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Abstract

In a world that is increasingly dependent on electricity, providing a stable power distribu-
tion network is of utmost importance. With the recent advances in smart grid technology,
actors that used to be pure consumers are now becoming both producers and consumers of
energy. This change leads to a more rapid change in load on the electrical grid, with vari-
able load at uneven intervals. The changes call for better monitoring and analysis tools, to
cope with the added dynamicity from thousands of new producers.

In this thesis we examine the field of power system fault prediction, the task of predicting
a fault ahead of time. Specifically we implement multiple machine learning models that
take as input voltage measurement data, collected from Power Quality Analysers in the
Norwegian power grid.

We present multiple feature engineering methods that aggregates time series of harmonic
frequencies in high resolution voltage data. The features are combined with Support Vector
Machines, Random Forests and multiple Neural Network architectures, with the aim of
predicting faults with a 10 minute horizon. Our models are able to successfully predict
over 74 % of faults within the fault categories voltage sags, interruption faults, ground
faults and rapid voltage change faults.

Keywords Norwegian Power grid, Power Quality Analyzers, Machine learning, Voltage
analysis, Fault prediction
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Sammendrag

I en verden som er stadig mer avhengig av elektrisitet, er det av svært viktig å sørge for
et stabilt kraftdistributionsnett. Med de siste fremskrittene innen smart grid teknologi, er
aktører som tidligere pleide å være rene forbrukere nå blitt både produsenter og forbrukere
av energi. Denne endringen fører til en raskere endring i belastningen på kraftnettet, med
store endringer i belastningsgraden med ujevne mellomrom. Endringene krever bedre
overvåkning- og analyseverktøy for å takle den økte dynamikken fra tusenvis av nye pro-
dusenter.

I denne masteroppgaven utforsker vi feltet for feilhendelsesforutsigelse i strømnettet, det
å forutsi en feil før den inntreffer. Vi implementerer flere maskinlæringsmodeller som
benytter spenningsmålinger fra strømkvalitetssensorer i det norske strømnettet.

Vi presenterer flere funksjonsekstraksjonsmetoder som aggregerer tidsserier av harmoniske
frekvenser i høyoppløselig spenningsdata. Data brukes i kombinasjon med Support Vector
Machines, Random Forests og flere ulike Neural Network arkitekturer, med mål å forutsi
feil med 10 minutters tidshorisont. Våre modeller er i stand til å forutsi over 74% av
feilene i feilkategoriene spenningsdipp, avbrudd, jordfeil og sprang.
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Chapter 1
Introduction

This Master’s Thesis is part of the ongoing research project EarlyWarn, a collaboration
project between SINTEF Energi, SINTEF Digital, NTNU, Statnett, Haugaland Kraft Nett,
NTE Nett, Lyse Elnett, Nettalliansen and Hydro Energi. The project is part of the EN-
ERGIX programme and partly financed by the Research Council of Norway. Their ul-
timate goal is proactive detection and early warning of incipient power grid faults and
instabilities by using data from sensors placed at strategic places in the Norwegian power
grid [1].

The Master’s project has consisted of two parts: a pre-study conducted during the autumn
of 2018 in collaboration with Vegard Hellem, and the final Master’s Thesis due June 2019.
The final thesis build on the pre-study conducted in 2018, which serves as the basis for
Chapter 1, 2, 3, 4 and 5.

In Section 1.1 we will introduce the motivation behind this master’s thesis, and the recent
advances in technology enabling this project. We will follow up on this motivation and
the problems presented in Section 1.2 by formulating a set up research questions that are
answered in this thesis. Finally, Section 1.3 gives an outline of how this thesis is structured.

1.1 Motivation

The power grid is one of the most important parts of infrastructure in the modern world and
it is hard to imagine a world without electricity. The total use of electricity per capita in
Norway is one of the highest in the world, primarily because electric power is commonly
used to heat residential and industrial buildings [2]. Researchers have recently looked
at how to make the grid more robust and secure and are moving towards a Smart Grid

1



Chapter 1. Introduction

architecture to enable more flexible solutions [3]. In Norway, the grid includes over 130
000 km of power lines, divided between the transmission, regional and distribution grid
[4]. The net power consumption in Norway in 2016 was 116.6 TWh [5], and the energy
consumption is expected to increase in the future [6].

The first part of the Norwegian power grid was built in 1892 and powered a single light
bulb in Oslo [7]. Construction thereafter expanded, and large parts of the current infras-
tructure were built in the 1960s and 1970s. These parts are now reaching the end of their
expected lifetime, and the grid in its current state requires substantial renovation, upgrades,
and replacements [8].

Since the middle of the 2000s, large investments have been made to expand and improve
the power grid infrastructure. In 2017, the total investment in the power supply infrastruc-
ture was 32.7 billion NOK, and it is estimated a 25.8% increase to 41.1 billion NOK for
2018 [9]. The recent years’ investment cost can be seen in Figure 1.1.

1997 1999 2001 2003 2005 2007 2009 2011 2013 2015 2017
Year

0

10000

20000

30000

40000

M
illi
on

 N
OK

Figure 1.1: Total cost per year for investments in the Norwegian power grid 1997-2018 [8, 9].

With the combination of aging infrastructure, Norway’s hazardous weather, and the sheer
size of the power grid, interruptions naturally occur and come with a cost to repair. In
2017, 63% of end-users in Norway were affected by faults, experiencing one or more
interruptions lasting longer than 3 minutes [5]. An average of 793 faults occurred every
year between 2008 and 2017 in the Norwegian power grid [10], causing a mean 5 042
MWh of power not to be delivered to consumers. This amounts to only 0.12‰ of the
total delivered power, but a cost of 800 million NOK per year in maintenance and repairs
[11]. This cost is known as the CENS cost (Cost of Energy Not Supplied). Figure 1.2
shows an overview of CENS costs per county in Norway. If one could anticipate some

2



1.2 Research questions

of these faults, it could have a substantial socioeconomic impact in reducing the costs of
maintaining the power grid.

Recent advances in sensors and monitoring of the power grid make such predictions pos-
sible. In Norway, there are Power Quality Analyzers (PQA) and Phasor Measurement
Units (PMU) in place at strategic sites around the grid, that monitor and send data to a
centralized server. This data can be combined with domain knowledge of disturbances in
the power grid and machine learning techniques. The result could make it possible to give
an early warning of upcoming faults.

Figure 1.2: An overview of CENS costs for counties in Norway. All amounts in million NOK.

1.2 Research questions

We have formulated the following research questions:

RQ 1. Can machine learning methods predict upcoming faults on power lines by ana-
lyzing voltage measurement data?

RQ 2. What attributes in a voltage signal are suited for predicting faults on power lines?

3



Chapter 1. Introduction

RQ 3. What is the performance of some machine learning algorithms at predicting faults
on power lines?

RQ 4. Are some types of faults easier to predict than others?

1.3 Thesis structure

The thesis is structured as follows: Chapter 2 and Chapter 3 introduces the background
theory required for understanding the domains of power analysis and machine learning
used in this thesis. Chapter 4 contains a summary of previous work in the field of power
fault analysis, while Chapter 5 introduces the EarlyWarn project, which this thesis is a part
of. Chapter 6 describes in detail the experiments that were carried out in order to answer
the research questions from Section 1.2 and lists the results of each experiment. Chapter
7 analyses the finding from the experiments, discusses their significance and recommend
further research areas based on the results. Finally, Chapter 8 concludes the project con-
ducted in this report.

4



Chapter 2
Background - Power Grids

The contents of this chapter is based on a semester project conducted in collaboration with
Vegard Hellem during autumn 2018. The project report is available online [12].

This chapter describes common terms and methods used for describing power and power
quality. Section 2.1 describes common current and voltage metrics, methods used for
power analysis and three-phase electric power. Section 2.2 looks at the most common
faults and disturbances in power grids around the world and the reason for faults in the
Norwegian power grid.

2.1 Power

2.1.1 Current and Voltage

Definitions

Current (I) is the rate of flow of electric charge past a given point [13]. Current is measured
in ampere (A), where 1 ampere is defined as a flow of 1 coulomb of charge past the given
point.

Voltage is the cost in energy required to move a unit of positive charge from a point with a
lower electric potential to a point with higher electric potential [13]. The unit of measure
is volt (V ).

5



Chapter 2. Background - Power Grids

Direct and alternating currents (DC and AC)

Alternating current (AC) is the type of current most commonly used in electric grids
throughout the world [14]. In contrast to direct current (DC), alternating current switches
the direction of the current flow periodically, while direct current maintains a constant di-
rection of current flow. In Norway, the standard AC frequency in the electric grid is 50Hz
[15]. A plot comparing direct and alternating current is shown in Figure 2.1.
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Figure 2.1: Example of a direct voltage level (red) and alternating voltage level (blue).

One of the advantages of using systems with AC over DC is the ability to change the
voltage level through the use of transformers easily. Everyday household electronics in
Norway needs a voltage level of 230V[15], but a much higher voltage level is beneficial
when transmitting electricity across large distances. The ability to increase the voltage
level before transmission and decrease the voltage level before distribution is a crucial
advantage of using AC.

Alternating current as a mathematical function

A periodic, continuous alternating current can be described by a sinusoidal function of the
following form [13]:

v(t) = α sin (ωt+ φ) (2.1)
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2.1 Power

where α is the maximum amplitude, ω is the angular frequency, t is a given point in time
and φ is the initial phase of the signal. Figure 2.2 visualizes the relationship between the
sinusoidal function and a periodic, alternating current.

Figure 2.2: The relationship between a sinusoidal function (right) and an alternating current (left).
Vm is the maximum amplitude of the alternating signal, ω is the angular frequency and t is time
[16].

2.1.2 Power analysis

When conducting research and analysis of electric circuits, a wide variety of methods
and measurements are used. In this section we will describe the following methods and
measurements, which are commonly used in signal processing today:

1. Steady state periods

2. Root Mean Square (RMS)

3. Fourier analysis

4. Discrete Fourier analysis

5. Short Time Fourier Transform

6. Harmonics

7. Total Harmonic Distortion

Steady state periods

The steady state of a sinusoidal power function is a state where the sinusoidal signal repeats
with a constant period T and does not change frequency nor amplitude between periods.

7



Chapter 2. Background - Power Grids

If the sinusoidal representation of the signal fulfills the following equality, we say that the
signal is in a steady state [17]:

α sin (ωt) = α sin (ωt+ nT ) (2.2)

where n is an arbitrary integer.

A power system should generally be in a steady state condition, but could after a distur-
bance, or when starting up, be in a transient condition. A healthy power line should after
a short period return to steady state condition to prevent errors and damages to the equip-
ment [17]. In practice, there is no such thing as a mathematically perfect steady state, as
there are countless small disturbances affecting the power line in the real world. When we
use the term steady state on real power lines, we refer to a state where the frequency and
amplitude of the signal is close to its nominal values.

Root Mean Square (RMS)

The Root Mean Square is a standard measurement used for power quality in AC systems
[18]. The value is a way of characterizing sinusoidal functions through a mean value, and
thus reducing the complexity of comparison functions. The RMS voltage of an AC signal
is equal to the voltage of a DC system that transfers the same amount of power [19]. The
RMS value of a sinusoidal function v(t) is defined as

VRMS =

√
1

T

∫ T

0

v(t)2dt (2.3)

where v(t) is a sinusoidal function with period T . By expanding the sinusoidal function
and using the trigonometric formula [19]

cos2 (ωt) =
1

2
(1 + cos (2ωt)) (2.4)

we can simplify the equation to a simple expression:
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2.1 Power

(2.5)

VRMS =

√
1

T

∫ T

0

v(t)2dt

=

√
1

T

∫ T

0

α2 cos2 (ωt)dt

=

√
α2

T

∫ T

0

1

2
(1 + cos (2ωt))dt

=

√
α2

2T
T

=
α√
2

where α is the amplitude of the signal and
∫ T
0

cos (2ωt)dt is zero, because T is the period
of the sinusoidal function [19].

Figure 2.3 shows the relationship between the amplitude of an AC signal and its RMS
value. Deviations in the RMS value of a signal is often used to detect faults in the power
grid, for example by Sintef’s AHA (Automatisk Hendelsesanalyse) software [20]. One
often assumes that as long as the RMS voltage remains constant, the system is in a steady
state. Note, however, that not all faults and disturbances in the grid can be detected by
only monitoring the RMS value [21].

0 π 2π
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1
√2
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VRMS

Figure 2.3: AC voltage level (blue) and corresponding RMS voltage level (orange) of a signal with
amplitude 1 and period 2π.
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Chapter 2. Background - Power Grids

Fourier analysis

Fourier analysis is the study of approximating functions with a finite sum of sinusoidal
functions. It is often used in signal processing to decompose signals into separate frequen-
cies, through the use of a Fourier Transform.

A Fourier Transformation is a function F that takes as input an integrable function, usually
a time-based signal, and outputs a function which maps frequencies to Fourier coefficients.
By summing all possible frequencies multiplied with their Fourier coefficients, we can
restore the original function which was given as input to the Fourier Transformation F
[22].

A continuous Fourier Transform is defined as [23]:

x̂(f) = F (x(t)) =

∫ +∞

−∞
x(t)e−i2πftdt (2.6)

where x̂(f) is a function that outputs the Fourier coefficient for an input frequency f . The
original signal function is given by x(t) which takes as input a point in time t, and i is the
imaginary unit. One can describe the Fourier Transform as transforming a function from
the time domain to a function in the frequency domain.

The Fourier Transform is invertible and can thus be used to map frequencies into a time-
dependent signal again. The following equation defines the inverse continuous Fourier
Transform F−1 [23]:

x(t) = F−1(x̂(f)) =

∫ +∞

−∞
x̂(f)ei2πftdf (2.7)

The relationship between a periodic, sinusoidal signal and it’s Fourier Transform is shown
in Figure 2.4 and 2.5
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(a) Sinusoidal signal with a period of 2π.
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(b) The Fourier coefficients of the periodic signal
in 2.4a.
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(c) The individual sine components that make up the signal in 2.4a.

Figure 2.4: Three plots of a periodic signal, it’s Fourier coefficients and its corresponding sine
components. The periodic signal is given by sin(2πt) + 0.5 sin(4πt) + 0.2 sin(8πt). Note that the
Fourier coefficients are 1, 0.5 and 0.2 at the frequencies 2π, 4π and 8π respectively.
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(a) The first sine component of the signal in 2.4a.
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(b) The sum of the first and second sine
components of the signal in 2.4a.
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(c) The sum of the first, second and third sine
components of the signal in 2.4a.

Figure 2.5: Three plots showing the gradual composition of individual sine components from signal
2.4a. Notice that the sum of all the components is equal to the original signal.

Discrete Fourier analysis

When performing signal analysis in the real world, the signal x(t) is not recorded as a
continuous function, but rather as a series of samples with a given interval I . Each sample
k can be regarded as an impulse with area x[k], written as

x[k] =

∫ +∞

−∞
δ(t− k)x(k)dt (2.8)

where δ(t− k) is the Dirac Delta function [24] defined as
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2.1 Power

∫ +∞

−∞
δ(t− k)dt =

{
1 if t = k

0 if t 6= k
(2.9)

The area will then be zero between each sample, and we can transform the definition of
the Fourier Transform from an integral into a sum

(2.10)
F (x(t)) =

∫ +∞

−∞
x(t)e−i2πftdt

= x[0] · e−i2πf0 + ...+ x[k] · e−i2πfk + ...+ x[N − 1] · e−i2πf(N−1)

=

N−1∑
k=0

x[k]e−i2πfk

where N is the number of samples [25].

Short Time Fourier Transform

The drawback of using the Fourier Transform to analyze periodic signals is that it com-
pletely obscures the temporal locality of the signal. In some applications, it might be
beneficial to retain some of the information from the time domain, with a trade-off of
some loss in frequency resolution. The Short Time Fourier Transform introduces such a
compromise.

By defining av window of length L along the time dimension of the signal, and computing
the Fourier Transform of the signal within this window only, we transform the signal from
the time domain into the frequency domain, while still keeping the transformation bound
to an interval in the time domain. By moving the window along the time dimension of the
original signal, we can transform each segment into its frequency domain, and the result
would be a 3-dimensional tensor with time segments, frequencies, and amplitude as its
dimensions. The transformation for the signal given by x(t) is defined as

STFT (τ, f) =

∫ ∞
−∞

x(t)g(τ − t)e−i2πftdt (2.11)

where τ denote the position of the window in the time domain, f denote the frequency
of which to extract the amplitude, i is the imaginary unit and g(t) is the window length
function.

Only operating on a smaller segment of the signal reduces the dimensionality of the out-
put frequency domain, and important information may be lost in this trade-off. One may
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(a) The frequency space created by computing
the Short Time Fourier Transform on the

signal in 2.6c with a window length of 0.5
seconds.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Time (seconds)

0

200

400

600

800

1000

Fr
eq

ue
nc

y

(b) The frequency space created by computing
the Short Time Fourier Transform on the

signal in 2.6c with a window length of 0.05
seconds.
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(c) A signal given by the function sin(100t) with an added signal of 2 sin(400t) in the interval
[10.0, 12.0].

Figure 2.6: Three plots showing the trade-off between long and short window length in Short Time
Fourier Transform. A blue color indicates a low amplitude, while a more yellow color indicates a
higher amplitude. Plot 2.6a has a long window length, which results in a higher resolution in the
frequency dimension at the expense of a loss in precision in the time dimension. Plot 2.6b has a
shorter window length, which results in a lower frequency resolution, but a higher precision in the
time dimension [26].

address this issue by adjusting the window length, where a larger window will lead to a
higher frequency resolution, but at the same time reduce the precision in the time dimen-
sion. Equivalently, a shorter window will lead to higher time precision, but at the cost of
frequency resolution. This trade-off between time and frequency is illustrated in Figure
2.6.
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2.1 Power

Harmonics

The fundamental frequency of a signal is the frequency where the signal appears to repeat
at a rate f , which is usually referred to as the first harmonic. The second, third and further
harmonics are then defined as integer multiples of the fundamental frequency, e.g., 2f , 3f
and so on. These harmonics are captured by the Discrete Fourier Transform (DFT) where
the assumption is that the given signal is periodic, and the length of the window used to
calculate the discrete Fourier transform is equal to the period of the signal.

As the signal is sampled with time interval I equal to the period of the signal, the DFT
captures all the harmonic frequencies up to the N

2 th frequency, where N is the number
of samples per period. These N

2 Fourier coefficients are all harmonic frequencies of the
fundamental frequency. If the period of the signal is not equal to the length of the signal
being sampled by the DFT, the output of the transformation will contain non-zero compo-
nents for frequencies that are not an integer multiple of the fundamental frequency. These
non-zero components are known as spectral leakage [27].

Ideally, a voltage signal in an AC power grid would be a perfect sinusoidal waveform
of a single frequency. In practice this is not the case, due to the presence of nonlinear
components that draw power disproportionately to the voltage source [28]. If the nonlin-
ear components draw power in a symmetrical fashion above and below its centerline, the
components will introduce odd integer harmonics into the signal, while asymmetrical com-
ponents will introduce even harmonics. Most nonlinear components that are used in the
electrical grid today are symmetrical around the centerline, which results in the presence
of odd harmonic frequencies in the power grid. Even harmonic frequencies are mostly
absent in healthy operating power lines [28].

Total Harmonic Distortion

Total Harmonic Distortion (THD) is a measure of the distortion in a signal with a given
fundamental frequency. The formula for THD is given by

THD =

√∑∞
n=2 V

2
n

V1
(2.12)

where Vk is the RMS value of the nth harmonic component of the signal [29]. This mea-
sure compares the presence of the harmonic components to the fundamental frequency,
and is often denoted as THDF .

Another measure of THD, often referred to as THDR, compares the RMS values of the
harmonic components to the RMS value of the complete signal, not only its fundamental
value. THDR is given by
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THDR =

√∑∞
n=2 V

2
n√∑∞

n=1 V
2
n

(2.13)

where Vk is the RMS value of the nth harmonic component of the signal. This measure
gives a relative measure between 0 and 1, measuring how distorted the signal is from its
intended fundamental frequency [29].

Wavelet Transform

A wavelet is a rapidly-decaying, wave-like oscillation that has zero mean, and where the
wave begins and ends with an amplitude of 0. An example of a wavelet function is illus-
trated in Figure 2.7.
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Figure 2.7: An example of a wavelet function. The function is given by 1−2π2f2t2

eπ
2f2t2

with f = 5 and
referred to as the Ricker wavelet [30].

Wavelet Transform is often used in signal analysis. It is similar to the Fourier Transform
in that it approximates a given signal by fitting a number of functions to the signal, but
differs in which functions it uses for approximation. While the Fourier Transform ap-
proximates functions by fitting an infinite sum of sine-functions to the original signal, a
Wavelet Transform uses wavelets to transform the signal from its time domain into the
frequency domain.

The transformation uses a given wavelet, often called the analyzing function, and a varying
window length, which is translated along the time dimension and scaled in size. This
enables the transformation to capture frequency information at different window sizes,
thus varying the time-frequency trade-off depending on the frequency. High-frequency
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signals will get a high precision in time, while low-frequency signals will get a lower
precision in time. The output of a Wavelet Transform is a 3-dimensional tensor describing
the frequency space with time translation, scale and amplitude as its dimensions.

S-transform

The S-transform is a generalization of the Short Time Fourier Transform, where the Short
Time Fourier Transform is modified to enable varying window sizes, to extract a frequency
dependent resolution [31].

The following Gaussian function is used to define the window size:

g(t) =
|f |√
2π
e−

t2f2

2 (2.14)

By replacing the window function g(t) in 2.11, we get the following definition for the
S-transform [31]:

S(τ, f) =

∫ ∞
−∞

x(t)
|f |√
2π
e−

(τ−t)2f2
2 e−i2πftdt (2.15)

As the relation between time window length and frequency is inversely proportional, the
transform will use a wider window width on low frequencies, and narrower window width
on high frequencies. This ensures a better time resolution for higher frequencies and better
frequency resolution for lower frequencies.

2.1.3 Three phase power

In single-phase systems, instantaneous power dissipation is changing along with the am-
plitude of the sinusoidal signal, which results in an uneven power supply. To deal with this
problem, one has devised a balanced three-phase system, where the instantaneous power
is constant over time. A three-phase power generator is built by placing three coils 2

3π
radians away from each other on a circle, with a rotating magnet in the center. This leads
to three different voltage waves, equal in magnitude and frequency but out of phase from
each other by 2

3π radians, with the same properties applying to the generated current. Fig-
ure 2.8 illustrates the offset in phase between the three waves. While there are multiple
benefits to this system, it also leads to some more possible faults. If one of the phases go
out of sync, it will lead to an unbalanced supply [32].
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Figure 2.8: Three phase power. The three signals are phase offset by 2
3
π from each other.

2.2 Faults and disturbances

In Norway 2017, a total of 895 disturbances occurred in the electrical power transmission
grid. 32.4 % of these consisted of faults on power lines [5]. Of these again, nearly half
led to interrupted delivery, meaning power was not delivered to customers, while 13 %
caused an interruption duration of more than 30 minutes. On average, interruptions like
these cause a socioeconomic cost of 800 million NOK each year, also known as the CENS
cost [11]. In this section, we look at the reason for some of these faults, as well as the
different types of voltage disturbances that occur in a power grid.

2.2.1 Cause of faults

In a complex power grid, there can be multiple reasons leading to a fault in the electrical
network. A power line can go down because of weather, e.g., a tree falling on a line due
to the wind, a thunder strike, or icing caused by cold weather. In Statnett’s report from
2017 [10], they have mapped the causes of each fault in the Norwegian grid. The results
are summarized in Table 2.1.

The surrounding environment alone amounts to 41.1 % of all faults in the grid for the
years 2009-2017, while it is the reason behind 73.9 % of all undelivered power. The
surroundings are further categorized into more fine-grained categories, which are listed in
Table 2.2.

18



2.2 Faults and disturbances

Table 2.1: Overview of causes of faults in the Norwegian power grid in 2017 [10].

For failures on power lines, fraction of failures caused by surrounding is even higher, as
can be seen in Figure 2.9. The surroundings cause nearly all faults that occur on lines in
the Norwegian power grid, and the lines are often placed in areas with none nearby to fix
potential faults. This shortage of on-site personnel makes it even more beneficial to be
able to detect or predict faults ahead of time, so that personnel can be deployed before a
potential power outage.

Figure 2.9: Faults on power lines in Norway categorized by cause [10].

We can see in Table 2.2 that animals, birds and lightning amount to 45 % of all faults
related to surroundings in recent years. These causes are out of the scope of this report
to predict. We are hypothesizing that other causes, namely vegetation, wind, snow, and
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Table 2.2: Faults in the Norwegian power grid caused by surroundings in 2017 [10].

salt will lead to disturbances in the electric signal that will be detectable before a power
failure occurs. A single failure may not be detectable in advance, but the cascading effects
on other power lines might be detectable still, and further damage to equipment or loss of
power can be avoided by taking the appropriate actions.

2.2.2 High impedance faults

High impedance fault (HIF) is a group of power system disturbances that happens when a
conductor makes unwanted electrical contact with another surface element, for example a
road, a tree or other vegetation. These faults restrict the flow of current by a level that is
usually lower than what is reliably detectable by regular devices [33]. HIF is particularly
dangerous since it is not only harmful to the electronic equipment but can also be danger-
ous to animals and people around it, as HIF can generate inflammable gases resulting in
explosions or fires. The detection of these faults have therefore sparked an interest in the
research community, and a number of algorithms have been applied to the problem[34].
The presence of high impedance faults can typically be detected when analyzing the wave-
form of a signal, with asymmetry and extra high- or low-frequency components added to
the usual waveform [35].

2.2.3 Voltage disturbances

A power line can experience different disturbances which may eventually lead to a fault.
In this section, a list of the most common known voltage disturbances is presented. Each
disturbance is described as how it affects a sinusoidal wave signal and some of the pos-
sible causes. We will differ between the following 7 categories of disturbances based on
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2.2 Faults and disturbances

Seymour [36]:

1. Transients

2. Interruptions

3. Sag / Undervoltage

4. Swell / Overvoltage

5. Waveform distortion

6. Voltage fluctuations

7. Frequency variations

Transients

Transients can be categorized into two types of faults: impulsive and oscillatory transients.

Impulsive transients are sudden peaks or surges in voltage level and can be the result of
lightning or faults in the equipment used.

Oscillatory transients are changes in the steady-state of a voltage signal, typically causing
an increase in voltage, and then a sudden loss, which causes the voltage level to fluctuate
back and forth.

Transients are illustrated in Figure 2.10.

Interruptions

An interruption is the complete loss of voltage in the system and can be further categorized
dependent on its duration. It is often caused by some damage to the line itself, e.g. from
lightning strikes, animals, trees falling on the line, extreme weather or equipment failure.
An interruption is easy to spot if it happens at home, as it typically causes all lights and
electronic equipment to go black, only to come back shortly after. Voltage readings are
useful for detecting interruptions, as the output will be 0 for a period of time, as illustrated
in Figure 2.11.

Sag / Undervoltage

A sag is a reduction of the peak AC voltage, where the maximum amplitude drastically
lowers for a few periods. This can occur during system faults or from heavy load ma-
chinery starting up in the power system. A sag with a duration longer than 1 minute is
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classified as an undervoltage disturbance. The effect of sag on a signal is illustrated in
Figure 2.12a

(a) Impulsive transient. (b) Oscillatory transients.

Figure 2.10: Example waveforms of transient disturbances [36].

Figure 2.11: Example waveform of an interruption disturbance [36].

(a) Sag. (b) Swell.

Figure 2.12: Example waveforms of sag/swell disturbances [36].

Swell / Overvoltage

A swell is the opposite of a sag, with an increase in peak AC voltage for a given duration. If
this duration is longer than 1 minute, it is called overvoltage. This often occurs as a result
of load switching where the system is too weak to handle a needed voltage regulation. The
effect of a sag on a signal is illustrated in Figure 2.12b

Waveform distortion

Waveform distortions are disturbances in the sinusoidal wave and have a variety of causes.
The five most common distortions are:

1. DC offset

2. Harmonics

3. Interharmonics

4. Notching

5. Noise
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DC offset DC offset is an offset in the sinusoidal wave such that the average value is not
zero. This often causes unwanted current to devices that may already be operating at their
maximum capacity and can cause overheating.

Harmonics Harmonics are corruptions in the sinusoidal wave at specific frequencies
which are multiples of the fundamental frequency of the wave.

Interharmonics Interharmonics are waveform corruptions where a periodic signal which
is not an integer multiple of the fundamental frequency of the signal is mixed with the orig-
inal signal.

(a) DC offset. (b) Harmonics. (c) Interharmonics.

Figure 2.13: Example waveform distortions [36].

Notching Notching is a disturbance in the voltage level that is periodic in demand and
could be seen as a periodic impulse problem, with constantly fluctuating voltage.

Noise Noise is an unwanted voltage or current imposed on the system from the outside
and can be caused by poor grounding or other devices such as radio transmitters.

(a) Notching. (b) Noise.

Figure 2.14: Example waveform distortions (2) [36].

The different types of waveform distortions can be seen in Figures 2.13 and 2.14

Voltage fluctuations

Voltage fluctuation is a variation in the sinusoidal waveform that is systematic in its form,
where the voltage differs between 95 % and 105% of its target voltage. This is typically
due to a load on the system that has great variations in its demand. Voltage fluctuations
are illustrated in Figure 2.15a
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Frequency Variations

Frequency variations are the rarest type of problem occurring in an electrical grid, but is,
as the name suggests, a variation of the frequency in the voltage, which can be seen in
Figure 2.15b

(a) Voltage fluctuation. (b) Frequency Variations.

Figure 2.15: Example waveforms of frequency variations and voltage fluctuations [36].
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Chapter 3
Background - Machine Learning

The contents of this chapter is based on a semester project conducted in collaboration with
Vegard Hellem during autumn 2018. The project report is available online [12].

This chapter describes common machine learning and feature extraction methods used in
statistical learning applications. The scope is limited to methods used in this project. The
project report from fall 2018 contains further information about Wavelet transform and
S-transform, two methods frequently used in signal analysis.

Section 3.1 starts off by introducing notation and and concepts used by multiple statistical
methods within machine learning. Section 3.2 describes in detail the machine learning and
feature extraction methods used in this thesis. Finally, Section 3.3 briefly describes some
of the metrics commonly used in machine learning applications.

3.1 Machine learning

A machine learning algorithm is an algorithm that can learn from data. The definition of
learning is widely discussed, but a commonly used definition by T. Mitchell is:

A computer program is said to learn from experience E with respect to some
class of tasks T and performance measure P , if its performance at tasks in T ,
as measured by P , improves with experience E [37].
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3.1.1 Notation

We will use the following notation throughout this chapter:

Function estimators will be denoted as the function name with an added hat, e.g. an
estimator of the function F will be denoted as F̂ . Functions that are defined by a set of
hyperparameters θ will be denoted as Fθ.

Vectors will have a bold font with lowercase letters, e.g. x, while scalars will have a normal
weighted font, x. Matrices will be written in uppercase, with a bold font, e.g. X.

For series of variables, we will use the notation x1:n to denote the series of variables x1,
x2, x3 ... up to and including xn.

3.1.2 Introduction to machine learning

A common goal for machine learning is to approximate a function F̂θ to an unknown
function F , which takes as input a scalar or vector x ∈ X , where X is the domain of
possible inputs, and outputs a scalar or vector y. The goal is to maximize the performance
of a model, with respect to some loss measure L. This is done by finding the parameters θ
of the model, such that they minimize the loss L.

Problems in the machine learning domain are often divided into three categories; super-
vised learning, unsupervised learning and reinforcement learning. In this report we will
focus on the problem category supervised learning, where a dataset of labeled samples is
provided.

The fundamental assumption in supervised learning is that given enough training samples,
the machine learning method can create a model that will be able to generalize to new,
unseen inputs as well. In the instance of fault prediction in power grids, the goal of the
machine learning model could be to predict the probability of whether or not a fault will
occur within a limited time interval. The loss measure L can be defined as the difference
in predicted probability of a fault and the ground-truth of the provided sample, whether or
not a fault will occur within a specified time interval.

Moving back to the definition of learning, in the context of fault prediction in power grids,
the task T is predicting faults, the experience E is the input of sensor data, while Perfor-
mance Measure P is the value of the loss defined by L. A machine learning method would
then be said to learn if the loss of the model decreases, given more samples of input sensor
data.

Machine learning differs from some other Artificial Intelligence (AI) methods, in that fea-
ture extraction often is performed by the method itself. There is often no human interven-
tion required for rule generation, as the method is capable of recognizing and extracting
general patterns in the dataset.
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Overfitting and underfitting

Two of the most well-known problems in machine learning are overfitting and underfitting.
As the goal of supervised learning is to approximate an unknown function by using a
dataset of samples, it is a common problem that the model either adapts too well to the
input data or is unable to approximate the unknown function because of lack in model
capacity. This is undesirable, as we want the model to learn the general patterns found in
the input space, and not adapt too much to the noise in the data samples. If the model is
unable to approximate the function due to lack of model capacity, we call it underfitting.
If the model adapts too well to the training dataset, and ends up memorizing the data
samples, we call it overfitting.

There are multiple ways to deal with overfitting and underfitting of models, which can
roughly be divided into two categories: data augmentation and model tuning. The pro-
cess of making the model more robust is called generalization, and methods from both
categories are often used to reduce the risk of overfitting or underfitting.

The goal of generalization is to reduce the estimated generalization error, the model loss
when presented with new, unseen samples. To estimate this error, one usually divides the
dataset into three categories; a training set, validation set and test set. The training set is
used as input samples when training the model, and the validation set is used to estimate
the generalization error when faced with new samples. By tuning the hyperparameters
of the model to achieve a best possible generalization error estimate on the validation
set, we can thereafter test the model on the test set, to get a final generalization score.
It is important not to use the test set during model training or hyperparameter tuning,
as it will make the model conditionally dependent on the test data, and introduce a bias
into the final generalization score. The same can be said about using the validation set as
training samples during model fitting, as this will also introduce a bias in the generalization
estimator.

Figure 3.1 shows the relationship between over-/underfitting and the generalization error
when training a model with sufficient capacity on multiple iterations of the same dataset.

Data augmentation

By augmenting the samples in the dataset with label-preserving transforms, one is able
to increase the size of the dataset without explicitly collecting new data samples. There
is a multitude of transforms that are label-preserving in nature, but the label-preserving
property is dependent on the problem at hand. An example is the problem of classifying
images into a number of classes. Label-preserving transforms can then be translating the
image, changing the lighting or rotating the image. The label will still be the same, as the
image still expresses the same concept of an object.
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Figure 3.1: The relationship between over-/underfitting and the generalization error when training
a model with sufficient capacity on multiple iterations of the same dataset. The training loss keeps
decreasing while the validation loss reaches a global minima at the dashed line. After the dashed
line, the model is said to overfit to the training data.

Model tuning

A machine learning model usually consists of an architecture defined by a set of hyperpa-
rameters. Learning rate, the number of layers, input weighting and a number of trainable
parameters are only a few examples of the many parameters that might be tuned to create
a better model.

By systematically testing all possible combinations of hyperparameters, it should in the-
ory be possible to create the model that is best suited for the problem at hand. In practice,
however, this approach is unfeasible for models with a large number of hyperparameters.
The number of possible combinations increases exponentially with the number of parame-
ters, and most machine learning models use considerable time to learn a new model given
parameters and input data. This makes the approach too time-consuming for practical use.

In practice, one often seek simple models with few parameters because of interpretability
and to avoid overfitting. By reducing the number of trainable parameters one often reduces
the expressiveness of the model in function space, resulting in forcing the model to learn
the actual underlying distribution of the data, instead of memorizing all samples in the
training set. A good analogy is trying to fit a single line through 5 points in R2. A linear
model might be too simple, while a 10th degree polynomial is guaranteed to fit a curve
through all the points, but might lead to an overly complex function estimator, leading to
a high generalization error.
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Figure 3.2: Model capacity related to underfitting and overfitting. A model with too little capacity
might not be able to approximate the underlying distribution of the data. An overly complex model
might overfit and generalize poorly to new data. [38]

Figure 3.2 illustrates the relationship between model capacity and approximated functions.

An approach to avoid overfitting that is often used in practice is regularization, a term
covering multiple methods used to tune machine learning models. An example of regular-
ization is adding a penalty to large weights as part of the loss function in the model’s target
function. Putting a penalty on the magnitude of weights in the model favours function ap-
proximations with sparse or low-valued weight matrices. This in turn helps increase the
interpretability of the model, which is favourable, as a common goal in machine learning
is to answer the question of why the model behaves the way it does, not just to know that
it behaves correctly.

Two common regularization penalties are the L1 and L2 norm. The definitions are given
below,

L1 = λ

m∑
i=1

|wi| (3.1)

L2 = λ

m∑
i=1

w2
i (3.2)

where m is the total number of weights in the model, λ is a hyperparameter determining
the weight of the loss term and wi is a model weight. Increasing λ increases the penalty
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for large weights, and will result in sparser models, but might lead to a too sparse model if
set too high, as the model will prioritise to use small/few weights to reduce the loss rather
than to actualyl predict the correct output.

Another common approach to reduce generalization error is a method called ensemble
learning. The method consists of training an ensemble of multiple models rather than
training a single model to perform prediction. Each individual model calculates an output
given the input, and the final output is determined by aggregating all of the outputs.

There are multiple ways to train an ensemble of models, where Bagging [39] and Boosting
[40] are two common algorithms. Bagging is the process of training multiple models on
different subsets of the dataset, where all the outputs are combined by taking the mean
value of the individual outputs. Boosting is an iterative process of model training, where
the next model in the iterative process increases the loss contributed by previously mis-
classified samples, which creates a model that better predicts outliers in the output space.

3.2 Machine learning methods

In this section, we introduce specific machine learning and feature extraction methods
that have been proven to be effective on the type of problems that arise in classification
problems and dynamic systems. We will cover:

• Deep Learning

• Hidden Markov Models

• Decision Trees

• Support Vector Machines

3.2.1 Deep Learning

Neural networks have seen huge improvements and thus risen in popularity the recent
years, mostly due to an increase in computation power [41]. It was initially inspired by the
way the human brain works, and consists of layers of nodes and weights combined with
a linear function, with an added non-linear function applied element-wise for each output
of a layer. Deep Learning is often mentioned along with neural networks, as it is simply
a subcategory of neural networks, specifically a network with multiple layers between the
input and out layers. Such models are called deep neural networks [41] and is what we will
cover in this section. Figure 3.3 illustrates the difference between a simple neural network
and a deep neural network.
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Figure 3.3: The difference between simple and deep neural networks. Deep networks contains more
layers between the input and output layers than a simple neural networks [42].

A neural network, and consequently a deep neural network, consists of a number of layers
which define the mapping

y = f̂θ(x) (3.3)

where y is the output of the network, x is the input, and θ is parameters of the network
which are optimized to the best function approximation with respect to some loss measure
L. For each layer l, each individual node xi outputs the weighted sum of its inputs, with a
non-linear function applied to the sum of inputs, defined as

xli = σ(

N∑
j=1

(xl−1j ·Wl
j,i) + bli) (3.4)

where xli is the output of node i in layer l, N is the number of nodes in the previous layer,
Wl

j,i is the weight from node j in the previous layer to node i in the current layer, bli is an
added bias term and σ is a non-linear function.

One of the more commonly used non-linear activation functions is the Rectified Linear
Unit (ReLU), defined as:

f(x) = max(0, x) (3.5)

To optimize the performance of a neural network, a set of labeled samples in run through
the network to generate predictions. The output of the network is then compared to the
labels of the samples, which is regarded as the ground-truth label for each sample. A loss
measure can then be calculated by the use of a comparison function, to calculate the total
error of the network for the given samples. By using the gradient descent algorithm, the
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weights in the network are adjusted to reduce the total loss by propagating the error layer-
by-layer backwards through the network and calculating the individual contribution to the
loss for each weight in the network [41].

Further details on how the gradient descent algorithm is implemented through backprop-
agation in a neural network is thoroughly described in the Deep Learning book by Good-
fellow [41].

Deep Learning has been widely successful, achieving a high accuracy and beating the
previous state-of-the-art methods on a multitude of problems. While it may take a long
time to learn and update the weights of the network, it is quite fast in producing values
once it is fully trained [38].

3.2.2 Hidden Markov Models

Hidden Markov Models (HMMs) are probability based machine learning methods for pre-
dicting latent variables in time series data. It is one of multiple algorithms within the class
of Bayesian classifiers. Given a series of observable variables, we want to predict the state
of a latent variable, on which the observable variable is conditionally dependent on.

We will use yt to denote the vector of observable variables at time step t , and xt to denote
the vector of latent variables at the same time step. In literature, xt and yt is often referred
to as the belief state and the evidence, respectively [43].

An important assumption in hidden Markov Models is that xt satisfies the Markov Prop-
erty [37], defined as

P (xt|x1:t−1) = P (xt|xt−1) (3.6)

which means that the variable at time t is only conditionally dependent on the state of
the variable at the previous time step, and not any other previous states. The observable
variable yt must also satisfy the following conditional dependency

P (yt|x1:t,y1:t−1) = P (yt|xt) (3.7)

which means the observed variable yt is only conditionally dependent on the state of the
latent variables at the current time step [37]. A Markov Model must also be a station-
ary process, which is the property that the transition probabilities between states and the
conditional probabilities for the observed variable yt does not change over time.

Hidden Markov Models was one of the earliest algorithms to show great potential for fault
detection in dynamic systems [44], and is visualized in Figure 3.4.
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Figure 3.4: An illustration of a Hidden Markov Model where xt is a latent variable, yt is an ob-
servable variable, and arrows mark conditional dependencies between variables.

3.2.3 Decision Tree

Decision Tree is a machine learning method for classification problems that works by
inferring rules for splitting the dataset into multiple subsets based on the properties of the
data. It is similar to Expert Systems, except that the rules are created by using statistical
properties rather than expert knowledge.

A Decision Tree creates rules for splitting by maximizing the information gained from
performing a split. Information gained is defined as the reduction of Entropy in the set of
samples, which for a binary classification problems is defined as

BinaryEntropy(S) = −|P |
|S|
· log2(

|P |
|S|

)− |N |
|S|
· log2(

|N |
|S|

) (3.8)

where S is a collection of samples, P is the set of positively labeled samples in S and N
is the set of negatively labeled samples in S. For Decision Trees, 0 · log2(0) is defined as
0 [37].

For decision problems with more than two decision outcome values, we can generalize the
definition of binary Entropy to multiple classes:

Entropy(S) =

C∑
i=1

−|Si|
|S|
· log2(

|Si|
|S|

) (3.9)

where C is the number of decision outcome values, S is the set of samples and Si is the
set of samples in S belonging to class i.

The gain in information by splitting the dataset on attribute A can further be defined as

33



Chapter 3. Background - Machine Learning

Gain(S,A) = Entropy(S)−
∑

v∈V alues(A)

|Sv|
|S|
· Entropy(Sv) (3.10)

where S is the set of samples, A is the attribute on which to split S and Sv is the set of
samples where attribute A takes value v in S.

The attribute chosen to split each node into a number of subsets in the Decision Tree is
thus defined as

arg max
a∈Attributes(S)

Gain(S, a) (3.11)

The naı̈ve approach to make decisions with a Decision Tree is to keep splitting the dataset
until the subsets are completely divided into sets of samples belonging to a single class.
In practice this would lead to overfitting of the model, as the full set of samples might
contain noise that would generate a lot of superfluous rules just to classify a few outliers
or mislabeled samples. In order to counter this, model constraints in the form of maximum
tree depth or a lower threshold for information gain can be set to stop the Decision Tree
from splitting the samples into further subsets. The sample is then classified as the class
which the most samples in the subset belongs to [45]. An illustration of a Decision Tree
can be seen in Figure 3.5

Outlook

Humidity

Sunny

Wind

Rain

No

High
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No
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Figure 3.5: A Decision Tree for the binary decision problem of playing tennis or not. A decision is
made by presenting a data sample with the properties {Outlook,Humidity,Wind} and traversing
the tree by picking the edge matching the value of the sample’s property. Once a leaf node is reached,
a decision has been made [37].

Decision Tree is a popular machine learning method as it is easy to explain the output of
the model and how the rules are created, while at the same time providing good perfor-
mance on multiple classification problems [46]. An extension to Decision Trees called
Random Forest algorithm is an algorithm which produces an ensemble of Decision Trees
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on different subsets of the total dataset and aggregates their outputs to get a more robust
prediction model.

Random Forests can also provide a list of the attributes in the samples, ordered in terms of
feature importance, which provides insight into which features are actually important for
the classification problem at hand [47]. By calculating the mean information gained for
each feature in all the Decision Trees in the Forest, the model is able to sort the features
by importance.

3.2.4 Support Vector Machines

Support Vector Machine (SVM) is a machine learning method that has been widely used
in classification problems. An SVM works by finding the hyperplane in a multidimen-
sional space that separates the two classes that one wants to divide with the largest margin
between the hyperplane and the nearest samples, often referred to as the support vectors
[48]. A example is illustrated in Figure 3.6.

Figure 3.6: A Support Vector Machine separating a set of samples in R2 [49]. The hyperplane
produced by the SVM is the hyperplane that maximizes the distance to the closest samples, popularly
called support vectors. The support vectors are circled with a black border and lie on the dotted line.

The basic implementation of an SVM, often referred to as a Hard Margin SVM, requires
the binary classification problem to be linearly separable. In practice, this is usually not
the case, and the SVM provides multiple ways to deal with this scenario.
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A first approach is to introduce a variable to count the number of misclassified samples,
given a hyperplane. This transforms the SVM model objective from maximizing the mar-
gin to support vectors into a minimization problem of minimizing the number of misclas-
sified samples, while maximizing the margin to the support vectors. This version of an
SVM is known as a Soft Margin SVM [48].

Another approach is to transform the data points into another feature dimension where they
are linearly separable. This method is often referred to as a kernel trick and a Dual Form
SVM. By utilizing a kernel function, used to map the samples into a feature space where
they are linearly separable, we can then classify the samples in this higher dimensional
space into their respective categories before transforming the samples into their original
feature space, but with an added classification label. Popular kernels are the polynomial
kernels and the radial basis function / Gaussian kernel [50].

3.2.5 Machine learning in dynamic systems

A dynamical system is a system whose state evolves with time over a state
space according to a fixed rule [51].

The notion of time in dynamical systems adds complexity to many of the existing machine
learning methods that were described in the previous sections. While most basic machine
learning methods classify their data according to the current input, the added time dimen-
sion makes the output dependent on not only the current state of the data, but also the
change over time. This adds another dimension to the input data, which can make the
dimensionality of a single sample computationally intractable for classical methods.

Algorithms that work on time series data has to take into consideration the number of
previous steps to look at by considering the value of more data versus the added time
complexity of the algorithm itself. The more data to look at, the higher the complexity,
and the more time is required to train and run the algorithm.

One of the more common usages of such sequential data involves Natural Language mod-
elling, which is the task of predicting the next word, given a sequence of words [52].
Hidden Markov Models, as described in Section 3.2.2 is a popular way to deal with this,
as is an extension to neural networks, which we describe in the next section.

3.2.6 Recurrent Neural Networks

One of the most popular ways to deal with sequential data is Recurrent Neural Networks
(RNN). RNNs are neural networks that not only feed the output values forward to the next
layer, but also uses the value as an input into itself in the next time step, as shown in Figure
3.7
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Figure 3.7: An illustration of the differences between a Recurrent Neural Network and a Feed
Forward Network. A Recurrent Neural Network uses its output value as input in the next round of
computations [53].

There are multiple implementations of RNNs where one of the implementations, called
Long Short-Term Memory (LSTM), are responsible for much of the success in Deep
Learning in areas where sequential data is used [53]. RNNs is one of the few models
with internal memory, making it capable of remembering previously seen inputs from a
sequence. This help increasing the accuracy of predicting what comes next, as RNNs can
utilize use the entire sequence of state changes to predict the next value.

The LSTM implementation of RNNs make it capable to learn from experiences that may
have a long time delay between a specific action and the resulting behaviour. This makes it
especially useful for fault prediction in the power grids, where disturbances in the voltage
signal sometime earlier could be the only telling of a fault that is going to happen. RNNs
have previously proven successful in classifying voltage disturbances [54].

3.3 Metrics

There are multiple ways to compare the performance between machine learning models.
In this section we will give a brief introduction to some of the common metrics used in
classification and regressions problems.

3.3.1 Matthews Correlation Coefficient

Matthews Correlation Coefficient (MCC) is a measure of model performance in a binary
classification problem [55]. It takes into account the true positive (TP) rate, true nega-
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tive (TN) rate, false positive (FP) rate and false negative (FN) rate, and is regarded as a
balanced measure, even for classification problems with an unbalanced dataset [56].

The MCC takes on values in the interval [−1, 1], where a value of -1 means there is perfect
negative correlation between the input variable and the dependent output variable, 0 means
the two random variables are uncorrelated and 1 means there is perfect correlation. The
MCC is given by:

MCC =
TP · TN − FP · FN√

(TP + FP )(TP + FN)(TN + FP )(TN + FN)
(3.12)

3.3.2 Binary cross-entropy

Binary cross-entropy, also called logistic loss, is a measure of the similarity between an
output probability and the ground truth of the output. It measures the number of bits
required to encode the samples if an encoding is optimized for the output distribution
rather than the true, underlying distribution. The

The Binary cross-entropy is given by [57]:

BCE(p, q) = −
∑
x∈X

p(x) · log q(x) (3.13)

where p is the the true, underlying probability distribution of the samples in X and q is the
distribution of the output samples from an estimator.

3.3.3 Receiver Operating Characteristic curves

A Receiver Operating Characteristic (ROC) curve is a plot showing the ability of an esti-
mator to discriminate between true positive and false positive outcomes by changing the
threshold needed for a classifying a sample as positive [58].

The Area Under the Curve (AUC) is the total area under the ROC curve, and is often
used as a way to describe and compare ROC curves without drawing the actual curves for
comparison. An AUC value of 1 means the model is able to perfectly classify as samples,
without any false positives.
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Previous work

The contents of this chapter is based on a semester project conducted in collaboration with
Vegard Hellem during autumn 2018. The project report is available online [12].

A lot of the previous work done in the field of voltage analysis has been done on artificially
generated data and not on real data collected from sensors. There are multiple fields within
power grid analysis, where a lot of the research effort on voltage faults has been on classi-
fication rather than prediction of faults ahead of time. Classification of faults is a natural
first step on the road to predict faults, as classification is still done manually by operators
after a fault occurs, and may provide insight into methods that are useful for prediction
as well. Automation and improvements in this process would help in generating a large
dataset for training supervised models for fault prediction.

Section 4.1 gives an introduction to the overall goal of this chapter, and introduces the
different fields of study within voltage fault analysis. Section 4.2 covers research in voltage
classification, a field of study close to voltage prediction, and Section 4.3 covers the field
of voltage stability. Section 4.4 covers previous work within the field of voltage prediction,
the area of research this thesis is a part of. Finally we give short summary in Section 4.5
that summarizes the findings across all fields of voltage fault analysis.

4.1 Goal of review

The goal of this chapter is to present and explain some of the background history and
recent advancements in power fault prediction the last decades. We present the machine
learning methods that have shown the most potential and the feature engineering and data
types that have been used previously. To increase the area of research, we have looked not
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only at the prediction of voltage faults but also at the steps coming after it, namely fault
classification and stabilization.

One can roughly divide the timeline of voltage analysis into three separate intervals. The
interval leading up to the fault event belongs to the field of voltage prediction, where the
goal is to predict whether or not a fault will occur in the future. The interval where the
fault event actually happened belongs to the field of fault classification. At this point, we
are given a fault event and the goal is to classify it into which type of voltage fault actually
occurred. The field also covers searching the whole timeline to detect faults that have not
been manually labeled previously. The last interval is the field of voltage stability, where
the goal is to determine whether the power line will stabilize or if it potentially will lead
to an unstable network and a blackout. The separate intervals are illustrated in Figure 4.1.
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Figure 4.1: Timeline of the multiple intervals of interest in voltage fault analysis.

Two previous obstacles have been in the way of the development of power quality pre-
dictions; the lack of large-scale real sensor data and the lack of computation power. Both
problems have partly been solved in recent years, with the deployment of Phasor Mea-
surement Units (PMU) and Power Quality Analyzers (PQA) in the power grids and the
evolution of processor performance and big data processing solutions. In Norway, sensors
are deployed throughout the power grid and are continually monitoring important vari-
ables like voltage and current levels, sending sensor readings in real-time to a centralized
server.

The problems of storage and computing power has been solved in the recent years, but
processing the data with available machine learning methods is still a problem remaining
to be fully solved. The sensor reading may be in a resolution as high as 50 000 records per
second, while the system is still in need of real-time analysis. There is not much research
on what sampling frequency that is needed to get a good result, but it is shown that some
faults cannot be detected unless one has a sampling frequency of at least 25 KHz [59].
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4.2 Classification of voltage disturbances

Since there are few publications on the prediction of voltage faults, we explore a similar
field that has been more thoroughly researched over the years, namely the classification of
voltage faults. While the classification of faults is not the overall goal of this report, a good
classification method would be of immense use to a machine learning algorithm trying
to predict faults, by using detected faults as training samples. Classification of voltage
disturbances has been an important issue, as all classification of disturbances on the power
grid normally is done through visual inspection of the disturbance by an operator. This
procedure is susceptible to human errors, as well as being a very time-consuming practice
[60].

Most research about classification is divided into two parts. The first part is feature en-
gineering of the data, which involves transforming the data to reduce its dimensionality,
while keeping as much as possible of the information it contains. This is done because
monitoring data at a rate of 50 000 samples per second is still close to unfeasible for a
real-time computer system, and machine learning systems might learn better from another
representation of the data than a stream of voltage level readings. The second part is the
processing itself, the classification algorithms used to obtain a result. Figure 4.2 illustrates
the general steps of voltage classification.

Waveform
data

Segmentation Feature
Extraction Classification

Decision
Making
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Feature engineering Processing

Figure 4.2: The two steps of voltage fault classification. Adapted from [61]

Some of the earliest work done on the classification of power disturbances using machine
learning was done in 1995 by Ghosh and Lubkeman [62]. They describe a neural network
approach for classification of waveforms, as part of a pre-processing step to collect data
from transient recorders. They used sensor data that automatically triggered on certain
measurement thresholds of disturbance and used this data to further classify the type of
disturbance experienced. As seen in Section 2.2.3 most of the common voltage distur-
bances have a particular characteristic in their waveform. They achieved an accuracy of
over 90 % with a neural network, but it should be noted that this classification was done
on simulated data that had already been labeled by a set threshold and was thus made to
classify disturbances that were already discovered.

Another early publication is a paper produced in 1999 on Power Quality Detection and
Classification [63]. The authors used Wavelet Transforms to analyze problems both in
time and frequency domains, which has been one of the most popular feature engineering
tools used in power analysis and learning. By using a wavelet transform and calculat-
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ing the standard deviation at different resolution levels of the signal, they classified volt-
age sag, swell, harmonic distortion and transient distortion. The classification was done
through mathematical rules and definitions, and no machine learning method involving
learning from the dataset was applied. However, the results of this study were unclear,
and no benchmarked comparison to other solutions were performed. Although inevitably
correct, as they used definitions of these interruptions for mathematical calculation, some
disturbances that have unclear definitions or is very close to a disturbance could have been
missed.

A review on different techniques and methodologies for disturbances classification was
published in 2011 [64]. The traditional Power Quality Indices (PQI) includes peak values
and total harmonic distortion, properties that have remained a standard in later work. The
standard in feature engineering at that time for was Fast Fourier Transform, Goertzel’s
algorithm, Zoom FFT and Welch’s algorithm among others. The information these al-
gorithms provide is sometimes insufficient, and not all problems can be resolved by these
algorithms, especially for detecting short spikes or transients [65]. The Short Time Fourier
Transform fixes many of these issues as long as the window is short enough, along with
the Wavelet Transform and S-transform.

For classification algorithms, one of the most widely used has been neural networks, while
Fuzzy Logic also has shown great potential combined with expert-based systems [66].

Support Vector Machines (SVM) and their variants have also shown to be useful in the
classification of voltage disturbances [67]. SVMs have been tested on data leading up to
and including the actual disturbance and even done very well on data from other power
line than it was trained on, leading to the theory that a pre-trained factory SVM could be
deployed in multiple surveillance grids [68].

In 2013 a real-time power quality disturbance classification method based on extensive
feature extraction using a hybrid of known methods by He, Li and Zhang was published
[69]. To transform their input data they used a modified version of the S-transform. They
argue that for real-time computation, many of the more computational heavy machine
learning methods are undesirable, and instead use Decision Trees to classify the different
type of disturbances. The system was tested on real-world data and performed well, with
a >95 % accuracy on data sampled at a 52.2 kHz rate. Decision trees have later been
successfully applied in multiple instances [70], also using the S-transform as a feature
extraction method, with decision trees outperforming SVMs in a comparison done by Ray
[71] in 2014.

In 2015, to deal with the problem of adapting to changes over time, Barros proposed
an algorithm that could continuously learn from new input. The system is based on the
wavelet transform and a neural network that was able to do continuous learning. Accuracy
rates with continuous learning rose compared to a pre-trained network, going from an
83.51 % accuracy on classifying voltage swells to 100 % [60].

A paper using an LSTM deep learning approach for classifying voltage dips was published
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Method Advantage Disadvantage
Fourier Transform Simplicity of

implementation.
Temporal information of
frequencies is lost

Short Time Fourier
Transform

Simplicity of
implementation. Includes
temporal information in
Fourier Transform

Trade-offs between time
and frequency resolution

Wavelet Transform Time-frequency resolution Computationally
expensive. Some
information regarding
transients is lost

S-Transform Phase correction Block processing, may not
be suitable for real-time
requirement

Table 4.1: Feature extraction methods used for voltage fault classification. Adapted from [64].

in 2018. The method was strictly based on learning from training data, with no other inputs
or definitions of voltage disturbances. Features were extracted from the raw waveform data
by calculating the RMS value with a sliding window a single cycle at a time. The segments
were fed into 4 LSTM layers, which extracted features before feeding the representation
into a fully connected layer that classified the sample into one of seven classes. They
achieved an accuracy of 93.5% on a dataset consisting of 5982 labeled voltage dips [72].

Feature extraction and machine learning methods for voltage fault classification is sum-
marized in Table 4.1 and 4.2 with their mentioned advantages and disadvantages.

4.3 Voltage stability

Closely related to voltage fault prediction is the field of voltage stability. Voltage stability
is a problem class where the goal is to detect whether any instability is present in the wave-
form of the voltage to reduce blackouts. This instability is usually a result of some of the
faults mentioned in Section 2.2.3, gradually leading up to an interruption. The main dif-
ference between prediction and stability is that in stability the monitoring is done after an
instability or fault has already happened. The task of monitoring the signal therefore has to
look at a shorter interval, to see whether the power quality is stabilizing or worsening. The
operator already knows that something is wrong, and wants to predict the consequences of
the fault.

In 2009, Decision Trees were used to predict voltage stability following blackouts. Data
from synchronized PMUs was used to predict whether the signal was stable or unstable.
By using decision trees they were also able to find out which variables that were effectively
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Method Advantage Disadvantage
Fuzzy Logic Easy to analyze results.

Outputs probabilities.
Requires expert
knowledge to generate
rules.

Neural Networks Great flexibility in
architectures. Can handle
temporal relations in data.

Requires large, labeled
datasets. High
computational cost during
training.

Support Vector Machines Handles large feature
spaces. Flexibility in
choice of kernel and
penalty term.

Requires large, labeled
datasets.

Decision Trees Simplicity of
implementation.
Computationally cheap.

Does not handle temporal
relations in data.

Table 4.2: Promising algorithms used for voltage fault classification. Adapted from [64].

splitting the dataset. Classifying an insecure case as a secure case was made more costly
than classifying a secure case as insecure, as the consequences from false positives would
be more severe in a real system [73]. To deal with different types of data giving different
values, they proposed extending the decision tree to a Random Forest algorithm to increase
accuracy.

Random Forests have since been successfully implemented and tested by Guo and Mi-
lanović in 2013 when predicting if the disturbance would be critical for further system
operations, achieving a 95 % accuracy on data from simulated PMUs 2.5 second after a
fault. In 2015, Negnevitsky et al. also tested a periodically updated Random Forest clas-
sifier for on-line prediction, using a security index with degrees of altertness instead of a
boolean output [74]. They achieved an accuracy of 99 % on a simulated 53-bus system of
PMU data.

There have been multiple approaches with neural network architectures in monitoring
voltage stability. In 2015, Zhukov proposed a hybrid architecture consisting of a fully-
connected, a Kohonen and an Elman neural network, using data from a simulated power
grid [75]. They achieved an accuracy of 97 % when predicting voltage margins following
a fault.

A more recent paper was published in 2018, where Ibrahim and El-Amary proposed a
recurrent neural network to predict voltage instability in power grids [76]. The project
was done on simulated PMU data, on a standard 14-bus and 30-bus IEEE system using
MATLAB for simulation. The network consisted of a fully-connected layer followed by
a recurrent layer. The network was trained with the Particle Swarm Optimization (PSO)
algorithm, which creates multiple networks with random weights and trains them in paral-
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lel to reach the best known minima. They achieved an accuracy of 96.7 % and 97.5 % on
14-bus and 30-bus systems when predicting one of three labels stable, alarm and trip.

Guo and Milanović [77] proposed decision trees as a method of classifying the state of a
system after a fault has occurred and whether it was a critical fault or if the system could
keep operating. They achieved a 95 % prediction rate

4.4 Voltage disturbance prediction

Little work has previously been done in the field of fault prediction. The prediction process
is very similar to the classification process as seen in Figure 4.2, however, the classifica-
tion step is now a prediction of future faults that might occur and not a classification of
an already detected fault. Since the work is done on the same data, we work under the
assumption that the same methods of segmentation and feature extraction that are used
in the fault classification and voltage stability fields can be used for prediction. We also
assume that the methods used in classification can be adapted to solve this problem. One
notable difference is that voltage prediction might have to look at at a larger interval of
data than the classification and stability processes and is thus more dependent on handling
long time series with temporal relations than many classification methods.

Some of the earliest work seen on voltage fault prediction was done in 1999 on a simulated
97-bus system modelling the National Power Grid of England and Wales [78]. Voltage sags
were predicted using stochastic processes, generating voltage dips in simulated phasor
data. This was a purely probabilistic prediction based on earlier fault events, time between
faults and grid topology. The goal was to predict the frequency of voltage sags for a given
site based on historical sensor data.

In 2016, researchers from Enerq in collaboration with the University of Sao Paulo devel-
oped a computer system to detect high impedance faults (HIF) in distribution lines [79].
The system used Power Quality Analyzers installed at feeders with a sample rate of 512
samples per 60Hz cycle to generate high frequency resolution data. The data was com-
pressed and stored in a PQSCADA database provided by ElSpec. The four following
algorithms were used for feature engineering:

1. Short Time Fourier Transform to extract harmonics and sequence components in the
current signal

2. Wavelet transform to analyse disturbances in currents

3. Sum of differences Algorithm, adapted from [80]

4. Threshold detection of short time RMS value elevations

The system consisted of a two-step alarm system, where a neural network with a single
hidden layer and the threshold detection system would trigger a stage 1 alarm that warns
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the distribution grid operator. The alarm would further trigger another detection block,
which could escalate the alarm to a stage 2 alarm.

An interesting find from the feature engineering process is that only a few harmonic com-
ponents were needed to extract useful information about the currents. Only the 2nd, 12th
and 14th harmonic components were compared to a threshold calculated from the average
value of the harmonic values in the signal and used in the detection system. The detec-
tion system architecture and the two-step alarm system is illustrated in Figure 4.3 and 4.4
respectively.

Figure 4.3: System architecture used by researchers from Enerq and the University of Sao Paulo to
detect high impedance faults in the distribution grid [79].

Another high impedance fault prediction system was proposed by German researches in
2013, with the goal of detecting trees falling on power lines [81]. The system was tested
on both simulated and on actual field measurements from PMU sensors, with a manually
created algorithm for detecting an abnormal change in impedance due to disturbances on
the power line. The system proved successful at detecting HIFs up to about 106Ω.

Early prediction of voltage sags caused by large rotor swings was explored by Weckesser et
al. in 2014 using simulated data from PMUs in generators [82]. They used three different
approaches, all based on statistical analysis of the voltage signal and threshold values.
While they were able to predict the voltage falling below a critical value ahead of time,
their definition of ahead of time was 300 millisecond before the fault. While this may
be enough for a computer system response, a manual operator would have no chance of
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Figure 4.4: A two-step alarm system used by researchers from Enerq and the University of Sao
Paulo to detect high impedance faults in the distribution grid [79].

responding to such a prediction.

The Texas A&M’s Distribution Fault Anticipation project has since 1990 been trying to
anticipate faults in power lines through real-time intelligent monitoring [83]. In their paper
from 2009 describing their efforts, they showed numerous cases of power outages that had
incipient faults leading up to the outage as far as one month before.

In the following report the year after [84], they showed that intelligent algorithms could
detect some of these cases. The researchers behind the paper state that voltage harmonics
at a sufficient sample rate is the the most important metric when considering widespread
deployment of this system. We note that no testing was done on whether these algorithms
would incorrectly detect disturbances in signals without a fault as well.

The same researchers from Texas A&M published a paper proposing a method to find
recurrent disturbances in power lines using a clustering algorithm in 2017 [85]. The algo-
rithm could signify a more extensive outage happening shortly due to failing or degrading
line apparatus.

In 2018, Xiao and Qian used a Hidden Markov Model to predict power quality distur-
bances, using real data from a Chinese city and its local distribution grids [86]. The data
consisted of PQA measurements with a sample rate of 256 samples per cycle, paired with
the weather conditions at the sensor placement sites, along with 8010 labeled faults in
the time series data. Their choice of model was influenced by their motivation to be able
to derive the relations that exist in non-stationary time series. The model was successful
in predicting power faults varying between 1 and 20 days before the fault event, with an
accuracy close to 80 % in the most promising regions.

4.5 Summary

By combining feature extraction methods and machine learning models from different
fields within voltage fault analysis, it should be possible to develop models aimed at fault
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prediction. In this section, we summarize the findings from the fields of fault classifica-
tion, voltage stability and fault prediction that show potential applicability to further fault
prediction systems.

Most of the referenced studies in this report have used time-synchronized data from PMU
sensors as their data source. As the data made available by SINTEF in this report is
PQA data with a higher sampling frequency than PMU sensors, we hypothesize that the
same methods used on PMU data can be successfully combined with the dataset available.
Some extra preprocessing of the high-frequency data may be required in order to make the
models computationally tractable.

4.5.1 Feature extraction methods

The feature extraction methods that have shown the most potential are Wavelet transform,
a modified S-transform and Short Time Fourier Transform. These methods have already
been successfully applied in systems showing good results on real-world data for fault
classification, which proves that they can extract information from the signal about its
current state. If there are disturbances in the signal before a fault occurs, we hypothesize
that these extraction methods should be able to pick up these disturbances. The system
created in collaboration with Enerq specifically used the wavelet and STFT for feature
engineering, which further proves this hypothesis.

4.5.2 Machine learning models

Decision trees, SVMs and deep neural networks show the most potential for choice of
model for processing dynamic power quality data. Both deep recurrent neural networks
using an LSTM as cell architecture and more basic feed-forward networks have shown
to be successful for classification and stability monitoring, in combination with the listed
feature extraction methods. Random Forests and SVMs have also shown great potential
for fault classification. Out of the few studies on voltage disturbance prediction, neural
networks have also shown to be successful in this field, at least for high impedance faults.

Other models that have been tested in practice are fuzzy logic and Bayesian classifiers,
where Hidden Markov Models have have been used in fault prediction on real data. In
Table 4.3 we summarize our conclusions about what has shown promising results, and
what we suggest exploring further.
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Machine learning
method

Explore
further

Justification

Decision Trees Yes Promising results on classification, can extract
rules to see how it has come to its conclusion.

Neural Networks Yes Been used in fault prediction systems on real data,
LSTM can handle time series data very well.

Support Vector
Machines

Yes Performs well on high-dimensional data, has
shown good results on voltage classification in
multiple power lines.

Fuzzy Logic No Requires expert domain knowledge.

Bayesian
Classifiers

Yes HMM handles time series data. Been used
successfully in predicting faults on real data.

Table 4.3: Machine learning methods that have shown promising results in previous work.
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Chapter 5
Predicting faults in the Norwegian
Power Grid

The contents of this chapter is partly based on a semester project conducted in collab-
oration with Vegard Hellem during autumn 2018. The project report is available online
[12].

We start by presenting the EarlyWarn project in Section 5.1, a project by SINTEF that
aims to predict power failures in the Norwegian power grid. We then continue in Section
5.2 by describing the sensors and data that is available in the power grid of Norway, which
is used in this thesis. Lastly, we look at how the results from this thesis and the EarlyWarn
project can be used in an application for power grid operators in Section 5.3.

5.1 EarlyWarn

EarlyWarn is a collaboration project between SINTEF Energi, NTNU, Statnett and multi-
ple power grid operators in Norway. Their ultimate goal is proactive detection and early
warning of incipient power grid faults and instabilities by using data from sensors placed
at strategic places in the Norwegian power grid [1]. In combination with the recent ad-
vances within the field of machine learning, they hope to create a system which learns the
early patterns of the voltage disturbances described in Section 2.2.3. The system can then
be deployed as an application for continuous monitoring of the power grid at operation
centers around Norway.

The project involves the transmission, regional and distribution grid levels, which is mon-
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itored by sensors that store their records at centralized servers, operated by the grid com-
panies. Through the use of Big Data processing solutions and machine learning methods,
the project will bring the following value propositions to the involved parties:

• Improved situational awareness in control centres

• Targeted and efficient handling of faults and instabilities

• Improved understanding of the value of sensor data in a digital world

• Insight into required utility in future generations of instrumentation

• Improved competence in analysis and use of power quality sensor data

The monitoring application should provide a warning horizon long enough so that a human
grid operator has time to react, inspect further details about the potentially upcoming fault
and to take preventative measures to reduce the impact of the fault. This could be to
dispatch a team of engineers for physical inspection and testing of equipment on the site
of potential failure, or to shut down the power line completely, routing the power through
other parts of the grid without a blackout. There is no hard limit on how long time is
required to react to a potential power failure, but a rule-of-thumb is that the longer time,
the better.

5.2 PQA data in Norway

Power Quality Analyzers (PQAs) are installed at strategic locations in the Norwegian
power grid and give real-time insights into the power quality at these sites. These are
one of the main type of sensors used by grid operators in Norway to monitor the health of
the power grid at all times. An image of a PQA sensor is shown in Figure 5.1.

In addition to PQA sensors, Norway also has Phasor Measurement Units (PMUs) installed
in the power grid. The disadvantage of using PMU data compared to PQA data is that
PQA data has a superior sampling rate, and are thus able to obtain more detailed data on
power quality [59]. PQAs has a bandwidth of 25 kHz versus PMUs’ 50 Hz. This makes it
possible to detect signals and noise that would otherwise have gone unnoticed due to the
gaps between each sample. An example of this is seen in Figure 5.2 where the distortion
in the signal is obvious when looking at the waveform with a high sampling rate, but
inconspicuous at a lower sampling rate.

The added resolution in PQA data gives makes it possible to extract valuable information
on different voltage quality parameters, including a high number of harmonic components,
transients, and local voltage variation.
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Figure 5.1: An example of an Elspec Power Quality Analyzer [87].

The drawback of PQAs compared to PMUs is that they are not time-synchronized with
each other, which makes it harder to compare data from different sensors to aid in pin-
pointing the location of faults. PMUs also have the ability to stream measurement data
live from the grid, while PQAs have a processing delay before the data can be transferred.

PQA data is collected by power distribution system operators (DSO) and tranmission sys-
tem operators (TSO) in Norway. As part of the EarlyWarn project, SINTEF has received
access to some of the data for research purposes. An important aspect to remember is that
in an actual application for fault prediction, the data needs to be analyzed in real-time or
with the shortest delay possible to have any value in the prediction of faults. Figure 5.3
shows the locations of built and planned PQA sensors in the Norwegian power grid by
Statnett in 2016.

5.2.1 Available data

To enable machine learning methods based on supervised learning, we require a dataset
of labeled fault events. The time series data is already made available to SINTEF through
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(d) The Fourier coefficients for the signal in (b).

Figure 5.2: Two graphs showing the same signal given by 0.95 sin (t · 2π) + 0.05 sin (10 · t · 2π),
sampled with low and high frequency. The signal sampled at 20Hz (a) does not capture the noise
added in the signal, and only has a single Fourier coefficient. The signal sampled at 2000Hz (b)
manages to capture the noise in the signal, which shows up as a second Fourier coefficient.

EarlyWarn, while the labels must be provided elsewhere. For this, SINTEF has created
an application for automatic detection of power system faults, called AHA (Automatisk
Hendelsesanalyse) [20]. AHA is able to classify the following type of faults:

• Voltage sags

• Power interruptions

• Ground faults

• Rapid voltage changes

54



5.2 PQA data in Norway

Figure 5.3: Geographical locations of built and planned PQA sensors from Statnett in 2016 [88].

The application is also able to distinguish between real and false voltage sags, which are
caused by saturation in voltage transformers.

The software works by providing it with a start and end timestamp, which it uses to search
the database of voltage time series, outputting a list of fault event timestamps in the given
time period, where the fault happened and which type of fault the event is classified as. The
list of timestamps can then be used further to extract time series data to create a suitable
training dataset.

Further postprocessing of the fault event timestamp list can be done due to the Norwegian
regulation on system responsibility in power grids [89]. The regulation instruct all power
grid operators in Norway to analyze, document and report faults that occur in the grid.
By cross-checking the list of generated timestamps against the list of reported faults from
the grid operators, one can filter out false positives from the list of timestamps. However,
there might also be cases where AHA has correctly detected a fault, which might not have
been reported by the grid companies.

The current standard for fault reporting in Norway is the FASIT system [90]. The reports
are generated by grid operators and uploaded to Statnett through a web-based interface.
The extent of reporting can be imperfect, and the grid operators are only reporting power
interruption faults through the system. Also taking into account the possibility of fault
events that have not previously been detected by grid operators, the job of filtering out
false positives from the list of timestamps is a tedious and time-consuming job, which has
to be performed manually by experts in the field. Because of this, postprocessing of the
list of timestamps has only been done to a small degree.
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5.2.2 Dynamic Dataset Generator

To extract time series data belonging to the events in the list of timestamps, SINTEF has
created an application to automatically extract the time series in question from a centralised
database containing the data shared by collaborating system operators. The application
is named Dynamic Dataset Generator, and provides both a graphical and command-line
based interface to users. An image of the graphical user interface can be seen in Figure
5.4.

Figure 5.4: The graphical user interface of Dynamic Dataset Generator (DDG).

DDG lets the user specify a range of parameters that are used when extracting data from
the time series database. The full list of tunable attributes are found in Table 5.1.

The database contains time series for multiple parameters, namely Voltage, Current, Active
power and Reactive power. In this thesis we will only use voltage measurements in our
experiments. For each of the mentioned measurements, multiple computed values can be
extracted for each sample in the time series. All computed values are aggregated by the
Min, Max or Average operator for the specified interval set by the Resolution parameter.
The list of possible values to extract is found in Table 5.2.

Each of the computed values can be extracted for each line or phase. As the electrical grid
in Norway is a three-phase system, there are three phases (Phase 1, 2 and 3) and three line
(Line 1-2, 2-3 and 1-3) voltages available.
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Parameter Description
Total
duration

The time duration to include in the sample, before the fault occured.

Resolution The sampling frequency of the signal in the generated sample.

Buffer The time duration to include in the sample, after the fault occurred.

Transient The minimum duration of time that should pass after a fault, before a
non-faulty data sample can be generated.

Aggregation
method

The method used to aggregate the time series data, when the data
extraction sampling frequency is not equal to the original signal
sampling frequency. Can choose between Min, Max and Average.

Table 5.1: Table of parameters for Dynamic Dataset Generator.

Computed
value

Description

RMS The RMS value of the signal, computed cycle-by-cycle in the
original signal.

Waveform The sampled amplitude of the original signal.

Harmonics The harmonics computed cycle-by-cycle by the Discrete Fourier
Transform, up to and including the 512th harmonic.

Table 5.2: Table of available values to extract when generating a dataset.

In order to have a balanced dataset for supervised learning, a set of samples that do not
contain fault events is required. DDG supports generation of such events, where it can
generate a user-defined ratio of fault-to-non-fault samples. The non-fault generation al-
gorithm works by taking a fault sample which belongs to a specific operation node, then
randomly choosing an interval equal to the length of the fault sample within the opera-
tional interval of the node. If the randomly chosen interval overlaps with the fault event
interval (including transient period after the fault), another interval is randomly chosen
until the two intervals don’t overlap.

By generating non-fault samples based on fault events, we ensure that all nodes are repre-
sented in the non-faulty dataset. As there are multiple labeled faults for each node during
the operational interval, there is a non-zero probability that the randomly chosen interval
overlaps with one of the other labeled fault events for the given node. However, the proba-
bility of this happening can be ignored in practice, as the operational period for each node
spans across multiple years, where each node usually only contains around 300 labeled
faults, and the extracted intervals are usually not more than a few hours at most.

The final output of DDG is a dataset of samples for each fault in the list of timestamps and
an equivalent number of non-fault samples that can be used for further feature engineering
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and machine learning. Figure 5.5 illustrates the entire workflow required for the data
generation process. The dataset is saved as a comma separated list of values (.csv), with
added metadata for each sample. The metadata included in each sample is described in
Table 5.3.

PQA
sensor data

Time series
database

Dynamic
Dataset

Generator

AHA Fault
event list

Dataset

Figure 5.5: The process of generating a dataset of labeled faults and non-faults.

5.3 Fault prediction as a practical application

5.3.1 Real-time requirements

In a system where the goal is to warn power grid operators of potential faults or dis-
turbances in the voltage signal, real-time data processing is of utmost importance. The
warning horizon might not be more than a few minutes for many critical faults, and there
are multiple processing steps that has to be completed before the operators are even made
aware of an impending fault, which they then have to evaluate and act on.

The first step of the process is for the PQA sensors to record and send the sampled signal
to centralized servers. The current setup which is used for research purposes contains a
single centralized database that stores time series for multiple power grid operators. This
might not be the scenario in the future, where each operator might have to operate their
own database.

The sensors placed in the power grid has to provide a continuous stream of data to the
database, to be further processed in the pipeline. Newer sensors [91] have the capability
of processing the signal to extract features on-site, which helps reduce the load of the
database servers. However, in the case of older equipment without these capabilities,
the infrastructure has to be robust enough to handle both processing of input data and
processing of aggregated values from the database. An important aspect is that the sensors
also have to be connected to the Internet, as manual gathering of signal data will be too
slow to have any value in a real-time monitoring system.

The second step of the process is to use feature extraction and machine learning methods
to process the most recent signals captured by the sensors. For this step, two aspects have
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Name Description
Fault Detection Whether the data contains a fault or not
Fault type What type of fault it is, if any

Fault time When the fault occurred
Start time Start time of the first sensor reading

End time End time of the last sensor reading

Total duration seconds How many seconds of data the dataset contains

Total duration days How many days of data the dataset contains

Resolution ms The interval between each sampled data point

Time buffer seconds How many seconds of data from the period after the fault
occurred is included in the sample

Time transient seconds The minimum amount of seconds that should pass between
the end of a faulty sample and a non-faulty sample

N points The number of data points for each parameter

Node The name of the node from which the sensor data is
accessed

Nominal voltage The line voltage of the equipment at the fault location

Table 5.3: Metadata included per sample in the dataset.

to be considered when designing a system with real-time requirements: prediction time
consumption and online model training.

The time used for feature extraction and model prediction is greatly influenced by the
choice of algorithms and the length of time series data used in prediction. Storing the most
recent time series data obtained from the database locally on the machine performing pre-
diction can greatly increase the performance, as the machine only has to request the data
that has been recorded since last time in regular intervals. Depending on the feature extrac-
tion method, it might also be possible to use extracted features from previous calculations,
if the features does not depend on the complete time series, but only a local interval.

The system should also be able to learn continuously from new faults that occur in the
power grid. Some machine learning methods use considerable time to train before they
reach an adequate performance level, and taking the monitoring system offline while train-
ing such models is unacceptable. Luckily, it is possible to parallel the process of prediction
with an older model and training of a new model. Seeing as the model performance prob-
ably won’t change drastically by adding a few training samples to its training set, using an
older model for prediction while training is an acceptable solution.

The third step is to incorporate the new system for fault predictions into the existing work-
flow of grid operators. There are already alarm mechanisms in place that warns of mal-
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functioning power lines, and the added system introduces yet another set of alarms. It is
important to consider the impact on attention and trust in the system, so that the operators
can continue with an effective workflow. An important aspect to take into account is the
risk of false positives and false negatives, which is covered in detail in Section 5.3.2.

The power grid operators holds the responsibility of making a system that fulfills the re-
quirements of the first step of the process, and is out of scope for this thesis. Interaction
designers should be involved in the process of incorporating the warning system into the
grid operators’ workflow, and is also out of scope for this thesis. The second step how-
ever, has to be taken into account when choosing the methods for feature extraction and
machine learning. Results from architectures that require a lot of processing time for each
sample might help us along the way to create a system for fault prediction, but for practical
applications the end result has to be an application designed for real-time processing.

5.3.2 False positives and false negatives

When it comes to predicting a problem like power system faults, it is essential to take into
consideration the consequences of false positives and false negatives. We will give a quick
explanation of both in the context of fault prediction.

A false positive error would be to predict a time series sample as an upcoming fault, even
when the correct answer is that no fault will happen.

A false negative error would be to predict a time series sample with an upcoming fault as
a non-fault, not advising any action for the operator.

The consequence of a false positive error is a reduced trust in the systems and wasted time
for the operators, as long as they have ways to manually investigate the signal and find out
that no action needs to be taken. The consequence of a false negative, however, might lead
to damage to the power grid, causing a potential blackout and a more significant cost to
society [92].

One might argue that a potential blackout is a more severe consequence than wasted time
for operators, but one has to keep in mind that the prediction system comes as an addition
to the already existing monitoring infrastructure currently in place. Not installing the
system would lead to the the same costs that we already have today. Thus, any correctly
predicted fault is an added bonus to the current system, while all false positives comes as
an added cost in the form of extra work for the operators.

Ensuring that a prediction system has no false positives is easy - one simply has to never
predict any faults. Ensuring that a prediction system correctly predicts all upcoming faults
is also easy - one can constantly output an alarm. Both of these extremes would of course
not provide a very good or reliable prediction system.

Finding a good balance in fault prediction precision is hard, as we want the system to
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predict as many true positives as possible without reducing the trust in the system among
the operators. A too sensitive system would lead to the scenario depicted in the story of
The Boy Who Cried Wolf [93], where lack of trust in the alarms would lead to operators
ignoring the warnings. There must be a balance between precision and recall, which must
be taken into consideration when designing and testing the application for real world use.

5.3.3 Other data sources

While the scope of this thesis only includes analysis of voltage signals to predict upcoming
faults, one might consider taking additional data sources into the machine learning models
for prediction. Weather data may be used in addition to other measurements to provide
better predictions, as the presence of rain, wind and snow has shown to be correlated
with the occurrence of power line faults [94]. Investigating the potentially added effect of
further data sources should be considered after an initial prototype has been developed.
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Chapter 6
Experiments and Results

This chapter presents the experiments performed during this thesis. In total 6 different
experiments were performed. In Section 6.1 the multiple datasets used in the experiments
are presented. Section 6.2 gives the background and motivation for each question, and
describes which experiments helps answering which questions. Section 6.3 describes in
detail how the experiments were performed, and the results from each experiment are
presented in Section 6.4.

6.1 Datasets

The dataset used in this thesis was labeled by SINTEF’s AHA system, presented in Section
5.2.1 and generated by DDG, presented in Section 5.2.2. There is a total of 4499 detected
fault events available, collected from 15 different locations, with voltage levels ranging
from 15 kV to 300 kV. The total list of faults has the following number of faults in each
category:

• 2308 Voltage sags

• 1786 Ground faults

• 270 Power interruptions

• 135 Rapid voltage changes

Multiple properties can be extracted from the dataset available. The full list of available
properties is listed in Table 5.1 and Table 5.2. Some of the experiments use different
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properties, and thus multiple datasets have been extracted. The datasets are named and
given in Table 6.1, Table 6.2 and Table 6.3 for reference throughout this chapter.

Dataset 1
Extraction parameter Value
Total duration 3600 seconds
Resolution 1 second
Buffer 0
Transient 3600 seconds
Aggregation method Mean

Extracted feature Specificity
Single phase harmonics Phase 1, 2, 3. 1st to 16th harmonic

Line harmonics Line 12, 23, 31. 1st to 16th harmonic

Fault types Successfully extracted
Voltage sags 2178

Ground faults 1730
Power interruptions 220

Rapid voltage changes 132

Table 6.1: Features extracted in Dataset 1.

Due to some missing time series data, not all fault event time series are available in the
database. The number of successfully extracted fault samples is therefore included in the
dataset tables.

When generating a dataset of faults, a dataset of non-faults of the same size as the list
of faults is generated. As not all faults could to be generated, the total number of non-
fault samples sometimes exceed the number of fault samples. In these cases, a number
of samples are removed from the non-faults so that the datasets are of equal size. The
removed samples were chosen uniformly at random.

For each experiment, a test set was extracted from the dataset used. The test set consisted
of 20% of the available data, picked uniformly at random. The remaining 80% of the
dataset will be referred to as the training data.

6.2 Experimental Plan

The research questions defined in Section 1.2 is repeated here for reference.

RQ 1. Can machine learning methods predict upcoming faults on power lines by ana-
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Dataset 2
Extraction parameter Value
Total duration 900 seconds
Resolution 1 second
Buffer 0
Transient 3600 seconds
Aggregation method Mean

Extracted feature Specificity
Single phase harmonics Phase 1, 2, 3. 1st to 256th harmonic

Fault types Successfully extracted
Voltage sags 2236

Ground faults 1749
Power interruptions 229

Rapid voltage changes 133

Table 6.2: Features extracted in Dataset 2.

lyzing voltage measurement data?

RQ 2. What attributes in a voltage signal are suited for predicting faults on power lines?

RQ 3. What is the performance of some machine learning algorithms at predicting faults
on power lines?

RQ 4. Are some types of faults easier to predict than others?

We will address each question in turn and provide the background and goal for each ques-
tion.

6.2.1 Can machine learning methods predict upcoming faults on power
lines by analyzing voltage measurement data?

The fundamental question that EarlyWarn needs to answer in order to successfully build a
system to predict power faults is whether it is possible to predict faults at all. Without a
confirmation on this question, further work on building a system for fault prediction will
not be useful for the parties involved in the project. As mentioned in Section 4.4, similar
predictions have been done previously, which is promising for our initial experiment.
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Dataset 3
Extraction parameter Value
Total duration 3600 seconds
Resolution 1 second
Buffer 0
Transient 3600 seconds
Aggregation method Minimum, Maximum

Extracted feature Specificity
Single phase harmonics Phase 1, 2, 3. 1st to 16th harmonic

Line harmonics Line 12, 23, 31. 1st to 16th harmonic

Fault types Successfully extracted
Voltage sags 2178

Ground faults 1710
Power interruptions 220

Rapid voltage changes 132

Table 6.3: Features extracted in Dataset 3.

In Experiment 1, Dataset 1 will be used in combination with variations of Support Vector
Machines, Random Forest Ensembles and Feed-forward Neural Networks to determine if
it is possible to predict faults with a 10 minute prediction horizon. Prediction accuracy
and Matthews Correlation Coefficient (MCC) will be used as metrics to determine if the
machine learning methods are able to predict upcoming faults.

In a balanced dataset with two classes, the probability of predicting the correct class for
a given sample is 0.50. If any model is able to perform significantly better than random
guess on the unseen data samples in the test set, we will have proven that it is possible to
predict upcoming faults in power lines with a 10 minute prediction horizon.

6.2.2 What attributes in a voltage signal are suited for predicting
faults on power lines?

Feature extraction methods are important for many machine learning algorithms to per-
form well on classification tasks.

The available time series can produce frequency components up to the 512th harmonic
for each step in the time series, but there is little research on which of these available
parameters that are essential for fault prediction. Based on discussions and tests in the
EarlyWarn project group, it was discovered that a lot of the harmonic frequencies in the

66



6.2 Experimental Plan

extracted datasets contained only zero values for the majority of the extracted time series.
Having 512 harmonic frequencies for each line and phase results in 3072 features per
time step, which can make some machine learning methods too slow for real-time use,
while the empty frequency columns provide no added information. Reducing the number
of dimensions to a minimum of dimensions that are actually useful when discriminating
between faults and non-faults will be beneficial for the runtime complexity of both feature
extraction and prediction, and might also provide valuable insight into which features
in a voltage signal that are important parameters when analysing the signal for human
operators.

To answer this Research Question, two experiments will be performed. Experiment 2
will use Dataset 2, and the presence of the harmonic frequencies in faults and non-fault
samples will be examined. This will provide insight into which harmonic frequencies that
are actually present in the two classes.

Through discussions and tests performed internally by other members of the EarlyWarn
project, it became apparent that there were other features than the mean value of harmonics
that should be used when predicting faults. Using the minimum and maximum values of
the harmonics frequencies within a window of 1 second gave better results when used in
combination with SVMs, Random Forests and Neural Networks.

Experiment 3 will use Dataset 3 and a Random Forest to rank the importance of each
individual feature. This experiment will provide further insight into which features that
are important to predict faults.

6.2.3 What is the performance of some machine learning algorithms
at predicting faults on power lines?

By combining the results from the three first experiments, we should be able to create mod-
els that perform better than the initial models tested in Experiment 1. In order to answer
this Research Question, we will in Experiment 4 benchmark the same machine learning
models used in Experiment 1 in addition to a Recurrent Neural Network on Dataset 3.
The models’ hyperparameters will be tuned using a validation set before testing the per-
formance on the test set. Accuracy, MCC and Receiver Operating Characteristic (ROC)
curves will be provided for all models.

6.2.4 Are some types of faults easier to predict than others?

Different type of faults might have different causes. Some of these causes might not pro-
duce distortions in the voltage signal beforehand, while others might have large impacts
on the voltage signal leading up to the coming fault event.

By examining which type of faults our models manage to predict, we might uncover that
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some types are near impossible to predict, while other types have good potential for de-
tection. Focusing on easy-to-predict faults might lead to quicker adaption of a system that
is able to detect some faults in the grid. Focus on harder-to-predict faults might lead to
other approaches in feature engineering, or to the ultimate conclusion that some faults do
not have a characteristic distortion in the voltage signal leading up to the event.

To answer this Research Question, we will perform two experiments. In Experiment 5
we will train the best performing machine learning models from Experiment 4 on the
full training dataset, then do prediction on the test dataset. By separating the predicted
test samples into the four fault categories available, we will see if the model is better at
predicting some type of faults than others. Prediction accuracy within each fault category
will be used as measure.

In Experiment 6 we will train the best performing machine learning model from Experi-
ment 4 on datasets made up of fault events of the same category, and predict on a test set of
the same fault category. This experiment will show if machine learning models focusing
on a single type of fault are better at detecting specific faults, or if the type of fault have
little impact on overall performance.

6.3 Experimental Setup

The setup of each experiment is divided into two sequential steps:

1. Preprocessing

2. Model tuning and validation

Some of the experiments depend on other previous experiment results in order to be per-
formed. An overview of the experiment dependencies and their individual outcome is
given in Figure 6.1.

Experiment 1

Experiment 2 Experiment 3

Experiment 4

Experiment 5 Experiment 6

Feasibility

Feature reduction

Model performance

Individual fault performance

Figure 6.1: Overview of experiments with their outcome and dependencies on other experiments.

68



6.3 Experimental Setup

6.3.1 Experiment 1 - Feasibility test

Preprocessing

Dataset 1 was used in this experiment. In order to perform prediction rather than voltage
classification, the last 10 minutes of time series data leading up to a potential fault was
removed from each sequence, resulting in 50 minutes of data available in each sample.

The machine learning models used in this experiment do not handle time series data. In
order to remove the temporal dimension, each sequence of harmonic frequencies in the
sample was reduced by aggregating multiple functions along the time axis. The aggrega-
tion methods used were mean value, minimum value, maximum value and standard devi-
ation. The resulting dataset contained samples of 386 features each, without any temporal
dimension.

Model tuning and validation

As the intention of this initial experiment is to simply determine if it is possible to predict
faults, and not to explore all possible preprocessing and machine learning models for the
best possible prediction system, a few standard machine learning models were chosen. The
machine learning models of choice are listed with their hyperparameters in Table 6.4. To
implement the SVM and Random Forest models, the popular Python library Scikit-Learn
v0.20.0 was used [95]. Neural networks were implemented in the Keras framework v2.2.4
[96].

Machine learning model Parameters
Support Vector Machine Kernel = Radial basis function

Random Forest Number of trees = 200
Maximum depth = No limit

Feed-forward Neural Network First layer size = 64

Second layer size = 32

Third layer size = 16

Optimizer = Adam

Loss function = Binary cross-entropy

Batch size = 128
Number of epochs = 150

Table 6.4: Machine learning models and the hyperparameters used in Experiment 1.

No models were tweaked to perform better on a validation or test set, and thus no valida-
tion set was generated for this experiment. Each model was trained on 80% of the total
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available dataset and validated on the remaining 20% of the dataset. The neural network
was trained for 150 epochs, where the MCC was calculated on the test set after each epoch.
The results from the experiment is summarized in Section 6.4.1.

6.3.2 Experiment 2 - Harmonic frequency presence

Preprocessing

Dataset 2 was used in this experiment. In order to not include the harmonic frequencies
that may appear during a fault, the last 5 minutes of time series data was removed from
each sample, resulting in 10 minutes of data available in each sample. The final dataset
was made up of samples with 600 time steps, each with 768 features per step.

The dataset was aggregated along the time dimension, counting the number of non-zero
values in the harmonic feature series for each harmonic frequency. All labeled fault events
were then summed together, creating a total sum of all non-zero values.

Model tuning and validation

The result was a count of the number of non-zero values for each harmonic frequency in
the dataset, counted separately for faults and non-faults. The counts were divided by the
total number of time steps in all the available samples in each category. The results are
summarized in Section 6.4.2.

6.3.3 Experiment 3 - Feature importance

Preprocessing

Dataset 3 was used in this experiment. Similarly to Experiment 1, the last 10 minutes of
each sequence was removed, resulting in a dataset of samples with 50 minutes of data.

As Random Forests do not handle time series data, the same preprocessing method used
in Experiment 1 was applied to the features in Dataset 3. This resulted in a dataset where
each sample consisted of 768 features, with no temporal dimension.

Model tuning and validation

In order to rank the feature importance of the available features in the dataset, a Random
Forest containing 200 trees and no limit on tree depth was trained on the training data. The
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25 most important features ordered by the reduction in information entropy by splitting the
feature space is presented in Table 6.6.

6.3.4 Experiment 4 - Model performance test

Preprocessing

Dataset 3 was used in this experiment. All tested models except for the Recurrent Neural
Network (RNN) used the same preprocessing method used in Experiment 1 and Experi-
ment 3. Using the results from Experiment 2, all feature columns with less than 1% of
non-zero values were removed from all samples. Using the results from Experiment 3,
the most common feature aggregation methods used in the top 100 ranked features were
applied to the remaining harmonic feature columns. This resulted in a dataset with 162
features per sample, with no temporal dimension. The complete list of features included
in the dataset is listed in Appendix C.

For the RNN model, the same feature extraction and preprocessing methods used for the
other models were applied, with the modification that the time series aggregation was not
done on the entire time series at once, but rather in intervals of 100 seconds at a time. This
resulted in a dataset of samples where each sample consisted of a time series of 30 steps,
with 162 features per time step.

Model tuning and validation

Grid search was performed on each machine learning model to find the optimal hyperpa-
rameters. A validation set consisting of 20% of the training data was extracted to estimate
the performance of each model before training the model with the highest MCC in each
model category on the full training dataset. The test set was then used to give a final score
to the chosen models.

The metrics recorded in each experiment were prediction accuracy, MCC, Receiver Oper-
ating Characteristic (ROC) curves and Area under The Curve (AUC). The final scores on
the test set for the chosen models are presented in Table 6.7.

Support Vector Machines

Grid search was performed to find the optimal kernel. The kernels tested were linear, 2-4th
degree polynomial, sigmoid and radial basis function (RBF).

Random Forests

Grid Search was performed to find the optimal number of trees and maximum tree depth.
The number of trees to generate was tested between 50 and 500 at intervals of 50. The
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maximum tree depth was chosen among { 5, 10, 15, 20, 25, No limit }.

Feed-forward Neural networks

A neural network with four fully-connected layers was used. The three first layers used
Rectified Linear Unit (ReLU) as element-wise activation function, while the last layer used
a sigmoid function with a single scalar as output. Grid Search was performed to determine
the number of nodes in the three first layers.

Each model was trained for 300 epochs, where the model was scored using the validation
set after each epoch. If the MCC score on the validation set improved, the weights of the
network were saved. The highest MCC score achieved during training was used to rank
the performance of the network.

Recurrent Neural Network

A Recurrent neural network was created to utilize the temporal relations in the input
data. The model consisted of two sequential layers of bidirectional LSTMs outputting
sequences, with an attention layer followed by two fully-connected layers. The two bidi-
rectional layers had an output dimensionality of 128 and 64 dimensions respectively. The
attention layer and the first fully-connected layer both had 64 dimensions in their out-
put space, with the fully-connected layer using ReLU as activation function. The last
fully-connected layer had a single scalar output with sigmoid as activation function. The
network architecture was inspired by a Kaggle competition [97].

6.3.5 Experiment 5 - Fault category performance

Preprocessing

Dataset 3 was used, with the same preprocessing as described in Experiment 4. Each
sample was marked with its fault category.

Model tuning and validation

The model with the highest MCC from Experiment 4 was chosen for this experiment. The
model was trained on the full training set, and tested on the test set. The percentage of
correctly predicted samples within each category are presented in Table 6.8.
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6.3.6 Experiment 6 - Fault category specialization

Preprocessing

Dataset 3 was used in this experiment, with the same preprocessing methods as described
in Experiment 4 and 5. The full dataset was divided into the four fault categories available,
where a number of non-faults equal to the number of faults in each category were picked
uniformly at random. 20% of the samples within each category were extracted for test
sets, picked uniformly at random.

Model tuning and validation

The model with the highest MCC from Experiment 4 was chosen for this experiment. A
model was trained for each fault category, using the training data consisting of samples
from that particular fault type. The model was tested on the test set of the respective fault
category, where prediction accuracy and MCC was recorded. The performance within
each fault category are presented in Section 6.4.6.

6.4 Experiment Results

6.4.1 Experiment 1 Results

Table 6.5 shows the metrics recorded for the three models tested in Experiment 1. Out of
the three models tested, the Random Forest model achieved both the highest accuracy and
MCC, while the SVM achieved the lowest score in both metrics.

Model Accuracy MCC
SVM 0.5746 0.1791
Random Forest 0.6643 0.3329
Feed-forward Neural Network 0.6340 0.2748

Table 6.5: Accuracy and MCC scores for models tested in Experiment 1.

6.4.2 Experiment 2 Results

Figure 6.2 shows the percentage of non-zero values in the harmonic frequency time series
for fault and non-fault samples respectively. A percentage of 100% would mean that a
non-zero value is present in all time steps in all three phases in all samples in its respective
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category. The figure only includes harmonic frequencies where they have non-zero values
in at least 1% of the time steps for either faults or non-faults. A full list of the 256 available
harmonic frequencies is available in Appendix A.
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Figure 6.2: The percentage of non-zero values in the sequences of harmonic frequencies in Dataset
2.

Out of the 256 harmonics available, only 23 frequencies had more than 1% of non-zero
values. Harmonic number 9 only appear more than 1% in the fault dataset, and have less
than 1% appearance in the non-fault dataset. Harmonic number 65 appear more than 1%
in the non-fault dataset, but have less than 1% appearance in the fault dataset.

Harmonic frequency 1, the fundamental frequency of the signal, has no appearance in the
dataset. This is due to the fact that the harmonic frequencies retrieved from the database
are normalized as a percentage of the fundamental frequency. Including the fundamental
frequency in the dataset would only have given a column of 1’s, and it has thus been
removed from the database query.

6.4.3 Experiment 3 Results

Table 6.6 presents the 25 most important features according to the Random Forest feature
ranking. The top 120 features are included in Appendix B.

The importance column contains the information gain calculated for each feature, and
sums to 1 when summing all importance scores in the full feature set. A higher score
is better, meaning that the feature provides a higher information gain when used as split
attribute in the Decision Tree. As there are 768 features available, the information gain
would be 0.0013 if all features were of equal importance. From the results, we can see that
the most important features have around 5 times higher importance score than the default
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Harmonic number Time step
feature

Line /
Phase Aggregation method Importance

Harmonic 10 Minimum V2 Maximum 0.00660
Harmonic 4 Minimum V1 Standard deviation 0.00618
Harmonic 5 Minimum V1 Standard deviation 0.00600
Harmonic 10 Minimum V23 Maximum 0.00597
Harmonic 11 Minimum V12 Standard deviation 0.00584
Harmonic 10 Minimum V31 Maximum 0.00570
Harmonic 10 Minimum V3 Maximum 0.00567
Harmonic 10 Minimum V1 Maximum 0.00567
Harmonic 12 Minimum V2 Maximum 0.00565
Harmonic 4 Minimum V3 Standard deviation 0.00561
Harmonic 10 Minimum V12 Standard deviation 0.00560
Harmonic 10 Minimum V12 Maximum 0.00560
Harmonic 14 Minimum V3 Standard deviation 0.00540
Harmonic 4 Minimum V12 Standard deviation 0.00535
Harmonic 4 Minimum V2 Standard deviation 0.00534
Harmonic 14 Minimum V1 Standard deviation 0.00530
Harmonic 10 Minimum V12 Mean 0.00529
Harmonic 15 Minimum V12 Standard deviation 0.00528
Harmonic 15 Minimum V23 Standard deviation 0.00527
Harmonic 15 Minimum V3 Standard deviation 0.00525
Harmonic 4 Minimum V31 Standard deviation 0.00523
Harmonic 11 Minimum V23 Maximum 0.00519
Harmonic 14 Minimum V23 Standard deviation 0.00519
Harmonic 5 Minimum V31 Standard deviation 0.00517
Harmonic 5 Minimum V3 Standard deviation 0.00513

Table 6.6: The 25 most important features in Dataset 3, ranked by a Random Forest in Experiment
3. The importance of each feature is the information gained by splitting the feature in a Decision
Tree.
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score.

The Time step feature column specifies whether it is the maximum value or minimum value
within each time step interval that was extracted from the database. The Aggregation
method column describes which aggregation method that was used to reduce the time
series into a single value for that particular column. For example, the most important
feature is the 10th harmonic frequency in phase 2, where the minimum of the harmonic
frequency has been extracted from the database for each interval in the time series. The
whole sequence of minimum values has been aggregated into a single value by using the
maximum operator on the sequence.

The top 25 features are all minimum thresholds of a harmonic frequency, aggregated by
either calculating the standard deviation of the sequence, or by taking the maximum value,
except for a single mean value. In fact, from Appendix B we can observe that the 115 most
important features are all different aggregations of the minimum harmonic value per time
step. Harmonic number 10 and 4 on different phases and lines make up 13 of the first 25
features. The line and phase voltages have no clear predominance in the features.

6.4.4 Experiment 4 Results

The model that achieved the highest MCC score on the validation set within each of the
categories SVM, Random Forest, Feed-Forward Neural Network and Recurrent Neural
Network were trained on the full training set and benchmarked on the test set. The results
from the benchmarks are presented in table 6.7. The complete list of model performance
metrics computed during grid search is included in Appendix D.

The Random Forest model achieved the highest accuracy and MCC out of all the machine
learning models tested. The SVM achieved the lowest scores.

Figure 6.3 contains ROC curves for the tested models. A steep slope near the origin is
preferable. The Random Forest has the steepest slope and the highest Area Under The
Curve (AUC) out of the models tested.

6.4.5 Experiment 5 Results

The Random Forest from Experiment 4 was trained on the full training set, before predict-
ing on the test set. The samples in the test set were then divided into their fault category
groups, and the accuracy within each category is listed in Table 6.8.

The model had the highest accuracy within the power interruption category, and performed
the worst on voltage sags and RVC. The model labeled a non-fault as a fault in 19.8% of
the samples.
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Model Parameters Accuracy MCC AUC

SVM
Kernel = Radial basis
function
Penalty multiplier = 10

0.6077 0.2770 0.6311

Random Forest

Max depth = 20
Number of trees = 400
Split criterion = Information
Gain

0.7423 0.4828 0.8522

Feed-forward
Neural Network

First layer size = 128
Second layer size = 64
Third layer size = 64
Optimizer = Adam
Loss function = Binary
cross-entropy
Batch size = 128
Number of epochs = 300

0.7083 0.4166 0.7551

Recurrent Neural
Network

First bidirectional
LSTM state size = 128
Second bidirectional
LSTM state size = 64
Attention layer size = 64
Fully-connected
layer size = 64
Optimizer = Adam
Loss function = Binary
cross-entropy
Batch size = 128
Number of epochs = 300

0.6839 0.3661 0.7383

Table 6.7: Accuracy, Matthews Correlation Coefficient (MCC) and Area Under The Curve (AUC)
scores for models tested in Experiment 4.
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(a) SVM ROC curve in Experiment 4.
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(b) Random Forest ROC curve in Experiment 4.
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(c) Feed-forward Neural Network ROC curve in
Experiment 4.

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os
iti
ve

 R
at
e

Recurrent Neural Network ROC Curve
Baseline
RNN

(d) Recurrent Neural Network ROC curve in
Experiment 4.

Figure 6.3: Receiver Operating Characteristic (ROC) curves for the machine learning models tested
in Experiment 4.

Sample category Accuracy
Voltage sag 0.632

Ground faults 0.700
Rapid voltage changes 0.571

Power interruptions 0.865

Non-faults 0.802

Table 6.8: The accuracy of the Random Forest model from Experiment 4 within each fault category
in Experiment 5.

6.4.6 Experiment 6 Results

The model with the highest MCC from Experiment 4 was trained on four different datasets,
each consisting of samples from a single fault category. The performance on each dataset
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is presented in Table 6.9. The ROC curves within each fault category is displayed in Figure
6.4.

Fault type Accuracy MCC AUC
Voltage sag 0.7133 0.4358 0.8381

Ground faults 0.7295 0.4652 0.8351
Rapid voltage changes 0.6603 0.3401 0.6980

Power interruptions 0.7613 0.5294 0.8317

Table 6.9: Accuracy, Matthews Correlation Coefficient (MCC) and Area Under The Curve (AUC)
scores achieved when training and predicting on single classes of faults in Experiment 6.

The Random Forest performed slightly better when predicting only power interruptions
compared to the model predicting on all fault categories. Slightly worse performance was
seen on voltage sags, with a larger decrease in performance in the rapid voltage change cat-
egory. The model had close to the same performance on ground faults as when predicting
on all fault categories.

The ROC curves for voltage sags and ground faults are quite similar to the ROC curves
the Random Forest produced on the whole dataset in Experiment 4. The curves for rapid
voltage changes and power interruptions have a flatter curve near the origin.
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(a) ROC curve for a Random Forest trained and
tested on voltage sag faults.
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(b) ROC curve for a Random Forest trained and
tested on ground faults.

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os
iti
ve

 R
at
e

Rapid Voltage Change ROC Curve
Baseline
Random Forest

(c) ROC curve for a Random Forest trained and
tested on rapid voltage change faults.
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(d) ROC curve for a Random Forest trained and
tested on power interruption faults.

Figure 6.4: Receiver Operating Characteristic (ROC) curves for a Random Forest trained and tested
on datasets consisting of faults from single fault categories in Experiment 6.
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Chapter 7
Analysis

In this chapter we start out by discussing the results from the experiments described in
Chapter 6. Section 7.1 covers the specific findings in each experiment, followed by Section
7.2 which puts the analysis into the broader context of this thesis.

7.1 Discussion

7.1.1 Experiment 1 - Feasibility test

Experiment 1 was performed to provide statistical proof that prediction of faults is possible
with the voltage data available.

Under the assumption that a machine learning model has a 50% chance of classifying a
random sample into either category in a balanced dataset with two outcome classes, we
can use a binomial test to calculate the statistical significance of our experiment. Our null
hypothesis H0 is that our machine learning model has probability P = 1

2 of classifying
a sample into the correct category. Our alternative hypothesis Ha is that the model has
probability P > 1

2 of classifying correctly.

The model with the lowest accuracy in Experiment 1 was the SVM, which achieved an
accuracy of 57.46%. Dataset 1 contained 8520 samples, which are independent and iden-
tically distributed random variables. 20% of the dataset was used as a test set, resulting
in a total of 1704 samples for our binomial test. Out of these 1704 samples, 979 were
correctly predicted.
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By using the binomial distribution B(N = 1704, P = 1
2 ), we calculate the probability of

getting 979 or more correctly predicted samples in an experiment where the true probabil-
ity of predicting the correct class is 1

2 . The probability of this occurring is 4.1 · 10−10.

By using the statistical significance level of 5%, we can reject the null hypothesis and
accept Ha. Our machine learning models can correctly classify a sample with probability
P > 1

2 .

7.1.2 Experiment 2 - Harmonic frequency presence

Experiment 2 was performed to provide insight into which harmonic frequencies that are
present in fault and non-fault signals.

From Figure 6.2 it is clear that there are 5 harmonic frequencies that are more prevalent in
the voltage signal than other frequencies. Harmonic number 3, 5, 7 and 11 are all present
in more than 40% of all time steps, while Harmonic number 13 is present in about 15% of
the signal, for both faults and non-faults. These are all odd harmonic frequencies, which
are more common in three-phase systems, as even harmonic values are usually canceled
out by the three-phase system. Around harmonic number 33 and 67, there is a sudden
increase in harmonic presence.

There is no clear difference in which harmonics appear in signals leading up to a fault
or in non-faulty signals. The distribution is quite similar between the two, where some
frequencies are a few percentages more common in faults, and other frequencies are more
common in non-faults. We hypothesise that the mere presence of harmonic frequencies
is not an indicator of an upcoming fault, but rather that the amplitude and patterns in the
harmonic frequencies over time are the main indicators.

Columns that were present in more than 1% of the dataset were included in Dataset 3,
to be used for training machine learning models. The cut-off threshold was chosen after
the harmonic counts were available, in order to filter out most of the frequencies which
only appeared in a few samples. The low frequency counts can be regarded as noise, and
may lead to overfitting in models by remembering samples with these specific harmonic
frequencies. Setting the cut-off threshold at a somewhat higher percentage might have
removed more noise, but would quickly reduce the number of features to only five har-
monics, loosing the information from the columns with a somewhat higher count around
harmonic 33 and 67.

As stated in Table 5.2, harmonic frequencies up to and including the 512th harmonic is
available in the database. Due to limitations in the software used to generate fault samples
from the database, generating all 512 frequencies for more than 30 minutes with a sample
rate of 1Hz is not feasible. Because of this, only the first 256 harmonics were included in
the dataset. Based on the full table of counted values in Appendix A, we can see that no
harmonic frequencies above the 97th frequency is present in the dataset. We thus hypoth-
esise that this trend continues on until the 512th harmonic, but we acknowledge that there
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is no guaranteed way to be sure without actually generating the harmonic frequencies and
counting the number of non-zero values.

7.1.3 Experiment 3 - Feature importance

As we can see from Table 6.6 and Appendix B, the 112 most important features were
different aggregations of the minimum harmonic value per time step. This is strongly
indicating that inspecting the minimum value of the harmonic signals is key to predicting
faults.

From Experiment 2 we already know that some of the harmonic values are present with
non-zero amplitude in almost 80% of the time steps, so in practice there is a clear presence
of harmonic distortion, even in non-faulty signals. Experiment 3 only looks at which fea-
tures are the most important attributes to split to divide the dataset into its two categories,
it does not say which side of the split the two categories fall into. Theory on harmonics
in power systems, state that an ideal power system should have zero amplitude on all har-
monic frequencies, except for the fundamental frequency. We thus assume that a lower
amplitude in harmonic frequencies are generally a good indicator of a healthy signal, and
higher amplitudes are indicators of a faulty signal. The splits in the Decision Trees are
believed to reflect this behaviour.

The aggregation methods maximum value, mean value and standard deviation made up
all of the 112 most important features, with 40, 36 and 36 features respectively. The
first feature made with minimum value aggregation appeared as the 116th most important
feature.

Aggregating a high maximum value from the minimum values of each time step is an
indicator that the signal has had a high degree of distortion for a whole sample interval
period, in our case 1 second. Such a distortion can be regarded as a minor disturbance on
the line, which eventually leads to a larger fault.

The mean and standard deviation of the minimum values can also be regarded as indicators
of an upcoming fault, where a high mean value can indicate a lasting distortion in the
signal, while the standard deviation measures changes in the harmonic values over time.
Ideally, the power system should have a stable signal, and the standard deviation is a
measure of how much the signal fluctuates.

The minimum value aggregation is believed to give little useful information when predict-
ing faults. The interval used for aggregation was a window of 10 minutes, with a sample
rate of 1 sample per second. A window of 1 second with zero amplitude in a harmonic
frequency would result in the overall aggregation returning a zero amplitude. Unless the
signal is severely distorted during the whole period, the probability of such an interval
appearing is high, effectively removing all other information from the aggregation.
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7.1.4 Experiment 4 - Model performance test

Random Forests achieved the best scores in accuracy, MCC and AUC. The ROC curve
produced by the Random Forest also has the steepest rise around the origin out of the four
models tested. We can thus conclude that the Random Forest is the best machine learning
model for fault prediction out of the four models that were tested as part of this thesis.

The steep rise of the ROC curve from the Random Forest is beneficial when it comes to
practical applications for fault prediction. A system which provides too many false alarms
will result in lack of trust in the system by the grid operators. By setting the threshold for
an alarm close to 100% confidence, we can see from Figure 6.3 that the Random Forest is
able to predict almost 20% of the fault events with a minimal amount of false negatives.

The threshold for prediction would need to be tweaked in an actual application, in order to
determine a tolerable ratio of true positives to false positives. Another solution could be to
set two thresholds on the output, where the highest threshold was used to directly trigger
an alarm, while the second, lower threshold is used to flag a voltage signal for further
processing with other machine learning models or automated analysis tools.

Feed-forward Neural Networks, Recurrent Neural Networks and Random Forests have
in common that they are universal function approximators. They are in theory able to
approximate all possible functions, with arbitrary precision. This does not necessarily
imply that neural networks provide the best solution to any problem that can be modelled
as a continuous function. To be able to approximate a complicated function, the number of
nodes in the hidden layers of the networks increases, which require more training samples
in order to not overfit to the training data, and to still be able to approximate the function
well.

A Random Forest can approximate any function by creating Decision Trees that have no
limit on tree depth, and keep splitting until all samples in a sub-tree are in a group of sam-
ples with a single class. It is still limited by the trends and data represented in the training
samples, but it contains fewer parameters that needs to be tuned with increasing amounts
of data. The Feed-forward and Recurrent Neural Network consisted of 33 857 and 161
415 trainable parameters respectively, and with a dataset of 6924 samples for training, the
task of approximating the prediction function is similar to fitting a 10th degree polynomial
to a single point; there is simply not enough data to fit the function approximation to.

An interesting find is that the preprocessing method which completely removed the spatial
dimension from the signal performed better in combination with the Random Forest and
the Feed-forward Network than the partially spatial-preserving preprocessing in combina-
tion with the Recurrent Network. This might be an indicator that a gradual build-up of
a faulty signal is not necessarily needed in order to predict faults, and that it is sufficient
that a fault signature is present somewhere in the signal, regardless of the spatial sequence
of events. However, because of the ratio between parameters and training samples in the
Recurrent Network, there might be a lack of data that led to the lower performance, not
that the sequence of fault indicators are indifferent to the prediction process.
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Out of the four models tested, the SVM achieved the lowest scores in all recorded metrics.
The ROC curve shows that the ratio between true positives and false positives are close to
the baseline, with only a slight trend towards more true positives than false positives. The
model performed better than the SVM used in Experiment 1, but is still beaten by all other
models tested. The number of support vectors in the SVM ended up as 5997 vectors. This
indicates that the SVM is not able to split the feature space into separate regions for the
respective classes, but that most of the training samples lie on the border of the decision
line.

7.1.5 Experiment 5 - Fault category performance

From Table 6.8 we can observe that there is a clear difference in accuracy between the
fault categories. Power interruptions achieved the highest accuracy of 86.5%, while RVCs
achieved an accuracy of 57.1%. Ground faults achieved an accuracy close to the mean
accuracy across the different categories, while voltage sags performed worse than average,
with an accuracy of 63.2%.

The results indicates that some faults are easier to detect than others. No weighting of
different fault categories was performed when training the Random Forest model, so there
is no preferential bias in the model, other than trying to achieve the highest possible accu-
racy across all categories. Power interruption faults are clearly easier to detect than other
faults, with properties in the signal leading up to the fault that are able to be detected by
the Random Forest in most cases.

It must be noted that the category that performed the best and the category that performed
the worst had the lowest amount of labeled faults within their categories. Only 220 power
interruptions and 132 RVCs are part of the whole dataset, compared to 2178 and 1710
samples for voltage sags and ground faults respectively. Out of these faults, only 20%
were included in the test set, on which the metrics in Experiment 5 are based on. The
randomly chosen samples that constitutes the test set can thus have influenced the score in
either a positive or negative way, by not being representative for the distribution of samples
in the full fault category.

Another observation from the results is the number of false positive faults detected. only
80.2% of non-faults were classified as non-faults, while 19.8% of the were incorrectly
classified as faults. As discussed in Section 7.1.4, a false positive rate close to 20% is
too high for any system that aims to help grid operators in practical decision making.
However, the threshold used in this experiment was set to a majority vote among the trees
in the Random Forest, and a higher threshold for fault detection will reduce the number of
false positives, as observed in the results from Experiment 4.
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7.1.6 Experiment 6 - Fault category specialization

Some of the models trained on individual categories of faults achieved results close to
the performance of the model trained on the whole dataset. Voltage sags and ground
faults achieved an accuracy a few percentage points below the previous results, while
power interruptions performed better than the initial model. The model trained on RVCs
performed he worst out of the four models with 66% accuracy, more than 8 percentage
points below the initial model.

Combining the results from Experiment 5 with the results from Experiment 6, we can see
that accuracy on the RVC category was the lowest both when trained on a full dataset and
when trained on only RVC faults. We hypothesis that there are no indicators or fewer
indicators in the voltage signal than in other categories leading up to these type of faults.

When looking at the model trained on only power interruption faults, we can see that the
accuracy and MCC was higher than the overall accuracy and MCC of the model trained
on all fault categories. However, comparing the results to the actual performance within
the power interruption category from Experiment 5, there is actually a loss in performance
within the category. As mentioned in Section 7.1.5, there are fewest samples within the
RVC and power interruption categories, which might influence the test set by not being
representative of the underlying distribution of samples.

From Figure 6.4 we can see that the ROC curves for voltage sags and ground faults are
similar to the ROC curve for the Random Forest model in Figure 6.3. This shows that the
models are able to predict some faults with a high degree of certainty, allowing for high
thresholds to filter out false positives.

The curves for RVCs and power interruptions are significantly different to the previous
Random Forest curve, were voltage sags have a lower Area Under the Curve, and the
power interruption curve has few samples where the model is certain of a coming fault.

We argue that making a Random Forest model specifically for each category is feasible
for voltage sags and ground faults, but more data is needed in order to determine whether
the same applies for RVCs and power interruption faults. Further research is also needed
in order to determine the behaviour by models trained on a single fault type and presented
with a fault of another type.

7.1.7 Online prediction

The fact that the Random Forest model achieved the highest scores in all recorded metrics
is positive for the further development of an application for fault prediction.

Training a Random Forest on a large dataset is parallelizable, and can be sped up by
adding additional CPU cores to a machine. The forest used in Experiment 4 was trained
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on an Xeon Gold 6126 CPU, with 24 logical cores, clocked at 2.4 GHz with a maximum
frequency of 3.7 GHz utilizing Intel’s Turbo Boost Technology.

By only utilizing 4 of the cores available, the model used a mean of 3213 milliseconds,
with a standard deviation of 34 milliseconds, recorded over 7 runs to train on the training
data. Predicting a single sample used a mean of 42 milliseconds, with a standard devi-
ation of 2 milliseconds. Aggregating the features used by the Random Forest takes 17
milliseconds with a standard deviation of 2 milliseconds.

The short time span required to extract and predict a sample makes the application usable
for online prediction of faults. With the warning horizon of 10 minutes used in this thesis,
the rate of prediction can be set to every second, or as soon as new data is available, while
still maintaining a warning horizon close to 10 minutes.

7.2 Contributions

The main contribution of this thesis is research into the field of power system fault pre-
diction, specifically into feature engineering, machine learning models for prediction and
performance analysis for different fault categories.

7.2.1 Research Questions

The following research questions have been answered

Can machine learning methods predict upcoming faults on power lines by analyzing
voltage measurement data?

Experiment 1 confirms that it is possible to predict upcoming faults with a statistically
significant result. The model with the lowest accuracy out of the three models tested
proved to be better than random guess. Further models have been tested in Experiment 4,
all which provided a higher accuracy than the initial model with the lowest score.

What attributes in a voltage signal are suited for predicting faults on power lines?

Experiment 2 and 3 provided insight into which attributes in a voltage signal that are
useful for predicting power system faults, and which harmonic frequencies that are present
in both faulty and non-faulty signals. Monitoring the minimum values of the harmonic
frequencies over time combined with multiple aggregations methods provided good results
in combination with Random Forests and Neural Networks.
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What is the performance of some machine learning algorithms at predicting faults
on power lines?

In Experiment 4, SVMs, Random Forests, Feed-forward Neural Networks and Recurrent
Neural Networks were tested on voltage prediction with a 10 minute prediction horizon.
SVMs achieved the lowest accuracy and MCC scores, while Random Forests achieved the
highest scores, with an accuracy of 74.2% and an MCC of 0.48.

Are some types of faults easier to predict than others?

Experiment 5 shows that some type of faults are easier to predict than others. Power inter-
ruptions were correctly predicted with an accuracy of 86.5%, while RVCs were correctly
predicted in only 57.1% of the cases. By training models on one single category of faults,
the prediction accuracy within each category rose, except for the model trained on power
interruption faults.

7.2.2 Dynamic Dataset Generator

In addition to performing experiments to answer the research questions in this thesis, soft-
ware for generating the dataset used in this thesis was developed.

In order to automate the data extraction process, a Command Line Interface (CLI) was
developed to interface with the Dynamic Data Generator (DDG) software developed by
SINTEF Energy, enabling queuing of data extraction jobs. The CLI allows for automatic
job creation, without the need of a graphical user interface such as DDG GUI, which
enables DDG to be fully incorporated into an automated pipeline in the future.

The backend engine for data generation, DDG Backend, was rewritten to support the new
CLI. The backend is now more error resistant, with more detailed logging of error events
and feedback to the user if an error occurs while generating datasets. The backend now
retries multiple times to generate a time series sample if it fails on the first try. This results
in more robust generation of datasets, with fewer samples missing from the final datasets.
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With an ever-increasing demand for power and electricity in the modern world, providing
a stable source of power through the power grid is of utmost importance. Aging infras-
tructure and the introduction of new sources of energy leads to increased strain, resulting
in costs averaging more than 800 million NOK per year for maintenance and repairs in the
Norwegian power grid.

Prediction of faults using high resolution voltage measurement data from the Norwegian
power grid has been performed. The initial results show that machine learning models
such as Support Vector Machines, Random Forests and Neural Networks are capable of
predicting faults with a 10 minute prediction horizon.

We have shown that feature engineering using the minimum thresholds of harmonic fre-
quencies in the voltage signal increases the performance of the machine learning models
compared to using the mean values of harmonics over time. By aggregating the signal
along the spatial dimension using operators such as standard deviation, mean value and
maximum value, the models are able to achieve a higher accuracy and Matthews Correla-
tion Coefficient.

Multiple variations of Support Vector Machines, Random Forests and Neural Networks
have been tested in combination with the improved feature engineering methods. The
Random Forest achieved the highest scores among the models, with an accuracy of 74.2%
and a Matthews Correlation Coefficient of 0.48. The model shows great potential for use
in applications for online fault prediction, requiring less than 70 milliseconds for feature
engineering and prediction of a single sample.

The prediction accuracy within different categories of faults varies. The Random Forest
model achieves the highest accuracy in the fault category power interruptions, and the
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lowest accuracy on rapid voltage changes. Training a Random Forest on a single category
of faults increases the accuracy within the category compared to the accuracy achieved
when training on a dataset of multiple categories.

8.1 Future Work

During the course of this thesis, multiple ideas and problems that could be further ad-
dressed were discovered. Due to time constraints and that some of the problems are out-
side the scope of this thesis, the problems remain open for future work. This section lists
some of the areas that can potentially be looked into by EarlyWarn or other researchers
working on similar problems as the ones addressed in this thesis.

8.1.1 Prediction horizon

The prediction horizon chosen for this thesis was set to 10 minutes. The value was chosen
based on early experiments and research by EarlyWarn, where also longer prediction hori-
zons seemed plausible. Using the same algorithms as presented in this thesis, a longer and
shorter prediction horizon should be tested and compared to the performance of the initial
10 minute threshold.

A longer time interval for aggregations could also be tested, in order to detect faults where
the early indicators are far apart in the signal leading up to the event. For longer periods
of time, other aggregation methods or models that support time time series data, such as
Recurrent Neural Networks, should be further explored.

8.1.2 Alarm outputs

The machine learning models tested in this thesis output the probability of an upcoming
fault. Setting a threshold close to 100% confidence might lead to few false positive alarms,
but at the same time lead to a large number of faults not being detected. The system created
by The University of Sao Paulo and Enerq, as explained in Section 4.4, used a two-stage
alarm system, where the tier 1 alarm could be escalated into a tier 2 alarm after further
processing of the signal. A similar system could be tested out by EarlyWarn, but instead
of the first alarm notifying the grid operators directly, the signal would instead be flagged
for further processing, potential triggering an alarm.

Guo and Milanović used a security index of alertness instead of a boolean output, as ex-
plained in Section 4.3. This idea could be applied to the outputs of a prediction system,
where multiple threshold at different confidence levels made out the alertness levels of the
output signal. This way, the grid operators could monitor the overall predicted state of the
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system, and not be taken by surprise when the system suddenly outputs an prediction of
an upcoming fault.

8.1.3 Live system test

The models in this thesis has not been tested as part of an application for prediction on a
live system. The next natural step is to create a prototype where the output of the model
is used as part of a system for live prediction at a grid operations center, possibly without
direct feedback to the grid operators in the first iterations of the system.

In order to prepare for this, the model should be tested on a time series with labeled faults
which are not part of the training set used to train the model, to measure the performance
when used as an online system. Setting the alarm threshold to a high degree of confidence
will be crucial, as even a low ratio of false positives will lead to a high number of alarms
when used to predict on power lines over long intervals, with multiple outputs per minute.
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Appendix A
Experiment 2 Results

Harmonic frequency Percentage of non-zero
values in faults

Percentage of non-zero
values in non-faults

Harmonic 1 0.0% 0.0%
Harmonic 2 2.6% 2.0%
Harmonic 3 49.1% 46.7%
Harmonic 4 2.0% 1.9%
Harmonic 5 77.5% 74.3%
Harmonic 6 1.4% 1.3%
Harmonic 7 79.3% 77.9%
Harmonic 8 0.4% 0.3%
Harmonic 9 1.0% 0.7%
Harmonic 10 0.2% 0.0%
Harmonic 11 49.0% 49.0%
Harmonic 12 0.1% 0.0%
Harmonic 13 14.7% 15.4%
Harmonic 14 0.1% 0.0%
Harmonic 15 0.2% 0.1%
Harmonic 16 0.1% 0.0%
Harmonic 17 1.4% 2.3%
Harmonic 18 0.1% 0.0%
Harmonic 19 1.9% 1.6%
Harmonic 20 0.1% 0.0%
Harmonic 21 0.2% 0.3%
Harmonic 22 0.1% 0.0%
Harmonic 23 4.8% 5.1%
Harmonic 24 0.1% 0.1%
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Harmonic 25 3.8% 3.9%
Harmonic 26 0.1% 0.1%
Harmonic 27 0.4% 0.5%
Harmonic 28 0.3% 0.4%
Harmonic 29 0.3% 0.4%
Harmonic 30 0.2% 0.2%
Harmonic 31 1.0% 1.5%
Harmonic 32 3.1% 4.0%
Harmonic 33 5.2% 6.4%
Harmonic 34 5.0% 5.8%
Harmonic 35 2.5% 2.9%
Harmonic 36 0.6% 0.6%
Harmonic 37 0.2% 0.2%
Harmonic 38 0.0% 0.0%
Harmonic 39 0.0% 0.0%
Harmonic 40 0.0% 0.0%
Harmonic 41 0.1% 0.1%
Harmonic 42 0.0% 0.0%
Harmonic 43 1.0% 0.8%
Harmonic 44 0.0% 0.0%
Harmonic 45 0.0% 0.0%
Harmonic 46 0.0% 0.0%
Harmonic 47 0.5% 0.3%
Harmonic 48 0.0% 0.0%
Harmonic 49 0.1% 0.0%
Harmonic 50 0.0% 0.0%
Harmonic 51 0.0% 0.0%
Harmonic 52 0.0% 0.0%
Harmonic 53 0.0% 0.0%
Harmonic 54 0.0% 0.0%
Harmonic 55 0.0% 0.0%
Harmonic 56 0.0% 0.0%
Harmonic 57 0.0% 0.0%
Harmonic 58 0.0% 0.0%
Harmonic 59 0.1% 0.0%
Harmonic 60 0.0% 0.0%
Harmonic 61 0.0% 0.0%
Harmonic 62 0.1% 0.0%
Harmonic 63 0.1% 0.2%
Harmonic 64 0.3% 0.5%
Harmonic 65 0.9% 1.2%
Harmonic 66 1.4% 1.8%
Harmonic 67 1.8% 2.1%
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Harmonic 68 1.7% 2.1%
Harmonic 69 1.2% 1.5%
Harmonic 70 0.8% 0.8%
Harmonic 71 0.4% 0.3%
Harmonic 72 0.1% 0.1%
Harmonic 73 0.1% 0.1%
Harmonic 74 0.0% 0.0%
Harmonic 75 0.0% 0.0%
Harmonic 76 0.0% 0.0%
Harmonic 77 0.0% 0.1%
Harmonic 78 0.0% 0.0%
Harmonic 79 0.0% 0.0%
Harmonic 80 0.0% 0.0%
Harmonic 81 0.0% 0.0%
Harmonic 82 0.0% 0.0%
Harmonic 83 0.0% 0.0%
Harmonic 84 0.0% 0.0%
Harmonic 85 0.0% 0.0%
Harmonic 86 0.0% 0.0%
Harmonic 87 0.0% 0.0%
Harmonic 88 0.0% 0.0%
Harmonic 89 0.0% 0.0%
Harmonic 90 0.0% 0.0%
Harmonic 91 0.0% 0.1%
Harmonic 92 0.0% 0.0%
Harmonic 93 0.0% 0.0%
Harmonic 94 0.0% 0.1%
Harmonic 95 0.0% 0.1%
Harmonic 96 0.1% 0.0%
Harmonic 97 - 256 0.0% 0.0%

Table A.1: The percentage of non-zero values in Dataset 2, grouped by harmonic frequency and
split between fault and non-fault samples.
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Appendix B
Experiment 3 Results

Rank Harmonic
number

Time step
feature

Line /
Phase

Aggregation
method Importance

1 Harmonic 10 Minimum V2 Maximum 0.00660
2 Harmonic 4 Minimum V1 Standard deviation 0.00618
3 Harmonic 5 Minimum V1 Standard deviation 0.00600
4 Harmonic 10 Minimum V23 Maximum 0.00597
5 Harmonic 11 Minimum V12 Standard deviation 0.00584
6 Harmonic 10 Minimum V31 Maximum 0.00570
7 Harmonic 10 Minimum V3 Maximum 0.00567
8 Harmonic 10 Minimum V1 Maximum 0.00567
9 Harmonic 12 Minimum V2 Maximum 0.00565
10 Harmonic 4 Minimum V3 Standard deviation 0.00561
11 Harmonic 10 Minimum V12 Standard deviation 0.00560
12 Harmonic 10 Minimum V12 Maximum 0.00560
13 Harmonic 14 Minimum V3 Standard deviation 0.00540
14 Harmonic 4 Minimum V12 Standard deviation 0.00535
15 Harmonic 4 Minimum V2 Standard deviation 0.00534
16 Harmonic 14 Minimum V1 Standard deviation 0.00530
17 Harmonic 10 Minimum V12 Mean 0.00529
18 Harmonic 15 Minimum V12 Standard deviation 0.00528
19 Harmonic 15 Minimum V23 Standard deviation 0.00527
20 Harmonic 15 Minimum V3 Standard deviation 0.00525
21 Harmonic 4 Minimum V31 Standard deviation 0.00523
22 Harmonic 11 Minimum V23 Maximum 0.00519
23 Harmonic 14 Minimum V23 Standard deviation 0.00519
24 Harmonic 5 Minimum V31 Standard deviation 0.00517
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25 Harmonic 5 Minimum V3 Standard deviation 0.00513
26 Harmonic 10 Minimum V23 Standard deviation 0.00512
27 Harmonic 5 Minimum V2 Standard deviation 0.00510
28 Harmonic 15 Minimum V1 Standard deviation 0.00510
29 Harmonic 10 Minimum V2 Standard deviation 0.00508
30 Harmonic 5 Minimum V12 Standard deviation 0.00508
31 Harmonic 4 Minimum V23 Standard deviation 0.00507
32 Harmonic 11 Minimum V23 Standard deviation 0.00507
33 Harmonic 11 Minimum V23 Mean 0.00504
34 Harmonic 10 Minimum V2 Mean 0.00504
35 Harmonic 11 Minimum V31 Standard deviation 0.00503
36 Harmonic 5 Minimum V23 Standard deviation 0.00503
37 Harmonic 10 Minimum V31 Standard deviation 0.00503
38 Harmonic 14 Minimum V31 Maximum 0.00502
39 Harmonic 11 Minimum V2 Standard deviation 0.00501
40 Harmonic 10 Minimum V31 Mean 0.00501
41 Harmonic 11 Minimum V2 Maximum 0.00499
42 Harmonic 14 Minimum V1 Maximum 0.00492
43 Harmonic 15 Minimum V2 Standard deviation 0.00488
44 Harmonic 11 Minimum V12 Mean 0.00488
45 Harmonic 14 Minimum V3 Maximum 0.00486
46 Harmonic 15 Minimum V31 Standard deviation 0.00485
47 Harmonic 10 Minimum V1 Standard deviation 0.00484
48 Harmonic 14 Minimum V31 Standard deviation 0.00484
49 Harmonic 14 Minimum V2 Maximum 0.00482
50 Harmonic 10 Minimum V23 Mean 0.00482
51 Harmonic 4 Minimum V23 Maximum 0.00482
52 Harmonic 11 Minimum V12 Maximum 0.00481
53 Harmonic 14 Minimum V12 Standard deviation 0.00478
54 Harmonic 4 Minimum V2 Maximum 0.00474
55 Harmonic 14 Minimum V2 Standard deviation 0.00472
56 Harmonic 10 Minimum V3 Standard deviation 0.00471
57 Harmonic 14 Minimum V12 Maximum 0.00471
58 Harmonic 11 Minimum V2 Mean 0.00468
59 Harmonic 4 Minimum V1 Maximum 0.00467
60 Harmonic 14 Minimum V31 Mean 0.00466
61 Harmonic 11 Minimum V31 Maximum 0.00460
62 Harmonic 4 Minimum V31 Maximum 0.00455
63 Harmonic 5 Minimum V1 Mean 0.00454
64 Harmonic 5 Minimum V23 Mean 0.00453
65 Harmonic 4 Minimum V3 Maximum 0.00451
66 Harmonic 15 Minimum V2 Maximum 0.00451
67 Harmonic 5 Minimum V31 Maximum 0.00450
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68 Harmonic 12 Minimum V1 Maximum 0.00449
69 Harmonic 15 Minimum V23 Mean 0.00449
70 Harmonic 4 Minimum V12 Mean 0.00448
71 Harmonic 4 Minimum V12 Maximum 0.00445
72 Harmonic 14 Minimum V23 Mean 0.00443
73 Harmonic 5 Minimum V3 Maximum 0.00441
74 Harmonic 4 Minimum V1 Mean 0.00441
75 Harmonic 15 Minimum V3 Maximum 0.00438
76 Harmonic 15 Minimum V23 Maximum 0.00437
77 Harmonic 14 Minimum V2 Mean 0.00436
78 Harmonic 5 Minimum V1 Maximum 0.00436
79 Harmonic 11 Minimum V1 Standard deviation 0.00435
80 Harmonic 5 Minimum V31 Mean 0.00434
81 Harmonic 5 Minimum V3 Mean 0.00433
82 Harmonic 5 Minimum V2 Mean 0.00432
83 Harmonic 5 Minimum V23 Maximum 0.00431
84 Harmonic 2 Minimum V2 Maximum 0.00431
85 Harmonic 15 Minimum V2 Mean 0.00429
86 Harmonic 14 Minimum V23 Maximum 0.00429
87 Harmonic 10 Minimum V1 Mean 0.00427
88 Harmonic 4 Minimum V3 Mean 0.00426
89 Harmonic 11 Minimum V31 Mean 0.00425
90 Harmonic 14 Minimum V3 Mean 0.00425
91 Harmonic 15 Minimum V12 Maximum 0.00424
92 Harmonic 15 Minimum V12 Mean 0.00421
93 Harmonic 11 Minimum V3 Mean 0.00421
94 Harmonic 5 Minimum V12 Mean 0.00419
95 Harmonic 15 Minimum V3 Mean 0.00418
96 Harmonic 10 Minimum V3 Mean 0.00417
97 Harmonic 14 Minimum V12 Mean 0.00416
98 Harmonic 4 Minimum V31 Mean 0.00416
99 Harmonic 15 Minimum V31 Mean 0.00415
100 Harmonic 11 Minimum V3 Maximum 0.00414
101 Harmonic 15 Minimum V1 Mean 0.00413
102 Harmonic 5 Minimum V2 Maximum 0.00408
103 Harmonic 4 Minimum V23 Mean 0.00407
104 Harmonic 11 Minimum V1 Maximum 0.00405
105 Harmonic 15 Minimum V1 Maximum 0.00399
106 Harmonic 15 Minimum V31 Maximum 0.00398
107 Harmonic 11 Minimum V3 Standard deviation 0.00394
108 Harmonic 12 Minimum V3 Maximum 0.00393
109 Harmonic 5 Minimum V12 Maximum 0.00393
110 Harmonic 14 Minimum V1 Mean 0.00391
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111 Harmonic 11 Minimum V1 Mean 0.00385
112 Harmonic 4 Minimum V2 Mean 0.00382
113 Harmonic 15 Maximum V31 Standard deviation 0.00375
114 Harmonic 2 Minimum V1 Maximum 0.00373
115 Harmonic 14 Maximum V23 Standard deviation 0.00371
116 Harmonic 5 Minimum V1 Minimum 0.00370
117 Harmonic 5 Minimum V2 Minimum 0.00366
118 Harmonic 4 Minimum V1 Minimum 0.00360
119 Harmonic 14 Maximum V3 Standard deviation 0.00357
120 Harmonic 15 Maximum V3 Standard deviation 0.00354

Table B.1: The 120 most important features in Dataset 3, ranked by a Random Forest in Experiment
3.
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Appendix C
Features used in Experiment 4

Harmonic number Time step feature Line / Phase Aggregation method
Harmonic 2 Minimum V1 Maximum
Harmonic 2 Minimum V2 Maximum
Harmonic 2 Minimum V3 Maximum
Harmonic 2 Minimum V12 Maximum
Harmonic 2 Minimum V23 Maximum
Harmonic 2 Minimum V31 Maximum
Harmonic 3 Minimum V1 Maximum
Harmonic 3 Minimum V2 Maximum
Harmonic 3 Minimum V3 Maximum
Harmonic 3 Minimum V12 Maximum
Harmonic 3 Minimum V23 Maximum
Harmonic 3 Minimum V31 Maximum
Harmonic 4 Minimum V1 Maximum
Harmonic 4 Minimum V2 Maximum
Harmonic 4 Minimum V3 Maximum
Harmonic 4 Minimum V12 Maximum
Harmonic 4 Minimum V23 Maximum
Harmonic 4 Minimum V31 Maximum
Harmonic 5 Minimum V1 Maximum
Harmonic 5 Minimum V2 Maximum
Harmonic 5 Minimum V3 Maximum
Harmonic 5 Minimum V12 Maximum
Harmonic 5 Minimum V23 Maximum
Harmonic 5 Minimum V31 Maximum
Harmonic 6 Minimum V1 Maximum
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Harmonic 6 Minimum V2 Maximum
Harmonic 6 Minimum V3 Maximum
Harmonic 6 Minimum V12 Maximum
Harmonic 6 Minimum V23 Maximum
Harmonic 6 Minimum V31 Maximum
Harmonic 7 Minimum V1 Maximum
Harmonic 7 Minimum V2 Maximum
Harmonic 7 Minimum V3 Maximum
Harmonic 7 Minimum V12 Maximum
Harmonic 7 Minimum V23 Maximum
Harmonic 7 Minimum V31 Maximum
Harmonic 9 Minimum V1 Maximum
Harmonic 9 Minimum V2 Maximum
Harmonic 9 Minimum V3 Maximum
Harmonic 9 Minimum V12 Maximum
Harmonic 9 Minimum V23 Maximum
Harmonic 9 Minimum V31 Maximum
Harmonic 11 Minimum V1 Maximum
Harmonic 11 Minimum V2 Maximum
Harmonic 11 Minimum V3 Maximum
Harmonic 11 Minimum V12 Maximum
Harmonic 11 Minimum V23 Maximum
Harmonic 11 Minimum V31 Maximum
Harmonic 13 Minimum V1 Maximum
Harmonic 13 Minimum V2 Maximum
Harmonic 13 Minimum V3 Maximum
Harmonic 13 Minimum V12 Maximum
Harmonic 13 Minimum V23 Maximum
Harmonic 13 Minimum V31 Maximum
Harmonic 2 Minimum V1 Mean
Harmonic 2 Minimum V2 Mean
Harmonic 2 Minimum V3 Mean
Harmonic 2 Minimum V12 Mean
Harmonic 2 Minimum V23 Mean
Harmonic 2 Minimum V31 Mean
Harmonic 3 Minimum V1 Mean
Harmonic 3 Minimum V2 Mean
Harmonic 3 Minimum V3 Mean
Harmonic 3 Minimum V12 Mean
Harmonic 3 Minimum V23 Mean
Harmonic 3 Minimum V31 Mean
Harmonic 4 Minimum V1 Mean
Harmonic 4 Minimum V2 Mean
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Harmonic 4 Minimum V3 Mean
Harmonic 4 Minimum V12 Mean
Harmonic 4 Minimum V23 Mean
Harmonic 4 Minimum V31 Mean
Harmonic 5 Minimum V1 Mean
Harmonic 5 Minimum V2 Mean
Harmonic 5 Minimum V3 Mean
Harmonic 5 Minimum V12 Mean
Harmonic 5 Minimum V23 Mean
Harmonic 5 Minimum V31 Mean
Harmonic 6 Minimum V1 Mean
Harmonic 6 Minimum V2 Mean
Harmonic 6 Minimum V3 Mean
Harmonic 6 Minimum V12 Mean
Harmonic 6 Minimum V23 Mean
Harmonic 6 Minimum V31 Mean
Harmonic 7 Minimum V1 Mean
Harmonic 7 Minimum V2 Mean
Harmonic 7 Minimum V3 Mean
Harmonic 7 Minimum V12 Mean
Harmonic 7 Minimum V23 Mean
Harmonic 7 Minimum V31 Mean
Harmonic 9 Minimum V1 Mean
Harmonic 9 Minimum V2 Mean
Harmonic 9 Minimum V3 Mean
Harmonic 9 Minimum V12 Mean
Harmonic 9 Minimum V23 Mean
Harmonic 9 Minimum V31 Mean
Harmonic 11 Minimum V1 Mean
Harmonic 11 Minimum V2 Mean
Harmonic 11 Minimum V3 Mean
Harmonic 11 Minimum V12 Mean
Harmonic 11 Minimum V23 Mean
Harmonic 11 Minimum V31 Mean
Harmonic 13 Minimum V1 Mean
Harmonic 13 Minimum V2 Mean
Harmonic 13 Minimum V3 Mean
Harmonic 13 Minimum V12 Mean
Harmonic 13 Minimum V23 Mean
Harmonic 13 Minimum V31 Mean
Harmonic 2 Minimum V1 Standard deviation
Harmonic 2 Minimum V2 Standard deviation
Harmonic 2 Minimum V3 Standard deviation
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Harmonic 2 Minimum V12 Standard deviation
Harmonic 2 Minimum V23 Standard deviation
Harmonic 2 Minimum V31 Standard deviation
Harmonic 3 Minimum V1 Standard deviation
Harmonic 3 Minimum V2 Standard deviation
Harmonic 3 Minimum V3 Standard deviation
Harmonic 3 Minimum V12 Standard deviation
Harmonic 3 Minimum V23 Standard deviation
Harmonic 3 Minimum V31 Standard deviation
Harmonic 4 Minimum V1 Standard deviation
Harmonic 4 Minimum V2 Standard deviation
Harmonic 4 Minimum V3 Standard deviation
Harmonic 4 Minimum V12 Standard deviation
Harmonic 4 Minimum V23 Standard deviation
Harmonic 4 Minimum V31 Standard deviation
Harmonic 5 Minimum V1 Standard deviation
Harmonic 5 Minimum V2 Standard deviation
Harmonic 5 Minimum V3 Standard deviation
Harmonic 5 Minimum V12 Standard deviation
Harmonic 5 Minimum V23 Standard deviation
Harmonic 5 Minimum V31 Standard deviation
Harmonic 6 Minimum V1 Standard deviation
Harmonic 6 Minimum V2 Standard deviation
Harmonic 6 Minimum V3 Standard deviation
Harmonic 6 Minimum V12 Standard deviation
Harmonic 6 Minimum V23 Standard deviation
Harmonic 6 Minimum V31 Standard deviation
Harmonic 7 Minimum V1 Standard deviation
Harmonic 7 Minimum V2 Standard deviation
Harmonic 7 Minimum V3 Standard deviation
Harmonic 7 Minimum V12 Standard deviation
Harmonic 7 Minimum V23 Standard deviation
Harmonic 7 Minimum V31 Standard deviation
Harmonic 9 Minimum V1 Standard deviation
Harmonic 9 Minimum V2 Standard deviation
Harmonic 9 Minimum V3 Standard deviation
Harmonic 9 Minimum V12 Standard deviation
Harmonic 9 Minimum V23 Standard deviation
Harmonic 9 Minimum V31 Standard deviation
Harmonic 11 Minimum V1 Standard deviation
Harmonic 11 Minimum V2 Standard deviation
Harmonic 11 Minimum V3 Standard deviation
Harmonic 11 Minimum V12 Standard deviation
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Harmonic 11 Minimum V23 Standard deviation
Harmonic 11 Minimum V31 Standard deviation
Harmonic 13 Minimum V1 Standard deviation
Harmonic 13 Minimum V2 Standard deviation
Harmonic 13 Minimum V3 Standard deviation
Harmonic 13 Minimum V12 Standard deviation
Harmonic 13 Minimum V23 Standard deviation
Harmonic 13 Minimum V31 Standard deviation

Table C.1: The features used in Experiment 4.
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Appendix D
Experiment 4 Results

Kernel Error penalty
multiplier

Mean
accuracy

Mean MCC

Linear 1 0.5891 0.2339
Sigmoid 1 0.5819 0.1636

Radial basis function 1 0.5778 0.2433
Linear 10 0.5926 0.2225
Sigmoid 10 0.5744 0.1487

Radial basis function 10 0.5858 0.2437

2nd degree polynomial 1 0.5325 0.1597

3rd degree polynomial 1 0.5292 0.1537

4th degree polynomial 1 0.5276 0.1481

2nd degree polynomial 10 0.5407 0.1788

3rd degree polynomial 10 0.5329 0.1636

4th degree polynomial 10 0.5309 0.1598

Table D.1: Accuracy and MCC scores for the SVMs tested in Experiment 4.

Number of trees Max depth Mean accuracy Mean MCC
100 20 0.7286 0.4669
250 20 0.7265 0.4627
350 20 0.7265 0.4620
500 20 0.7263 0.4618
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400 20 0.7259 0.4611
450 20 0.7257 0.4608
200 20 0.7254 0.4607
300 20 0.7246 0.4585
150 20 0.7241 0.4578
50 20 0.7249 0.4578
400 25 0.7256 0.4570
400 None 0.7263 0.4568
250 None 0.7259 0.4561
500 None 0.7256 0.4555
300 None 0.7254 0.4551
350 25 0.7243 0.4545
500 25 0.7241 0.4540
150 None 0.7246 0.4536
200 None 0.7244 0.4532
350 None 0.7246 0.4532
450 None 0.7244 0.4530
150 25 0.7231 0.4524
300 25 0.7228 0.4516
100 25 0.7231 0.4515
450 25 0.7220 0.4495
250 25 0.7202 0.4467
100 None 0.7210 0.4467
200 25 0.7189 0.4441
350 15 0.7111 0.4416
500 15 0.7109 0.4405
50 None 0.7174 0.4401
450 15 0.7103 0.4393
300 15 0.7097 0.4384
400 15 0.7087 0.4362
50 25 0.7156 0.4360
200 15 0.7085 0.4357
150 15 0.7081 0.4356
250 15 0.7080 0.4343
100 15 0.7057 0.4300
50 15 0.7025 0.4209
500 10 0.6730 0.3783
250 10 0.6730 0.3773
400 10 0.6722 0.3764
450 10 0.6720 0.3763
350 10 0.6717 0.3752
300 10 0.6714 0.3745
100 10 0.6709 0.3710
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200 10 0.6701 0.3705
150 10 0.6681 0.3663
50 10 0.6687 0.3636
300 5 0.6219 0.2675
250 5 0.6215 0.2669
450 5 0.6216 0.2668
350 5 0.6209 0.2655
400 5 0.6209 0.2652
150 5 0.6206 0.2651
100 5 0.6202 0.2643
500 5 0.6203 0.2638
200 5 0.6200 0.2635
50 5 0.6196 0.2620

Table D.2: Accuracy and MCC scores for the Random Forests tested in Experiment 4

First layer Second layer Third layer Mean accuracy Mean MCC
64 32 32 0.6765 0.3498
64 32 64 0.6921 0.3824
64 64 32 0.6765 0.3503
64 64 64 0.6852 0.3665
128 32 32 0.6852 0.3690
128 32 64 0.6892 0.3759
128 64 32 0.6927 0.3821
128 64 64 0.6996 0.3960
128 64 128 0.6632 0.3217
128 128 64 0.6736 0.3459
128 128 128 0.6580 0.3165
256 64 64 0.6707 0.3420
256 64 128 0.6840 0.3654
256 128 64 0.6701 0.3359
256 128 128 0.6753 0.3478

Table D.3: Accuracy and MCC scores for the Feed-Forward Neural Networks tested in Experiment
4.

First
bidirectional
layer size

Second
bidirectional
layer size

Fully-
connected
layer size

Mean accuracy Mean MCC

32 None 16 0.6482 0.2949
32 None 32 0.6701 0.3374
32 32 16 0.6545 0.3063
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32 32 32 0.6736 0.3455
64 None 16 0.6661 0.3281
64 None 32 0.6759 0.3495
64 32 16 0.6701 0.3382
64 32 32 0.6979 0.3925
64 32 64 0.6701 0.3370
64 64 32 0.6771 0.3521
64 64 64 0.6771 0.3529
128 32 32 0.6852 0.3691
128 32 64 0.6782 0.3540
128 64 32 0.6805 0.3615
128 64 64 0.6840 0.3661
128 64 64 0.6909 0.3796
128 64 128 0.6892 0.3774
128 128 64 0.6852 0.3674
128 128 128 0.6834 0.3656
Table D.4: Accuracy and MCC scores for the Recurrent Neural Networks tested in Experiment 4.
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