,1:Shift_time-1); 

            X_switch_CLRM = [ones(N_MC,1) x_data_switch_CLRM(:,1:Shift_time-1)]; 

        elseif Shift_time == 3 

            x_data_square_switch_CLRM = sqrt(x_data_switch_CLRM(:,1:Shift_time-

2)).*sqrt(x_data_switch_CLRM(:,2:Shift_time-1)); 

            X_switch_CLRM = [ones(N_MC,1) x_data_switch_CLRM(:,1:Shift_time-1) 

x_data_square_switch_CLRM]; 

        else 

            x_data_square_switch_CLRM = sqrt(x_data_switch_CLRM(:,1:Shift_time-

2)).*sqrt(x_data_switch_CLRM(:,2:Shift_time-1)); 

            x_data_cube_switch_CLRM = sqrt(x_data_switch_CLRM(:,1:Shift_time-

3)).*sqrt(x_data_switch_CLRM(:,2:Shift_time-2)).*sqrt(x_data_switch_CLRM(:,3:Shift_time-1)); 

            X_switch_CLRM = [ones(N_MC,1) x_data_switch_CLRM(:,1:Shift_time-1) 

x_data_square_switch_CLRM x_data_cube_switch_CLRM]; 

        end 

        for i_LifeTimeComb = 1: N_LifeTimeComb 

            coef_reg_CLRM = regress(y_data_switch_CLRM(:,i_LifeTimeComb),X_switch_CLRM); 

            y_reg_switch_CLRM(:,i_LifeTimeComb) = X_switch_CLRM*coef_reg_CLRM; 

            ENPVTabComp(:,i_LifeTimeComb) = y_reg_switch_CLRM(:,i_LifeTimeComb); 

        end 
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    [CLRM_reg,CLRM_idx] = max(ENPVTabComp,[],2); 

 

    if Shift_time == FieldLifeTime 

        [SwitchDecision_CLRM,SwitchDecision_CLRM_idx] = find(CLRM_idx <= Times(FieldLifeTime-

Shift_time+2)+1); 

        [ContinueTime_reg,ContinueTime_idx] = find(CLRM_idx == Times(FieldLifeTime-

Shift_time+2)+1); 

        for i_path = 1: length(ContinueTime_reg) 

            if CLRM_OptNPV_real(ContinueTime_reg(i_path),1) == 0 

               CLRM_OptNPV_real(ContinueTime_reg(i_path),1) = 

y_data_switch_CLRM(ContinueTime_reg(i_path),end); 

               CLRM_PhaseLifes_Opt_reals(ContinueTime_reg(i_path),1) = FieldLifeTime; 

               CLRM_PhaseLifes_Opt_reals(ContinueTime_reg(i_path),2) = 0; 

            else 

                continue; 

            end 

        end 

    else 

        [SwitchDecision_CLRM,SwitchDecision_CLRM_idx] = find(CLRM_idx <= Times(FieldLifeTime-

Shift_time+2)); 

    end 

 

    x_data_stop_CLRM = ObsRate_Phase1n2_real_time_ShiftTime(:,:,Shift_time); 

    t_dataPhase2 = 1; 

    while t_dataPhase2 <= Times(FieldLifeTime-Shift_time+1)+1 

        if t_dataPhase2 == 1 

            x_data_square_stop_CLRM = x_data_stop_CLRM(:,1:t_dataPhase2); 

            X_stop_CLRM = [ones(N_MC,1) x_data_stop_CLRM(:,1:t_dataPhase2+Shift_time-2)]; 

        elseif t_dataPhase2 == 2 

            x_data_square_stop_CLRM = sqrt(x_data_stop_CLRM(:,1:t_dataPhase2-

1)).*sqrt(x_data_stop_CLRM(:,2:t_dataPhase2)); 

            X_stop_CLRM = [ones(N_MC,1) x_data_stop_CLRM(:,1:t_dataPhase2+Shift_time-2) 

x_data_square_stop_CLRM]; 

        else 

            x_data_square_stop_CLRM = sqrt(x_data_stop_CLRM(:,1:t_dataPhase2-

1)).*sqrt(x_data_stop_CLRM(:,2:t_dataPhase2)); 

            x_data_cube_stop_CLRM = sqrt(x_data_stop_CLRM(:,1:t_dataPhase2-

2)).*sqrt(x_data_stop_CLRM(:,2:t_dataPhase2-1)).*sqrt(x_data_stop_CLRM(:,3:t_dataPhase2)); 

            X_stop_CLRM = [ones(N_MC,1) x_data_stop_CLRM(:,1:t_dataPhase2+Shift_time-2) 

x_data_square_stop_CLRM x_data_cube_stop_CLRM]; 

        end 

        y_data_stop_CLRM = y_data_switch_CLRM(:, t_dataPhase2:Times(FieldLifeTime-

Shift_time+1)+1); 

        y_reg_stop_CLRM = zeros(N_MC,Times(FieldLifeTime-Shift_time+1)-t_dataPhase2+2); 

        for t = 1: Times(FieldLifeTime-Shift_time+1)-t_dataPhase2+2 

            y_reg_stop_CLRM(:,t) = X_stop_CLRM*regress(y_data_stop_CLRM(:,t),X_stop_CLRM); 

        end 

            [StopTime_reg,StopTime_idx] = max(y_reg_stop_CLRM,[],2); 

        for i_path = 1: length(SwitchDecision_CLRM) 

            if StopTime_reg(SwitchDecision_CLRM(i_path)) == 

y_reg_stop_CLRM(SwitchDecision_CLRM(i_path),1) && 

CLRM_OptNPV_real(SwitchDecision_CLRM(i_path),1) == 0 

                CLRM_OptNPV_real(SwitchDecision_CLRM(i_path),1) = 

y_data_stop_CLRM(SwitchDecision_CLRM(i_path),1); 

                CLRM_PhaseLifes_Opt_reals(SwitchDecision_CLRM(i_path),1) = Shift_time-1; 

                CLRM_PhaseLifes_Opt_reals(SwitchDecision_CLRM(i_path),2) = 

t_dataPhase2+StopTime_idx(SwitchDecision_CLRM(i_path))-2; 
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            else 

                continue; 

            end 

        end 

            t_dataPhase2 = t_dataPhase2+1; 

    end 

    end 

end 

 

DWI_CLRM_Phase1LifeTime = CLRM_PhaseLifes_Opt_reals(:,1); 

DWI_CLRM_Phase2LifeTime = CLRM_PhaseLifes_Opt_reals(:,2); 

DWI_CLRM_LifeTime = DWI_CLRM_Phase1LifeTime + DWI_CLRM_Phase2LifeTime; 

 

EVWI_CLRM = mean(CLRM_OptNPV_real); 

VOI_CLRM = EVWI_CLRM-EVWOI; 
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Appendix B2.4: Regression Function Equation (16) 
This code consists of the modified version of the sections 5 and 6 of Modified LSM Algorithm 
(Appendix B1.1) and CLRM (Appendix B1.2). With respect to this, the modification is done 
on the regression analysis. Thus, sections 1 to 4 of Modified LSM Algorithm (Appendix B1.1) 
have to be run first before executing this code. This code corresponds to the Regression 
Function of Equation (16) in the report. 
 

% 1. Path Table Generation 

 

N_MC = size(ObsRate_Phase1n2_real_time_ShiftTime,1); 

FieldLifeTime = size(ObsRate_Phase1n2_real_time_ShiftTime,2); 

SRDM_Shift_Stop_OptNPV_real = zeros(N_MC,1); 

 

PathTable = zeros(N_MC,FieldLifeTime+1); 

PathTable(:,end) = NPVtable_LTPhase1_LTPhase2_real(FieldLifeTime+1,1,:); 

Phase2_StopTime_real_Phase1LifeTime = zeros(N_MC,FieldLifeTime+1); 

 

for k_Shift_time = 1: FieldLifeTime 

        NPV_2Phases_matrix = zeros(N_MC,k_Shift_time+1); 

    for k_Stop_time = 1: k_Shift_time+1 

        NPV_2Phases_matrix(:,k_Stop_time) = NPVtable_LTPhase1_LTPhase2_real(FieldLifeTime-

k_Shift_time+1,k_Stop_time,:); 

    end 

    for k_StopTime = 1: k_Shift_time 

        if k_StopTime == 1 

            x_data_stop_SRDM = ObsRate_Phase1n2_real_time_ShiftTime(:,1:FieldLifeTime-

k_StopTime,FieldLifeTime-k_Shift_time+1); 

            x_data_square_stop_SRDM = x_data_stop_SRDM(:,1:FieldLifeTime-k_StopTime-

1).*x_data_stop_SRDM(:,2:FieldLifeTime-k_StopTime); 

            X_stop_SRDM = [ones(N_MC,1) x_data_stop_SRDM x_data_square_stop_SRDM]; 

            y_data_stop_matrix = [NPV_2Phases_matrix(:,k_Shift_time-k_StopTime+1) 

NPV_2Phases_matrix(:,k_Shift_time-k_StopTime+2)]; 

            [Stop_value,Stop_idx] = 

max([X_stop_SRDM*regress(NPV_2Phases_matrix(:,k_Shift_time-k_StopTime+1),X_stop_SRDM) 

X_stop_SRDM*regress(NPV_2Phases_matrix(:,k_Shift_time-k_StopTime+2),X_stop_SRDM)],[],2); 

            for i_MC = 1: N_MC 

                SRDM_Shift_Stop_OptNPV_real(i_MC,1) = 

y_data_stop_matrix(i_MC,Stop_idx(i_MC)); 

            end 

        else 

            x_data_stop_SRDM = ObsRate_Phase1n2_real_time_ShiftTime(:,1:FieldLifeTime-

k_StopTime,FieldLifeTime-k_Shift_time+1); 

            x_data_square_stop_SRDM = x_data_stop_SRDM(:,1:FieldLifeTime-k_StopTime-

1).*x_data_stop_SRDM(:,2:FieldLifeTime-k_StopTime); 

            X_stop_SRDM = [ones(N_MC,1) x_data_stop_SRDM x_data_square_stop_SRDM]; 

            y_data_stop_matrix = [NPV_2Phases_matrix(:,k_Shift_time-k_StopTime+1) 

SRDM_Shift_Stop_OptNPV_real(:,1)]; 

            [Stop_value,Stop_idx] = 

max([X_stop_SRDM*regress(NPV_2Phases_matrix(:,k_Shift_time-k_StopTime+1),X_stop_SRDM) 

X_stop_SRDM*regress(SRDM_Shift_Stop_OptNPV_real(:,1),X_stop_SRDM)],[],2); 

            for i_MC = 1: N_MC 

                SRDM_Shift_Stop_OptNPV_real(i_MC,1) = 

y_data_stop_matrix(i_MC,Stop_idx(i_MC)); 

            end 
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        end 

    end 

    for i_MC = 1: N_MC 

        PathTable(i_MC,FieldLifeTime-k_Shift_time+1) = SRDM_Shift_Stop_OptNPV_real(i_MC,1); 

        for k_Stop_time = 1: k_Shift_time+1 

            if SRDM_Shift_Stop_OptNPV_real(i_MC,1) == NPV_2Phases_matrix(i_MC,k_Stop_time) 

                Phase2_StopTime_real_Phase1LifeTime(i_MC,FieldLifeTime-k_Shift_time+1) = 

k_Stop_time-1; 

            end 

        end 

    end 

end 

 

% 2. SRDM Approach 

 

FieldLifeTime = size(ObsRate_Phase1n2_real_time_ShiftTime,2); 

y_data_continuation = zeros(N_MC,1); 

y_data_shift = zeros(N_MC,1); 

y_reg_continuation = zeros(N_MC,1); 

y_reg_shift = zeros(N_MC,1); 

x_data = ObsRate_Phase1n2_real_time_ShiftTime(:,:,FieldLifeTime+1); 

 

ValueTable = zeros(N_MC,FieldLifeTime+1); 

ValueTable(:,end) = PathTable(:,end); 

SRDM_DecisionTable = zeros(N_MC,FieldLifeTime+1); 

SRDM_DecisionTable(:,end) = 1; 

 

for k_Shift_time = 1:FieldLifeTime 

    x_data_square = x_data(:,1:FieldLifeTime-k_Shift_time-1).*x_data(:,2:FieldLifeTime-

k_Shift_time); 

    X = [ones(N_MC,1) x_data(:,1:FieldLifeTime-k_Shift_time) x_data_square]; 

    y_data_shift(:) = PathTable(:,FieldLifeTime-k_Shift_time+1); 

    coef_shift = regress(y_data_shift,X); 

    y_reg_shift(:) = X*coef_shift; 

    y_data_continuation(:) = ValueTable(:,FieldLifeTime-k_Shift_time+2); 

    coef_continuation = regress(y_data_continuation,X); 

    y_reg_continuation(:) = X*coef_continuation; 

    ENPVTable_Comparison = [y_reg_shift, y_reg_continuation]; 

    NPV_SRDM = [y_data_shift, y_data_continuation]; 

    [ENPV_SRDM,ENPV_SRDM_idx] = max(ENPVTable_Comparison,[],2); 

 

    for i_MC = 1: N_MC 

        ValueTable(i_MC,FieldLifeTime-k_Shift_time+1) = NPV_SRDM(i_MC,ENPV_SRDM_idx(i_MC)); 

        if y_reg_continuation(i_MC) > y_reg_shift(i_MC) 

            SRDM_DecisionTable(i_MC,FieldLifeTime-k_Shift_time+1) = 0; 

        else 

            SRDM_DecisionTable(i_MC,FieldLifeTime-k_Shift_time+1) = 1; 

        end 

    end 

end 

 

ShiftValue = PathTable(:,1); 

ExpShiftValue = mean(ShiftValue); 

 

ContinuationValue = ValueTable(:,1); 

ExpContinuationValue = mean(ContinuationValue); 

EVWII = ExpContinuationValue; 

VOI = EVWII - EVWOI; 
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VOI_over_EVWOI_pct = VOI/EVWOI*100; 

 

[~,DWI_Phase1LifeTime_idx] = max(SRDM_DecisionTable,[],2); 

DWI_Phase1LifeTime = DWI_Phase1LifeTime_idx-1; 

 

DWI_Phase2LifeTime = zeros(N_MC,1); 

for i_MC = 1:N_MC 

    Phase1LifeTime_idx_real = DWI_Phase1LifeTime_idx(i_MC,1); 

    DWI_Phase2LifeTime(i_MC,1) = 

Phase2_StopTime_real_Phase1LifeTime(i_MC,Phase1LifeTime_idx_real); 

end 

 

DWI_LifeTime = DWI_Phase1LifeTime+DWI_Phase2LifeTime; 

 

% 3. CLRM Approach 

 

N_MC = size(ObsRate_Phase1n2_real_time_ShiftTime,1); 

FieldLifeTime = size(ObsRate_Phase1n2_real_time_ShiftTime,2); 

N_Phase1n2LifeTime = sum(1:FieldLifeTime+1); 

N_LifeTimeComb = N_Phase1n2LifeTime; 

Times = 1:1:FieldLifeTime; 

CLRM_OptNPV_real = zeros(N_MC,1); 

NPV_Tab_matrix = transpose(NPVmatrix_reals); 

Prior_ENPV = meanNPVvector(:,3); 

[max_Prior_ENPV, max_Prior_ENPV_idx] = max(meanNPVvector(:,3),[],1); 

x_data_switch_CLRM = ObsRate_Phase1n2_real_time_ShiftTime(:,:,FieldLifeTime+1); 

 

CLRM_PhaseLifes_Opt_reals = zeros(N_MC,2); 

 

if max_Prior_ENPV_idx <= Times(FieldLifeTime)+1 %Finding if Switch Time is optimal at Y1 

    Shift_time = 1; 

    t_dataPhase2 = 1; 

    while t_dataPhase2 <= Times(FieldLifeTime-Shift_time+1) 

        if t_dataPhase2 == 1 && max_Prior_ENPV_idx == 1 %Switch and Stop at Y1 are optimal 

            for i_MC = 1: N_MC 

                CLRM_OptNPV_real(i_MC,1) = max_Prior_ENPV; 

            end 

            break; %The whole loop will break here 

        else %Given Switch at Y1 and Stop is not at Y1 

            x_data_stop_CLRM = ObsRate_Phase1n2_real_time_ShiftTime(:,:,Shift_time); 

            if t_dataPhase2 == 1 

                x_data_square_stop_CLRM = x_data_stop_CLRM(:,1:t_dataPhase2); 

                X_stop_CLRM = [ones(N_MC,1) x_data_stop_CLRM(:,1:t_dataPhase2)]; 

            else 

                x_data_square_stop_CLRM = x_data_stop_CLRM(:,1:t_dataPhase2-

1).*x_data_stop_CLRM(:,2:t_dataPhase2); 

                X_stop_CLRM = [ones(N_MC,1) x_data_stop_CLRM(:,1:t_dataPhase2) 

x_data_square_stop_CLRM]; 

            end 

            y_data_stop_CLRM = NPV_Tab_matrix(:,t_dataPhase2+1:FieldLifeTime+1); 

            y_reg_stop_CLRM = zeros(N_MC,FieldLifeTime-t_dataPhase2+1); 

            for t = 1: FieldLifeTime-t_dataPhase2+1 

                y_reg_stop_CLRM(:,t) = 

X_stop_CLRM*regress(y_data_stop_CLRM(:,t),X_stop_CLRM); 

            end 

            [StopTime_reg,StopTime_idx] = max(y_reg_stop_CLRM,[],2); 

        for i_MC = 1: N_MC 

            if StopTime_reg(i_MC) == y_reg_stop_CLRM(i_MC,1) && CLRM_OptNPV_real(i_MC,1) == 0 
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                CLRM_OptNPV_real(i_MC,1) = y_data_stop_CLRM(i_MC,1); 

                CLRM_PhaseLifes_Opt_reals(i_MC,1) = Shift_time-1; 

                CLRM_PhaseLifes_Opt_reals(i_MC,2) = t_dataPhase2+StopTime_idx(i_MC)-1; 

            else 

                continue; 

            end 

        end 

        end 

        t_dataPhase2 = t_dataPhase2+1; 

    end 

else 

% This part is to find the corresponding optimal stop time given Switch time is not at Y1 

    for Shift_time = 2: FieldLifeTime %Finding and recording the optimal switch time before 

determining the stop time 

        N_LifeTimeComb = N_LifeTimeComb-Times(FieldLifeTime-Shift_time+2)-1; 

        y_data_switch_CLRM = NPV_Tab_matrix(:,N_Phase1n2LifeTime-

N_LifeTimeComb+1:N_Phase1n2LifeTime); 

        y_reg_switch_CLRM = zeros(N_MC,N_LifeTimeComb); 

        ENPVTabComp = zeros(N_MC,N_LifeTimeComb); 

        if Shift_time == 2 

            x_data_square_switch_CLRM = x_data_switch_CLRM(:,1:Shift_time-1); 

            X_switch_CLRM = [ones(N_MC,1) x_data_switch_CLRM(:,1:Shift_time-1)]; 

        else 

            x_data_square_switch_CLRM = x_data_switch_CLRM(:,1:Shift_time-

2).*x_data_switch_CLRM(:,2:Shift_time-1); 

            X_switch_CLRM = [ones(N_MC,1) x_data_switch_CLRM(:,1:Shift_time-1) 

x_data_square_switch_CLRM]; 

        end 

        for i_LifeTimeComb = 1: N_LifeTimeComb 

            coef_reg_CLRM = regress(y_data_switch_CLRM(:,i_LifeTimeComb),X_switch_CLRM); 

            y_reg_switch_CLRM(:,i_LifeTimeComb) = X_switch_CLRM*coef_reg_CLRM; 

            ENPVTabComp(:,i_LifeTimeComb) = y_reg_switch_CLRM(:,i_LifeTimeComb); 

        end 

 

    [CLRM_reg,CLRM_idx] = max(ENPVTabComp,[],2); 

 

    if Shift_time == FieldLifeTime 

        [SwitchDecision_CLRM,SwitchDecision_CLRM_idx] = find(CLRM_idx <= Times(FieldLifeTime-

Shift_time+2)+1); 

        [ContinueTime_reg,ContinueTime_idx] = find(CLRM_idx == Times(FieldLifeTime-

Shift_time+2)+1); 

        for i_path = 1: length(ContinueTime_reg) 

            if CLRM_OptNPV_real(ContinueTime_reg(i_path),1) == 0 

               CLRM_OptNPV_real(ContinueTime_reg(i_path),1) = 

y_data_switch_CLRM(ContinueTime_reg(i_path),end); 

               CLRM_PhaseLifes_Opt_reals(ContinueTime_reg(i_path),1) = FieldLifeTime; 

               CLRM_PhaseLifes_Opt_reals(ContinueTime_reg(i_path),2) = 0; 

            else 

                continue; 

            end 

        end 

    else 

        [SwitchDecision_CLRM,SwitchDecision_CLRM_idx] = find(CLRM_idx <= Times(FieldLifeTime-

Shift_time+2)); 

    end 

 

    x_data_stop_CLRM = ObsRate_Phase1n2_real_time_ShiftTime(:,:,Shift_time); 

    t_dataPhase2 = 1; 
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    while t_dataPhase2 <= Times(FieldLifeTime-Shift_time+1)+1 

        if t_dataPhase2 == 1 

            x_data_square_stop_CLRM = x_data_stop_CLRM(:,1:t_dataPhase2); 

            X_stop_CLRM = [ones(N_MC,1) x_data_stop_CLRM(:,1:t_dataPhase2+Shift_time-2)]; 

        else 

            x_data_square_stop_CLRM = x_data_stop_CLRM(:,1:t_dataPhase2-

1).*x_data_stop_CLRM(:,2:t_dataPhase2); 

            X_stop_CLRM = [ones(N_MC,1) x_data_stop_CLRM(:,1:t_dataPhase2+Shift_time-2) 

x_data_square_stop_CLRM]; 

        end 

        y_data_stop_CLRM = y_data_switch_CLRM(:, t_dataPhase2:Times(FieldLifeTime-

Shift_time+1)+1); 

        y_reg_stop_CLRM = zeros(N_MC,Times(FieldLifeTime-Shift_time+1)-t_dataPhase2+2); 

        for t = 1: Times(FieldLifeTime-Shift_time+1)-t_dataPhase2+2 

            y_reg_stop_CLRM(:,t) = X_stop_CLRM*regress(y_data_stop_CLRM(:,t),X_stop_CLRM); 

        end 

            [StopTime_reg,StopTime_idx] = max(y_reg_stop_CLRM,[],2); 

        for i_path = 1: length(SwitchDecision_CLRM) 

            if StopTime_reg(SwitchDecision_CLRM(i_path)) == 

y_reg_stop_CLRM(SwitchDecision_CLRM(i_path),1) && 

CLRM_OptNPV_real(SwitchDecision_CLRM(i_path),1) == 0 

                CLRM_OptNPV_real(SwitchDecision_CLRM(i_path),1) = 

y_data_stop_CLRM(SwitchDecision_CLRM(i_path),1); 

                CLRM_PhaseLifes_Opt_reals(SwitchDecision_CLRM(i_path),1) = Shift_time-1; 

                CLRM_PhaseLifes_Opt_reals(SwitchDecision_CLRM(i_path),2) = 

t_dataPhase2+StopTime_idx(SwitchDecision_CLRM(i_path))-2; 

            else 

                continue; 

            end 

        end 

            t_dataPhase2 = t_dataPhase2+1; 

    end 

    end 

end 

 

DWI_CLRM_Phase1LifeTime = CLRM_PhaseLifes_Opt_reals(:,1); 

DWI_CLRM_Phase2LifeTime = CLRM_PhaseLifes_Opt_reals(:,2); 

DWI_CLRM_LifeTime = DWI_CLRM_Phase1LifeTime + DWI_CLRM_Phase2LifeTime; 

 

EVWI_CLRM = mean(CLRM_OptNPV_real); 

VOI_CLRM = EVWI_CLRM-EVWOI; 
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Appendix B2.5: Regression Function Equation (17) 
This code consists of the modified version of the sections 5 and 6 of Modified LSM Algorithm 
(Appendix B1.1) and CLRM (Appendix B1.2). With respect to this, the modification is done 
on the regression analysis. Thus, sections 1 to 4 of Modified LSM Algorithm (Appendix B1.1) 
have to be run first before executing this code. This code corresponds to the Regression 
Function of Equation (17) in the report. 
 

% 1. Path Table Generation 

 

N_MC = size(ObsRate_Phase1n2_real_time_ShiftTime,1); 

FieldLifeTime = size(ObsRate_Phase1n2_real_time_ShiftTime,2); 

SRDM_Shift_Stop_OptNPV_real = zeros(N_MC,1); 

 

PathTable = zeros(N_MC,FieldLifeTime+1); 

PathTable(:,end) = NPVtable_LTPhase1_LTPhase2_real(FieldLifeTime+1,1,:); 

Phase2_StopTime_real_Phase1LifeTime = zeros(N_MC,FieldLifeTime+1); 

 

for k_Shift_time = 1: FieldLifeTime 

        NPV_2Phases_matrix = zeros(N_MC,k_Shift_time+1); 

    for k_Stop_time = 1: k_Shift_time+1 

        NPV_2Phases_matrix(:,k_Stop_time) = NPVtable_LTPhase1_LTPhase2_real(FieldLifeTime-

k_Shift_time+1,k_Stop_time,:); 

    end 

    for k_StopTime = 1: k_Shift_time 

        if k_StopTime == 1 

            x_data_stop_SRDM = ObsRate_Phase1n2_real_time_ShiftTime(:,1:FieldLifeTime-

k_StopTime,FieldLifeTime-k_Shift_time+1); 

            x_data_cube_stop_SRDM = x_data_stop_SRDM(:,1:FieldLifeTime-k_StopTime-

2).*x_data_stop_SRDM(:,2:FieldLifeTime-k_StopTime-1).*x_data_stop_SRDM(:,3:FieldLifeTime-

k_StopTime); 

            X_stop_SRDM = [ones(N_MC,1) x_data_stop_SRDM x_data_cube_stop_SRDM]; 

            y_data_stop_matrix = [NPV_2Phases_matrix(:,k_Shift_time-k_StopTime+1) 

NPV_2Phases_matrix(:,k_Shift_time-k_StopTime+2)]; 

            [Stop_value,Stop_idx] = 

max([X_stop_SRDM*regress(NPV_2Phases_matrix(:,k_Shift_time-k_StopTime+1),X_stop_SRDM) 

X_stop_SRDM*regress(NPV_2Phases_matrix(:,k_Shift_time-k_StopTime+2),X_stop_SRDM)],[],2); 

            for i_MC = 1: N_MC 

                SRDM_Shift_Stop_OptNPV_real(i_MC,1) = 

y_data_stop_matrix(i_MC,Stop_idx(i_MC)); 

            end 

        else 

            x_data_stop_SRDM = ObsRate_Phase1n2_real_time_ShiftTime(:,1:FieldLifeTime-

k_StopTime,FieldLifeTime-k_Shift_time+1); 

            x_data_cube_stop_SRDM = x_data_stop_SRDM(:,1:FieldLifeTime-k_StopTime-

2).*x_data_stop_SRDM(:,2:FieldLifeTime-k_StopTime-1).*x_data_stop_SRDM(:,3:FieldLifeTime-

k_StopTime); 

            X_stop_SRDM = [ones(N_MC,1) x_data_stop_SRDM x_data_cube_stop_SRDM]; 

            y_data_stop_matrix = [NPV_2Phases_matrix(:,k_Shift_time-k_StopTime+1) 

SRDM_Shift_Stop_OptNPV_real(:,1)]; 

            [Stop_value,Stop_idx] = 

max([X_stop_SRDM*regress(NPV_2Phases_matrix(:,k_Shift_time-k_StopTime+1),X_stop_SRDM) 

X_stop_SRDM*regress(SRDM_Shift_Stop_OptNPV_real(:,1),X_stop_SRDM)],[],2); 

            for i_MC = 1: N_MC 

                SRDM_Shift_Stop_OptNPV_real(i_MC,1) = 
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y_data_stop_matrix(i_MC,Stop_idx(i_MC)); 

            end 

        end 

    end 

    for i_MC = 1: N_MC 

        PathTable(i_MC,FieldLifeTime-k_Shift_time+1) = SRDM_Shift_Stop_OptNPV_real(i_MC,1); 

        for k_Stop_time = 1: k_Shift_time+1 

            if SRDM_Shift_Stop_OptNPV_real(i_MC,1) == NPV_2Phases_matrix(i_MC,k_Stop_time) 

                Phase2_StopTime_real_Phase1LifeTime(i_MC,FieldLifeTime-k_Shift_time+1) = 

k_Stop_time-1; 

            end 

        end 

    end 

end 

 

% 2. SRDM Approach 

 

FieldLifeTime = size(ObsRate_Phase1n2_real_time_ShiftTime,2); 

y_data_continuation = zeros(N_MC,1); 

y_data_shift = zeros(N_MC,1); 

y_reg_continuation = zeros(N_MC,1); 

y_reg_shift = zeros(N_MC,1); 

x_data = ObsRate_Phase1n2_real_time_ShiftTime(:,:,FieldLifeTime+1); 

 

ValueTable = zeros(N_MC,FieldLifeTime+1); 

ValueTable(:,end) = PathTable(:,end); 

SRDM_DecisionTable = zeros(N_MC,FieldLifeTime+1); 

SRDM_DecisionTable(:,end) = 1; 

 

for k_Shift_time = 1:FieldLifeTime 

    x_data_cube = x_data(:,1:FieldLifeTime-k_Shift_time-2).*x_data(:,2:FieldLifeTime-

k_Shift_time-1).*x_data(:,3:FieldLifeTime-k_Shift_time); 

    X = [ones(N_MC,1) x_data(:,1:FieldLifeTime-k_Shift_time) x_data_cube]; 

    y_data_shift(:) = PathTable(:,FieldLifeTime-k_Shift_time+1); 

    coef_shift = regress(y_data_shift,X); 

    y_reg_shift(:) = X*coef_shift; 

    y_data_continuation(:) = ValueTable(:,FieldLifeTime-k_Shift_time+2); 

    coef_continuation = regress(y_data_continuation,X); 

    y_reg_continuation(:) = X*coef_continuation; 

    ENPVTable_Comparison = [y_reg_shift, y_reg_continuation]; 

    NPV_SRDM = [y_data_shift, y_data_continuation]; 

    [ENPV_SRDM,ENPV_SRDM_idx] = max(ENPVTable_Comparison,[],2); 

 

    for i_MC = 1: N_MC 

        ValueTable(i_MC,FieldLifeTime-k_Shift_time+1) = NPV_SRDM(i_MC,ENPV_SRDM_idx(i_MC)); 

        if y_reg_continuation(i_MC) > y_reg_shift(i_MC) 

            SRDM_DecisionTable(i_MC,FieldLifeTime-k_Shift_time+1) = 0; 

        else 

            SRDM_DecisionTable(i_MC,FieldLifeTime-k_Shift_time+1) = 1; 

        end 

    end 

end 

 

ShiftValue = PathTable(:,1); 

ExpShiftValue = mean(ShiftValue); 

 

ContinuationValue = ValueTable(:,1); 

ExpContinuationValue = mean(ContinuationValue); 
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EVWII = ExpContinuationValue; 

VOI = EVWII - EVWOI; 

VOI_over_EVWOI_pct = VOI/EVWOI*100; 

 

[~,DWI_Phase1LifeTime_idx] = max(SRDM_DecisionTable,[],2); 

DWI_Phase1LifeTime = DWI_Phase1LifeTime_idx-1; 

 

DWI_Phase2LifeTime = zeros(N_MC,1); 

for i_MC = 1:N_MC 

    Phase1LifeTime_idx_real = DWI_Phase1LifeTime_idx(i_MC,1); 

    DWI_Phase2LifeTime(i_MC,1) = 

Phase2_StopTime_real_Phase1LifeTime(i_MC,Phase1LifeTime_idx_real); 

end 

 

DWI_LifeTime = DWI_Phase1LifeTime+DWI_Phase2LifeTime; 

 

% 3. CLRM Approach 

 

N_MC = size(ObsRate_Phase1n2_real_time_ShiftTime,1); 

FieldLifeTime = size(ObsRate_Phase1n2_real_time_ShiftTime,2); 

N_Phase1n2LifeTime = sum(1:FieldLifeTime+1); 

N_LifeTimeComb = N_Phase1n2LifeTime; 

Times = 1:1:FieldLifeTime; 

CLRM_OptNPV_real = zeros(N_MC,1); 

NPV_Tab_matrix = transpose(NPVmatrix_reals); 

Prior_ENPV = meanNPVvector(:,3); 

[max_Prior_ENPV, max_Prior_ENPV_idx] = max(meanNPVvector(:,3),[],1); 

x_data_switch_CLRM = ObsRate_Phase1n2_real_time_ShiftTime(:,:,FieldLifeTime+1); 

 

CLRM_PhaseLifes_Opt_reals = zeros(N_MC,2); 

 

if max_Prior_ENPV_idx <= Times(FieldLifeTime)+1 %Finding if Switch Time is optimal at Y1 

    Shift_time = 1; 

    t_dataPhase2 = 1; 

    while t_dataPhase2 <= Times(FieldLifeTime-Shift_time+1) 

        if t_dataPhase2 == 1 && max_Prior_ENPV_idx == 1 %Switch and Stop at Y1 are optimal 

            for i_MC = 1: N_MC 

                CLRM_OptNPV_real(i_MC,1) = max_Prior_ENPV; 

            end 

            break; %The whole loop will break here 

        else %Given Switch at Y1 and Stop is not at Y1 

            x_data_stop_CLRM = ObsRate_Phase1n2_real_time_ShiftTime(:,:,Shift_time); 

            if t_dataPhase2 == 1 && t_dataPhase2 == 2 

                x_data_cube_stop_CLRM = x_data_stop_CLRM(:,1:t_dataPhase2); 

                X_stop_CLRM = [ones(N_MC,1) x_data_stop_CLRM(:,1:t_dataPhase2)]; 

            else 

                x_data_cube_stop_CLRM = x_data_stop_CLRM(:,1:t_dataPhase2-

2).*x_data_stop_CLRM(:,2:t_dataPhase2-1).*x_data_stop_CLRM(:,3:t_dataPhase2); 

                X_stop_CLRM = [ones(N_MC,1) x_data_stop_CLRM(:,1:t_dataPhase2) 

x_data_cube_stop_CLRM]; 

            end 

            y_data_stop_CLRM = NPV_Tab_matrix(:,t_dataPhase2+1:FieldLifeTime+1); 

            y_reg_stop_CLRM = zeros(N_MC,FieldLifeTime-t_dataPhase2+1); 

            for t = 1: FieldLifeTime-t_dataPhase2+1 

                y_reg_stop_CLRM(:,t) = 

X_stop_CLRM*regress(y_data_stop_CLRM(:,t),X_stop_CLRM); 

            end 

            [StopTime_reg,StopTime_idx] = max(y_reg_stop_CLRM,[],2); 
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        for i_MC = 1: N_MC 

            if StopTime_reg(i_MC) == y_reg_stop_CLRM(i_MC,1) && CLRM_OptNPV_real(i_MC,1) == 0 

                CLRM_OptNPV_real(i_MC,1) = y_data_stop_CLRM(i_MC,1); 

                CLRM_PhaseLifes_Opt_reals(i_MC,1) = Shift_time-1; 

                CLRM_PhaseLifes_Opt_reals(i_MC,2) = t_dataPhase2+StopTime_idx(i_MC)-1; 

            else 

                continue; 

            end 

        end 

        end 

        t_dataPhase2 = t_dataPhase2+1; 

    end 

else 

% This part is to find the corresponding optimal stop time given Switch time is not at Y1 

    for Shift_time = 2: FieldLifeTime %Finding and recording the optimal switch time before 

determining the stop time 

        N_LifeTimeComb = N_LifeTimeComb-Times(FieldLifeTime-Shift_time+2)-1; 

        y_data_switch_CLRM = NPV_Tab_matrix(:,N_Phase1n2LifeTime-

N_LifeTimeComb+1:N_Phase1n2LifeTime); 

        y_reg_switch_CLRM = zeros(N_MC,N_LifeTimeComb); 

        ENPVTabComp = zeros(N_MC,N_LifeTimeComb); 

        if Shift_time == 2 && Shift_time == 3 

            x_data_cube_switch_CLRM = x_data_switch_CLRM(:,1:Shift_time-1); 

            X_switch_CLRM = [ones(N_MC,1) x_data_switch_CLRM(:,1:Shift_time-1)]; 

        else 

            x_data_cube_switch_CLRM = x_data_switch_CLRM(:,1:Shift_time-

3).*x_data_switch_CLRM(:,2:Shift_time-2).*x_data_switch_CLRM(:,3:Shift_time-1); 

            X_switch_CLRM = [ones(N_MC,1) x_data_switch_CLRM(:,1:Shift_time-1) 

x_data_cube_switch_CLRM]; 

        end 

        for i_LifeTimeComb = 1: N_LifeTimeComb 

            coef_reg_CLRM = regress(y_data_switch_CLRM(:,i_LifeTimeComb),X_switch_CLRM); 

            y_reg_switch_CLRM(:,i_LifeTimeComb) = X_switch_CLRM*coef_reg_CLRM; 

            ENPVTabComp(:,i_LifeTimeComb) = y_reg_switch_CLRM(:,i_LifeTimeComb); 

        end 

 

    [CLRM_reg,CLRM_idx] = max(ENPVTabComp,[],2); 

 

    if Shift_time == FieldLifeTime 

        [SwitchDecision_CLRM,SwitchDecision_CLRM_idx] = find(CLRM_idx <= Times(FieldLifeTime-

Shift_time+2)+1); 

        [ContinueTime_reg,ContinueTime_idx] = find(CLRM_idx == Times(FieldLifeTime-

Shift_time+2)+1); 

        for i_path = 1: length(ContinueTime_reg) 

            if CLRM_OptNPV_real(ContinueTime_reg(i_path),1) == 0 

               CLRM_OptNPV_real(ContinueTime_reg(i_path),1) = 

y_data_switch_CLRM(ContinueTime_reg(i_path),end); 

               CLRM_PhaseLifes_Opt_reals(ContinueTime_reg(i_path),1) = FieldLifeTime; 

               CLRM_PhaseLifes_Opt_reals(ContinueTime_reg(i_path),2) = 0; 

            else 

                continue; 

            end 

        end 

    else 

        [SwitchDecision_CLRM,SwitchDecision_CLRM_idx] = find(CLRM_idx <= Times(FieldLifeTime-

Shift_time+2)); 

    end 
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    x_data_stop_CLRM = ObsRate_Phase1n2_real_time_ShiftTime(:,:,Shift_time); 

    t_dataPhase2 = 1; 

    while t_dataPhase2 <= Times(FieldLifeTime-Shift_time+1)+1 

        if t_dataPhase2 == 1 && t_dataPhase2 == 2 

            x_data_cube_stop_CLRM = x_data_stop_CLRM(:,1:t_dataPhase2); 

            X_stop_CLRM = [ones(N_MC,1) x_data_stop_CLRM(:,1:t_dataPhase2+Shift_time-2)]; 

        else 

            x_data_cube_stop_CLRM = x_data_stop_CLRM(:,1:t_dataPhase2-

2).*x_data_stop_CLRM(:,2:t_dataPhase2-1).*x_data_stop_CLRM(:,3:t_dataPhase2); 

            X_stop_CLRM = [ones(N_MC,1) x_data_stop_CLRM(:,1:t_dataPhase2+Shift_time-2) 

x_data_cube_stop_CLRM]; 

        end 

        y_data_stop_CLRM = y_data_switch_CLRM(:, t_dataPhase2:Times(FieldLifeTime-

Shift_time+1)+1); 

        y_reg_stop_CLRM = zeros(N_MC,Times(FieldLifeTime-Shift_time+1)-t_dataPhase2+2); 

        for t = 1: Times(FieldLifeTime-Shift_time+1)-t_dataPhase2+2 

            y_reg_stop_CLRM(:,t) = X_stop_CLRM*regress(y_data_stop_CLRM(:,t),X_stop_CLRM); 

        end 

            [StopTime_reg,StopTime_idx] = max(y_reg_stop_CLRM,[],2); 

        for i_path = 1: length(SwitchDecision_CLRM) 

            if StopTime_reg(SwitchDecision_CLRM(i_path)) == 

y_reg_stop_CLRM(SwitchDecision_CLRM(i_path),1) && 

CLRM_OptNPV_real(SwitchDecision_CLRM(i_path),1) == 0 

                CLRM_OptNPV_real(SwitchDecision_CLRM(i_path),1) = 

y_data_stop_CLRM(SwitchDecision_CLRM(i_path),1); 

                CLRM_PhaseLifes_Opt_reals(SwitchDecision_CLRM(i_path),1) = Shift_time-1; 

                CLRM_PhaseLifes_Opt_reals(SwitchDecision_CLRM(i_path),2) = 

t_dataPhase2+StopTime_idx(SwitchDecision_CLRM(i_path))-2; 

            else 

                continue; 

            end 

        end 

            t_dataPhase2 = t_dataPhase2+1; 

    end 

    end 

end 

 

DWI_CLRM_Phase1LifeTime = CLRM_PhaseLifes_Opt_reals(:,1); 

DWI_CLRM_Phase2LifeTime = CLRM_PhaseLifes_Opt_reals(:,2); 

DWI_CLRM_LifeTime = DWI_CLRM_Phase1LifeTime + DWI_CLRM_Phase2LifeTime; 

 

EVWI_CLRM = mean(CLRM_OptNPV_real); 

VOI_CLRM = EVWI_CLRM-EVWOI; 

 

 

 

 

 

 

 



 

140 
 

Appendix B2.6: Regression Function Equation (18) 
This code consists of the modified version of the sections 5 and 6 of Modified LSM Algorithm 
(Appendix B1.1) and CLRM (Appendix B1.2). With respect to this, the modification is done 
on the regression analysis. Thus, sections 1 to 4 of Modified LSM Algorithm (Appendix B1.1) 
have to be run first before executing this code. This code corresponds to the Regression 
Function of Equation (18) in the report. 
 

% 1. Path Table Generation 

 

N_MC = size(ObsRate_Phase1n2_real_time_ShiftTime,1); 

FieldLifeTime = size(ObsRate_Phase1n2_real_time_ShiftTime,2); 

SRDM_Shift_Stop_OptNPV_real = zeros(N_MC,1); 

 

PathTable = zeros(N_MC,FieldLifeTime+1); 

PathTable(:,end) = NPVtable_LTPhase1_LTPhase2_real(FieldLifeTime+1,1,:); 

Phase2_StopTime_real_Phase1LifeTime = zeros(N_MC,FieldLifeTime+1); 

 

for k_Shift_time = 1: FieldLifeTime 

        NPV_2Phases_matrix = zeros(N_MC,k_Shift_time+1); 

    for k_Stop_time = 1: k_Shift_time+1 

        NPV_2Phases_matrix(:,k_Stop_time) = NPVtable_LTPhase1_LTPhase2_real(FieldLifeTime-

k_Shift_time+1,k_Stop_time,:); 

    end 

    for k_StopTime = 1: k_Shift_time 

        if k_StopTime == 1 

            x_data_stop_SRDM = ObsRate_Phase1n2_real_time_ShiftTime(:,1:FieldLifeTime-

k_StopTime,FieldLifeTime-k_Shift_time+1); 

            x_data_square_stop_SRDM = x_data_stop_SRDM(:,1:FieldLifeTime-k_StopTime-

1).*x_data_stop_SRDM(:,2:FieldLifeTime-k_StopTime); 

            x_data_cube_stop_SRDM = x_data_stop_SRDM(:,1:FieldLifeTime-k_StopTime-

2).*x_data_stop_SRDM(:,2:FieldLifeTime-k_StopTime-1).*x_data_stop_SRDM(:,3:FieldLifeTime-

k_StopTime); 

            X_stop_SRDM = [ones(N_MC,1) x_data_stop_SRDM x_data_square_stop_SRDM 

x_data_cube_stop_SRDM]; 

            y_data_stop_matrix = [NPV_2Phases_matrix(:,k_Shift_time-k_StopTime+1) 

NPV_2Phases_matrix(:,k_Shift_time-k_StopTime+2)]; 

            [Stop_value,Stop_idx] = 

max([X_stop_SRDM*regress(NPV_2Phases_matrix(:,k_Shift_time-k_StopTime+1),X_stop_SRDM) 

X_stop_SRDM*regress(NPV_2Phases_matrix(:,k_Shift_time-k_StopTime+2),X_stop_SRDM)],[],2); 

            for i_MC = 1: N_MC 

                SRDM_Shift_Stop_OptNPV_real(i_MC,1) = 

y_data_stop_matrix(i_MC,Stop_idx(i_MC)); 

            end 

        else 

            x_data_stop_SRDM = ObsRate_Phase1n2_real_time_ShiftTime(:,1:FieldLifeTime-

k_StopTime,FieldLifeTime-k_Shift_time+1); 

            x_data_square_stop_SRDM = x_data_stop_SRDM(:,1:FieldLifeTime-k_StopTime-

1).*x_data_stop_SRDM(:,2:FieldLifeTime-k_StopTime); 

            x_data_cube_stop_SRDM = x_data_stop_SRDM(:,1:FieldLifeTime-k_StopTime-

2).*x_data_stop_SRDM(:,2:FieldLifeTime-k_StopTime-1).*x_data_stop_SRDM(:,3:FieldLifeTime-

k_StopTime); 

            X_stop_SRDM = [ones(N_MC,1) x_data_stop_SRDM x_data_square_stop_SRDM 

x_data_cube_stop_SRDM]; 

            y_data_stop_matrix = [NPV_2Phases_matrix(:,k_Shift_time-k_StopTime+1) 
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SRDM_Shift_Stop_OptNPV_real(:,1)]; 

            [Stop_value,Stop_idx] = 

max([X_stop_SRDM*regress(NPV_2Phases_matrix(:,k_Shift_time-k_StopTime+1),X_stop_SRDM) 

X_stop_SRDM*regress(SRDM_Shift_Stop_OptNPV_real(:,1),X_stop_SRDM)],[],2); 

            for i_MC = 1: N_MC 

                SRDM_Shift_Stop_OptNPV_real(i_MC,1) = 

y_data_stop_matrix(i_MC,Stop_idx(i_MC)); 

            end 

        end 

    end 

    for i_MC = 1: N_MC 

        PathTable(i_MC,FieldLifeTime-k_Shift_time+1) = SRDM_Shift_Stop_OptNPV_real(i_MC,1); 

        for k_Stop_time = 1: k_Shift_time+1 

            if SRDM_Shift_Stop_OptNPV_real(i_MC,1) == NPV_2Phases_matrix(i_MC,k_Stop_time) 

                Phase2_StopTime_real_Phase1LifeTime(i_MC,FieldLifeTime-k_Shift_time+1) = 

k_Stop_time-1; 

            end 

        end 

    end 

end 

 

% 2. SRDM Approach 

 

FieldLifeTime = size(ObsRate_Phase1n2_real_time_ShiftTime,2); 

y_data_continuation = zeros(N_MC,1); 

y_data_shift = zeros(N_MC,1); 

y_reg_continuation = zeros(N_MC,1); 

y_reg_shift = zeros(N_MC,1); 

x_data = ObsRate_Phase1n2_real_time_ShiftTime(:,:,FieldLifeTime+1); 

 

ValueTable = zeros(N_MC,FieldLifeTime+1); 

ValueTable(:,end) = PathTable(:,end); 

SRDM_DecisionTable = zeros(N_MC,FieldLifeTime+1); 

SRDM_DecisionTable(:,end) = 1; 

 

for k_Shift_time = 1:FieldLifeTime 

    x_data_square = x_data(:,1:FieldLifeTime-k_Shift_time-1).*x_data(:,2:FieldLifeTime-

k_Shift_time); 

    x_data_cube = x_data(:,1:FieldLifeTime-k_Shift_time-2).*x_data(:,2:FieldLifeTime-

k_Shift_time-1).*x_data(:,3:FieldLifeTime-k_Shift_time); 

    X = [ones(N_MC,1) x_data(:,1:FieldLifeTime-k_Shift_time) x_data_square x_data_cube]; 

    y_data_shift(:) = PathTable(:,FieldLifeTime-k_Shift_time+1); 

    coef_shift = regress(y_data_shift,X); 

    y_reg_shift(:) = X*coef_shift; 

    y_data_continuation(:) = ValueTable(:,FieldLifeTime-k_Shift_time+2); 

    coef_continuation = regress(y_data_continuation,X); 

    y_reg_continuation(:) = X*coef_continuation; 

    ENPVTable_Comparison = [y_reg_shift, y_reg_continuation]; 

    NPV_SRDM = [y_data_shift, y_data_continuation]; 

    [ENPV_SRDM,ENPV_SRDM_idx] = max(ENPVTable_Comparison,[],2); 

 

    for i_MC = 1: N_MC 

        ValueTable(i_MC,FieldLifeTime-k_Shift_time+1) = NPV_SRDM(i_MC,ENPV_SRDM_idx(i_MC)); 

        if y_reg_continuation(i_MC) > y_reg_shift(i_MC) 

            SRDM_DecisionTable(i_MC,FieldLifeTime-k_Shift_time+1) = 0; 

        else 

            SRDM_DecisionTable(i_MC,FieldLifeTime-k_Shift_time+1) = 1; 

        end 
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    end 

end 

 

ShiftValue = PathTable(:,1); 

ExpShiftValue = mean(ShiftValue); 

 

ContinuationValue = ValueTable(:,1); 

ExpContinuationValue = mean(ContinuationValue); 

EVWII = ExpContinuationValue; 

VOI = EVWII - EVWOI; 

VOI_over_EVWOI_pct = VOI/EVWOI*100; 

 

[~,DWI_Phase1LifeTime_idx] = max(SRDM_DecisionTable,[],2); 

DWI_Phase1LifeTime = DWI_Phase1LifeTime_idx-1; 

 

DWI_Phase2LifeTime = zeros(N_MC,1); 

for i_MC = 1:N_MC 

    Phase1LifeTime_idx_real = DWI_Phase1LifeTime_idx(i_MC,1); 

    DWI_Phase2LifeTime(i_MC,1) = 

Phase2_StopTime_real_Phase1LifeTime(i_MC,Phase1LifeTime_idx_real); 

end 

 

DWI_LifeTime = DWI_Phase1LifeTime+DWI_Phase2LifeTime; 

 

% 3. CLRM Approach 

 

N_MC = size(ObsRate_Phase1n2_real_time_ShiftTime,1); 

FieldLifeTime = size(ObsRate_Phase1n2_real_time_ShiftTime,2); 

N_Phase1n2LifeTime = sum(1:FieldLifeTime+1); 

N_LifeTimeComb = N_Phase1n2LifeTime; 

Times = 1:1:FieldLifeTime; 

CLRM_OptNPV_real = zeros(N_MC,1); 

NPV_Tab_matrix = transpose(NPVmatrix_reals); 

Prior_ENPV = meanNPVvector(:,3); 

[max_Prior_ENPV, max_Prior_ENPV_idx] = max(meanNPVvector(:,3),[],1); 

x_data_switch_CLRM = ObsRate_Phase1n2_real_time_ShiftTime(:,:,FieldLifeTime+1); 

 

CLRM_PhaseLifes_Opt_reals = zeros(N_MC,2); 

 

if max_Prior_ENPV_idx <= Times(FieldLifeTime)+1 %Finding if Switch Time is optimal at Y1 

    Shift_time = 1; 

    t_dataPhase2 = 1; 

    while t_dataPhase2 <= Times(FieldLifeTime-Shift_time+1) 

        if t_dataPhase2 == 1 && max_Prior_ENPV_idx == 1 %Switch and Stop at Y1 are optimal 

            for i_MC = 1: N_MC 

                CLRM_OptNPV_real(i_MC,1) = max_Prior_ENPV; 

            end 

            break; %The whole loop will break here 

        else %Given Switch at Y1 and Stop is not at Y1 

            x_data_stop_CLRM = ObsRate_Phase1n2_real_time_ShiftTime(:,:,Shift_time); 

            if t_dataPhase2 == 1 

                x_data_square_stop_CLRM = x_data_stop_CLRM(:,1:t_dataPhase2); 

                X_stop_CLRM = [ones(N_MC,1) x_data_stop_CLRM(:,1:t_dataPhase2)]; 

            elseif t_dataPhase2 == 2 

                x_data_square_stop_CLRM = x_data_stop_CLRM(:,1:t_dataPhase2-

1).*x_data_stop_CLRM(:,2:t_dataPhase2); 

                X_stop_CLRM = [ones(N_MC,1) x_data_stop_CLRM(:,1:t_dataPhase2) 

x_data_square_stop_CLRM]; 
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            else 

                x_data_square_stop_CLRM = x_data_stop_CLRM(:,1:t_dataPhase2-

1).*x_data_stop_CLRM(:,2:t_dataPhase2); 

                x_data_cube_stop_CLRM = x_data_stop_CLRM(:,1:t_dataPhase2-

2).*x_data_stop_CLRM(:,2:t_dataPhase2-1).*x_data_stop_CLRM(:,3:t_dataPhase2); 

                X_stop_CLRM = [ones(N_MC,1) x_data_stop_CLRM(:,1:t_dataPhase2) 

x_data_square_stop_CLRM x_data_cube_stop_CLRM]; 

            end 

            y_data_stop_CLRM = NPV_Tab_matrix(:,t_dataPhase2+1:FieldLifeTime+1); 

            y_reg_stop_CLRM = zeros(N_MC,FieldLifeTime-t_dataPhase2+1); 

            for t = 1: FieldLifeTime-t_dataPhase2+1 

                y_reg_stop_CLRM(:,t) = 

X_stop_CLRM*regress(y_data_stop_CLRM(:,t),X_stop_CLRM); 

            end 

            [StopTime_reg,StopTime_idx] = max(y_reg_stop_CLRM,[],2); 

        for i_MC = 1: N_MC 

            if StopTime_reg(i_MC) == y_reg_stop_CLRM(i_MC,1) && CLRM_OptNPV_real(i_MC,1) == 0 

                CLRM_OptNPV_real(i_MC,1) = y_data_stop_CLRM(i_MC,1); 

                CLRM_PhaseLifes_Opt_reals(i_MC,1) = Shift_time-1; 

                CLRM_PhaseLifes_Opt_reals(i_MC,2) = t_dataPhase2+StopTime_idx(i_MC)-1; 

            else 

                continue; 

            end 

        end 

        end 

        t_dataPhase2 = t_dataPhase2+1; 

    end 

else 

% This part is to find the corresponding optimal stop time given Switch time is not at Y1 

    for Shift_time = 2: FieldLifeTime %Finding and recording the optimal switch time before 

determining the stop time 

        N_LifeTimeComb = N_LifeTimeComb-Times(FieldLifeTime-Shift_time+2)-1; 

        y_data_switch_CLRM = NPV_Tab_matrix(:,N_Phase1n2LifeTime-

N_LifeTimeComb+1:N_Phase1n2LifeTime); 

        y_reg_switch_CLRM = zeros(N_MC,N_LifeTimeComb); 

        ENPVTabComp = zeros(N_MC,N_LifeTimeComb); 

        if Shift_time == 2 

            x_data_square_switch_CLRM = x_data_switch_CLRM(:,1:Shift_time-1); 

            X_switch_CLRM = [ones(N_MC,1) x_data_switch_CLRM(:,1:Shift_time-1)]; 

        elseif Shift_time == 3 

            x_data_square_switch_CLRM = x_data_switch_CLRM(:,1:Shift_time-

2).*x_data_switch_CLRM(:,2:Shift_time-1); 

            X_switch_CLRM = [ones(N_MC,1) x_data_switch_CLRM(:,1:Shift_time-1) 

x_data_square_switch_CLRM]; 

        else 

            x_data_square_switch_CLRM = x_data_switch_CLRM(:,1:Shift_time-

2).*x_data_switch_CLRM(:,2:Shift_time-1); 

            x_data_cube_switch_CLRM = x_data_switch_CLRM(:,1:Shift_time-

3).*x_data_switch_CLRM(:,2:Shift_time-2).*x_data_switch_CLRM(:,3:Shift_time-1); %%Check 

here!!!! 

            X_switch_CLRM = [ones(N_MC,1) x_data_switch_CLRM(:,1:Shift_time-1) 

x_data_square_switch_CLRM x_data_cube_switch_CLRM]; 

        end 

        for i_LifeTimeComb = 1: N_LifeTimeComb 

            coef_reg_CLRM = regress(y_data_switch_CLRM(:,i_LifeTimeComb),X_switch_CLRM); 

            y_reg_switch_CLRM(:,i_LifeTimeComb) = X_switch_CLRM*coef_reg_CLRM; 

            ENPVTabComp(:,i_LifeTimeComb) = y_reg_switch_CLRM(:,i_LifeTimeComb); 

        end 
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    [CLRM_reg,CLRM_idx] = max(ENPVTabComp,[],2); 

 

    if Shift_time == FieldLifeTime 

        [SwitchDecision_CLRM,SwitchDecision_CLRM_idx] = find(CLRM_idx <= Times(FieldLifeTime-

Shift_time+2)+1); 

        [ContinueTime_reg,ContinueTime_idx] = find(CLRM_idx == Times(FieldLifeTime-

Shift_time+2)+1); 

        for i_path = 1: length(ContinueTime_reg) 

            if CLRM_OptNPV_real(ContinueTime_reg(i_path),1) == 0 

               CLRM_OptNPV_real(ContinueTime_reg(i_path),1) = 

y_data_switch_CLRM(ContinueTime_reg(i_path),end); 

               CLRM_PhaseLifes_Opt_reals(ContinueTime_reg(i_path),1) = FieldLifeTime; 

               CLRM_PhaseLifes_Opt_reals(ContinueTime_reg(i_path),2) = 0; 

            else 

                continue; 

            end 

        end 

    else 

        [SwitchDecision_CLRM,SwitchDecision_CLRM_idx] = find(CLRM_idx <= Times(FieldLifeTime-

Shift_time+2)); 

    end 

 

    x_data_stop_CLRM = ObsRate_Phase1n2_real_time_ShiftTime(:,:,Shift_time); 

    t_dataPhase2 = 1; 

    while t_dataPhase2 <= Times(FieldLifeTime-Shift_time+1)+1 

        if t_dataPhase2 == 1 

            x_data_square_stop_CLRM = x_data_stop_CLRM(:,1:t_dataPhase2); 

            X_stop_CLRM = [ones(N_MC,1) x_data_stop_CLRM(:,1:t_dataPhase2+Shift_time-2)]; 

        elseif t_dataPhase2 == 2 

            x_data_square_stop_CLRM = x_data_stop_CLRM(:,1:t_dataPhase2-

1).*x_data_stop_CLRM(:,2:t_dataPhase2); 

            X_stop_CLRM = [ones(N_MC,1) x_data_stop_CLRM(:,1:t_dataPhase2+Shift_time-2) 

x_data_square_stop_CLRM]; 

        else 

            x_data_square_stop_CLRM = x_data_stop_CLRM(:,1:t_dataPhase2-

1).*x_data_stop_CLRM(:,2:t_dataPhase2); 

            x_data_cube_stop_CLRM = x_data_stop_CLRM(:,1:t_dataPhase2-

2).*x_data_stop_CLRM(:,2:t_dataPhase2-1).*x_data_stop_CLRM(:,3:t_dataPhase2); 

            X_stop_CLRM = [ones(N_MC,1) x_data_stop_CLRM(:,1:t_dataPhase2+Shift_time-2) 

x_data_square_stop_CLRM x_data_cube_stop_CLRM]; 

        end 

        y_data_stop_CLRM = y_data_switch_CLRM(:, t_dataPhase2:Times(FieldLifeTime-

Shift_time+1)+1); 

        y_reg_stop_CLRM = zeros(N_MC,Times(FieldLifeTime-Shift_time+1)-t_dataPhase2+2); 

        for t = 1: Times(FieldLifeTime-Shift_time+1)-t_dataPhase2+2 

            y_reg_stop_CLRM(:,t) = X_stop_CLRM*regress(y_data_stop_CLRM(:,t),X_stop_CLRM); 

        end 

            [StopTime_reg,StopTime_idx] = max(y_reg_stop_CLRM,[],2); 

        for i_path = 1: length(SwitchDecision_CLRM) 

            if StopTime_reg(SwitchDecision_CLRM(i_path)) == 

y_reg_stop_CLRM(SwitchDecision_CLRM(i_path),1) && 

CLRM_OptNPV_real(SwitchDecision_CLRM(i_path),1) == 0 

                CLRM_OptNPV_real(SwitchDecision_CLRM(i_path),1) = 

y_data_stop_CLRM(SwitchDecision_CLRM(i_path),1); 

                CLRM_PhaseLifes_Opt_reals(SwitchDecision_CLRM(i_path),1) = Shift_time-1; 

                CLRM_PhaseLifes_Opt_reals(SwitchDecision_CLRM(i_path),2) = 

t_dataPhase2+StopTime_idx(SwitchDecision_CLRM(i_path))-2; 
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            else 

                continue; 

            end 

        end 

            t_dataPhase2 = t_dataPhase2+1; 

    end 

    end 

end 

 

DWI_CLRM_Phase1LifeTime = CLRM_PhaseLifes_Opt_reals(:,1); 

DWI_CLRM_Phase2LifeTime = CLRM_PhaseLifes_Opt_reals(:,2); 

DWI_CLRM_LifeTime = DWI_CLRM_Phase1LifeTime + DWI_CLRM_Phase2LifeTime; 

 

EVWI_CLRM = mean(CLRM_OptNPV_real); 

VOI_CLRM = EVWI_CLRM-EVWOI; 
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Appendix B2.7: Laguerre Polynomials without dependency terms 
(without renormalization) 
This code consists of the modified version of the sections 5 and 6 of Modified LSM Algorithm 
(Appendix B1.1) and CLRM (Appendix B1.2). With respect to this the modification is done 
on the regression analysis. Thus, sections 1 to 4 of Modified LSM Algorithm (Appendix B1.1) 
have to be run first before executing this code. This code corresponds to the Laguerre 
Polynomials without dependency terms (no renormalization) in the report.  
 

% 1. Path Table Generation 

 

N_MC = size(ObsRate_Phase1n2_real_time_ShiftTime,1); 

FieldLifeTime = size(ObsRate_Phase1n2_real_time_ShiftTime,2); 

SRDM_Shift_Stop_OptNPV_real = zeros(N_MC,1); 

 

PathTable = zeros(N_MC,FieldLifeTime+1); 

PathTable(:,end) = NPVtable_LTPhase1_LTPhase2_real(FieldLifeTime+1,1,:); 

Phase2_StopTime_real_Phase1LifeTime = zeros(N_MC,FieldLifeTime+1); 

 

for k_Shift_time = 1: FieldLifeTime 

        NPV_2Phases_matrix = zeros(N_MC,k_Shift_time+1); 

    for k_Stop_time = 1: k_Shift_time+1 

        NPV_2Phases_matrix(:,k_Stop_time) = NPVtable_LTPhase1_LTPhase2_real(FieldLifeTime-

k_Shift_time+1,k_Stop_time,:); 

    end 

    for k_StopTime = 1: k_Shift_time 

        if k_StopTime == 1 

            x_data_stop_SRDM = ObsRate_Phase1n2_real_time_ShiftTime(:,1:FieldLifeTime-

k_StopTime,FieldLifeTime-k_Shift_time+1); 

            Laguerre_PathTable_0 = exp(-x_data_stop_SRDM/2); 

            Laguerre_PathTable_1 = exp(-x_data_stop_SRDM/2).*(1-x_data_stop_SRDM); 

            Laguerre_PathTable_2 = exp(-x_data_stop_SRDM/2).*(1-

2.*x_data_stop_SRDM+0.5.*(x_data_stop_SRDM.^2)); 

 

            X_stop_SRDM = [ones(N_MC,1) Laguerre_PathTable_0 Laguerre_PathTable_1 

Laguerre_PathTable_2]; 

            y_data_stop_matrix = [NPV_2Phases_matrix(:,k_Shift_time-k_StopTime+1) 

NPV_2Phases_matrix(:,k_Shift_time-k_StopTime+2)]; 

            [Stop_value,Stop_idx] = 

max([X_stop_SRDM*regress(NPV_2Phases_matrix(:,k_Shift_time-k_StopTime+1),X_stop_SRDM) 

X_stop_SRDM*regress(NPV_2Phases_matrix(:,k_Shift_time-k_StopTime+2),X_stop_SRDM)],[],2); 

            for i_MC = 1: N_MC 

                SRDM_Shift_Stop_OptNPV_real(i_MC,1) = 

y_data_stop_matrix(i_MC,Stop_idx(i_MC)); 

            end 

        else 

            x_data_stop_SRDM = ObsRate_Phase1n2_real_time_ShiftTime(:,1:FieldLifeTime-

k_StopTime,FieldLifeTime-k_Shift_time+1); 

            Laguerre_PathTable_0 = exp(-x_data_stop_SRDM/2); 

            Laguerre_PathTable_1 = exp(-x_data_stop_SRDM/2).*(1-x_data_stop_SRDM); 

            Laguerre_PathTable_2 = exp(-x_data_stop_SRDM/2).*(1-

2.*x_data_stop_SRDM+0.5.*(x_data_stop_SRDM.^2)); 

 

            X_stop_SRDM = [ones(N_MC,1) Laguerre_PathTable_0 Laguerre_PathTable_1 

Laguerre_PathTable_2]; 
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            y_data_stop_matrix = [NPV_2Phases_matrix(:,k_Shift_time-k_StopTime+1) 

SRDM_Shift_Stop_OptNPV_real(:,1)]; 

            [Stop_value,Stop_idx] = 

max([X_stop_SRDM*regress(NPV_2Phases_matrix(:,k_Shift_time-k_StopTime+1),X_stop_SRDM) 

X_stop_SRDM*regress(SRDM_Shift_Stop_OptNPV_real(:,1),X_stop_SRDM)],[],2); 

            for i_MC = 1: N_MC 

                SRDM_Shift_Stop_OptNPV_real(i_MC,1) = 

y_data_stop_matrix(i_MC,Stop_idx(i_MC)); 

            end 

        end 

    end 

    for i_MC = 1: N_MC 

        PathTable(i_MC,FieldLifeTime-k_Shift_time+1) = SRDM_Shift_Stop_OptNPV_real(i_MC,1); 

        for k_Stop_time = 1: k_Shift_time+1 

            if SRDM_Shift_Stop_OptNPV_real(i_MC,1) == NPV_2Phases_matrix(i_MC,k_Stop_time) 

                Phase2_StopTime_real_Phase1LifeTime(i_MC,FieldLifeTime-k_Shift_time+1) = 

k_Stop_time-1; 

            end 

        end 

    end 

end 

 

% 2. SRDM Apprach 

 

FieldLifeTime = size(ObsRate_Phase1n2_real_time_ShiftTime,2); 

y_data_continuation = zeros(N_MC,1); 

y_data_shift = zeros(N_MC,1); 

y_reg_continuation = zeros(N_MC,1); 

y_reg_shift = zeros(N_MC,1); 

x_data = ObsRate_Phase1n2_real_time_ShiftTime(:,:,FieldLifeTime+1); 

 

ValueTable = zeros(N_MC,FieldLifeTime+1); 

ValueTable(:,end) = PathTable(:,end); 

SRDM_DecisionTable = zeros(N_MC,FieldLifeTime+1); 

SRDM_DecisionTable(:,end) = 1; 

 

for k_Shift_time = 1:FieldLifeTime 

    Laguerre_SRDM_0 = exp(-x_data(:,1:FieldLifeTime-k_Shift_time)/2); 

    Laguerre_SRDM_1 = exp(-x_data(:,1:FieldLifeTime-k_Shift_time)/2).*(1-

x_data(:,1:FieldLifeTime-k_Shift_time)); 

    Laguerre_SRDM_2 = exp(-x_data(:,1:FieldLifeTime-k_Shift_time)/2).*(1-

2.*x_data(:,1:FieldLifeTime-k_Shift_time)+0.5.*x_data(:,1:FieldLifeTime-k_Shift_time).^2); 

 

    X = [ones(N_MC,1) Laguerre_SRDM_0 Laguerre_SRDM_1 Laguerre_SRDM_2]; 

    y_data_shift(:) = PathTable(:,FieldLifeTime-k_Shift_time+1); 

    coef_shift = regress(y_data_shift,X); 

    y_reg_shift(:) = X*coef_shift; 

    y_data_continuation(:) = ValueTable(:,FieldLifeTime-k_Shift_time+2); 

    coef_continuation = regress(y_data_continuation,X); 

    y_reg_continuation(:) = X*coef_continuation; 

    ENPVTable_Comparison = [y_reg_shift, y_reg_continuation]; 

    NPV_SRDM = [y_data_shift, y_data_continuation]; 

    [ENPV_SRDM,ENPV_SRDM_idx] = max(ENPVTable_Comparison,[],2); 

 

    for i_MC = 1: N_MC 

        ValueTable(i_MC,FieldLifeTime-k_Shift_time+1) = NPV_SRDM(i_MC,ENPV_SRDM_idx(i_MC)); 

        if y_reg_continuation(i_MC) > y_reg_shift(i_MC) 

            SRDM_DecisionTable(i_MC,FieldLifeTime-k_Shift_time+1) = 0; 
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        else 

            SRDM_DecisionTable(i_MC,FieldLifeTime-k_Shift_time+1) = 1; 

        end 

    end 

end 

 

ShiftValue = PathTable(:,1); 

ExpShiftValue = mean(ShiftValue); 

 

ContinuationValue = ValueTable(:,1); 

ExpContinuationValue = mean(ContinuationValue); 

EVWII = ExpContinuationValue; 

VOI = EVWII - EVWOI; 

VOI_over_EVWOI_pct = VOI/EVWOI*100; 

 

[~,DWI_Phase1LifeTime_idx] = max(SRDM_DecisionTable,[],2); 

DWI_Phase1LifeTime = DWI_Phase1LifeTime_idx-1; 

 

DWI_Phase2LifeTime = zeros(N_MC,1); 

for i_MC = 1:N_MC 

    Phase1LifeTime_idx_real = DWI_Phase1LifeTime_idx(i_MC,1); 

    DWI_Phase2LifeTime(i_MC,1) = 

Phase2_StopTime_real_Phase1LifeTime(i_MC,Phase1LifeTime_idx_real); 

end 

 

DWI_LifeTime = DWI_Phase1LifeTime+DWI_Phase2LifeTime; 

 

% 3. CLRM Approach 

 

N_MC = size(ObsRate_Phase1n2_real_time_ShiftTime,1); 

FieldLifeTime = size(ObsRate_Phase1n2_real_time_ShiftTime,2); 

N_Phase1n2LifeTime = sum(1:FieldLifeTime+1); 

N_LifeTimeComb = N_Phase1n2LifeTime; 

Times = 1:1:FieldLifeTime; 

CLRM_OptNPV_real = zeros(N_MC,1); 

NPV_Tab_matrix = transpose(NPVmatrix_reals); 

Prior_ENPV = meanNPVvector(:,3); 

[max_Prior_ENPV, max_Prior_ENPV_idx] = max(meanNPVvector(:,3),[],1); 

x_data_switch_CLRM = ObsRate_Phase1n2_real_time_ShiftTime(:,:,FieldLifeTime+1); 

 

CLRM_PhaseLifes_Opt_reals = zeros(N_MC,2); 

 

if max_Prior_ENPV_idx <= Times(FieldLifeTime)+1 %Finding if Switch Time is optimal at Y1 

    Shift_time = 1; 

    t_dataPhase2 = 1; 

    while t_dataPhase2 <= Times(FieldLifeTime-Shift_time+1) 

        if t_dataPhase2 == 1 && max_Prior_ENPV_idx == 1 %Switch and Stop at Y1 are optimal 

            for i_MC = 1: N_MC 

                CLRM_OptNPV_real(i_MC,1) = max_Prior_ENPV; 

            end 

            break; %The whole loop will break here 

        else %Given Switch at Y1 and Stop is not at Y1 

            x_data_stop_CLRM = ObsRate_Phase1n2_real_time_ShiftTime(:,:,Shift_time); 

            Laguerre_CLRM_0 = exp(-x_data_stop_CLRM(:,1:t_dataPhase2)/2); 

            Laguerre_CLRM_1 = exp(-x_data_stop_CLRM(:,1:t_dataPhase2)/2).*(1-

x_data_stop_CLRM(:,1:t_dataPhase2)); 

            Laguerre_CLRM_2 = exp(-x_data_stop_CLRM(:,1:t_dataPhase2)/2).*(1-

2.*x_data_stop_CLRM(:,1:t_dataPhase2)+0.5.*(x_data_stop_CLRM(:,1:t_dataPhase2).^2)); 
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            X_stop_CLRM = [ones(N_MC,1) Laguerre_CLRM_0 Laguerre_CLRM_1 Laguerre_CLRM_2]; 

            y_data_stop_CLRM = NPV_Tab_matrix(:,t_dataPhase2+1:FieldLifeTime+1); 

            y_reg_stop_CLRM = zeros(N_MC,FieldLifeTime-t_dataPhase2+1); 

            for t = 1: FieldLifeTime-t_dataPhase2+1 

                y_reg_stop_CLRM(:,t) = 

X_stop_CLRM*regress(y_data_stop_CLRM(:,t),X_stop_CLRM); 

            end 

            [StopTime_reg,StopTime_idx] = max(y_reg_stop_CLRM,[],2); 

        for i_MC = 1: N_MC 

            if StopTime_reg(i_MC) == y_reg_stop_CLRM(i_MC,1) && CLRM_OptNPV_real(i_MC,1) == 0 

                CLRM_OptNPV_real(i_MC,1) = y_data_stop_CLRM(i_MC,1); 

                CLRM_PhaseLifes_Opt_reals(i_MC,1) = Shift_time-1; 

                CLRM_PhaseLifes_Opt_reals(i_MC,2) = t_dataPhase2+StopTime_idx(i_MC)-1; 

            else 

                continue; 

            end 

        end 

        end 

        t_dataPhase2 = t_dataPhase2+1; 

    end 

else 

% This part is to find the corresponding optimal stop time given Switch time is not at Y1 

    for Shift_time = 2: FieldLifeTime %Finding and recording the optimal switch time before 

determining the stop time 

        N_LifeTimeComb = N_LifeTimeComb-Times(FieldLifeTime-Shift_time+2)-1; 

        y_data_switch_CLRM = NPV_Tab_matrix(:,N_Phase1n2LifeTime-

N_LifeTimeComb+1:N_Phase1n2LifeTime); 

        y_reg_switch_CLRM = zeros(N_MC,N_LifeTimeComb); 

        ENPVTabComp = zeros(N_MC,N_LifeTimeComb); 

        Laguerre_CLRM_0 = exp(-x_data_switch_CLRM(:,1:Shift_time-1)/2); 

        Laguerre_CLRM_1 = exp(-x_data_switch_CLRM(:,1:Shift_time-1)/2).*(1-

x_data_switch_CLRM(:,1:Shift_time-1)); 

        Laguerre_CLRM_2 = exp(-x_data_switch_CLRM(:,1:Shift_time-1)/2).*(1-

2.*x_data_switch_CLRM(:,1:Shift_time-1)+0.5.*x_data_switch_CLRM(:,1:Shift_time-1).^2); 

 

        X_switch_CLRM = [ones(N_MC,1) Laguerre_CLRM_0 Laguerre_CLRM_1 Laguerre_CLRM_2]; 

        for i_LifeTimeComb = 1: N_LifeTimeComb 

            coef_reg_CLRM = regress(y_data_switch_CLRM(:,i_LifeTimeComb),X_switch_CLRM); 

            y_reg_switch_CLRM(:,i_LifeTimeComb) = X_switch_CLRM*coef_reg_CLRM; 

            ENPVTabComp(:,i_LifeTimeComb) = y_reg_switch_CLRM(:,i_LifeTimeComb); 

        end 

 

    [CLRM_reg,CLRM_idx] = max(ENPVTabComp,[],2); 

 

    if Shift_time == FieldLifeTime 

        [SwitchDecision_CLRM,SwitchDecision_CLRM_idx] = find(CLRM_idx <= Times(FieldLifeTime-

Shift_time+2)+1); 

        [ContinueTime_reg,ContinueTime_idx] = find(CLRM_idx == Times(FieldLifeTime-

Shift_time+2)+1); 

        for i_path = 1: length(ContinueTime_reg) 

            if CLRM_OptNPV_real(ContinueTime_reg(i_path),1) == 0 

               CLRM_OptNPV_real(ContinueTime_reg(i_path),1) = 

y_data_switch_CLRM(ContinueTime_reg(i_path),end); 

               CLRM_PhaseLifes_Opt_reals(ContinueTime_reg(i_path),1) = FieldLifeTime; 

               CLRM_PhaseLifes_Opt_reals(ContinueTime_reg(i_path),2) = 0; 

            else 

                continue; 
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            end 

        end 

    else 

        [SwitchDecision_CLRM,SwitchDecision_CLRM_idx] = find(CLRM_idx <= Times(FieldLifeTime-

Shift_time+2)); 

    end 

 

    x_data_stop_CLRM = ObsRate_Phase1n2_real_time_ShiftTime(:,:,Shift_time); 

    t_dataPhase2 = 1; 

    while t_dataPhase2 <= Times(FieldLifeTime-Shift_time+1)+1 

        Laguerre_CLRM_0 = exp(-x_data_stop_CLRM(:,1:t_dataPhase2+Shift_time-2)/2); 

        Laguerre_CLRM_1 = exp(-x_data_stop_CLRM(:,1:t_dataPhase2+Shift_time-2)/2).*(1-

x_data_stop_CLRM(:,1:t_dataPhase2+Shift_time-2)); 

        Laguerre_CLRM_2 = exp(-x_data_stop_CLRM(:,1:t_dataPhase2+Shift_time-2)/2).*(1-

2.*x_data_stop_CLRM(:,1:t_dataPhase2+Shift_time-

2)+0.5.*x_data_stop_CLRM(:,1:t_dataPhase2+Shift_time-2).^2); 

 

        X_stop_CLRM = [ones(N_MC,1) Laguerre_CLRM_0 Laguerre_CLRM_1 Laguerre_CLRM_2]; 

        y_data_stop_CLRM = y_data_switch_CLRM(:, t_dataPhase2:Times(FieldLifeTime-

Shift_time+1)+1); 

        y_reg_stop_CLRM = zeros(N_MC,Times(FieldLifeTime-Shift_time+1)-t_dataPhase2+2); 

        for t = 1: Times(FieldLifeTime-Shift_time+1)-t_dataPhase2+2 

            y_reg_stop_CLRM(:,t) = X_stop_CLRM*regress(y_data_stop_CLRM(:,t),X_stop_CLRM); 

        end 

            [StopTime_reg,StopTime_idx] = max(y_reg_stop_CLRM,[],2); 

        for i_path = 1: length(SwitchDecision_CLRM) 

            if StopTime_reg(SwitchDecision_CLRM(i_path)) == 

y_reg_stop_CLRM(SwitchDecision_CLRM(i_path),1) && 

CLRM_OptNPV_real(SwitchDecision_CLRM(i_path),1) == 0 

                CLRM_OptNPV_real(SwitchDecision_CLRM(i_path),1) = 

y_data_stop_CLRM(SwitchDecision_CLRM(i_path),1); 

                CLRM_PhaseLifes_Opt_reals(SwitchDecision_CLRM(i_path),1) = Shift_time-1; 

                CLRM_PhaseLifes_Opt_reals(SwitchDecision_CLRM(i_path),2) = 

t_dataPhase2+StopTime_idx(SwitchDecision_CLRM(i_path))-2; 

            else 

                continue; 

            end 

        end 

            t_dataPhase2 = t_dataPhase2+1; 

    end 

    end 

end 

 

DWI_CLRM_Phase1LifeTime = CLRM_PhaseLifes_Opt_reals(:,1); 

DWI_CLRM_Phase2LifeTime = CLRM_PhaseLifes_Opt_reals(:,2); 

DWI_CLRM_LifeTime = DWI_CLRM_Phase1LifeTime + DWI_CLRM_Phase2LifeTime; 

 

EVWI_CLRM = mean(CLRM_OptNPV_real); 

VOI_CLRM = EVWI_CLRM-EVWOI; 
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Appendix B2.8: Laguerre Polynomials with dependency terms 
(without renormalization) 
This code consists of the modified version of the sections 5 and 6 of Modified LSM Algorithm 
(Appendix B1.1) and CLRM (Appendix B1.2). With respect to this the modification is done 
on the regression analysis. Thus, sections 1 to 4 of Modified LSM Algorithm (Appendix B1.1) 
have to be run first before executing this code. This code corresponds to the Laguerre 
Polynomials with dependency terms (no renormalization) in the report. The dependency terms 
correspond to those included in Equation (13).  
 

% 1. Path Table Generation 

 

N_MC = size(ObsRate_Phase1n2_real_time_ShiftTime,1); 

FieldLifeTime = size(ObsRate_Phase1n2_real_time_ShiftTime,2); 

SRDM_Shift_Stop_OptNPV_real = zeros(N_MC,1); 

 

PathTable = zeros(N_MC,FieldLifeTime+1); 

PathTable(:,end) = NPVtable_LTPhase1_LTPhase2_real(FieldLifeTime+1,1,:); 

Phase2_StopTime_real_Phase1LifeTime = zeros(N_MC,FieldLifeTime+1); 

 

for k_Shift_time = 1: FieldLifeTime 

        NPV_2Phases_matrix = zeros(N_MC,k_Shift_time+1); 

    for k_Stop_time = 1: k_Shift_time+1 

        NPV_2Phases_matrix(:,k_Stop_time) = NPVtable_LTPhase1_LTPhase2_real(FieldLifeTime-

k_Shift_time+1,k_Stop_time,:); 

    end 

    for k_StopTime = 1: k_Shift_time 

        if k_StopTime == 1 

            x_data_stop_SRDM = ObsRate_Phase1n2_real_time_ShiftTime(:,1:FieldLifeTime-

k_StopTime,FieldLifeTime-k_Shift_time+1); 

            Laguerre_PathTable_0 = exp(-x_data_stop_SRDM/2); 

            Laguerre_PathTable_1 = exp(-x_data_stop_SRDM/2).*(1-x_data_stop_SRDM); 

            Laguerre_PathTable_2 = exp(-x_data_stop_SRDM/2).*(1-

2.*x_data_stop_SRDM+0.5.*(x_data_stop_SRDM.^2)); 

             

            x_data_sqrt_stop_SRDM = sqrt(x_data_stop_SRDM(:,1:FieldLifeTime-k_StopTime-

1)).*sqrt(x_data_stop_SRDM(:,2:FieldLifeTime-k_StopTime)); 

            X_stop_SRDM = [ones(N_MC,1) Laguerre_PathTable_0 Laguerre_PathTable_1 

Laguerre_PathTable_2 x_data_sqrt_stop_SRDM]; 

            y_data_stop_matrix = [NPV_2Phases_matrix(:,k_Shift_time-k_StopTime+1) 

NPV_2Phases_matrix(:,k_Shift_time-k_StopTime+2)]; 

            [Stop_value,Stop_idx] = 

max([X_stop_SRDM*regress(NPV_2Phases_matrix(:,k_Shift_time-k_StopTime+1),X_stop_SRDM) 

X_stop_SRDM*regress(NPV_2Phases_matrix(:,k_Shift_time-k_StopTime+2),X_stop_SRDM)],[],2); 

            for i_MC = 1: N_MC 

                SRDM_Shift_Stop_OptNPV_real(i_MC,1) = 

y_data_stop_matrix(i_MC,Stop_idx(i_MC)); 

            end 

        else 

            x_data_stop_SRDM = ObsRate_Phase1n2_real_time_ShiftTime(:,1:FieldLifeTime-

k_StopTime,FieldLifeTime-k_Shift_time+1); 

            Laguerre_PathTable_0 = exp(-x_data_stop_SRDM/2); 

            Laguerre_PathTable_1 = exp(-x_data_stop_SRDM/2).*(1-x_data_stop_SRDM); 

            Laguerre_PathTable_2 = exp(-x_data_stop_SRDM/2).*(1-
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2.*x_data_stop_SRDM+0.5.*(x_data_stop_SRDM.^2)); 

 

            x_data_sqrt_stop_SRDM = sqrt(x_data_stop_SRDM(:,1:FieldLifeTime-k_StopTime-

1)).*sqrt(x_data_stop_SRDM(:,2:FieldLifeTime-k_StopTime)); 

            X_stop_SRDM = [ones(N_MC,1) Laguerre_PathTable_0 Laguerre_PathTable_1 

Laguerre_PathTable_2 x_data_sqrt_stop_SRDM]; 

            y_data_stop_matrix = [NPV_2Phases_matrix(:,k_Shift_time-k_StopTime+1) 

SRDM_Shift_Stop_OptNPV_real(:,1)]; 

            [Stop_value,Stop_idx] = 

max([X_stop_SRDM*regress(NPV_2Phases_matrix(:,k_Shift_time-k_StopTime+1),X_stop_SRDM) 

X_stop_SRDM*regress(SRDM_Shift_Stop_OptNPV_real(:,1),X_stop_SRDM)],[],2); 

            for i_MC = 1: N_MC 

                SRDM_Shift_Stop_OptNPV_real(i_MC,1) = 

y_data_stop_matrix(i_MC,Stop_idx(i_MC)); 

            end 

        end 

    end 

    for i_MC = 1: N_MC 

        PathTable(i_MC,FieldLifeTime-k_Shift_time+1) = SRDM_Shift_Stop_OptNPV_real(i_MC,1); 

        for k_Stop_time = 1: k_Shift_time+1 

            if SRDM_Shift_Stop_OptNPV_real(i_MC,1) == NPV_2Phases_matrix(i_MC,k_Stop_time) 

                Phase2_StopTime_real_Phase1LifeTime(i_MC,FieldLifeTime-k_Shift_time+1) = 

k_Stop_time-1; 

            end 

        end 

    end 

end 

 

% 2. SRDM Approach 

 

FieldLifeTime = size(ObsRate_Phase1n2_real_time_ShiftTime,2); 

y_data_continuation = zeros(N_MC,1); 

y_data_shift = zeros(N_MC,1); 

y_reg_continuation = zeros(N_MC,1); 

y_reg_shift = zeros(N_MC,1); 

x_data = ObsRate_Phase1n2_real_time_ShiftTime(:,:,FieldLifeTime+1); 

 

ValueTable = zeros(N_MC,FieldLifeTime+1); 

ValueTable(:,end) = PathTable(:,end); 

SRDM_DecisionTable = zeros(N_MC,FieldLifeTime+1); 

SRDM_DecisionTable(:,end) = 1; 

 

for k_Shift_time = 1:FieldLifeTime 

    Laguerre_SRDM_0 = exp(-x_data(:,1:FieldLifeTime-k_Shift_time)/2); 

    Laguerre_SRDM_1 = exp(-x_data(:,1:FieldLifeTime-k_Shift_time)/2).*(1-

x_data(:,1:FieldLifeTime-k_Shift_time)); 

    Laguerre_SRDM_2 = exp(-x_data(:,1:FieldLifeTime-k_Shift_time)/2).*(1-

2.*x_data(:,1:FieldLifeTime-k_Shift_time)+0.5.*x_data(:,1:FieldLifeTime-k_Shift_time).^2); 

    x_data_sqrt = sqrt(x_data(:,1:FieldLifeTime-k_Shift_time-

1)).*sqrt(x_data(:,2:FieldLifeTime-k_Shift_time)); 

    X = [ones(N_MC,1) Laguerre_SRDM_0 Laguerre_SRDM_1 Laguerre_SRDM_2 x_data_sqrt]; 

    y_data_shift(:) = PathTable(:,FieldLifeTime-k_Shift_time+1); 

    coef_shift = regress(y_data_shift,X); 

    y_reg_shift(:) = X*coef_shift; 

    y_data_continuation(:) = ValueTable(:,FieldLifeTime-k_Shift_time+2); 

    coef_continuation = regress(y_data_continuation,X); 

    y_reg_continuation(:) = X*coef_continuation; 

    ENPVTable_Comparison = [y_reg_shift, y_reg_continuation]; 
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    NPV_SRDM = [y_data_shift, y_data_continuation]; 

    [ENPV_SRDM,ENPV_SRDM_idx] = max(ENPVTable_Comparison,[],2); 

 

    for i_MC = 1: N_MC 

        ValueTable(i_MC,FieldLifeTime-k_Shift_time+1) = NPV_SRDM(i_MC,ENPV_SRDM_idx(i_MC)); 

        if y_reg_continuation(i_MC) > y_reg_shift(i_MC) 

            SRDM_DecisionTable(i_MC,FieldLifeTime-k_Shift_time+1) = 0; 

        else 

            SRDM_DecisionTable(i_MC,FieldLifeTime-k_Shift_time+1) = 1; 

        end 

    end 

end 

 

ShiftValue = PathTable(:,1); 

ExpShiftValue = mean(ShiftValue); 

 

ContinuationValue = ValueTable(:,1); 

ExpContinuationValue = mean(ContinuationValue); 

EVWII = ExpContinuationValue; 

VOI = EVWII - EVWOI; 

VOI_over_EVWOI_pct = VOI/EVWOI*100; 

 

[~,DWI_Phase1LifeTime_idx] = max(SRDM_DecisionTable,[],2); 

DWI_Phase1LifeTime = DWI_Phase1LifeTime_idx-1; 

 

DWI_Phase2LifeTime = zeros(N_MC,1); 

for i_MC = 1:N_MC 

    Phase1LifeTime_idx_real = DWI_Phase1LifeTime_idx(i_MC,1); 

    DWI_Phase2LifeTime(i_MC,1) = 

Phase2_StopTime_real_Phase1LifeTime(i_MC,Phase1LifeTime_idx_real); 

end 

 

DWI_LifeTime = DWI_Phase1LifeTime+DWI_Phase2LifeTime; 

 

% 3. CLRM Approach 

 

N_MC = size(ObsRate_Phase1n2_real_time_ShiftTime,1); 

FieldLifeTime = size(ObsRate_Phase1n2_real_time_ShiftTime,2); 

N_Phase1n2LifeTime = sum(1:FieldLifeTime+1); 

N_LifeTimeComb = N_Phase1n2LifeTime; 

Times = 1:1:FieldLifeTime; 

CLRM_OptNPV_real = zeros(N_MC,1); 

NPV_Tab_matrix = transpose(NPVmatrix_reals); 

Prior_ENPV = meanNPVvector(:,3); 

[max_Prior_ENPV, max_Prior_ENPV_idx] = max(meanNPVvector(:,3),[],1); 

x_data_switch_CLRM = ObsRate_Phase1n2_real_time_ShiftTime(:,:,FieldLifeTime+1); 

 

CLRM_PhaseLifes_Opt_reals = zeros(N_MC,2); 

 

if max_Prior_ENPV_idx <= Times(FieldLifeTime)+1 %Finding if Switch Time is optimal at Y1 

    Shift_time = 1; 

    t_dataPhase2 = 1; 

    while t_dataPhase2 <= Times(FieldLifeTime-Shift_time+1) 

        if t_dataPhase2 == 1 && max_Prior_ENPV_idx == 1 %Switch and Stop at Y1 are optimal 

            for i_MC = 1: N_MC 

                CLRM_OptNPV_real(i_MC,1) = max_Prior_ENPV; 

            end 

            break; %The whole loop will break here 
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        else %Given Switch at Y1 and Stop is not at Y1 

            x_data_stop_CLRM = ObsRate_Phase1n2_real_time_ShiftTime(:,:,Shift_time); 

            Laguerre_CLRM_0 = exp(-x_data_stop_CLRM(:,1:t_dataPhase2)/2); 

            Laguerre_CLRM_1 = exp(-x_data_stop_CLRM(:,1:t_dataPhase2)/2).*(1-

x_data_stop_CLRM(:,1:t_dataPhase2)); 

            Laguerre_CLRM_2 = exp(-x_data_stop_CLRM(:,1:t_dataPhase2)/2).*(1-

2.*x_data_stop_CLRM(:,1:t_dataPhase2)+0.5.*x_data_stop_CLRM(:,1:t_dataPhase2).^2); 

             

            if t_dataPhase2 == 1 

                x_data_sqrt_stop_CLRM = sqrt(x_data_stop_CLRM(:,1:t_dataPhase2)); 

                X_stop_CLRM = [ones(N_MC,1) Laguerre_CLRM_0 Laguerre_CLRM_1 Laguerre_CLRM_2]; 

            else 

                x_data_sqrt_stop_CLRM = sqrt(x_data_stop_CLRM(:,1:t_dataPhase2-

1)).*sqrt(x_data_stop_CLRM(:,2:t_dataPhase2)); 

                X_stop_CLRM = [ones(N_MC,1) Laguerre_CLRM_0 Laguerre_CLRM_1 Laguerre_CLRM_2 

x_data_sqrt_stop_CLRM]; 

            end 

            y_data_stop_CLRM = NPV_Tab_matrix(:,t_dataPhase2+1:FieldLifeTime+1); 

            y_reg_stop_CLRM = zeros(N_MC,FieldLifeTime-t_dataPhase2+1); 

            for t = 1: FieldLifeTime-t_dataPhase2+1 

                y_reg_stop_CLRM(:,t) = 

X_stop_CLRM*regress(y_data_stop_CLRM(:,t),X_stop_CLRM); 

            end 

            [StopTime_reg,StopTime_idx] = max(y_reg_stop_CLRM,[],2); 

        for i_MC = 1: N_MC 

            if StopTime_reg(i_MC) == y_reg_stop_CLRM(i_MC,1) && CLRM_OptNPV_real(i_MC,1) == 0 

                CLRM_OptNPV_real(i_MC,1) = y_data_stop_CLRM(i_MC,1); 

                CLRM_PhaseLifes_Opt_reals(i_MC,1) = Shift_time-1; 

                CLRM_PhaseLifes_Opt_reals(i_MC,2) = t_dataPhase2+StopTime_idx(i_MC)-1; 

            else 

                continue; 

            end 

        end 

        end 

        t_dataPhase2 = t_dataPhase2+1; 

    end 

else 

% This part is to find the corresponding optimal stop time given Switch time is not at Y1 

    for Shift_time = 2: FieldLifeTime %Finding and recording the optimal switch time before 

determining the stop time 

        N_LifeTimeComb = N_LifeTimeComb-Times(FieldLifeTime-Shift_time+2)-1; 

        y_data_switch_CLRM = NPV_Tab_matrix(:,N_Phase1n2LifeTime-

N_LifeTimeComb+1:N_Phase1n2LifeTime); 

        y_reg_switch_CLRM = zeros(N_MC,N_LifeTimeComb); 

        ENPVTabComp = zeros(N_MC,N_LifeTimeComb); 

        Laguerre_CLRM_0 = exp(-x_data_switch_CLRM(:,1:Shift_time-1)/2); 

        Laguerre_CLRM_1 = exp(-x_data_switch_CLRM(:,1:Shift_time-1)/2).*(1-

x_data_switch_CLRM(:,1:Shift_time-1)); 

        Laguerre_CLRM_2 = exp(-x_data_switch_CLRM(:,1:Shift_time-1)/2).*(1-

2.*x_data_switch_CLRM(:,1:Shift_time-1)+0.5.*x_data_switch_CLRM(:,1:Shift_time-1).^2); 

 

        if Shift_time == 2 

            x_data_sqrt_switch_CLRM = sqrt(x_data_switch_CLRM(:,1:Shift_time-1)); 

            X_switch_CLRM = [ones(N_MC,1) Laguerre_CLRM_0 Laguerre_CLRM_1 Laguerre_CLRM_2]; 

        else 

            x_data_sqrt_switch_CLRM = sqrt(x_data_switch_CLRM(:,1:Shift_time-

2)).*sqrt(x_data_switch_CLRM(:,2:Shift_time-1)); 

            X_switch_CLRM = [ones(N_MC,1) Laguerre_CLRM_0 Laguerre_CLRM_1 Laguerre_CLRM_2 
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x_data_sqrt_switch_CLRM]; 

        end 

        for i_LifeTimeComb = 1: N_LifeTimeComb 

            coef_reg_CLRM = regress(y_data_switch_CLRM(:,i_LifeTimeComb),X_switch_CLRM); 

            y_reg_switch_CLRM(:,i_LifeTimeComb) = X_switch_CLRM*coef_reg_CLRM; 

            ENPVTabComp(:,i_LifeTimeComb) = y_reg_switch_CLRM(:,i_LifeTimeComb); 

        end 

 

    [CLRM_reg,CLRM_idx] = max(ENPVTabComp,[],2); 

 

    if Shift_time == FieldLifeTime 

        [SwitchDecision_CLRM,SwitchDecision_CLRM_idx] = find(CLRM_idx <= Times(FieldLifeTime-

Shift_time+2)+1); 

        [ContinueTime_reg,ContinueTime_idx] = find(CLRM_idx == Times(FieldLifeTime-

Shift_time+2)+1); 

        for i_path = 1: length(ContinueTime_reg) 

            if CLRM_OptNPV_real(ContinueTime_reg(i_path),1) == 0 

               CLRM_OptNPV_real(ContinueTime_reg(i_path),1) = 

y_data_switch_CLRM(ContinueTime_reg(i_path),end); 

               CLRM_PhaseLifes_Opt_reals(ContinueTime_reg(i_path),1) = FieldLifeTime; 

               CLRM_PhaseLifes_Opt_reals(ContinueTime_reg(i_path),2) = 0; 

            else 

                continue; 

            end 

        end 

    else 

        [SwitchDecision_CLRM,SwitchDecision_CLRM_idx] = find(CLRM_idx <= Times(FieldLifeTime-

Shift_time+2)); 

    end 

 

    x_data_stop_CLRM = ObsRate_Phase1n2_real_time_ShiftTime(:,:,Shift_time); 

    t_dataPhase2 = 1; 

    while t_dataPhase2 <= Times(FieldLifeTime-Shift_time+1)+1 

        Laguerre_CLRM_0 = exp(-x_data_stop_CLRM(:,1:t_dataPhase2+Shift_time-2)/2); 

        Laguerre_CLRM_1 = exp(-x_data_stop_CLRM(:,1:t_dataPhase2+Shift_time-2)/2).*(1-

x_data_stop_CLRM(:,1:t_dataPhase2+Shift_time-2)); 

        Laguerre_CLRM_2 = exp(-x_data_stop_CLRM(:,1:t_dataPhase2+Shift_time-2)/2).*(1-

2.*x_data_stop_CLRM(:,1:t_dataPhase2+Shift_time-

2)+0.5.*x_data_stop_CLRM(:,1:t_dataPhase2+Shift_time-2).^2); 

 

        if t_dataPhase2 == 1 

            x_data_sqrt_stop_CLRM = sqrt(x_data_stop_CLRM(:,1:t_dataPhase2)); 

            X_stop_CLRM = [ones(N_MC,1) Laguerre_CLRM_0 Laguerre_CLRM_1 Laguerre_CLRM_2]; 

        else 

            x_data_sqrt_stop_CLRM = sqrt(x_data_stop_CLRM(:,1:t_dataPhase2-

1)).*sqrt(x_data_stop_CLRM(:,2:t_dataPhase2)); 

            X_stop_CLRM = [ones(N_MC,1) Laguerre_CLRM_0 Laguerre_CLRM_1 Laguerre_CLRM_2 

x_data_sqrt_stop_CLRM]; 

        end 

        y_data_stop_CLRM = y_data_switch_CLRM(:, t_dataPhase2:Times(FieldLifeTime-

Shift_time+1)+1); 

        y_reg_stop_CLRM = zeros(N_MC,Times(FieldLifeTime-Shift_time+1)-t_dataPhase2+2); 

        for t = 1: Times(FieldLifeTime-Shift_time+1)-t_dataPhase2+2 

            y_reg_stop_CLRM(:,t) = X_stop_CLRM*regress(y_data_stop_CLRM(:,t),X_stop_CLRM); 

        end 

            [StopTime_reg,StopTime_idx] = max(y_reg_stop_CLRM,[],2); 

        for i_path = 1: length(SwitchDecision_CLRM) 

            if StopTime_reg(SwitchDecision_CLRM(i_path)) == 
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y_reg_stop_CLRM(SwitchDecision_CLRM(i_path),1) && 

CLRM_OptNPV_real(SwitchDecision_CLRM(i_path),1) == 0 

                CLRM_OptNPV_real(SwitchDecision_CLRM(i_path),1) = 

y_data_stop_CLRM(SwitchDecision_CLRM(i_path),1); 

                CLRM_PhaseLifes_Opt_reals(SwitchDecision_CLRM(i_path),1) = Shift_time-1; 

                CLRM_PhaseLifes_Opt_reals(SwitchDecision_CLRM(i_path),2) = 

t_dataPhase2+StopTime_idx(SwitchDecision_CLRM(i_path))-2; 

            else 

                continue; 

            end 

        end 

            t_dataPhase2 = t_dataPhase2+1; 

    end 

    end 

end 

 

DWI_CLRM_Phase1LifeTime = CLRM_PhaseLifes_Opt_reals(:,1); 

DWI_CLRM_Phase2LifeTime = CLRM_PhaseLifes_Opt_reals(:,2); 

DWI_CLRM_LifeTime = DWI_CLRM_Phase1LifeTime + DWI_CLRM_Phase2LifeTime; 

 

EVWI_CLRM = mean(CLRM_OptNPV_real); 

VOI_CLRM = EVWI_CLRM-EVWOI; 
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Appendix B2.9: Renormalization of Measured Oil Rates 
This code performs the renormalization of the measured oil rates which are used in the 
regression analysis for Laguerre Polynomials (with renormalization). The code of applying 
Laguerre Polynomials (with renormalization) is not included here. However, it can be easily 
produced by changing the measured oil rates to the normalized oil rates in the codes presented 
in Appendix B2.7 and Appendix B2.8.  
 

%"1" indicates using Average Rate (correspond to DWOI) 

%"2" indicates using Mean Rate 

Choice_of_AbitraryValue = 1; 

 

% Computing the average rate corresponding to DWOI 

Average_Rate_Base_Case = 

mean(ObsRate_Phase1n2_real_time_ShiftTime(:,DWOI_Phase2LifeTime,DWOI_Phase1LifeTime+1)); 

 

% Computing the mean of maximum and minimum measured oil rates 

mean_rate = 0.5.*(max(ObsRate_Phase1n2_real_time_ShiftTime,[],'all') + 

min(ObsRate_Phase1n2_real_time_ShiftTime,[],'all')); 

 

if Choice_of_AbitraryValue == 1 

    arbitrary_value = Average_Rate_Base_Case; 

elseif Choice_of_AbitraryValue == 2 

    arbitrary_value = mean_rate; 

else 

    arbitrary_value = 7; %unit of MMbbl/year 

end 

 

Renormalized_ObsRate_Phase1n2_real_time_ShiftTime = 

(1/arbitrary_value).*ObsRate_Phase1n2_real_time_ShiftTime; 
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Appendix B3 
There are five codes presented under Appendix B3. These codes are used for the sensitivity 
analysis on the number of decision points as discussed in Section 5.2. These codes need to be 
run in the order of how they are presented here to get the correct results. Prior to running these 
five codes, sections 1 to 3 of Modified LSM Algorithm (Appendix B1.1) have to be run first 
to conduct the sampling and the calculation of NPV.  
 
 
Appendix B3.1: LifeTimeTable for corresponding Decision Points 
This code modifies the Lifetime Table based on the current number of decision points. Thus, 
this modified Lifetime Table consists of the primary and secondary lifetimes corresponding to 
the available options (which is determined by the number of decision points being analyzed). 
 

FieldLifeTime = 50; 

Year = 10; %Change this value to define the desired number of decision points 

 

% 1. Preallocation of Essential Parameters 

 

if Year == 2 

    N_DecisionPoint = 25; 

    LT_DecisionPoint = 0:2:FieldLifeTime; 

elseif Year == 4 

    N_DecisionPoint = 12; 

    LT_DecisionPoint = 0:4:FieldLifeTime; 

elseif Year == 6 

    N_DecisionPoint = 8; 

    LT_DecisionPoint = 0:6:FieldLifeTime; 

elseif Year == 8 

    N_DecisionPoint = 6; 

    LT_DecisionPoint = 0:8:FieldLifeTime; 

elseif Year == 10 

    N_DecisionPoint = 5; 

    LT_DecisionPoint = 0:10:FieldLifeTime; 

end 

 

N_Phase1n2LifeTime_DiffDP = sum(0:1:N_DecisionPoint+1); 

LifeTime_Table_DiffDP = zeros(N_Phase1n2LifeTime_DiffDP,2); 

meanNPVvector_DiffDP = zeros(N_Phase1n2LifeTime_DiffDP,3); 

 

% 2. Defining LifeTime Phase 1 

NPV_element_vector_LT1 = zeros(N_DecisionPoint+1,N_DecisionPoint+1); 

 

for i_DecisionPoint = 1:N_DecisionPoint 

    for k_DecisionPoint = 1:N_DecisionPoint+1 

        NPV_element_vector_LT1(k_DecisionPoint,i_DecisionPoint) = 

LT_DecisionPoint(1,k_DecisionPoint); 

        if k_DecisionPoint > 1 

            NPV_element_vector_LT1(k_DecisionPoint,N_DecisionPoint-

k_DecisionPoint+3:N_DecisionPoint+1) = LT_DecisionPoint(1,N_DecisionPoint+1)+1; 

        else 

            NPV_element_vector_LT1(k_DecisionPoint,i_DecisionPoint+1) = 

LT_DecisionPoint(1,k_DecisionPoint); 
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        end 

    end 

end 

 

[row_NPV_LT1_element,col_NPV_LT1_element]=find(NPV_element_vector_LT1(:,:) <= 

LT_DecisionPoint(1,N_DecisionPoint+1)); 

 

for k = 1: N_Phase1n2LifeTime_DiffDP 

    meanNPVvector_DiffDP(k,1) = 

NPV_element_vector_LT1(col_NPV_LT1_element(k),row_NPV_LT1_element(k)); 

end 

 

% 3. Defining LifeTime Phase 2 

NPV_element_vector_LT2 = zeros(N_DecisionPoint+1,N_DecisionPoint+1); 

 

for i_DecisionPoint = 1:N_DecisionPoint 

    for k_DecisionPoint = 1:N_DecisionPoint+1 

        NPV_element_vector_LT2(k_DecisionPoint,i_DecisionPoint) = 

LT_DecisionPoint(1,i_DecisionPoint); 

        if k_DecisionPoint > 1 

            NPV_element_vector_LT2(k_DecisionPoint,N_DecisionPoint-

k_DecisionPoint+3:N_DecisionPoint+1) = LT_DecisionPoint(1,N_DecisionPoint+1)+1; 

        else 

            NPV_element_vector_LT2(k_DecisionPoint,i_DecisionPoint+1) = 

LT_DecisionPoint(1,i_DecisionPoint+1); 

        end 

    end 

end 

 

[row_NPV_LT2_element,col_NPV_LT2_element]=find(NPV_element_vector_LT2(:,:) < 

LT_DecisionPoint(1,N_DecisionPoint+1)); 

 

for k = 1: N_Phase1n2LifeTime_DiffDP-1 

    meanNPVvector_DiffDP(k,2) = 

NPV_element_vector_LT2(col_NPV_LT2_element(k),row_NPV_LT2_element(k)); 

end 

 

% 4. Defining LifeTime Table 

 

LifeTime_Table_DiffDP(:,1) = meanNPVvector_DiffDP(:,1); 

LifeTime_Table_DiffDP(:,2) = meanNPVvector_DiffDP(:,2); 
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Appendix B3.2: Reshaping NPV (Sensitivity Analysis on the Number 
of Decision Points) 
This code mainly reshapes the initial NPV table generated based on the current number of 
decision points. The initial NPV table refers to the NPV table that is established by having the 
decision point per year.  
 

N_MC = size(ObsRate_Phase1n2_real_time_ShiftTime,1); 

FieldLifeTime = size(ObsRate_Phase1n2_real_time_ShiftTime,2); 

 

NPVtable_LTPhase1_LTPhase2_real_DiffDP = zeros(N_DecisionPoint+1,N_DecisionPoint+1,N_MC); 

ObsRate_Phase1n2_real_time_ShiftTime_DiffDP = ObsRate_Phase1n2_real_time_ShiftTime; 

 

% NPV for corresponding Decision Points 

for i_Option = 1 : N_DecisionPoint+1 

    for k_Option = 1 : N_DecisionPoint+1 

    NPVtable_LTPhase1_LTPhase2_real_DiffDP(i_Option,k_Option,:) = 

NPVtable_LTPhase1_LTPhase2_real(LT_DecisionPoint(1,i_Option)+1,LT_DecisionPoint(1,k_Option)+1

,:); 

    end 

end 

 
 

Appendix B3.3: Determination of DWOI, EVWOI, DWPI, and VWPI 
(Sensitivity Analysis on the Number of Decision Points) 
Based on the current number of decision points, this code determines the Decision Without 
Information and Decision With Perfect Information. The corresponding Expected Value 
Without Information and Value of Perfect Information are estimated. 
 

N_Phase1n2LifeTime = size(LifeTime_Table_DiffDP,1); 

NPVvector_1real_DiffDP = zeros(N_Phase1n2LifeTime,3); 

NPVmatrix_reals_DiffDP = zeros(N_Phase1n2LifeTime,N_MC); 

Sum_NPVvector_1real_DiffDP = zeros(N_Phase1n2LifeTime,1); 

 

VWPI_real_DiffDP = zeros(N_MC,1); 

DWPI_Phase1LifeTime_real_DiffDP = zeros(N_MC,1); 

DWPI_Phase2LifeTime_real_DiffDP = zeros(N_MC,1); 

 

NPVvector_1real_DiffDP(:,1) = LifeTime_Table_DiffDP(:,1); 

NPVvector_1real_DiffDP(:,2) = LifeTime_Table_DiffDP(:,2); 

meanNPVvector_DiffDP(:,1) = LifeTime_Table_DiffDP(:,1); 

meanNPVvector_DiffDP(:,2) = LifeTime_Table_DiffDP(:,2); 

 

for i_MC = 1: N_MC 

    for k = 1: N_Phase1n2LifeTime 

        NPVvector_1real_DiffDP(k,3) = 

NPVtable_LTPhase1_LTPhase2_real(LifeTime_Table_DiffDP(k,1)+1,LifeTime_Table_DiffDP(k,2)+1,i_M

C); 

        NPVmatrix_reals_DiffDP(k,i_MC) = NPVvector_1real_DiffDP(k,3); 

        [VWPI_real_DiffDP(i_MC),DWPI_DiffDP_idx] = max(NPVvector_1real_DiffDP(:,3)); 
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        DWPI_Phase1LifeTime_real_DiffDP(i_MC) = NPVvector_1real_DiffDP(DWPI_DiffDP_idx,1); 

        DWPI_Phase2LifeTime_real_DiffDP(i_MC) = NPVvector_1real_DiffDP(DWPI_DiffDP_idx,2); 

    end 

end 

 

meanNPV_DiffDP = mean(NPVmatrix_reals_DiffDP,2); 

meanNPVvector_DiffDP(:,3) = meanNPV_DiffDP(:,1); 

 

[EVWOI_DiffDP,DWOI_DiffDP_idx] = max(meanNPVvector_DiffDP(:,3)); 

DWOI_DiffDP_Phase1LifeTime = LifeTime_Table_DiffDP(DWOI_DiffDP_idx,1);  

DWOI_DiffDP_Phase2LifeTime = LifeTime_Table_DiffDP(DWOI_DiffDP_idx,2);  

DWOI_DiffDP_LifeTime = DWOI_DiffDP_Phase1LifeTime + DWOI_DiffDP_Phase2LifeTime; 

DWPI_LifeTime_real_DiffDP = DWPI_Phase1LifeTime_real_DiffDP + 

DWPI_Phase2LifeTime_real_DiffDP; 

EVWPI_DiffDP = mean(VWPI_real_DiffDP); 

VOPI_DiffDP = EVWPI_DiffDP - EVWOI_DiffDP; 

 
 
Appendix B3.4: SRDM Approach (Sensitivity Analysis on the Number 
of Decision Points) 
This code is the modified version of Sections 5 and 6 of Modified LSM Algorithm (Appendix 
B1.1). It determines the optimal decision policy by applying different number of decision 
points as defined.  
 

% 1. Path Table Generation 

N_MC = size(ObsRate_Phase1n2_real_time_ShiftTime,1); 

FieldLifeTime = size(ObsRate_Phase1n2_real_time_ShiftTime,2); 

SRDM_Shift_Stop_OptNPV_real = zeros(N_MC,1); 

Shift_time = fliplr(LT_DecisionPoint); 

 

% Determining the optimal stopping time for each decision point (switch time) 

PathTable = zeros(N_MC,N_DecisionPoint+1); 

PathTable(:,end) = NPVtable_LTPhase1_LTPhase2_real_DiffDP(N_DecisionPoint+1,1,:); 

Phase2_StopTime_real_Phase1LifeTime_DiffDP = zeros(N_MC,N_DecisionPoint+1); 

 

for k_DecisionPoint = 2: N_DecisionPoint+1 

 

        NPV_2Phases_matrix = zeros(N_MC,k_DecisionPoint); 

 

    for k_Stop_time = 1: k_DecisionPoint 

        NPV_2Phases_matrix(:,k_Stop_time) = 

NPVtable_LTPhase1_LTPhase2_real_DiffDP(N_DecisionPoint-k_DecisionPoint+2,k_Stop_time,:); 

    end 

 

    for k_StopTime = 1: k_DecisionPoint-1 

        if k_StopTime == 1 

            x_data_stop_SRDM = 

ObsRate_Phase1n2_real_time_ShiftTime_DiffDP(:,1:Shift_time(k_StopTime+1),Shift_time(k_Decisio

nPoint)+1);  

            X_stop_SRDM = [ones(N_MC,1) x_data_stop_SRDM]; 

            y_data_stop_matrix = [NPV_2Phases_matrix(:,k_DecisionPoint-k_StopTime) 

NPV_2Phases_matrix(:,k_DecisionPoint)]; 
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            [Stop_value,Stop_idx] = 

max([X_stop_SRDM*regress(NPV_2Phases_matrix(:,k_DecisionPoint-k_StopTime),X_stop_SRDM) 

X_stop_SRDM*regress(NPV_2Phases_matrix(:,k_DecisionPoint),X_stop_SRDM)],[],2); 

            for i_MC = 1: N_MC 

                SRDM_Shift_Stop_OptNPV_real(i_MC,1) = 

y_data_stop_matrix(i_MC,Stop_idx(i_MC)); 

            end 

        else 

            x_data_stop_SRDM = 

ObsRate_Phase1n2_real_time_ShiftTime_DiffDP(:,1:Shift_time(k_StopTime+1),Shift_time(k_Decisio

nPoint)+1);  

            X_stop_SRDM = [ones(N_MC,1) x_data_stop_SRDM]; 

            y_data_stop_matrix = [NPV_2Phases_matrix(:,k_DecisionPoint-k_StopTime) 

SRDM_Shift_Stop_OptNPV_real(:,1)]; 

            [Stop_value,Stop_idx] = 

max([X_stop_SRDM*regress(NPV_2Phases_matrix(:,k_DecisionPoint-k_StopTime),X_stop_SRDM) 

X_stop_SRDM*regress(SRDM_Shift_Stop_OptNPV_real(:,1),X_stop_SRDM)],[],2); 

            for i_MC = 1: N_MC 

                SRDM_Shift_Stop_OptNPV_real(i_MC,1) = 

y_data_stop_matrix(i_MC,Stop_idx(i_MC)); 

            end 

        end 

    end 

 

    for i_MC = 1: N_MC 

        PathTable(i_MC,N_DecisionPoint-k_DecisionPoint+2) = 

SRDM_Shift_Stop_OptNPV_real(i_MC,1); 

        for k_Stop_time = 1: k_DecisionPoint 

            if SRDM_Shift_Stop_OptNPV_real(i_MC,1) == NPV_2Phases_matrix(i_MC,k_Stop_time) 

                Phase2_StopTime_real_Phase1LifeTime_DiffDP(i_MC,N_DecisionPoint-

k_DecisionPoint+2) = LT_DecisionPoint(k_Stop_time); 

            end 

        end 

    end 

end 

 

% 2. SRDM Approach (Modified LSM Algorithm) 

 

y_data_continuation = zeros(N_MC,1); 

y_data_shift = zeros(N_MC,1); 

y_reg_continuation = zeros(N_MC,1); 

y_reg_shift = zeros(N_MC,1); 

 

% Determining the optimal switch time 

ValueTable = zeros(N_MC,N_DecisionPoint+1); 

ValueTable(:,end) = PathTable(:,end); 

SRDM_DecisionTable = zeros(N_MC,N_DecisionPoint+1); 

SRDM_DecisionTable(:,end) = 1; 

x_data = 

ObsRate_Phase1n2_real_time_ShiftTime_DiffDP(:,:,LT_DecisionPoint(N_DecisionPoint+1)+1); 

 

for k_Shift_time = 2: N_DecisionPoint+1 

    X = [ones(N_MC,1) x_data(:,1:Shift_time(k_Shift_time))]; 

    y_data_shift(:) = PathTable(:,N_DecisionPoint-k_Shift_time+2); 

    coef_shift = regress(y_data_shift,X); 

    y_reg_shift(:) = X*coef_shift; 

    y_data_continuation(:) = ValueTable(:,N_DecisionPoint-k_Shift_time+3); 

    coef_continuation = regress(y_data_continuation,X); 
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    y_reg_continuation(:) = X*coef_continuation; 

    ENPVTable_Comparison = [y_reg_shift, y_reg_continuation]; 

    NPV_SRDM = [y_data_shift, y_data_continuation]; 

    [ENPV_SRDM,ENPV_SRDM_idx] = max(ENPVTable_Comparison,[],2); 

 

    for i_MC = 1: N_MC 

        ValueTable(i_MC,N_DecisionPoint-k_Shift_time+2) = NPV_SRDM(i_MC,ENPV_SRDM_idx(i_MC)); 

        if y_reg_continuation(i_MC) > y_reg_shift(i_MC) 

            SRDM_DecisionTable(i_MC,N_DecisionPoint-k_Shift_time+2) = 0; 

        else 

            SRDM_DecisionTable(i_MC,N_DecisionPoint-k_Shift_time+2) = 1; 

        end 

    end 

end 

 

ShiftValue = PathTable(:,1); 

ExpShiftValue = mean(ShiftValue); 

 

ContinuationValue = ValueTable(:,1); 

ExpContinuationValue = mean(ContinuationValue); 

EVWII_DiffDP = ExpContinuationValue; 

VOI_DiffDP = EVWII_DiffDP - EVWOI_DiffDP; 

VOI_over_EVWOI_pct = VOI_DiffDP/EVWOI_DiffDP*100; 

 

[~,DWI_Phase1LifeTime_DiffDP_idx] = max(SRDM_DecisionTable,[],2); 

 

DWI_Phase1LifeTime_DiffDP = LT_DecisionPoint(DWI_Phase1LifeTime_DiffDP_idx); 

DWI_Phase1LifeTime_DiffDP = transpose(DWI_Phase1LifeTime_DiffDP); 

 

DWI_Phase2LifeTime_DiffDP = zeros(N_MC,1); 

 

for i_MC = 1:N_MC 

    Phase1LifeTime_idx_real = DWI_Phase1LifeTime_DiffDP_idx(i_MC,1); 

    DWI_Phase2LifeTime_DiffDP(i_MC,1) = 

Phase2_StopTime_real_Phase1LifeTime_DiffDP(i_MC,Phase1LifeTime_idx_real); 

end 

 

DWI_LifeTime_DiffDP = DWI_Phase1LifeTime_DiffDP+DWI_Phase2LifeTime_DiffDP; 
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Appendix B3.5: CLRM Approach (Sensitivity Analysis on the Number 
of Decision Points) 
This code consists of the modified version of CLRM (Appendix B1.2). It determines the 
optimal decision policy by applying different number of decision points as defined. 
 

N_MC = size(ObsRate_Phase1n2_real_time_ShiftTime_DiffDP,1); 

FieldLifeTime = size(ObsRate_Phase1n2_real_time_ShiftTime_DiffDP,2); 

NPV_Tab_matrix_DiffDP = transpose(NPVmatrix_reals_DiffDP); 

N_Phase1n2LifeTime_DiffDP = size(NPV_Tab_matrix_DiffDP,2); 

N_LifeTimeComb_DiffDP = N_Phase1n2LifeTime_DiffDP; 

N_Options_DiffDP = fliplr(1:1:N_DecisionPoint+1); 

CLRM_OptNPV_real_DiffDP = zeros(N_MC,1); 

CLRM_PhaseLifes_Opt_reals_DiffDP = zeros(N_MC,2); 

Prior_ENPV_DiffDP = meanNPVvector_DiffDP(:,3); 

[max_Prior_ENPV_DiffDP, max_Prior_ENPV_DiffDP_idx] = max(meanNPVvector_DiffDP(:,3),[],1); 

x_data_switch_CLRM = 

ObsRate_Phase1n2_real_time_ShiftTime_DiffDP(:,:,LT_DecisionPoint(N_DecisionPoint+1)+1); 

 

if max_Prior_ENPV_DiffDP_idx <= N_DecisionPoint+1 

    t_dataPhase2 = 1; 

    while t_dataPhase2 <= N_DecisionPoint 

        if t_dataPhase2 == 1 && max_Prior_ENPV_DiffDP_idx == 1 %Switch and Stop at Y1 are 

optimal 

            for i_MC = 1: N_MC 

                CLRM_OptNPV_real_DiffDP(i_MC,1) = max_Prior_ENPV_DiffDP; 

            end 

            break; %The whole loop will break here 

        else %Given Switch at Y1 and Stop is not at Y1 

            x_data_stop_CLRM = 

ObsRate_Phase1n2_real_time_ShiftTime_DiffDP(:,:,LT_DecisionPoint(1)+1); 

            X_stop_CLRM = [ones(N_MC,1) 

x_data_stop_CLRM(:,1:LT_DecisionPoint(t_dataPhase2+1))]; 

            y_data_stop_CLRM = NPV_Tab_matrix_DiffDP(:,t_dataPhase2+1:N_DecisionPoint+1); 

            y_reg_stop_CLRM = zeros(N_MC,N_DecisionPoint-t_dataPhase2+1); 

            for t = 1: N_DecisionPoint-t_dataPhase2+1 

                coef_reg_stop_CLRM = regress(y_data_stop_CLRM(:,t),X_stop_CLRM); 

                y_reg_stop_CLRM(:,t) = X_stop_CLRM*coef_reg_stop_CLRM; 

            end 

            [StopTime_reg,StopTime_idx] = max(y_reg_stop_CLRM,[],2); 

        for i_MC = 1: N_MC 

            if StopTime_reg(i_MC) == y_reg_stop_CLRM(i_MC,1) && 

CLRM_OptNPV_real_DiffDP(i_MC,1) == 0 

                CLRM_OptNPV_real_DiffDP(i_MC,1) = y_data_stop_CLRM(i_MC,1); 

                CLRM_PhaseLifes_Opt_reals_DiffDP(i_MC,1) = 0; 

                CLRM_PhaseLifes_Opt_reals_DiffDP(i_MC,2) = 

LT_DecisionPoint(t_dataPhase2+StopTime_idx(i_MC)); 

            else 

                continue; 

            end 

        end 

        end 

        t_dataPhase2 = t_dataPhase2+1; 

    end 

else 

    for k_DecisionPoint = 1: N_DecisionPoint-1 
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        N_LifeTimeComb_DiffDP = N_LifeTimeComb_DiffDP-N_Options_DiffDP(k_DecisionPoint); 

        y_data_switch_CLRM = NPV_Tab_matrix_DiffDP(:,N_Phase1n2LifeTime_DiffDP-

N_LifeTimeComb_DiffDP+1:N_Phase1n2LifeTime_DiffDP); 

        y_reg_switch_CLRM = zeros(N_MC,N_LifeTimeComb_DiffDP); 

        ENPVTabComp = zeros(N_MC,N_LifeTimeComb_DiffDP); 

        X_switch_CLRM = [ones(N_MC,1) 

x_data_switch_CLRM(:,1:LT_DecisionPoint(k_DecisionPoint+1))]; 

        for i_LifeTimeComb = 1: N_LifeTimeComb_DiffDP 

            coef_reg_CLRM = regress(y_data_switch_CLRM(:,i_LifeTimeComb),X_switch_CLRM); 

            y_reg_switch_CLRM(:,i_LifeTimeComb) = X_switch_CLRM*coef_reg_CLRM; 

            ENPVTabComp(:,i_LifeTimeComb) = y_reg_switch_CLRM(:,i_LifeTimeComb); 

        end 

 

    [CLRM_reg,CLRM_idx] = max(ENPVTabComp,[],2); 

 

    if k_DecisionPoint == N_DecisionPoint-1 

        [SwitchDecision_CLRM,SwitchDecision_CLRM_idx] = find(CLRM_idx <= 

N_Options_DiffDP(k_DecisionPoint+1)+1); 

        [ContinueTime_reg,ContinueTime_idx] = find(CLRM_idx == 

N_Options_DiffDP(k_DecisionPoint+1)+1); 

        for i_path = 1: length(ContinueTime_reg) 

            if CLRM_OptNPV_real_DiffDP(ContinueTime_reg(i_path),1) == 0 

               CLRM_OptNPV_real_DiffDP(ContinueTime_reg(i_path),1) = 

y_data_switch_CLRM(ContinueTime_reg(i_path),end); 

               CLRM_PhaseLifes_Opt_reals_DiffDP(ContinueTime_reg(i_path),1) = 

LT_DecisionPoint(N_DecisionPoint+1); 

               CLRM_PhaseLifes_Opt_reals_DiffDP(ContinueTime_reg(i_path),2) = 0; 

            else 

                continue; 

            end 

        end 

    else 

        [SwitchDecision_CLRM,SwitchDecision_CLRM_idx] = find(CLRM_idx <= 

N_Options_DiffDP(k_DecisionPoint+1)); 

    end 

 

    x_data_stop_CLRM = 

ObsRate_Phase1n2_real_time_ShiftTime_DiffDP(:,:,LT_DecisionPoint(k_DecisionPoint+1)+1); 

    t_dataPhase2 = 1; 

    while t_dataPhase2 <= N_Options_DiffDP(k_DecisionPoint+1) 

        X_stop_CLRM = [ones(N_MC,1) 

x_data_stop_CLRM(:,1:LT_DecisionPoint(t_dataPhase2+k_DecisionPoint))]; 

        y_data_stop_CLRM = y_data_switch_CLRM(:, 

t_dataPhase2:N_Options_DiffDP(k_DecisionPoint+1)); 

        y_reg_stop_CLRM = zeros(N_MC,N_Options_DiffDP(k_DecisionPoint+1)-t_dataPhase2+1); 

        for t = 1: N_Options_DiffDP(k_DecisionPoint+1)-t_dataPhase2+1 

            y_reg_stop_CLRM(:,t) = X_stop_CLRM*regress(y_data_stop_CLRM(:,t),X_stop_CLRM); 

        end 

            [StopTime_reg,StopTime_idx] = max(y_reg_stop_CLRM,[],2); 

        for i_path = 1: length(SwitchDecision_CLRM) 

            if StopTime_reg(SwitchDecision_CLRM(i_path)) == 

y_reg_stop_CLRM(SwitchDecision_CLRM(i_path),1) && 

CLRM_OptNPV_real_DiffDP(SwitchDecision_CLRM(i_path),1) == 0 

                CLRM_OptNPV_real_DiffDP(SwitchDecision_CLRM(i_path),1) = 

y_data_stop_CLRM(SwitchDecision_CLRM(i_path),1); 

                CLRM_PhaseLifes_Opt_reals_DiffDP(SwitchDecision_CLRM(i_path),1) = 

LT_DecisionPoint(k_DecisionPoint+1); 

                CLRM_PhaseLifes_Opt_reals_DiffDP(SwitchDecision_CLRM(i_path),2) = 
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LT_DecisionPoint(t_dataPhase2+StopTime_idx(SwitchDecision_CLRM(i_path))-1); 

            else 

                continue; 

            end 

        end 

            t_dataPhase2 = t_dataPhase2+1; 

    end 

    end 

end 

 

DWI_CLRM_Phase1LifeTime_DiffDP = CLRM_PhaseLifes_Opt_reals_DiffDP(:,1); 

DWI_CLRM_Phase2LifeTime_DiffDP = CLRM_PhaseLifes_Opt_reals_DiffDP(:,2); 

DWI_CLRM_LifeTime_DiffDP = DWI_CLRM_Phase1LifeTime_DiffDP + DWI_CLRM_Phase2LifeTime_DiffDP; 

 

EVWI_CLRM_DiffDP = mean(CLRM_OptNPV_real_DiffDP); 

VOI_CLRM_DiffDP = EVWI_CLRM_DiffDP-EVWOI_DiffDP; 
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Appendix B4 
There are two codes presented under Appendix B4. These codes are used for the sensitivity 
analysis on the number of data points as discussed in Section 5.2.  
 
 
Appendix B4.1: SRDM Approach (Sensitivity Analysis on the Number 
of Data Points) 
This code determines the optimal policy by using different number of data points. It consists 
of the modified version of Sections 5 and 6 of Modified LSM Algorithm (Appendix B1.1). To 
run this algorithm, sections 1, 2, 3, and 4 from Modified LSM Algorithm (Appendix B1.1) 
have to be run first to conduct the sampling and the calculation of NPV. 
 

% 1. Path Table Generation 

 

N_DataPoints = 40; %Change the number of data points here 

N_MC = size(ObsRate_Phase1n2_real_time_ShiftTime,1); 

FieldLifeTime = size(ObsRate_Phase1n2_real_time_ShiftTime,2); 

SRDM_Shift_Stop_OptNPV_real = zeros(N_MC,1); 

 

PathTable = zeros(N_MC,FieldLifeTime+1); 

PathTable(:,end) = NPVtable_LTPhase1_LTPhase2_real(FieldLifeTime+1,1,:); 

Phase2_StopTime_real_Phase1LifeTime = zeros(N_MC,FieldLifeTime+1); 

 

for k_Shift_time = 1: FieldLifeTime 

        NPV_2Phases_matrix = zeros(N_MC,k_Shift_time+1); 

    for k_Stop_time = 1: k_Shift_time+1 

        NPV_2Phases_matrix(:,k_Stop_time) = NPVtable_LTPhase1_LTPhase2_real(FieldLifeTime-

k_Shift_time+1,k_Stop_time,:); 

    end 

    for k_StopTime = 1: k_Shift_time 

        if k_StopTime == 1 

            if N_DataPoints > FieldLifeTime-k_StopTime 

                x_data_stop_SRDM = ObsRate_Phase1n2_real_time_ShiftTime(:,1:FieldLifeTime-

k_StopTime,FieldLifeTime-k_Shift_time+1); 

            else 

                x_data_stop_SRDM = ObsRate_Phase1n2_real_time_ShiftTime(:,FieldLifeTime-

k_StopTime-N_DataPoints+1:FieldLifeTime-k_StopTime,FieldLifeTime-k_Shift_time+1); 

            end 

            X_stop_SRDM = [ones(N_MC,1) x_data_stop_SRDM]; 

            y_data_stop_matrix = [NPV_2Phases_matrix(:,k_Shift_time-k_StopTime+1) 

NPV_2Phases_matrix(:,k_Shift_time-k_StopTime+2)]; 

            [Stop_value,Stop_idx] = 

max([X_stop_SRDM*regress(NPV_2Phases_matrix(:,k_Shift_time-k_StopTime+1),X_stop_SRDM) 

X_stop_SRDM*regress(NPV_2Phases_matrix(:,k_Shift_time-k_StopTime+2),X_stop_SRDM)],[],2); 

            for i_MC = 1: N_MC 

                SRDM_Shift_Stop_OptNPV_real(i_MC,1) = 

y_data_stop_matrix(i_MC,Stop_idx(i_MC)); 

            end 

        else 

            if N_DataPoints > FieldLifeTime-k_StopTime 

                x_data_stop_SRDM = ObsRate_Phase1n2_real_time_ShiftTime(:,1:FieldLifeTime-

k_StopTime,FieldLifeTime-k_Shift_time+1); 
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            else 

                x_data_stop_SRDM = ObsRate_Phase1n2_real_time_ShiftTime(:,FieldLifeTime-

k_StopTime-N_DataPoints+1:FieldLifeTime-k_StopTime,FieldLifeTime-k_Shift_time+1); 

            end 

            X_stop_SRDM = [ones(N_MC,1) x_data_stop_SRDM]; 

            y_data_stop_matrix = [NPV_2Phases_matrix(:,k_Shift_time-k_StopTime+1) 

SRDM_Shift_Stop_OptNPV_real(:,1)]; 

            [Stop_value,Stop_idx] = 

max([X_stop_SRDM*regress(NPV_2Phases_matrix(:,k_Shift_time-k_StopTime+1),X_stop_SRDM) 

X_stop_SRDM*regress(SRDM_Shift_Stop_OptNPV_real(:,1),X_stop_SRDM)],[],2); 

            for i_MC = 1: N_MC 

                SRDM_Shift_Stop_OptNPV_real(i_MC,1) = 

y_data_stop_matrix(i_MC,Stop_idx(i_MC)); 

            end 

        end 

    end 

    for i_MC = 1: N_MC 

        PathTable(i_MC,FieldLifeTime-k_Shift_time+1) = SRDM_Shift_Stop_OptNPV_real(i_MC,1); 

        for k_Stop_time = 1: k_Shift_time+1 

            if SRDM_Shift_Stop_OptNPV_real(i_MC,1) == NPV_2Phases_matrix(i_MC,k_Stop_time) 

                Phase2_StopTime_real_Phase1LifeTime(i_MC,FieldLifeTime-k_Shift_time+1) = 

k_Stop_time-1; 

            end 

        end 

    end 

end 

 

% 2. SRDM Approach (Modified LSM Algorithm) 

 

FieldLifeTime = size(ObsRate_Phase1n2_real_time_ShiftTime,2); 

y_data_continuation = zeros(N_MC,1); 

y_data_shift = zeros(N_MC,1); 

y_reg_continuation = zeros(N_MC,1); 

y_reg_shift = zeros(N_MC,1); 

x_data = ObsRate_Phase1n2_real_time_ShiftTime(:,:,FieldLifeTime+1); 

N_DataPoints = 40; 

 

ValueTable = zeros(N_MC,FieldLifeTime+1); 

ValueTable(:,end) = PathTable(:,end); 

SRDM_DecisionTable = zeros(N_MC,FieldLifeTime+1); 

SRDM_DecisionTable(:,end) = 1; 

 

for k_Shift_time = 1:FieldLifeTime 

    if N_DataPoints > FieldLifeTime-k_Shift_time 

        X = [ones(N_MC,1) x_data(:,1:FieldLifeTime-k_Shift_time)]; 

    else 

        X = [ones(N_MC,1) x_data(:,FieldLifeTime-k_Shift_time-N_DataPoints+1:FieldLifeTime-

k_Shift_time)]; 

    end 

    y_data_shift(:) = PathTable(:,FieldLifeTime-k_Shift_time+1); 

    coef_shift = regress(y_data_shift,X); 

    y_reg_shift(:) = X*coef_shift; 

    y_data_continuation(:) = ValueTable(:,FieldLifeTime-k_Shift_time+2); 

    coef_continuation = regress(y_data_continuation,X); 

    y_reg_continuation(:) = X*coef_continuation; 

    ENPVTable_Comparison = [y_reg_shift, y_reg_continuation]; 

    NPV_SRDM = [y_data_shift, y_data_continuation]; 

    [ENPV_SRDM,ENPV_SRDM_idx] = max(ENPVTable_Comparison,[],2); 
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    for i_MC = 1: N_MC 

        ValueTable(i_MC,FieldLifeTime-k_Shift_time+1) = NPV_SRDM(i_MC,ENPV_SRDM_idx(i_MC)); 

        if y_reg_continuation(i_MC) > y_reg_shift(i_MC) 

            SRDM_DecisionTable(i_MC,FieldLifeTime-k_Shift_time+1) = 0; 

        else 

            SRDM_DecisionTable(i_MC,FieldLifeTime-k_Shift_time+1) = 1; 

        end 

    end 

end 

 

ShiftValue = PathTable(:,1); 

ExpShiftValue = mean(ShiftValue); 

 

ContinuationValue = ValueTable(:,1); 

ExpContinuationValue = mean(ContinuationValue); 

EVWII = ExpContinuationValue; 

VOI = EVWII - EVWOI; 

VOI_over_EVWOI_pct = VOI/EVWOI*100; 

 

[~,DWI_Phase1LifeTime_idx] = max(SRDM_DecisionTable,[],2); 

DWI_Phase1LifeTime = DWI_Phase1LifeTime_idx-1; 

 

DWI_Phase2LifeTime = zeros(N_MC,1); 

for i_MC = 1:N_MC 

    Phase1LifeTime_idx_real = DWI_Phase1LifeTime_idx(i_MC,1); 

    DWI_Phase2LifeTime(i_MC,1) = 

Phase2_StopTime_real_Phase1LifeTime(i_MC,Phase1LifeTime_idx_real); 

end 

 

DWI_LifeTime = DWI_Phase1LifeTime+DWI_Phase2LifeTime; 
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Appendix B4.2: CLRM Approach (Sensitivity Analysis on the Number 
of Data Points) 
This code determines the optimal policy by using different number of data points. It consists 
of the modified version of CLRM (Appendix B1.2). To run this algorithm, sections 1, 2, 3, and 
4 from Modified LSM Algorithm (Appendix B1.1) have to be run first to conduct the sampling 
and the calculation of NPV. 
 

N_MC = size(ObsRate_Phase1n2_real_time_ShiftTime,1); 

FieldLifeTime = size(ObsRate_Phase1n2_real_time_ShiftTime,2); 

N_Phase1n2LifeTime = sum(1:FieldLifeTime+1); 

N_LifeTimeComb = N_Phase1n2LifeTime; 

Times = 1:1:FieldLifeTime; 

CLRM_OptNPV_real = zeros(N_MC,1); 

NPV_Tab_matrix = transpose(NPVmatrix_reals); 

Prior_ENPV = meanNPVvector(:,3); 

[max_Prior_ENPV, max_Prior_ENPV_idx] = max(meanNPVvector(:,3),[],1); 

x_data_switch_CLRM = ObsRate_Phase1n2_real_time_ShiftTime(:,:,FieldLifeTime+1); 

 

CLRM_PhaseLifes_Opt_reals = zeros(N_MC,2); 

N_DataPoints = 40; %Change the number of data points here  

 

if max_Prior_ENPV_idx <= Times(FieldLifeTime)+1 %Finding if Switch Time is optimal at Y1 

    Shift_time = 1; 

    t_dataPhase2 = 1; 

    while t_dataPhase2 <= Times(FieldLifeTime-Shift_time+1) 

        if t_dataPhase2 == 1 && max_Prior_ENPV_idx == 1 %Switch and Stop at Y1 are optimal 

            for i_MC = 1: N_MC 

                CLRM_OptNPV_real(i_MC,1) = max_Prior_ENPV; 

            end 

            break; %The whole loop will break here 

        else %Given Switch at Y1 and Stop is not at Y1 

            x_data_stop_CLRM = ObsRate_Phase1n2_real_time_ShiftTime(:,:,Shift_time); 

            if N_DataPoints >= t_dataPhase2 

                X_stop_CLRM = [ones(N_MC,1) x_data_stop_CLRM(:,1:t_dataPhase2)]; 

            else 

                X_stop_CLRM = [ones(N_MC,1) x_data_stop_CLRM(:,t_dataPhase2-

N_DataPoints+1:t_dataPhase2)]; 

            end 

            y_data_stop_CLRM = NPV_Tab_matrix(:,t_dataPhase2+1:FieldLifeTime+1); 

            y_reg_stop_CLRM = zeros(N_MC,FieldLifeTime-t_dataPhase2+1); 

            for t = 1: FieldLifeTime-t_dataPhase2+1 

                y_reg_stop_CLRM(:,t) = 

X_stop_CLRM*regress(y_data_stop_CLRM(:,t),X_stop_CLRM); 

            end 

            [StopTime_reg,StopTime_idx] = max(y_reg_stop_CLRM,[],2); 

        for i_MC = 1: N_MC 

            if StopTime_reg(i_MC) == y_reg_stop_CLRM(i_MC,1) && CLRM_OptNPV_real(i_MC,1) == 0 

                CLRM_OptNPV_real(i_MC,1) = y_data_stop_CLRM(i_MC,1); 

                CLRM_PhaseLifes_Opt_reals(i_MC,1) = Shift_time-1; 

                CLRM_PhaseLifes_Opt_reals(i_MC,2) = t_dataPhase2+StopTime_idx(i_MC)-1; 

            else 

                continue; 

            end 

        end 
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        end 

        t_dataPhase2 = t_dataPhase2+1; 

    end 

else 

% This part is to find the corresponding optimal stop time given Switch time is not at Y1 

    for Shift_time = 2: FieldLifeTime %Finding and recording the optimal switch time before 

determining the stop time 

        N_LifeTimeComb = N_LifeTimeComb-Times(FieldLifeTime-Shift_time+2)-1; 

        y_data_switch_CLRM = NPV_Tab_matrix(:,N_Phase1n2LifeTime-

N_LifeTimeComb+1:N_Phase1n2LifeTime); 

        y_reg_switch_CLRM = zeros(N_MC,N_LifeTimeComb); 

        ENPVTabComp = zeros(N_MC,N_LifeTimeComb); 

        if N_DataPoints >= Shift_time-1 

            X_switch_CLRM = [ones(N_MC,1) x_data_switch_CLRM(:,1:Shift_time-1)]; 

        else 

            X_switch_CLRM = [ones(N_MC,1) x_data_switch_CLRM(:,Shift_time-

N_DataPoints:Shift_time-1)]; 

        end 

        for i_LifeTimeComb = 1: N_LifeTimeComb 

            coef_reg_CLRM = regress(y_data_switch_CLRM(:,i_LifeTimeComb),X_switch_CLRM); 

            y_reg_switch_CLRM(:,i_LifeTimeComb) = X_switch_CLRM*coef_reg_CLRM; 

            ENPVTabComp(:,i_LifeTimeComb) = y_reg_switch_CLRM(:,i_LifeTimeComb); 

        end 

 

    [CLRM_reg,CLRM_idx] = max(ENPVTabComp,[],2); 

 

    if Shift_time == FieldLifeTime 

        [SwitchDecision_CLRM,SwitchDecision_CLRM_idx] = find(CLRM_idx <= Times(FieldLifeTime-

Shift_time+2)+1); 

        [ContinueTime_reg,ContinueTime_idx] = find(CLRM_idx == Times(FieldLifeTime-

Shift_time+2)+1); 

        for i_path = 1: length(ContinueTime_reg) 

            if CLRM_OptNPV_real(ContinueTime_reg(i_path),1) == 0 

               CLRM_OptNPV_real(ContinueTime_reg(i_path),1) = 

y_data_switch_CLRM(ContinueTime_reg(i_path),end); 

               CLRM_PhaseLifes_Opt_reals(ContinueTime_reg(i_path),1) = FieldLifeTime; 

               CLRM_PhaseLifes_Opt_reals(ContinueTime_reg(i_path),2) = 0; 

            else 

                continue; 

            end 

        end 

    else 

        [SwitchDecision_CLRM,SwitchDecision_CLRM_idx] = find(CLRM_idx <= Times(FieldLifeTime-

Shift_time+2)); 

    end 

 

    x_data_stop_CLRM = ObsRate_Phase1n2_real_time_ShiftTime(:,:,Shift_time); 

    t_dataPhase2 = 1; 

    while t_dataPhase2 <= Times(FieldLifeTime-Shift_time+1)+1 

        if N_DataPoints >= t_dataPhase2+Shift_time-2 

            X_stop_CLRM = [ones(N_MC,1) x_data_stop_CLRM(:,1:t_dataPhase2+Shift_time-2)]; 

        else 

            X_stop_CLRM = [ones(N_MC,1) x_data_stop_CLRM(:,t_dataPhase2+Shift_time-

N_DataPoints-1:t_dataPhase2+Shift_time-2)]; 

        end 

        y_data_stop_CLRM = y_data_switch_CLRM(:, t_dataPhase2:Times(FieldLifeTime-

Shift_time+1)+1); 

        y_reg_stop_CLRM = zeros(N_MC,Times(FieldLifeTime-Shift_time+1)-t_dataPhase2+2); 
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        for t = 1: Times(FieldLifeTime-Shift_time+1)-t_dataPhase2+2 

            y_reg_stop_CLRM(:,t) = X_stop_CLRM*regress(y_data_stop_CLRM(:,t),X_stop_CLRM); 

        end 

            [StopTime_reg,StopTime_idx] = max(y_reg_stop_CLRM,[],2); 

        for i_path = 1: length(SwitchDecision_CLRM) 

            if StopTime_reg(SwitchDecision_CLRM(i_path)) == 

y_reg_stop_CLRM(SwitchDecision_CLRM(i_path),1) && 

CLRM_OptNPV_real(SwitchDecision_CLRM(i_path),1) == 0 

                CLRM_OptNPV_real(SwitchDecision_CLRM(i_path),1) = 

y_data_stop_CLRM(SwitchDecision_CLRM(i_path),1); 

                CLRM_PhaseLifes_Opt_reals(SwitchDecision_CLRM(i_path),1) = Shift_time-1; 

                CLRM_PhaseLifes_Opt_reals(SwitchDecision_CLRM(i_path),2) = 

t_dataPhase2+StopTime_idx(SwitchDecision_CLRM(i_path))-2; 

            else 

                continue; 

            end 

        end 

            t_dataPhase2 = t_dataPhase2+1; 

    end 

    end 

end 

 

DWI_CLRM_Phase1LifeTime = CLRM_PhaseLifes_Opt_reals(:,1); 

DWI_CLRM_Phase2LifeTime = CLRM_PhaseLifes_Opt_reals(:,2); 

DWI_CLRM_LifeTime = DWI_CLRM_Phase1LifeTime + DWI_CLRM_Phase2LifeTime; 

 

EVWI_CLRM = mean(CLRM_OptNPV_real); 

VOI_CLRM = EVWI_CLRM-EVWOI; 
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Appendix B5 
There are five codes presented under Appendix B5. These codes generally apply the modified 
LSM algorithm by including the economic uncertainties. These codes need to be run in the 
order of how they are presented here to get the correct results. Prior to running these five codes, 
sections 1 to 2 of Modified LSM Algorithm (Appendix B1.1) have to be run first to conduct 
the sampling.  
 
 
Appendix B5.1: Calibration of the Parameters for Ornstein-
Uhlenbeck Stochastic Process 
This code conducts the calibration of the OU parameters used in the OU Model based on the 
least-squares approach proposed by Smith (2010). This code is originally developed by Smith 
(2010) and slightly modified for this research work. A set of oil price has to be loaded before 
running this code.  
 

d_t = 1; %year 

 

if (size(OilPrice,2) > size(OilPrice,1)) 

    OilPrice = OilPrice'; 

end 

 

% regression is done on the logarithm of oil price 

[regression_coefficient,dummy,residual] = 

regress(log(OilPrice(2:end)),[ones(size(OilPrice(1:end-1))) log(OilPrice(1:end-1))]); 

 

a = regression_coefficient(1); 

b = regression_coefficient(2); 

 

theta = -log(b)/d_t; 

mu = a/(1-b); 

sigma = std(residual)*sqrt((-2*log(b))/(d_t*(1-b^2))); 
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Appendix B5.2: Mean Reverting Process (Ornstein-Uhlenbeck 
Process) 
This code performs the stochastic modeling of the economic parameters based on the OU 
model. The OU parameters obtained from running the previous code are used as the input 
parameters here.  
 

N_MC = size(ObsRate_Phase1n2_real_time_ShiftTime,1); 

FieldLifeTime = size(ObsRate_Phase1n2_real_time_ShiftTime,2); 

 

% 1. OU Parameters for Oil Price – Inputs here are from calibration done by least-squares 

approach 

OilPrice = 47.48; 

theta_oilprice = 0.0643; %speed of mean reversion 

mu_oilprice = 47.48; %reverting mean 

sigma_oilprice = 0.2473; %process volatility %percent 

dt_oilprice = 1; %year 

Pi_OilPrice_Matrix = zeros(N_MC,FieldLifeTime); 

OilPrice_Matrix = zeros(N_MC,FieldLifeTime); 

 

% 2. OU Parameters for Cost Multiplier 

% The parameters here are from Willigers (2008) 

% These same parameters are used for Opex_P1, Opex_P2 & Capex_2After1 

Initial_cost_multiplier = 1; 

theta_cost_multiplier = 0.1; %speed of mean reversion 

mu_cost_multiplier = 1; %reverting mean 

sigma_cost_multiplier = 0.5; %process volatility %percent 

dt_cost_multiplier = 1; %year 

Cost_Multiplier_Opex_Phase1 = zeros(N_MC,FieldLifeTime); 

Cost_Multiplier_Opex_Phase2 = zeros(N_MC,FieldLifeTime); 

Cost_Multiplier_Capex_Phase2After1 = zeros(N_MC,FieldLifeTime); 

Pi_Opex_Phase1_Matrix = zeros(N_MC,FieldLifeTime); 

Pi_Opex_Phase2_Matrix = zeros(N_MC,FieldLifeTime); 

Pi_Capex_Phase2After1_Matrix = zeros(N_MC,FieldLifeTime); 

 

% 3. Generating random samples using multivariate normal distibution 

 

mvnd_mean = [0,0,0,0]; 

mvnd_SD = [1,1,1,1]; 

exp_CorrC = [1 0.87 0.87 0.85; 0.87 1 0.55 0.65; 0.87 0.55 1 0.7; 0.85 0.65 0.7 1]; 

% There are 4 by 4 Correlation Coefficient Matrix used in generating the multivariate uniform 

distribution 

% Since no data, except for oil price, is available, these coefficients are mainly assumed 

cov = exp_CorrC.*(mvnd_SD'*mvnd_SD); 

 

mvnd_samples = zeros(N_MC,4,FieldLifeTime); 

reshaped_mvnd_samples = zeros(N_MC,FieldLifeTime,4); 

 

for t = 1: FieldLifeTime %these loops are to generate 4 different types samples from mvnrnd 

for each year throughout the FieldLifeTime 

    mvnd_samples(:,:,t) = mvnrnd(mvnd_mean,cov,N_MC); 

    reshaped_mvnd_samples(:,t,:) = mvnd_samples(:,:,t); 

end 
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% 4. Generation of the Values of Economic Parameters 

 

for t = 1: FieldLifeTime %the reshaped_mnvd_samples are used in the OU model 

    if t == 1 

        Pi_OilPrice_Matrix(:,t) = (log(OilPrice)*exp(-theta_oilprice*dt_oilprice)) + 

(log(mu_oilprice)*(1-exp(-theta_oilprice*dt_oilprice))) + (sigma_oilprice*sqrt((1-exp(-

2*theta_oilprice*dt_oilprice))/(2*theta_oilprice))*reshaped_mvnd_samples(:,t,1)); 

        OilPrice_Matrix(:,t) = exp(Pi_OilPrice_Matrix(:,t)-

(0.5*(sigma_oilprice^2/(2*theta_oilprice))*(1-exp(-2*theta_oilprice*t)))); 

        Pi_Opex_Phase1_Matrix(:,t) = (log(Initial_cost_multiplier)*exp(-

theta_cost_multiplier*dt_cost_multiplier)) + (log(mu_cost_multiplier)*(1-exp(-

theta_cost_multiplier*dt_cost_multiplier))) + (sigma_cost_multiplier*sqrt((1-exp(-

2*theta_cost_multiplier*dt_cost_multiplier))/(2*theta_cost_multiplier))*reshaped_mvnd_samples

(:,t,2)); 

        Cost_Multiplier_Opex_Phase1(:,t) = exp(Pi_Opex_Phase1_Matrix(:,t)-

(0.5*(sigma_cost_multiplier^2/(2*theta_cost_multiplier))*(1-exp(-

2*theta_cost_multiplier*t)))); 

        Pi_Opex_Phase2_Matrix(:,t) = (log(Initial_cost_multiplier)*exp(-

theta_cost_multiplier*dt_cost_multiplier)) + (log(mu_cost_multiplier)*(1-exp(-

theta_cost_multiplier*dt_cost_multiplier))) + (sigma_cost_multiplier*sqrt((1-exp(-

2*theta_cost_multiplier*dt_cost_multiplier))/(2*theta_cost_multiplier))*reshaped_mvnd_samples

(:,t,3)); 

        Cost_Multiplier_Opex_Phase2(:,t) = exp(Pi_Opex_Phase2_Matrix(:,t)-

(0.5*(sigma_cost_multiplier^2/(2*theta_cost_multiplier))*(1-exp(-

2*theta_cost_multiplier*t)))); 

        Pi_Capex_Phase2After1_Matrix(:,t) = (log(Initial_cost_multiplier)*exp(-

theta_cost_multiplier*dt_cost_multiplier)) + (log(mu_cost_multiplier)*(1-exp(-

theta_cost_multiplier*dt_cost_multiplier))) + (sigma_cost_multiplier*sqrt((1-exp(-

2*theta_cost_multiplier*dt_cost_multiplier))/(2*theta_cost_multiplier))*reshaped_mvnd_samples

(:,t,4)); 

        Cost_Multiplier_Capex_Phase2After1(:,t) = exp(Pi_Capex_Phase2After1_Matrix(:,t)-

(0.5*(sigma_cost_multiplier^2/(2*theta_cost_multiplier))*(1-exp(-

2*theta_cost_multiplier*t)))); 

    else 

        Pi_OilPrice_Matrix(:,t) = (Pi_OilPrice_Matrix(:,t-1)*exp(-

theta_oilprice*dt_oilprice)) + (log(mu_oilprice)*(1-exp(-theta_oilprice*dt_oilprice))) + 

(sigma_oilprice*sqrt((1-exp(-

2*theta_oilprice*dt_oilprice))/(2*theta_oilprice))*reshaped_mvnd_samples(:,t,1)); 

        OilPrice_Matrix(:,t) = exp(Pi_OilPrice_Matrix(:,t)-

(0.5*(sigma_oilprice^2/(2*theta_oilprice))*(1-exp(-2*theta_oilprice*t)))); 

        Pi_Opex_Phase1_Matrix(:,t) = (Pi_Opex_Phase1_Matrix(:,t-1)*exp(-

theta_cost_multiplier*dt_cost_multiplier)) + (log(mu_cost_multiplier)*(1-exp(-

theta_cost_multiplier*dt_cost_multiplier))) + (sigma_cost_multiplier*sqrt((1-exp(-

2*theta_cost_multiplier*dt_cost_multiplier))/(2*theta_cost_multiplier))*reshaped_mvnd_samples

(:,t,2)); 

        Cost_Multiplier_Opex_Phase1(:,t) = exp(Pi_Opex_Phase1_Matrix(:,t)-

(0.5*(sigma_cost_multiplier^2/(2*theta_cost_multiplier))*(1-exp(-

2*theta_cost_multiplier*t)))); 

        Pi_Opex_Phase2_Matrix(:,t) = (Pi_Opex_Phase2_Matrix(:,t-1)*exp(-

theta_cost_multiplier*dt_cost_multiplier)) + (log(mu_cost_multiplier)*(1-exp(-

theta_cost_multiplier*dt_cost_multiplier))) + (sigma_cost_multiplier*sqrt((1-exp(-

2*theta_cost_multiplier*dt_cost_multiplier))/(2*theta_cost_multiplier))*reshaped_mvnd_samples

(:,t,3)); 

        Cost_Multiplier_Opex_Phase2(:,t) = exp(Pi_Opex_Phase2_Matrix(:,t)-

(0.5*(sigma_cost_multiplier^2/(2*theta_cost_multiplier))*(1-exp(-

2*theta_cost_multiplier*t)))); 

        Pi_Capex_Phase2After1_Matrix(:,t) = (Pi_Capex_Phase2After1_Matrix(:,t-1)*exp(-

theta_cost_multiplier*dt_cost_multiplier)) + (log(mu_cost_multiplier)*(1-exp(-
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theta_cost_multiplier*dt_cost_multiplier))) + (sigma_cost_multiplier*sqrt((1-exp(-

2*theta_cost_multiplier*dt_cost_multiplier))/(2*theta_cost_multiplier))*reshaped_mvnd_samples

(:,t,4)); 

        Cost_Multiplier_Capex_Phase2After1(:,t) = exp(Pi_Capex_Phase2After1_Matrix(:,t)-

(0.5*(sigma_cost_multiplier^2/(2*theta_cost_multiplier))*(1-exp(-

2*theta_cost_multiplier*t)))); 

    end 

end 

 

Opex_Phase1_Matrix = zeros(N_MC,FieldLifeTime); 

Opex_Phase2_Matrix = zeros(N_MC,FieldLifeTime); 

Capex_Phase2After1_Matrix = zeros(N_MC,FieldLifeTime); 

 

for t = 1: FieldLifeTime 

    if t == 1 %for Costs at Y1, Oil Price at Year 0 is used 

        Opex_Phase1_Matrix(:,t) = OilPrice.*Cost_Multiplier_Opex_Phase1(:,t); 

        Opex_Phase2_Matrix(:,t) = OilPrice.*Cost_Multiplier_Opex_Phase2(:,t); 

        Capex_Phase2After1_Matrix(:,t) = OilPrice.*Cost_Multiplier_Capex_Phase2After1(:,t); 

    else %for Costs at Year n+1, Oil Price at Year n is used 

        Opex_Phase1_Matrix(:,t) = OilPrice_Matrix(:,t-1).*Cost_Multiplier_Opex_Phase1(:,t); 

        Opex_Phase2_Matrix(:,t) = OilPrice_Matrix(:,t-1).*Cost_Multiplier_Opex_Phase2(:,t); 

        Capex_Phase2After1_Matrix(:,t) = OilPrice_Matrix(:,t-

1).*Cost_Multiplier_Capex_Phase2After1(:,t); 

    end 

end 
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Appendix B5.3: Calculation of Cashflow and NPV (Economic 
Uncertainties) 
This code computes the cashflow and the NPV used in the example problem which economic 
uncertainties are included. This code is the modified version of section 3 of Modified LSM 
Algorithm (Appendix B1.1). After running this code, section 4 of Modified LSM Algorithm 
(Appendix B1.1) has to be run before proceeding to either CLRM or SRDM.  
 

FieldLifeTime = size(ObsRate_Phase1n2_real_time_ShiftTime,2); 

N_MC = size(ObsRate_Phase1n2_real_time_ShiftTime,1); 

 

% Values of Economic Parameters 

Capex_Phase1 = 50; 

Capex_Phase2No1 = 75; 

DisRate = 0.12; 

 

N_Phase1n2LifeTime = sum(1:FieldLifeTime+1); 

CashFlow = zeros(N_MC,FieldLifeTime); 

DisCashFlow = zeros(N_MC,FieldLifeTime); 

DisCashFlow_ShiftTime = zeros(N_MC,FieldLifeTime,FieldLifeTime+1); 

NPV_reals = zeros(N_MC,1); 

NPVtable_LTPhase1_LTPhase2_real = zeros(FieldLifeTime+1,FieldLifeTime+1,N_MC); 

 

for t = 1: FieldLifeTime 

    for time = 1: FieldLifeTime+1 

        if t == time 

            if time == 1 

                CashFlow(:,t) = 

OilPrice_Matrix(:,t).*ObsRate_Phase1n2_real_time_ShiftTime(:,t,time) - 

Opex_Phase2_Matrix(:,t) - Capex_Phase2No1; 

                DisCashFlow(:,t) = CashFlow(:,t)/((1+DisRate).^(t)); 

            else 

                CashFlow(:,t) = 

OilPrice_Matrix(:,t).*ObsRate_Phase1n2_real_time_ShiftTime(:,t,time) - 

Opex_Phase2_Matrix(:,t) - Capex_Phase2After1_Matrix(:,t); 

                DisCashFlow(:,t) = CashFlow(:,t)/((1+DisRate).^(t)); 

            end 

        elseif t < time 

            if t == 1 

                CashFlow(:,t) = 

OilPrice_Matrix(:,t).*ObsRate_Phase1n2_real_time_ShiftTime(:,t,time) - 

Opex_Phase1_Matrix(:,t) - Capex_Phase1; 

                DisCashFlow(:,t) = CashFlow(:,t)/((1+DisRate).^(t)); 

            else 

                CashFlow(:,t) = 

OilPrice_Matrix(:,t).*ObsRate_Phase1n2_real_time_ShiftTime(:,t,time) - 

Opex_Phase1_Matrix(:,t); 

                DisCashFlow(:,t) = CashFlow(:,t)/((1+DisRate).^(t)); 

            end 

        else 

            CashFlow(:,t) = 

OilPrice_Matrix(:,t).*ObsRate_Phase1n2_real_time_ShiftTime(:,t,time) - 

Opex_Phase2_Matrix(:,t); 

            DisCashFlow(:,t) = CashFlow(:,t)/((1+DisRate).^(t)); 

        end 
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        DisCashFlow_ShiftTime(:,t,time) = DisCashFlow(:,t); 

 

        if time == 1 

                NPV_reals(:) = sum(DisCashFlow_ShiftTime(:,1:t,time),2); 

                NPVtable_LTPhase1_LTPhase2_real(time,t+1,:) = NPV_reals(:); 

        elseif time == FieldLifeTime+1 

                NPV_reals(:) = sum(DisCashFlow_ShiftTime(:,1:FieldLifeTime,time),2); 

                NPVtable_LTPhase1_LTPhase2_real(time,1,:) = NPV_reals(:); 

        else 

            if t == time 

                NPV_reals(:) = sum(DisCashFlow_ShiftTime(:,1:time,time),2); 

                NPVtable_LTPhase1_LTPhase2_real(time,2,:) = NPV_reals(:); 

            elseif t < time 

                NPV_reals(:) = sum(DisCashFlow_ShiftTime(:,1:time-1,time),2); 

                NPVtable_LTPhase1_LTPhase2_real(time,1,:) = NPV_reals(:); 

            else 

                NPV_reals(:) = sum(DisCashFlow_ShiftTime(:,1:t,time),2); 

                NPVtable_LTPhase1_LTPhase2_real(time,t-time+2,:) = NPV_reals(:); 

            end 

        end 

    end 

 end 
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Appendix B5.4: SRDM Approach (Economic Uncertainties) 
This code determines the optimal decision policy using SRDM approach by including 
economic uncertainties. It consists of the modified version of Sections 5 and 6 of Modified 
LSM Algorithm (Appendix B1.1).  
 

%  1. Path Table Generation (Modified LSM algorithm) 

%  This section determines the optimal stopping time given the switch time at every year 

%  Regression Analysis is applied 

%  The NPV corresponding to the optimal stopping time is recorded into the PathTable 

 

N_MC = size(ObsRate_Phase1n2_real_time_ShiftTime,1); 

FieldLifeTime = size(ObsRate_Phase1n2_real_time_ShiftTime,2); 

SRDM_Shift_Stop_OptNPV_real = zeros(N_MC,1); 

 

PathTable = zeros(N_MC,FieldLifeTime+1); 

PathTable(:,end) = NPVtable_LTPhase1_LTPhase2_real(FieldLifeTime+1,1,:); 

Phase2_StopTime_real_Phase1LifeTime = zeros(N_MC,FieldLifeTime+1); 

 

for k_Shift_time = 1: FieldLifeTime 

        NPV_2Phases_matrix = zeros(N_MC,k_Shift_time+1); 

    for k_Stop_time = 1: k_Shift_time+1 

        NPV_2Phases_matrix(:,k_Stop_time) = NPVtable_LTPhase1_LTPhase2_real(FieldLifeTime-

k_Shift_time+1,k_Stop_time,:); 

    end 

    for k_StopTime = 1: k_Shift_time 

        if k_StopTime == 1 

            x_data_stop_SRDM = ObsRate_Phase1n2_real_time_ShiftTime(:,1:FieldLifeTime-

k_StopTime,FieldLifeTime-k_Shift_time+1); 

            oilprice_data = OilPrice_Matrix(:,FieldLifeTime-k_StopTime); 

            opex_data = Opex_Phase2_Matrix(:,FieldLifeTime-k_StopTime); 

            X_stop_SRDM = [ones(N_MC,1) x_data_stop_SRDM oilprice_data opex_data]; 

            y_data_stop_matrix = [NPV_2Phases_matrix(:,k_Shift_time-k_StopTime+1) 

NPV_2Phases_matrix(:,k_Shift_time-k_StopTime+2)]; 

            [Stop_value,Stop_idx] = 

max([X_stop_SRDM*regress(NPV_2Phases_matrix(:,k_Shift_time-k_StopTime+1),X_stop_SRDM) 

X_stop_SRDM*regress(NPV_2Phases_matrix(:,k_Shift_time-k_StopTime+2),X_stop_SRDM)],[],2); 

            for i_MC = 1: N_MC 

                SRDM_Shift_Stop_OptNPV_real(i_MC,1) = 

y_data_stop_matrix(i_MC,Stop_idx(i_MC)); 

            end 

        else 

            x_data_stop_SRDM = ObsRate_Phase1n2_real_time_ShiftTime(:,1:FieldLifeTime-

k_StopTime,FieldLifeTime-k_Shift_time+1); 

            if FieldLifeTime-k_StopTime == 0 

                oilprice_data = OilPrice_Matrix(:,1:FieldLifeTime-k_StopTime); 

                opex_data = Opex_Phase2_Matrix(:,1:FieldLifeTime-k_StopTime); 

            else 

                oilprice_data = OilPrice_Matrix(:,FieldLifeTime-k_StopTime); 

                opex_data = Opex_Phase2_Matrix(:,FieldLifeTime-k_StopTime); 

            end 

            X_stop_SRDM = [ones(N_MC,1) x_data_stop_SRDM oilprice_data opex_data]; 

            y_data_stop_matrix = [NPV_2Phases_matrix(:,k_Shift_time-k_StopTime+1) 

SRDM_Shift_Stop_OptNPV_real(:,1)]; 

            [Stop_value,Stop_idx] = 

max([X_stop_SRDM*regress(NPV_2Phases_matrix(:,k_Shift_time-k_StopTime+1),X_stop_SRDM) 
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X_stop_SRDM*regress(SRDM_Shift_Stop_OptNPV_real(:,1),X_stop_SRDM)],[],2); 

            for i_MC = 1: N_MC 

                SRDM_Shift_Stop_OptNPV_real(i_MC,1) = 

y_data_stop_matrix(i_MC,Stop_idx(i_MC)); 

            end 

        end 

    end 

    for i_MC = 1: N_MC 

        PathTable(i_MC,FieldLifeTime-k_Shift_time+1) = SRDM_Shift_Stop_OptNPV_real(i_MC,1); 

        for k_Stop_time = 1: k_Shift_time+1 

            if SRDM_Shift_Stop_OptNPV_real(i_MC,1) == NPV_2Phases_matrix(i_MC,k_Stop_time) 

                Phase2_StopTime_real_Phase1LifeTime(i_MC,FieldLifeTime-k_Shift_time+1) = 

k_Stop_time-1; 

            end 

        end 

    end 

end 

 

% 2. SRDM Approach (Modified LSM algorithm) 

% This section determines the optimal decision policy based on SRDM approach 

 

FieldLifeTime = size(ObsRate_Phase1n2_real_time_ShiftTime,2); 

y_data_continuation = zeros(N_MC,1); 

y_data_shift = zeros(N_MC,1); 

y_reg_continuation = zeros(N_MC,1); 

y_reg_shift = zeros(N_MC,1); 

x_data = ObsRate_Phase1n2_real_time_ShiftTime(:,:,FieldLifeTime+1); 

 

ValueTable = zeros(N_MC,FieldLifeTime+1); 

ValueTable(:,end) = PathTable(:,end); 

SRDM_DecisionTable = zeros(N_MC,FieldLifeTime+1); 

SRDM_DecisionTable(:,end) = 1; 

oilprice_data = OilPrice_Matrix(:,:); 

opex_phase1_data = Opex_Phase1_Matrix(:,:); 

opex_phase2_data = Opex_Phase2_Matrix(:,:); 

capex_phase2after1_data = Capex_Phase2After1_Matrix(:,:); 

 

for k_Shift_time = 1:FieldLifeTime 

    if FieldLifeTime-k_Shift_time == 0 

        X_shift = [ones(N_MC,1) x_data(:,1:FieldLifeTime-k_Shift_time) 

oilprice_data(:,1:FieldLifeTime-k_Shift_time) opex_phase1_data(:,1:FieldLifeTime-

k_Shift_time) opex_phase2_data(:,1:FieldLifeTime-k_Shift_time) 

capex_phase2after1_data(:,1:FieldLifeTime-k_Shift_time)]; 

        X_continuation = [ones(N_MC,1) x_data(:,1:FieldLifeTime-k_Shift_time) 

oilprice_data(:,1:FieldLifeTime-k_Shift_time) opex_phase1_data(:,1:FieldLifeTime-

k_Shift_time) opex_phase2_data(:,1:FieldLifeTime-k_Shift_time) 

capex_phase2after1_data(:,1:FieldLifeTime-k_Shift_time)]; 

    else 

        X_shift = [ones(N_MC,1) x_data(:,1:FieldLifeTime-k_Shift_time) 

oilprice_data(:,FieldLifeTime-k_Shift_time) opex_phase1_data(:,FieldLifeTime-k_Shift_time) 

opex_phase2_data(:,FieldLifeTime-k_Shift_time) capex_phase2after1_data(:,FieldLifeTime-

k_Shift_time)]; 

        X_continuation = [ones(N_MC,1) x_data(:,1:FieldLifeTime-k_Shift_time) 

oilprice_data(:,FieldLifeTime-k_Shift_time) opex_phase1_data(:,FieldLifeTime-k_Shift_time) 

opex_phase2_data(:,FieldLifeTime-k_Shift_time) capex_phase2after1_data(:,FieldLifeTime-

k_Shift_time)]; 

    end 

    y_data_shift(:) = PathTable(:,FieldLifeTime-k_Shift_time+1); 
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    coef_shift = regress(y_data_shift,X_shift); 

    y_reg_shift(:) = X_shift*coef_shift; 

    y_data_continuation(:) = ValueTable(:,FieldLifeTime-k_Shift_time+2); 

    coef_continuation = regress(y_data_continuation,X_continuation); 

    y_reg_continuation(:) = X_continuation*coef_continuation; 

    ENPVTable_Comparison = [y_reg_shift, y_reg_continuation]; 

    NPV_SRDM = [y_data_shift, y_data_continuation]; 

    [ENPV_SRDM,ENPV_SRDM_idx] = max(ENPVTable_Comparison,[],2); 

 

    for i_MC = 1: N_MC 

        ValueTable(i_MC,FieldLifeTime-k_Shift_time+1) = NPV_SRDM(i_MC,ENPV_SRDM_idx(i_MC)); 

        if y_reg_continuation(i_MC) > y_reg_shift(i_MC) 

            SRDM_DecisionTable(i_MC,FieldLifeTime-k_Shift_time+1) = 0; 

        else 

            SRDM_DecisionTable(i_MC,FieldLifeTime-k_Shift_time+1) = 1; 

        end 

    end 

end 

 

ShiftValue = PathTable(:,1); 

ExpShiftValue = mean(ShiftValue); 

 

ContinuationValue = ValueTable(:,1); 

ExpContinuationValue = mean(ContinuationValue); 

EVWII = ExpContinuationValue; 

VOI = EVWII - EVWOI; 

VOI_over_EVWOI_pct = VOI/EVWOI*100; 

 

[~,DWI_Phase1LifeTime_idx] = max(SRDM_DecisionTable,[],2); 

DWI_Phase1LifeTime = DWI_Phase1LifeTime_idx-1; 

 

DWI_Phase2LifeTime = zeros(N_MC,1); 

for i_MC = 1:N_MC 

    Phase1LifeTime_idx_real = DWI_Phase1LifeTime_idx(i_MC,1); 

    DWI_Phase2LifeTime(i_MC,1) = 

Phase2_StopTime_real_Phase1LifeTime(i_MC,Phase1LifeTime_idx_real); 

end 

 

DWI_LifeTime = DWI_Phase1LifeTime+DWI_Phase2LifeTime; 
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Appendix B5.5: CLRM Approach (Economic Uncertainties) 
This section determines the optimal decision policy based on CLRM approach by including 
economic uncertainties. This code consists of the modified version of CLRM (Appendix B1.2).  
 

N_MC = size(ObsRate_Phase1n2_real_time_ShiftTime,1); 

FieldLifeTime = size(ObsRate_Phase1n2_real_time_ShiftTime,2); 

N_Phase1n2LifeTime = sum(1:FieldLifeTime+1); 

N_LifeTimeComb = N_Phase1n2LifeTime; 

Times = 1:1:FieldLifeTime; 

CLRM_OptNPV_real = zeros(N_MC,1); 

NPV_Tab_matrix = transpose(NPVmatrix_reals); 

Prior_ENPV = meanNPVvector(:,3); 

[max_Prior_ENPV, max_Prior_ENPV_idx] = max(meanNPVvector(:,3),[],1); 

x_data_switch_CLRM = ObsRate_Phase1n2_real_time_ShiftTime(:,:,FieldLifeTime+1); 

oilprice_data = OilPrice_Matrix(:,:); 

opex_phase1_data = Opex_Phase1_Matrix(:,:); 

opex_phase2_data = Opex_Phase2_Matrix(:,:); 

capex_phase2after1_data = Capex_Phase2After1_Matrix(:,:); 

 

CLRM_PhaseLifes_Opt_reals = zeros(N_MC,2); 

 

if max_Prior_ENPV_idx <= Times(FieldLifeTime)+1 %Finding if Switch Time is optimal at Y1 

    Shift_time = 1; 

    t_dataPhase2 = 1; 

    while t_dataPhase2 <= Times(FieldLifeTime-Shift_time+1) 

        if t_dataPhase2 == 1 && max_Prior_ENPV_idx == 1 %Switch and Stop at Y1 are optimal 

            for i_MC = 1: N_MC 

                CLRM_OptNPV_real(i_MC,1) = max_Prior_ENPV; 

            end 

            break; %The whole loop will break here 

        else %Given Switch at Y1 and Stop is not at Y1 

            x_data_stop_CLRM = ObsRate_Phase1n2_real_time_ShiftTime(:,:,Shift_time); 

            X_stop_CLRM = [ones(N_MC,1) x_data_stop_CLRM(:,1:t_dataPhase2) 

oilprice_data(:,t_dataPhase2) opex_phase2_data(:,t_dataPhase2)]; 

            y_data_stop_CLRM = NPV_Tab_matrix(:,t_dataPhase2+1:FieldLifeTime+1); 

            y_reg_stop_CLRM = zeros(N_MC,FieldLifeTime-t_dataPhase2+1); 

            for t = 1: FieldLifeTime-t_dataPhase2+1 

                y_reg_stop_CLRM(:,t) = 

X_stop_CLRM*regress(y_data_stop_CLRM(:,t),X_stop_CLRM); 

            end 

            [StopTime_reg,StopTime_idx] = max(y_reg_stop_CLRM,[],2); 

        for i_MC = 1: N_MC 

            if StopTime_reg(i_MC) == y_reg_stop_CLRM(i_MC,1) && CLRM_OptNPV_real(i_MC,1) == 0 

                CLRM_OptNPV_real(i_MC,1) = y_data_stop_CLRM(i_MC,1); 

                CLRM_PhaseLifes_Opt_reals(i_MC,1) = Shift_time-1; 

                CLRM_PhaseLifes_Opt_reals(i_MC,2) = t_dataPhase2+StopTime_idx(i_MC)-1; 

            else 

                continue; 

            end 

        end 

        end 

        t_dataPhase2 = t_dataPhase2+1; 

    end 

else 

% This part is to find the corresponding optimal stop time given Switch time is not at Y1 
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    for Shift_time = 2: FieldLifeTime %Finding and recording the optimal switch time before 

determining the stop time 

        N_LifeTimeComb = N_LifeTimeComb-Times(FieldLifeTime-Shift_time+2)-1; 

        y_data_switch_CLRM = NPV_Tab_matrix(:,N_Phase1n2LifeTime-

N_LifeTimeComb+1:N_Phase1n2LifeTime); 

        y_reg_switch_CLRM = zeros(N_MC,N_LifeTimeComb); 

        ENPVTabComp = zeros(N_MC,N_LifeTimeComb); 

        X_switch_CLRM = [ones(N_MC,1) x_data_switch_CLRM(:,1:Shift_time-1) 

oilprice_data(:,Shift_time-1) opex_phase1_data(:,Shift_time-1) opex_phase2_data(:,Shift_time-

1) capex_phase2after1_data(:,Shift_time-1)]; 

        for i_LifeTimeComb = 1: N_LifeTimeComb 

            coef_reg_CLRM = regress(y_data_switch_CLRM(:,i_LifeTimeComb),X_switch_CLRM); 

            y_reg_switch_CLRM(:,i_LifeTimeComb) = X_switch_CLRM*coef_reg_CLRM; 

            ENPVTabComp(:,i_LifeTimeComb) = y_reg_switch_CLRM(:,i_LifeTimeComb); 

        end 

 

    [CLRM_reg,CLRM_idx] = max(ENPVTabComp,[],2); 

 

    if Shift_time == FieldLifeTime 

        [SwitchDecision_CLRM,SwitchDecision_CLRM_idx] = find(CLRM_idx <= Times(FieldLifeTime-

Shift_time+2)+1); 

        [ContinueTime_reg,ContinueTime_idx] = find(CLRM_idx == Times(FieldLifeTime-

Shift_time+2)+1); 

        for i_path = 1: length(ContinueTime_reg) 

            if CLRM_OptNPV_real(ContinueTime_reg(i_path),1) == 0 

               CLRM_OptNPV_real(ContinueTime_reg(i_path),1) = 

y_data_switch_CLRM(ContinueTime_reg(i_path),end); 

               CLRM_PhaseLifes_Opt_reals(ContinueTime_reg(i_path),1) = FieldLifeTime; 

               CLRM_PhaseLifes_Opt_reals(ContinueTime_reg(i_path),2) = 0; 

            else 

                continue; 

            end 

        end 

    else 

        [SwitchDecision_CLRM,SwitchDecision_CLRM_idx] = find(CLRM_idx <= Times(FieldLifeTime-

Shift_time+2)); 

    end 

 

    x_data_stop_CLRM = ObsRate_Phase1n2_real_time_ShiftTime(:,:,Shift_time); 

    t_dataPhase2 = 1; 

    while t_dataPhase2 <= Times(FieldLifeTime-Shift_time+1)+1 

        X_stop_CLRM = [ones(N_MC,1) x_data_stop_CLRM(:,1:t_dataPhase2+Shift_time-2) 

oilprice_data(:,t_dataPhase2+Shift_time-2) opex_phase2_data(:,t_dataPhase2+Shift_time-2)]; 

        y_data_stop_CLRM = y_data_switch_CLRM(:, t_dataPhase2:Times(FieldLifeTime-

Shift_time+1)+1); 

        y_reg_stop_CLRM = zeros(N_MC,Times(FieldLifeTime-Shift_time+1)-t_dataPhase2+2); 

        for t = 1: Times(FieldLifeTime-Shift_time+1)-t_dataPhase2+2 

            y_reg_stop_CLRM(:,t) = X_stop_CLRM*regress(y_data_stop_CLRM(:,t),X_stop_CLRM); 

        end 

            [StopTime_reg,StopTime_idx] = max(y_reg_stop_CLRM,[],2); 

        for i_path = 1: length(SwitchDecision_CLRM) 

            if StopTime_reg(SwitchDecision_CLRM(i_path)) == 

y_reg_stop_CLRM(SwitchDecision_CLRM(i_path),1) && 

CLRM_OptNPV_real(SwitchDecision_CLRM(i_path),1) == 0 

                CLRM_OptNPV_real(SwitchDecision_CLRM(i_path),1) = 

y_data_stop_CLRM(SwitchDecision_CLRM(i_path),1); 

                CLRM_PhaseLifes_Opt_reals(SwitchDecision_CLRM(i_path),1) = Shift_time-1; 

                CLRM_PhaseLifes_Opt_reals(SwitchDecision_CLRM(i_path),2) = 
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t_dataPhase2+StopTime_idx(SwitchDecision_CLRM(i_path))-2; 

            else 

                continue; 

            end 

        end 

            t_dataPhase2 = t_dataPhase2+1; 

    end 

    end 

end 

 

DWI_CLRM_Phase1LifeTime = CLRM_PhaseLifes_Opt_reals(:,1); 

DWI_CLRM_Phase2LifeTime = CLRM_PhaseLifes_Opt_reals(:,2); 

DWI_CLRM_LifeTime = DWI_CLRM_Phase1LifeTime + DWI_CLRM_Phase2LifeTime; 

 

EVWI_CLRM = mean(CLRM_OptNPV_real); 

VOI_CLRM = EVWI_CLRM-EVWOI; 
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Appendix B6 
 
 
Appendix B6.1: Probabilistic Plot of the Oil Price Model 
This code makes the plots of P10, P50 and P90 of the simulated oil price.  
 

N_MC = 100000; 

FieldLifeTime = 50; 

P10_OilPrice = zeros(1,FieldLifeTime+1); 

P50_OilPrice = zeros(1,FieldLifeTime+1); 

P90_OilPrice = zeros(1,FieldLifeTime+1); 

 

LifeTime = 0:1:FieldLifeTime; 

 

for i_LifeTime = 2: FieldLifeTime+1 

    P10_OilPrice(:,i_LifeTime) = prctile(OilPrice_Matrix(:,i_LifeTime-1),10); 

    P50_OilPrice(:,i_LifeTime) = prctile(OilPrice_Matrix(:,i_LifeTime-1),50); 

    P90_OilPrice(:,i_LifeTime) = prctile(OilPrice_Matrix(:,i_LifeTime-1),90); 

end 

 

P10_OilPrice(:,1) = OilPrice; 

P50_OilPrice(:,1) = OilPrice; 

P90_OilPrice(:,1) = OilPrice; 

 

figure 

P10 = plot(LifeTime,P10_OilPrice); hold on; 

P50 = plot(LifeTime,P50_OilPrice); hold on; 

P90 = plot(LifeTime,P90_OilPrice); hold on; 

 

set(P10,'LineWidth',2); 

set(P50,'LineWidth',2); 

set(P90,'LineWidth',2); 

 

legend('P10','P50','P90'); 

xlabel('Time (years)'); 

ylabel('Oil Price (USD/bbl)'); 
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Appendix B6.2: Cumulative Distribution Functions (CDF) Plot of NPV 
corresponding to DWOI, DWII (SRDM), and DWPI 
 

N_MC = 100000; 

FieldLifeTime = 50; 

N_percentile = 99; 

N_Phase1n2LifeTime = sum(0:FieldLifeTime+1); 

 

NPV_DWOI = NPVtable_LTPhase1_LTPhase2_real(DWOI_Phase1LifeTime+1,DWOI_Phase2LifeTime+1,:); 

 

NPV_DWII = zeros(N_MC,1); 

NPV_DWPI = zeros(N_MC,1); 

 

for i_MC = 1: N_MC 

    NPV_DWII(i_MC,1) = 

NPVtable_LTPhase1_LTPhase2_real(DWI_Phase1LifeTime(i_MC,1)+1,DWI_Phase2LifeTime(i_MC,1)+1,i_M

C); 

    NPV_DWPI(i_MC,1) = 

NPVtable_LTPhase1_LTPhase2_real(DWPI_Phase1LifeTime_real(i_MC,1)+1,DWPI_Phase2LifeTime_real(i

_MC,1)+1,i_MC); 

end 

 

Percentile_DWOI = zeros(N_percentile+2,1); 

Percentile_DWII = zeros(N_percentile+2,1); 

Percentile_DWPI = zeros(N_percentile+2,1); 

 

for i_percentile = 2: N_percentile+1 

    Percentile_DWOI(i_percentile,1) = prctile(NPV_DWOI,i_percentile-1); 

    Percentile_DWII(i_percentile,1) = prctile(NPV_DWII,i_percentile-1); 

    Percentile_DWPI(i_percentile,1)= prctile(NPV_DWPI,i_percentile-1); 

end 

 

Percentile_DWOI(1,1) = Percentile_DWOI(2,1); 

Percentile_DWII(1,1) = Percentile_DWII(2,1); 

Percentile_DWPI(1,1)= Percentile_DWPI(2,1); 

 

Percentile_DWOI(101,1) = Percentile_DWOI(100,1); 

Percentile_DWII(101,1) = Percentile_DWII(100,1); 

Percentile_DWPI(101,1)= Percentile_DWPI(100,1); 

 

figure; 

y = 0:0.01:1; 

cdf_DWOI = plot(Percentile_DWOI,y); hold on; 

cdf_DWII = plot(Percentile_DWII,y); hold on; 

cdf_DWPI = plot(Percentile_DWPI,y); hold on; 

 

set(cdf_DWOI,'LineWidth',2); 

set(cdf_DWII,'LineWidth',2); 

set(cdf_DWPI,'LineWidth',2); 

 

set(cdf_DWOI,'Color','blue'); 

set(cdf_DWII,'Color','red'); 

set(cdf_DWPI,'Color','green'); 

 

legend('DWOI','DWII','DWPI'); 
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xlabel('NPV (million USD)'); 

ylabel('CDF'); 

 
 

Appendix B6.3: Normalized Frequency Distributions (NFD) of DWII 
This code plots the Normalized Frequency Distributions (NFD) of DWIIs corresponding to 
SRDM and CLRM.  
 

N_MC = 100000; 

FieldLifeTime = 50; 

N_Phase1n2LifeTime = sum(0:FieldLifeTime+1); 

 

% 1. Lifetime of Primary Recovery 

figure; 

hist_DWII_SRDM_LT1 = 

histogram(DWI_Phase1LifeTime,51,'Normalization','probability','BinWidth',1,'BinLimits',[-0.5 

50.5]); hold on; 

hist_DWII_CLRM_LT1 = 

histogram(DWI_CLRM_Phase1LifeTime,51,'Normalization','probability','BinWidth',1,'BinLimits',[

-0.5 50.5]); hold on; 

legend('SRDM','CLRM'); 

xlabel('Lifetime of Primary Recovery (years)'); 

ylabel('NFD'); 

 

% 2. Lifetime of Secondary Recovery 

figure; 

hist_DWII_SRDM_LT2 = 

histogram(DWI_Phase2LifeTime,51,'Normalization','probability','BinWidth',1,'BinLimits',[-0.5 

50.5]); hold on; 

hist_DWII_CLRM_LT2 = 

histogram(DWI_CLRM_Phase2LifeTime,51,'Normalization','probability','BinWidth',1,'BinLimits',[

-0.5 50.5]); hold on; 

legend('SRDM','CLRM'); 

xlabel('Lifetime of Secondary Recovery (years)'); 

ylabel('NFD'); 

 

% 3. Total Lifetime 

figure; 

hist_DWII_SRDM_TLT = 

histogram(DWI_LifeTime,51,'Normalization','probability','BinWidth',1,'BinLimits',[-0.5 

50.5]); hold on; 

hist_DWII_CLRM_tLT2 = 

histogram(DWI_CLRM_LifeTime,51,'Normalization','probability','BinWidth',1,'BinLimits',[-0.5 

50.5]); hold on; 

legend('SRDM','CLRM'); 

xlabel('Total Lifetime (years)'); 

ylabel('NFD'); 
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Appendix B6.4: Normalized Cumulative Frequency Distributions 
(NCFD) of DWII 
This code plots the Normalized Cumulative Frequency Distributions (NCFD) of DWIIs 
corresponding to SRDM and CLRM.  
 

N_MC = 100000; 

FieldLifeTime = 50; 

N_Phase1n2LifeTime = sum(0:FieldLifeTime+1); 

 

% 1. Lifetime of Primary Recovery 

figure; 

hist_DWII_SRDM_LT1 = 

histogram(DWI_Phase1LifeTime,51,'Normalization','cdf','BinWidth',1,'BinLimits',[-0.5 50.5]); 

hold on; 

hist_DWII_CLRM_LT1 = 

histogram(DWI_CLRM_Phase1LifeTime,51,'Normalization','cdf','BinWidth',1,'BinLimits',[-0.5 

50.5]); hold on; 

legend('SRDM','CLRM'); 

xlabel('Lifetime of Primary Recovery (years)'); 

ylim([0 1]); 

ylabel('NCFD'); 

 

% 2. Lifetime of Secondary Recovery 

figure; 

hist_DWII_SRDM_LT2 = 

histogram(DWI_Phase2LifeTime,51,'Normalization','cdf','BinWidth',1,'BinLimits',[-0.5 50.5]); 

hold on; 

hist_DWII_CLRM_LT2 = 

histogram(DWI_CLRM_Phase2LifeTime,51,'Normalization','cdf','BinWidth',1,'BinLimits',[-0.5 

50.5]); hold on; 

legend('SRDM','CLRM'); 

xlabel('Lifetime of Secondary Recovery (years)'); 

ylim([0 1]); 

ylabel('NCFD'); 

 

% 3. Total Lifetime 

figure; 

hist_DWII_SRDM_TLT = 

histogram(DWI_LifeTime,51,'Normalization','cdf','BinWidth',1,'BinLimits',[-0.5 50.5]); hold 

on; 

hist_DWII_CLRM_tLT2 = 

histogram(DWI_CLRM_LifeTime,51,'Normalization','cdf','BinWidth',1,'BinLimits',[-0.5 50.5]); 

hold on; 

legend('SRDM','CLRM'); 

xlabel('Total Lifetime (years)'); 

ylim([0 1]); 

ylabel('NCFD'); 
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Appendix B6.5: Plot of Different Combinations of Lifetimes of 
Primary and Secondary Recoveries  
This code makes the normalized frequency plot of different combinations of lifetimes of 
primary and secondary recoveries This code is originally built by Hong et al. (2018). It is 
slightly modified in this work.  
 

% 1. SRDM Approach 

 

Phase1n2LifeTime_Prob = zeros(N_Phase1n2LifeTime,1); 

for i_Phase1n2LifeTime = 1:N_Phase1n2LifeTime %% Combinations of LT1 and LT2 

    Counter = 0; 

    for i_real = 1:N_MC 

        if DWI_Phase1LifeTime(i_real,1) == Phase1n2LifeTimeTable(i_Phase1n2LifeTime,1) && 

DWI_Phase2LifeTime(i_real,1) == Phase1n2LifeTimeTable(i_Phase1n2LifeTime,2) 

            Counter = Counter+1; 

        end 

    end 

    Phase1n2LifeTime_Prob(i_Phase1n2LifeTime,1) = Counter; 

end 

Phase1n2LifeTime_Prob = Phase1n2LifeTime_Prob/N_MC; 

 

rho_SRDM = corr(DWI_Phase1LifeTime, DWI_Phase2LifeTime); 

figure; 

scatter(Phase1n2LifeTimeTable(:,1),Phase1n2LifeTimeTable(:,2),[],Phase1n2LifeTime_Prob,'fille

d','s'); 

colormap hot 

colorbar; 

xlabel('Lifetime of Primary Recovery (years)'); 

ylabel('Lifetime of Secondary Recovery (years)'); 

 

% 2. CLRM Approach 

 

Phase1n2LifeTime_Prob = zeros(N_Phase1n2LifeTime,1); 

for i_Phase1n2LifeTime = 1:N_Phase1n2LifeTime %% Combinations of LT1 and LT2 

    Counter = 0; 

    for i_real = 1:N_MC 

        if DWI_CLRM_Phase1LifeTime(i_real,1) == Phase1n2LifeTimeTable(i_Phase1n2LifeTime,1) 

&& DWI_CLRM_Phase2LifeTime(i_real,1) == Phase1n2LifeTimeTable(i_Phase1n2LifeTime,2) 

            Counter = Counter+1; 

        end 

    end 

    Phase1n2LifeTime_Prob(i_Phase1n2LifeTime,1) = Counter; 

end 

Phase1n2LifeTime_Prob = Phase1n2LifeTime_Prob/N_MC; 

 

rho_CLRM = corr(DWI_CLRM_Phase1LifeTime, DWI_CLRM_Phase2LifeTime); 

figure; 

scatter(Phase1n2LifeTimeTable(:,1),Phase1n2LifeTimeTable(:,2),[],Phase1n2LifeTime_Prob,'fille

d','s'); 

colormap hot 

colorbar 

xlabel('Lifetime of Primary Recovery (years)'); 

ylabel('Lifetime of Secondary Recovery (years)'); 
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Appendix B6.6: Mean Oil Rates Plot 
This code plots the graph of mean oil rates against time (year) for DWOI, SRDM and CLRM.  
 

N_MC = 100000; 

FieldLifeTime = 50; 

N_Phase1n2LifeTime = sum(0:FieldLifeTime+1); 

LifeTime = 1:1:FieldLifeTime; 

 

Mean_ObsRates_DWOI = mean(ObsRate_Phase1n2_real_time_ShiftTime(:,:,DWOI_Phase1LifeTime+1)); 

Mean_ObsRates_DWOI(:,DWOI_LifeTime+1:FieldLifeTime) = 0; 

 

ObsRates_DWI_SRDM = zeros(N_MC,FieldLifeTime); 

ObsRates_DWI_CLRM = zeros(N_MC,FieldLifeTime); 

 

for i_MC = 1: N_MC 

  for i_time = 1: FieldLifeTime 

    ObsRates_DWI_SRDM(i_MC,i_time) = 

ObsRate_Phase1n2_real_time_ShiftTime(i_MC,i_time,DWI_Phase1LifeTime(i_MC,1)+1); 

    ObsRates_DWI_CLRM(i_MC,i_time) = 

ObsRate_Phase1n2_real_time_ShiftTime(i_MC,i_time,DWI_CLRM_Phase1LifeTime(i_MC,1)+1); 

  end 

    ObsRates_DWI_SRDM(i_MC,DWI_LifeTime(i_MC,1)+1:FieldLifeTime) = 0; 

    ObsRates_DWI_CLRM(i_MC,DWI_CLRM_LifeTime(i_MC,1)+1:FieldLifeTime) = 0; 

end 

 

Mean_ObsRates_DWI_SRDM = mean(ObsRates_DWI_SRDM); 

Mean_ObsRates_DWI_CLRM = mean(ObsRates_DWI_CLRM); 

 

figure; 

mean_rates_DWOI_plot = plot(LifeTime,Mean_ObsRates_DWOI); hold on; 

mean_rates_DWII_SRDM_plot = plot(LifeTime,Mean_ObsRates_DWI_SRDM); hold on; 

mean_rates_DWII_CLRM_plot = plot(LifeTime,Mean_ObsRates_DWI_CLRM); hold on; 

 

legend('DWOI','SRDM','CLRM'); 

set(mean_rates_DWOI_plot,'LineWidth',2); 

set(mean_rates_DWII_SRDM_plot,'LineWidth',2); 

set(mean_rates_DWII_CLRM_plot,'LineWidth',2); 

 

set(mean_rates_DWOI_plot,'Color','blue'); 

set(mean_rates_DWII_SRDM_plot,'Color','red'); 

set(mean_rates_DWII_CLRM_plot,'Color',[0 0.7 0.2]); 

 

legend('DWOI','SRDM','CLRM'); 

xlabel('Time (years)'); 

ylabel('Mean OIl Production Rate (million bbl/year)'); 
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Appendix B6.7: Mean Cumulative Discounted Cashflow Plot for 
DWOI and DWIIs of SRDM and CLRM 
This code plots the graph of mean cumulative discounted cashflow against time (year) for 
DWOI, DWIIs of SRDM and CLRM.  
 

N_MC = 100000; 

FieldLifeTime = 50; 

N_Phase1n2LifeTime = sum(0:FieldLifeTime+1); 

LifeTime = 1:1:FieldLifeTime; 

 

CDCF_DWOI = DisCashFlow_ShiftTime(:,:,DWOI_Phase1LifeTime+1); 

 

for i_time = 2: FieldLifeTime 

    if i_time > DWOI_LifeTime 

    CDCF_DWOI(:,i_time) = CDCF_DWOI(:,DWOI_LifeTime); 

    else 

    CDCF_DWOI(:,i_time) = CDCF_DWOI(:,i_time)+CDCF_DWOI(:,i_time-1); 

    end 

end 

 

Mean_CDCF_DWOI = mean(CDCF_DWOI); 

 

CDCF_DWI_SRDM = zeros(N_MC,FieldLifeTime); 

CDCF_DWI_CLRM = zeros(N_MC,FieldLifeTime); 

 

for i_MC = 1: N_MC 

    CDCF_DWI_SRDM(i_MC,:) = DisCashFlow_ShiftTime(i_MC,:,DWI_Phase1LifeTime(i_MC,1)+1); 

    CDCF_DWI_CLRM(i_MC,:) = DisCashFlow_ShiftTime(i_MC,:,DWI_CLRM_Phase1LifeTime(i_MC,1)+1); 

end 

 

for i_MC = 1: N_MC 

    for i_time = 2: FieldLifeTime 

       if i_time > DWI_LifeTime(i_MC,1) 

       CDCF_DWI_SRDM(i_MC,i_time) = CDCF_DWI_SRDM(i_MC,DWI_LifeTime(i_MC,1)); 

       else 

       CDCF_DWI_SRDM(i_MC,i_time) = CDCF_DWI_SRDM(i_MC,i_time)+CDCF_DWI_SRDM(i_MC,i_time-1); 

       end 

    end 

end 

 

for i_MC = 1: N_MC 

    for i_time = 2: FieldLifeTime 

       if i_time > DWI_CLRM_LifeTime(i_MC,1) 

       CDCF_DWI_CLRM(i_MC,i_time) = CDCF_DWI_CLRM(i_MC,DWI_CLRM_LifeTime(i_MC,1)); 

       else 

       CDCF_DWI_CLRM(i_MC,i_time) = CDCF_DWI_CLRM(i_MC,i_time)+CDCF_DWI_CLRM(i_MC,i_time-1); 

       end 

    end 

end 

 

Mean_CDCF_DWI_SRDM = mean(CDCF_DWI_SRDM); 

Mean_CDCF_DWI_CLRM = mean(CDCF_DWI_CLRM); 

 

figure; 

mean_CDCF_DWOI_plot = plot(LifeTime,Mean_CDCF_DWOI); hold on; 
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mean_CDCF_DWII_SRDM_plot = plot(LifeTime,Mean_CDCF_DWI_SRDM); hold on; 

mean_CDCF_DWII_CLRM_plot = plot(LifeTime,Mean_CDCF_DWI_CLRM); hold on; 

 

set(mean_CDCF_DWOI_plot,'LineWidth',2); 

set(mean_CDCF_DWII_SRDM_plot,'LineWidth',2); 

set(mean_CDCF_DWII_CLRM_plot,'LineWidth',2); 

 

set(mean_CDCF_DWOI_plot,'Color','blue'); 

set(mean_CDCF_DWII_SRDM_plot,'Color','red'); 

set(mean_CDCF_DWII_CLRM_plot,'Color',[0 0.7 0.2]); 

 

legend('DWOI','SRDM','CLRM'); 

xlabel('Time (years)'); 

ylabel('Mean CDCF (million USD)'); 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

193 
 

Appendix B7 
There are six codes under Appendix B7. These codes are used to illustrate how the modified 
LSM algorithm can be applied to a reservoir simulation model. These codes have to be executed 
in the order of how they are presented to get the correct results. After running these 6 codes, 
sections 3 to 6 from the modified LSM algorithm (Appendix B1.1) and CLRM (Appendix B1.2) 
should be run to determine the optimal decision policies.  
 
 
Appendix B7.1: Generation of Different Realizations of Permeability 
This code generates different values of horizontal permeability for top and bottom layers using 
normal distribution. 
 

N_realization = 100; 

PermX = zeros(N_realization,2); 

PERMX_INIT_a = zeros(2500,1); 

 

mean_PermX_Layer1 = 250; 

SD_PermX_Layer1 = 35; 

mean_PermX_Layer2 = 178; 

SD_PermX_Layer2 = 20; 

 

for i_realization = 1: N_realization 

    filename = ['C:\Users\cuthb\OneDrive - 

NTNU\2D_LSM_Reservoir_Model\PERMX\PERMX',num2str(i_realization),'.inc']; 

    PermX(i_realization,1) = normrnd(mean_PermX_Layer1,SD_PermX_Layer1); 

    PermX(i_realization,2) = normrnd(mean_PermX_Layer2,SD_PermX_Layer2); 

 

    PERMX_INIT_a(1:1000,1) = PermX(i_realization,1); 

    PERMX_INIT_a(1001:2500,1) = PermX(i_realization,2); 

 

    fileID = fopen(filename,'w'); 

    fprintf(fileID,'%s\n','PERMX'); 

    fprintf(fileID,'%g\n',PERMX_INIT_a); 

    fprintf(fileID,'%s','/'); 

    fclose(fileID); 

end 

 
 
Appendix B7.2: Generation of Files for Reservoir Simulation 
This code generates different '.DATA' files accordingly along with the 'PERMX.inc' files to be 
used for ECLIPSE (2016) simulation. 
 

Year = 6; 

Realizations = 100; 

 

for i_Year = 1: Year 

 

BaseFiles = ['C:\Users\cuthb\OneDrive - 
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NTNU\2D_LSM_Reservoir_Model\Switch_at_Year_',num2str(i_Year),'\BaseFile']; 

 

for i = 1:Realizations 

    RealizationFolder =['C:\Users\cuthb\OneDrive - 

NTNU\2D_LSM_Reservoir_Model\Switch_at_Year_',num2str(i_Year),'\Simulation\R',num2str(i)]; 

    copyfile(BaseFiles,RealizationFolder); 

    OldName = [RealizationFolder,'\2D_Model_Switch_Y',num2str(i_Year),'.DATA']; 

    NewName = 

[RealizationFolder,'\2D_Model_Switch_Y',num2str(i_Year),'_R',num2str(i),'.DATA']; 

    movefile(OldName,NewName) 

    PERMXfrom = ['C:\Users\cuthb\OneDrive - 

NTNU\2D_LSM_Reservoir_Model\PERMX\PERMX',num2str(i),'.inc']; 

    PERMXto = [RealizationFolder,'\PERMX.inc']; 

    copyfile(PERMXfrom,PERMXto); 

end 

 

end 

 
 
Appendix B7.3: Run Eclipse 
This code calls for the running of the ECLIPSE (2016) simulation with the help of runecl (). 
 

Year = 6; 

Foldername = 'C:\Users\cuthb\OneDrive - NTNU\2D_LSM_Reservoir_Model'; 

 

for i_Year = 1: Year 

    for i_realization = 1: N_realization 

        filename = 

[Foldername,'\Switch_at_Year_',num2str(i_realization),'\Simulation\R',num2str(i_realization)]

; 

        runecl(filename); 

    end 

end 

 
The function of runecl () is shown below. 
 

function run = runecl(filename) 

% Call Eclipse to run a data-file in Matlab 

    cmd=['!C:\ecl\macros\eclrun.exe eclipse ' filename]; 

    eval(cmd); 

 

end 
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Appendix B7.4: Extraction and Modification of RSM File 
This code mainly extracts the output data (RSM file) for each realization and changes it to '-
txt.' file to be imported into MATLAB R2019a (2019) for further analysis. 
 

Year = 6; 

N_realization = 100; 

Foldername = 'C:\Users\cuthb\OneDrive - NTNU\2D_LSM_Reservoir_Model'; 

 

for i_Year = 1: Year 

    for i_realization = 1: N_realization 

        RealizationFile_from = 

[Foldername,'\Data\Switch_at_Year_',num2str(i_Year),'\Simulation\R',num2str(i_realization),'\

2D_MODEL_SWITCH_Y',num2str(i_Year),'_R',num2str(i_realization),'.RSM']; 

        RealizationFile_to = 

[Foldername,'\Switch_at_Year_',num2str(i_Year),'\TextFile\2D_MODEL_SWITCH_Y',num2str(i_Year),

'_R',num2str(i_realization),'.txt']; 

        copyfile(RealizationFile_from,RealizationFile_to); 

 

    end 

end 

 
 
Appendix B7.5: LSM Input Data Generation (only applicable to 
Reservoir Model described in this work) 
This code generates the input data used for the modified LSM method from the output file of 
the Reservoir Simulation. The RSM file only provides the cumulative production (cubic meter) 
for each year. Since the state variable is measured oil rates (MMbbl/year), calculation 
of oil rate and unit conversion are done by this code.  
 

Year = 5; 

N_realization = 100; 

 

% DataPoint defines the number of rows corresponding to the data at particular year 

% For instance, the data at Year 1 is in row 9 

% DataPoint is very case-dependent and needs to be modified 

% accordingly if different reservoir model is used. 

DataPoint = [9;10;11;12;13]; 

Data_Matrix = zeros(N_realization,Year,Year+1); 

Foldername = 'C:\Users\cuthb\OneDrive - NTNU\2D_LSM_Reservoir_Model'; 

 

for i_Year = 1: Year+1 

    for i_realization = 1: N_realization 

        Filename = 

[Foldername,'\Switch_at_Year_',num2str(i_Year),'\TextFile\2D_MODEL_SWITCH_Y',num2str(i_Year),

'_R',num2str(i_realization),'.txt']; 

        DataFile = importdata(Filename); 

 

        % Columns 4 and 5 correspond the cumulative production for top and bottom layer 

        Y1_Data_metric = (DataFile.data(DataPoint(1),4) + 

DataFile.data(DataPoint(1),5))/1000000; 
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        Y2_Data_metric = ((DataFile.data(DataPoint(2),4) - DataFile.data(DataPoint(1),4)) + 

(DataFile.data(DataPoint(2),5) - DataFile.data(DataPoint(1),5)))/1000000; 

        Y3_Data_metric = ((DataFile.data(DataPoint(3),4) - DataFile.data(DataPoint(2),4)) + 

(DataFile.data(DataPoint(3),5) - DataFile.data(DataPoint(2),5)))/1000000; 

        Y4_Data_metric = ((DataFile.data(DataPoint(4),4) - DataFile.data(DataPoint(3),4)) + 

(DataFile.data(DataPoint(4),5) - DataFile.data(DataPoint(3),5)))/1000000; 

        Y5_Data_metric = ((DataFile.data(DataPoint(5),4) - DataFile.data(DataPoint(4),4)) + 

(DataFile.data(DataPoint(5),5) - DataFile.data(DataPoint(4),5)))/1000000; 

 

        % Unit conversion from cubic meter to bbl 

        Y1_Data = Y1_Data_metric.*6.29; 

        Y2_Data = Y2_Data_metric.*6.29; 

        Y3_Data = Y3_Data_metric.*6.29; 

        Y4_Data = Y4_Data_metric.*6.29; 

        Y5_Data = Y5_Data_metric.*6.29; 

 

        Data_Matrix(i_realization,1,i_Year) = Y1_Data; 

        Data_Matrix(i_realization,2,i_Year) = Y2_Data; 

        Data_Matrix(i_realization,3,i_Year) = Y3_Data; 

        Data_Matrix(i_realization,4,i_Year) = Y4_Data; 

        Data_Matrix(i_realization,5,i_Year) = Y5_Data; 

    end 

end 

 

 
Appendix B7.6: Initialization of Input Parameters 
This code computes the measured oil rates used for the modified LSM algorithm by using the 
modeled rates from ECLIPSE (2016) reservoir simulation and initializes the economic 
parameters.  
 

% 1. Computation of Measured Oil Production Rates 

Rate_Phase1n2_real_time_ShiftTime = Data_Matrix; 

ErrorMean4Rate_Pct = 0; 

ErrorSD4Rate_Pct = 0.25; 

ErrorSD_Matrix = ErrorSD4Rate_Pct.*Rate_Phase1n2_real_time_ShiftTime; 

ObsRate_Phase1n2_real_time_ShiftTime = 

normrnd(Rate_Phase1n2_real_time_ShiftTime,ErrorSD_Matrix); 

 

N_MC = size(ObsRate_Phase1n2_real_time_ShiftTime,1); 

FieldLifeTime = size(ObsRate_Phase1n2_real_time_ShiftTime,2); 

 

% 2. Initialization of Values of Economic Parameters 

OilPrice = 90; 

Capex_Phase1 = 1; 

Capex_Phase2After1 = 1.15; 

Capex_Phase2No1 = 1.15; 

Opex_Phase1 = 1.4; 

Opex_Phase2 = 1.6; 

DisRate = 0.05; 
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Appendix C: ECLIPSE Data File 
 
The ECLIPSE (2016) data file is presented below. However, this data file only includes the 
switch time at Year 1. However, to create the data file for another switch time, it can be 
obtained by shifting the positions of “WELSPECS” of the injector and “ WCONINJE” according 
to the timestep, which is represented as “TSTEP”. For example, in this case, if the data file of 
having switch time at Year 3 is needed (indicates that waterflooding is initiated at the beginning 
of Year 3), “WELSPECS” of the injector and “ WCONINJE” are placed after 2 “TSTEP” (because 
each TSTEP” is defined as 365 days or a year in this data file). In addition, the water/oil 
saturation functions (SWOF) used in this file is the modified example of data set presented in 
ECLIPSE Reference Manual prepared by Schlumberger (2014).  
 
ECLIPSE Data File: 2D and 2 Layered Reservoir Model with the Waterflooding Study and 
Switch Time at Year 1 
-- 2D water flooding model (50m*50m*1m and 50*1*100 Blocks) 
-- Total Dimension of model is 2500m*50m*100m 
-- There are two layers in this reservoir model 
-- This Data File corresponds to the switch time at Year 1 
-- Model made by Cuthbert Shang Wui Ng 
 
================================================================== 
 
RUNSPEC 
TITLE 
 2D Reservoir Model for Modified LSM Algorithm  
DIMENS 
   50   1   100  / 
 
OIL 
 
WATER 
 
METRIC 
 
TABDIMS 
    2    1   20    2    2   2 / 
 
WELLDIMS 
    2    100    1    2 / 
 
START 
   1 'JAN' 2019  / 
 
NSTACK 
   100 / 
 
UNIFOUT 
 
UNIFIN 
 
GRID       
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DEBUG 
38*0 1  / 
 
INIT 
 
DXV 
  50*50/ 
 
DYV 
  1*50 / 
 
DZ 
  5000*1 
/ 
 
INCLUDE 
'PERMX.inc'  /   
/ 
 
COPY 
PERMX PERMY / 
PERMX PERMZ / 
/ 
 
MULTIPLY 
  PERMZ 0.0001 / 
/ 
 
BOX 
1 50 1 1 1 100 / 
 
TOPS 
50*2000 
50*2001 
50*2002 
50*2003 
50*2004 
50*2005 
50*2006 
50*2007 
50*2008 
50*2009 
50*2010 
50*2011 
50*2012 
50*2013 
50*2014 
50*2015 
50*2016 
50*2017 
50*2018 
50*2019 
50*2020 
50*2021 
50*2022 
50*2023 
50*2024 
50*2025 
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50*2026 
50*2027 
50*2028 
50*2029 
50*2030 
50*2031 
50*2032 
50*2033 
50*2034 
50*2035 
50*2036 
50*2037 
50*2038 
50*2039 
50*2040 
50*2041 
50*2042 
50*2043 
50*2044 
50*2045 
50*2046 
50*2047 
50*2048 
50*2049 
50*2050 
50*2051 
50*2052 
50*2053 
50*2054 
50*2055 
50*2056 
50*2057 
50*2058 
50*2059 
50*2060 
50*2061 
50*2062 
50*2063 
50*2064 
50*2065 
50*2066 
50*2067 
50*2068 
50*2069 
50*2070 
50*2071 
50*2072 
50*2073 
50*2074 
50*2075 
50*2076 
50*2077 
50*2078 
50*2079 
50*2080 
50*2081 
50*2082 
50*2083 
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50*2084 
50*2085 
50*2086 
50*2087 
50*2088 
50*2089 
50*2090 
50*2091 
50*2092 
50*2093 
50*2094 
50*2095 
50*2096 
50*2097 
50*2098 
50*2099 
/ 
 
PORO 
  2000*0.210 
  3000*0.218 
/ 
 
RPTGRID 
--  
'DX'  
'DY'  
'DZ'  
'PERMX'  
'PERMY'  
 /  
 
DEBUG 
 0 0 1 0 1 0 1  / 
 
PROPS 
 
SWOF 
0.05 0.0000  1.0000 11.000  
0.15 0.0100  0.7000 8.5000 
0.22 0.0350  0.5500 7.0000 
0.30 0.0700  0.4000 4.0000 
0.40 0.1500  0.1250 3.0000 
0.50 0.2000  0.0649 2.7000 
0.60 0.3300  0.0048 2.0000 
0.80 0.6500  0.0030 1.0000 
0.90 0.8300  0.0001 0.7200 
1.00 1.0000  0.0    0.0000/     
/ 
 
 
PVTW 
  234  1.0  4.28e-5  0.5 /  
/ 
 
PVCDO 
  234     1.0      6.65e-5     6.4   192.e-5    /  
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RSCONSTT  
  0.00  43.8 /  
 
ROCK 
  234    1E-8 / 
 
PCW  
5000*73 /  
 
DENSITY  
 1000  1000  0.824 /   
 
RPTPROPS 
/ 
 
REGIONS     
 
FIPNUM 
 2000*1 3000*2/ 
 
SATNUM 
 2000*1 3000*2/ 
 
 
SOLUTION    
 
PRESSURE 
5000*234/ 
 
SWAT 
  2000*0.10  
  3000*0.12 
/ 
 
RPTSOL 
-- Initialisation Print Output 
--  
'PRES' 'SWAT' / 
 
SUMMARY     
 
EXCEL 
SEPARATE 
 
ROPT 
/ 
 
ROPR 
1 2/ 
 
SCHEDULE 
 
TUNING 
/ 
/ LITMIN DDPLIM DDSLIM 
24 1 50 3 24 16 0.0001 0.0001 / 
 
RPTSCHED                             
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 'PRES' 'SWAT' 'RESTART=1' 'CPU=2' / 
 
WELSPECS 
'I'  'G'   1    1  2100  'WAT'  / 
'P'  'G'   50   1  2100  'OIL'  / 
/ 
 
COMPDAT  
'I'  1*  1*   1  100 'OPEN'  1*    1*   1.0 /   
'P'  1*  1*   1  100 'OPEN'  1*    1*   1.0 / 
/ 
 
WCONPROD 
'P' 'OPEN' 'LRAT' 3* 15/ 
/ 
 
WCONINJE 
'I' 'WAT' 'OPEN' 'RATE' 15 / 
/ 
 
 
TSTEP 
 365 
/ 
 
TSTEP 
 365 
/ 
 
TSTEP 
 365 
/ 
 
TSTEP 
 365 
/ 
 
TSTEP 
 365 
/ 
 
END 
 

 
 

 


