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Summary

Following the climate challenges, large investments have been done in re-
newable energy sources like wind and solar power. Every indication points
to that this trend will continue as the cost of these technologies continue to
decrease and become competitive to conventional power production. These
intermittent sources introduce more uncertainty in the power system, as
they are highly dependent on the weather conditions. Power systems needs
to adapt to be reliable under these uncertain conditions by including more
flexibility.

This thesis focuses on the flexibility resource of fast ramping units. They
can be called upon to respond quickly to deviance in weather forecasts.
Flexiramp products and markets have been introduced in the US as a mean
to pay generating units that can provide this flexibility to the power system.
This payment also acts as an incentive to invest more in flexible units.

The aim of this thesis is to investigate and evaluate different approaches
of including flexiramp in the Unit Commitment formulations used for elec-
tricity market clearing. This is done through implementation of existing
formulations and running case studies on a system of five generators.

The main contribution of the student is a new formulation of the Unit Com-
mitment formulation that includes flexiramp markets and requirements in a
stochastic approach.

Proposals of future work are included in the Conclusion. These are based
on experiences gained from working with the implementations of the mod-
els.

All implementations of the different models, done in Python/Pyomo, are
included and submitted along with the thesis.
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Sammendrag

Som følge av klimautfordringene har det de siste årene blitt gjort store in-
vesteringer i fornybare energikilder som sol- og vindkraft. Alle indikasjoner
tyder på at denne utviklingen kommer til å fortsette ettersom investeringskost-
nadene for disse teknologiene fortsetter å synke og bli konkurransedyktige
sammenlignet med konvensjonell kraftproduksjon. Disse skiftende og peri-
odiske energikildene introduserer mer usikkerhet i driften av kraftsystemet.
Dette fordi disse kildene avhenger i aller høyeste grad av været. Kraftsys-
temet må tilpasse seg for å kunne fortsette å være pålitelige under disse
usikre forholdene gjennom å inkludere mer fleksibilitet.

Denne masteroppgaven fokuserer på fleksibilitetsressursen som finnes i gen-
eratorer som kan endre produksjonsnivået hurtig. Disse generatorene kan
kalles på for å raskt respondere på avvik i værprognoser som påvirker kraft-
produksjonen. Flexiramp-produkter og markeder er blitt introdusert i USA
for å betale generatorer for å tilby denne fleksibiliteten. Dette gir også et
insentiv til videre investering i raske produksjonsenheter.

Målet for denne oppgaven er å undersøke og evaluere forskjellige måter
man kan inkludere flexiramp i Unit Commitment-formuleringer som blir
brukt for å optimere kraftmarkedet. Dette blir gjort gjennom å imple-
mentere eksisterende formuleringer og simulere casestudier på et system
med fem generatorer.

Studentens hovedbidrag er en ny Unit Commitment-formulering som inklud-
erer flexiramp og har en stokastisk tilnærming til problemet.

Forslag til videre arbeid innen emnet foreslås i Konklusjonskapittelet. Disse
forslagene er basert på erfaringer gjort under arbeidet med de implementerte
modellene.

Alle implementasjonene, gjort i Python/Pyomo, av de forskjellige mod-
ellene er inkludert og innsendt sammen med denne oppgaven.
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Chapter 1
Introduction

1.1 Brief problem description
In the US, ramp products have been introduced in the market to give an
incentive to invest in fast ramping generating units. Midcontinent Indepen-
dent System Operator (MISO) calls this product Ramp Capability, while
California Independent System Operator (CAISO) refers to it as Flexiramp.
This thesis will use the latter term, consistent with CAISO, when refering
to ramping products. Up-flexiramp (down-flexiramp) can be defined as

[...] the designation of capacity in time interval t to meet higher
(lower) than expected net energy demands in subsequent inter-
vals, at which time that capacity can be optimally dispatched
to meet those energy demands [41].

Flexiramp product differs from conventional reserve products like spinning
and operational reserves mainly in two ways. First, such conventional re-
serves are usually designated to be used in the occurrence of a predeter-
mined worst case scenario such as an outage of a line or a power plant. By
this difference, flexiramp will be called upon to produce energy much more
often than conventional reserve capacity. Secondly, flexiramp products is
reserved and paid for in one time interval before it may be called for. This
is to avoid the occurrence of an opportunity cost by holding back low cost
capacity in one interval to provide ramp capability for later intervals.
MISO reports many benefits of a flexiramp product, both in market opera-
tion and system reliability [29]. Among other things, they list

1



Chapter 1. Introduction

• High cost resources needs to be used less,

• Reduced need for system operators to take actions that differs from
the optimal market solution, providing increased consistency of mar-
ket results,

• Transparent pricing and incentives for the supply of flexiramp,

as benefits to market operation. For the system reliability, these are some
of the listed benefits:

• Enhanced incentives to invest in resources that provide ramping flex-
ibility,

• Avoided and/or reduced cost of reserve shortages,

• Reduced need for operator intervention in routine real-time market
operations, freeing time to focus on other issues.

Energy markets in Europe lack these flexiramp markets. The market op-
erator in the Nordics, Nord Pool, consider ramping constraints on HVDC
cables in their day-ahead energy market clearing [36] but not ramping of
individual generators. Entso-E’s Market Committee has put together a ded-
icated group on working with Renewable Energy Sources (RES) and Mar-
ket design. They are currently working on getting more insight into future
technical difficulties to be faced, such as ramping. Entso-E is the European
Network of Transmission System Operators, and consists of TSO’s from 36
countries accross Europe. They aim to further liberalize electricity and gas
markets, and improve cooperation between member countries to improve
system reliability.

1.2 Motivation
In 2015, 195 of the countries in the world agreed to reduce the global emis-
sions in the Paris agreement. In the first half of December 2018, United
Nations held a climate conference in Poland called COP 24. Representa-
tives from about 200 countries attended, and discussed how the objectives
from the Paris Agreement should be achieved through concrete regulations
[2]. In other words the climate change problems are still a big concern.

2



1.2 Motivation

These problems demands a change in how different sectors operates, so
that green house gas emissions are reduced.

The electricity generation sector is still a large contributor to these emis-
sions. Coal and gas are used extensively to cover the electricity demand as
illustrated in Fig. 1.1.

Figure 1.1: Share of global electricity generation by fuel (percentage) from 1985-
2017 [1]

A positive trend to note from the graph is the increase in renewable
sources. In this case, the two major contributors to the increased renewable
penetration are wind and solar power. This trend is believed to continue,
as the cost of these technologies have been decreasing rapidly for years.
The International Renewable Energy Agency claims in their online article
”Renewable Power Generation Costs in 2017” that the cost of renewable
generation is becoming more and more competitive with regards to con-
ventional production [6].
Solar and wind electricity production are intermittent resources. A large
share of unpredictable energy production result in challenges for the power
system operator both in planning and operation. It is worth to mention that
an increase in distributed energy resources such as grid connected photo-
voltaics (PV) and prosumers is observed [3]. A high penetration of dis-
tributed generation involves new technical problems, like voltage rising in

3



Chapter 1. Introduction

the distribution grid.

On a larger scale, i.e. a large wind power plant, the intermittent nature
of the wind resource rise challenges in the operation because of the uncer-
tainty. One of the major concerns of the power system operator is to retain
the system frequency at nominal value. To ensure this, electric generation
must meet the load at all times. So what happens if the output of the wind
power plant is much less than scheduled? The needed electricity must be
generated by other means. Hence, flexibility in the power system is needed.
There are many different types of flexibility that can be utilized, but bottom
line is that either generation, load or both must be regulated so that the total
load and generation is equal.
Taking a look at the wind power plant example, other generating units must
be ready to start producing if the wind can’t deliver as promised. One can
also look at the other way around; if the wind power plant is able to produce
much more than scheduled, more expensive units should ramp down their
production so that the total cost of system operation is reduced. This de-
viation from scheduled output can happen because the scheduling is based
on forecasts, which may not be accurate. This is due to the, to some extent,
random behaviour of the weather. This is were flexiramp comes in handy,
as a mean to optimally decide what generators to ramp up or down.

1.3 Research question

This thesis will look at different ways to model a flexiramp product in
conventional Unit Commitment approaches, used to schedule and dispatch
electrical power systems. The standard approach has been a deterministic
model, but recent studies [41] have showed that stochastic modeling yields
greater benefits. These studies are reproduced. Also a new formulation
will be introduced. This new formulation will incorporate the stochastic
approach while at the same time include flexiramp market clearing. This
is done to maintain the transparent pricing of flexiramp products as well as
the benefits gained from stochastic modeling.

4



1.4 Scope

1.4 Scope

The scope of this thesis is limited to shedding a light on how flexiramp
products are currently being handled in Unit Commitment formulations,
investigating the mechanisms in existing proposed models for flexiramp
and evaluating the results. This is done through an implementation of the
formulations presented in Chapter 3, in Python. In this thesis, a new for-
mulation will also be proposed, and the performance of it’s implementation
will be assessed and compared to the two other existing models. The results
evaluated will be generator outputs, flexiramp products, social welfare for
the system and generator costs.

1.5 Limitations

The simulations of the implementations of the formulations are based on
a very limited set of generators and only a few time steps. The results
are therefore limited to only 1 hour of system operation, split into four 15
minute intervals. The formulations themselves are limited to only consider
generator behaviour and limitations as constraints. Grid constraints and
possible contingencies are not included. There are also no regular reserve
capacity included.

1.6 Process

The process of working on this thesis has went to quite drastic changes
along the way. Starting off, the first few months were spent on research-
ing flexiramp, learning GAMS and begin implementing a model in that
framework. GAMS is a programming language specialized for solving op-
timization problems. Challenges were encountered when building up the
models in GAMS, and with limited resources to aid with help, a choice was
taken of switching to programming in Python. The next months were then
spent learning Python, building up the models in Python, develop cases for
studying and gaining and analyzing results. The switching of programming
language were a time consuming process, limiting the time available to ex-
tend the models and analyze more results.

5



Chapter 1. Introduction

1.7 Structure of Thesis
This thesis is structured in 6 chapters. This first chapter have served as an
introduction to the topic, as well as explaining the scope and limitations of
the work done in the following chapters.
Chapter 2 takes on and presents the relevant background theory that builds
the foundation on which the problem formulations given in Chapter 3 are
built upon. It also includes a literature survey to put this work in a scientific
context.
The mentioned Chapter 3 introduces three different Unit Commitment mod-
els. One deterministic, one stochastic and one stochastic model with flexi-
ramp included. Here is also included an explanation of how these models
have been implemented for testing.
The next chapter, called Case-Study, describes the test system and the six
different cases used to examine the performance of the three problem for-
mulations.
Chapter 5 presents the outcome and results of the case studies carried out.
Results will be provided along with a discussion for easier readability.
The last chapter aims to conclude the results and discussion from the pre-
vious chapter, and also discuss further work to be done.

6



Chapter 2
Background

This chapter will introduce the reader to the theory that is a preliminary to
the models presented in later chapters. Previous scientific work in the field
will also be presented as a literature survey.

2.1 Theory

Much of the theory presented in this section is taken from unpublished ma-
terial produced in a project aiming to prepare for this thesis.

The European power markets are cleared as an optimization problem[15].
Therefore, this theory section aims to introduce the reader to optimization
and optimization in power systems. Optimization is a branch in mathe-
matics that deals with goal function to be minimized or maximized under
certain constraints through designated algorithms.

2.1.1 Optimization

When deciding which generating units in a power system that should be
producing at a point in time, there is one thing that is prominent: The sup-
ply must always match the total demand, and this should be done with the
lowest possible total cost. To ensure this, optimization tools needs to be
utilized. The theory presented in this section is based on Appendix B in
[30].

7



Chapter 2. Background

The general mathematical formulation of an optimization problem is:

Minimize
x

f(x)

subject to h(x) = 0,

g(x) ≤ 0.

(2.1)

In Equation set (2.1) the function f(x) is called the goal function, which
in this case is to be minimized. Usually it is either a cost function to be min-
imized or a function describing the profit to be maximized. Functions h(x)
and g(x) describes the constraints. They are an equality and an inequal-
ity constraint, respectively. All the constraints in an optimization problem
together define a feasibility region. This is illustrated in Figure 2.1. The
variable x is called the decision variable. This is the variable that is con-
trollable, and the whole point of optimization is finding the x that grants
the best result.

8



2.1 Theory

Figure 2.1: The feasibility region of a optimization problem. Taken from [4].

A decision x is called feasible if all the constraints are satisfied. The
decision is optimal if the goal function is at it’s maximum/minimum, de-
pending on the wanted outcome. Appendix C.1. shows an example of a
linear model, the famous Farmer’s Problem, with thorough explanations.
An implementation of the model is attached as a digital file to this thesis.

9



Chapter 2. Background

Dual Values

Every constraint in a linear program has a associated dual value. The dual
is defined mathematically as,

min{πT b|πTA ≥ cT , π unrestricted}. (2.2)

Where variables π are the dual variables, c defines the goal function and
A&b defines a constraint. The dual value reflects how much the goal func-
tion value will change per unit increase of the right hand side of the con-
straint. The dual value is also referred to as the shadow price. This is
because the value reflects how much you should be willing to pay for one
additional unit of the resource associated with the constraint. By this logic,
the dual prices for un-binded constraints are zero, because you still have
available unused units of that perticular resource. Dual values are non-zero
when the constraint is binding, i.e. the problem is limited by the scarcity of
that resource.

Lagrange Method

If functions f(x), g(x) and h(x) from Equation set (2.1) are all linear, the
problem is called a linear programming problem. This is the simplest in-
stance of an optimization problem and many commercial solvers are avail-
able to solve very large problems. The most famous solving method is
probably the Simplex Method. Replacing f(x), g(x) and h(x) in the gen-
eral formulation with linear functions, the linear programming formulation
is obtained:

Minimize
x

cTx

subject to AEx = bE,

AIx ≥ bI.

(2.3)

The matrices and vectors seen in Equation set (2.3) represents the fol-
lowing:

• c is the cost coefficient of the decision variable x

• AE and bE defines the equality constraints. The dimensions of these
must match.

10
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• AI and bI defines the inequality constraints. The dimensions of these
must match.

If the functions in the general formulation from Equation set (2.1) are
not linear, different approaches and algorithms can be used to find the op-
timal solution. A common approach is defining the Lagrangian function as
follows:

L(x, λ, µ) = f(x) + λTh(x) + µTg(x). (2.4)

To find the optimal solution of the problem the Karush-Kuhn-Tucher
(KKT) Conditions are both necessary and sufficient under certain assump-
tions. The KKT Conditions are formulated:

∇xf(x) + λT∇xh(x) + µT∇xg(x) = 0, (2.5a)

h(x) = 0, (2.5b)

g(x) ≤ 0, (2.5c)

µ ≥ 0, (2.5d)

µTg(x) = 0, (2.5e)

Considering Equation set (2.1), the mentioned assumptions for the KKT
Conditions are:

• f(x) and g(x) must be continuously differentiable and convex

• h(x) must be affine, i.e. they can be expressed as a linear combination
of the components of x and some constant.

• The constraint classifications must hold

The assumptions will not be discussed in detail here. However, they are
assure that the problem is feasible and that the optimal solution are possible
to attain through convergence. This way they make up the basis for how
many solvers find the optimal solution of a non-linear problem.
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Chapter 2. Background

2.1.2 Unit Commitment
General formulation

The type of optimization of interest in this thesis is the Unit Commitment
(UC) problem for a power system. The main goal of UC is to make sure
all electric demand is supplied at all times with the lowest possible total
cost. It is designed usually to represent operations of a centrally dispatched
power system. The objective function of such a problem is dependent on the
portfolio of generation available. A general UC formulation for a system
might look like this:

Minimize
x

cTx

subject to
∑

x−D = 0,
(2.6)

Where

• x is the vector containing all the outputs from each power plant in
MW,

• cT is the vector describing the cost of production in $/MW,

• D is the Net Load, which represent the total demand, plus losses in
the system with renewable production subtracted.

This is a very simple formulation with only one constraint. The constraint
ensures that the sum of all electric power generation equals the total demand
minus the non-dispatchable renewable power produced. It is formulated
this way because we have no control over output from renewable produc-
tion or the actual demand. These uncertain parameters must be modelled
properly to ensure a good result. The output of the generators, however, are
controllable. Therefore, the vector x is a control variable. It is also impor-
tant to point out that UC can be utilized both in planning and operation of
a power system.

Expansion of the general UC

The simple formulation in Equation set (2.6) can be improved by adding a
better cost description and more constraints. The adjustments of the general
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2.1 Theory

formulation proposed further in this sub-section are based on the lectures of
Jordan Kern from the University of North Carolina[24]. The main costs of
generation are the start-up cost, the fixed costs of keeping the plant online
and the variable costs that generally increase as a function of the amount
of production. To deal with these costs, a new set of decision variables and
parameters are proposed.

Table 2.1: Variables introduced to expand the general UC formulation. Variables
in italic text are decision variables.

Variable Type Unit Description
START Binary - Describes the turning on of a

plant
ON Binary - Plant online/offline
GEN Continuous [MW] Amount of output from generator
a Parameter [$] Start-up cost
b Parameter [$/h] Fixed cost of generation
c Parameter [$/MWh] Variable cost of generation
MAX Parameter [MW] Maximum output of generator
MIN Parameter [MW] Minimum output of generator
Ramp rate Parameter [MW] Maximum hourly rate of change

in power production
R Parameter [MW] Amount of reserves provided by

generator

With the variables and parameters from Table 2.1 an improved goal
function can be introduced. This will take into account the different costs
occurring in each hour. For a portfolio of generators, i, in several hours, t,
the function to minimize becomes,

min
START,ON,GEN

T∑
t=1

I∑
i=1

STARTi,t · ai +ONi,t · bi +GENi,t · ci (2.7)

Equation (2.7) is a goal function that helps decide the outputs in each hour
that ensures the lowest total cost for the whole planning period. When
talking about variable cost of generation, this is usually mainly fuel costs.
Labor and maintenance are so small in comparison that these costs can be
neglected[11].

13
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Controlling On/Off-status of units

To control the binary decision variables STARTi,t and ONi,t some smart
constraints must be introduced in the UC formulation.

GENi,t ≤MAXi ·ONi,t ∀i, t (2.8)

STARTi,t ≥ −ONi,t−1 +ONi,t ∀i, t (2.9)

Equation (2.8) ensures that whenever a generator is producing, i.e. GEN >
0, it’s characterized as turned on, i.e. ON = 1. This way, the costs associ-
ated with having the plant online are ’activated’ in the goal function (2.7).
The variableMAXi characterizes the physical limit of operation of genera-
tor i, as implied in Table 2.1. So this constraint also ensures that generation
doesn’t exceed the maximum generation of the unit. The second constraint,
shown in Equation (2.9), makes sure the start-up costs are activated in the
hour in which the generator goes from offline to online. How this constraint
works can be explained with help from Table 2.2.

Table 2.2: All possible solutions of right hand side of Equation (2.9)

ONt = 1 ONt = 0
ONt−1 = 1 0 -1
ONt−1 = 0 1 0

From this it is seen that there is only one case where STARTt is forced
to take the value 1. This happens only when the generator was offline in the
previous hour and is now turned online. It can be argued that the inequality
in Equation (2.9) doesn’t hinder the STARTt-variable in being set to 1 for
the other the possible combinations. However, this is not problematic as
the lowest total cost occurs when STARTt = 0. This way, STARTt needs
to be forced to 1, and if not, it will always be 0.
Likewise, a shut-down cost can be modeled and included in the same way
as the start-up cost. This can be seen in [7]. However, there is a com-
mon approach to neglect the shut-down cost associated with operating a
generating unit, in the UC formulation. Within the CAISO system, market
participants must submit The Generator Resource Data Template in order
to add or change specific operating parameters to be included in the Master
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File [12]. There is no shut-down cost included in this template. Hence in
operation of this market, shut-down costs are neglected.

Operating limits

A generating unit usually have a lower operating limit, as well as a max-
imum one. This lower limit is the minimum generation the generator can
deliver while preserving the synchronization with the power grid.

GENi,t ≥MINi ·ONi,t ∀i, t (2.10)

Equation (2.10) force GENi,t to be greater than or equal to the mini-
mum output, if ONi,t = 1.

An important characteristic of a generating unit is the ramp rate. This
can be defined as the maximum hourly rate of change in power production.
This characteristic is crucial to model correctly in order to obtain a realistic
dispatch of generators. If the ramp rate is not specified explicitly, it will be
infinite by default when solving the optimization problem. Different energy
resources and power plants have a large variance in ramp rates.

GENi,t −GENi,t−1 ≤ RampRatei (2.11)

GENi,t−1 −GENi,t ≤ RampRatei (2.12)

Equations (2.11) and (2.12) ensures that generator j cannot change
it’s output power between time step t an t − 1 faster than the specified
RampRatej . The ramp rate is a physical limitation on the generator, so
the value will be dependent on the size of the time step considered in the
specific model. The ramp rate needs to be modified so that the value used
in the modeling corresponds to the actual ramping the generator is able to
do in one interval.

It is important that the constraints are formulated in such a way that the
model mimics realistic generator behaviour.
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2.1.3 Stochastic programming

From a deterministic model to a more realistic one

The models presented so far in this chapter are deterministic. In the farmer’s
problem, refer to Appendix C.1, the crop yield is known to the farmer be-
forehand, and the net load in the UC formulation is also considered to be
a known value. However, the reality is more complex. The unpredictable
weather will in reality influence both the farmer’s crop yield and also the net
load of the power system. Wind and solar illumination will directly affect
the production of renewable power, and will also affect the temperatures
which in turn affects our power consumption. In order to make an opti-
mal decision regarding an unpredictable future, the models must account
for this uncertainty. This leads to more complex models and hence more
computational power are needed to find the optimal solution. One way to
take into account the uncertainty in a optimization model is to introduce
Stochastic Programming. This approach takes into account all the differ-
ent realizations of an uncertain parameter in the system, and the respective
probabilities of the realizations. In Appendix C.2., a modified version of
the Farmer’s Problem is found. To better understand how stochastic mod-
els can be made based on different scenarios, it is a recommended read.

2.1.4 Different ways to handle uncertainty in optimiza-
tion

The model of the Stochastic Farmer’s Problem presented in Appendix C.2
is just one of many different approaches to handle uncertain parameters
in optimization problems. This sub-section will present the most common
approaches and discuss the pros and cons.

Stochastic Programming

Let’s go back to the basics of optimization. Considering Equation set (2.3),
let us say that AI , bI and cT are all dependent on of a stochastic variable
λ and it’s realization λω. As a decision maker, you must decide x be-
fore the actual realization of λω. Stochastic programming provides a tool
to help decide x so that feasibility is kept for almost all plausible realiza-
tions of the random vector. The solution algorithm for solving this linear
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stochastic program includes descretization of λ if it is continuous. Random
vector λ is then modeled as a set Ω of plausible outcomes or scenarios ω,
where each ω ∈ Ω has an associated probability of occurence πω such that∑

ω∈Ω πω = 1. [30] These ω’s and π’s are found through a probability
density function (pdf). This pdf has to be chosen appropriately so that it
describes the phenomenon in question accurately enough.

Figure 2.2: An example Probability Density Function. Taken from [5].

Figure 2.2 shows how the probability of x being between a and b can
be calculated from the area under the graph. Hence,

P (a < x < b) =

∫ b

a

pdf(x)dx (2.13)

describes the probability of x being realized as a value between a and
b. This is as mentioned used to make scenarios to put into the optimization
problem. In theory, it is possible to make numerous scenarios to cover all
possible outcomes. However, this would require a lot of computation time,
so instead it is possible to make a set of scenarios to describe the most likely
outcomes.
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Robust Optimization

Another way of dealing with the uncertainty in optimization problems is us-
ing Robust Optimization. Where Stochastic Programming utilizes a proba-
bility density function and scenarios to cover the most plausible realizations
of the random variable, Robust Optimization uses uncertainty sets instead.
These uncertainty sets are used to characterize the possible outcomes of the
random variables. The key to Robust Optimization is to ensure feasibility
for all realizations described in the uncertainty set. This way, the solution
is only optimal for the worst case. Hence, it is a conservative approach.

Figure 2.3: Figure showing conceptual Robust Optimization. Taken from [8].

Figure 2.3 can be used to explain conceptually how the feasibility re-
gion and optimal solution are affected by the Robust approach. Consider
an optimization problem with two inequality constraints. These are depen-
dent on realization of a random vector. Our uncertainty set contains the two
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plausible outcomes of the random vector. Then let’s say constraint one is
described by the blue and the yellow line in Figure 2.3, depending on the
two outcomes. The green and the red line describes the other constraint.
Looking at the different feasibility regions the different combinations of
lines make up, it can be seen that the size vary. Realization of green and
yellow line results in the largest area, while realization of red and blue lines
results in the smallest area. The idea is then to make sure the output de-
cision variables are feasible for all possible realizations described in the
uncertainty set. Hence, the decision will be the optimal of the smallest, and
inner most, feasible region.
An important part of Robust optimization is choosing the right definitions
of the uncertainty sets. If they are chosen badly, the result from the op-
timization may become too conservative or too risky. Hence, a solution
which grants a much lower profit than expected or even a non-feasible one.

Summing up

Historically, Stochastic Programming has been used the most when deal-
ing with uncertain parameters. There are mainly two weaknesses with this
approach:

• It is very difficult to correctly develop scenarios, through distribu-
tion functions, to describe the uncertainty of bids from rival market
participants.

• Generally, the number of scenarios needed to describe every plausible
outcome is very large. This makes the optimization problems big and
difficult to manage and solve.

With large-scale problems, the computation time needed to find a solution
increase a lot. This is problematic. The big advantage with Robust Op-
timization is that it leads to smaller problems to solve and hence, shorter
computation times. The most obvious drawback of the Robust approach is
the conservative final solution. It is only optimal if the worst possible real-
ization of the uncertain parameters occurs. This means that at most times,
the system optimized will run at less than optimal, which means a lower
profit.
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To minimize the drawbacks of Stochastic Programming and Robust Op-
timization it is possible to do a Hybrid of the two. There are different ways
of combining the two, and it can be done in the way that is most fitting
for the actual problem to be solved. In an article published July, 2018
in Frontiers, the authors propose a hybrid model of a unit commitment
formulation[19]. Their formulation aims to preserve the reliability from
Robust Optimization and the cost-efficiency of Stochastic programming.

2.1.5 Markov Decision Process

When using stochastic programming to model the uncertain reality, there
are many different approaches that can be taken when considering how to
construct the scenarios. A basis of a probability density function has been
mentioned. In this thesis however, one approach is particularly interesting
as it works well with the Unit Commitment problem. The approach in ques-
tion is called a Markov decision process [10, 9, 22]. In this process, one aim
to find optimal decisions at discrete points in time. The model considers the
state of the system in time-step t, then how random parameters influences
the next state in the next time-step t + 1. An important characteristic of a
Markovian structure is that actions and outcomes are only dependent on the
current state. This fits well with the time-stepwise decision making in UC.
Another key aspect of this approach is defining an expedient action space
and state space. As the typical way of solving such a model is through
backward recursion resulting in an optimal solution for each state at each
stage, a large state space will result in large computation times.
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Figure 2.4: A Markov process

To elaborate the nature of a Markov process, Fig. 2.4 will be used as
a basis for an explanation. The three circles in the figure are called nodes.
They represent the state of the system. In this case, the system describes the
weather for a given day. It can be either sunny, rainy or cloudy. The arrows
between nodes are called edges. The edges describes how the weather can
change from one day to the next, given the current state (weather). The
numbers on each edge describes the probability of that edge. For example,
according to this model there is a 50% chance that there will be sunny
tomorrow if it is sunny today. It is important that all edges going out from
a node must sum up to 1, i.e. it must be 100% certain that we end up in one
of the three possible states in the next day.
The Markov Property is emphasized in [16]. This property is a formal
requirement for any Markov Chain. The Markov Property is that the future
only depends on the immediate past. For this simple weather-example, it
means that the weather tomorrow only depends on the weather today. This
holds as the weather yesterday does not influence the probability of the
weather tomorrow in any way.
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2.2 Literature survey

A thorough literature review on the topics unit commitment and flexibility
has been carried out in the preliminary work for this thesis. In order to
discover research gaps, a taxonomy table is provided in Table. 2.3. The
different research papers have been classified by five criteria.

• Flexibilty Sources (FS)

• Uncertainty Modelling Method (UMM)

• Type of Uncertainty (TU)

• Type of Formulation (TF)

– Linear or non-linear

• Horizon (H)

– Operation or planning
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Table 2.3: Taxonomy table. List of abbreviations is provided in the first pages of
this report.

FS UMM TU TF H
[28] Thermal

generators
Stochastic
(Normal)

Wind Power MILP Planning

[35] Flexiramp Bernstein/
Hermite

Load MILP Planning

[41] Flexiramp/
DR

Stochastic
(Markov)

Load/ Re-
new.

Stochastic
MINLP

Operation

[27] PEVs Stochastic
(Markov)

PEV use MILP Operation

[25] Flexible
loads(aggr.)

Stochastic
(Markov)

Load MILP Operation

[26] Generators
and ES

- Net
Load

MILP Operation

[34] - - Load CTUC Planning
[23] Pumped

Hydro
Robust Wind Power MILP Planning

Gaps Flexiramp Robust Wind
Power

CTUC Planning

Ramping products and flexibility resources are topics of great interest
in the scientific community. It is highlighted in [32] how ramp products
are cheaper and more reliable than other available means of providing flex-
ibility to a power system. Studies have been carried out to discuss mar-
ket design [31], implementation ([39],[40],[42]) and analyzing the impact
[43] on ramping products. These implemented models are based on robust
approach, simulation-based optimization, stochastic and deterministic ap-
proaches. Most of them are of the MILP type. With investments in solar
and wind power still on a high level, the continued work in this field is
highly interesting.

Table. 2.3 shows that the most common approach to deal with un-
certainty in the research papers investigated are Stochastic programming.
With this as background, the aim of the work in this thesis have been to im-
plement the proposed models in [41], as well as expanding the stochastic
model presented there to include a flexiramp product.
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Chapter 3
Problem Formulation

This chapter will present three different models. Each model has a different
approach as to how the system is optimally dispatched with regards to flexi-
bility and reliability. The first two models, the Deterministic Model and the
Stochastic Model, are presented by Benjamin F. Hobbs and Beibei Wang
in [41]. The paper is published in IEEE Transactions On Power Systems
and are considered a well renowned source. The last model, the Stochastic
Model with Flexiramp, is an extension of the Deterministic Model. This
thesis aims to highlight the differences between the models, and compare
their performance through a case-study presented in the next chapter.

3.1 Deterministic Model

3.1.1 Formulation
The mathematical formulation of the deterministic model is shown in Ap-
pendix B.2. As the California Independent System Operator (CAISO) op-
erates their system on a combined real-time unit commitment, dispatch and
settlement using 15-minutes intervals [13], which is deterministic, it is in-
teresting to see how a deterministic model copes with the extra complexity
of a flexiramp market. This model has some simplifications compared to
the current standard of CAISO, i.e. dispatch adjustments every 5 minutes
are not considered in this model. It is also assumed that the unit commit-
ment decisions are made in one time-step prior to actual dispatch. The
initial commitment status of long-start units are assumed to be known and
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pre-determined. These are considered boundary conditions for the model.

The goal function (6.1a) shows that the system aims to maximize the
social surplus. This is done by maximizing the area below the demand
curve, minus the total generation cost. This area is shown in Fig. 3.1. It
is important to note that the equation includes a decision variable squared,
d2
t , which makes the problem non-linear. This complicates the problem and

limits the possible solvers. The whole sum is multiplied by 0.25 because
the cost parameters are given at a per-hour basis, while the time steps are
of 15 minutes.

Figure 3.1: The social welfare (total surplus) is the sum of the consumer surplus
and producer surplus [44]
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The first three constraints, (6.1b), (6.1c) & (6.1d), are market clearing
constraints. They assure that enough power is produced to match the net
load in each time step, as well as enough up- and down-flexiramp to meet
the predetermined requirement.

A common variable for all three formulations is the variable determining
the feasible generation, git, putting a cap on how much a generator can dis-
patch at maximum next time period. The variable acts as an auxiliary deci-
sion variable for the actual generation git. Constraints limits git based on the
commitment status of the generator. For instance (vit = 0 and vi(t+1) = 1),
meaning that the machine is being turned on, or (vit = vi(t+1) = 1), mean-
ing the generator are turned on in subsequent intervals. The commitment
status in the previous interval is important as the ramp limit might be lower
than the minimum output capacity. In this case the ramp limit must be
relaxed. In constraint (6.1i) this is taken care of by restricting git to fit
the appropriate situation. When a machine is starting up, (6.1i) becomes
git ≤ gi(t−1) + SURRi, and when it was turned on in the previous interval
it becomes git ≤ gi(t−1) +RRi.

The further constraints in the problem formulation are made to assure
that the generator behaves like it would in real life. For example, a generat-
ing unit should not be able to generate more than the production capacity.
In fact, the sum of generation and up-flexiramp cannot exceed this limit.
This is ensured in (6.1g). Without this type of constraint a unit would pos-
sibly be able to operate at it’s maximum while still getting paid for upward
flexiramp services for the next interval, even though it can’t ramp up any
further. The other constraints also consider physical limitations of each unit
like ramp rate, start-up- and shut-down ramp rates, and start-up costs. It is
worth noting that the Non-Negativity constraints does not apply to the up-
and down-flexiramp. These are allowed to obtain a negative value. This
will be discussed further in Chapter 5.

3.1.2 Implementation
In this subsection, the methodology of implementing the formulation is de-
scribed. This deterministic formulation was implemented in Python with
the use of the otimization framework Pyomo. The script, called ”determin-
istic.py”, with the impelemtation is attached as a digital file to this thesis.
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Input data, including information about the generators, net load, flexi-
ramp requirement and initial values for generation and commitment status
were put into the model through excel-files, with the use of Pandas (Ap-
pendix A.4). From there, the input data are stored in Python-Dictionaries.
The next lines of code constructs a concrete Pyomo model, and sets, pa-
rameters and variables are defined. The input data is used to initialize these
elements of the model. The Non-Negativity constraints are handled when
the variables are defined as within ”pyo.NonNegativeReals”, which makes
the variable a real, positive number. Further, the goal function is defined
along with all the constraints. At the end of the script, the model is solved
and output saved to a new excel-file.

Implementation in Pyomo required splitting all constraints on the form

lowerLimit ≤ variable ≤ upperLimit

into two separate constraints. This complicated the implemented model
somewhat compared to the mathematical formulation.

The output of the model is the commitment status, the generation, and
provided flexiramp of each unit for every time interval. Also prices for
energy and flexiramp products are found as the dual values of constraints
(6.1b), (6.1c) & (6.1d). As this problem formulation is a Mixed-Integer
type, the dual values are not given straight forward from the solver. To find
the market prices, λt, µu

t & µd
t , the whole problem has to first be solved

once, giving the on/off status, vit, for all units in all time intervals. Then
this solution can be used as input for re-solving the model, only now the
commitment status is modelled as fixed parameters. Hence, the problem
are then solved as a Non-linear program with no binary variables. This is
done in the attached script ”deterministic duals.py”

3.2 Stochastic Model

3.2.1 Formulation
The mathematical formulation of the Stochastic Model is given in Ap-
pendix B.3. It differs from the deterministic model in quite a few ways.
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The most prominent difference is the lack of a flexiramp product and mar-
ket clearing. The model is meant to serve as a benchmark for comparison
with the deterministic model. This is because CAISO operates with a deter-
ministic model, but stochastic approaches are considered more accurate and
efficient. Hence, the deterministic model with the intruduction of flexiramp
must be compared to what is considered the best modeling. All equations
of this formulation now includes variables with the subscript s. This de-
notes the scenario. Scenario construction and structure will be elaborated
at the end of this subsection.

Equations

The goal function has been adjusted to handle the different scenarios by
summing over all scenarios as well as all time steps. The parameter PRts,
which describes the probability of each scenario in each time step is also
included. This way, the resulting objective function value becomes an ex-
pected value of social welfare. Another difference is that DFt has been
swapped with Dts, as we are now looking at the realization of net load in
different scenarios rather than the forecasted net load.

As mentioned, this formulation has only got one market clearing con-
straint, equation (6.2b). This constraint ensures that net load is met by
production at all times, in all realizations of net load. The dual value gives
the energy price in each situation and each time step. The further con-
straints are the same as for the deterministic model, except all constraints
concerning up- and down-flexiramp are removed. New Non-Anticipativity
Constraints are added, (6.2i)-(6.2m). These constraints sees to it so that
decisions are made based on the information known at that point in time,
as this is very important in all stochastic models [37]. Specifically, two net
load scenarios s and s′ with the same history of net loads must have the
same decisions up to that point in time. As before, a start-up cost is in-
flicted (6.2h) when the commitment status of a machine changes from 0 to
1 from one time to the next.
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Scenario Tree

Figure 3.2: Scenario tree describing the 3 possible outcomes in each node and
their probability.

Fig. 3.2 shows the Markovian stucture of the scenarios. In time t = 1
there is only one node, this is the boundary condition or the starting point.
Then there are three different scenarios that can occur in t = 2, and three
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more for each of these nodes in t = 3 and so on. The scenarios describe
how the net load might change in the future. A more thorough description
of the three different outcomes in each node are given in Chapter 4. The
Markov Property can be explained by looking at one of the nodes in t = 3.
In that given state, all three possible outcomes in the next time step t = 4 is
dependent only on the system state in that given node. Going further back
in time does not give any more information as to how the state will change
in t = 4. The way we got to that exact state in t = 3 does not matter as it
does not change the probability of the three outcomes in the next time step.
Just like the weather example in Chapter 2, it does not matter if it was rainy
yesterday, and what the net load was in time t = 2 is equally irrelevant to
the current system state.
The four time steps given here are for the purpose of testing the model
for these four time steps. The probability tree could go on further, but
the downside to that is the rapidly expanding number of scenarios which
complicates the solving process. With this current approach, it would be
possible to solve on a so called rolling horizon. Where you always look four
time-steps ahead, but use the current realized system state as the boundary
condition and solve again for the next four time steps.

3.2.2 Implementation

The attached file ”stochastic hobbs.py” shows the actual implementation
of this Stochastic Model. This sub-section will explain it’s components and
how it works.

Input data

Just as in the Deterministic Model, input data is fed into the model through
an excel-file. The excel-file now contains a scenario description of the pos-
sible net load scenarios and their respective probabilities, as well as the
generator data and initial system state. The net load of the different scenar-
ios and their probabilities are pre-calculated in the excel-file, according to
the Case Study description in the next chapter. So no manipulation of the
numbers are needed later in the Python-script.
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Pyomo model

The approach in building the model in the Pyomo enviroment are pretty
much the same as for the previous model. However, a few changes are
made. Now there is a set with scenarios that are defined and used to iter-
ate all the constraints. This set includes both the four time steps and the
scenarios connected to each time step. Also, a new parameter is included,
called s′. This parameter is included to do the job of the Non-Anticipativity
Constraints, by keeping track of what scenario happened in the previous
time step.

Output

With such a system of scenarios and generators, the number of output vari-
ables are becoming very large. One output variable per node per generator.
This is a lot of data to handle and analyze, so the implementation focus on
the scenarios that equals the net load used in the deterministic model to get
a common ground of variables to look into. The overall expected social
surplus, as well as the actual social surplus for the scenarios in question
are calculated. Finding the dual value of the energy market clearing con-
straint, i.e. the energy price, becomes slightly more complicated for this
model as vits are 3-dimentional (unit, time and scenario). It is dealt with in
”stochastic hobbs duals.py” by running the whole model once, then storing
the output data of all 200 optimal vits and use it as input in the model as a
fixed parameter before solving again. Same as for the previous model, this
is done to get rid of the binary variables that makes extracting dual values
impossible.

3.3 Stochastic Model with Flexiramp

3.3.1 Formulation
This model is as previously mentioned an extension of the Deterministic
Model presented at the beginning of this chapter. It’s mathematical formu-
lation can be found in Appendix B.4. The background for this formulation
is to make some kind of a hybrid between the stochastic and deterministic
formulations. The constraints concerning the flexiramp products are kept,
unlike in the Stochastic Model. This was done so that the flexiramp markets
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could be examined in a stochastic process.

The formulation is a hybrid of the two other formulations in the follow-
ing way: The constraints are from the Deterministic Model, while the sce-
narios are the same as for the Stochastic Model. This way, the constraints
had to be adapted to hold for the different scenarios described previously.
The most prominent change that has been done to the constraints is intro-
ducing the indices s and s′. The s describes the different scenarios, while s′

keeps track of what scenario and decisions were taken in the previous time
step. One of the things to keep in mind when working with a stochastic
model is that the future is uncertain. One can not take any decision based
on knowledge of the future, unlike in a deterministic model. Hence, the
constraints including the index (t+ 1) had to be shifted so that the decision
making is done based on previous and current states of the system. This
was done by simply shifting the whole constraint by t = −1, so that index
t becomes (t − 1) and (t + 1) becomes t. The variables from the previous
time step, subscript (t − 1) utilize the index s′ to keep track of the state of
the system at that time. This makes the Markovian Property hold for this
formulation as well. An example showing this is Eq. (6.3l).

The output of this model is decision variables for every generating unit,
in all four time steps and for every scenario. The goal function, still maxi-
mizing social welfare, is weighted by the parameter PRts, which describes
the probability of the occurrence of scenario s in time t. This means that
the value of the goal function will be the expected value for the system,
same as for the Stochastic Model. The actual social welfare will depend on
the realization of the uncertainties. A direct comparison between the De-
terministic Model and the Stochastic Model with Flexiramp can be done by
comparing the deterministic solution to the scenario that corresponds to the
”deterministic scenario”. The main difference between these to processes
are at what time information is acquired. The Deterministic Model will
expectantly preform better as it will utilize information ”from the future”.
The stochastic model will behave more conservative, as it holds little infor-
mation of what the future will bring. It is expected that the faster and more
expensive units must be online more often, in case of the occurrence of a
scenario that demands a large ramping.
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3.3.2 Implementation
The implementation of this model is found in the attached file ”stochas-
tic.py”. It is implemented in the same manner as the two previous models,
in the Pyomo environment in Python.
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Chapter 4
Case-study

In this chapter the cases to study is presented. The cases are the same as in
Wang, Hobbs (2016) [41], for comparison of their results with the results
from the implementation of their models made in this thesis, as well as the
new proposed Stochastic Model with Flexiramp. All these models includ-
ing scenario trees are described in the previous chapter.

4.1 Generator data

Table. 4.1 describes the five generators used for the case-studies. The gen-
erator data includes capacities, ramp rates and different costs. Generator 1
is a cheap base load unit that provides 300 MW of power, with no flexibility.
Generators 2-4 are increasingly costly to operate and has an increasingly
larger start-up cost. These three generators have slightly different operat-
ing limits, but have the same ramp rate. Generator 4 has a larger start-up
and shut-down ramp rate than Generator 2 and 3, but at the same time it is
the most expensive unit to start up.
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Table 4.1: Data for generators in case study. [41] Units are as given in the Nomen-
clature in Appendix B.1.

Gen i Cap RR OC Cap SURR SDRR HC NLC
G1 300 0 0 300 0 0 0 0
G2 150 40 20 50 60 60 300 300
G3 200 40 40 50 60 60 600 300
G4 150 40 60 50 100 100 900 300
G5 100 100 200 10 60 60 0 0

4.2 Rising and descending net load

The two different base cases to investigate is a case with an increase in the
net load and one with a decrease in the net load. In the rising net load
case, we consider an increase of DNLt = 40MW from interval t to t+ 1,
starting at net load DF0 = 500MW . For the case with decreasing net
load, the starting point is DF0 = 700MW , and the net load decrease (or
increase when considering the negative sign) with DNLt = 40MW . For
the stochastic models, DNLt will represent the expected change in net load
between intervals. Four intervals of 15 minutes are considered in all cases.

Table 4.2 Gives the starting point for the two different base cases. This
includes the initial commitment status of the generators as well as the power
output. This can also be considered the boundary condition of the models.
These are required in order to get the models to converge to a optimal solu-
tion.

Table 4.2: Initial data for the case studies. [41]

Initial gi0 [MW] Initial vi0 Initial vi1
Rising net Descending Rising net Descend- Rising Descending

load net load load ing net l. net load net load
G1 300 300 1 1 1 1
G2 100 150 1 1 1 1
G3 100 130 1 1 1 1
G4 0 120 0 1 0 1
G5 0 0 0 0 0 0
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4.2 Rising and descending net load

It is obviously important that these initial values are feasible and within
the limits of the generator operation. For example, if a unit is producing
the commitment status must be set to 1, i.e. the unit must be turned on.
The generator output must also be between the maximum and minimum
capacity.

4.2.1 Flexiramp requirement
Within the two base cases, there are three different cases of flexiramp re-
quirement. The basis flexiramp requirement is

FRupt−1 = DNLt + ERRt/2

and
FRdnt−1 = −(DNLt − ERRt/2).

For all cases the range of error in net load change forecast,ERR = 100MW .
This means that for the rising net load case, up-flexiramp requirement will
be 90 MW while down-flexiramp requirement will be 10 MW. For the de-
scending net load case, up-flexiramp requirement is 10 MW and down-
flexiramp requirement is 90 MW.

The two other flexiramp cases to consider are a 20 % increase and a
20% decrease of the base requirement. These flexiramp-cases will not in-
fluence the result of running the Stochastic Model, as this model does not
include a flexiramp product.

To sum up, there are six cases to analyse:

• Case 1: Rising net load with base flexiramp requirement.

• Case 2: Rising net load with 20% less flexiramp requirement.

• Case 3: Rising net load with 20% more flexiramp requirement.

• Case 4: Descending net load with base flexiramp requirement.

• Case 5: Descending net load with 20% less flexiramp requirement.

• Case 6: Descending net load with 20% more flexiramp requirement.
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4.3 Scenario tree for Stochastic Models
The scenario tree shown in Fig. 3.2 previously is a general representation
of how the models are built on a Markov chain basis. For the case-study de-
scribed on the previous pages, the Stochastic Model and Stochastic Model
with Flexiramp will have three specific possible realizations of the fore-
casted net load, DFt+1. These three possible realizations are described
below.

1. Underforecast: The net load are realized as higher than expected
from the forecast, DFt+1 = DFt + DNLt + ERRt/2. This out-
come has a probability of 25%.

2. Correct forecast: The net load are realized as expected from the fore-
cast, DFt+1 = DFt +DNLt. This occurs with a probability of 50%.

3. Overforecast: The net load are realized as lower than expected from
the forecast, DFt+1 = DFt + DNLt − ERRt/2. This outcome has
a probability of 25%.

These possible outcomes applies to every node in the probability tree. Note
that the Overforecast and Underforecast scenarios corresponds to the ba-
sis flexiramp requirement. Hence, it is seen that the flexiramp product is
designed to cope with the possibility of an error in the forecast.
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Chapter 5
Results & Discussion

Out of the wast amount of results the case-study produced, some results will
be presented in this chapter while the rest will be made available through
attached files. The results chosen will be used to validate the models, high-
light market operation differences and change in social welfare. This chap-
ter has four sections, one for each Unit Commitment model plus one sec-
tion summing up. In the first section, the results Deterministic model will
be presented along with a discussion of how the constraints influence the
optimal solution. The next section will compare the deterministic model
results with the output of the Stochastic model. Then, the results from the
modified Stochastic Model with Flexiramp will be presented and discussed.
Finally, the economic aspects of the different models will be compared in
the last section.
Most emphasis will be laid on Case 1 & 4 from Chapter 4. Also Case 3 will
be discussed to observe how a change in flexiramp requirement influence
the optimal solution. To follow the discussion along easier, it should be
kept in mind that generators 1 through 5 are increasingly more expensive
to operate.

5.1 Deterministic Model

Solving the optimization problem with five generators for four time steps
gives a lot of results to analyze. The main decision variables considered
are the power output, git, up- and down-flexiramp, urit and drit, and on/off
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status, vit. These variables were at the first stage of the analysis used to
validate the model and the optimal solution, to see to that the generator
behave as it should within it’s operating limits, etc. Dual values for the three
market clearing constraints are the other variables central to the analysis.

5.1.1 Case 1: Rising net load

Model Behaviour

To validate the results in terms of basic generator operation limits, the gen-
erator outputs are compared to operating limits of the generators (refer to
Table 4.1) and on/off status of the generators.

Table 5.1: Case 1: Optimal commitment of generating units (vit). Deterministic
model.

t=1 t=2 t=3 t=4
G1 1 1 1 1
G2 1 1 1 1
G3 1 1 1 1
G4 0 1 1 1
G5 0 0 0 0
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5.1 Deterministic Model

Figure 5.1: Case 1: Generator output (git) in all time steps. Deterministic model.

Comparing the generator outputs in Fig. 5.1 with the commitment sta-
tus shown in Tab. 5.1 it is quickly seen that generators that are turned off
does not have any output. Remember that Case 1 considers a rising net
load, starting at 500 MW, then increasing with 40 MW each time step. It
is seen that generator 4 is turned on between t = 1 and t = 2, and starts
producing power to meet this increased demand.

The generator outputs are well within the physical limits and capacities
as well. Generator 1 operates at a constant 300 MW output, while genera-
tors 2-4 operates above the minimum output of 50 MW at all times, when
turned on. These generating units also operates below their maximum ca-
pacities. The ramp rates are also not violated, as the maximum change in
output from t to t+ 1 is observed as 40 MW for generator 3 between t = 2
and t = 3.

The aggregated output of the generators sums up to the net load in all time
steps. As it should according to the Energy Market Clearing constraint
(6.1b).
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Table 5.2: Case 1: Up- and Down-Flexiramp provided by each unit. Deterministic
model.

Up-Flexiramp urit [MW]
t=1 t=2 t=3

G1 0 0 0
G2 -40 10 10
G3 40 40 40
G4 100 40 40
G5 0 0 0

Down-Flexiramp drit [MW]
t=1 t=2 t=3

G1 0 0 0
G2 40 40 40
G3 20 -30 10
G4 -50 0 -40
G5 0 0 0

Table 5.2 shows some interesting incidents, for example the occurrence
of negative values. These will be discussed shortly, but first the basics.
Generator 1 has only one operating point, which is at 300 MW. This gen-
erator can therefore not provide any ramping, neither up or down. Looking
at generator 2 in time step t = 2 and t = 3, it operates at 140 MW output,
which is close to it’s upper limit of operation at 150 MW. Hence, it is seen
that it can only provide 10 MW of up-flexiramp in these periods, because it
can’t provide more than the maximum capacity.

Considering generator 4 in the first time step t = 1. The generator is turned
off, but provides flexiramp products because it can, and will, be turned on
in the next time step. It provides 100 MW in up-flexiramp and -50 MW of
down-flexiramp. The first value is because of the start-up ramp rate, while
the latter value comes as a result of that when the unit is committed, it has
to at least produce 50 MW. This effect is governed by (6.1l) and (6.1o). By
inserting v4,1 = 0 and v4,2 = 1 the effects are highlighted. First for the
up-flexiramp:

−40·1−100·[0− 1]−150·(1− 0) ≤ ur4,1 ≤ 40·0+100·[1− 0]+150·[1− 1]

−90 ≤ ur4,1 ≤ 100
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Together with (6.1n) that further limits ur4,1 downwards:

50 ≤ ur4,1 ≤ 150

In sum, the up-flexiramp must be between 50 MW and 100 MW for gener-
ator 4 in t = 1, the table shows that it provides the maximum of 100 MW.
As for the down-flexiramp, inserting the same values for the commitment
status and generator data in (6.1o) gives:

−1 · 150 ≤ dr4,1 ≤ 0 · 150− 1 · 50

−150 ≤ dr4,1 ≤ −50

which clearly governs the down-flexiramp provided to be maximally -50
MW.
Similar observations can be done for the other flexiramp products provided.

Market Impact

In Table 5.3 below, the market prices for energy and flexiramp products
can be seen for each time step. These are found, as described in Chapter 3,
as the dual values to constraints (6.1b), (6.1c) & (6.1d).

Table 5.3: Case 1: Dual values & social welfare for the deterministic model.

t=1 t=2 t=3 t=4
Energy Price, λt [$/MW] 5 8.05 11.02 10

Up-Flexiramp, µu
t [$/MW] 0 3.05 6.02

Down-Flexiramp, µd
t [$/MW] 5 0 0

Social welfare $15,798,612.50

The increase in energy price can be seen intuitively as Fig. 5.1 shows
that the more expensive units, generator 3 & 4, gradually increase their out-
put. More expensive production leads to higher prices. The small drop in
energy price from t = 3 to t = 4 can be explained by the lack of any flexi-
ramp requirement in the last time step, t = 4. This grants the generators
”more freedom” to operate at a more optimal point, which reduce the stress
on the Energy market clearing constraint. This trend can be seen for all
results across all models and cases. The energy price in t = 4 are always
lesser than or equal to the price in t = 3.
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Let’s consider time step by time step when analyzing the flexiramp prices.
In t = 1, the up-flexiramp price is 0. This is because generator 4 is turning
on and can provide all needed up-flexiramp alone, all the while generator 2
& 3 are able to provide more if needed. As there is no cost associated with
providing flexiramp in it self, only scarcity will trigger price incentives.
Taking a closer look at the down-flexiramp in this first time step reveals
why there is a price of 5 $/MW for downward flexiramp. As discussed in
the previous section concerning model behaviour, generator 4 is forced to
provide -50 MW of down-flexiramp. As the requirement is 10 MW, gen-
erator 2 & 3 must together provide 60 MW to compensate for generator 4.
Remember that generator 1 can’t provide ramping. It is seen from Table
5.2 that generator 2 provides 40 MW of down-flexiramp, which is equal to
the maximum ramp rate of the generator. Generator 3 is operating at 70
MW in t = 1, which means it can only ramp down with 20 MW in the
next interval, as the minimum output of the unit is 50 MW. Hence, if the
flexiramp requirement increased a little more, a new optimal solution must
be found to stay within operating and flexiramp limits. This new solution
would have a lesser social surplus due to the more constrained problem.

For the next time steps, t = 2 and t = 3, the output of the generators
increases which moves the operating point of the units away from the min-
imum output limitation. With the small down-flexiramp requirement and
practically no limitations in providing it, the price goes down to 0. The
opposite is true for the up-flexiramp product. The requirement is 90 MW
for all time steps, and generators 3 & 4 provides their maximum ramp rates
of 40 MW each in order to meet the requirement. Generator 2 however are
already operating at 140 MW, which is only 10 MW under it’s maximum
capacity of 150 MW. Hence, it can only provide 10 MW of up-flexiramp.
Since all units are at it’s limit with regards to providing up-flexiramp, the
price is larger than 0 by the same argument of scarcity as before.
On another note, we can observe how the flexiramp requirement limits the
optimal solution in this case. A pure economical dispatch to maximize so-
cial welfare would mean utilizing the cheapest generators to it’s maximum.
Generator 2 is the cheapest, but is forced to operate 10 MW under it’s max-
imum capacity in order for the system to meet the flexiramp requirements.
This is emphasized by observing how generator 2 ramps up to it’s maxi-
mum of 150 MW in t = 4 when there is no flexiramp requirement.
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5.1.2 Case 3: Increased flexiramp requirement

Generator dispatch and flexiramp

In Case 3 there were an increase in flexiramp requirement of 20%, up to
108 MW up-flexiramp and 12 MW of down-flexiramp. The basis was, as
before, a rising net load starting from 500 MW. Fig. 5.2 below shows how
the generator output had to change from case 1 in order to meet the new
flexiramp requirement.

Figure 5.2: Case 3: Generator output (git) in all time steps. Deterministic model.

Following the same line of arguments as in the previous section on Case
1, the generator output seems to follow the same governing mechanisms
as before. The cheapest generator, number 2, must now ramp down it’s
production in order to meet the up-flexiramp requirement by shifting further
away from it’s maximum operating point. This can be seen from Table 5.4
as well, where generator 2 provides 28 MW in both t = 2 and t = 3.
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Table 5.4: Case 3: Up- and Down-Flexiramp provided by each unit, deterministic
model.

Up-Flexiramp urit [MW]
t=1 t=2 t=3

G1 0 0 0
G2 -16 28 28
G3 40 40 40
G4 100 40 40
G5 0 0 0

Down-Flexiramp drit [MW]
t=1 t=2 t=3

G1 0 0 0
G2 40 12 12
G3 22 0 0
G4 -50 0 0
G5 0 0 0

The table above shows many similarities to the results from Case 1
(Table 5.2). The distribution of flexiramp provided among the units are
pretty much the same. The increase in flexiramp requirement is covered by
generator 2 alone, both for up and down. The results in case 3 are somewhat
less ”messy” as negative values for flexiramp occurs less often.

Market impact

As the optimization problem now is stricter constrained, the social welfare
is expected to decrease compared to Case 1. In fact, the decrease is only
$315, but keep in mind that this case study only considers 1 hour of opera-
tion. Extrapolating and assuming the same social welfare is lost every hour,
the total loss of welfare for a whole year will be $2.76 million.
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Table 5.5: Case 3: Dual values & social welfare for the deterministic model.

t=1 t=2 t=3 t=4
Energy Price, λt [$/MW] 10 10 10 10

Up-Flexiramp, µu
t [$/MW] 5 0 0

Down-Flexiramp, µd
t [$/MW] 0 0 0

Social welfare $15,798,297,50

Looking at Table 5.5, the prices differ in fact quite a lot from Case 1.
As discussed, the generators are now only really limited in their ability to
provide up-flexiramp in t = 1, when generator 2 hasn’t ramped down it’s
production yet. This is what triggers the price in this first time step, while
the price for up-flexiramp is 0 for the other times as generator 2 now can
provide more for ”free”.
Down-flexiramp is never a scarcity, hence, the price is always zero. It may
seem counter intuitive that even though the requirement for down-flexiramp
is increased, the scarcity is less. This is because when the requirement
changed, the whole optimization problem change, and as shown in Fig 5.2
the generator dispatch are all different than before. This affects the amount
of flexiramp the units are able to provide, which in turn affects the prices
more than the flexiramp requirement itself in this case.

5.1.3 Case 4: Descending net load

In Case 4, the net load was descending with 40 MW between intervals,
starting from 700 MW. In this case, the flexiramp requirement is oposite as
in Case 1. Down-flexiramp requirement is 90 MW and up-flexiramp is 10
MW.
As seen in Fig. 5.3, the generator dispatch is quite different than from
the rising net load cases. Naturally, the biggest difference is the initial
conditions and generally descending output, but also now generator 5 is
included in operation.
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Figure 5.3: Case 4: Generator output (git) in all time steps. Deterministic model.

Naturally, the most expensive generators start ramping down first in
order to minimize the fuel cost. Generator 4 is turned off immediately be-
tween t = 1 and t = 2, while generator 3 ramps down with 30 MW each
time step from there and out.

So why is generator 5 turned on, when it is actually the most expensive
generator to operate? Some simple calculations can be carried out to ex-
plain that phenomenon. Running generator 4 on it’s minimum output of
50 MW for all four time intervals would cost $3000. As generator 5 has
$0 start-up cost, running the dispatch shown in the above figure cost the
system $1500, ie half the fuel cost of generator 4.
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Table 5.6: Case 4: Up- and Down-Flexiramp provided by each unit, deterministic
model.

Up-Flexiramp urit [MW]
t=1 t=2 t=3

G1 0 0 0
G2 0 0 0
G3 -10 10 20
G4 -40 0 0
G5 60 0 -10

Down-Flexiramp drit [MW]
t=1 t=2 t=3

G1 0 0 0
G2 40 40 40
G3 40 40 40
G4 20 0 0
G5 -10 10 10

For this case, the flexiramp provided by each generator in each time
step are pretty intuitive at the first glimpse. In t = 1, generator 5 is turned
on and generator 4 is turned off. Hence, generator 5 will provide 60 MW,
equal to the start-up ramp rate of the unit, to compensate for the ramping
down of generator 4. At the same time, generator five provides -10 MW of
Down-flexiramp as it must ramp up to at least 10 MW in the next time step.
In fact, a weakness with the model needs to be pointed out here. As genera-
tor 4 is shut down from 50 MW to 0 MW between the two first time periods,
it should provide -50 MW as it cannot ramp down only 40 MW. Also for
the down-flexiramp generator 4 promises to ramp down 20 MW, when it in
reality ramps down 50 MW. In the other time steps, the flexiramp provided
does not violate any logic. It is suspected that there might be a fault in the
implementation where input data is handled. In the implementation, input
data from Table 4.2 are considered boundary conditions, ie git are allowed
to change in t = 1. This seems to make the model fail in defining the cor-
rect flexiramp bounds. Fixing the values in t = 1 removes this problem,
but also removes the energy price in t = 1 as a result. For this thesis, the
market impact is of interest so that is why the results shown are kept. The
flaw is not considered to not impact the system to a significant extent.
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Market impact

The market prices for flexiramp products shown in Table 5.7 shows that
the mentioned fault does not have any impact on generator revenues as the
price is 0.

Table 5.7: Case 4: Dual values & social welfare for the deterministic model.

t=1 t=2 t=3 t=4
Energy Price, λt [$/MW] 12.62 10 10 10

Up-Flexiramp, µu
t [$/MW] 0 0 0

Down-Flexiramp, µd
t [$/MW] 0 40 40

Social welfare $20,599,767.50

Not surprisingly, the up-flexiramp price is 0 at all times. This is be-
cause of the combination of a small requirement and that not all generators
are operating close to their maximum capacity. The most interesting to dis-
cuss about these results is the down-flexiramp price in t = 2 and t = 3 that
suddenly rockets. Generator 1 are as always not able to provide any flexi-
ramp, while generator 4 is turned off so it can only provide up-flexiramp.
Generator 2 and 3 provide its maximum down-flexiramp product equal to
their ramp rates. In t = 2 generator 5 can only provide 10 MW of down-
flexiramp, because it operates 10 MW over it’s minimum output. While in
t = 3 unit 3 can only provide the required 10 MW by shutting down. Hence,
in order to provide any more down-flexiramp the whole system must be re-
dispatched to keep the expensive generator 4 running at a even higher point
than its minimum. Again, the scarcity of flexiramp-products is what drives
the price up. The high price is because of the need to operate the expensive
generator 4 at a higher level than optimal in order to provide any more than
the required down-flexiramp.
The social welfare is a lot higher than the previous cases only because it is
more energy involved in the system because of the differing starting points.

5.2 Stochastic Model
The Stochastic Model does not include any flexiramp, neither products nor
requirement. Hence, only Case 1 and Case 4 are evaluated. The other
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cases does not give different results as the only difference there is the flexi-
ramp requirement. The results from this model includes optimal values
for all scenarios, but only the results for the ”mean” scenarios are shown,
i.e. where the forecast is correct. These results are though linked with the
under- and overforecast scenarios through the constrain formulation. These
specific results are chosen because they are the only ones directly compa-
rable to the deterministic model results.

5.2.1 Case 1: Rising net load

Figure 5.4: Case 1: Generator output (git) in all time steps. Stochastic model.

As mentioned above, Fig. 5.4 shows the generator dispatch for the sce-
nario with an increase in net load of 40 MW each time step, same as the
deterministic model. These results require only a short discussion. The
generators are prioritized in the order of cheapest to most expensive. The
two cheapest generators are dispatched at their maximum, while generator
3 takes care of the ramping up. The dispatch differs from the deterministic
model dispatch because it is not limited by any flexiramp requirement. This
way the generators are able to be dispatched in a more economic way, only
limited by the generator data. The overforecast scenario that can occur in
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every time step can be covered by simply turning on generator 4, so the
system is feasible.

Market comparison

By what is seen from the generator dispatch, the prices are expected to be
lower, as the cheapest generators are used at all times and no start-up costs
occur.

Table 5.8: Case 1: Energy price and social welfare comparison between stochastic
and deterministic model.

Stochastic [$] Determ. [$]
λ1 5 5
λ2 2.84 8.05
λ3 1.54 11.02
λ4 1.54 10

Social welfare 15,892,912.11 15,798,612.50

Table 5.8 shows the prices are as expected lower at all time steps except
the first one, where the prices are equal for the two models. These lower
prices lowers the generator income, but also increase the consumer surplus
as they get cheaper power. The energy prices for the deterministic model
are quite extreme because of the flexiramp requirement. The fact that gen-
erators are forced to be dispatched in a less economical way impacts the
energy market in a significant way in this case.

The social welfare shown for the stochastic model in the previous table is
the expected social welfare. This value considers all scenarios and weights
the resulting social welfare with the probability of its occurrence. The re-
sult of stochastic optimization yields a social welfare that is expected to
be $94,299.61 larger than the deterministic optimization. The actual so-
cial welfare for the excact scenario presented was $1,400 larger than the
deterministic result. One could think that the deterministic optimization
would yield a larger social surplus because of the benefit of being able to
get information of the future, but the flexiramp requirement limits more.
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5.2 Stochastic Model

5.2.2 Case 4: Descending net load

Same as for Case 1, results from the scenarios that follow the same net load
trend as the deterministic model are chosen for comparison.

Figure 5.5: Case 4: Generator output (git) in all time steps. Stochastic model.

The generation dispatch mechanisms are quite similar as to the previous
case. Generally, the most expensive units are prioritized to ramp down
first. However, the generator limitations complicates the dispatch a little.
Generator 4 can only ramp down to 50 MW from t = 1 to t = 2, because
that is the minimum operating capacity. The other 20 MW decrease in net
load are met by ramping down generator 3. Simply turning the expensive
generator 4 off in the first time step would not be possible. That would
ramp the production down with 70 MW, and the other generators are only
able to ramp up 20 MW to compensate. Thus, the production would be 10
MW lower than the net load in the next time step. From t = 2 to t = 3
both generator 3 and the cheaper generator 2 ramps down. The reason for
this ramping down of generator 2 is to be able to ramp it back up when
generator 4 is turned off in the last time step.
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Market comparison

Table 5.9: Case 4: Energy price and social welfare comparison between stochastic
and deterministic model.

Stochastic [$] Determ. [$]
λ1 15 12.62
λ2 5.95 10
λ3 1.25 10
λ4 1.25 10

Social welfare 20,693,044.14 20,599,287.50

Table 5.9 shows that the energy is generally cheaper than with the deter-
ministic model for this case also. The exception is in t = 1, where the
stochastic model gives a slightly higher price. This is due to the operation
of generator 4 at a slightly higher point compared to the deterministic so-
lution. The reasons behind the otherwise lower prices are the same as for
Case 1.

The expected social surplus is $93,756.64 higher than for the determin-
istic model in this case, while the actual social surplus for the presented
scenarios are only $350 dollar larger. The reasons for this increased social
welfare is the more relaxed problem now that flexiramp is not included.

5.3 Stochastic model with Flexiramp
Same as for the Stochastic Model, only results for the scenarios that cor-
responds to the results from the Deterministic Model are considered. This
model does include flexiramp, with the same requirement as the determin-
istic model, so comparison on flexiramp products and prices will be shown
in this section. Results from Case 1 will be presented here, while the other
results from Case 3 and 4 can be found in Appendix D. This decision were
made in order to make this section a less tedious read. The results are sim-
ilar to the results already presented, and the driving mechanisms behind
the results are explained earlier. A more executive look at the economical
impacts of the different model are instead shown and discussed in the last
section of this chapter.
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5.3 Stochastic model with Flexiramp

5.3.1 Case 1: Rising net load

Figure 5.6: Case 1: Generator output (git) in all time steps. Stochastic model with
Flexiramp.

Due to the flexiramp requirements, the generator dispatch seen in Fig. 5.6
is very similar to the dispatch seen in the deterministic dispatch from Fig.
5.1. Where the Stochastic Model was able to meet the increase in net load
solely by ramping up generator 3, this model needs generator 4 to help
provide the up-flexiramp required.
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Table 5.10: Case 1: Up- and Down-Flexiramp provided by each unit, stochastic
model with flexiramp.

Up-Flexiramp urit [MW]
t=1 t=2 t=3

G1 0 0 0
G2 -20 10 10
G3 30 40 40
G4 100 40 40
G5 0 0 0

Down-Flexiramp drit [MW]
t=1 t=2 t=3

G1 0 0 0
G2 40 10 10
G3 20 0 0
G4 -50 0 0
G5 0 0 0

The up-flexiramp provided by each machine, shown in Table 5.10, is
almost excactly the same as for the deterministic model (Table 5.2). Note
that the sum of up-flexiramp provided in t = 1 now is 110 MW, even
though the requirement is only 90 MW. This is however not problematic
as the flexiramp market clearing constraints requires the sum of flexiramp
provided to be greater than or equal to the requirement.
The down-flexiramp provided are less complex than for the deterministic
solution as there are no negative values after t = 1, where the start-up of
generator 4 occurs. This is a better solution to handle in a market sense,
because less generators are involved in the settlement.

Energy Market

As this model is a hybrid between the two other models, it is expected that
the prices and social welfare will be somewhere in between the results from
the two others.
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5.3 Stochastic model with Flexiramp

Table 5.11: Case 1: Energy price and social welfare comparison all models.

Stoch+Flex [$] Stochastic [$] Determ. [$]
λ1 5.6 5 5
λ2 2.5 2.84 8.05
λ3 2.1 1.54 11.02
λ4 1.25 1.54 10

Social welfare 15,891,914.82 15,892,912.11 15,798,612.50

The results from Table 5.11 are more or less as expected. The energy
prices for the stochastic model with flexiramp are however much closer to
the stochastic model than the deterministic one.

Flexiramp Markets

Table 5.12: Case 1: Up-Flexiramp price comparison between deterministic and
stochastic model with flexiramp.

t=1 t=2 t=3
Stoch+Flex [$] 0 0 0.8

Determ. [$] 0 3.05 6.02

Table 5.13: Case 1: Down-Flexiramp price comparison between deterministic and
stochastic model with flexiramp.

t=1 t=2 t=3
Stoch+Flex [$] 2.65 0 0

Determ. [$] 5 0 0

For both models, there is scarcity of flexiramp that drives the price up above
0. By observing the prices, the stochastic approach makes the system more
flexible in it self, so there are less scarcity of flexiramp resources. Both
Table 5.12 and 5.13 show this tendency.
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5.4 Economic comparison of the models
Some key points taken away from the comparison and analysis of the re-
sults in this chapter will be discussed in this section. Also a more general
overview of how generator dispatch and prices influence the market partic-
ipants will be shown.

Key take-aways

The introduction of flexiramp prices affects energy prices greatly. Some of
these issues have been adressed by CAISO when designing the market [14].
The deterministic model gives energy prices that are up to 7 times higher
than prices from the stochastic model. This affects all market participants.
This is because more expensive units are committed to provide the required
flexibility.

The results show occarrances of seemingly unnecessary negative flexiramp
values. Usually, the TSO pays for ancillary services needed for grid oper-
ation, so payment for flexiramp goes from the TSO to the generator. How-
ever, with negative values of flexiramp it seems like generators at some
times generators must pay the TSO for providing negative flexiramp.
Both these issues occur rarer with the stochastic model with flexiramp.

On the use of dual values as prices

During the process of analyzing the results of the different models in this
section, a weakness in the implementations have been discovered. The dual
values used as energy prices does not appear as they should. If we take a
closer look at the energy prices for the Stochastic Model in Case 1, seen in
Table 5.8, there is something that makes little sense. As the net load ramps
up, the energy price goes down. This is counter intuitive as more expensive
units have to ramp up their production to meet this increased load. This
should be reflected in increased prices. The dual values of the energy mar-
ket clearing constraint should reflect the cost of demanding 1 MW more
from the generators. In this case, this translates to 1 MW more produced
from generator 3, which would cost $15 for 15 minutes.
When calculating the generator revenue using the given dual prices, the
generators will run with a economic loss. This is not behaviour that should
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be seen in this case. Hence, the results are considered faulty.

This realization brings doubts to the correctness of the flexiramp prices.
The previous discussion in this chapter of the mechanisms of scarcity that
triggers the price signals still stands, but the actual prices are maybe not
correct.

One reason revealed from further investigation into the implementations
is the way the dual values are gained. By using the pre-solved commitment
status of the machines as a fixed parameter for re-solving the problem, gen-
erators not committed will not be reflected in the dual values. To further
elaborate, a generating unit defined to be turned off cannot provide any
flexiramp when re-solving. This factor is not evaluated when the dual val-
ues are calculated. This is considered an implementation weakness that
must be further investigated in future work.

Economic influence of the different models

As in [41], the stochastic model will be used as benchmark for economic
comparison. This is because stochastic optimization gives the best results.
Social welfare is compared, and for the stochastic models it is the expected
social surplus that is evaluated. The Stochastic Model is denoted as SUC,
the Deterministic Model as DT and the Stochastic Model with Flexiramp
as SFUC.

Table 5.14: Comparison of social welfare. Rising net load case

SUC DT (change) SFUC (change)
Social welfare [103$] 1589.3 -94.3 -1.0
Generator cost [103$] 8 +1.4 +1.45

The new Stochastic Model with flexiramp performs much better than
the deterministic model in terms of social welfare, as shown in Table 5.14.
With regards to generator costs, the two models performs approximately
equally bad compared to the benchmark. This is due to the use of more
expensive machines in order to provide the required flexiramp.
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Table 5.15: Comparison of social welfare. Descending net load case

SUC DT (change) SFUC (change)
Social welfare [103$] 2069.3 -93.8 -0.5
Generator cost [103$] 12.6 +0.175 +0.4

The descending net load case shows slightly better results for both mod-
els than for the rising net load case. Note that the generator costs are higher
for the SFUC than for the DT, even though the SFUC can show a much
larger social welfare. This is because the generator costs are calculated
from the actual generator dispatch in the scenarios in question. The social
surplus on the other hand, is for the SFUC calculated as an expected value
across all possible scenarios.
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Chapter 6
Conclusion

The increased penetration of intermittent renewable energy sources like
wind and solar power are a challenge to grid operation and system relia-
bility. Flexibility is a needed resource that is not properly valued in the
energy markets of Europe today. Among the many flexibility resources
available, like industrial batteries, demand response, etc, utilizing the flexi-
bility in fast ramping generators are per now the most convenient and cheap
resource. Flexiramp markets gives an incentive to invest in fast-ramping
generators, to help secure system reliability and optimal electricity market
operation.

This thesis has focused on investigating different approaches on modelling
flexiramp products in a Unit Commitment formulation. Validity of the
model results have been tested and economical differences in the different
approaches. The main findings include the fact that flexiramp requirements
trigger a loss in social welfare because more expensive generators must op-
erate in order to provide the required flexibility. This loss is triggered both
by higher generator cost and higher prices that reduce the consumer surplus.

Performance of the Stochastic Model with Flexiramp

The new formulation proposed in this thesis, refered to as a Stochastic
Model with Flexiramp, has proven to perform better than the Deterministic
Model, both in terms of a higher social welfare in all cases and also a more
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optimal flexiramp designation in terms of less generators involved. The
big advantage of the new formulation compared to the existing Stochastic
Model is the enabling of flexiramp markets. This retains the transparacy
in pricing and keeps the incentives for investments in supply of flexiramp,
like in the Deterministic Model. However, the Stochastic Model still gives
the largest social welfare for all cases as well as the lowest generator costs.
The introduction of flexiramp has shown to introduce a market inefficiency
in terms of a more constrained optimization problem. However, if com-
pared to the consequences of lacking flexibility, the inefficiency is small.
Constant lack of flexibility due to a lack of investment incentive would be
increasingly problematic for a grid operator as renewables make up a larger
part of power production.

The analysis of results pointed out a flaw in the implementation of the mod-
els. Dual values gained from solving the model with the available solver
seems to be wrong. This was not noticed at first, as the values seemed to
be in a plausible magnitude at first glance. An alternative way of retrieving
energy prices will be discussed in the next section on Future Work.

The formulations are presented in a general manner, with T time steps
and I generating units. However, the implementation is done on the basis
of the case studies. Looking at five units for four time steps. The limited
system and limited planning horizon are only able to show the concepts of
including flexiramp, but how it will perform on a realistic power system is
not investigated in this implementation.

On stochastic vs deterministic market optimization

Today’s standard is using deterministic Unit Commitment formulations based
on net load forecasts. Scenario based stochastic models can show to better
results than today’s standard. Especially when coping with a high degree
of uncertainty. This degree of uncertainty is expected to increase along
with the increased penetration of renewable energy sources. Changing to
a Stochastic model will increase the complexity of the model and require
more computational power than the current deterministic models.
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6.1 Future Work
There are many interesting research questions to investigate further in the
topic of flexiramp enabling in the Unit Commitment problem. Especially
how the implementation can be done in a European context. The formula-
tions presented in this thesis are limited to only include generator behavior.
Grid operation constraints are not included.

Adapting to European Markets

The European electricity markets operates with zonal prices. Generator
bids and consumer demand are aggregated within distinct zones. Transfer
capacity between the zones can sometimes be a bottleneck which trigger
different prices in each zone. In order to adapt the formulations to cope
with this, transfer capacities between zones must be included in the con-
straints.

Further, the generator bids into the day-ahead market are based on the
marginal cost of operation of the generating units, whereas these models
are based on the three costs start-up cost, no-load cost and operational cost.
A proposal for future work is to change the goal function from maximiz-
ing social welfare into minimizing total system cost, based on the marginal
cost of the generators. This could possibly solve the encountered problem
of gaining dual values that correctly reflects the energy pricing. With this
approach, energy price could be found by looking at the marginal cost of
the marginal unit, ie the most expensive units who’s bid get accepted in the
clearing of the market.

Incorporate ramping between time steps in models

The net load in the implementations shown in this thesis are modelled as
constant between the time steps of 15 minutes. For example in Case 1, the
net load is 500 MW in t = 1 for 15 minutes, then at an instant it jumps
up to 540 MW in t = 2. This does not accurately represent the reality of
how a real power system demand ramps up over time. Future work could
include modeling the net load as linear between time steps, and investigate
how the system responds to this change in terms of generator dispatch and
total cost.
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Improve implementation by shortening time steps

The formulations opens up for shorter time steps as it is based on a general t
for time step. The implementations can be modified to evaluate shorter time
steps of for example 5 minutes or 1 minute. Many interesting observations
could be done from such a study. Less flexiramp would be required per time
intervall. Would this limit the impact on the social welfare and generator
cost?
The formulations could also be adapted to continuous time problems by
utilizing Bernstein polynomials.

Expand the proposed formulation

This thesis has proposed a new formulation. This formulation has it’s limi-
tations and shortcomings when it comes to grid operation and system plan-
ning. A proposal for future work would be adding new constraints to both
the formulation and the implementation of the model. These constraints
could include transfer capacities between different bidding zones. If differ-
ent bidding zones are considered in the model to better fit with European
markets, it would also be interesting to investigate zonal flexiramp require-
ment compared to a system wide requirement.

Develop new case-studies

The case studies performed in this thesis are limited both in system size
and in time horizon. Future work could include working with the attached
implementations, adjusting them for a new proposal of case studies. These
new case studies should include more generators and more time steps to
simulate a more realistic system in order to observe the performance of the
models on such a system.
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A Applied Software

A.1 Python
Python [17] is a free-to-use and open-source programming language. It
is increasingly popular and has a large online community providing help
and guidance to users. Python includes a large standard library as well
as thousands of available third-party packages and modules to solve spe-
cific problems. This makes it a very handy environment for implementing
software solutions. This thesis utilizes some of these third-party packages
for implementing the optimization models. These packages are mentioned
below.

A.2 Pyomo
To develop both the deterministic and the stochastic model presented in
this thesis, the open-source software package Pyomo [20, 21] was used.
Pyomo is a Python-based optimization framework for formulating, solving
and analyzing optimization problems. Pyomo is capable of handling a vast
selection of different optimization problem types.

One of Pyomo’s strengths is that it is based on Python. This gives the user
access to the rich libraries that comes with such a high-level programming
language. Pyomo let’s the user choose between two different modelling
styles. The abstract modelling enables the user to define the model without
any input data, just mathematical symbols and formulation of the problem.
Then instances with specific input data can be constructed within the ab-
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stract model to be solved. The concrete modelling lets the user initialize
the model with input data directly.

Pyomo also provides the possibility to utilize many different available solvers,
both commercial and open-source. For the models presented in this thesis,
the concrete modelling approach were used, and Gurobi [18] was used as
solver.

A.3 Gurobi
To be able to solve the problem type referred to as Mixed-integer nonlinear
programming in the models, Gurobi was used. Gurobi is a robust and re-
liable solver, proven to be able to handle millions of decision variables as
well as being able to solve all major optimization problem types.

A.4 GLPK
The solver used for the Farmer’s Problem implementations in Pyomo was
GLPK [38]. Both the stochastic and the deterministic model used this
solver. GLPK is developed and published by the GNU Project. It is in-
tended for solving large-scale Linear Programs, Mixed-Integer Programs
and other related problems. For the work in this thesis, it was the Linear
Program solver that was used. The popularity of GLPK can be explained
by the fact that it is both open-source and free to use.

A.5 Pandas
Pandas [33] is a Python based data analysis tool. It is open-sourced and free
to use. Pandas provides high-performance and easy to use data stuctures.
For the work in this thesis, it was mainly used to extract data from excel-
files to Python scripts.
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B Problem Formulations

B.1 Nomenclature
This nomenclature is the same as in [41]. Indices and Set

i Index for generating unit, i = 1.I.
s Index for scenario, s = 1.S
s’ Index for previous scenario in Markov chain.
t Index for time interval, t = 1.T
S’(s,t) Set of scenarios that are indistinguishable from

scenario s for time intervals 1 to t.

Parameters

Capi Capacity, unit i [MW]
Capi Minimum output when committed, unit i [MW]
Dts Realized reference net load, scenario s in interval

t. This is net of variable renewable generation, but
does not include the effect of demand response.

DFt Forecast value of reference net load, interval t
[MW], for which the deterministic unit commitment
model schedules generation and demand response.

DNLt Forecast change in net load [MW] from interval t to
t + 1, equal to DFt+1 −DFt.

ERRt Net load forecast error range [MW] in interval t.
FRdnt Down-Flexiramp requirement, interval t

[MW/interval].

75



FRupt Up-Flexiramp requirement, interval t
[MW/interval].

HCi Start-up cost, unit i [$].
NLCi No-load cost, unit i [$].
OCi Variable operating cost, generating unit i [$/MWh].
PR0 Reference price for demand curve [$/MWh].
PRts Probability of occurrence of scenario s in interval t.
RRi Ramping limit, unit i [MW/interval].
Slope Slope of demand curve [($/MWh)/MW].
SDRRi Shut-Down ramp limit, unit i [MW/interval].
SURRi Start-Up ramp limit, unit i [MW/interval].

Decision Variables

cits Start-up cost, unit i in t,s.
dts Net load [MW], in t,s. This equals the reference

consumption of power (which excludes demand re-
sponse) minus the sum of variable renewable gener-
ation and load reductions from demand response.

drits Down-flexiramp [MW] provided by unit i in t,s.
gits Generation [MW] unit i, in t,s.
gits Maximum feasible generation, unit i, in t,s.
urits Up-flexiramp [MW] provided by unit i, in t,s.
vits Binary on/off variable, unit i, in t,s.
λts Energy price in t,s (dual) [$/MWh].
µu
t Up-flexiramp price in t (dual) [$/MWh].
µd
t Down-flexiramp price in t (dual) [$/MWh].

B.2 Deterministic Model

Max
T∑
t=1

0.25 ∗

[(
(PR0 − slope ∗DFt) ∗ dt + slope ∗ d2

t/2
)

−

(
I∑

i=1

OCi ∗ git +
I∑

i=1

NLCi ∗ vit +
I∑

i=1

cit

)] (6.1a)
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Subject to: Energy Market Clearing:

I∑
i=1

git − dt = 0 ∀t : λt (6.1b)

Up- and Down-Flexiramp Market Clearing:

I∑
i=1

urit ≥ FRupt t = 1, ..., T − 1 : µu
t (6.1c)

I∑
i=1

drit ≥ FRdnt t = 1, ..., T − 1 : µd
t (6.1d)

Generation Bounds, Accounting for Start-up/Shut-down:

Capi ∗ vit ≤ git ≤ git ∀t, i (6.1e)

Generation + Flexiramp Bounds, Accounting for Start-up/Shut-down:

Capi ∗
[
vi(t+1) + vit − 1

]
≤ −drit + git ≤ gi(t+1)

+ Capi ∗
[
1− vi(t+1)

]
∀t, i

(6.1f)

Capi ∗
[
vi(t+1) + vit − 1

]
≤ urit + git ≤ gi(t+1)

+ Capi ∗
[
1− vi(t+1)

]
∀t, i

(6.1g)

Definition of Maximum Feasible Generation:

git ≤ vit ∗ Capi ∀t, i (6.1h)

git ≤ gi(t−1) +RRi ∗ vi(t−1) + SURRi ∗
(
vit − vi(t−1)

)
+ Capi ∗ (1− vit) ∀t, i

(6.1i)

git ≤ SDRRi ∗
(
vit − vi(t+1)

)
+ Capi ∗ vi(t+1) ∀t, i (6.1j)

Ramp Limits on Forecast Generation:

gi(t−1) − git ≤ RRi ∗ vit+SDRRi ∗
(
vi(t−1) − vit

)
+ Capi ∗

(
1− vi(t−1)

)
∀t, i

(6.1k)
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Bounds on Flexiramp:

−RRi ∗ vi(t+1) − SDRRi ∗
[
vit − vi(t+1)

]
−Capi∗ (1− vit) ≤ urit

≤RRi ∗ vit + SURRi ∗
[
vi(t+1) − vit

]
+ Capi ∗

[
1− vi(t+1)

]
∀t, i

(6.1l)

−RRi ∗ vit − SURRi ∗
[
vi(t+1) − vit

]
−Capi∗

[
1− vi(t+1)

]
≤ drit

≤RRi ∗ vi(t+1) + SDRRi ∗
[
vit − vi(t+1)

]
+ Capi ∗ (1− vit) ∀t, i

(6.1m)

−vit ∗ Capi + vi(t+1) ∗ Capi
≤ urit ≤ vi(t+1) ∗ Capi ∀t, i

(6.1n)

−vi(t+1) ∗ Capi ≤ drit ≤ vit ∗ Capi
− vi(t+1) ∗ Capi ∀t, i

(6.1o)

Definition of Start-Up Cost:

cit ≥ HCi ∗
(
vit − vi(t−1)

)
∀t, i (6.1p)

Non-Negativity:

git, git, cit, dt ≥ 0, vit ∈ {0, 1}, ∀t, i (6.1q)

B.3 Stochastic Model

Max
T∑
t=1

S∑
s=1

PRts ∗ 0.25 ∗

[(
(PR0 − slope ∗Dts) ∗ dts + slope ∗ d2

ts/2
)

−

(
I∑

i=1

OCi ∗ gits +
I∑

i=1

NLCi ∗ vits +
I∑

i=1

cits

)]
(6.2a)

Subject to: Energy Market Clearing:

I∑
i=1

gits − dts = 0 ∀t, s : λts (6.2b)
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Generation Bounds, Accounting for Start-up/Shut-down:

Capi ∗ vits ≤ gits ≤ gits ∀i, t, s (6.2c)

Definition of Maximum Feasible Generation:

gits ≤ vits ∗ Capi ∀i, t, s (6.2d)

gits ≤ gi(t−1)s +RRi ∗ vi(t−1)s + SURRi ∗
(
vits − vi(t−1)s

)
+ Capi ∗ (1− vits) ∀i, s, t

(6.2e)

gits ≤ SDRRi ∗
(
vits − vi(t+1)s

)
+ Capi ∗ vi(t+1)s ∀i, s, t (6.2f)

Generation Ramp Limits:

gi(t−1)s − gits ≤ RRi ∗ vits+SDRRi ∗
(
vi(t−1)s − vits

)
+ Capi ∗

(
1− vi(t−1)s

)
∀i, s, t

(6.2g)

Definition of Start-Up Cost:

cits ≥ HCi ∗
(
vits − vi(t−1)s

)
∀i, s, t (6.2h)

Non-Anticipativity Constraints:

gits = gits′ ∀t, i, s, s′ ∈ S ′(s, t) (6.2i)

gits = gits′ ∀t, i, s, s′ ∈ S ′(s, t) (6.2j)

cits = cits′ ∀t, i, s, s′ ∈ S ′(s, t) (6.2k)

vits = vits′ ∀t, i, s, s′ ∈ S ′(s, t) (6.2l)

dits = dits′ ∀t, i, s, s′ ∈ S ′(s, t) (6.2m)

Non-Negativity:

gits, gits, cits, dts ≥ 0, vits ∈ {0, 1}, ∀i, t, s (6.2n)
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B.4 Stochastic Model with Flexiramp

Max
T∑
t=1

S∑
s=1

PRts ∗ 0.25 ∗

[(
(PR0 − slope ∗Dts) ∗ dts + slope ∗ d2

ts/2
)

−

(
I∑

i=1

OCi ∗ gits +
I∑

i=1

NLCi ∗ vits +
I∑

i=1

cits

)]
(6.3a)

Subject to: Energy Market Clearing:

I∑
i=1

gits − dts = 0 ∀t, s : λts (6.3b)

Up- and Down-Flexiramp Market Clearing:

I∑
i=1

urits ≥ FRupt ∀s, t = 1, ..., T − 1 : µu
ts (6.3c)

I∑
i=1

drits ≥ FRdnt ∀s, t = 1, ..., T − 1 : µd
ts (6.3d)

Generation Bounds, Accounting for Start-up/Shut-down:

Capi ∗ vits ≤ gits ≤ gits ∀i, t, s (6.3e)

Generation + Flexiramp Bounds, Accounting for Start-up/Shut-down:

Capi ∗
[
vits) + vi(t−1)s′ − 1

]
≤ −dri(t−1)s′ + gi(t−1)s′ ≤ gits

+ Capi ∗ [1− vits] ∀i, s, t = 2, ..., T
(6.3f)

Capi ∗
[
vits + vi(t−1)s′ − 1

]
≤ uri(t−1)s′ + gi(t−1)s′ ≤ gits

+ Capi ∗ [1− vits] ∀i, s, t = 2, ..., T
(6.3g)

Definition of Maximum Feasible Generation:

gits ≤ vits ∗ Capi ∀i, t, s (6.3h)

gits ≤ gi(t−1)s′ +RRi ∗ vi(t−1)s′ + SURRi ∗
(
vits − vi(t−1)s′

)
+ Capi ∗ (1− vits) ∀i, s, t = 2, ..., T

(6.3i)
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gi(t−1)s′ ≤ SDRRi ∗
(
vi(t−1)s′ − vits

)
+ Capi ∗ vits ∀i, s, t = 2, ..., T

(6.3j)
Ramp Limits on Forecast Generation:

gi(t−1)s′ − gits ≤ RRi ∗ vits+SDRRi ∗
(
vi(t−1)s′ − vits

)
+ Capi ∗

(
1− vi(t−1)s′

)
∀i, s, t = 2, ..., T

(6.3k)
Bounds on Flexiramp:

−RRi ∗ vits − SDRRi ∗
[
vi(t−1)s′ − vits

]
−Capi∗

(
1− vi(t−1)s′

)
≤ uri(t−1)s′

≤RRi ∗ vi(t−1)s′ + SURRi ∗
[
vits − vi(t−1)s′

]
+ Capi ∗ [1− vits] ∀i, s, t = 2, ..., T

(6.3l)

−RRi ∗ vi(t−1)s′ − SURRi ∗
[
vits − vi(t−1)s′

]
−Capi∗ [1− vits] ≤ dri(t−1)s′

≤RRi ∗ vits + SDRRi ∗
[
vi(t−1)s′ − vits

]
+ Capi ∗

(
1− vi(t−1)s′

)
∀i, s, t = 2, ..., T

(6.3m)

−vi(t−1)s′ ∗ Capi + vits ∗ Capi
≤ uri(t−1)s′ ≤ vits ∗ Capi ∀i, s, t = 2, ..., T

(6.3n)

−vits ∗ Capi ≤ dri(t−1)s′ ≤ vi(t−1)s′ ∗ Capi
− vits ∗ Capi ∀i, s, t = 2, ..., T

(6.3o)

Definition of Start-Up Cost:

cits ≥ HCi ∗
(
vits − vi(t−1)s′

)
∀i, s, t = 2, ..., T (6.3p)

Non-Negativity:

gits, gits, cits, dts ≥ 0, vits ∈ {0, 1}, ∀i, t, s (6.3q)
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C Optimization Models

C.1 Farmer’s Problem

As an introduction to optimization models, The Farmer’s Problem from
[10] will be used as an example. This example is a 2-stage deterministic
model. That it is deterministic means that all information is known to the
decision maker in advance, i.e. no uncertainty is involved at all. A 2-stage
problem is a problem with decisions that needs to be taken at two different
times, or stages. For this specific model a farmer needs first to decide what
grains to sow, then at a later stage needs to decide how much of the crops
to sell.

Consider a farmer who specializes in growing wheat, corn and sugar beets
on her 500 acres of fertile soil. The farmer also owns cattle, which need to
be fed both corn and wheat in order to grow. Nearby to her farm there is
a market available where her products can be bought and sold. She wants
to make a educated decision on how much land to devote to each plant in
order to maximize her profit.
From earlier years the farmer knows that the mean yield on her land is ap-
proximately 2.5 tons (T) of wheat, 3 T of corn and 20 T of sugar beets per
acre. Her cattle needs at least 200 T of wheat and 240 T of corn. In the
local market, wheat and corn can be sold for $170 and $150 per T respec-
tively. Purchase prices are however 40% higher due to transportation costs
and the wholesaler’s margins. Sugar Beets are a profitable crop, selling at
36 $/T. However, there is a quota on the production of Beets, so that any
ton of Beets over 6000 T can only be sold for 10$/T. These key numbers
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are summarized in Table. 6.2 below together with the planting cost:

Table 6.2: Data for farmer’s problem

Wheat Corn Sugar Beets
Yield(T/acre) 2.5 3 20
Planting cost ($/acre) 150 230 260
Selling price ($/T) 170 150 36 under 6000 T

10 above 6000 T
Purchase price ($/T) 238 210 -
Minimum
requirement (T)

200 240 -

Total available land: 500 acres

By introducing the following variables, the farmer can take a decision
on how to distribute her land area:

x1 = acres of land devoted to wheat,
x2 = acres of land devoted to corn,
x3 = acres of land devoted to sugar beets,
w1 = tons of wheat sold,
w2 = tons of corn sold,
w3 = tons of sugar beets sold at the favourable price,
w4 = tons of sugar beets sold at the lower price,
y1 = tons of wheat bought,
y2 = tons of corn bought.

The whole decision problem can now be formed as a Linear Program
(LP) as follows:

min 150x1 + 230x2 + 260x3 + 238y1 + 210y2

−170w1 − 150w2 − 36w3 − 10w4

subject to x1 + x2 + x3 ≤ 500,

2.5x1 + y1 − w1 ≥ 200,

3x2 + y2 − w2 ≥ 240,

w3 + w4 ≥ 20x3,

w3 ≤ 6000,

x1, x2, x3, y1, y2, w1, w2, w3, w4 ≥ 0.

(6.4)
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Note that the costs are added, while the incomes are subtracted. This is
in order to make this into a minimization problem, which is the most com-
mon way to solve a LP. Minimazing the negative profit is mathematically
equal to maximizing the profit. The constraints are mathematical formula-
tions of the above introductory problem text.
The set of equations in (6.4) can be solved with available LP solvers. At-
tached to this thesis is an implementation done in Pyomo, using the solver
glpk [38]. The file is called ”farmers problem.py”. The results of the solver
is shown in Table. 6.3.

Table 6.3: Optimal solution of farmer’s problem

Wheat Corn Sugar Beets
Surface (acres) 120 80 300
Yield (T) 300 240 6000
Sold (T) 100 - 6000
Bought (T) - - -
Overall profit: $118,600

The results let’s the farmer take the optimal decision of how much land
to devote to each plant in order to maximize her profit while being able to
meet the feeding requirement for her cattle. The solution makes intuitively
sense as well. As sugar beets grants the most $ per acre up to 6000 T, the
first 300 acres are designated to sugar beets. Then the next 80 acres are
designated solely to meet the minimum requirement of corn, as any extra
corn doesn’t give any profit when sold due to the low price. The last 120
acres are then dedicated to growing wheat. After feeding the cattle, the
farmer can sell 100 T of wheat and all 6000 T of sugar beets to gain the
overall profit.

C.2 Farmer’s Problem, a Stochastic approach
In the previous approach, the crop yield was as mentioned modelled as
known to the farmer even before she put the seeds in the dirt. More realis-
tically, the amount of rain and sun would have a large impact on how many
tons of product she gets per acre. The easiest way to expand the model in
Equation set (6.4) is to develop a scenario representation of the crop yield.
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A simple approach would be to define three different outcomes, or scenar-
ios, for the actual yield. A good, bad or average year would correspond
to ”above”, ”below” and ”average” crops. The ”average” year would be
the same as presented in Table. 6.2, while ”above” and ”below” will indi-
cate an increase or decrease of 20% for the crop yield. For simplicity, the
weather conditions are not considered to have an impact on the prices at the
wholesaler.
The farmer’s initial approach is to run the model from (6.4), but with changed
input data appropriate for the two new scenarios.

Table 6.4: Optimal solution of farmer’s problem with an above average yield
(+20%)

Wheat Corn Sugar Beets
Surface (acres) 183.33 66.67 250
Yield (T) 550 240 6000
Sold (T) 350 - 6000
Bought (T) - - -
Overall profit: $167,667

Table 6.5: Optimal solution of farmer’s problem with a below average yield (-
20%)

Wheat Corn Sugar Beets
Surface (acres) 100 25 375
Yield (T) 200 60 6000
Sold (T) - - 6000
Bought (T) - 180 -
Overall profit: $59,950

The optimal solutions for the good and bad year, shown in Table. 6.4
& 6.5 are not very surprising and are following the same strategy as for the
average year. However, this does not help the farmer much, as the range in
optimal surface area designation varies with over 100 acres for the different
scenarios. Remember that the decision of how many acres to sow with each
plant must be taken before the farmer knows what kind of year she will face.
The model must be updated to be able to find the optimal solution for any
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scenario. To do so, it would be preferable to consider two stages. In the first
stage, decision on land assignment (x1, x2, x3) is taken. Sales (w1, ..., w4)
and purchases (y1, y2) are decided in the next stage, i.e. after the actual
crop yield is observed. For simplicity, each of the three scenarios have a
probability of occurring of 1/3. The new mathematical formulation of the
stochastic model now becomes:

min 150x1 + 230x2 + 260x3

+
1

3
(+238y11 + 210y21 − 170w11 − 150w21 − 36w31 − 10w41)

+
1

3
(+238y12 + 210y22 − 170w12 − 150w22 − 36w32 − 10w42)

+
1

3
(+238y13 + 210y23 − 170w13 − 150w23 − 36w33 − 10w43)

subject to x1 + x2 + x3 ≤ 500,

3x1 + y11 − w11 ≥ 200,

3.6x2 + y21 − w21 ≥ 240,

w31 + w41 ≥ 24x3,

w31 ≤ 6000,

2.5x1 + y12 − w12 ≥ 200,

3x2 + y22 − w22 ≥ 240,

w32 + w42 ≥ 20x3,

w32 ≤ 6000,

2x1 + y13 − w13 ≥ 200,

2.4x2 + y23 − w23 ≥ 240,

w33 + w43 ≥ 16x3,

w33 ≤ 6000,

x, y, w ≥ 0.
(6.5)

This way to set up the stochastic program is called the extensive form
because all the different second-stage variables are described explicitly. A
proposed implementation of this model in Pyomo is shown in the attached
file ”farmers problem stochastic.py”. Solving gives the following results:
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Table 6.6: Optimal solution of farmer’s problem in the extensive form. Solution
gained from running the attached script ”farmers problem stochastic.py”

Wheat Corn Sugar Beets
First Area (acres) 170 80 250
stage
s=1 Yield (T) 510 288 6000
Above Sales (T) 310 48 6000

(favor. price)
Purchase (T) - - -

s=2 Yield (T) 425 240 5000
Average Sales (T) 225 - 5000

(favor. price)
Purchase (T) - - -

s=3 Yield (T) 340 192 4000
Below Sales (T) 140 - 4000

(favor. price)
Purchase (T) - 48 -

Overall profit: $108,390

Table. 6.6 shows a unique solution with regards to land assignment.
Solving the model in (6.4) with the three different inputs would not give
the optimal decision. Neither would the average of the three. This shows
that the farmer couldn’t have made the right decision without utilizing a
stochastic model like in Equation set (6.5).
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D Results from Stochastic model
with flexiramp

D.1 Case 3

Figure 6.1: Case 3: Generator output (git) in all time steps. Stochastic model with
flexiramp.
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Table 6.7: Case 3: Up- and Down-Flexiramp provided by each unit. Stochastic
model with flexiramp.

Up-Flexiramp urit [MW]
t=1 t=2 t=3

G1 0 0 0
G2 -16 28 28
G3 40 40 40
G4 100 40 40
G5 0 0 0

Down-Flexiramp drit [MW]
t=1 t=2 t=3

G1 0 0 0
G2 40 12 12
G3 22 0 0
G4 -50 0 0
G5 0 0 0

Table 6.8: Case 3: Dual values & social welfare for the stochastic model with
flexiramp

t=1 t=2 t=3 t=4
Energy Price, λt [$/MW] 5 2.5 2.19 1.25

Up-Flexiramp, µu
t [$/MW] 0 0 0.94

Down-Flexiramp, µd
t [$/MW] 2.34 0 0

Social welfare $15,891,906.40

90



D.2 Case 4

Figure 6.2: Case 4: Generator output (git) in all time steps. Stochastic model with
flexiramp.
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Table 6.9: Case 4: Up- and Down-Flexiramp provided by each unit. Stochastic
model with flexiramp.

Up-Flexiramp urit [MW]
t=1 t=2 t=3

G1 0 0 0
G2 0 10 -30
G3 -40 40 40
G4 30 0 0
G5 60 0 0

Down-Flexiramp drit [MW]
t=1 t=2 t=3

G1 0 0 0
G2 40 40 40
G3 40 40 40
G4 20 10 10
G5 -10 0 0

Table 6.10: Case 4: Dual values & social welfare for the stochastic model with
flexiramp.

t=1 t=2 t=3 t=4
Energy Price, λt [$/MW] 12.88 2.5 1.25 1.25

Up-Flexiramp, µu
t [$/MW] 0 0 0

Down-Flexiramp, µd
t [$/MW] 2.11 5 0

Social welfare $20,692,555.10
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