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Preface

This master thesis is the completion of my master studies in Energy and Environmental
Engineering at the Department of Electric Power Engineering at the Norwegian Univer-
sity of Science and Technology (NTNU). It is a collaboration project with Statnett SF
with the goal of modernizing a toolbox of applications for power system analysis. I chose
this project because I find power system analysis to be a fascinating topic, especially
when talking about solutions to challenges related to the adaption of the grid to renew-
able and green technologies. The preliminary specialization project introduced me to
new programming languages and techniques for interfacing them that have been essen-
tial in the master thesis. The project has presented a steep learning curve, especially in
the specialization project since it has been very programming intensive, but it has been
equally rewarding since I now am much more comfortable with the topic. The course
ELK 14 with Professor Olav Bjarte Fosso has been a useful resource to understand the
load flow theory and algorithms. The work done on modernizing the toolbox before the
start of the thesis, including translation of codes to C and Ctypes wrapper codes, by Leif
Warland at Statnett has been very helpful. Finally, I would like to thank Professor Olav
Bjarte Fosso for guidance in this thesis and my fellow students for support and motivation.

Trondheim, 11.06.2019

Hege Bruvik Kvandal
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Abstract

Power system analysis is an integral part of the operation and planning of power sys-
tems. As the power system evolves with emerging green technologies and distributed
generation, the tools that perform the analyses must adapt. Python is an object-oriented
programming language with attributes that can be useful for the purpose of moderniz-
ing the tools. Currently, the tools for power system analysis considered in this thesis are
written in Fortran, and the goal is to interface them with Python to take advantage of the
functionalities the language provides. In this thesis, the DC optimal load flow analysis
will be updated. The modernization is achieved by first translating the Fortran codes
to C and then interfacing them with Python using Ctypes. In the translation process,
the differences between the languages must be accounted for, and replacements for the
Fortran optimization routines must be chosen. The linear programming solver Lpsolve
is suggested as the optimization tool for the C codes. After the initial interfacing and
testing, it can be concluded that even though the new version of the DC optimal load flow
is not yet complete, and many tools remain to be interfaced, the information provided in
this thesis can be used to continue the project and eventually lead to a toolbox designed
for the future.
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Sammendrag

Kraftsystemanalyse er en viktig del av både planlegging, drift og vedlikehold av kraft-
systemet. Når kraftsystemet nå utvikles med nye, grønne teknologier og distribuert
energiproduksjon, må verktøyene som utfører analysene tilpasses disse forandringene.
Python er et objektorientert programmeringsspråk med egenskaper som vil være nyt-
tige for å modernisere analyseverktøyene. Foreløpig er verktøyene for kraftsystemanal-
yse skrevet i Fortran, og målet er å lage et nytt grensesnitt i Python for å utnytte
funksjonalitetene dette språket gir. I denne masteroppgaven vil analyseprogrammet for
DC optimal lastflyt blir modernisert. Moderniseringen oppnås ved å først oversette
Fortran-kodene til C, og deretter lage et grensesnitt til Python ved hjelp av Ctypes.
I oversettelsesprosessen må det tas hensyn til forskjellene mellom de ulike programmer-
ingsspråkene, og det må velges nye optimaliseringsrutiner som kan brukes i C. Lpsolve,
et program som løser lineære programmeringsproblemer, er foreslått som et alternativ
til Fortran-rutinene. Etter et grensesnitt er presentert og testet, kan det konkluderes
med at selv om den nye versjonen av analyseprogrammet for DC optimal lastflyt ikke
er fullført og mange analyseprogram gjenstår, kan teknikkene og informasjon presentert
i denne oppgaven brukes til å fortsette moderniseringen og til slutt føre til et komplett
analyseprogram designet for fremtiden.
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1 Introduction

1.1 Background

Power system analysis is essential in the operation and planning of power systems. Through
a broad specter of analyses, information such as voltage magnitudes, voltage angles, and
power flows can be obtained and used to monitor and improve existing systems and plan
for new power grids. Further, it can be used to predict the behavior of the system in case
of a planned or unexpected outage of a line, generator, or other unit connected to the grid.

Reliable analysis of power systems will only become more important in the future as the
grid changes and evolves and the composition of elements changes from large and flexible
central generators to distributed and inflexible renewable energy in order to reduce green-
house gas emissions. The way consumers interact with the power grid is also changing
with the introduction of electric vehicles, demand response, and prosumers, creating a
two-way power flow.

Many algorithms for power system analysis exists, including, but not limited to regular
load flow, DC optimal load flow, contingency analysis, and continuation power flow, all
with their different uses, advantages, and disadvantages. Initially, these tools are written
in Fortran, a programming language that is efficient, but not widely used anymore. To
cope with the new challenges, however, these tools should be transferred and interfaced
with Python, a new object-oriented environment with attributes such as interaction with
code written in different languages and graphical user interfaces, GUIs, to scientific codes.

1.2 Specialization project

The focus in the specialization project leading up to this thesis was how to call functions
written in the programming language C in Python. C and Fortran share many similari-
ties, and there are many ways in which C can be interfaced with Python, therefore the
transition between Fortran and Python will involve that some of the code is translated to
C. Important aspects of the three relevant programming languages were discussed as well
as some programming basics that are important when interfacing different languages.
Four different techniques for interfacing C with Python were explored, Ctypes, Cython,
SWIG and Python-C-API, where the two latter were explained in detail and SWIG was
determined to be the best choice for the task. SWIG, the Simplified Wrapper and Interface
Generator, creates the wrapper code automatically, which saves time when there is much
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code to be interfaced, but the wrapper code is nearly unreadable, which is a disadvantage
[1].

1.3 The toolbox

The focus in this thesis is the collection of power system analysis tools written in Fortran,
the toolbox for specialized power system analysis. It was created in the 90s by NTNU
professor Olav Bjarte Fosso, to be used as a research tool to test methods. SINTEF has
used it in some projects, but other than that it has not been used for much else, which
was not the intent, either. However, the application system does work for large grids,
which is why Statnett is interested in modernizing the toolbox so it can be used in their
analyses. The advantage with such program systems compared to commercial programs
is that they can run different cases without reading the case descriptions more than once.
It makes it possible to read a case and then do customized studies based on scripts.

1.4 Problem formulation and scope

The process of modernizing the toolbox was already begun by Statnett at the start of
this thesis, and Ctypes was chosen as the best technique for interfacing C with Python.
Ctypes will be explained in depth and used for the interfacing. The work done by Statnett
is made available through GitHub, an open-source software development platform. The
goal for the thesis is to become acquainted with the application system and begin the
transition from Fortran to Python and C. It is a large application system that will require
more work than one master thesis, but the foundation and techniques for further work
will be presented here.

In the rest of this thesis, the theory behind the interfacing process will be explained, as
well as the theory behind the load flow. In order to limit the scope of the project, only the
DC optimal load flow will be translated and interfaced, but the process will be explained
in detail and should apply to the other load flows as well. Codes written in Fortran will
be explained; therefore the theory section will include Fortran programming basics that
are relevant for the DC optimal load flow in the application system. An essential part
of the DC optimal load flow program is optimization. Consequently, the fundamentals of
linear programming will be explained. The method section explains the DC optimal load
flow application and explores the process of translating the Fortran codes to C. A new
optimization algorithm will be presented along with examples on how to implement it in
a load flow program. Finally, the choices made during the modernization process and the
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result will be discussed.
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2 Theory

Sections 2.1 through 2.4 are based on the theory section in the specialization project
"Toolbox for Specialized Power System Analysis" from 2018 by the author [2]. They are
included to give an understanding of the theory that, though still important, is of lesser
significance in the thesis than it was in the specialization project.

2.1 The programming languages

In this thesis, as in the specialization project, the three programming languages Fortran,
C, and Python are central to the task of modernizing the power system analysis tools.
The tools are originally written in Fortran, which is one of the oldest programming lan-
guages, created by IBM in the 1950s. Fortran is designed for fast numerical calculation
and scientific computing, which makes it well suited for programs that require fast and
efficient handling of large amounts of data, like power system analysis [3].

C is a general-purpose language that, like Fortran, can be used to write highly efficient
code. It is one of the most popular programming languages, which makes it more advan-
tageous in open-source projects compared to Fortran, which is lesser known today [4].

Python was released in 1991, making it the newest programming language of the three.
It is also a general purpose language, but unlike C and Fortran, it is designed to be easy
to use, with very readable syntax. Python has many qualities which makes it suitable for
scientific computing, like fast prototyping and the possibility of interfacing different lan-
guages. The computationally demanding code can be written in C while the surrounding
program and interface are written in Python to combine the advantages of both languages
[5].

2.2 Data types

Data types are important to consider when it comes to interfacing different programming
languages. It is especially significant when interfacing two languages, like C and Python,
which uses different forms of typing. Typing determines the way variables are introduced
in the code. In static typed languages, like C, all variables must be declared in the code
before they are used, and once declared as a certain data type that variable cannot change.
In dynamically typed languages, like Python, variables do not need any declaration before
they are used and they can change data type throughout the code. This has to do with
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how Python assigns values to variables. It will not be further elaborated but is explained
in more detail in [2].

In Fortran, there are five basic data types: integer, real, complex, logical, and character
[6]. The primary data types in C are char, int, float, and double [7]. Int or integer is
used for integers, real, float and double are used for floating point numbers, and char and
character are for letters and strings. The Fortran type complex stores a number with a
real and an imaginary part, and the logical data type has only the two values true and
false. Python has the data type numbers, which includes int, long, float and complex,
in addition to the types string, list, tuple, and dictionary. Python lists are mutable, and
tuples are not. Dictionaries contain elements with a key and an associated value [8].
During the interfacing, arguments and variables are converted back and forth between
the data types, and it is a crucial step in the process.

2.3 Array indexing and array order

Programs for power system analysis, and most other analyses that involve handling of
data, includes arrays. In Fortran, array indexing starts at 1, meaning that the first
element of an array can be accessed like "array[1]". In Python and C, the indexing starts
at 0, and the first element of an array will therefore be "array[0]". The order in which
the array elements are stored is also different between Fortran and C, the former stores
the array elements column-wise, while the latter stores the elements row-wise. Python,
like C, stores its array elements row-wise [9].

2.4 NumPy

NumPy is the most common module for array-handling in Python. It is an extension
module with an n-dimensional array object and functions that can perform mathemati-
cal operations with such objects [10]. The following code snippet shows how to import
NumPy, create two arrays, and add the arrays together.

1 import numpy as np
2

3 array1=np . array ( [ 1 , 2 , 3 ] )
4 array2=np . array ([−1 , −2, −3])
5

6 array3=np . add ( array1 , array2 )
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2.5 Linked lists

A linked list is a list of contiguous elements, in which each element contains a variable
and a pointer to the next variable in the list. An illustration of the structure of a linked
list is given in Figure 2.1. The pointer to the first element in a linked list is called the
"head," and the pointer of the last element is a null pointer to indicate the end of the list.
The advantages of using a linked list compared to a regular list is that linked lists are
dynamic, meaning elements can be added and removed anywhere in the list by changing
to which element the pointer points [11].

Figure 2.1: Structure of a linked list.

2.6 Fortran

One of the objectives in this thesis is the translation of the toolbox for power system
analysis from Fortran to C. This requires a more thorough understanding of the language
than what has been explained so far, in both the specialization project and in the thesis.
This section will explain the concepts of loops, decisions, arrays, goto, common blocks,
and basic syntax. More details can be found from the source at tutorialspoint.com [12].

2.6.1 Basic syntax

Fortran programs are built like an assemblage of modules, subroutines, functions, and
the main program. In Fortran, a function takes a number of arguments and returns an
output value. A subroutine takes a number of arguments on which it can perform one or
more operations which may or may not modify them. It does not return any output [13].
Neither Python nor C makes this distinction between a function and a subroutine. The DC
load flow program does not include any Fortran functions, only subroutines; therefore the
expressions routine and function will be used interchangeably. The expression subroutine
will be used about routines that are used inside another routine; therefore the same
function can be described as both a routine and a subroutine due to the vertical hierarchy
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of the application system.

2.6.2 Decisions

A decision in programming tests one or more given conditions and conditional statements
are executed based on the result [12]. The conditions are logical expressions which return
either true or false. A decision in Fortran can look like the following example:

1 IF ( exp r e s s i on ) THEN
2 c ond i t i o na l statement
3 ELSE
4 c ond i t i o na l statement

The conditional statement can be anything. The logical expression must use one or more
of the relational operators in Table 2.1.

Operator Equivalent Description

.EQ. == Equal to

.NE. != Not equal to

.GT. > Greater than

.LT. < Less than

.GE. >= Greater than or equal to

.LE. <= Less than or equal to

Table 2.1: Relational operators in Fortran.

2.6.3 Loops

A loop is used when a block of code should be executed more than once. The number
of times a loop should be executed can be determined by a predefined number, like in a
for-loop, or it can rely on a logical expression like in a while-loop. In Fortran, the loops are
called do-loops. The do-loop and the do-while-loop can look like the following example:

1 DO 100 I = 1 , 20
2 code
3 END DO
4

5 DO 200 WHILE ( expr e s s i on )
6 code
7 END DO

The do-loop loop executes the block of code 20 times, and the do-while-loop continues
until the logical expression is false. The number after "do" is a label. The number itself is
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not significant, but the loops must have different labels. Labels can be used to reference
different parts of the code.

2.6.4 Goto

The goto-statement in Fortran allows for jumps back and forth in the code. If the state-
ment "goto 100" is encountered, the program finds the label 100 and starts the execution
from there. That can mean skipping code, or it can mean repeating code that has already
been executed. It is often used after an if-statement. Using goto-statements is generally
not considered good programming practice as it makes it hard to follow the flow in the
code, and therefore makes the code harder to read.

2.6.5 Arrays

Arrays store variables of the same data type, and Fortran allows for arrays of up to seven
dimensions. The most used are one- and two-dimensional arrays, like vectors and matrices
[12].

2.6.6 Common blocks

A common block is a characteristic of Fortran 77 since this version of Fortran does not
have global variables. Global variables are variables that are shared between more than
one subroutine [14]. In order for several subroutines to use the same variables, they must
be included in the input parameter list or included in a common block. Including the
common variables in the input parameter list can be tedious and impractical if the number
of variables is large, and therefore, common blocks were used. This is a source of errors
since the variables can be changed by accident in other routines, and it can be hard to
locate where the variables were changed.

2.7 GitHub

GitHub is a software development platform used to collaborate on open-source projects.
A project can be public, meaning that anyone can contribute to the project, or it can be
private, and then only users who are invited to collaborate on the project can contribute
[15]. There are four central concepts in GitHub: repositories, branches, commits, and
Pull Requests. A repository is where the project is organized. It contains all the files
and information about the project, which can be almost anything, for example, images,
videos, spreadsheets, and source code [16]. Branches are used to create different versions
of a project that can be worked on simultaneously. The branches can be edited and
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experimented on, and then those changes can be committed to the master. A commit
is made when changes to the project are saved. With each commit, there should be a
commit message with an explanation of the proposed changes. Earlier commits can be
read by the other project contributors so that everyone working on a project can follow the
progress of the project. Pull Requests displays the difference between branches, and asks
that the branches are merged. For example, if a branch contains proposed improvements
to the master branch, which is the main branch in each repository, a Pull Request can
be opened by the contributor who made the improvements. These changes can then be
discussed by all contributors before the Pull Request is either approved and merged with
the master branch, or denied [16]. GitHub is also a platform for version control, meaning
that changes can be tracked and earlier versions of the project can be brought back if
necessary.

2.8 SCons

SCons is a tool for building software. It uses Python scripts to build software for a range
of languages, including C and Fortran [17]. In this thesis, it is used to create shared
libraries needed in the interfacing process. A shared library is a collection of code in the
form of a library file, ".dll" for Windows, that is loaded at runtime by any program that
uses it. The installation and use of SCons will be explained in this section.

2.8.1 Installation

SCons can be downloaded from [17]. A prerequisite before installing SCons is to have
Python installed since SCons is written in Python. After download, the following com-
mand will install SCons [18]:

1 python −m pip i n s t a l l scons

2.8.2 Building a shared library

A small example will be used to illustrate how to build a shared library with SCons. The
file "test.c" contains a function "add" which adds the two integers given to the function,
see Figure 2.2.
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Figure 2.2: File "test.c".

In order to build the library, an SConstruct file must be created. It is written in Python
and contains information on how SCons should build the library. For the test file above
the SConstruct file can be as in Figure 2.3.

Figure 2.3: File "SConstruct.py".

The last step is to run the SConstruct file. The SConstruct file should be saved in the
same folder as the source file(s), and then the command "scons" in the command prompt
at that directory will create the shared library. The output from the example in Figure 2.3
will look like in Figure 2.4.

Figure 2.4: SCons output of library build.

It is important that the Python file is called "SConstruct.py", because that is the file that
SCons looks for when building the library. The files are created in the same directory
as the C source file and the SConstruct file. More information can be obtained from the
Scons user guide [18].
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2.9 Ctypes

Ctypes is a foreign function library for Python; a tool for interfacing C and Python. It
uses C compatible data types to write wrapper code for shared libraries in pure Python
[19]. The complete documentation for Ctypes can be read at [19], only the functions
relevant for its use in the thesis are included here.

In order to use Ctypes the C code must be available in the form of a shared library. Such a
library can be made with SCons, as explained in the previous section. If the source code
to be interfaced includes functions that should be available from Python the keyword
"__declspec(dllexport)" should be inserted at the start of each function declaration, as
it is done below with the test example from Section 2.8.2 [20].

Figure 2.5: File "test.c", updated.

When the C source files are complete, use SCons (or another program) to build the shared
library. Once the ".dll" file has been made, the wrapper can be written. The wrapper file
for "test.c" and the function "add" is given in Figure 2.6 below.

Figure 2.6: File "test_wrapper.py".
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First, Ctypes must be imported with the import statement. Next, the library must be
loaded using the "LoadLibrary" function. Cdll is a Ctypes object used to load dynamic
link libraries. It is used for libraries with functions using the standard cdecl calling con-
vention. For functions using the stdcall calling convention, windll or oledll can be used.
The MS standard C library uses the cdecl calling convention [19]. The name of the loaded
library can be anything, "lib" was chosen for simplicity.

The next step is to specify the argument data types, which is done with the "argtypes"
and "restypes" functions. Since both arguments in the add function are integers, int, the
Ctypes data type c_int is used. All function arguments must be specified with the right
type in the right order, which is the order in which they appear in the function parameter
list. The return type is also an int, and the same applies.

The final step is to define the function(s). Use the Python return statement if the function
returns a value, if not omit the return statement. The C function add is now available
from Python in the same way as any other Python module and can be imported with the
import statement. The name of the module is the same as the name of the wrapper file,
in this example that is "test_wrapper". The example in Figure 2.7 illustrates the use of
the function "add" after it has been interfaced with Python.

Figure 2.7: Example of using the test_wrapper module.

It is important to add the path in which the module files are stored to PYTHONPATH.
Doing this ensures that the module can be used from any Python interpreter or any
program that uses Python. For the same reason, the whole library path should be specified
in the "LoadLibrary" function.

2.9.1 NumPy support

NumPy has a foreign function interface for Ctypes called Ctypeslib, which can be used
to specify array arguments in the wrapper code [21]. In addition, NumPy supports the
use of C data types such as int, double, and bool. In Figure 2.8 the function "add" has
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been modified to a function "sum_array" that takes an array and the size of that array
and returns the sum of all of the elements in the array.

Figure 2.8: File "test_numpy.c".

Figure 2.9 shows the wrapper code for the "sum_array" function. Lines 4-7 imports the
necessary modules to write the wrapper, which in addition to Ctypes includes NumPy
and NumPy Ctypeslib. Ctypeslib includes a function for loading libraries, "load_library",
which takes two strings as arguments: the name of the library and the location of the dll
file.

What is new in the wrapper code compared to Figure 2.6 is the definition of the pointer
"ar_1d_int" of the "ndpointer" type from the Ctypeslib module. It is defined as an array
of integers, thereof one dimension. The flag "CONTIGUOUS" specifies that the array
elements are stored together in sequence [21]. Since the input parameters are a pointer
to an array and an int, "argtypes" is set to ar_1d_int and c_int. The output argument
is the sum of the elements in the array and is also an int. The "SConstruct.py" file must
be changed with the updated filename.
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Figure 2.9: File "test_numpy_wrapper.py".

Figure 2.10 shows how to import and use the function with a numpy array.

Figure 2.10: Example of how to use the function sum_array from the
test_numpy_wrapper module.

2.10 Linear programming

Linear programming is a technique for optimizing a linear function based on linear crite-
ria [22]. In an underdetermined system, which is a system with several variables, there
exists not only one solution but rather a solution space. The goal of the optimization is
to find the best solution within this solution space. Optimizing in this context means to
maximize or minimize the function subject to the criteria. The function to be optimized
is called the objective function, and the criteria are called the constraints. For the problem
to be linear, the objective function and the constraints must be first order equations. The
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mathematical formulation of a standard linear optimization problem is given in Equations
1 and 2 [22].

The objective function F is on the form as given in Equation 1, where x represents a
variable and a represents the variable coefficient.

min/max F = a1x1 + a2x2 + ...+ anxn (1)

The constraints can be equalities or inequalities, and are generally on the form as given
in Equation 2, where x represents a variable, b represents the variable coefficient and c is
a constant.

b11x1 + b12x2 + ...+ b1nxn ≤ c1

b21x1 + b22x2 + ...+ b2nxn ≤ c2

...

bn1x1 + bn2x2 + ...+ bnnxn ≤ cn

(2)

2.11 Load flow

There are four general requirements for a power system to operate successfully under
balanced three-phase steady-state conditions:

1. Generation supplies the demand (load) plus losses.

2. Bus voltage magnitudes remain close to rated values.

3. Generators operate within specified real and reactive power limits.

4. Transmission lines and transformers are not overloaded. ([23], p. 309)

One of the most important uses of the load flow (or power flow) is to check that these
requirements are not violated. It is done by calculating the bus voltage angles and mag-
nitudes at each bus in the power system, and from this, the real and reactive power flow
at each line and transformer can be calculated. A load flow problem is set up as a set of
nonlinear algebraic equations, and there are many methods for solving these, some direct
and some iterative, and they have different advantages and disadvantages. The following
subsections will explain the concepts of the Newton-Raphson load flow (NRLF), the fast
decoupled load flow (FDLF), and the direct current load flow (DCLF). The sections are
based on the book Power System Analysis & Design 6th edition by Glover, Overbye and
Sarma [23], and on lecture notes by Professor Olav Bjarte Fosso for the course ELK 14
at NTNU: [24], [25] and [26].
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2.11.1 The load flow problem

The input for a load flow problem is the system topology, often a single line diagram, the
line impedances, the load of each load bus and the generator rating for every connected
generator. The output from this will be the actual output of each generator, the volt-
age and magnitude at each bus, and the power flow on each line. Of the four variables
identified at each bus, two are known and used as input and two are unknown and to be
computed by the load flow. These variables are voltage angle θ, voltage magnitude V ,
and net real P and reactive power Q to the bus. Which variables that are known at each
bus is determined by what type of bus each bus is. Buses are categorized into three types:
slack bus, also known as swing bus, PQ bus, also known as load bus, and PV bus, also
known as a voltage controlled or generator bus. As a general rule, most buses in a power
system are PQ buses. PV buses are buses where generators, shunts, or other equipment
are connected. There can only be one slack bus in a power system because the slack bus
is the reference bus, often with voltage angle 0 degrees and voltage magnitude 1.0 per
unit, from which the other buses are calculated [23].

The input data for the power system transmission lines are the series impedance Z, the
shut admittance Y , the maximum power rating in MVA, and the bus numbers for the
two buses where the line is connected. This representation of the line comes from the
π-equivalent model, illustrated in Figure 2.11 [23].

Figure 2.11: π-equivalent model of a transmission line.

For transformers the input data are the impedance, admittance, maximum power rating,
and the buses between which the windings are connected when the transformers are
represented by their equivalent circuits. This information is used to build the admittance
matrix, also known as the Ybus matrix. The diagonal elements in the Ybus matrix, Yii, are
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the sum of all of the admittances connected to bus i. The off-diagonal elements, Yij, are
the negative of the sum of admittances connected between bus i and j. For a three-bus
system as in Figure 2.12, Ybus is a 3x3 matrix as given in Equation 3 [23].

R12 + jX12

R13+ jX13

1 2

3

R23+ jX23

Figure 2.12: Single line diagram of a 3-bus system.

Ybus =


Y11 Y12 Y13

Y21 Y22 Y23

Y31 Y32 Y33

 (3)

In this case none of the elements in the matrix will be zero since all the buses are con-
nected to each other. However, in a large, realistic system, most of the elements will be
zero and the matrix will as a result be a sparse matrix.

The load flow equations are formed using Ohm’s law with Ybus. Ohm’s law is given by
Equation 4, where I is the current, V is the voltage, and Z is the impedance.

I =
V
Z

(4)

Combined with Equation 5, which gives the relationship between impedance and admit-
tance, it results in Equation 6, which is the nodal equation for a power system [23].

Y =
1

Z
(5)

I = YbusV (6)

The complex power S consists of the real and reactive power, P and Q respectively, and
for a bus i it can be written as in Equation 7 [23]. Vi is the complex voltage at bus i, and
I∗i is the conjugate of the complex current at bus i.
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Si = Pi + jQi = ViI∗i (7)

Writing the complex voltage as in Equation 8 and the Ybus elements as in Equation 9, the
load flow equations can be written as in Equations 10 and 11, which are the equations
the NRLF and FDLF solutions are based on [24]. Here Gij is the conductance and Bij is
the susceptance between buses i and j, and i and j range from 1 to the number of buses
in the system, N.

Vi = Vie
jθi (8)

Yij = Yije
jθi = Gij + jBij (9)

Pi = Vi

N∑
j=1

Vj[Gijcos(θi − θj) +Bijsin(θi − θj)] (10)

Qi = Vi

N∑
j=1

Vj[Gijsin(θi − θj)−Bijcos(θi − θj)] (11)

2.11.2 Newton-Raphson load flow

In the NRLF the load flow problem is solved as a set of equations on the form y = f(x),
where y is a vector with the real and reactive power, x is a vector with the variables Vi
and θi, and f(x) is the real and reactive power flow equations as given in Equations 10 and
11. It is solved with the Newton-Raphson method, see Equation 12, which is an iterative
solution method based on a Taylor series expansion of f(x). J is the Jacobi matrix, a
matrix of the partial derivatives of f(x) [23].

x(i+ 1) = x(i) + J−1(i)[y− f(x(i))] (12)

Equation 13 shows the Newton-Raphson method translated into a Newton-Raphson load
flow problem. Here the elements in the first matrix are the partial derivatives of the load
flow equations, ∆θ and ∆V are the changes in voltage angle magnitudes, and ∆P(x) and
∆Q(x) are the changes in the injected power.

−

[
δP
δθ

δP
δV

δQ
δθ

δQ
δV

][
∆θ

∆V

]
=

[
∆P(x)

∆Q(x)

]
= f(x) (13)
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2.11.3 Fast decoupled load flow

The FDLF decouples the real and reactive power equations. The off-diagonal matrices,
δP
δV and δQ

δθ
, are usually neglectable and can therefore be set to zero. This is because the

resistance is generally smaller than the reactance, meaning that |Gij| << |Bij|, and the
angle is generally small, meaning that sin(θij) ≈ 0. Equation 13 will then be changed to
Equation 14 [24].

−

[
δP
δθ

0

0 δQ
δV

][
∆θ

∆V

]
=

[
∆P(x)

∆Q(x)

]
= f(x) (14)

The problem is now decoupled and can be written as two independent equations, see
Equations 15 and 16.

∆θ = −
[
δP
δθ

]−1
∆P(x) (15)

∆V = −
[
δQ
δV

]−1
∆Q(x) (16)

These approximations are called Jacobian approximations, and they can be extended
in the FDLF so that the Jacobian becomes independent of the voltage magnitudes and
angles, and will therefore only need to be built once. The additional approximations
are that |Gij| = 0, |Vi| = 1, sin(θij) = 0 and cos(θij) = 1 [24]. The NRLF and FDLF
should have the same solution to the load flow problem since they use the same power
flow equations, Equations 10 and 11. The problem is now reduced to Equations 17 and
18, and can be solved iteratively until convergence. In some situations it can also be used
to give an approximate, but fast solution to a load flow problem with only one iteration
[23].

∆θ = B−1
∆P(x)

θ
(17)

∆V = B−1
∆Q(x)

V
(18)

Here B is the imaginary part of Ybus, slack bus not included.

2.11.4 DC load flow

The DC load flow builds on the fast decoupled power flow and includes further simplifi-
cations by removing the reactive power equations completely. This means that only the
active power will be modeled. The voltage magnitudes are assumed to be 1.0 per unit,
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and the resulting active power flow equation is given in Equation 19 [26]. Pij is the power
flow on the line between buses i and j, θi and θj are the voltage angles at buses i and j
respectively, and Xij is the reactance between the buses.

Pij =
θi − θj
Xij

(19)

Equation 19 describes is a linear problem that can be written as in Equation 20 for the
whole system. It is solved with only one "iteration" and therefore gives a fast, though
only approximate solution. Once the voltage angles are calculated, Equation 19 can be
used to calculate the line flows [26].

−Bθ = P (20)

The assumptions made in the DC load flow will give a more accurate result when the
voltage profile is flat, and the X/R-ratio is high. With increasing voltage, the significance
of the resistance decreases, therefore the DC flow can often be applied to high voltage
networks [27]. The assumptions make the DC load flow less accurate than the AC power
flow, but useful when a fast solution is required.

2.11.5 Power transfer distribution factors

Power transfer distribution factors, PTDFs, indicate the change in power flow on a line
due to changes in the power injections at the nodes. The PTDFs can be expressed as
in Equation 21 [26], where Pij is the active power flow between buses i and j, Xij is
the reactance between buses i and j, Pn is the active power at bus n, and aij,n is the
distribution factor for line i-j for a changed injection at bus n.

Pij =
(xi1 − xj1)

Xij

P1 +
(xi2 − xj2)

Xij

P2 + ...+
(xin − xjn)

Xij

Pn

Pij = aij,1P1 + aij,2P2 + ...+ aij,nPn

(21)

Calculating the inverse of a large matrix is time-consuming, but there are faster options
when only some of the inverse elements of the matrix are required. In a system Ax+ b, a
row of the inverse matrix A−1 can be found by replacing b with a vector of zeroes and a
1 in the desired row. The difference between two rows can be found in the same way, by
replacing b with a vector of zeroes and a 1 and -1 in the specified rows. A fast calculation
can then be performed by a forward and a backward substitution [26]. The equation
system is presented in Equation 22. Here b represents the elements of the B matrix and
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a the distribution factors.

b11 b12 b13 ... b1n

b21 b22

b31
. . .

...
bn1 bnn





a1

ai
...
aj

an


=



0
1
Xij

...
−1
Xij

0


(22)

Power transfer distribution factors can be used in load flow optimization problems.

2.11.6 Load flow optimization

DC optimal power flow is based on the DC solution to the power flow problem, which is
the active power flow, and the economic dispatch of the system. The economic dispatch
for a power system is when the generated power matches the required load, the operating
costs are minimized, and the generated power and power flow are subject to the opera-
tional and transmission constraints. [23].

An objective function is formed to find the solution, see Equation 1. In the DC optimal
load flow the objective is to minimize the cost. The objective function is subject to one
or more constraints, which are the maximum transmission line power flows and the sum
of regulation. The whole problem formulation is, therefore: how to find the combination
of change injections to remove overloads in the system at minimum cost.

The mathematical formulation of the optimization problem is given in Equations 23 to
25. Equation 23 shows the objective function, F, that should be minimized. cui is the cost
for increased generation, and cdi is the cost for decreased generation. ∆P u

i and ∆P d
i are

the needed changes in generation for the load flow solution to satisfy the constraints, up-
and down-regulation respectively [26].

Min F =
∑
i

cui ∆P
u
i +

∑
i

cdi∆P
d
i (23)

Equation 24 is the balance equation, which says that the total sum of regulation must be
zero. ∆P u

i and ∆P d
i represents the up- and down-regulation, respectively.

∑
i

∆P u
i −

∑
i

∆P d
i = 0 (24)

Equation 25 represents the transmission constraint(s) for the line(s) between buses k and
l. akli are the PTDFs for the line. ∆fklmin and ∆fklmax are the maximum and minimum
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allowed power flow change on the line, based on the current base flow. There are two
ways of deciding ∆fklmin and ∆fklmax: with zero as the reference and with the current flow
as the reference. The latter is a faster method. Each line with a power flow that exceeds
the maximum allowed power flow on that line will add a constraint to the optimization
problem.

∆fklmin ≤
∑
i

akli (∆P u
i −∆P d

i ) ≤ fklmax (25)

After the initial DC load flow and optimization, the load flow is solved again, the angles
are updated, and the line flows calculated, and if there are any more violations, new con-
straints are added to the problem. This is repeated until there are no more violations.
The load flow optimization is, therefore, an iterative problem [26].

The economic dispatch represents a balanced system with minimal operating costs. When
possible contingencies and other operational limitations are taken into account by adding
preventative constraints to the problem, it is called security constrained economic dis-
patch. In other words, the cost must be minimized according to initial constraints and
post contingencies while maintaining a balanced system [26].

The load flow optimization problem described in this section is a linear problem, as
described in Section 2.10, that can be solved using a linear programming solver.

2.11.7 Per-unit system

The per-unit system is often used on quantities like power, current, voltage, and impedance.
It defines these quantities as dimensionless ratios based on a base value, see Equation 26.

Per-unit value[p.u.] =
Actual value[V,A,W,Ω]

Base value[V,A,W,Ω]
(26)

There are two main advantages of using per-unit values. Firstly, similar electrical equip-
ment often have parameters within the same range of values when using per-unit values
with the equipment ratings as the base values. Secondly, the transformer ratio can be
eliminated when the base values are chosen correctly, which makes calculations easier [23].
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3 Translation from Fortran to C

The translation process from Fortran to C is explained here, together with excerpts from
the source codes. The complete files, both Fortran and C, are all given in the Appendix.

3.1 The Fortran program

This section will explain how the Fortran program system is built up. The main appli-
cation is called mainenv, and it is a menu of the different functions and power flow tools
the program offers, see Figure 3.1. The tools include, but are not limited to, contingency
analysis, Newton-Raphson load flow, continuation power flow, optimal power flow, and
DC load flow activities. The user chooses which analysis to use by entering the number
corresponding to the desired tool, and then the program calls that routine.

Figure 3.1: Part of file "main_env.f" showing the menu.

The simplified structure of mainenv is given in Figure 3.2. Only some of the subroutines
in dc_menu are included since they are in focus in the thesis, and they are highlighted
in the figure. Subroutines that are not further discussed are omitted from the chart to
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increase readability. The other load flow tools under mainenv will also have structures
similar to dc_menu.

Figure 3.2: Simplified structure of mainenv with focus on dc_menu.

Dc_menu has two power flow options: contingency analysis, contin, and security-constrained
optimal dispatch, secc_opt, in addition to routines for branch sensitivities and file han-
dling not included in the figure. The routines that are focused on are secc_opt and master
because these can be viewed as independent tools for analysis that can stand apart from
the main program. Dc_opt sets up the problem for analysis and defines the parame-
ters. Secc_opt performs the security constrained optimal dispatch using the subroutines
bulilist, initial, master and coeval, all with a set of other subroutines. Bulilist creates
linked lists of the lists given as arguments. Initial initializes the system description and
factorizes the inverse of the B-matrix, B−1. Master sets up the optimization problem
with cost minimization and sets up restrictions and constraints using distribution factors
(PTDFs). Lastly, coeval performs an analysis of single line outages. The subroutines in
the master routine perform tasks such as setting up the balance constraint and updating
and removing restrictions. They will be further explained.

The idea for this toolbox is for Python to be the administrative language in the program.
This means that when the application is finished, the only language the user will interact
with is Python. The main objective is to rewrite the codes higher up in the program
"hierarchy" in Figure 3.2 in Python, and translate the codes lower down to C and interface
them with the new Python codes. The reason for this is that the "lower" codes perform
the numerical calculations and data handling, actions which require speed and efficiency,
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a trait associated with Fortran and C. One of the advantages with Python, as mentioned,
is that it is easy to extend it with modules written in other programming languages. In
addition to this, Python has extensive support libraries and is easy to read and use [5],
which makes it a suitable choice for administrative language. Python is also a free and
open-source language available to everyone, which makes it ideal for use in open-source
projects, which this project might be later. Mainenv and dc_menu are both "menus"
not performing any calculations, but calling other functions that do and they should,
therefore, be rewritten to Python. Dc_opt will also be rewritten to Python because
it sets up the problem and defines the parameters. Those three routines transferred to
Python will make up the framework for the DC optimization tool. The routines that
perform the analyses should have high performance and will be translated from Fortran
to C.

3.2 Visual Studio Code

Visual Studio Code is a useful tool when working with codes in more than one program-
ming language. For this project, Visual Studio Code was downloaded from [28], and
packages for Python, C and Fortran were installed. The advantages of using Visual Stu-
dio Code rather than a simple text editor include IntelliSense and continuous debugging
of the code [28]. IntelliSense provides syntax highlighting and smart autocompletion of
code based on variable types, function definitions and imported modules, which makes
the programming faster and easier, and the continuous debugging and correction of code
prevent many run-time errors. However, most importantly, it allows for side by side writ-
ing and editing of code in different programming languages.

Visual Studio Code can also automatically format code. Before the start of this thesis,
Statnett had already begun the work of modernizing and translating the toolbox and used
the standard formatting "black" [29]. Black can be installed and applied automatically
every time the code is saved. Using standard formatting on all code makes it easier to
read and work with, especially when working on open-source projects where there can be
several people working with the same code.

3.3 Translating code from Fortran to C

The process of modernizing the toolbox is a process that will require many rounds of
editing before it is complete. There are many things to consider when transferring a
program from one language to another, from the overall function of the program down to
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the programming basics explained in Section 2. An important question is how much to
change the original code when translating it from Fortran to C. The main idea is to trans-
fer an already well-functioning program system to a new environment, and therefore the
first round of translation and editing will be as close to the original as possible. The new
program system should have a standard set of rules when it comes to naming functions,
parameters, and variables like the original. A significant change in the program structure
or adjustment of parameters in one part of the program will make similar changes neces-
sary in other parts of the program.

First, the original version of the routines will be explained, followed by the new C version,
which will highlight the modifications. Only when the two versions differ significantly
from each other will the code be included in the section. The complete set of the codes is
included in the Appendix.

3.4 Master

The description of the master routine given in "master.f" is that the routine solves the
master problem in the security constrained dispatch problem. Briefly summarized it first
sets up the balance restriction and optimizes the system accordingly. Next, the constraints
are checked and updated before the DC load flow is run. If new constraints are necessary,
these are added, and the process is repeated until an acceptable solution for the base
condition has been found. The routine takes 29 input parameters as well as parameters
from three different common blocks. The input parameters, along with a short description,
is given in Table 3.1.

Table 3.1: Input parameters for the master routine. I = integer, R = real, C = character.
() preceding the data type indicates an array of that type.

Name Type Description

Input data

nbuses I Number of buses

ngens I Number of generator buses

igbus I() Pointers to generators

preffrst I() Pointer to first segment in pref. func.

prefnext I() Pointer to next segment

prefcost R() Cost vector for the segments

prefmw R() Maximum capacity for the segments
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preftyp I Type of segment: sell = 1, buy = 2, gen = 3

pload R() Load vector

ifromb I() From buses for branches

itob I() To buses for branches

xinv R() Inverse for branch resistance

istat I() Status for branches

ratea R() Thermal rating for branch

Output data

cincr R() Incremental cost for buses modelled in opt

pbuy R() Buying of power on bus

psell R() Selling of power on bus

pgen R() Generation of power on bus

teta0 R() Voltage angles

basflow R() Base case flow for all branches

Other

nlcold I Number of linear constrains before new are added

ibusno I() Bus number iterator

wconct I() Indicator if a branch is candidate for outage

wbus I() Array telling if a bus should be monitored

akoeff R() Array keeping sensitivities

ickt I() Branch identifier

sbase R Base value for apparent power S

busnam C() Bus names

In addition to the input variables, there are local variables and variables from common
blocks. The local variables are given in Table 3.2 and the common block parameters are
given in Table A.1 in Appendix A.1.
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Table 3.2: Local parameters for the master routine. I = integer, R = real. () preceding
the data type indicates an array of that type.

Name Type Description

ncnow I Number of constraints

ib I Bus number iterator

ig I Generator number iterator

il I Line number iterator

ifb I From bus iterator

itb I To bus iterator

iconp I() Constraint identifier

imaster I Number of master problem iterations

rside R() Right side of equation

The master algorithm begins with the declaration of the variables, both the local parame-
ters and the input parameters. It then sets the number of master iterations, imaster, equal
to zero, and sets the running conditions for the optimization algorithm, itmax, msglvl,
and linobj. In terms of the translation, those three variables are not crucial since another
optimization algorithm will be implemented in C. Next, the output channel is updated
with the routine X04ABF from the mathematical optimization tool NAG [30], which will
be replaced in the translated version. Figure 3.3 shows these steps. The description of
the routine and variable declarations are not included since the information is given above.

Figure 3.3: File "master.f" part 1/5.
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The next step is to set up the balance constraint, which says that the sum of the load
must equal the sum of the generated power, as given in Equation 24. If nlcold equals
zero, there are no constraints, so the number of linear constraints is set to zero, and the
balcon subroutine is called. Balcon sets the balance constraint, the cost vector and the
maximum capacity for the variables. See Figure 3.4 for the code. After these initializations
are complete, the solving of the master problem starts. The continue statement has the
label 150 and will be referred to later in the code.

Figure 3.4: File "master.f" part 2/5.

The program moves on to calculate the optimum running condition with the given con-
straints. The master problem iterator is updated and the NAG optimization routine
E04MBF, which maximizes or minimizes a function, is called. Documentation on E04MBF
can be found at [31]. Figure 3.5 shows this section of the routine. If the optimization
routine finds an acceptable solution, ifail will be set to zero, and the program will jump
to label 250, which continues with updating the generation vector with the subroutine
"update". If the optimization problem is infeasible, the upper and lower constraints must
be modified, which is an option that is only used if the problem cannot be solved within
the given limitations. The subroutine "upcon" updates the constraints.
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Figure 3.5: File "master.f" part 3/5.

The next part of the code checks the nlines variable and jumps to label 999, which is almost
at the end of the code, if the number of lines is less than or equal to one. That outcome
means that there is no network to be analyzed, and therefore, the network analysis should
be skipped. After this, the constraints that are no longer binding are removed with remove.
Figure 3.6 shows the fourth part of the master routine. The net injection on all the buses
is found with the do-loop starting on line 212. "Ib" iterates through all the buses, and
"ig" determines whether the current bus is a generator or not, which in turn determines
which calculation is performed. A DC load flow is then performed by "solvb" to find the
voltage angles. As explained in Section 2.3, array indexing starts at 1 in Fortran and zero
in C. In line 212 in Figure 3.6, ib is set to iterate from 1 to the number of buses, "nbuses".
In the C code, ib must be set to iterate from zero to nbuses-1. This applies to all such
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instances.

Figure 3.6: File "master.f" part 4/5.

The next step is to identify any overloads, and add corresponding constraints if there are
any, see Figure 3.7. The loop iterates over all of the lines in the network and checks if any
of them are overloaded. Two places in the loop the command "goto 400" appears after
an if-statement: line 233 and line 234. The label 400 is the continue-statement at the end
the loop, meaning that if the if-statement is true, the code skips to the next iteration of
the loop, without performing any of the lines in the loop following the goto-statement.
The line flow is calculated using Equation 19, and stored in the variable basflow. If the
flow exceeds the corresponding value in ratea, the function addbrc is called, which then
adds the constraint to the problem. If addbrc is called it updates the constraint counter,
nclin, by one for every new constraint. After this loop, the if-statement in line 257 checks
if there are more constraints now than before, and if that is true the code jumps to label
150, which is the start of the master problem. As a result, the code between label 150 and
this if-statement runs in a loop until no further constraints are identified and the problem
is considered solved.
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Figure 3.7: File "master.f" part 5/5.

Lastly, the program prints the active transmission constraints after the current iteration
and sets the violation counter, nclold, equal to the number of constraints nclin. This ends
the routine. The entire code for the master routine is given in Appendix A.2.

The first step in translating this routine to C is to define the C data type for each of
the input parameters since they must be known already in the function definition. The
master routine is defined as a void function since the output data is included in the input
parameters. Alternatively, it could have returned an int indicating if the function call was
successful or not, but due to the size and complexity of the function, it was decided that
master should be a void function, at least in the first translating attempts. Furthermore,
the other routines called by the master function and the routine that calls the master
routine do not have exception handling, and it is not a priority to include that at this
stage in the modernization process.
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One of the codes created by Statnett is the header file "topflow.h", given in Appendix
B.1. The function abs(x) returns the absolute value of the given value and will be used in
master. In C, all variables must be declared before they are used; therefore, the declaration
is written first. Since there are no common blocks in C, the common block variables must
also be declared like any other variables, and if they have a value before the function call,
they must be initialized. Some of the common block parameters should be initialized,
but since the details of the toolbox are not yet specified, like the maximum number of
buses, for example, they will only be declared for now. Further, many of the common
block parameters are used in the optimization routines which will be replaced, and are
only included for the sake of readability at this stage and will be changed later. The first
part of the C code, which are the function definition and the variable declarations, are
given in Figure 3.8.

Figure 3.8: File "master.c" part 1/6.

Next, as in the Fortran routine, the imaster variable is set to zero. Initialization of the
variables for the optimization algorithm is not included since this routine will be replaced.
If there are no constraints initially, nlcold = 0, nclin is set to zero, and the balcon function
is called, see Figure 3.9.
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Figure 3.9: File "master.c" part 2/6.

In the Fortran routine, the part of the code that solves the master problem starts at line
154 with the continue-statement with the label 150 and ends at line 257 with the "goto
150" statement. The goto-statement forms a loop that will run until no new constraints
are added. The best way to implement a goto-statement in C is a do-while-loop, which
runs at least once, and until the given condition is no longer valid. Line 201 in the
Fortran routine is an if-sentence that skips the network analysis if there is no network,
as explained above. If all that follows should be inside an if-statement, then the first
half of the code would be inside the do-while-loop, and the other half would come after,
which does not work. Therefore this statement is moved up to before the beginning of
the do-while-loop and will include the master problem loop. The first part of the loop
is given in Figure 3.10. The optimization algorithm is not yet implemented, but the old
routine is included for readability. The ifail variable will have to be incorporated in the
new optimization algorithm since it determines whether to update the constraints or not.
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Figure 3.10: File "master.c" part 3/6.

The next part of the loop, given in Figure 3.11 is identical to the Fortran routine. The
functions update and remove are called to update the generation vector and remove
nonbinding constraints, respectively, and the net injection on all buses is calculated. The
for-loop is set to iterate from zero and until nbuses-1. Less than, "<", means that the
loop will stop when ib=nbuses.
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Figure 3.11: File "master.c" part 4/6.

The next step in the master problem loop is to solve the DC load flow to find the voltage
angles, and this part of the code is displayed in Figure 3.12. An appropriate algorithm
for solving the DC load flow must also be implemented before the code is complete. The
loop that calculates the line flows and adds new constraints needs a few modifications
to perform the two goto jumps. Both goto-statements jump to the end of the loop, and
therefore effectively begins the next iteration of the loop without executing the remainder
of the loop statements. The C statement "continue" jumps out of the current iteration
and immediately starts the next, and is therefore used to replace the jumps in the Fortran
code. The condition in the do-while-loop comes at the end of the loop, meaning that the
loop runs through one iteration before the condition is checked. If the logical expression
is true, the next iteration is started.
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Figure 3.12: File "master.c" part 5/6.

The last part of the master function is given in Figure 3.13. The constraints are printed
to the screen as they are after the previous iteration. The print statement can be altered
to be written to a file if that is desired in a later edit of the code. How the print statement
is formatted is not significant at this stage of the translation, it should be made to fit the
Python interface to the program. In the Fortran code, the incremental costs are written
to a file "inccost.res", but as it is of little relevance at this stage, it was omitted in the
C version of the master routine. The last action performed in master.c is to update the
violation counter.
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Figure 3.13: File "master.c" part 6/6.

3.4.1 Balcon

Balcon is a function used in the master function. It does three things: it constructs the
balance constraint between the load and the generation, see Equation 24, it prepares the
optimization cost vector, and it sets up the variable limits. The balcon function itself does
not use any common blocks, but some of the input variables are from common blocks in
the master function. It takes 15 input parameters from the master function and defines
four local variables which are listed in Table 3.3.
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Table 3.3: Local variables in balcon.

Name Type Description

Tload R Total load

Nseg I Number of segments

Ig I Generator number iterator

Ib I Bus number iterator

The Fortran loop that performs these operations contains two goto-statements, see Fig-
ure 3.14. The loop iterates through all of the buses. The result of the first if-statement is
to jump directly to the start of the next iteration if ig is 0, meaning there is no generator
connected to the current bus. If there are generators on the current bus, the cost vector
and variable limits are updated. The loop ends in a goto-statement that jumps back to
the if-statement determining of ig is zero or not, therefore this is written as a while-loop
in the C code, running as long as ig is not equal to zero. See Figure 3.15 for the C loop
in "balcon.c". The files are given in their entirety in the Appendix A.3 and B.4.

Figure 3.14: Lines 43 to 64 in "balcon.f".
Figure 3.15: Lines 19 to 42 in "bal-
con.c".

3.4.2 Upcon

Upcon is used in the master function if the problem is infeasible. If the current constraints
cannot be satisfied, the upper and lower constraints must be updated to get a solution.
The function takes nine input parameters, and in the C version, four local variables are
declared. The main difference between the Fortran version and the C version of the upcon
function is the goto-statement in line 14 in the Fortran code that is changed to a continue-
statement in line 13 in the C code. The complete codes are given in Appendix A.4 for
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the Fortran version and in Appendix B.5 for the C version.

3.4.3 Update

The function update is used in each loop of the master problem to update the generation
vector after the optimization. The function takes 14 input parameters. It begins by setting
the generation vectors to zero, and then it iterates through all the buses and updates the
variables with the solution from the optimization algorithm. The goto-statements in line
41 and 55 in the Fortran function are changed to a while loop in the C function. The
codes are given in Appendix A.5 for the Fortran file and in Appendix B.6 for the C file.

3.4.4 Remove

Remove is called in the master routine after the generation vector is updated, and it
removes constraints that are no longer relevant in the optimization. The first of nine
input parameters is ip, which is the status type to remove from the restrictions. In the
master routine, the ip argument is zero. In remove, the status of the variables are checked
against ip, and if the statuses are equal, the constraints are removed. All the constraints
are checked. The source code for the function is given in the Appendix: A.6 for the
Fortran code and B.7 for the C code.

3.4.5 Solvb

The function solvb calculates the voltage angles using a routine from the HSL Mathemat-
ical Software Library. As can be seen in Appendix A.7, the function declares the needed
variables from two common blocks and calls the routine MA27CD from the HSL library
[32]. This function must be rewritten once the new mathematical computation algorithms
are in place.

3.4.6 Addbrc

The function addbrc adds a linear constraint to the optimization problem if the limits on
a line are exceeded. After the DC load flow has been computed, the line flow is calculated
on every line. The line flow is checked against the restrictions, and if there is a violation,
addbrc is called on the violated branch, and a new linear constraint is added. The codes
are given in Appendix A.8 for the Fortran file and in Appendix B.8 for the C file.

40



Toolbox for Specialized Power System Analysis Translation from Fortran to C

3.5 Bulilist

Bulilist is a subroutine in secc_opt, as shown in Figure 3.2. It is a function that is very
central to the program because it sorts the variables needed to do the load flow analysis.
The buses in a network are numbered, and bulilist takes in lists of different variables for
the buses and creates linked lists where the variables are ordered according to the buses.
Both the input and output parameters are given as input arguments to the function. It
does not create a linked list precisely like it was illustrated in Figure 2.1, for that structs
are needed. Instead, bulilist creates a list that simulates a linked list.

The input variables are listed in Table 3.4. After the variable declarations, preffrst,
prefnext, and ipos are initialized by setting all elements to zero. The function then loops
through all elements and creates a simulated linked list. Ibus "points" to which bus an
element belongs. "Point" is quoted because it is not an actual pointer, only a simulated
one. Preffrst "points" to the first element in a list, and prefnext "points" to the next
element. Prefcost, prefmw and preftyp all "point" to the elements from the lists price,
maxmw, and segtyp respectively. The Fortran source code for bulilist is given in Appendix
A.9

Table 3.4: Input variables in bulilist.

Name Type Description

nbuses I Number of buses

ibus I() Connecting segment to busnumber

price R() Price per segment

maxmw R() Maximum capacity

segtyp I() Type of segment: sell = 1, buy = 2, gen = 3

nseg I Number of segments

preffrst I() Pointer to first segment in pref. func.

prefnext I() Pointer to next segment

prefcost R() Cost vector for the segments

prefmw R() Maximum capacity

preftyp I() Type of segment: sell = 1, buy = 2, gen = 3

There are several ways to store and order variables for power system analysis, included,
but not limited to, matrices, structs, and lists. Matrices are intuitive to use since the load
flow problem is constructed using matrices, like the Ybus in Equation 3 and the Jacobi
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matrix in the Newton-Raphson method in Equation 13. However, in most large networks,
most of the elements will be zero since the buses are only connected to a handful of
other buses, which results in a sparse matrix. For systems with thousands of buses, this
will require a large amount of additional storage and capacity. An alternative that was
considered when translating bulilist to C was to use structs to implement bulilist in a
way that would create linked lists identical to the example in Figure 2.1. All variables
associated with a bus could be stored in a single struct, and the pointer would point to
the struct containing all the variables associated with the next bus. This would eliminate
the problem of elements that are zero and still be an intuitive way to store the variables.
However, changing from simulated linked lists to matrices or linked lists would have made
changes to almost every routine and subroutine necessary. Therefore, in order to avoid
the ripple effect that can come when implementing major changes in a routine, bulilist in
C creates a simulated linked list in the same way it was written in Fortran. The code is
given in Appendix B.9.

3.6 Initial and coeval

Initial initializes the system and factorizes the inverse B matrix, B’. The matrix is built
using the subroutine buildb and is subsequently factorized by the routines MA27AD and
MA27BD from the HSL Mathematical Software Library [32]. The coeval routine analyzes
the effects on the system of all single branch outages. These routines have not been
translated because they were not a priority. Therefore, in the following description of
the translated secc_opt routine, they are left as comments to illustrate where they will
be when they are finished and for the sake of readability. The Fortran files initial.f and
coeval.f are given in Appendices A.10 and A.11 respectively.

3.7 Secc_opt

Secc_opt is a routine for analyzing the security constrained optimal dispatch. All of the
functions described thus far are subroutines in secc_opt. Before they can be called in
secc_opt, they must be defined, and the function definitions are provided in the header
file "dcflow.h", see Figure 3.16.
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Figure 3.16: Header file "dcflow.h".

Secc_opt takes 51 input parameters and does not include any common blocks. Some of
the variables are for the MA27 routines from the HSL Mathematical Software Library, as
explained in the previous section. The routine starts by calling bulilist to build the linked
list with the bus variables. The system is then built and factorized with the "initial"
routine if two conditions are satisfied: the number of lines is more than one and the sys-
tem is not already built. Next, master is called to solve the master problem. The master
problem is the economic dispatch without any contingencies. The last step is to perform
a contingency analysis based on single line outages with the coeval routine. This creates
the security constrained dispatch. The Fortran code is given in Appendix A.12.

The translation of secc_opt is kept close to the original, see Appendix B.10. The two
if-goto-statements are rewritten to a single if-statement with two conditions in the logical
expression, to make the code easier. The function call to initial is included as a comment
to avoid errors when testing the code. After the label "200 continue" in line 76 in the
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Fortran version of secc_opt, the master and coeval functions are called. As with initial,
the function call to coeval is a comment, for the same reasons. The "goto 200" statement
after the call to secc_opt forms a loop at the 200 label, which in the C version is solved
with a do-while-loop with the same condition as in the Fortran code. After the call to the
master routine, if there is no network, the contingency analysis is skipped with a goto-
statement that jumps to the end of the code. In C this is done with a break-statement,
which immediately jumps out of the loop.
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4 Building DCflow

The next sections describe how to build a shared library of the translated functions and
import them to Python. The name of the library is "DCflow" as a way to refer to the
translated DC load flow program system.

4.1 Building a shared library

The SConstruct file for DCflow is given in Figure 4.1. The name of the library is defined
first, followed by a list of the files that should be included. More files can be added later
as they are translated from Fortran. Running the scons command as described in Section
2.8 creates the library which is then ready to be imported in Python.

Figure 4.1: File "SConstruct.py".

4.2 Ctypes wrapper

Once the functions have been translated to C, the Ctypes wrapper can be written. Only
one wrapper file is needed for the security constrained optimal dispatch (secc_opt). The
first part of the wrapper file, "dcflow_wrapper.py", is given in Figure 4.2.
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Figure 4.2: Ctypes wrapper file for secc_opt: "dcflow_wrapper.py".

The required packages are NumPy, Ctypeslib, and Ctypes, and these must be imported
at the beginning of the script. The four C data types that are needed are int, double,
bool, and char. When they are imported with name from Ctypes, it is not necessary to
specify Ctypes each time they are used, which makes the code shorter and easier to read.
The input types that are pointers to arrays must be defined before the functions can be
wrapped. The function "ndpointer" from the Ctypeslib package defines an array for in-
put and output parameter specifications [21]. Three limitations are specified: data type,
dimension, and flags. The data type, dtype, is set to the specified data type. An array
can only contain one data type. The dimension, dim, is set to 1 for a one-dimensional
array, or 2 for a matrix. "CONTIGUOUS" is the only flag needed in this wrapper. The
next step is to import the library created in Section 4.1. The library, which contains all
of the files translated from Fortran to C, is named "dclib".

The data types for the input and output arguments must be specified for each function.
All the Fortran routines have been translated into C void functions; therefore, restype
is set to "None" for all functions. The argument definitions for the remove function is
presented in Figure 4.3 as an example. The data types are listed in the same order as
the parameters are listed in the function definition. This is done for all functions that are
wrapped.
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Figure 4.3: Argument data type definitions for remove in 9 "dcflow_wrapper.py".

The last step is to define the functions. The function definition for the remove function
is given in Figure 4.4. The definition in line 316 is how the function will be called from
Python, which in all cases in this wrapper code is the same as how the function was called
from Fortran. The function can be modified to include more input parameters, and it can
be modified to return one or more variables since that is possible in Python.

Figure 4.4: Function definition for remove in "dcflow_wrapper.py".

The complete wrapper file, "dcflow_wrapper.py", is given in Appendix C. The DCflow
module can now be imported to Python as follows:

1 import dcflow_wrapper as dcf low

4.3 Optimization algorithm

The focus of the master thesis has been on translating the Fortran codes in secc_opt
to C, and the optimization algorithms and linear system solvers have been left out of
the process thus far. At this point in the project, it seems reasonable to keep the new
codes as close to the original as possible, as discussed earlier. The new optimization
algorithms will require changes, but to keep these changes as small as possible and to
keep the changes from creating a ripple-effect throughout the program system, the new
optimization algorithms should be made to fit the program system and not the other way
around. The best way to do this may be to create an interface for the algorithms that
use the variables that already exist or copies data from them. The new optimization
algorithms must replace the NAG routines used in the Fortran program. The algorithms
for mathematical computation of systems of linear equations from the HSL library must
also be replaced. An overview of these routines is given in Table 4.1.
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Table 4.1: Optimization algorithms and linear system solvers used in the Fortran version
of the DC load flow program secc_opt and subroutines.

Routine Used in Description Documentation

X04ABF master.f Update the output channel [30]

E04MBF master.f Find optimum with given constraints [31]

MA27CD solvb.f Solve system B′ · x = RHS [32]

MA27AD initial.f Symbolic factorization of matrix [32]

MA27BD initial.f Numerical factorization of matrix [32]

4.3.1 Lpsolve

Lpsolve is a free linear programming solver [33]. Lpsolve does not have a model size limit,
which will be useful as the size of the networks to be analyzed with the toolbox is not yet
known. It works well and is simple to use, which is why it was chosen as the optimization
tool. Lpsolve can be used in different ways: from the LPSolve IDE [34], and using the
Lpsolve API from a range of different programming languages, including Python and C.
The Lpsolve API (Application Programming Interface) is a collection of functions that
builds and solves a linear problem.

4.3.2 Optimization example

The example in Figure 4.5 is taken from the lecture notes by Professor Olav Bjarte Fosso
in the course ELK 14 at NTNU [26]. The figure represents a three-bus system with same
line reactances and power flow limits. Bus 1 and 2 are generator (PV) buses with a
maximum capacity of 150 MW. Bus 3 is a 180 MW load (PQ) bus and is used as the
slack bus. MC1 and MC2 are the marginal cost of the generation for generator 1 and 2
respectively; it represents the cost of change in generation given in euros per MWh. The
maximum line flow on all three lines is 100 MW. Losses are ignored. The example will
be used to illustrate how Lpsolve can be used in a load flow program, and by extension,
DCflow, from Python and C.
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Figure 4.5: DC optimal power flow example from lecture notes in course ELK 14 at NTNU
[26].

The economic dispatch without the transmission constraints gives overload on line 1-3.
Since generator 1 is cheaper than generator 2, generator 1 will produce at maximum
capacity, which causes overload. The solution before regulation is given in Table 4.2.

Table 4.2: Economic dispatch in example system without transmission constraints.

Line P [MW]
Transmission

constraint [MW]
Bus P [MW] Max. capacity [MW]

1-2 60 100 1 150 150

2-3 70 100 2 30 150

1-3 110 100 3 180 slack bus

The problem in its mathematical form is presented in Equations 27 to 29. The objective
function is to minimize the cost of the changed generation necessary to satisfy all con-
straints, including transmission constraints, and it is given in Equation 27. Here x1 and
x2 are dP1+ and dP1-, the increased and decreased generation, respectively, on bus 1,
and x3 and x4 are dP2+ and dP2-, the increased and decreased generation, respectively,
on bus 2.

min : 20x1 + 20x2 + 30x3 + 30x4 (27)

49



Toolbox for Specialized Power System Analysis Building DCflow

The balance constraint is given in Equation 28.

x1− x2 + x3− x4 = 0 (28)

Lastly, the transmission constraints are given in Equation 29, on the form as in Equa-
tion 25.

0.333x1− 0.333x2− 0.333x3 + 0.333x4 < 100− 60;

0.333x1− 0.333x2 + 0.667x3− 0.667x4 < 100− 70;

0.667x1− 0.667x2 + 0.333x3− 0.333x4 < 100− 110;

(29)

The example was first solved in the LPSolve IDE, see Figure 4.6. The objective function
and the constraints are written in the IDE on the form they are presented in the equations
above. The solution is obtained by pressing "Solve", which presents the results as shown
in Figure 4.7.

Figure 4.6: Screenshot of the optimization example in LPSolve IDE.

50



Toolbox for Specialized Power System Analysis Building DCflow

Figure 4.7: Screenshot of the solution to the optimization example in LPSolve IDE.

The results are presented in a table, and it shows the objective function and the variables.
A summary of the results is given in Table 4.3. The results are rounded up for clarity.

Table 4.3: Results from the optimization example in LPSolve IDE.

Variable

in IDE

Variable

in example
Value

Objective Objective 1500

x1 dP1+ 0 MW

x2 dP1- 30 MW

x3 dP2+ 30 MW

x4 dP2- 0 MW

The changes from the optimization results in the system state given in Table 4.4. This is
the economic dispatch considering the transmission constraints.

Table 4.4: Economic dispatch in example system considering transmission constraints.

Line P [MW] Bus P [MW]

1-2 40 1 120

2-3 80 2 60

1-3 100 3 180

It can be seen from Table 4.4 in conjunction with Table 4.3 that the generation at bus 1
has been reduced with 30 MW, and that the corresponding increased generation has been
made at bus 2. This results in a line flow on line 1-2 of 100 MW, which is at the limit.
This is the cheapest solution satisfying all constraints and is thus the optimized solution.
The cost of the regulation is 1500 euros.
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4.3.3 Optimization example in Python

The Lpsolve API can be imported to Python as an extension module. For the extension
module to be available from Python, the Lpsolve shared library, lpsolve55.dll, must be
downloaded from [35]. The location of the library must then be added to Path and
PYTHONPATH [36]. Lpsolve can be imported, as shown in Figure 4.8, which is the first
part of the optimization example in Python. The example is the same three-bus example
from the previous section.

Figure 4.8: DC optimization example solved in Python using Lpsolve part 1/3.

The standard way of calling Lpsolve functions is presented in line 7 in Figure 4.9. The
return value "ret" will be zero if the function call succeeds. It is not required to use
the return value, but it can be used to give error messages if a function call fails. The
first step is to create a linear problem structure with the function "make_lp", which
returns a pointer, lp, to a matrix structure with allocated rows and columns as specified
by the function arguments. New rows and columns can be added later. Zero rows are
specified because the constraints will be added separately, and four columns are specified
corresponding to the four variables: x1, x2, x3, and x4. The first argument in the functions
will generally be this matrix structure, lp. The "set_verbose" function specifies which
messages should be reported to the user, and the flag "IMPORTANT" will return only
warnings and errors. The objective function is set with the function "set_obj_fn" where
the arguments are lp and a list of the relation between the variables in the objective
function given in Equation 27. The last step in constructing the problem is to add the
constraints, which will add rows to the matrix lp. The first constraint is the balance
constraint, see Equation 28, and the next three are the transmission constraints from
Equation 29.
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Figure 4.9: DC optimization example solved in Python using Lpsolve part 2/3.

Once the problem is set up, names can be added to the variables and constraints, and this
is done in the last part of the code in Figure 4.10, with the functions "set_col_name" and
"set_row_name". Lastly, the problem is solved with the "solve" function using the matrix
lp as the argument, as can be seen from line 34 in Figure 4.10. The objective function,
variables, and constraints are retrieved with their respective "get" functions which are
then printed to the screen. The functions "get_variables" and "get_constraints" both
return a status in addition to the vector with the results, and the [0] following the function
call suppresses the output of the status. The last line in the code frees up the allocated
memory by deleting lp. More detailed information about these functions and all the other
functions included in the API can be found at [37].

Figure 4.10: DC optimization example solved in Python using Lpsolve part 3/3.

Lpsolve supports the use of NumPy arrays and matrices instead of Python lists. When
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the code is run, it produces the result in Figure 4.11. The first number is the result of the
objective function, the second line is the variables, and the final line is the constraints. It
can be seen that the obtained result is the same as presented in Table 4.3. The Python
example file is given in its entirety in Appendix D.1.

Figure 4.11: Result of Lpsolve example in Python.

4.3.4 Optimization example in C

The Lpsolve API can be used from C with the header file "lp_lib.h", which can be down-
loaded from [33] together with the shared library files. The directory where these files are
stored should be added to Path and additional dependencies so the files can be accessed.
The example used to demonstrate the C API is the demo.c example from [38], using the
values from the optimization example. The whole example file is given in Appendix D.2,
and excerpts will be presented here.

The API functions used are mostly the same in Python and C, but because C is a compiled
language all variables must be declared before use and memory must be allocated for
arrays, therefore, extra steps are needed when using Lpsolve in C. The first part of the
example is given in Figure 4.12. First, a pointer to an lprec structure is created, and the
row and column variables are declared and initialized. Ncol, the number of columns, is set
equal to the number of variables, which is four. The model is created with "make_lp",
and as in the Python example, the number of rows is set to zero so the model can be
built by adding the constraints row by row. The variables can be named as shown in
Figure 4.13.
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Figure 4.12: DC optimization example solved in C using Lpsolve part 1/6.

Figure 4.13: DC optimization example solved in C using Lpsolve part 2/6.

Figure 4.14 shows how to add constraints. The procedure is demonstrated with the
balance constraint but is valid for all constraints on that form. The "set_add_rowmode"
function improves the speed of the model building if the constraints are added row by
row, which they are in this example. For large models, like power systems, the speed will
be improved significantly. It should be turned on by setting it to "TRUE" before setting
the constraints, and then turned off by setting it to "FALSE". The constraints are added
using the "add_constraintex" function, and the transmission constraints are added in the
same way as the balance constraint.
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Figure 4.14: DC optimization example solved in C using Lpsolve part 3/6.

The objective function is set with the "set_obj_fnex" function as in Figure 4.15, after
the row entry mode has been set to false.
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Figure 4.15: DC optimization example solved in C using Lpsolve part 4/6.

Next, the object direction is set to minimize using "set_minim", see Figure 4.16. The
model can be printed to screen, and it can be written to a file, with the functions
"write_LP" (stream) and "write_lp" (file). As in the Python example, the problem
is solved with "solve".

Figure 4.16: DC optimization example solved in C using Lpsolve part 5/6.
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The final step is to print the result and free the allocated memory, as shown in Figure 4.17.
The code should yield the same result as when solved using the IDE and Python.

Figure 4.17: DC optimization example solved in C using Lpsolve part 6/6.

4.4 Implementation of the optimization algorithm in DCflow

The new optimization algorithm should be implemented in the master routine where the
old function E04MBF was used, either written directly in the master routine or written
as a stand-alone function. E04MBF finds the optimal operating point given constraints,
which is what Lpsolve was used for in the example in Section 4.3.4. The structure of the
example: make a model, add constraints, add objective function and solve, will be the
same in the C master function, only for a much larger system. It must take into account
that the systems to be analyzed by DCflow can be of variable sizes and configurations,
not a fixed size as in the example. The algorithm should, therefore, be implemented as a
loop or several loops in order for it to work on any system.
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4.5 Tests

In order to assess the functionality of the translated codes and the Ctypes interface,
tests were written in Python. The functions are tested separately for it to be easier
to locate and analyze any errors. The setup for the test of the balcon function will
be explained, and the tests for the other functions will be identical. The Python test
script "dcflow_test_balcon.py" is given in Appendix E.1. The test initializes all vari-
ables needed for the dcflow system and calls the balcon function. The test scripts for
the other functions are identical except for the function call, and they are therefore not
included.

The optimization algorithms and linear system solvers, the replacements for the NAG-
routines and HSL-routines have not been implemented in the codes; therefore, function-
ality and accuracy of the load flow algorithms cannot yet be tested. Preparing a test
case in Python with realistic data from a power system and initializing all of the required
variables for the DCflow functions would be time-consuming, and since the results would
not be valid without all the necessary functions in place, a test where most of the variables
are zero was tested instead. Such a test does not test the performance of the load flow
itself, but it tests the functions for major errors and checks that they can run through the
code. In addition, the test checks that the interface between C and Python in the Ctypes
wrapper code works, that there are no type errors in the input parameters and that the
functions have been defined correctly.

For the codes to be tested without checking the variables, a statement is added to the
end of the source code to each function, in order to check that the function call runs all
the way through the code, since the codes have been written with limited error messages
and does not return a value that can be checked. The statement is a printf statement
that will print the message "***END OF <NAME>***" to the screen, <name> being
the name of the respective function. Many of the functions contain for-loops that will
not run if variables such as nbuses, ngens, and nlines are zero; therefore, these are given
a non-zero value, see Table 4.5. Both the number of variables and the maximum number
of variables are set to an arbitrarily high value.
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Table 4.5: Non-zero variables in "dcflow_test.py".

Variable Value

nbuses 3

ngens 2

nlines 3

nvar 100

mvar 100

The system tested is, with the values in Table 4.5, a three-bus system with two generators
and three lines. The initialization of the variables are sorted by parameter type: int, int*,
double*, double**, double and char*. The busnam variable is an array of busnames,
char*, in C, but since a suitable datatype has not yet been found in Python, it is set as an
array of ints, int*, for the testing. The array data types are initialized as NumPy arrays
of zeroes with the appropriate NumPy data type, intc or double, and size according to
one of the variables in Table 4.5. "Intc" is identical to data type "int" in C. After the
variable initialization, the function is called. The results are presented in Section 5.

4.6 GitHub

The last step in the process of modernizing the toolbox was to upload the work to the
repository "topflow" on GitHub. Topflow is the name of the project started by Leif
Warland in Statnett, who has interfaced the Newton-Raphson load flow in the Fortran
program. All the relevant files: C source files, header files, and wrapper codes were
uploaded to the folder "DCflow" so that the work can be collaborated on and continued
by others.
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5 Results and discussion

5.1 Translation

The translated versions of the codes presented in this thesis are most likely not the final
versions that will be used when the toolbox is finished. They do, however, describe tools
and techniques, like SCons, Ctypes, and do-while-loops, that can be applied to other
parts of the toolbox and that can be used to further improve DCflow. The decision to
keep the translated routines close to the original Fortran routines gave more time to focus
on the interfacing part of the problem, which is a very critical and central part of the
thesis, and one that requires a lot of trial and error. That leaves the assumption that the
Fortran codes perform well and do not require significant improvements. Bulilist is such
a function where it was decided that the already implemented solution is the best one.
The alternatives that were considered, C structs and matrices, are both applicable solu-
tions but were not chosen for two reasons. First of all, they would require more memory
and would make the code slower. Matrices in load flows are often sparse, which is not
efficient. Simulated linked lists are probably the most straightforward and most efficient
alternative of the three. Second, a change in how the variables are stored would require
structural changes in all or most of the other codes in DCflow, in addition to codes in
the other load flow programs. When the overall design for the application system has
not yet been decided, such a change does not seem necessary. The ripple effect has been
mentioned several times, and it has been a conscious decision to avoid it. The efficiency of
the Fortran codes should be kept while utilizing the advantages that Python gives, which
is the overall goal.

A disadvantage with working with the codes this way is that once the new optimization
algorithms and system solvers are implemented, the functions that use these will need
changes in both the function source code and the wrapper code. Variables associated
with the old algorithms will no longer be needed and must be removed and replaced with
the new variables. If these variables come as input parameters to the functions, this will
require the function to be defined again in the wrapper code. Other adjustments not
included here may also require such changes. The translated codes can therefore not be
viewed as a finished product, but rather a foundation to build future versions on.
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5.2 Ctypes

In the preliminary specialization project, four methods for interfacing C with Python were
looked at: Python-C-API, Ctypes, Cython and SWIG. The focus was on SWIG as the
most suitable interfacing tool, see Appendix F for details. Before the start of the thesis,
Ctypes had already been chosen as the method for interfacing and used to interface part
of the Newton-Raphson load flow in the application system. The main reason for using
Ctypes over SWIG was therefore that using only one interfacing method is more orderly
and simpler than using two. Nonetheless, one of the advantages of SWIG is that it auto-
generates the wrapping code, and that makes it useful on codes that require maintenance
and frequent updating, which the DCflow codes will require until they are finished. Using
SWIG instead of Ctypes may have done the work of updating the wrapper codes faster.
The downside, however, is that the auto-generated code is almost unreadable and non-
editable, which makes debugging difficult. The Ctypes wrapper code is written in pure
Python, which is an advantage since Python is the preferred language in the project, and
the wrapper code is therefore completely readable and controllable. To conclude, Ctypes
is a reasonable choice, but it is important to note that it is not the only option.

5.3 Lpsolve

The Lpsolve example in C presented in Section 4.3.4 shows how Lpsolve can solve a sim-
ple load flow optimization problem. The API is made available through the header file
"lp_lib.h". However, the code failed to run and gave the error message: "cannot open
source file ’dlfcn.h’" from the header file. A google search on the error message revealed
that there are relatively few forum discussions on the subject and none that provided a
working solution. A post on GitHub suggests that the issue is related to dynamic loading
in Windows [39]. According to the post, the header "dlfcn.h" is not used in Windows
and the functions referenced in the file, dlopen, dlsym and dlclose, have Windows equiv-
alents that should be used instead. These functions are how the operating system Linux
handles dynamically loaded libraries when working with C, and they are included with
the "dlfcn.h" header file [40]. However, the "dlfcn.h" header file is used in the "lp_lib.h"
header file that is necessary for the Lpsolve API to be available in C. For that reason, the
problem seems to be related to the operating system in use. The operating system used
in this thesis is Windows 10, but the error message seems to stem from that the expected
operating system is Linux.

There are other options for optimization software that can be considered instead of Lp-
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solve, like Clp and Gurobi. Clp (Coin-or linear programming) is a linear programming
solver that, similar to Lpsolve, is open-source and can be used as a callable library [41].
Gurobi is a commercial mathematical programming solver that comes with both a C in-
terface and an interactive shell in Python [42]. Of the three, Lpsolve is the easiest to use,
but other factors that have not been considered here, like robustness and performance,
may make another option more suitable.

It also might be worth considering using Linux for further development of the toolbox.
Linux is a free and open-source operation system popular among programmers and devel-
opers and may be easier to use and less error-prone than Windows. Further, Linux has
many active support communities that can provide solutions to many problems that can
occur.

5.4 Tests

The results of the tests described in Section 4.5 are presented here.

5.4.1 Master subroutines

The first code to be tested was balcon, with the script "dcflow_test_balcon.py" given
in Appendix E.1. The result of the test is presented in Figure 5.1, and it shows that
the function was called without errors. "Code=0" means the code was run successfully.
This does not necessarily mean that the function will work as expected during a load flow
analysis, but it means that the function interface with Python is, as far as can be told
from this test, free from errors. NumPy arrays are successfully used in the C function.
There is, however, no reason to suspect that the function will not work properly during a
load flow since the C version is kept close to the original Fortran function.

Figure 5.1: Result of testing balcon.

The result of the test of the update function is given in Figure 5.2. It prints the error
message "*** ERROR IN UPDATE ***" and the end-of-code message that signals that
no errors were discovered during the code run. The error message was expected due to
the last if-statement in "update.c", see Appendix B.6 lines 50-53, which says that if the
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variable ilast is not equal to the variable nvar, an error has occurred and the error message
should be printed. In the test script, nvar is set to 100 and ilast is initialized to zero in
the update function, and not updated since all of the arrays are zero. It can, therefore,
be concluded that the interface for update works.

Figure 5.2: Result of testing update.

The remaining master subroutines: upcon, remove and addbrc produced similar results
when tested, and are therefore not included here. Consequently, the function interfaces
are expected to work during a load flow case test.

5.4.2 Bulilist

The result of the bulilist function does, as the tests of the master subroutines, not reveal
any errors in the Ctypes interface to Python, as shown in Figure 5.3.

Figure 5.3: Result of testing bulilist.

5.4.3 Secc_opt

The test of secc_opt resulted in the outcome in Figure 5.4. The function call to bulilist
is successful as the end-of-bulilist message shows, but the end of secc_opt is not reached
since the end-of-secc_opt message is not printed. Instead, there is an OSError with the
message "exception: access violation writing 0x00007FF83CA66541", which can mean
that the function is trying to access an address it does not have access to. The error can
occur when trying to access and write to an array at a place that exceeds the size of the
array. Secc_opt is wrapped with the same wrapper code as the previously tested functions
and does not use any variable types not used in these functions. Given the type of error,
it might be that the test itself causes the error. If all variables had been initialized with
the correct size and value for a load flow, the error might have been avoided. However,
such a test would be time-consuming to prepare and would not produce any meaningful
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results concerning the DC load flow as the optimization algorithms and system solvers
are not yet implemented. The fault may also come from the master function since the
bulilist function is called and prints the end-of-bulilist message, which suggests that the
error is not caused by bulilist. Moreover, the bulilist function did not produce any errors
when it was tested, as already described.

Figure 5.4: Result of testing secc_opt.

5.4.4 Master

The output from the test of the master function is given in Figure 5.5, and shows that it
throws the same error as secc_opt. It might suggest that the error lies within the master
function. The error can come from the C source code of the master function, the Ctypes
interface, or the Python test script. A google search for solutions to the error gave many
results, but none that were directly applicable to or could solve the problem. Running
new tests with load flow data after the optimization algorithm has been implemented may
lead to a solution to the problems encountered here.

Figure 5.5: Result of testing master.

5.5 Open-source

The work done on the toolbox, both from Statnett and in this thesis, have been uploaded
to the GitHub repository topflow created by Leif Warland. Per now, the project is private,
but it could benefit from the peer-review that comes with being completely open-source
in the future.
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6 Conclusion

This thesis has worked on modernizing a Fortran program for DC optimal power flow,
modernizing meaning translating the Fortran codes to C and creating a new interface
for the functions in Python. Python is a language that is easy to use and comes with
attributes that are useful when creating tools that can work with new and developing
technologies for green and distributed energy solutions. The translated codes have been
kept as close to the original Fortran codes as possible, where feasible, to keep the efficiency
and functionality of the original codes and prevent additional changes to the program sys-
tem. The C functions have been interfaced with Python using Ctypes and tested with
a Python script that revealed that though two of the tests resulted in errors that were
not resolved, most of the functions have been successfully interfaced. The optimization
algorithm Lpsolve has been suggested as a replacement for the routines used in the For-
tran program. Though not all of the tests were successful, the thesis has put down a
foundation on which to build further modernization. The tools and techniques necessary
to interface the translated codes to Python have been presented, but there is room to
consider other options in the future.

The process of creating DCflow has required a lot of trial and error, and not all issues were
resolved. Nonetheless, such a process has resulted in a steep learning curve on a topic
that is both important and interesting. How to create libraries in different programming
languages and make them available to Python as extension modules is something that,
given the qualities of the object-oriented language Python, can be very useful in the
future. Working closely with the load flow codes has provided a deeper understanding
of how the algorithms work and supplements the theoretical knowledge of power system
analyses. Hopefully, the knowledge presented here can be used to complete the toolbox
for power system analysis with tools that are designed to handle the future challenges of
a green energy system.
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7 Further work

This thesis has laid the groundwork for modernizing the toolbox for power system analysis.
To complete the DC optimal load flow, the algorithms for optimization and mathematical
programming replacing the NAG and HSL routines must be implemented. The optimiza-
tion solver Lpsolve has been suggested, but other tools might be more suitable. What is
important is that the optimization algorithm should be adapted to fit the load flow, not
the other way around. This can be achieved by creating an interface for the algorithm
that is incorporated into the functions where it is needed. Such a design may be less
efficient, but in return it results in a program that is flexible and can be modified with
new routines as required. A flexible code should be a goal in a program designed for a
changing energy system. It also might be worth to consider a Fortran-C interface that
can be interfaced with Python, to avoid the need to translate large program systems. An
interface between two languages is a weak spot in the code that can be the source of errors,
however translating large program systems can also be troublesome and time-consuming.

More testing of the functions that have been interfaced should be performed, with realistic
power system data. The Fortran routine that runs the DC optimal power flow, dc_opt,
should be written in Python to define all variables and set up the system needed for the
analysis. The remaining subroutines in dc_opt should be interfaced with Python in the
same manner as secc_opt. The steps described here will hopefully lead to a finished and
functioning DCflow, as a tool in the modernized toolbox for power system analysis.
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A Fortran routines

This section contains the relevant Fortran codes belonging to the DC optimal power flow
program in mainenv, and a table with the common block variables in "master.f".

A.1 Common block parameters in master.f

Table A.1: Common block parameters for the master routine. I = integer, R = real. ()
or ()() preceding the data type indicates an array or matrix of that type.

Name Type Description

param.cmn

maxbus1 I Maximum number of buses

maxlin1 I Maximum number of lines

Parameters for factorization and solution

licn I 3(maxbus1+2*maxlin1)

lirn I maxbus1+2*maxlin1

Parameters for optimization

mrowa I Maximum number of linear constraints

mvar I Maximum number of variables

mrsub I Maximum size of subproblem

mctotl I mrowa+mvar

liwork I 8*maxbus1

lwork I 2*(mrowa+1)^2+4*mrowa+6*mvar+mrowa

Parameters for MA27

ndev0 I 3*(maxbus1+maxlin1)

liw I 2*ndev0+3*maxbus1+300

Variables used for output of information

told R Tolerances used for classification

lin I Input

lout I Output

optim.cmn

Variables for the master optimization algorithm

itmax I Maximum number of iterations

msglvl I Code for output of data

nvar I Number of variables on the optimization
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nclin I Number of linear constraints

nctotl I Total number of constraints (nvar + nclin)

mrowa I Maximum number of linear constraints

amat R()() Matrix containing the constraints

bl R() Lower constraints

bu R() Upper constraints

cvec R() Constraint vector

linobj L Logical variable which indicates an available objective

x R() Solution vector

istate I() Indicates the status of the constraints

objlp R Objective value

clamda R() Dual variables

scratch.cmn

Variables for scratch arrays

iwork I() Integer vector, size determined by factorization algorithm

work R() Real array, size determined by the master optimization algorithm
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A.2 master.f

1 C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−C
2 C LIBRARY: MASTERLIB ! PROGRAM RESPONSIBLE: ! Date : C
3 C PROG.SYS : SECCON ! OLAV BJARTE FOSSO ! 10 . 05 . 89 C
4 C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−C
5

6 SUBROUTINE MASTER(NBUSES,NGENS,NLINES, IGBUS,PREFFRST,PREFNEXT,
7 & PREFCOST,PREFMW,PREFTYP,PLOAD,CINCR,PBUY,PSELL,PGEN,
8 & TETA0,IFROMB, ITOB,XINV, ISTAT,RATEA,BASFLOW,NLCOLD,
9 & IBUSNO,LMESS,WCONCT,WBUS,AKOEFF, ICKT,SBASE,BUSNAM)

10

11 C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−C
12 C DESCRIPTION: C
13 C THE ROUTINE SOLVES THE MASTER PROBLEM IN THE SECURITY C
14 C CONSTRAINED DISPATCH PROBLEM. C
15 C C
16 C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−C
17

18 C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−C
19 C COMMENTS: C
20 C C
21 C================================================================C
22 C NAME ! TYPE ! COMMENT C
23 C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−C
24 C GLOBAL VARIABLES: C
25 C C
26 C C
27 C COMMON BLOCKS C
28

29 INCLUDE ’ . . / common/param . cmn ’
30 INCLUDE ’ . . / common/optim . cmn ’
31 INCLUDE ’ . . / common/ sc ra t ch . cmn ’
32

33

34 C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−C
35 C INPUTDATA: C
36 C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−C
37 C NAME ! TYPE ! COMMENT C
38 C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−C
39 C NBUSES I NUMBER OF BUSES C
40 C NGENS I NUMBER OF GENERATOR BUSES C
41 C IGBUS( ) I POINTERS TO GENERATORS C
42 C PREFFRST( ) I POINTER TO FIRST SEGMENT IN PREF.FUNC. C

III
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43 C PREFNEXT() I POINTER TO NEXT SEGMENT C
44 C PREFCOST( ) R COST VECTOR FOR THE SEGMENTS C
45 C PREFMW() R MAXIMUM CAPACITY FOR SEGMENTS C
46 C PREFTYP I TYPE OF SEGMENT SELL = 1 , BUY = 2 , GEN = 3 C
47 C PLOAD() R LOAD−VECTOR C
48 C IFROMB() R FROM BUSES FOR BRANCHES C
49 C ITOB( ) R TO BUSES FOR BRANCHES C
50 C XINV( ) R INVERSE OF BRANCH REACTANCE C
51 C ISTAT() I STATUS FOR BRANCHES C
52 C RATEA() R THERMAL RATING FOR BRANCH C
53 C C
54 C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−C
55

56 C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−C
57 C OUTPUTDATA: C
58 C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−C
59 C NAME ! TYPE ! COMMENT C
60 C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−C
61 C CINCR( ) R INCREMENTAL COST FOR BUSES MODELLED IN OPT C
62 C PBUY() R BUYING OF POWER ON BUS C
63 C PSELL( ) R SELLING C
64 C PGEN() R GENERATION C
65 C TETA0( ) R VOLTAGE ANGLES C
66 C BASFLOW() R BASE CASE FLOW FOR ALL BRANCHES C
67 C C
68 C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−C
69

70 C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−C
71 C LOCAL VARIABLES: C
72 C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−C
73 C NAME ! TYPE ! COMMENT C
74 C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−C
75 C TETA0 R8 THE RIGHT HAND SIDE WHEN SOLVING THE AX = B C
76 C NCNOW I VARIABLE USED FOR NUMBER OF LINEAR CONSTRAINTS C
77 C IB I VARIABLE USED FOR INTERNAL BUSNUMBERS C
78 C IG I VARIABLE USED FOR GENERATOR BUSES C
79 C IFB I A SPECIFIC FROM−BUS FOR A BRANCH C
80 C ITB I A SPECIFIC TO−BUS FOR A BRANCH C
81 C C
82 C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−C
83

84 C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−C
85 C DECLARATION OF MAIN VARIABLES C
86 C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−C

IV
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87

88 INTEGER NBUSES , NGENS , IGBUS(NBUSES) ,
89 & PREFFRST(NBUSES) , PREFNEXT(∗ ) , PREFTYP(∗ ) ,
90 & IFROMB(NLINES) , ITOB(NLINES) , ISTAT(NLINES) ,
91 & IBUSNO(NBUSES) , WCONCT(∗ ) , WBUS(∗ ) ,
92 & ICKT(NLINES)
93 C
94 REAL PREFCOST(∗ ) , PREFMW(∗ ) , PLOAD(NBUSES) ,
95 & CINCR(NBUSES) , PBUY(NBUSES) , PSELL(NBUSES) ,
96 & PGEN(NGENS) , XINV(NLINES) ,
97 & RATEA(NLINES) , BASFLOW(NLINES) , AKOEFF(∗ ) ,
98 & SBASE
99

100 REAL∗8 TETA0(NBUSES)
101

102 CHARACTER∗8 BUSNAM(NBUSES)
103

104

105 C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−C
106

107 C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−C
108 C DECLARATION OF LOCAL VARIABLES C
109 C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−C
110

111 INTEGER NCNOW , IB , IG ,
112 & IL , IFB , ITB ,
113 & ICONP(MROWA) , IMASTER
114

115 REAL∗8 RSIDE(MAXBUS1)
116

117 C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−C
118

119

120 C Number o f main master problem i t e r a t i o n s
121 IMASTER = 0
122

123 C
124 C se t running cond i t i on s f o r the opt imiza t i on a lgor i thm
125 C
126 ITMAX = 1000
127 MSGLVL = 0
128 LINOBJ = .TRUE.
129

130 C
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131 C UPDATE THE OUTPUT CHANNEL
132 C
133

134 CALL X04ABF(1 ,LOUT)
135

136 C
137 C add the equat ion sum pgen = sum pload i f necce s sa ry
138 C se t up the co s t vec to r
139 C se t up l im i t s f o r the v a r i a b l e s
140 C
141

142 IF (NLCOLD .EQ. 0) THEN
143 NCLIN = 0
144 CALL BALCON(NVAR,NCLIN,CVEC,MROWA,AMAT,BL,BU,
145 & PREFFRST,PREFNEXT,PREFCOST,PREFMW,
146 & NBUSES, IGBUS,PLOAD,AKOEFF)
147 ENDIF
148

149

150 WRITE(LMESS,118 )
151 118 FORMAT(// ,T20 ’ ∗∗∗∗∗ So lv ing Master Problem ∗∗∗∗∗ ’ , / )
152

153

154 150 CONTINUE
155

156 C
157 C
158 C
159 C f ind optimum with given c on s t r a i n t s
160 C
161

162 NCNOW = NCLIN
163 IFAIL = 1
164

165 NCTOTL = NVAR + NCLIN
166

167 IMASTER = IMASTER + 1
168 C
169 CALL E04MBF(ITMAX,MSGLVL,NVAR,NCLIN,NCTOTL,MROWA,
170 & AMAT,BL,BU,CVEC,LINOBJ,X, ISTATE,OBJLP,CLAMDA,
171 & IWORK,LIWORK,WORK,LWORK, IFAIL )
172 C
173 WRITE(LMESS,123 ) IMASTER, OBJLP∗SBASE
174 123 FORMAT(/ ,1X, I2 , ’ . I t e r a t i o n − Power Reschedul ing Cost : ’ ,
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175 & F15 . 3 , / )
176

177 IF ( IFAIL .EQ. 0) GOTO 250
178 C
179 C update upper and lower c on s t r a i n t s i f the problem i s i n f e a s i b l e
180 C The opt ion i s only used when the c on s t r a i n t s can not be s a t i e s f i e s
181 C The c on s t r a i n t s are updated due to the c l o s e to optimal s o l u t i o n
182 C returned from the nag−r ou t ine
183 C
184 CALL UPCON(NVAR,NCLIN,MROWA,AMAT,BL,BU,X, ISTATE,TOLD)
185 WRITE(LMESS,210 )
186 210 FORMAT(/ ,1X, ’ I n f e a s i b l e case − Constra int Relaxat ion appl ied ’ ,
187 & ’ in Master Problem ’ , / )
188

189 250 CONTINUE
190

191 C
192 C update the gene ra t i on vec to r
193 C
194

195 CALL UPDATE(NBUSES,NGENS,CINCR,PBUY,PSELL,PGEN, IGBUS,
196 & PREFFRST,PREFNEXT,PREFTYP,NVAR,CLAMDA,CVEC,X)
197 C
198 C Skip the network ana l y s i s i f NLINES i s equal to 0 .
199 C No network invo lved .
200 C
201 IF (NLINES .LE. 1) GOTO 999
202 C
203 C remove nonbinding c on s t r a i n t s in the opt imiza t i on proce s s
204 C
205

206 CALL REMOVE(0 ,NVAR,NCLIN,MROWA,AMAT,BL,BU, ISTATE,ICONP)
207

208 C
209 C f ind net i n j e c t i o n s on the nodes
210 C
211

212 DO 300 IB = 1 ,NBUSES
213 IG = IGBUS( IB )
214 IF ( IG .GT. 0) THEN
215 TETA0( IB ) = PGEN(IG) − PLOAD( IB ) − PSELL( IB ) + PBUY( IB )
216 ELSE
217 TETA0( IB ) = − PLOAD( IB ) − PSELL( IB ) + PBUY( IB )
218 ENDIF
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219 300 CONTINUE
220 C
221 C f ind vo l tage ang l e s by a forward and a backward s ub s t i t u t i o n s
222 C
223

224 CALL SOLVB(TETA0,NBUSES)
225

226 C
227 C i d e n t i f y ove r l oads and add c on s t r a i n t s
228 C
229

230 DO 400 IL = 1 ,NLINES
231 IFB = IFROMB( IL )
232 ITB = ITOB( IL )
233 IF (RATEA( IL ) .EQ. 0 . 0 ) GOTO 400
234 IF ( (WBUS(IFB) .EQ. 0) .OR. (WBUS(ITB) .EQ. 0) ) GOTO 400
235 IF (ISTAT( IL ) .EQ. 1) THEN
236 BASFLOW( IL ) = (TETA0(IFB) − TETA0(ITB) ) ∗XINV( IL )
237 IF ( (ABS(BASFLOW( IL ) )−RATEA( IL ) ) .GT.TOLD(3) ) THEN
238 CALL ADDBRC( IL ,NCLIN,NVAR,MROWA,AMAT,BL,BU,RSIDE,
239 & PREFFRST,PREFNEXT,TOLD,
240 & NBUSES,IFROMB, ITOB, IGBUS,XINV,PLOAD,RATEA)
241 WRITE(LMESS,402 ) IBUSNO(IFB) ,BUSNAM(IFB) ,IBUSNO(ITB) ,
242 & BUSNAM(ITB) , ICKT( IL ) ,
243 & BASFLOW( IL ) ∗SBASE, RATEA( IL ) ∗SBASE
244 ENDIF
245 ELSE
246 BASFLOW( IL ) = 0 .0
247 ENDIF
248 400 CONTINUE
249 402 FORMAT(1X, ’ Account f o r V io l a t i on on Line : ’ , / ,
250 & 4X, I6 , 1X,A8, 3X, I6 , 1X,A8 , I3 ,
251 & ’ Flow : ’ ,F8 . 1 , ’ Rate : ’ , F8 . 1 )
252

253 C
254 C new v i o l a t i o n s encountered ?
255 C
256

257 IF (NCLIN .GT. NCNOW) GOTO 150
258

259

260 451 FORMAT(// ,1X, ’ Act ive t ransmi s s i on ’ ,
261 & ’ c on s t r a i n t s a f t e r cur rent i t e r a t i o n : ’ ,
262 & // ,1x , ’From : ’ , T20 , ’To : ’ , T37 , ’ Ckt_Id ’ ,
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263 & T47 , ’ Flow [MW] ’ , T60 , ’ Rate [MVA] ’ )
264

265 WRITE(LMESS,451 )
266

267 DO 450 IL = 1 , NLINES
268 IFB = IFROMB( IL )
269 ITB = ITOB( IL )
270 IF (RATEA( IL ) .EQ. 0 . 0 ) GOTO 450
271 IF ( (WBUS(IFB) .EQ. 0) .OR. (WBUS(ITB) .EQ. 0) ) GOTO 450
272 IF (ISTAT( IL ) .EQ. 1) THEN
273 IF ( (ABS(BASFLOW( IL ) )−RATEA( IL ) ) .GT. −TOLD(3) ) THEN
274 WRITE(LMESS,452 ) IBUSNO(IFB) ,BUSNAM(IFB) ,IBUSNO(ITB) ,
275 & BUSNAM(ITB) , ICKT( IL ) ,
276 & BASFLOW( IL ) ∗SBASE, RATEA( IL ) ∗SBASE
277 ENDIF
278 ENDIF
279

280 450 CONTINUE
281

282 452 FORMAT(1X, I6 , 1X,A8, 3X, I6 , 1X,A8, 3X, I3 ,
283 & 4X, F8 . 1 , 4X, F8 . 1 )
284

285

286

287 999 CONTINUE
288 C
289 C update the v i o l a t i o n counter
290 C
291 NLCOLD = NCLIN
292 C
293 C DUMP INCREMENTAL COST
294 C
295 OPEN(29 ,FILE=’ i n c c o s t . res ’ ,STATUS=’UNKNOWN’ )
296 WRITE(29 ,∗ ) ’ OBJECTIVE FUNCTION : ’ , OBJLP
297 DO 850 IB = 1 , NVAR
298 WRITE(29 ,851) IB , CVEC( IB ) , CLAMDA( IB ) , X( IB )
299 850 CONTINUE
300 851 FORMAT(1X, I4 , ’ COST : ’ , F8 . 3 , ’ LAMBDA : ’ , F9 . 4 , ’ X : ’ , F8 . 3 )
301 CLOSE(29)
302

303 C
304 C END
305 C
306

IX



Toolbox for Specialized Power System Analysis Fortran routines

307 END
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A.3 balcon.f

1 C
2 C
3 C A ROUTINE DOES:
4 C 1 . SETS UP THE BALANCE CONSTRAINT BETWEEN THE LOAD AND GENERATION
5 C 2 . SETS UP THE COST VECTOR FOR THE OPTIMIZATION.
6 C 3 . SETS UP THE VARIABLE LIMITS
7 C
8 C
9

10 SUBROUTINE BALCON(NVAR,NCLIN,CVEC,MROWA,AMAT,BL,BU,
11 & PREFFRST,PREFNEXT,PREFCOST,PREFMW,
12 & NBUSES, IGBUS,PLOAD,AKOEFF)
13

14 C
15 C DECLARATIONS
16 C
17

18 INTEGER∗4 NVAR , NCLIN , MROWA
19

20 INTEGER NBUSES , IGBUS(∗ ) , PREFFRST(∗ ) ,
21 & PREFNEXT(∗ )
22

23 REAL∗8 CVEC(∗ ) , AMAT(MROWA, ∗ ) , BL(∗ ) ,
24 & BU(∗ )
25

26 REAL PREFCOST(∗ ) , PREFMW(∗ ) ,
27 & PLOAD(∗ ) , AKOEFF(∗ )
28 C
29 C
30 C LOCAL DECLARATIONS
31 C
32 REAL TLOAD
33 INTEGER NSEG , IG , IB
34

35 C
36 C
37 C
38 NVAR = 0
39 NCLIN = 1
40 TLOAD = 0.0
41 ILAST = 0
42 C
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43 DO 200 IB = 1 ,NBUSES
44 TLOAD = TLOAD + PLOAD( IB )
45 IG = PREFFRST( IB )
46 190 IF (IG .EQ. 0) GOTO 200
47 ILAST = ILAST + 1
48 CVEC(ILAST) = PREFCOST(IG)
49 IF (PREFMW(IG) .GT. 0 . 0 ) THEN
50 AMAT(NCLIN, ILAST) = AKOEFF( IB )
51 BL(ILAST) = 0 .0
52 BU(ILAST) = PREFMW(IG)
53 ELSE
54 AMAT(NCLIN, ILAST) = 1.0/AKOEFF( IB )
55 BU(ILAST) = 0 .0
56 BL(ILAST) = PREFMW(IG)
57 ENDIF
58 IG = PREFNEXT(IG)
59 GOTO 190
60 200 CONTINUE
61 NVAR = ILAST
62 BU(NCLIN+NVAR) = TLOAD
63 BL(NCLIN+NVAR) = TLOAD
64

65 C
66 C
67 C END
68 C
69

70 END
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A.4 upcon.f

1

2 SUBROUTINE UPCON(NVAR,NCLIN,MROWA,AMAT,BL,BU,X, ISTATE,TOLD)
3

4 C
5 C
6

7 INTEGER MROWA, NVAR, NCLIN, ISTATE(∗ )
8

9 REAL∗8 AMAT(MROWA, ∗ ) , BL(∗ ) , BU(∗ ) , X(∗ )
10 REAL TOLD(∗ )
11

12 DO 500 IS = 1 ,NCLIN
13 VALUE = 0.0
14 IF (ISTATE(NVAR+IS ) .GE. 0) GOTO 500
15 DO 100 IB = 1 ,NVAR
16 VALUE = VALUE + AMAT( IS , IB ) ∗X( IB )
17 100 CONTINUE
18 IF (ISTATE(NVAR+IS ) .EQ. −1) THEN
19 RESID = ABS(BU(NVAR+IS ) ) − ABS(VALUE)
20 BU(NVAR+IS ) = VALUE + TOLD(2)
21 ELSEIF (ISTATE(NVAR+IS ) .EQ. −2) THEN
22 RESID = ABS(BL(NVAR+IS ) ) − ABS(VALUE)
23 BL(NVAR+IS ) = VALUE − TOLD(2)
24 ENDIF
25 500 CONTINUE
26

27 C
28 C END
29 C
30

31 END
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A.5 update.f

1

2 SUBROUTINE UPDATE(NBUSES,NGENS,CINCR,PBUY,PSELL,PGEN, IGBUS,
3 & PREFFRST,PREFNEXT,PREFTYP,NVAR,CLAMDA,CVEC,X)
4 C
5 C the a lgor i thm conc ludes the r e s u l t from the opt imiza t i on
6 C program
7 C
8 C
9 C DEKLARATIONS

10 C
11 INTEGER∗4 NVAR
12 C
13 REAL∗8 CLAMDA(∗ ) , CVEC(∗ ) , X(∗ )
14 C
15 INTEGER NBUSES , NGENS , IGBUS(NBUSES) ,
16 & PREFFRST(NBUSES) , PREFNEXT(∗ ) , PREFTYP(∗ )
17 C
18 REAL CINCR(NBUSES) , PBUY(NBUSES) , PSELL(NBUSES) ,
19 & PGEN(NGENS)
20

21 C
22 C
23 C i n i t i a l i z e
24 C
25 DO 50 IB = 1 ,NBUSES
26 CINCR( IB ) = 0 .0
27 PBUY( IB ) = 0 .0
28 PSELL( IB ) = 0 .0
29 50 CONTINUE
30 C
31 DO 60 IG = 1 ,NGENS
32 PGEN(IG) = 0 .0
33 60 CONTINUE
34 C
35 C
36 C update a l l v a r i a b l e s
37 C
38 ILAST = 0
39 DO 200 IB = 1 ,NBUSES
40 IS = PREFFRST( IB )
41 190 IF ( IS .EQ. 0) GOTO 200
42 ILAST = ILAST + 1
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43 IF (PREFTYP( IS ) .EQ. 1) THEN
44 PSELL( IB ) = PSELL( IB ) − X(ILAST)
45 ELSEIF (PREFTYP( IS ) .EQ. 2) THEN
46 PBUY( IB ) = PBUY( IB ) + X(ILAST)
47 ELSEIF (PREFTYP( IS ) .EQ. 3) THEN
48 IG = IGBUS( IB )
49 PGEN(IG) = PGEN(IG) + X(ILAST)
50 ELSE
51 WRITE(∗ ,∗ ) ’ ∗∗∗∗∗ ERROR IN VECTOR − PREFTYP( ) ∗∗∗∗ ’
52 ENDIF
53 CINCR( IB ) = CLAMDA(ILAST) − CVEC(ILAST)
54 IS = PREFNEXT( IS )
55 GOTO 190
56 200 CONTINUE
57

58 IF (ILAST .NE. NVAR) WRITE(∗ ,∗ ) ’ ∗∗∗∗ ERROR IN UPDATE ∗∗∗∗ ’
59 C
60 C END
61 C
62

63 END
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A.6 remove.f

1 C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−C
2 C LIBRARY: MASTERLIB ! PROGRAM RESPONSIBLE: ! Date : C
3 C PROG.SYS : SECCON ! OLAV BJARTE FOSSO ! 10 . 05 . 89 C
4 C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−C
5

6 SUBROUTINE REMOVE( IP ,NVAR,NCLIN,MROWA,AMAT,BL,BU, ISTATE,ICONP)
7

8 C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−C
9 C DESCRIPTION: C

10 C THE ROUTINE REMOVES CONSTRAINTS WITH CERTAIN ATTRIBUTES C
11 C FROM THE OPTIMIZATION PROBLEM C
12 C C
13 C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−C
14

15 C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−C
16 C COMMENTS: C
17 C C
18 C================================================================C
19 C NAME ! TYPE ! COMMENT C
20 C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−C
21 C GLOBAL VARIABLES: C
22 C C
23 C C
24 C COMMON BLOCKS C
25

26

27 C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−C
28 C INPUTDATA: C
29 C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−C
30 C NAME ! TYPE ! COMMENT C
31 C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−C
32 C NVAR I NUMBER OF VARIABLES C
33 C MROW I MAXIMUM NUMBER OF LINEAR CONSTRAINTS C
34 C IP I STATUS TYPE TO REMOVE C
35 C ICONP( ) I CONSTRAINT IDENTIFIER C
36 C C
37 C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−C
38

39 C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−C
40 C OUTPUTDATA: (ALTERED FROM THE INPUTVALUES) C
41 C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−C
42 C NAME ! TYPE ! COMMENT C
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43 C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−C
44 C NCLIN I NUMBER OF LINEAR CONSTRAINTS C
45 C ISTATE( ) I VECTOR OF VARIABLE STATUS IN OPT. C
46 C AMAT( , ) R8 MATRIX INCLUDING LINEAR CONSTRAINTS C
47 C BU() R8 VECTOR CONTAINING UPPER LIMITS C
48 C BL( ) R8 VECTOR CONTAINING LOWER LIMITS C
49 C ICONP( ) I CONSTRAINT IDENTIFIER C
50 C C
51 C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−C
52

53 C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−C
54 C LOCAL VARIABLES: C
55 C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−C
56 C NAME ! TYPE ! COMMENT C
57 C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−C
58 C IB I VARIABLE FOR AN INTERNAL BUSNUMBER C
59 C IG I VARIABLE FOR A GENERATOR NUMBER C
60 C INCLIN I VARIABLE INCLUDING THE INITIAL NCLIN C
61 C C
62 C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−C
63

64 C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−C
65 C DECLARATION OF MAIN VARIABLES C
66 C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−C
67

68 INTEGER NVAR , NCLIN , MVAR ,
69 & ISTATE(∗ ) , IP , ICONP(∗ )
70

71 REAL∗8 AMAT(MROWA, ∗ ) , BL(∗ ) , BU(∗ )
72

73 C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−C
74

75 C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−C
76 C DECLARATION OF LOCAL VARIABLES C
77 C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−C
78

79 INTEGER IB , IG , INCLIN
80

81 C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−C
82

83 C
84 C REMOVE CONSTRAINTS
85 C
86 INCLIN = NCLIN

XVII



Toolbox for Specialized Power System Analysis Fortran routines

87

88 DO 500 IB = INCLIN , 1 , −1
89 IF (ISTATE( IB + NVAR) .NE. IP ) GOTO 500
90 DO 300 IG = 1 ,NVAR
91 AMAT(IB , IG) = AMAT(NCLIN, IG)
92 300 CONTINUE
93 BU( IB + NVAR) = BU(NCLIN + NVAR)
94 BL( IB + NVAR) = BL(NCLIN + NVAR)
95 ISTATE( IB + NVAR) = ISTATE(NCLIN + NVAR)
96 ICONP( IB ) = ICONP(NCLIN)
97 NCLIN = NCLIN − 1
98 500 CONTINUE
99

100 C
101 C
102 C END
103 C
104

105 END

XVIII



Toolbox for Specialized Power System Analysis Fortran routines

A.7 solvb.f

1 C
2 C
3 C ROUTINE FOR SOLVING THE SYSTEM B∗X = RHS
4 C
5 C
6

7 SUBROUTINE SOLVB(RHS,NBUSES)
8

9 C
10 C COMMON BLOCKS
11 C
12

13 INCLUDE ’ . . / common/param . cmn ’
14 INCLUDE ’ . . / common/ma27dp . cmn ’
15

16

17 REAL∗8 RHS(∗ )
18

19 C
20 C
21 C SOLVING EQUATION
22 C
23

24 CALL MA27CD(NBUSES,A,NDEV0,IW,LIW,W,MAXFRT,RHS, IW1,NSTEPS)
25

26

27 C
28 C END
29 C
30

31 END
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A.8 addbrc.f

1 C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−C
2 C LIBRARY: MASTERLIB ! PROGRAM RESPONSIBLE: ! Date : C
3 C PROG.SYS : SECCON ! OLAV BJARTE FOSSO ! 10 . 05 . 89 C
4 C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−C
5

6 SUBROUTINE ADDBRC( IL ,NCLIN,NVAR,MROWA,AMAT,BL,BU,SENS,
7 & PREFFRST,PREFNEXT,TOLD,
8 & NBUSES,IFROMB, ITOB, IGBUS,XINV,PLOAD,RATEA)
9 C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−C

10 C DESCRIPTION: C
11 C THE ROUTINE ADDS A LINEAR CONSTRAINT TO THE OPTIMIZATION C
12 C PROBLEM FOR A VIOLATED BRANCH. C
13 C C
14 C C
15 C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−C
16

17 C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−C
18 C COMMENTS: C
19 C C
20 C================================================================C
21

22 C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−C
23 C DECLARATION OF MAIN VARIABLES C
24 C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−C
25

26 INTEGER∗4 NCLIN , MROWA , NVAR
27

28 INTEGER PREFFRST(∗ ) , PREFNEXT(∗ ) , NBUSES ,
29 & IFROMB(∗ ) , ITOB(∗ ) , IGBUS(∗ ) ,
30 & IL
31

32 REAL∗8 AMAT(MROWA, ∗ ) , BL(∗ ) , BU(∗ ) ,
33 & SENS(∗ )
34

35 REAL XINV(∗ ) , RATEA(∗ ) , PLOAD(∗ ) ,
36 & TOLD(∗ )
37

38 C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−C
39

40 C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−C
41 C DECLARATION OF LOCAL VARIABLES C
42 C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−C
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43

44

45 C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−C
46

47

48 C
49 C
50 C CALCULATE THE SENSITIVITY
51 C
52

53 DO 100 IB = 1 , NBUSES
54 SENS( IB ) = 0 .0
55 100 CONTINUE
56

57 IFR = IFROMB( IL )
58 ITB = ITOB( IL )
59 SENS(IFR) = XINV( IL )
60 SENS(ITB) = − XINV( IL )
61 CALL SOLVB(SENS,NBUSES)
62

63 C
64 C
65 CONMOD = 0.0
66 NCLIN = NCLIN + 1
67 ILAST = 0
68 DO 200 IB = 1 ,NBUSES
69 CONMOD = CONMOD + SENS( IB ) ∗PLOAD( IB )
70 IG = PREFFRST( IB )
71 190 IF (IG .EQ. 0) GOTO 200
72 ILAST = ILAST + 1
73 AMAT(NCLIN, ILAST) = SENS( IB )
74 IG = PREFNEXT(IG)
75 GOTO 190
76 200 CONTINUE
77 C
78 IF (ILAST .NE. NVAR) WRITE(∗ ,∗ ) ’ ∗∗∗∗∗ ERROR IN ADDBRC ∗∗∗∗∗ ’
79

80 C
81 C ENTER UPPER AND LOWER CONSTRAINTS
82 C
83 BL(NVAR + NCLIN) = CONMOD − RATEA( IL ) + TOLD(2)
84 BU(NVAR + NCLIN) = CONMOD + RATEA( IL ) − TOLD(2)
85

86 C

XXI
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87 C
88 C END
89 C
90

91 END
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A.9 bulilist.f

1 C
2 SUBROUTINE BULILIST(NBUSES, IBUS ,PRICE,MAXMW,SEGTYP,NSEG,
3 & PREFFRST,PREFNEXT,PREFCOST,PREFMW,PREFTYP)
4 C
5 C THE ROUTINE BUILDS A LINKED LIST FROM INPUT LISTS
6 C
7 C
8 C
9 C DECLARATIONS

10 C
11 INTEGER IBUS(∗ ) , SEGTYP(∗ ) , NSEG ,
12 & PREFFRST(∗ ) , PREFNEXT(∗ ) , PREFTYP(∗ )
13 C
14 REAL PRICE(∗ ) , MAXMW(∗ ) ,
15 & PREFCOST(∗ ) , PREFMW(∗ )
16 C
17 C INITIALIZE
18 C
19 DO 50 IS = 1 ,NBUSES
20 PREFFRST( IS ) = 0
21 50 CONTINUE
22 C
23 DO 60 IS = 1 ,NSEG
24 PREFNEXT( IS ) = 0
25 60 CONTINUE
26 C
27 IPOS = 0
28 C
29 C BUILD LIST
30 C
31 DO 500 IS = 1 ,NSEG
32 IPOS = IPOS + 1
33 IB = IBUS( IS )
34 INEXT = PREFFRST( IB )
35 IF (INEXT .EQ. 0) THEN
36 PREFFRST( IB ) = IPOS
37 ELSE
38 190 IF (INEXT .EQ. 0) GOTO 200
39 IB = INEXT
40 INEXT = PREFNEXT( IB )
41 GOTO 190
42 200 PREFNEXT( IB ) = IPOS
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43 ENDIF
44 PREFMW(IPOS) = MAXMW( IS )
45 PREFCOST(IPOS) = PRICE( IS )
46 PREFTYP(IPOS) = SEGTYP( IS )
47 500 CONTINUE
48 C
49 C END
50 C
51

52 END
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A.10 initial.f

1 C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−C
2 C LIBRARY: START ! PROGRAM RESPONSIBLE: ! Date : C
3 C PROG.SYS : SECCON ! OLAV BJARTE FOSSO ! 14 . 12 . 89 C
4 C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−C
5

6 SUBROUTINE INITIAL(LOUT,A, IRN , ICN ,NZ,NSTEPS, IKEEP, IFLAG,IW,
7 & IW1,MAXFRT,W,LIW,LA,
8 & NBUSES, ISTAT,IFROMB, ITOB, ICKT,XINV,NLINES)
9

10 C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−C
11 C DESCRIPTION: C
12 C THE ROUTINE INITIALIZES THE SYSTEM DESCRIPTION AND C
13 C FACTORIZES B C
14 C C
15 C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−C
16

17 C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−C
18 C COMMENTS: C
19 C C
20 C================================================================C
21

22 C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−C
23 C DECLARATION OF MAIN VARIABLES C
24 C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−C
25

26 INTEGER∗2 IRN(LA) , ICN(LA) , IW(LIW) ,
27 & IKEEP(NBUSES∗3)
28 C
29 INTEGER IW1(NBUSES∗2) , NSTEPS , IFLAG ,
30 & MAXFRT , NZ , LIW
31 C
32 REAL∗8 A(LA) , W(NBUSES)
33 C
34 INTEGER NBUSES , NLINES , ISTAT(NLINES) ,
35 & IFROMB(NLINES) , ITOB(NLINES) , ICKT(NLINES)
36 C
37 REAL XINV(NLINES)
38 C
39 C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−C
40

41 C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−C
42 C DECLARATION OF LOCAL VARIABLES C
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43 C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−C
44

45

46 C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−C
47

48 C
49 C d i a gno s t i c s
50 C
51 COMMON/MA27DD/ U, LP, MP, LDIAG
52

53 REAL∗8 U
54 INTEGER LP, MP, LDIAG
55

56 LP = LOUT
57 MP = LOUT
58 LDIAG = 0
59

60 C
61 C
62 C INITIALIZATIONS FOR NAG−FO1BRF
63 C
64 C
65

66 C
67 C BUILD SYSTEM DESCRIPTION
68 C
69

70 CALL BUILDB(A, IRN , ICN ,NZ,NBUSES,
71 & ISTAT,IFROMB, ITOB, ICKT,XINV,NLINES)
72

73 C
74 C
75 C SYMBOLIC FACTORIZATION OF THE MATRIX
76 C
77 IFLAG = 0
78

79 CALL MA27AD(NBUSES,NZ, IRN , ICN ,IW,LIW, IKEEP, IW1,NSTEPS, IFLAG)
80

81 C
82 C NUMERICAL FACTORIZATION OF THE MATRIX
83 C
84

85 CALL MA27BD(NBUSES,NZ, IRN , ICN ,A,LA,IW,LIW, IKEEP,NSTEPS,
86 & MAXFRT, IW1, IFLAG)
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87

88

89 C
90 C END
91 C
92

93 END
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A.11 coeval.f

1 C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−C
2 C LIBRARY: MASTERLIB ! PROGRAM RESPONSIBLE: ! Date : C
3 C PROG.SYS : SECCON ! OLAV BJARTE FOSSO ! 09 . 03 . 91 C
4 C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−C
5

6 SUBROUTINE COEVAL(NBUSES,NLINES,PREFFRST,PREFNEXT, PINIT ,
7 & IFROMB, ITOB,XINV, ISTAT,BASFLOW,NLCOLD,
8 & ICKT,IBUSNO,RATEA,LMESS,RMEXT,WCONCT,WBUS,SBASE,
9 & BUSNAM)

10 C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−C
11 C DESCRIPTION: C
12 C THE ROUTINE PERFORMS A LINEAR SCREENING OF ALL SINGLE C
13 C BRANCH OUTAGES WITH AN EXEPTION OF THOSE CAUSING C
14 C SEPARATION C
15 C C
16 C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−C
17

18 C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−C
19 C COMMENTS: C
20 C C
21 C================================================================C
22 C NAME ! TYPE ! COMMENT C
23 C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−C
24 C GLOBAL VARIABLES: C
25 C C
26 C C
27 C COMMON BLOCKS C
28

29 INCLUDE ’ . . / common/param . cmn ’
30 INCLUDE ’ . . / common/ contproc . cmn ’
31 INCLUDE ’ . . / common/cominfo . cmn ’
32

33 COMMON / REMED / IGCAND(20) , NMOD , ILC
34 INTEGER IGCAND, NMOD, ILC
35 C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−C
36 C INPUTDATA: C
37 C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−C
38 C NAME ! TYPE ! COMMENT C
39 C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−C
40 C C
41 C C
42 C C
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43 C C
44 C C
45 C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−C
46

47 C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−C
48 C OUTPUTDATA: C
49 C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−C
50 C NAME ! TYPE ! COMMENT C
51 C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−C
52 C C
53 C C
54 C C
55 C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−C
56

57 C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−C
58 C LOCAL VARIABLES: C
59 C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−C
60 C NAME ! TYPE ! COMMENT C
61 C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−C
62 C C
63 C C
64 C C
65 C C
66 C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−C
67

68 C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−C
69 C DECLARATION OF MAIN VARIABLES C
70 C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−C
71 C
72 INTEGER NBUSES , NLINES , PREFFRST(NBUSES) ,
73 & PREFNEXT(∗ ) , IFROMB(NLINES) , ITOB(NLINES) ,
74 & ISTAT(NLINES) , ICKT(NLINES) , IBUSNO(NBUSES) ,
75 & WCONCT(∗ ) , WBUS(∗ )
76 C
77 REAL XINV(NLINES) , BASFLOW(NLINES) , PINIT(NBUSES) ,
78 & RATEA(NLINES)
79

80 CHARACTER∗8 BUSNAM(NBUSES)
81 C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−C
82

83 C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−C
84 C DECLARATION OF LOCAL VARIABLES C
85 C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−C
86
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87 INTEGER IBOUT , IB , IWORST ,
88 & I , J , K ,
89 & L , IVOVL(30) , NOVL ,
90 & ICSEP(MAXBUS1) , IVRES(30) , NRES ,
91 & IDUM
92

93 REAL∗8 RHS(MAXBUS1) , CVEC(MVAR) , CLAMDA(MCTOTL)
94

95 REAL POSTFL(MAXLIN1) , DINV , PWORST ,
96 & DUMOBJ , PGUSED(30) , PRMIN(30) ,
97 & PRMAX(30) , PCMIN(30) , PCMAX(30)
98

99 C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−C
100

101 RMULT = RMEXT
102

103 C
104 C INITIALIZE SEPARATION COUNTER
105 C
106 NSEP = 0
107 C
108 C DEFINE DUMMY CAPACITY
109 C
110 DO 25 I = 1 , ILC
111 PRMIN( I ) = 20 .0
112 PRMAX( I ) = 20 .0
113 25 CONTINUE
114 C
115 C
116 C CHECK ALL CONTINGENCIES
117 C
118

119 DO 500 IBOUT = 1 ,NLINES
120 IF (WCONCT(IBOUT) .EQ. 0) GOTO 500
121 IF (ISTAT(IBOUT) .NE. 1) GOTO 500
122 IF (ABS(BASFLOW(IBOUT) ) .LT. TOLD(2) ) GOTO 500
123

124 I = IFROMB(IBOUT)
125 J = ITOB(IBOUT)
126

127 C
128 C
129 C CALCULATE REQUIRED INVERSE FACTORS
130 C

XXX



Toolbox for Specialized Power System Analysis Fortran routines

131

132 DO 100 IB = 1 ,NBUSES
133 RHS( IB ) = 0 .0
134 100 CONTINUE
135

136 RHS( I ) = 1 .0
137 RHS(J ) = − 1 .0
138

139 CALL SOLVB(RHS,NBUSES)
140

141 C
142 C CALCULATE COMPENSATION
143 C
144

145 DINV = (1 . 0 − XINV(IBOUT) ∗(RHS( I ) − RHS(J ) ) ) /BASFLOW(IBOUT)
146

147 IF (ABS(DINV) .LE. TOLD(1) ) THEN
148 NSEP = NSEP + 1
149 ICSEP(NSEP) = IBOUT
150 GOTO 500
151 ENDIF
152 C
153 C FIND FLOW
154 C
155 IWORST = 0
156 PWORST = 0.0
157 POSTFL(IBOUT) = 0 .0
158 NOVL = 0
159

160 DO 400 IB = 1 ,NLINES
161 IF (ISTAT( IB ) .NE. 1) GOTO 400
162 IF ( IB .EQ. IBOUT) GOTO 400
163 K = IFROMB( IB )
164 L = ITOB( IB )
165 IF ( (WBUS(K) .EQ. 0) .OR. (WBUS(L) .EQ. 0) ) GOTO 400
166 C
167 POSTFL( IB ) = BASFLOW( IB ) + XINV( IB ) ∗(RHS(K) − RHS(L) ) /DINV
168 DFLOW = ABS(POSTFL( IB ) ) − RMULT∗RATEA( IB )
169 IF (DFLOW .LT. TOLD(3) ) GOTO 400
170 IF (RATEA( IB ) .EQ. 0 . 0 ) GOTO 400
171

172 C
173 POVL = POSTFL( IB )
174
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175

176 C
177 C
178 C TERMINATE THE CONTINGENCY ANALYSES IF TOO MANY CONSTRAINTS ARE ADDED
179 C
180 IF (NLCOLD .LT. 50) THEN
181 IFR = IFROMB(IBOUT)
182 ITR = ITOB(IBOUT)
183 WRITE(LMESS,222 ) IBUSNO(IFR) , BUSNAM(IFR) , IBUSNO(ITR) ,
184 & BUSNAM(ITR) , ICKT(IBOUT) ,
185 & IBUSNO(K) , BUSNAM(K) , IBUSNO(L) , BUSNAM(L) , ICKT( IB ) ,
186 & POSTFL( IB ) ∗SBASE, RATEA( IB ) ∗SBASE, RMULT
187 222 FORMAT(1X, ’OUTAGED BRANCH : ’ , I6 , 1X,A8, 3X, I6 , 1X,A8, 3X, I3 , / ,
188 & 8X, ’OVERLOAD ON : ’ , I6 , 1X,A8, 3X, I6 , 1X,A8 , I3 , 2F8 . 1 , F6 . 2 , / )
189

190

191 CALL PREVENTIV(IBOUT, IB ,RHS,NBUSES,NLINES,IFROMB, ITOB, PINIT ,
192 & XINV,POVL,RMULT,RATEA,PREFFRST,PREFNEXT,NLCOLD)
193 ELSE
194 ISTAT(IBOUT) = 1
195 GOTO 999
196 ENDIF
197 C
198 NOVL = NOVL + 1
199 IVOVL(NOVL) = IB
200 IF (DFLOW .GT. PWORST) THEN
201 PWORST = DFLOW
202 IWORST = IB
203 ENDIF
204 400 CONTINUE
205

206 C
207 C
208 C
209 INS = 1
210 IF ( INS .EQ. 1) GOTO 500
211 C
212 C SOLVE THE SUBPROBLEM IN ORDER TO FIND BENDERS CUT
213 C
214 C
215 IF (IWORST .GT. 0) THEN
216 C WRITE(LOUT, ∗ ) ’ ’
217 C WRITE(LOUT, ∗ ) ’ SOLVING SUBPROBLEM : ’
218 C WRITE(LOUT,490 ) IBUSNO( I ) , IBUSNO(J ) , ICKT(IBOUT)
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219 490 FORMAT(1X, ’OUTAGE : ’ ,2 I6 , I4 , / )
220 CC
221 CC UPDATE THE COMPENSATION INFORMATION
222 CC
223 CC
224 ISTAT(IBOUT) = 0
225 NUMOUT = 1
226 MULTOUT(1) = IBOUT
227 CIJ (NUMOUT) = 1.0/XINV(IBOUT) − (RHS( I ) − RHS(J ) )
228 DO 492 IB = 1 ,NBUSES
229 SENSMAT(IB ,NUMOUT) = RHS( IB )
230 492 CONTINUE
231 C
232 CC
233 CC DEFINE REMEDIAL ACTIONS IF PERMITTED
234 CC
235 C
236 C IF (IREMED(IBOUT) .NE. 1) GOTO 495
237 C IF (NMOD .LE. 1) GOTO 495
238 C CALL REDREM(IWORST,POSTFL,NUMOUT,IVOVL,NOVL, IVRES ,NRES,
239 C & IGCAND,NMOD, ILC ,PRMIN,PRMAX,PCMIN,PCMAX,
240 C & ICKT,IBUSNO,XINV,IFROMB, ITOB,RATEA, ISTAT,NBUSES,NLINES)
241 CC
242 CC OUTPUT OF RESCHEDULING UNITS
243 CC
244 C WRITE(LOUT, ∗ ) ’ RESCHEDULING UNITS’
245 C WRITE(LOUT, ∗ ) (IBUSNO(IVRES( IS ) ) , IS = 1 ,NRES)
246 C
247 495 CONTINUE
248 C
249 CC
250 CC SOLVE THE SUBPROBLEM
251 CC
252 C CALL SOLVSUB(IWORST,POSTFL,NUMOUT,NRES, IVRES ,
253 C & PGUSED,CVEC,CLAMDA,DUMOBJ,IDUM,
254 C & PCMIN,PCMAX,PREFFRST, ICKT,IBUSNO,XINV,
255 C & IFROMB, ITOB,RATEA, ISTAT,NBUSES,NLINES)
256 C
257 CC
258 CC UPDATE THE POST CONTINGENCY RESCHEDULING
259 C
260 CC
261 IP = IFIRST(IBOUT) − 1
262 DO 510 IS = 1 ,NRES
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263 IRESCH( IP+IS ) = IVRES( IS )
264 PFUSED( IP+IS ) = PGUSED( IS )
265 510 CONTINUE
266 ILAST(IBOUT) = IP + NRES
267 C
268 CC
269 CC FORM AND ADD BENDERS CUT
270 CC
271 C
272 IF (IDUM .EQ. 1) THEN
273 CALL ADDCUT(CVEC,CLAMDA,DUMOBJ,PREFFRST,PREFNEXT,NLCOLD,
274 & NBUSES)
275 ENDIF
276 C
277 ENDIF
278 C
279 C
280 C
281 C RESTORE
282 C
283 ISTAT(IBOUT) = 1
284

285 500 CONTINUE
286

287 999 CONTINUE
288

289

290 C
291 C END
292 C
293

294 END
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A.12 secc_opt.f

1

2 SUBROUTINE SECC_OPT(LOUT,NBUSES,NGENS,NLINES, IGBUS,PLOAD,PGEN,
3 & PSELL,PBUY,IFROMB, ITOB, ICKT,XINV, ISTAT,RATEA,IBUSNO,
4 & IBUS ,PRICE,MAXMW,SEGTYP,NSEG,LMESS,RMEXT,
5 & PREFFRST,PREFNEXT,PREFCOST,PREFMW,PREFTYP,
6 & TETA0,BASFLOW,CINCR,ICONT,NICONT, IBUILD ,
7 & A, IRN, ICN ,NZ,NSTEPS, IKEEP, IFLAG,IW, IW1,MAXFRT,W,LIW,LA,
8 & WCONCT,WBUS,AKOEFF,SBASE,BUSNAM)
9

10 C s e cu r i t y cons t ra ined d i spatch
11 C
12 C
13 C DECLARATIONS
14 C
15 INTEGER LOUT , NBUSES , NGENS ,
16 & NLINES , IGBUS(NBUSES) , IFROMB(NLINES) ,
17 & ITOB(NLINES) , ICKT(NLINES) , ISTAT(NLINES) ,
18 & IBUS(NSEG) , SEGTYP(NSEG) , NSEG ,
19 & PREFFRST(NBUSES) , PREFNEXT(∗ ) , PREFTYP(∗ ) ,
20 & ICONT , IBUILD , IBUSNO(NBUSES) ,
21 & WCONCT(∗ ) , WBUS(∗ )
22 C
23 REAL PLOAD(NBUSES) , PGEN(NGENS) , PSELL(NBUSES) ,
24 & PBUY(NBUSES) , XINV(NLINES) , RATEA(NLINES) ,
25 & PRICE(NSEG) , MAXMW(NSEG) , PREFCOST(∗ ) ,
26 & PREFMW(∗ ) , BASFLOW(NLINES) , CINCR(NBUSES) ,
27 & AKOEFF(∗ ) , SBASE
28 C
29 REAL∗8 TETA0(NBUSES)
30

31 CHARACTER∗8 BUSNAM(NBUSES)
32 C
33 C VARIABLES FOR THE HARWELL MA27 ROUTINE
34 C
35

36 INTEGER∗2 IRN(LA) , ICN(LA) , IW(LIW) ,
37 & IKEEP(3∗NBUSES)
38 INTEGER IW1(2∗NBUSES) , NSTEPS , IFLAG ,
39 & MAXFRT , NZ , LIW ,
40 & LA
41 REAL∗8 A(LA) , W(NBUSES)
42 C
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43

44

45 10 CONTINUE
46 C
47 C bui ld l i nked l i s t o f the va r i ab l e d e s c r i p t i o n
48 C
49 C Al l v a r i a b l e s are ordered in a l i nked l i s t to an appropr ia te
50 C de s c r i p t i o n f o r each bus .
51 C
52

53 CALL BULILIST(NBUSES, IBUS ,PRICE,MAXMW,SEGTYP,NSEG,
54 & PREFFRST,PREFNEXT,PREFCOST,PREFMW,PREFTYP)
55 C
56 C bui ld the system de s c r i p t i o n and f a c t o r i z e
57 C
58 C I f NLINES i s l e s s or equal to 1 no network i s invo lved and no network
59 C ana l y s i s i s performed .
60 C I f IBUILD i s 0 an adequate d e s c r i p t i o n i s a l r eady made .
61 C
62 IF (NLINES .LE. 1) GOTO 100
63 IF (IBUILD .EQ. 0) GOTO 100
64 CALL INITIAL(LOUT,A, IRN , ICN ,NZ,NSTEPS, IKEEP, IFLAG,IW,
65 & IW1,MAXFRT,W,LIW,LA,
66 & NBUSES, ISTAT,IFROMB, ITOB, ICKT,XINV,NLINES)
67 C
68

69 100 CONTINUE
70 C
71 IK = 0
72 NLCOLD = 0
73

74 C
75 C
76 200 CONTINUE
77 C
78 C
79 C Solve the main problem without any cont ingency ana l y s i s .
80 C
81 C Base Case
82 C
83 CALL MASTER(NBUSES,NGENS,NLINES, IGBUS,PREFFRST,PREFNEXT,PREFCOST,
84 & PREFMW,PREFTYP,PLOAD,CINCR,PBUY,PSELL,PGEN,
85 & TETA0,IFROMB, ITOB,XINV, ISTAT,RATEA,BASFLOW,NLCOLD,
86 & IBUSNO,LMESS,WCONCT,WBUS,AKOEFF, ICKT,SBASE,BUSNAM)
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87 C
88 C sk ip the cont ingency ana l y s i s
89 C
90

91 IF (ICONT .EQ. 0) GOTO 999
92 IF (NLINES .LE. 1) GOTO 999
93 C
94 C cont ingency eva lua t i on and con s t r a i n t gene ra t i on
95 C
96 IK = IK + 1
97

98 WRITE(LMESS,300 ) IK
99 300 FORMAT(/ ,1X, ’CONTINGENCY EVALUATION NUMBER: ’ , I3 , / )

100 IF ( IK .GT. NICONT) GOTO 999
101

102 NCNOW = NLCOLD
103

104 CALL COEVAL(NBUSES,NLINES,PREFFRST,PREFNEXT,PLOAD,
105 & IFROMB, ITOB,XINV, ISTAT,BASFLOW,NLCOLD,
106 & ICKT,IBUSNO,RATEA,LMESS,RMEXT,WCONCT,WBUS,SBASE,
107 & BUSNAM)
108

109 IF (NLCOLD .GT. NCNOW) GOTO 200
110

111

112 999 CONTINUE
113 C
114 C END
115 C
116

117 END
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B C routines

This section contains the relevant C codes belonging to the DC optimal power flow pro-
gram DCflow, translated from the corresponding Fortran codes given in Appendix A.

B.1 topflow.h

1 #i f n d e f HEADER_nettanalyse
2 #de f i n e HEADER_nettanalyse
3

4 #de f i n e PQ_BUS 1
5 #de f i n e PV_BUS 2
6 #de f i n e SWING_BUS 3
7 #de f i n e DISCONNECTED_BUS 4
8

9 #de f i n e ABS(x ) ( ( ( x ) < 0) ? (−(x ) ) : ( ( x ) ) )
10 #de f i n e CONNECTED( i , con ) ( con [ i ] < 0 ? i : con [ i ] )
11

12 #end i f
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B.2 dcflow.h

1 /∗ Heade r f i l e " dcf low . h" ∗/
2

3 __declspec ( d l l e xpo r t ) void master ( i n t nbuses , i n t ngens , i n t n l i n e s , i n t ∗
igbus , i n t ∗ p r e f f r s t , i n t ∗ pre fnext , double ∗ pr e f c o s t , double ∗prefmw ,
i n t ∗preftyp , double ∗pload , double ∗ c incr , double ∗pbuy , double ∗ p s e l l ,
double ∗pgen , double ∗ teta0 , i n t ∗ i fromb , i n t ∗ i tob , double ∗xinv , i n t
∗ i s t a t , double ∗ ratea , double ∗basf low , i n t n lco ld , i n t ∗ ibusno , i n t ∗
wconct , i n t ∗wbus , double ∗ akoe f f , i n t ∗ i ck t , double sbase , i n t ∗busnam)
;

4

5 __declspec ( d l l e xpo r t ) void b u l i l i s t ( i n t nbuses , i n t ∗ ibus , double ∗ pr i ce ,
double ∗maxmw, i n t ∗ segtyp , i n t nseg , i n t ∗ p r e f f r s t , i n t ∗ pre fnext ,
double ∗ pre f c o s t , double ∗prefmw , i n t ∗ pre f typ ) ;

6

7 __declspec ( d l l e xpo r t ) void addbrc ( i n t i l , i n t nc l in , i n t nvar , i n t mrowa ,
double ∗∗amat , double ∗bl , double ∗bu , double ∗ sens , i n t ∗ p r e f f r s t , i n t
∗ pre fnext , double ∗ to ld , i n t nbuses , i n t ∗ i fromb , i n t ∗ i tob , i n t ∗ igbus ,
double ∗xinv , double ∗pload , double ∗ ra tea ) ;

8

9 __declspec ( d l l e xpo r t ) void balcon ( i n t nvar , i n t nc l in , double ∗ cvec , i n t
mrowa , double ∗∗amat , double ∗bl , double ∗bu , i n t ∗ p r e f f r s t , i n t ∗
pre fnext , double ∗ pr e f c o s t , double ∗prefmw , i n t nbuses , i n t ∗ igbus ,
double ∗pload , double ∗ ako e f f ) ;

10

11 __declspec ( d l l e xpo r t ) void remove ( i n t ip , i n t nvar , i n t nc l in , i n t mrowa ,
double ∗∗amat , double ∗bl , double ∗bu , i n t ∗ i s t a t e , i n t ∗ i conp ) ;

12

13 __declspec ( d l l e xpo r t ) void upcon ( i n t nvar , i n t nc l in , i n t mrowa , double ∗∗
amat , double ∗bl , double ∗bu , double ∗x , i n t ∗ i s t a t e , double ∗ t o ld ) ;

14

15 __declspec ( d l l e xpo r t ) void update ( i n t nbuses , i n t ngens , double ∗ c incr ,
double ∗pbuy , double ∗ p s e l l , double ∗pgen , i n t ∗ igbus , i n t ∗ p r e f f r s t ,
i n t ∗ pre fnext , i n t ∗pre ftyp , i n t nvar , double ∗clamda , double ∗ cvec ,
double ∗x ) ;
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B.3 master.c

1 __declspec ( d l l e xpo r t ) void master ( i n t nbuses , i n t ngens , i n t n l i n e s , i n t ∗
igbus , i n t ∗ p r e f f r s t , i n t ∗ pre fnext , double ∗ pr e f c o s t , double ∗prefmw ,
i n t ∗preftyp , double ∗pload , double ∗ c incr , double ∗pbuy , double ∗ p s e l l ,
double ∗pgen , double ∗ teta0 , i n t ∗ i fromb , i n t ∗ i tob , double ∗xinv , i n t
∗ i s t a t , double ∗ ratea , double ∗basf low , i n t n lco ld , i n t ∗ ibusno , i n t ∗
wconct , i n t ∗wbus , double ∗ akoe f f , i n t ∗ i ck t , double sbase , i n t ∗busnam)

2 {
3

4 #inc lude " topf low . h"
5

6 /∗ The rout ine s o l v e s the master problem in the s e c u r i t y cons t ra ined
d i spatch problem ∗/

7

8 /∗ VARIABLE DECLARATIONS ∗/
9 /∗ Global v a r i a b l e s from commonblocks : ∗/

10

11 i n t maxbus1 , maclin2 , l i c n , l i r n , mrowa , mvar , mrsub , ndev0 , l iw , l i n ,
lout , itmax , msglvl , nvar , nc l in , nc to t l , l i n ob j , i f a i l , ∗ i s t a t e , ∗ iwork
;

12

13 double to ld , obj lp , ∗∗amat , ∗bl , ∗bu , ∗ cvec , ∗x , ∗clamda , ∗work ;
14

15 /∗ Dec la ra t i on o f l o c a l v a r i a b l e s : ∗/
16 i n t ncnow , ib , ig , i l , i f b , i tb , ∗ iconp , imaster ;
17

18 double ∗ r s i d e ;
19

20 // Number o f main master problem i t e r a t i o n s
21 imaster = 0 ;
22

23 // Set up the balance cons t ra in t , co s t vec to r and va r i ab l e l im i t s
24 i f ( n l c o l d == 0)
25 {
26 nc l i n = 0 ;
27 balcon ( nvar , nc l in , cvec , mrowa , amat , bl , bu , p r e f f r s t , pre fnext ,

p r e f c o s t , prefmw , nbuses , igbus , pload , ako e f f ) ;
28 }
29

30 // Skip the network ana l y s i s i f NLINES i s equal to 0 . No network
invo lved .

31 i f ( n l i n e s > 1)
32 {
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33

34 p r i n t f ( " So lv ing Master Problem" ) ;
35

36 do
37 {
38

39 // Find optimum with given c on s t r a i n t s
40 ncnow = nc l i n ;
41 i f a i l = 1 ;
42

43 nc t o t l = nvar + nc l i n ;
44

45 imaster = imaster + 1 ;
46

47 // Optimizat ion a lgor i thm
48 // E04MBF( itmax , msglvl , nvar , nc l in , nc to t l , mrowa , amat , bl ,

bu , cvec , l i n ob j , x , i s t a t e , obj lp , clamda , iwork , l iwork , work , lwork ,
i f a i l ) ;

49

50 p r i n t f ( " I t e r a t i o n : %d . Power r e s chedu l i ng co s t : %f " , imaster ,
ob j l p ∗ sbase ) ;

51

52 /∗ Update upper and lower c on s t r a i n t s i f the problem i s
i n f e a s i b l e . Th opt ion i s only used when the c on s t r a i n t s cannot be
s a t i s f i e d . The c on s t r a i n t s are updated due to the c l o s e to optimal
s o l u t i o n returned from the nag−r ou t ine . ∗/

53 i f ( i f a i l != 0)
54 {
55 upcon ( nvar , nc l in , mrowa , amat , bl , bu , x , i s t a t e , t o ld ) ;
56 p r i n t f ( " I n f e a s i b l e case − Constra int Relaxat ion app l i ed in

master problem" ) ;
57 }
58

59 // Update the gene ra t i on vec tor
60 update ( nbuses , ngens , c inc r , pbuy , p s e l l , pgen , igbus , p r e f f r s t

, pre fnext , pre f typ , nvar , clamda , cvec , x ) ;
61

62 // Remove nonbinding c on s t r a i n t s in the opt imiza t i on proce s s
63 remove (0 , nvar , nc l in , mrowa , amat , bl , bu , i s t a t e , iconp ) ;
64

65 // Find net i n j e c t i o n s on the nodes
66 f o r ( ib = 0 ; ib < nbuses ; ib++)
67 {
68 i g = igbus [ ib ] ;
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69 i f ( i g > 0)
70 {
71 t e ta0 [ ib ] = pgen [ i g ] − pload [ ib ] − p s e l l [ ib ] + pbuy [ ib

] ;
72 }
73 e l s e
74 {
75 t e ta0 [ ib ] = −pload [ ib ] − p s e l l [ ib ] + pbuy [ ib ] ;
76 }
77 }
78

79 // Find vo l tage ang l e s by a forward and a backward sun s t i t u t i o n
80 // SOLVB( teta0 , nbuses ) ;
81

82 // I d e n t i f y ove r l oads and add c on s t r a i n t s
83 f o r ( i l = 0 ; i l < nbuses ; i l ++)
84 {
85 i f b = ifromb [ i l ] ;
86 i t b = i tob [ i l ] ;
87 i f ( ra t ea [ i l ] == 0 . 0 )
88 {
89 cont inue ;
90 }
91 i f (wbus [ i f b ] == 0 | | wbus [ i t b ] == 0)
92 {
93 cont inue ;
94 }
95 i f ( i s t a t [ i l ] == 1)
96 {
97 bas f low [ i l ] = ( te ta0 [ i f b ] − t e ta0 [ i t b ] ) ∗ xinv [ i l ] ;
98 i f ( (ABS( bas f low [ i l ] − ra tea [ i l ] ) ) > to ld )
99 {

100 addbrc ( i l , nc l in , nvar , mrowa , amat , bl , bu , r s i d e ,
p r e f f r s t , pre fnext , to ld , nbuses , ifromb , i tob , igbus , xinv , pload ,

ra tea ) ;
101

102 p r i n t f ( "Active t ransmi s s i on c on s t r a i n t s a f t e r
cur rent i t e r a t i o n : \n From : %d %c to : %d %c , Ckt_Id : %d , Line f low : %f ,
Thermal r a t i ng : %f " , ibusno [ i f b ] , busnam [ i f b ] , ibusno [ i t b ] , busnam [ i t b ] ,

i c k t [ i l ] , bas f low [ i l ] ∗ sbase , ra t ea [ i l ] ∗ sbase ) ;
103 }
104 }
105 e l s e
106 {
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107 bas f low [ i l ] = 0 . 0 ;
108 }
109 }
110

111 } whi l e ( n c l i n > ncnow) ;
112

113 f o r ( i l = 0 ; i l < n l i n e s ; i l ++)
114 {
115 i f b = ifromb [ i l ] ;
116 i t b = i tob [ i l ] ;
117 i f ( ra t ea [ i l ] == 0 . 0 )
118 {
119 cont inue ;
120 }
121 i f (wbus [ i f b ] == 0 | | wbus [ i t b ] == 0)
122 {
123 cont inue ;
124 }
125 i f ( i s t a t [ i l ] == 1)
126 {
127 i f ( (ABS( bas f low [ i l ] − ra tea [ i l ] ) > −t o ld ) )
128 {
129 p r i n t f ( "Active t ransmi s s i on c on s t r a i n t s a f t e r cur rent

i t e r a t i o n : \n From : %d %c to : %d %c , Ckt_Id : %d , Line f low : %f , Thermal
r a t i ng : %f " , ibusno [ i f b ] , busnam [ i f b ] , ibusno [ i t b ] , busnam [ i t b ] , i c k t [ i l
] , bas f low [ i l ] ∗ sbase , ra t ea [ i l ] ∗ sbase ) ;

130 }
131 }
132 }
133 } //End i f no network
134

135 // Update the v i o l a t i o n counter
136 n l c o l d = nc l i n ;
137

138 // Dump incrementa l co s t
139

140 } // End master
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B.4 balcon.c

1 /∗ This rou t in e :
2 1 . Set s up the balance c on s t r a i n t between the load and gene ra t i on
3 2 . Set s up the co s t vec to r f o r the opt imiza t i on
4 3 . Set s up the va r i ab l e l im i t s
5 ∗/
6

7 __declspec ( d l l e xpo r t ) void balcon ( i n t nvar , i n t nc l in , double ∗ cvec , i n t
mrowa , double ∗∗amat , double ∗bl , double ∗bu , i n t ∗ p r e f f r s t , i n t ∗
pre fnext , double ∗ pr e f c o s t , double ∗prefmw , i n t nbuses , i n t ∗ igbus ,
double ∗pload , double ∗ ako e f f )

8 {
9

10 /∗ Local v a r i a b l e s ∗/
11 double t l oad ;
12 i n t nseg , ig , ib , i l a s t ;
13

14 nvar = 0 ;
15 nc l i n = 1 ;
16 t l oad = 0 . 0 ;
17 i l a s t = 0 ;
18

19 f o r ( ib = 0 ; ib < nbuses ; ib++)
20 {
21 t l oad = t load + pload [ ib ] ;
22 i g = p r e f f r s t [ ib ] ;
23 whi le ( i g != 0)
24 {
25 i l a s t = i l a s t + 1 ;
26 cvec [ i l a s t ] = p r e f c o s t [ i g ] ;
27 i f ( prefmw [ i g ] > 0 . 0 )
28 {
29 amat [ n c l i n ] [ i l a s t ] = ako e f f [ ib ] ;
30 bl [ i l a s t ] = 0 . 0 ;
31 bu [ i l a s t ] = prefmw [ i g ] ;
32 }
33 e l s e
34 {
35 amat [ n c l i n ] [ i l a s t ] = 1 .0 / ako e f f [ ib ] ;
36 bu [ i l a s t ] = 0 . 0 ;
37 bl [ i l a s t ] = prefmw [ i g ] ;
38 }
39 i g = pre fnext [ i g ] ;
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40 }
41 }
42

43 nvar = i l a s t ;
44 bu [ n c l i n + nvar ] = t load ;
45 bl [ n c l i n + nvar ] = t load ;
46

47 } // End balcon
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B.5 upcon.c

1 /∗ Update upper and lower c on s t r a i n t s i f the problem i s i n f e a s i b l e . The
opt ion i s only used when the c on s t r a i n t s con not be s a t i s f i e d . The
c on s t r an i t s are updated due to the c l o s e to optimal s o l u t i o n returned
from the nag−r ou t ine . ∗/

2 #inc lude " topf low . h"
3

4 __declspec ( d l l e xpo r t ) void upcon ( i n t nvar , i n t nc l in , i n t mrowa , double ∗∗
amat , double ∗bl , double ∗bu , double ∗x , i n t ∗ i s t a t e , double ∗ t o ld )

5 {
6 double value , r e s i d ;
7

8 f o r ( i n t i s = 0 ; i s < nc l i n ; i s++)
9 {

10 value = 0 . 0 ;
11 i f ( i s t a t e [ nvar + i s ] >= 0)
12 {
13 cont inue ;
14 }
15 f o r ( i n t ib = 0 ; ib < nvar ; ib++)
16 {
17 value = value + amat [ i s ] [ ib ] ∗ x [ ib ] ;
18 }
19 i f ( i s t a t e [ nvar + i s ] == −1)
20 {
21 r e s i d = ABS(bu [ nvar + i s ] ) − ABS( value ) ;
22 bu [ nvar + i s ] = value + to ld [ 2 ] ;
23 }
24 e l s e i f ( i s t a t e [ nvar + i s ] == −2)
25 {
26 r e s i d = ABS( b l [ nvar + i s ] ) − ABS( value ) ;
27 bl [ nvar + i s ] = value − t o ld [ 2 ] ;
28 }
29 }
30

31 } // End upcon
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B.6 update.c

1 __declspec ( d l l e xpo r t ) void update ( i n t nbuses , i n t ngens , double ∗ c incr ,
double ∗pbuy , double ∗ p s e l l , double ∗pgen , i n t ∗ igbus , i n t ∗ p r e f f r s t ,
i n t ∗ pre fnext , i n t ∗pre ftyp , i n t nvar , double ∗clamda , double ∗ cvec ,
double ∗x )

2 {
3

4 /∗ The algor i thm conc ludes the r e s u l t from the opt imiza t i on program ∗/
5

6 // I n i t i a l i z e gene ra t i on ve c t o r s
7 f o r ( i n t ib = 0 ; ib < nbuses ; ib++)
8 {
9 c i n c r [ ib ] = 0 . 0 ;

10 pbuy [ ib ] = 0 . 0 ;
11 p s e l l [ ib ] = 0 . 0 ;
12 }
13

14 f o r ( i n t i g = 0 ; i g < ngens ; i g++)
15 {
16 pgen [ i g ] = 0 . 0 ;
17 }
18

19 // Update a l l v a r i a b l e s
20 i n t i l a s t = 0 ;
21 f o r ( i n t ib = 0 ; ib < nbuses ; ib++)
22 {
23 i n t i s = p r e f f r s t [ ib ] ;
24 whi le ( i s != 0)
25 {
26 i l a s t = i l a s t + 1 ;
27 i f ( p re f typ [ i s ] == 1)
28 {
29 p s e l l [ ib ] = p s e l l [ ib ] − x [ i l a s t ] ;
30 }
31 e l s e i f ( p re f typ [ i s ] == 2)
32 {
33 pbuy [ ib ] = pbuy [ ib ] + x [ i l a s t ] ;
34 }
35 e l s e i f ( p re f typ [ i s ] == 3)
36 {
37 i g = igbus [ ib ] ;
38 pgen [ i g ] = pgen [ i g ] + x [ i l a s t ] ;
39 }
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40 e l s e
41 {
42 p r i n t f ( "Error in vec to r − pre f typ " ) ;
43 }
44

45 c i n c r [ ib ] = clamda [ i l a s t ] − cvec [ i l a s t ] ;
46 i s = pre fnext [ i s ] ;
47 }
48 }
49

50 i f ( i l a s t != nvar )
51 {
52 p r i n t f ( "∗∗∗ ERROR IN UPDATE ∗∗∗" ) ;
53 }
54 }
55

56 // End update
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B.7 remove.c

1 /∗ The rout ine removes c on s t r a i n t s with cer taon a t t r i b u t e s from
2 the opt imiza t i on problem ∗/
3

4 __declspec ( d l l e xpo r t ) void remove ( i n t ip , i n t nvar , i n t nc l in , i n t mrowa ,
double ∗∗amat ,

5 double ∗bl , double ∗bu , i n t ∗ i s t a t e , i n t
∗ i conp )

6 {
7 // Local v a r i a b l e s
8 i n t ib , ig , i n c l i n ;
9

10 // Remove c on s t r a i n t s
11 i n c l i n = nc l i n ;
12

13 f o r ( ib = i n c l i n − 1 ; ib = 0 ; ib−−)
14 {
15 i f ( i s t a t e [ ib + nvar ] != ip )
16 {
17 cont inue ;
18 }
19

20 f o r ( i g = 1 ; i g < nvar ; i g++)
21 {
22 amat [ ib ] [ i g ] = amat [ n c l i n ] [ i g ] ;
23 }
24

25 bu [ ib + nvar ] = bu [ n c l i n + nvar ] ;
26 bl [ ib + nvar ] = bl [ n c l i n + nvar ] ;
27 i s t a t e [ ib + nvar ] = i s t a t e [ n c l i n + nvar ] ;
28 i conp [ ib ] = iconp [ n c l i n ] ;
29 nc l i n = nc l i n − 1 ;
30 }
31

32 } // End remove
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B.8 addbrc.c

1 /∗ The rout ine adds a l i n e a r c on s t r a i n t to the opt imiza t i on problem f o r a
v i o l a t ed branch ∗/

2

3 __declspec ( d l l e xpo r t ) void addbrc ( i n t i l , i n t nc l in , i n t nvar , i n t mrowa ,
double ∗∗amat , double ∗bl , double ∗bu , double ∗ sens , i n t ∗ p r e f f r s t , i n t
∗ pre fnext , double ∗ to ld , i n t nbuses , i n t ∗ i fromb , i n t ∗ i tob , i n t ∗ igbus ,
double ∗xinv , double ∗pload , double ∗ ra tea )

4 {
5

6 // Local v a r i a b l e s
7 double conmod ;
8 i n t i f r , i tb , ig , i l a s t ;
9

10 // Ca lcu la te the s e n s i t i v i t y
11 f o r ( i n t ib = 0 ; ib < nbuses ; ib++)
12 {
13 sens [ ib ] = 0 . 0 ;
14 }
15

16 i f r = ifromb [ i l ] ;
17 i t b = i tob [ i l ] ;
18 sens [ i f r ] = xinv [ i l ] ;
19 sens [ i t b ] = −xinv [ i l ] ;
20

21 //CALL SOLVB( sens , nbuses ) ;
22

23 conmod = 0 . 0 ;
24 nc l i n = nc l i n + 1 ;
25 i l a s t = 0 ;
26

27 f o r ( i n t ib = 0 ; ib < nbuses ; ib++)
28 {
29 conmod = conmod + sens [ ib ] ∗ pload [ ib ] ;
30 i g = p r e f f r s t [ ib ] ;
31

32 whi le ( i g != 0)
33 {
34 i l a s t = i l a s t + 1 ;
35 amat [ n c l i n ] [ i l a s t ] = sens [ ib ] ;
36 i g = pre fnext [ i g ] ;
37 }
38 }
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39

40 i f ( i l a s t != nvar )
41 {
42 p r i n t f ( "∗∗∗∗∗ ERROR IN ADDBRC ∗∗∗∗∗" ) ;
43 }
44

45 // Enter upper and lower c on s t r a i n t s
46 bl [ nvar + nc l i n ] = conmod − ra tea [ i l ] + to ld [ 2 ] ;
47 bu [ nvar + nc l i n ] = conmod + ratea [ i l ] − t o ld [ 2 ] ;
48

49 } // End addbrc
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B.9 bulilist.c

1 /∗ The rout ine bu i l d s a l i nked l i s t from input l i s t s ∗/
2

3 __declspec ( d l l e xpo r t ) void b u l i l i s t ( i n t nbuses , i n t ∗ ibus , double ∗ pr i ce ,
double ∗maxmw, i n t ∗ segtyp , i n t nseg , i n t ∗ p r e f f r s t , i n t ∗ pre fnext ,
double ∗ pre f c o s t , double ∗prefmw , i n t ∗ pre f typ )

4 {
5 // Local v a r i a b l e s
6 i n t i s , ib ;
7

8 // I n i t i a l i s e
9 f o r ( i s = 0 ; i s < nbuses ; i s++)

10 {
11 p r e f f r s t [ i s ] = 0 ;
12 }
13

14 f o r ( i s = 0 ; i s < nseg ; i s++)
15 {
16 pre fnext [ i s ] = 0 ;
17 }
18

19 i n t i po s = −1, i n ex t ;
20

21 // Build L i s t
22 f o r ( i s = 0 ; i s < nseg ; i s++)
23 {
24 i po s = ipo s + 1 ;
25 ib = ibus [ i s ] ;
26 i n ex t = p r e f f r s t [ ib ] ;
27 i f ( i n ex t == 0)
28 {
29 p r e f f r s t [ ib ] = ipo s ;
30 }
31 e l s e
32 {
33 whi le ( i n ex t != 0)
34 {
35 ib = inex t ;
36 i n ex t = pre fnext [ ib ] ;
37 }
38 pre fnext [ ib ] = ipo s ;
39 }
40 prefmw [ ipo s ] = maxmw[ i s ] ;
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41 p r e f c o s t [ i po s ] = p r i c e [ i s ] ;
42 pre f typ [ i po s ] = segtyp [ i s ] ;
43 }
44

45 } // End b u l l i l i s t
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B.10 secc_opt.c

1

2 #inc lude " topf low . h"
3 #inc lude " dcf low . h"
4

5 __declspec ( d l l e xpo r t ) void secc_opt ( i n t lout , i n t nbuses , i n t ngens , i n t
n l i n e s , i n t ∗ igbus , double ∗pload , double ∗pgen , double ∗ p s e l l , double ∗
pbuy , i n t ∗ i fromb , i n t ∗ i tob , i n t ∗ i ck t , double ∗xinv , i n t ∗ i s t a t ,
double ∗ ratea , i n t ∗ ibusno , i n t ∗ ibus , double ∗ pr i ce , double ∗maxmw, i n t
∗ segtyp , i n t nseg , i n t lmess , i n t rmext , i n t ∗ p r e f f r s t , i n t ∗ pre fnext ,

double ∗ pre f c o s t , double ∗prefmw , i n t ∗preftyp , double ∗ teta0 , double ∗
basf low , double ∗ c incr , i n t i cont , i n t nicont , i n t i bu i l d , double ∗a ,
i n t ∗ i rn , i n t ∗ icn , i n t nz , i n t nsteps , i n t ∗ ikeep , i n t i f l a g , i n t ∗ iw ,
i n t ∗ iw1 , i n t maxfrt , double ∗w, i n t la , i n t ∗wconct , i n t ∗wbus , double
∗ akoe f f , double sbase , i n t ∗busnam)

6 {
7 /∗ Secur i ty cons t ra ined d i spatch ∗/
8

9 // Build l i nked l i s t o f the va r i a b l e d e s c r i p t i o n
10 // Al l v a r i a b l e s are ordered in a l i nked l i s t to an appro r i a t e

d e s c r i p t i o n f o r each bus
11

12 b u l i l i s t ( nbuses , ibus , pr i ce , maxmw, segtyp , nseg , p r e f f r s t , pre fnext ,
p r e f c o s t , prefmw , pre f typ ) ;

13

14 // Build the system de s c r i p t i o n and f a c t o r i z e
15 // I f " n l i n e s " i s l e s s or equal to 1 no network i s invo lved and no

network ana l y s i s i s performed
16 // I f " i b u i l d " i s 0 and adequate d e s c r i p t i o n i s a l r eady made
17

18 i f ( n l i n e s > 1 && ibu i l d != 0)
19 {
20 // i n i t i a l ( lout , a , i rn , icn , nz , nsteps , ikeep , i f l a g , iw , iw1 ,

maxfrt , w, l iw , la , nbuses , i s t a t , ifromb , i tob , i ckt , xinv , n l i n e s ) ;
21 }
22

23 i n t i k = 0 , ncnow ;
24 i n t n l c o l d = 0 ;
25

26 // Secur i ty cons t ra ined d i spatch
27 do
28 {
29 // Solve the main problem without any cont ingency ana l y s i s
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30 master ( nbuses , ngens , n l i n e s , igbus , p r e f f r s t , pre fnext , p r e f c o s t ,
prefmw , pre ftyp , pload , c inc r , pbuy , p s e l l , pgen , teta0 , ifromb , i tob ,
xinv , i s t a t , ratea , basf low , n lco ld , ibusno , wconct , wbus , akoe f f , i ck t ,
sbase , busnam) ;

31

32 // Skip the ana l y s i s o f no network invo lved :
33 i f ( i c on t != 0 && n l i n e s > 1)
34 {
35 break ;
36 }
37

38 // Contingency eva lua t i on and con s t r a i n t gene ra t i on
39 i k = ik + 1 ;
40 p r i n t f ( "Contingency eva lua t i on number : " , i k ) ;
41

42 i f ( ( i c on t != 0) && ( n l i n e s > 1) && ( ik <= nicont ) )
43 {
44 ncnow = n l co l d ;
45

46 // coeva l ( nbuses , n l i n e s , p r e f f r s t , pre fnext , pload , ifromb ,
i tob , xinv , i s t a t , basf low , n lco ld , i ck t , ibusno , ratea , lmess , rmext ,
wconct , wbus , sbase , busnam) ;

47

48 } // i f
49

50 } whi l e ( n l c o l d > ncnow) ;
51

52 } // END secc_opt
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C Ctypes wrapper

This section contains the Ctypes wrapper file for the C functions in DCflow.

C.1 dcflow_wrapper.py

1 import numpy as np
2 import numpy . c t yp e s l i b as npct
3 import ctypes
4 from ctypes import c_int , c_bool , c_double , c_char
5

6 # Input types
7 ar_1d_double = npct . ndpointer ( dtype=np . double , ndim=1, f l a g s="CONTIGUOUS" )
8 ar_1d_int = npct . ndpointer ( dtype=np . int , ndim=1, f l a g s="CONTIGUOUS" )
9 ar_1d_bool = npct . ndpointer ( dtype=np . bool , ndim=1, f l a g s="CONTIGUOUS" )

10 ar_2d_double = npct . ndpointer ( dtype=np . double , ndim=2, f l a g s="CONTIGUOUS" )
11

12 # lo c a t i o n
13 # get the c o r r e c t l o c a t i o n o f the source f i l e s in f o l d e r master /DC/ s r c
14 # load the l i b r a r y : d c l i b
15 dc l i b = ctypes . c d l l . LoadLibrary (
16 "c :\\ Users \\hegek \\Documents\\NTNU\\5\\Master \\DC\\ s r c \\ dcf low . d l l "
17 )
18

19 # res type og argtypes
20 dc l i b . secc_opt . r e s type = None
21 dc l i b . secc_opt . argtypes = (
22 [ c_int ] ∗ 4
23 + [ ar_1d_int ]
24 + [ ar_1d_double ] ∗ 4
25 + [ ar_1d_int ] ∗ 3
26 + [ ar_1d_double ]
27 + [ ar_1d_int ]
28 + [ ar_1d_double ]
29 + [ ar_1d_int ] ∗ 2
30 + [ ar_1d_double ] ∗ 2
31 + [ ar_1d_int ]
32 + [ c_int ] ∗ 3
33 + [ ar_1d_int ] ∗ 2
34 + [ ar_1d_double ] ∗ 2
35 + [ ar_1d_int ]
36 + [ ar_1d_double ] ∗ 3
37 + [ c_int ] ∗ 3
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38 + [ ar_1d_double ]
39 + [ ar_1d_int ] ∗ 2
40 + [ c_int ] ∗ 2
41 + [ ar_1d_int ]
42 + [ c_int ]
43 + [ ar_1d_int ] ∗ 2
44 + [ c_int ]
45 + [ ar_1d_double ]
46 + [ c_int ]
47 + [ ar_1d_int ] ∗ 2
48 + [ ar_1d_double ]
49 + [ c_double ]
50 + [ ar_1d_int ]
51 )
52

53 dc l i b . addbrc . r e s type = None
54 dc l i b . addbrc . argtypes = (
55 [ c_int ] ∗ 4
56 + [ ar_2d_double ]
57 + [ ar_1d_double ] ∗ 3
58 + [ ar_1d_int ] ∗ 2
59 + [ ar_1d_double ]
60 + [ c_int ]
61 + [ ar_1d_int ] ∗ 3
62 + [ ar_1d_double ] ∗ 3
63 )
64

65 dc l i b . balcon . r e s type = None
66 dc l i b . balcon . argtypes = (
67 [ c_int ] ∗ 2
68 + [ ar_1d_double ]
69 + [ c_int ] ∗ 1
70 + [ ar_2d_double ]
71 + [ ar_1d_double ] ∗ 2
72 + [ ar_1d_int ] ∗ 2
73 + [ ar_1d_double ] ∗ 2
74 + [ c_int ]
75 + [ ar_1d_int ]
76 + [ ar_1d_double ] ∗ 2
77 )
78

79 dc l i b . remove . r e s type = None
80 dc l i b . remove . argtypes = (
81 [ c_int ] ∗ 4 + [ ar_2d_double ] + [ ar_1d_double ] ∗ 2 + [ ar_1d_int ] ∗ 2
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82 )
83

84 dc l i b . upcon . r e s type = None
85 dc l i b . upcon . argtypes = (
86 [ c_int ] ∗ 3 + [ ar_2d_double ] + [ ar_1d_double ] ∗ 3 + [ ar_1d_int ] + [

ar_1d_double ]
87 )
88

89 dc l i b . update . r e s type = None
90 dc l i b . update . argtypes = (
91 [ c_int ] ∗ 2 + [ ar_1d_double ] ∗ 4 + [ ar_1d_int ] ∗ 4 + [ c_int ] + [

ar_1d_double ] ∗ 3
92 )
93

94 dc l i b . b u l i l i s t . r e s type = None
95 dc l i b . b u l i l i s t . a rgtypes = (
96 [ c_int ]
97 + [ ar_1d_int ]
98 + [ ar_1d_double ] ∗ 2
99 + [ ar_1d_int ]

100 + [ c_int ]
101 + [ ar_1d_int ] ∗ 2
102 + [ ar_1d_double ] ∗ 2
103 + [ ar_1d_int ]
104 )
105

106 dc l i b . master . r e s type = None
107 dc l i b . master . argtypes = (
108 [ c_int ] ∗ 3
109 + [ ar_1d_int ] ∗ 3
110 + [ ar_1d_double ] ∗ 2
111 + [ ar_1d_int ]
112 + [ ar_1d_double ] ∗ 6
113 + [ ar_1d_int ] ∗ 2
114 + [ ar_1d_double ]
115 + [ ar_1d_int ]
116 + [ ar_1d_double ] ∗ 2
117 + [ c_int ]
118 + [ ar_1d_int ] ∗ 3
119 + [ ar_1d_double ]
120 + [ ar_1d_int ]
121 + [ c_double ]
122 + [ ar_1d_int ]
123 )
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124

125

126 # func t i on d e c l a r a t i on
127 de f secc_opt (
128 lout ,
129 nbuses ,
130 ngens ,
131 n l i n e s ,
132 igbus ,
133 pload ,
134 pgen ,
135 p s e l l ,
136 pbuy ,
137 i fromb ,
138 i tob ,
139 i ck t ,
140 xinv ,
141 i s t a t ,
142 ratea ,
143 ibusno ,
144 ibus ,
145 pr i ce ,
146 maxmw,
147 segtyp ,
148 nseg ,
149 lmess ,
150 rmext ,
151 p r e f f r s t ,
152 pre fnext ,
153 pre f c o s t ,
154 prefmw ,
155 pre ftyp ,
156 teta0 ,
157 basf low ,
158 c incr ,
159 i cont ,
160 nicont ,
161 i bu i l d ,
162 a ,
163 i rn ,
164 icn ,
165 nz ,
166 nsteps ,
167 ikeep ,
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168 i f l a g ,
169 iw ,
170 iw1 ,
171 maxfrt ,
172 w,
173 la ,
174 wconct ,
175 wbus ,
176 akoe f f ,
177 sbase ,
178 busnam ,
179 ) :
180 dc l i b . secc_opt (
181 lout ,
182 nbuses ,
183 ngens ,
184 n l i n e s ,
185 igbus ,
186 pload ,
187 pgen ,
188 p s e l l ,
189 pbuy ,
190 i fromb ,
191 i tob ,
192 i ck t ,
193 xinv ,
194 i s t a t ,
195 ratea ,
196 ibusno ,
197 ibus ,
198 pr i ce ,
199 maxmw,
200 segtyp ,
201 nseg ,
202 lmess ,
203 rmext ,
204 p r e f f r s t ,
205 pre fnext ,
206 pr e f c o s t ,
207 prefmw ,
208 preftyp ,
209 teta0 ,
210 basf low ,
211 c incr ,
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212 i cont ,
213 nicont ,
214 i bu i l d ,
215 a ,
216 i rn ,
217 icn ,
218 nz ,
219 nsteps ,
220 ikeep ,
221 i f l a g ,
222 iw ,
223 iw1 ,
224 maxfrt ,
225 w,
226 la ,
227 wconct ,
228 wbus ,
229 akoe f f ,
230 sbase ,
231 busnam ,
232 )
233

234

235 de f addbrc (
236 i l ,
237 nc l in ,
238 nvar ,
239 mrowa ,
240 amat ,
241 bl ,
242 bu ,
243 sens ,
244 p r e f f r s t ,
245 pre fnext ,
246 to ld ,
247 nbuses ,
248 i fromb ,
249 i tob ,
250 igbus ,
251 xinv ,
252 pload ,
253 ratea ,
254 ) :
255 dc l i b . addbrc (
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256 i l ,
257 nc l in ,
258 nvar ,
259 mrowa ,
260 amat ,
261 bl ,
262 bu ,
263 sens ,
264 p r e f f r s t ,
265 pre fnext ,
266 to ld ,
267 nbuses ,
268 i fromb ,
269 i tob ,
270 igbus ,
271 xinv ,
272 pload ,
273 ratea ,
274 )
275

276

277 de f balcon (
278 nvar ,
279 nc l in ,
280 cvec ,
281 mrowa ,
282 amat ,
283 bl ,
284 bu ,
285 p r e f f r s t ,
286 pre fnext ,
287 pre f c o s t ,
288 prefmw ,
289 nbuses ,
290 igbus ,
291 pload ,
292 akoe f f ,
293 ) :
294 dc l i b . balcon (
295 nvar ,
296 nc l in ,
297 cvec ,
298 mrowa ,
299 amat ,
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300 bl ,
301 bu ,
302 p r e f f r s t ,
303 pre fnext ,
304 pr e f c o s t ,
305 prefmw ,
306 nbuses ,
307 igbus ,
308 pload ,
309 akoe f f ,
310 )
311

312

313 de f remove ( ip , nvar , nc l in , mrowa , amat , bl , bu , i s t a t e , iconp ) :
314 dc l i b . remove ( ip , nvar , nc l in , mrowa , amat , bl , bu , i s t a t e , iconp )
315

316

317 de f upcon ( nvar , nc l in , mrowa , amat , bl , bu , x , i s t a t e , t o ld ) :
318 dc l i b . upcon ( nvar , nc l in , mrowa , amat , bl , bu , x , i s t a t e , t o ld )
319

320

321 de f update (
322 nbuses ,
323 ngens ,
324 c incr ,
325 pbuy ,
326 p s e l l ,
327 pgen ,
328 igbus ,
329 p r e f f r s t ,
330 pre fnext ,
331 pre ftyp ,
332 nvar ,
333 clamda ,
334 cvec ,
335 x ,
336 ) :
337 dc l i b . update (
338 nbuses ,
339 ngens ,
340 c incr ,
341 pbuy ,
342 p s e l l ,
343 pgen ,
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344 igbus ,
345 p r e f f r s t ,
346 pre fnext ,
347 preftyp ,
348 nvar ,
349 clamda ,
350 cvec ,
351 x ,
352 )
353

354

355 de f b u l i l i s t (
356 nbuses ,
357 ibus ,
358 pr i ce ,
359 maxmw,
360 segtyp ,
361 nseg ,
362 p r e f f r s t ,
363 pre fnext ,
364 pre f c o s t ,
365 prefmw ,
366 pre ftyp ,
367 ) :
368 dc l i b . b u l i l i s t (
369 nbuses ,
370 ibus ,
371 pr i ce ,
372 maxmw,
373 segtyp ,
374 nseg ,
375 p r e f f r s t ,
376 pre fnext ,
377 pr e f c o s t ,
378 prefmw ,
379 preftyp ,
380 )
381

382

383 de f master (
384 nbuses ,
385 ngens ,
386 n l i n e s ,
387 igbus ,
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388 p r e f f r s t ,
389 pre fnext ,
390 pre f c o s t ,
391 prefmw ,
392 pre ftyp ,
393 pload ,
394 c incr ,
395 pbuy ,
396 p s e l l ,
397 pgen ,
398 teta0 ,
399 i fromb ,
400 i tob ,
401 xinv ,
402 i s t a t ,
403 ratea ,
404 basf low ,
405 nlco ld ,
406 ibusno ,
407 wconct ,
408 wbus ,
409 akoe f f ,
410 i ck t ,
411 sbase ,
412 busnam ,
413 ) :
414 dc l i b . master (
415 nbuses ,
416 ngens ,
417 n l i n e s ,
418 igbus ,
419 p r e f f r s t ,
420 pre fnext ,
421 pr e f c o s t ,
422 prefmw ,
423 preftyp ,
424 pload ,
425 c incr ,
426 pbuy ,
427 p s e l l ,
428 pgen ,
429 teta0 ,
430 i fromb ,
431 i tob ,
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432 xinv ,
433 i s t a t ,
434 ratea ,
435 basf low ,
436 nlco ld ,
437 ibusno ,
438 wconct ,
439 wbus ,
440 akoe f f ,
441 i ck t ,
442 sbase ,
443 busnam ,
444 )
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D Lpsolve

This section contains Lpsolve load flow optimization examples in Python and C.

D.1 Lpsolve optimization example in Python

1 # DC_opt_example in lp_solve
2

3

4 from lp so l v e55 import ∗
5

6 # Syntax : [ ret1 , ret2 , . . . ] = l p s o l v e ( ’ functionname ’ , arg1 , arg2 , . . . )
7

8 # Create a l i n e a r problem lp
9 lp = l p s o l v e ( "make_lp" , 0 , 4)

10 l p s o l v e ( " set_verbose " , lp , IMPORTANT)
11

12 # Set the ob j e c t i v e func t i on
13 r e t = l p s o l v e ( " set_obj_fn" , lp , [ 2 0 , 20 , 30 , 3 0 ] )
14

15 # Set the l i n e a r c on s t r a i n t s
16 r e t = l p s o l v e ( " add_constraint " , lp , [ 1 , −1, 1 , −1] , EQ, 0)
17 r e t = l p s o l v e ( " add_constraint " , lp , [ 0 . 3 3 3 , −0.333 , −0.333 , 0 . 3 3 3 ] , LE, 100

− 60)
18 r e t = l p s o l v e ( " add_constraint " , lp , [ 0 . 3 3 3 , −0.333 , 0 . 667 , −0.667] , LE, 100

− 70)
19 r e t = l p s o l v e ( " add_constraint " , lp , [ 0 . 6 6 67 , −0.667 , 0 . 333 , −0.333] , LE,

100 − 110)
20

21 # Set names
22 r e t = l p s o l v e ( "set_col_name" , lp , 1 , "dP1+" )
23 r e t = l p s o l v e ( "set_col_name" , lp , 2 , "dP1−" )
24 r e t = l p s o l v e ( "set_col_name" , lp , 3 , "dP2+" )
25 r e t = l p s o l v e ( "set_col_name" , lp , 4 , "dP2−" )
26 r e t = l p s o l v e ( "set_row_name" , lp , 1 , "Balance " )
27 r e t = l p s o l v e ( "set_row_name" , lp , 2 , "F12" )
28 r e t = l p s o l v e ( "set_row_name" , lp , 1 , "F23" )
29 r e t = l p s o l v e ( "set_row_name" , lp , 1 , "F13" )
30

31 # Solve the system and pr in t r e s u l t s
32 r e t = l p s o l v e ( "write_lp " , lp , "a . lp " )
33 r e t = l p s o l v e ( " s o l v e " , lp )
34 pr in t ( l p s o l v e ( " ge t_ob jec t ive " , lp ) )
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35 pr in t ( l p s o l v e ( " ge t_var iab l e s " , lp ) [ 0 ] )
36 pr in t ( l p s o l v e ( " ge t_cons t ra in t s " , lp ) [ 0 ] )
37 l p s o l v e ( " de l e te_lp " , lp )
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D.2 Lpsolve optimization example in c

1 /∗ demo . c ∗/
2

3 #inc lude " lp_l ib . h"
4

5 i n t demo ( )
6 {
7 l p r e c ∗ lp ;
8 i n t Ncol , ∗ co lno = NULL, j , r e t = 0 ;
9 REAL ∗row = NULL;

10

11 /∗ We w i l l bu i ld the model row by row , so we s t a r t with c r e a t i n g a
model with 0 rows and 4 columns ∗/

12

13 Ncol = 4 ; /∗ the re are four v a r i a b l e s in the model ∗/
14 lp = make_lp (0 , Ncol ) ;
15 i f ( lp == NULL)
16 r e t = 1 ; /∗ couldn ’ t cons t ruc t a new model . . . ∗/
17

18 i f ( r e t == 0)
19 {
20 /∗ op t i ona l naming o f v a r i a b l e s ∗/
21 set_col_name ( lp , 1 , "dP1+" ) ;
22 set_col_name ( lp , 2 , "dP1−" ) ;
23 set_col_name ( lp , 3 , "dP2+" ) ;
24 set_col_name ( lp , 4 , "dP2−" ) ;
25

26 /∗ c r e a t e space l a r g e enough f o r one row ∗/
27 co lno = ( i n t ∗) mal loc ( Ncol ∗ s i z e o f (∗ co lno ) ) ;
28 row = (REAL ∗) mal loc ( Ncol ∗ s i z e o f (∗ row ) ) ;
29 i f ( ( co lno == NULL) | | ( row == NULL) )
30 r e t = 2 ;
31 }
32

33 i f ( r e t == 0)
34 {
35 set_add_rowmode ( lp , TRUE) ; /∗ makes bu i l d i ng the model f a s t e r i f i t

i s done rows by row ∗/
36

37 /∗ cons t ruc t f i r s t row ( balance c on s t r a i n t ) : x1 − x2 + x3 − x4∗/
38 j = 0 ;
39

40 co lno [ j ] = 1 ; /∗ f i r s t column ∗/
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41 row [ j++] = 1 ;
42

43 co lno [ j ] = 2 ; /∗ second column ∗/
44 row [ j++] = −1;
45

46 co lno [ j ] = 3 ; /∗ th i rd column ∗/
47 row [ j++] = 1 ;
48

49 co lno [ j ] = 4 ; /∗ f our th column ∗/
50 row [ j++] = −1;
51

52 /∗ add the row to l p s o l v e ∗/
53 i f ( ! add_constraintex ( lp , j , row , colno , EQ, 0) )
54 r e t = 3 ;
55 }
56

57 i f ( r e t == 0)
58 {
59 /∗ cons t ruc t second row ( t ransmi s s i on c on s t r a i n t l i n e 1−2) :
60 0 .333 x1 − 0 .333 x2 − 0 .333 x3 + 0.333 x4 < 100 − 60 ;
61 ∗/
62 j = 0 ;
63

64 co lno [ j ] = 1 ; /∗ f i r s t column ∗/
65 row [ j++] = 0 . 3 3 3 ;
66

67 co lno [ j ] = 2 ; /∗ second column ∗/
68 row [ j++] = −0.333;
69

70 co lno [ j ] = 3 ; /∗ th i rd column ∗/
71 row [ j++] = −0.333;
72

73 co lno [ j ] = 4 ; /∗ f our th column ∗/
74 row [ j++] = 0 . 3 3 3 ;
75

76 /∗ add the row to l p s o l v e ∗/
77 i f ( ! add_constraintex ( lp , j , row , colno , LE, 40) )
78 r e t = 3 ;
79 }
80

81 i f ( r e t == 0)
82 {
83 /∗ cons t ruc t th i rd row ( t ransmi s s i on c on s t r a i n t l i n e 2−3) :
84 0 .333 x1 −0.333x2 + 0.667 x3 − 0 .667 x4 < 100 − 70 ;
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85 ∗/
86 j = 0 ;
87

88 co lno [ j ] = 1 ; /∗ f i r s t column ∗/
89 row [ j++] = 0 . 3 3 3 ;
90

91 co lno [ j ] = 2 ; /∗ second column ∗/
92 row [ j++] = −0.333;
93

94 co lno [ j ] = 3 ; /∗ th i rd column ∗/
95 row [ j++] = 0 . 6 6 7 ;
96

97 co lno [ j ] = 4 ; /∗ f our th column ∗/
98 row [ j++] = −0.667;
99

100 /∗ add the row to l p s o l v e ∗/
101 i f ( ! add_constraintex ( lp , j , row , colno , LE, 30) )
102 r e t = 3 ;
103 }
104

105 i f ( r e t == 0)
106 {
107 /∗ cons t ruc t four th row ( t ransmi s s i on c on s t r a i n t l i n e 1−3) :
108 0 .667 x1 − 0 .667 x2 + 0.333 x3 − 0 .333 x4 < 100 − 110 ;
109 ∗/
110 j = 0 ;
111

112 co lno [ j ] = 1 ; /∗ f i r s t column ∗/
113 row [ j++] = 0 . 6 6 7 ;
114

115 co lno [ j ] = 2 ; /∗ second column ∗/
116 row [ j++] = −0.667;
117

118 co lno [ j ] = 3 ; /∗ th i rd column ∗/
119 row [ j++] = 0 . 3 3 3 ;
120

121 co lno [ j ] = 4 ; /∗ f our th column ∗/
122 row [ j++] = −0.333;
123

124 /∗ add the row to l p s o l v e ∗/
125 i f ( ! add_constraintex ( lp , j , row , colno , LE, −10) )
126 r e t = 3 ;
127 }
128
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129 i f ( r e t == 0)
130 {
131 set_add_rowmode ( lp , FALSE) ; /∗ rowmode should be turned o f f again

when done bu i l d i ng the model ∗/
132

133 /∗ s e t the ob j e c t i v e func t i on (20 x1 + 20 x2 + 30 x3 + 30 x4 ) ∗/
134 j = 0 ;
135

136 co lno [ j ] = 1 ; /∗ f i r s t column ∗/
137 row [ j++] = 20 ;
138

139 co lno [ j ] = 2 ; /∗ second column ∗/
140 row [ j++] = 20 ;
141

142 co lno [ j ] = 3 ; /∗ f i r s t column ∗/
143 row [ j++] = 30 ;
144

145 co lno [ j ] = 4 ; /∗ second column ∗/
146 row [ j++] = 30 ;
147

148 /∗ s e t the ob j e c t i v e in l p s o l v e ∗/
149 i f ( ! set_obj_fnex ( lp , j , row , co lno ) )
150 r e t = 4 ;
151 }
152

153 i f ( r e t == 0)
154 {
155 /∗ s e t the ob j e c t d i r e c t i o n to minimize ∗/
156 set_minim ( lp ) ;
157

158 /∗ pr in t model to s c r e en and wr i t e to f i l e ∗/
159 write_LP ( lp , s tdout ) ;
160 write_lp ( lp , "model . lp " ) ;
161

162 /∗ Only warnings and e r r o r messages w i l l be shown ∗/
163 set_verbose ( lp , IMPORTANT) ;
164

165 /∗ Solve the problem ∗/
166 r e t = so l v e ( lp ) ;
167 i f ( r e t == OPTIMAL)
168 r e t = 0 ;
169 e l s e
170 r e t = 5 ;
171 }
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172

173 i f ( r e t == 0)
174 {
175 /∗ get the r e s u l t s ∗/
176

177 /∗ ob j e c t i v e va lue ∗/
178 p r i n t f ( " Object ive value : %f \n" , ge t_ob jec t ive ( lp ) ) ;
179

180 /∗ va r i ab l e va lue s ∗/
181 ge t_var iab l e s ( lp , row ) ;
182 f o r ( j = 0 ; j < Ncol ; j++)
183 p r i n t f ( "%s : %f \n" , get_col_name ( lp , j + 1) , row [ j ] ) ;
184

185 /∗ we are done now ∗/
186 }
187

188 /∗ f r e e a l l o c a t e d memory ∗/
189 i f ( row != NULL)
190 f r e e ( row ) ;
191 i f ( co lno != NULL)
192 f r e e ( co lno ) ;
193

194 i f ( lp != NULL)
195 {
196 /∗ f r e e up a l l memory used by l p s o l v e ∗/
197 de le te_lp ( lp ) ;
198 }
199

200 re turn ( r e t ) ;
201 }
202

203 i n t main ( )
204 {
205 demo ( ) ;
206 }
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E Tests

This section contains the Python test script to test the DCflow function balcon.

E.1 dcflow_test_balcon.py

1 # Test o f DCflow
2 # A t e s t with z e ro s to t e s t the i n t e r f a c e
3

4 import dcflow_wrapper as dc
5 import numpy as np
6

7 # Create v a r i a b l e s
8 # Number o f buses : 3
9 # Number o f g ene ra to r s : 2

10 # Number o f l i n e s : 3
11

12 # in t
13 nbuses = 3
14 ngens = 2
15 n l i n e s = 3
16 nseg = 0
17 lmess = 0
18 rmext = 0
19 i c on t = 0
20 n icont = 0
21 i b u i l d = 1
22 nz = 0
23 nsteps = 0
24 i f l a g = 0
25 maxfrt = 0
26 l a = 0
27 n l c o l d = 0
28 i l = 0
29 nvar = 100
30 nc l i n = 0
31 mrowa = 100
32 ip = 0
33 l ou t = 0
34

35 # in t ∗
36 i gbus = np . z e ro s ( ( nbuses ) , dtype=np . i n t c )
37 i f romb = np . z e r o s ( ( nbuses ) , dtype=np . i n t c )
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38 i t ob = np . z e ro s ( ( nbuses ) , dtype=np . i n t c )
39 i c k t = np . z e r o s ( ( nbuses ) , dtype=np . i n t c )
40 i s t a t = np . z e r o s ( ( nbuses ) , dtype=np . i n t c )
41 ibusno = np . z e ro s ( ( nbuses ) , dtype=np . i n t c )
42 ibus = np . z e ro s ( ( nbuses ) , dtype=np . i n t c )
43 segtyp = np . z e ro s ( ( nbuses ) , dtype=np . i n t c )
44 p r e f f r s t = np . z e r o s ( ( nbuses ) , dtype=np . i n t c )
45 pre fnext = np . z e ro s ( ( nbuses ) , dtype=np . i n t c )
46 pre f typ = np . z e r o s ( ( nbuses ) , dtype=np . i n t c )
47 i r n = np . z e ro s ( ( nbuses ) , dtype=np . i n t c )
48 i cn = np . z e r o s ( ( nbuses ) , dtype=np . i n t c )
49 i keep = np . z e r o s ( ( nbuses ) , dtype=np . i n t c )
50 iw = np . z e ro s ( ( nbuses ) , dtype=np . i n t c )
51 iw1 = np . z e ro s ( ( nbuses ) , dtype=np . i n t c )
52 wconct = np . z e r o s ( ( nbuses ) , dtype=np . i n t c )
53 wbus = np . z e r o s ( ( nbuses ) , dtype=np . i n t c )
54 i s t a t e = np . z e ro s ( ( nbuses ) , dtype=np . i n t c )
55 i conp = np . z e ro s ( ( nbuses ) , dtype=np . i n t c )
56

57 # double ∗
58 pload = np . z e ro s ( ( nbuses ) , dtype=np . double )
59 pgen = np . z e r o s ( ( nbuses ) , dtype=np . double )
60 p s e l l = np . z e ro s ( ( nbuses ) , dtype=np . double )
61 pbuy = np . z e ro s ( ( nbuses ) , dtype=np . double )
62 xinv = np . z e r o s ( ( nbuses ) , dtype=np . double )
63 ra tea = np . z e r o s ( ( nbuses ) , dtype=np . double )
64 p r i c e = np . z e ro s ( ( nbuses ) , dtype=np . double )
65 maxmw = np . z e ro s ( ( nbuses ) , dtype=np . double )
66 p r e f c o s t = np . z e ro s ( ( nbuses ) , dtype=np . double )
67 prefmw = np . z e r o s ( ( nbuses ) , dtype=np . double )
68 t e ta0 = np . z e ro s ( ( nbuses ) , dtype=np . double )
69 bas f low = np . z e ro s ( ( nbuses ) , dtype=np . double )
70 c i n c r = np . z e ro s ( ( nbuses ) , dtype=np . double )
71 a = np . z e ro s ( ( nbuses ) , dtype=np . double )
72 w = np . z e ro s ( ( nbuses ) , dtype=np . double )
73 ako e f f = np . z e ro s ( ( nbuses ) , dtype=np . double )
74 bl = np . z e ro s ( ( nbuses ) , dtype=np . double )
75 bu = np . z e ro s ( ( nbuses ) , dtype=np . double )
76 sens = np . z e r o s ( ( nbuses ) , dtype=np . double )
77 t o ld = np . z e ro s ( ( nbuses ) , dtype=np . double )
78 cvec = np . z e ro s ( ( nbuses ) , dtype=np . double )
79 x = np . z e ro s ( ( nbuses ) , dtype=np . double )
80 clamda = np . z e ro s ( ( nbuses ) , dtype=np . double )
81
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82 # double ∗∗
83 amat = np . z e ro s ( [ 2 , 2 ] , dtype=np . double )
84

85 # double
86 sbase = 100 .0
87

88 # char ∗
89 busnam = np . z e ro s ( ( nbuses ) , dtype=np . i n t c )
90

91 # Cal l f unc t i on
92

93 dc . balcon (
94 nvar ,
95 nc l in ,
96 cvec ,
97 mrowa ,
98 amat ,
99 bl ,

100 bu ,
101 p r e f f r s t ,
102 pre fnext ,
103 pre f c o s t ,
104 prefmw ,
105 nbuses ,
106 igbus ,
107 pload ,
108 akoe f f ,
109 )
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F SWIG (from specialization project)

This section contains information on SWIG, the Simplified Wrapper and Interface Gen-
erator, from the specialization project [2].

F.1 SWIG

SWIG is a tool for automatic generation of wrapper code [1]. In order to do this, SWIG
requires information about the code to be wrapped, for example which functions to wrap
and what type of input arguments and return arguments those functions should have.
Given a header file (.h) and a C source file (.c), an interface file (.i) must be created
with instructions to SWIG based on this information. An interface file can look like
Figure F.1 [43], if the functions in the header file do not require any additional instructions.
The %module statement determines the name of the module. Everything inside the
%{%} block must be C code and it should contain the necessary #include statements.
SWIG_FILE_WITH_INIT indicates that this is an extension module. After this block
comes the special directives or rules to be applied to some or all of the functions to be
wrapped. These can be specified using the %include directive as in Figure F.1, or the
relevant functions can be listed instead [44].

Figure F.1: Simple example of SWIG interface file "example.i"

For anything but very simple functions some additional directives might be needed in
the interface file to make the module work like it is expected to. SWIG comes with
instructions to convert input parameters to output parameters called typemaps. In order
to wrap a function with output parameters given as input parameters from C to Python
in such a way that the input parameters will be an output parameters in Python, the
following typemap can be used in the interface file [5]:

1 %inc lude "typemaps . i "
2 %apply double ∗OUTPUT {double ∗ r e s }
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This will be incorporated into the SWIG wrapper code, resulting in a function that can
be called in the Pythonic way with an output parameter.

F.1.1 Support for NumPy

SWIG offers compatibility with NumPy with the interface file "numpy.i". This file includes
typemaps for NumPy array conversions. It includes input arrays for arrays that are passed
to the function, but are not modified inside the function or returned, in-place arrays for
arrays that are altered by the function, and argout arrays that are originally input arrays
and should be output arrays in Python. To include "numpy.i" the following code can be
used in the interface file [45]:

1 %inc lude "numpy . i "
2 %i n i t %{
3 import_array ( ) ;
4 %}

Depending on how the array parameter is given in the C function, different signatures
can be used. The following signatures apply to one-dimensional input arrays [45]:

• ( DATA_TYPE IN_ARRAY1[ANY] )

• ( DATA_TYPE* IN_ARRAY1, int DIM1 )

• ( int DIM1, DATA_TYPE IN_ARRAY1 )

These can be extended to more dimensions, but they can only be applied where the array
dimension parameter comes right before or right after the array parameter, or if the array
has hard coded dimensions.
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