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Abstract

Services and software deployments have in recent years increasingly moved
to the cloud. Platforms such as Amazon and Alibaba offer databases as a man-
aged service. These databases must be able to scale well to meet customers
needs. One of the innovations done is to separate the compute and storage
components of the traditional database system, allowing for independent scal-
ing of these components. Various other innovations have also been made to
facilitate the underlying architecture. We will in this paper present some of
the systems that have made these changes, and see where their approaches are
similar and where they differ. We also present benchmark tests to see how
well these systems perform under various workloads, and tie these results up
to the architectural changes made. This gives an insight into how well theory
matches practice. Alibaba has additionally granted exclusive access to their
PolarDB database offering, which is at this point only commercially available
in Asia. The results show that while Amazon Aurora performs reasonably well;
the benchmarks are slightly lower than the results obtained by Amazon. We
will see that Aurora is first able to perform well with many database connec-
tions. The RDS MySQL service is able to follow Aurora in terms of read and
write performance, and sometimes outperform Aurora on similar hardware. Po-
larDB show strong read and write performance, and tops out most tests when
compared to similar hardware from the Amazon services.

Sammendrag

Tjenester og programvareløsninger har i senere år sett en overgang til sky-
plattformer. Flere plattformer, som Amazon og Alibaba, tilbyr databaseløs-
ninger som egne tjenester. Disse databasene må kunne skalere godt for å møte
forventningene til krevende kunder. En av innovasjonene som er gjort er å sepa-
rerere databehandlingslaget fra lagringslaget, og slik tillate uavhengig skalering
av disse. Andre grep som typisk gjøres, er å tilpasse systemene for å passe
inn med den underforliggende arkitekturen til skyplattformene. Vi vil i denne
oppgaven presentere enkelte av de databasessystemene som har gjort disse en-
dringene, og se hvor tilnærmingene deler fellestrekk, og hvor de skiller seg fra
hverandre. Vi vil også utføre ytelsestester under forskjellig last, og knytte re-
sultatene opp mot endringene i arkitektur. Alibaba har i tillegg gitt eksklusiv
tilgang til tjenesten PolarDB, som på dette tidspunktet i utgangspunktet kun
er tilgjengelig i Asia. Resultatene viser at Amazon Aurora yter relativt bra,
men tallene er noe lavere enn hva Amazon selv oppgir. Vi vil se at Aurora først
yter bra ved mange tilkoblinger til databasen. RDS MySQL-tjenesten er på
mange måter kapabel i å følge Aurora både for lese og skrivelast, og forbigår av
og til Aurora. PolarDB viser god lese og skriveytelse, og kommer ut på topp
for de fleste tester når sammenlignet mot lignende maskinvare og oppsett som
Amazons tjenester.
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1 Introduction

The cloud has changed much of how large scale computing is done. Databases have
been faced with new challenges for dealing with scalability and performance for the
new workloads of an increasingly online world. New systems following the NoSQL
movement have come to the market to solve some of these issues, where traditional
database systems have lagged behind. However, relational-based systems have seen
developments. Increasingly, cloud databases have gained foothold, pioneered by Ama-
zon Aurora which was introduced in 2015. Other competitors have also followed suit,
with Alibaba’s PolarDB as an example.

Some major trends can be identified for the new cloud based distributed database
systems. Modern databases have realized the need to be able to scale dynamically.
One approach to implement this, is to decouple the compute and storage components
of the system, allowing for independent scaling of the two respective layers. The cloud
systems also use space efficient shared disk architectures, where instances within a
cluster access a single database image. Similarly, network bandwidth is in many cases
a limited resource, and systems might therefore move functionality to the storage layer
to perform operations close to data and reduce usage of network bandwidth. Systems
also make use of redundant storage of data to ensure resiliency against failures and to
improve availability. This paper will take a closer look at two systems that fall in this
category; Amazon Aurora and Alibaba PolarDB. The systems have chosen different
approaches to solve the points mentioned above, with various following trade-offs.
This paper will revolve around how these approaches differ and where they share
similarities.

In this paper we will present the Amazon Aurora and Alibaba PolarDB offerings,
before doing a short evaluation of their approach to the topics mentioned above.
Additionally, we will present performance tests on comparative database instances of
the Aurora, RDS, and PolarDB services. These tests has been performed using the
sysbench database benchmarking tool, which is widely recognized within the industry
for measuring database performance[41]. The tests run against the databases consists
of basic OLTP tests, as well as some more specific tests for the systems in question.
The main goals are to

• Independently verify the performance for Amazon’s Aurora and RDS service,
as well as Alibaba’s PolarDB

• Compare how the database systems perform on similar hardware running similar
tests

Further, we try to map these results to the underlying architecture, and see where
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each system excel and where they have their weaknesses.

1.1 Report structure

The report is divided into the following sections:

Chapter 2 will give a basic intro into what is meant by "the cloud", and how the
services provided typically are divided into several layers such as Infrastructure as a
Service (IaaS), Platform as a Service (PaaS), and Software as a Service (SaaS).

Chapter 3 present some basic background theory to understand the current land-
scape and how we got here. This includes topics such as the distinction between the
ACID/BASE philosophies, the CAP theorem and its implications, emerging technol-
ogy such as RDMA and NVMe, and the consensus problem with solutions.

Chapters 4, 5, and 6 will present the Amazon RDS service, the Aurora database
service, as well as the PolarDB/PolarFS database service, respectively.

Chapter 7 presents the methodology, tools, and setup used to carry out the perfor-
mance tests for the various systems.

Chapter 8 present the results obtained from the various tests.

Chapter 9 discusses the architecture, results, and implications these carry with them.

Chapter 10 outlines future work, and how the results can be carried further.

Chapter 11 sums up and discusses the most important results.

The presentation of the Aurora and PolarDB database systems, as well as some
background theory, is based on the specialization project report [31].
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2 What is the cloud, and how does it work?

The cloud is generally referred to as a shared pool of compute resources together with
higher level services that can be provisioned fast and with little management [6]. In
general, cloud compute can be described as on-demand compute resources, that can
be elastically scaled up and down to meet demand [32].

There’s typically been a distinction between public and private cloud. This distinc-
tion depends on who are managing the cloud infrastructure. In a private cloud, the
infrastructure is run by the company who utilize it. This is typical in large companies,
which may already have infrastructure and expertise for managing it, or have special
security requirements [36]. A public cloud is on the other hand run by a separate
company that provides and manages its infrastructure, making it available for third-
parties [36]. The major contenders here are Amazon Web Services, Alicloud, Google
Cloud Platform, and Microsoft Azure.

Figure 1: Differences between on-premise, IaaS, PaaS, and SaaS. Source: [24]

Cloud platforms can typically divide the services they provide into a fixed hierar-
chy. These are Infrastructure-as-a-service (IaaS), Platform-as-a-service (PaaS), and
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Software-as-a-service. Each level differentiate what is managed by the cloud provider
and what is managed by the customer, as seen in figure 1.

IaaS is typically the most low-level service provided in a cloud environment. This level
provide the basic infrastructure such as compute resources such as servers, networking,
and storage through virtualization technology [32] [24]. This is the most flexible
level in the hierarchy, giving the customer full control of their infrastructure. The
infrastructure can easily scale to demand, and the customer is only billed for the
resources that they actually use.

PaaS, however, provides a framework that developers can build upon and deploy
their applications on top of, without the complexity of managing and provisioning
underlying hardware and software [32] [24]. This greatly reduces the burden on the
application developer in maintaining and managing the underlying architecture.

SaaS provide complete cloud-based services provided by the cloud platform and con-
sumed directly by the consumer. This is the most abstracted layer in the hierarchy
[32].

Many of these cloud services are managed through a separate user interface, typically
through a web page. The customer only pays for the services he consumes, and can
actively monitor the performance and diagnostics of the service. Cloud platforms such
as AWS provide services across the whole spectre, making it possible to integrate the
services in various ways, and can be utilized for building more complex and complete
applications.

The main points that separate cloud computing from the traditional setting is that
the cloud is highly scalable, elastic, easier to manage, and with a cost model where
you only pay for the resources you use [6].

Most cloud providers have a database service, which allows for deploying databases as
a SaaS. In the case of Amazon, the Relational Database Service (RDS) supports many
different database systems (i.e. MySQL, PostgreSQL, and Aurora) [14]. Alibaba has
a similar offering with Alibaba Cloud. Alibaba’s PolarDB is already available in
some data centers in Asia, but they’re also in the process of rolling out international
support for PolarDB as well.

2.1 Shared nothing vs. shared disk

Shared nothing vs. shared disk has been a widely discussed topic in distributed
database architecture and design. The traditional approaches have been shared noth-
ing and shared disk, which each describe separate ways on how the data is stored and
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accessed. Each of these architectures have various trade-offs when it comes to read
and write performance.

In a shared nothing architecture, each individual node stores its own set of data. The
data is fully segregated with each node having full autonomy over its own dataset. In
contrast, a shared disk architecture allows for any node to access the data stored on
any disk [23].

A shared disk architecture might face problems when multiple nodes want to write
to the shared disk. This has traditionally been solved either by distributed locks
or a disk based lock table [33]. These measures impact performance and introduce
scaling problems. For shared nothing architectures, the optimal solution is to direct
every write directly to a specific node. However, in cases where the data touches on
multiple nodes, a shared nothing system will still need to implement distributed locks
[23]. This solution however, has better options for scaling. The better the data is
partitioned, the less you have to make use of the distributed locks. Shared disk can
also make use of logical partitioning of data to remedy some of its scaling issues.

A shared disk system can easily experience bottlenecks during reads, as all nodes
need to access the data from the same point [33]. Caching might also be less efficient
in this setting for the same reasons. Shared nothing systems however typically have
slow response times for reads with joins where the data spans multiple nodes.

A point made for shared nothing systems is that they have less complexity at scale.
Since nodes in a shared nothing system store their own data with full autonomy, it’s
easier for a node to handle failures independently and on their own with no system-
wide knowledge [23]. Additionally, shared nothing systems won’t have a single point of
contention or failure, may be self-healing and easier to perform non-disruptive updates
for. Shared disk systems however, generally have more complex failure handling, with
management of locks etc.

5



3 Background theory

This section will explain some of the concepts that a modern database system depend
on, namely the ACID/BASE philosophies, the CAP theorem, emerging technologies
such as NVMe disks and RDMA, the NewSQL movements, as well as the distributed
consensus problem and its solutions. These are all fundamental background theory
for understanding the current landscape and how we got here. This section will serve
as a primer for some of the concepts and relevant technologies which is part of the
systems we will be discussing later in this report.

3.1 ACID and BASE - two design philosophies

There are two major design philosophies for database systems which describe the
guarantees the database system gives. The ACID properties have been the dominant
for traditional systems, but in recent years, the BASE approach has significantly
gained tracking. This is mainly in conjunction with the rise of NoSQL systems,
which trades off some of the traditional guarantees of ACID in order to provide high-
availability, scalable, distributed systems.

ACID
ACID is an acronym for Atomicity, Consistency, Isolation and Durability, and de-
scribes a set of properties that are desirable for transaction processing in database
systems. ACID has held a prominent place in database systems for the past 30 years,
and most traditional systems provide the ACID guarantees in slight variations [42].

• Atomicity - a transaction should either be performed fully, or not at all.

• Consistency - a transaction should take the database from one consistent state
to another, obeying constraints and other limitations.

• Isolation - a transaction should be seen as executing in isolation from other
transactions.

• Durability - Once a transaction has completed, the changes should be made
durable, so it’s not lost at some later point.

BASE
The BASE guarantees relaxes on some of the properties of ACID. Many NoSQL
systems have adopted BASE since they don’t need the strict guarantees of ACID,
and can therefore make a trade off for other properties, such as higher availability
[42].
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• Basic availability - the database should be available for operations at nearly all
times

• Soft state - the state of the database could change over time, even with no
explicit input

• Eventual consistency - the database will eventually converge on a consistent
state.

Compared to ACID, the BASE approach severely relaxes the guarantees on data
consistency. BASE opens for the possibility to read stale or inconsistent data, and
pushes the task of managing consistency up to the application [25].

3.2 CAP theorem

In a distributed system with data replication, concurrency control becomes more
complex than in a traditional setting. If an update is performed, the changes need
to be performed in a consistent manner across all data items. An example would be
that a transaction T1 updates data item X. If another transaction T2 updates a copy
of the same data item, following transactions might read different values for X.

The CAP theorem describes three sets of desirable properties for a distributed system
with data replication. The C is consistency among replicated copies, A is availability
of the system to perform operations, and P is partition tolerance in the face of a
network partition where the system is unable to communicate with all its nodes. The
CAP theorem states that a distributed system with data replication cannot guarantee
all three properties at the same time, so that a trade-off has to be made among the
properties.

Consistency, in the CAP theorem, refers to consistency across replicated data copies.
It’s important to point out that this is different from the consistency guarantee of
ACID. In the CAP theorem, the "consistency" refers to that the same item will be
visible across multiple replicas. Availability refers to the system’s ability to serve
incoming requests. Either a request will be successfully served, or the system will
display an error. Partition tolerance refers to the system being able to withstand
partitioning of the nodes in the event of a network failure [25]. The traditional line of
thought is that you would need to choose two of these three properties when designing
a system. Generally, traditional relational databases have covered the consistency and
partition tolerance angles. NoSQL systems are generally more lax on the consistency
guarantee, instead offering "eventual consistency" which is, as the name implies, that
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the data might be inconsistent for some time, but consistent in the end. Instead,
NoSQL systems guarantee availability and partition tolerance [42].

However, often the CAP theorem has been used more or less as an excuse for opting for
an "eventually consistent" model, even when better consistency guarantees could’ve
been made [25]. Eric Brewer, who originally proposed the CAP theorem, argues
that the term "choose 2 of 3" is misleading. He argues that the desirable properties
of CAP isn’t binary, but rather continuous. A system shouldn’t straight up forfeit
one of the properties, but rather make a more balanced tradeoff. He also argues
that software systems should be more dynamic in how it handles this tradeoff, and
adjust the balance between the three properties as necessary. Finally, he argues that
partitions are an rare event, and when handled explicitly, consistency and availability
can be optimized. He argues that perfect consistency and availability can be achieved
most of the time [25]. When a software system believes a partition is present, it
should make steps to detect and remedy the situation.

Brewer argues that CAP and latency is closely interconnected. Each program must
at some point make a partition decision, on whether to cancel the operation and
decrease availability, or proceed with the operation and risk inconsistency [25]. A
partition takes form as a very long delay. This may be experienced differently by the
nodes in the system. There is therefore no global notion of a partition. Some nodes
might detect a partition, while others won’t. When a node detects a partition, it
should enter a special partition mode, which will give it more flexibility in balancing
consistency against availability [27]. Brewer makes a point that it might be beneficial
to relax on consistency in order to maintain some degree of availability at this point.
When the partition is solved, the nodes would need to perform a partition recovery
which must restore consistency and revert mistakes the system might have made
during the partition.

In a recent blog post, Abadi supports Brewer’s claim that most NoSQL systems
unnecessarily sacrifice consistency [27]. The reasoning is the misunderstood notion
of "choose 2 of 3" of the CAP theorem, and that this is the most common path for
NoSQL systems. Abadi, however, argue that putting the task of ensuring consistency
on the application developer is a heavy burden, and it’s very difficult to do bug-
free in practice. Further, A real-life system never will be able to achieve absolute
availability, but will rather be a percentage. The notion that you have to give up
availability in order to guarantee consistency is flawed. Guaranteeing consistency
would rather imply slightly reduced availability, not a total loss of it [25]. Abadi
further supports the claim that network partitions are a rare event, and becoming
even more so with the rapid development of network infrastructure. Further, the
loss of availability when guaranteeing consistency wouldn’t be dramatic. In the face
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of a partition, the system would still be available from the majority partition, but
unavailable from the minority partition. For the reduced availability to be noticed,
clients must be able to reach the minority partition but not the majority.

3.3 Remote direct memory access (RDMA)

Remote direct memory access is an emerging technology which allows computers to
transfer data directly from ones memory to anothers. No work needs to be done by
the CPU, caches or context switches, allowing for zero-copy of data. Instead, its the
network adapters are the main component for performing RDMA transfers [7]. This
allows for high throughput and very low latency networking between computers. For
a large distributed system, where the nodes are closely located, this would be a huge
performance gain over conventional TCP/IP networking.

There’s been done much work in standardizing the RDMA technology. Currently, its
still being worked on by the RDMA Consortium together with the DAT Collabora-
tive. There’s also been much hardware development for network interfaces supporting
RDMA. RDMA is currently used to a degree in some systems. Red Hat Enterprise
Linux, VMWare, and Microsoft’s Windows Server all have support for RDMA. RDMA
is also extensively used in systems such as PolarFS.

Typically, RDMA provides both one-sided and two-sided communication. Two-sided
communication is i.e. a send/receive operation that will need the remote process to
respond back with a receive operation to the sending process. One-sided communi-
cation is i.e. read/write operations where the NIC manipulates the memory directly
without involvement from the remote process [7].

In practice, a combination of one-sided and two-sided operations will be performed.
For smaller transfers, a two-sided operation can be used directly. However, for larger
transfers, a two-sided operation will be used for negotiating the destination address
on the remote system. A one-sided operation will then perform the actual transfer
using the negotiated values.

RDMA has increasingly seen adoption in data centers across the globe [7], and mul-
tiple new systems can therefore take advantage of this technology. One of these
systems, are PolarDB and its PolarFS storage layer, which extensively use this new
technology. PolarDB is currently being rolled out to an international audience, but
as of writing, only select data centers in Asia has full PolarDB support.
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3.4 NVMe disks

Non-volatile Memory Express (NVMe) is a new device interface specification aimed at
taking advantage of the multiple levels of parallelism in modern SSD storage technol-
ogy [7]. Previous specifications were in general designed mainly for harddisk drives,
and are thus unsuited for solidstate drives. The NVMe specification aims at reducing
these bottlenecks, and has a much smaller I/O overhead, with higher bandwidth and
lower latency interconnects.

A study shows that a simple 4KB I/O request can require up to 20 000 instructions.
As SSDs become faster, they will exacerbate the limitations of the traditional I/O
stack. An NVMe SSD will be able to perform about 500 000 IOPS at a 100µs latency
[7]. There’s also been introduced a new 3D XPoint SSD that further reduces this
latency to around 10 µs.

To make leveraging NVMe storage easier from the application layer, Intel has intro-
duced a Storage Performance Development Kit (SPDK). It achieves high performance
by moving many drivers into user mode, and using polling instead of interrupts. This
removes the need for expensive kernel context switches and interrupt overhead.

Similar to RDMA, this is also an emerging technology extensively used by PolarD-
B/PolarFS. Many other large companies have also started experimenting with this
technology, and it’s likely it will become even more popular in the coming years.

3.5 NoSQL and NewSQL systems

The term NoSQL in its current form was coined around 2009, and describes databases
systems that use other models and data storage mechanisms than those found in
traditional relational SQL databases.

NewSQL is a term used for modern relational database systems which tries to solve
problems regarding to scaling OLTP workload in an efficient manner [40]. The
NewSQL movement came as an response to NoSQL, where NewSQL aims at main-
taining the ACID guarantees of the traditional database systems. Some of the traits
typically found in NewSQL systems are (1) being able to scale out to multiple nodes,
(2) keep SQL with ACID guarantees, even in a multiple shard environment, (3) repli-
cation doesn’t interfere with the properties listed above [40]. Multiple new systems
have come to the market, and existing systems have tried to adapt to the chang-
ing infrastructure and workload that the cloud architecture demands. One of the
main systems born out of this movement is Amazon Aurora, which also is a managed
service, removing much of the traditional
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However, researches point out not all NewSQL systems that claim to provide con-
sistency, actually do. This leads back to the same problem where the application
developer would need to implement consistency checks in the application code, which
was exactly what CP systems aimed at avoiding [27]. Most modern systems use a
consensus protocol for assuring consistency in a distributed system. There are several
such protocols available, i.e. Raft and Paxos. These systems work by a majority vote
mechanism, where each data replica is assigned a vote, and an operation on the data
needs the majority of replicas to agree on the operation [3]. As a consequence, the
minority in a partition can be offline, while the majority keeps processing operations.
However, exactly how these protocols are used in practice is up to the specific sys-
tems implementation. Some systems use a single global consensus protocol for the
entire database, while others divide the data into shards and use a separate consensus
protocol per shard [27].

The global consensus protocol approach easily runs into scaling problems. If the
whole fleet has to vote over every transaction, this would incur heavy network load
and be a severe bottleneck for the system. In practice, most systems instead batch
transactions, and instead of voting over single transactions, votes over a batch of
transactions. This performs relatively well, and many systems with a global consensus
protocol have opted for this approach [27].

The per-shard consensus protocol approach has obvious consistency problems when a
transaction touches data across multiple shards. One of the first systems to use this
approach was Google Spanner, which resolved the problem by it’s TrueTime API. The
TrueTime API is used by Spanner to determine the timewise relationship between two
transactions, and this works even when a transaction involves data across multiple
shards. To eliminate problems regarding clock skew across multiple servers, Spanner
introduces an "uncertainty window", which represents the maximum clock skew that
can occur across the servers. Only after this window has passed, is the data visible
for the client [5]. This is backed up by sophisticated hardware involving GPS and
atomic clocks, in order to hold the guarantee that the clock skew never exceeds the
"uncertainty window" [5].

However, many systems such as YugaByte and CockroachDB have tried to build upon
some of the architectural foundations laid down by Spanner. They rely on the same
principle that clock skew across servers doesn’t grow too big. Spanner manages this
by having its hardware component that handles this particular problem [5]. However,
the other systems building on Spanner architecture are fully software based solutions,
and lacks the hardware feature that ensures the "uncertainty window" condition is
kept [27]. It is therefore possible there might occur inconsistencies, and the systems
can’t guarantee CAP consistency.
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3.6 Distributed consensus

One of the main problems of distributed computing is the consensus problem. The
problem boils down to having a set of nodes in a distributed system to agree on
some common data value [3]. In a database setting, this would typically be for a
set of nodes to agree on whether to commit a transaction or not. Especially for a
cloud database system, this question is of essential importance. There’s been various
protocols suggested for dealing with the consensus problem. The goal is to achieve
system reliability in the event of process failures.

More formally, the consensus problem can be described by a system consisting of
processes Pii = (1, 2, ..., N). Each process starts out in an undecided state and
propose a value vi taken from a set of D. The processes then communicate with
eachother and exchanges values. Each process then sets a value it has decided upon
[3]. The following traits describe a simple consensus protocol that can tolerate halting
failures:

• Termination - Every correct process eventually decides upon a value

• Integrity - If all correct processes propose the same value v, then any correct
process must decide upon v

• Agreement - Every correct process must agree on the same value

There’s typically a distinction between crashes and Byzantine failures. A crash is
simply that a process suddenly stops and doesn’t resume. A Byzantine failure, how-
ever, is the process may fail in any way possible [3]. This might be sending invalid
or contradicting messages, or be an act of a malicious third-party. These types of
failures may be harder to defend against. In order to tolerate byzantine failures, the
Integrity property may be strengthened such that

• If a correct process decides upon v, then v must have been proposed by a correct
process.

3.7 Paxos

Paxos includes a set of protocols aimed at solving the consensus problem in a dis-
tributed system [46]. Paxos was first introduced in 1989, and encompasses several
different protocols with corresponding trade-offs such as the number of participants,
message delays and various fault types. Paxos aims at being fault tolerant and safe,
with few possibilities to have a stuck state where the system can’t make progress [37].
Paxos has been widely adopted by many systems, and have become close to a de-facto
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protocol used for consensus in fault-tolerant distributed systems. Paxos has, however,
laid the groundwork for further developments and alternative protocols. Because of
its dominant position, other systems are often compared against Paxos. In order to
understand the systems derived from Paxos, this section will briefly outline the basic
Paxos protocol.

In Paxos, a system consists of processors. A processor can have one or several roles,
namely client, acceptor, proposer, learner, and leader [46].

• A client proposes requests to the system, such as write operations

• Acceptors vote on requests. If a client request fails to reach a quorum majority,
it is disregarded.

• Proposers advocates a client request for the Acceptors. It acts as a coordinator
in case conflicts should arise in order to move the protocol forward.

• Learners act on enforcing the decision by the Acceptors, such as executing a
request and respond to the client.

• A leader is a distinguished Proposer which is tasked to ultimately make the
protocol progress forwards.

Paxos also ensures the consensus safety property. This is done by adhering to the
following points at all times [46]:

• Validity - only proposed values can be chosen

• Agreement - no two learners can learn different values

• If a value has been proposed, eventually learners will learn some value

The simplest variant of Paxos is known as "Basic Paxos" and is used for a system
to agree on a single proposed value. The execution may span over multiple rounds,
where each round typically consists of two phases. The first phase ensures acceptors
promise to receive a request, and the second will accept a value for the given request
from the previous phase [37].

Phase 1 starts with a Proposer receiving a request from the client. The Proposer then
sends a Prepare message with a unique identifying value n to a quorum of Acceptors.
The number n is monotonically incremented for each Proposer, so that the Proposer
hasn’t used that number before. When an Acceptor receives a Prepare message, it
will look at the number n. If the number n is larger than any of the previous received
Prepare messages, the Acceptor will return a Promise message [46]. This means that
the Acceptor will not allow any other Prepare messages having a number less than
n. If an Acceptor has previously accepted a proposal, it will return the identifying
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number and the accepted value to the current Proposer. Otherwise, if n is less than
any previous received Prepare message, the Acceptor will ignore it [37].

Phase 2 starts by the Proposer obtaining quorum, and then choosing a value to
propose. In case any of the Acceptors have previously accepted a Prepare message,
the Proposer will choose the returned value with the highest identifying number for
its value. Otherwise, the Proposer will choose the value it had originally received
from the client [37]. The Proposer then sends an Accept message to a quorum of the
Acceptors with the identifying number n and chosen value. The Acceptor will then
accept the Accept message if it hasn’t agreed to any Prepare messages with a higher
n. The Acceptor will then register the value and reply back to the Proposer as well
as the Learners with an Accepted message [46].

The "Basic Paxos" protocol can be extended and optimized to work for agreeing on a
series of decisions. This is useful for instance for agreeing on a distributed log used in
conjunction with a state machine [4]. The distributed log would in this case increment
the state machine in a unison manner across the system.

The idea of Multi-Paxos is to run "Basic Paxos" multiple times. A typical optimiza-
tion is to have a stable, sticky leader. In this case, the Prepare phase only has to be
done once in the start. For subsequent protocol instances can skip the Prepare phase,
since there only is a single leader to increment the unique identifying number n [4].

It has been argued that even single-decree Paxos is very difficult to understand, and
can only be done with large effort and difficulty. This is due to a very opaque and
dense description, with many subtleties. This is further exacerbated in multi-Paxos,
which is lacking with many missing details [29]. Additionally, Paxos doesn’t provide
a good ground for building systems. Lamport’s descriptions of Paxos is mostly aimed
at single-decree Paxos, which isn’t too practical in real-world systems. Typically,
Paxos is used as a starting point, and then each system independently try to make
Paxos "sane" with their own optimizations and thus drifting significantly from the
original base [28].

3.8 Raft

Raft is an alternative consensus algorithm, aiming at reducing some of the com-
plexity of Paxos. Raft is an acronym for "Reliable, Replicated, Redundant, And
Fault-Tolerant", and provides similar assurances as Paxos for fault tolerance and per-
formance [26]. Raft offers a generic way at distributing a state machine across a set of
nodes, so that all nodes agree on the chain of state transitions. Some of the motivation
behind Raft lies within the frustration of working with Paxos; both system builders
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and students found it difficult to reason about and build systems on top of [28]. Raft
aims at reducing the complexity compared to Paxos. Raft is cleanly divided into
subcomponents for leader election, log replication and safety. It also has a reduced
state space compared to Paxos, which reduces the degree of non-determinism and
ways nodes can be inconsistent [29]. PolarFS uses a derivative of the Raft protocol,
and this section will therefore describe the Raft protocol in order to understand what
improvements Alibaba has contributed to it.

Due to the problems with Paxos, Raft set out to make a more understandable and
useful consensus algorithm with the same guarantees as Paxos. The Raft team has
put understandability as one of its primary goals, being easy to learn and reason
about. The users should be able to intuitively understand it, so it will be easy to
implement in real-world systems [29]. This point has influenced the design process
of the Raft algorithm. When facing multiple different approaches to a problem, the
Raft team usually tried to opt for the solution which was most intuitive and easy to
explain. This involved decomposing large problems into smaller components, such
as leader election, membership changes and log replication [29]. The team also tried
to reduce the state space, making the system more coherent and with reduced non-
determinism. For instance, logs are not allowed to have holes, and Raft limits the
ways logs can become inconsistent [28].

Some of the main features in the Raft consensus algorithm is their approach to lead-
ership, leader election, and membership changes [26]. Raft has opted for a strong
leader approach, where log entries only flow from the leader to other followers. This
simplifies log management and thus makes it easier to reason about. Raft also use ran-
dom timers for leader election, which introduces little overhead, while easily resolving
conflict problems. Raft utilizes a new joint consensus approach for handling member-
ship changes, which allows a cluster to keep operating normally during configuration
changes [29].

Raft aims at providing the following features for its consensus algorithm [28]:

• Safety - Never return an incorrect result, even under non-Byzantine failures
such as partitions, packet delays/losses and reordering.

• Availability - It remains functional as long as a majority of servers work as
expected.

• Does not rely on timing for consistency. Network delays and faulty clocks
shouldn’t cause availability problems.

• A command can complete as soon as a majority of the servers agree upon it,
and not be bound by the slowest responding server.
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Like many consensus systems, Raft uses replicated state machines for its consensus
algorithm. Each server typically has its own state machine that can be used to
compute the same state across the system, and continue operating in case a few
servers should fail. These state machines typically use a replicated log, which the state
machines execute in order. The state machines are deterministic and will therefore
end up on the same result across the system [26]. The consensus algorithm ensures
the replicated log is consistent by communicating with the other servers to ensure
that the log entries are in the same order. After the consensus module has ensured
the log entries are consistent, the state machines execute the entries, giving the same
state across the system [28].

A Raft cluster typically spans multiple servers, where each server may be in one of
the following states: leader, follower or candidate [29]. Normally in the Raft cluster,
there’s always one distinguished leader, with the other servers as followers. The
leaders handles all outside client requests. The followers are passive, in that they
issue no requests of their own and only respond to the requests of the leader. The
candidate state is typically only used during the leader election process [28]. Raft
uses a distinguished leader with complete responsibility for managing the replicated
log. It (1) accepts log entries from clients (2) replicates the entries to the followers
and (3) notifies the followers when its safe to apply the log entries to their state
machines [29]. Raft divides time into terms of arbitrary length, where each term is
designated by an incrementing number. Each term starts with an election, where a
new leader is chosen. The elected leader then leads until the end of the term. Each
server stores the current term number, and is included in all server communication.
If a leader or candidate notices its term is less than the others, it will automatically
revert to the follower state [28]. Similarly, followers will reject requests with stale
term numbers.Servers communicate via RPCs, which are executed in parallel and
retried upon failures.

Raft utilizes a heartbeat mechanism for leader election. Servers remain as followers
as long as they receive valid heartbeats from a leader. If a follower don’t receive a
heartbeat for some time, a timeout will occur, and the follower will then commence
a new election [26]. The server that experienced the timeout will transition to the
candidate stage. It will then increment its term counter, and send out a RequestVote
RPC to the other servers in parallel. The three outcomes of this are the following
[29]:

• A candidate wins the election if the majority of the servers in the system vote
in favour for it. A server will vote for maximum one leader per term on a
first-come-first-serve basis. Once a candidate has received enough votes, it will
assume the leader role, and send out a heartbeat to the servers, informing them
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that it won and is now the acting leader.

• The candidate may receive RPCs from another server claiming to be a leader.
In this case, the term number is compared. If the term number of the claimed
leader is equal or higher to the candidate, the candidate will revert to the
follower state and accept the leader. If the number is less than to the candidate,
the candidate will reject the claimed leader and continue the vote.

• There may also be a tie between different candidates. In this case, none of the
candidates will get a majority and become leader. The candidates will time out
and start a new election by incrementing the term and issuing new RequestVote
RPCs

In order to avoid split votes could repeat indefinitely, Raft employs a random timeout
mechanism. Each candidate chooses a random timeout from a fixed interval [28]. This
drastically reduces the chances for a split vote occurring/repeating itself.

The election process also includes a mechanism for securing that the leader elected has
all the latest committed log entries present. This is done during the voting process,
where a candidate would need to obtain a majority vote [29]. This implies that at
least one server that hold all committed entries. In the case where the candidate
is out-of-date compared to another follower, that follower will deny its vote for the
candidate [26].

Once elected, the leader will serve client requests. The leader appends commands to
its log, and then replicates the log in parallel using the AppendEntry RPC [26]. In
case of follower failure or delays, the leader will retry the RPC until all followers store
the correct log sequence. The leader will apply the log entries to the state machine and
return the result to the client. The log entries contain the state machine command,
current term number, the index of the leader’s highest known committed entry, and
an integer index identifying the previous log entry. A log record is seen as committed
once a majority of the followers have replicated the entry [29]. A consequence of
this is that the previous log entries of the leader also are committed. The leader
also keeps track of the highest index to have committed, and this is relayed to the
followers through the AppendEntry RPC. Once the followers become aware of this,
the log entries are applied to the state machine in order.

Raft can then ensure [29]:

• That two entries with the same term and index contain the same state machine
command, because a leader creates at most one entry with the index for a given
term.

• That two entries with the same term and index, then the logs are identical in all
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preceding entries, because the follower checks when receiving an AppendEntry
RPC that the included previous entry index exists in its log. If it doesn’t, the
follower will reject new entries.

However, leader crashes can leave the logs in an inconsistent state, i.e. if the leader
fails while replicating a log entry to the followers. To deal with this, a leader will
force a follower to duplicate the log of the leader [29]. This includes overwriting
conflicting entries. The leader will find the followers latest log entry that agrees with
the leaders, delete any following log entries from the follower, and then replicate
the missing entries from the leader to the follower [26]. One thing to notice is that
leaders won’t commit log entries from previous terms by majority counting. Only
entries from the leader’s current term are committed this way, and thus ensures that
all prior entries are committed as well [29].

Raft manages changes to the cluster using a joint consensus approach. A leader will
propagate the latest cluster configuration to the followers using special entries in the
replicated log. Each server in the cluster uses the latest cluster configuration sent by
the leader, disregarding whether the entry has yet been committed [29]. Raft uses
this mechanism such that a cluster will first go over to a transitional configuration,
before moving on the the new configuration [28]. This aims at avoiding issues where
the cluster might split into two independent majorities during configuration changes
and allow for continued serving requests during a cluster change. In the transitional
configuration, both new and old configurations are combined, such that (1) all servers
receives log entries, (2) any follower can become leader, and finally (3) any agreements
such as leader election need a separate majority from both the new and old config-
uration [29]. Once the joint consensus has been reached, the cluster leader can then
move on and commit the new configuration [28]. The transition is then complete,
and the servers possessing the old configuration can then be shut down or upgraded.

3.9 Quorum models

Quorum models can also be used to enforce consistent operations in a distributed
system. Similar to consensus protocols, each node is assigned a vote, but in the case
for quorum models, only a number of nodes have to agree to perform the operation.
This allows quorum models to work in the face of network partitions. There are two
main use cases for quorum models, namely quorumbased voting in commit protocols
and quorumbased voting for replica control. In each case, the quorum exhibits slightly
different rules in order to perform as desired. Quorumbased voting for replica control
is heavily utilized by Amazon Aurora, and makes possible amny of the optimizations
Amazon has done.
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3.9.1 Quorumbased voting in commit protocols

In this case, a distributed transaction can be executed on multiple nodes. The atom-
icity property needs the transaction to either be performed in its entirety on all nodes
it touches upon, or on none. The quorum model describes that a transaction can be
performed if the majority of nodes vote for it [45]. This allows a system to remain
operational in the face of network partitions, where the system is unable to communi-
cate with all the nodes in the system. This can be solved by using a quorum approach
where each node in the system is assigned a vote. In this example, we’ll have a total
of V nodes. We’ll also have a commit quorum, Vc, and an abort quorum, Va. The
quorums must abide to the following rules [45]:

• Va + Vc > V and Vc > 0, V >= Va

• Before a transaction commits, it must obtain a commit quorum. Nodes prepared
to commit or waiting must be more than or equal to Vc

• Before a transaction aborts, it must obtain an abort quorum. Nodes prepared
to abort or waiting must be more than or equal to Va

The first rule indicates that a transaction cannot be committed and aborted at the
same time. The two second rules ensure a quorum for either action is reached before
proceeding [45].

3.9.2 Quorumbased voting for replica control

In this case, a database system can store copies of a data item across multiple sites.
Due to serializability, two transactions shouldn’t be allowed to either read or write
the same data item at the same time. This can be solved by using a quorum approach
where each copy of a data item is assigned a vote. In this example, we’ll have a total
of V copies. In order to perform a read on the data item, the transaction would need
to obtain a read quorum Vr. Similarly, in order to perform a write on the data item,
the transaction would need a write quorum, Vw. The quorums must abide to the
following rules [2]:

• Vr + Vw > V

• Vw > V/2

The first rule ensures that no copy is read and written concurrently, as well as that
the read quorum contains a node with the latest version of a data item. The second
rule ensures that no data item is written concurrently by two transactions [1].
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4 Amazon RDS

The Amazon Web Service (AWS) include many different services covering most as-
pects of modern cloud architecture. One main point is that different services can
communicate with each other, and be combined to create complex applications. One
of the services offered is the RDS (Relational database service). The RDS can be used
with various popular databases. At the time of writing, RDS supports the follow-
ing relational databases: MySQL, MariaDB, PostgreSQL, SQL Server, Oracle, and
Amazon Aurora[22].

The AWS platform is divided into geographically separated regions. Within each
region, there’s multiple data centers (in AWS terms, Availability zones, or AZs). AZs
are relatively isolated from each other in most aspects, such as power, networking,
software deployment etc. The availability zones are interconnected with low latency
links[1][22]. With this layout, Amazon achieves great fault tolerance and stability[20].

Figure 2: AWS regions and availability zones Source: [21]

Like most AWS offerings, RDS is a fully managed service, which implies Amazon takes
care of needed hardware provisioning, software patching and most setup tasks. RDS
aims to provide a highly scalable database service, with ability to adjust compute and
storage resources to demand[20]. Additionally, RDS instances aim at being highly
available and durable, with the ability to i.e. synchronously replicate data to a
standby instance at a different datacenter. Additionally, RDS is easy to administer
either through Amazon’s web dashboard, or via APIs. RDS can also be interconnected
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with other AWS services[22]. This could either be to insert new data into the database,
or generate statistics and logs from the database performance.

4.1 Storage solutions for RDS

For the most of the RDS-supported database systems (MySQL, MariaDB, Post-
greSQL, and SQL Server), RDS instances run on an Amazon EC2 instance backed
by Amazon’s Elastic Block Storage service for database and log storage. There are
three separate storage types available for RDS database instances[16], where each has
specific traits depending on the cost/performance needs of the database. These are

• General purpose SSD’s

• Provisional IOPS SSD’s

• Magnetic storage

General purpose SSD’s is meant to be a good all-round choice for various workloads
while remaining cost effective. It can perform up to 3000 IOPS for short periods
of time. Provisional IOPS aims at providing low I/O latency and consistent I/O
throughput. Magnetic storage is provided for legacy reasons, and Amazon recom-
mends other storage solutions for new deployments[16].

4.1.1 General purpose SSD’s

As previously mentioned, general purpose SSD’s aims at providing a good all-round
storage solution for most workloads. With the exception of SQL Server, general
purpose SSD’s can support database volumes between 20GB-32TB. For SQL Server,
database volumes between 20GB-16TB are supported[44].

The IOPS performance the database is able to accomplish is governed by a rather
complex system. The volume size determines the baseline IOPS the system can
perform, but for volumes less than 1TB, the database can perform bursts up to 3000
IOPS for a short period of time[44]. The length of this duration is determined by
a separate IO credits balance. Every volume starts out with a credits balance of
5.4 million I/O credits. Once the database instance exceeds the baseline IOPS, the
database instance can use of the IO credit to gain additional IOPS[16]. The size of
the volume also determines how fast new IO credits are accumulated; larger volumes
accumulate faster than smaller ones. When the database instance uses fewer IOPS
than the baseline, the "remaining" IOPS are added to your IO credits. The IO credits
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is capped to the starting amount (5.4 million I/O credits). If the IO credits pool is
emptied, the database instance will be capped to the baseline IOPS level. Amazon
informs most workloads won’t empty out their IO credits pool [17].

4.1.2 Provisional IOPS SSD’s

Provisioned IOPS, on the other hand, takes a more straight forward approach. In
this case, you provision the IOPS you need upfront and Amazon will provide that
number until its manually changed. Amazon recommends this kind of provisioning
for database instances that require fast and consistent IO performance[44]. With
the exception of SQL Server, you can specify volume sizes between 100GB-32TB
and IOPS rates between 1000 - 40 000 IOPS. Amazon additionally allows for use of
provisioned IOPS in a Multi-AZ setup, but also for read replicas. The storage option
for the read replica is separate from the master[16]. It’s worth noting that there might
be other factors (such as network bandwidth, CPU, memory) that might pose as a
bottleneck, meaning the database won’t be able to fully utilize the provisioned IOPS.
However, increasing IOPS might also decrease latency, as an IO request doesn’t spend
much time waiting in a queue.

4.1.3 Magnetic storage

Amazon also supports magnetic storage for legacy reasons, but they strongly suggest
to use either general purpose SSD’s or provisioned IOPS SSD’s. Some of the draw-
backs with magnetic storage is that it is constrained to 1000 IOPS and a volume size
of 4TB. It also doesn’t support elastic volumes[16].

4.2 Read replicas and hot-standby replicas

RDS also has functionality to add replicas to a database setup. Amazon support
both hot-standby replicas, as well as traditional read replicas. In Amazon termi-
nology, a database deployment with a hot-standby replica is called a "Multi AZ"
deployment[18]. Upon creation of a Multi AZ deployment, Amazon will set up your
primary database as well as a standby instance in a separate availability zone. The
primary database will synchronously replicate data to the standby[34]. Since the pri-
mary and standby are in separate AZ’s, they will be isolated for most faults. In case
the primary experiences a failure, RDS will automatically perform a failover to the
standby replica[19]. The database endpoint will remain the same, so an application
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will be able to resume operation once the failover is complete. Another difference is
that only the database engine on the primary is active, unlike with read replicas that
can accept read operations. Multi AZ deployments also always span across two AZ’s
in the same region, while read replicas allow for placements in the same AZ, across
AZ’s and cross-region[34]. It is worth noting that Multi AZ and read replicas can
be combined, so that Multi AZ could be used to achieve high availability, while read
replicas can help to offload read operations from the master[19].

Figure 3: AWS RDS Multi AZ Architecture Source: [35]

With the exception of SQL Server, Multi-AZ deployments also leverage synchronous
physical replication to replicate data to the standby replica. This is unlike traditional
read replicas, which use asynchronous replication[18]. Multi AZ is implemented using
a custom replication layer which sits between the database application EBS volumes.
The layer handles reads and writes for the database instance and applies it to two
EBS volumes, where one is local, while the other is remote. Each EBS volume is
managed by a dedicated EC2 instance[34]. The EC2 instances are connected to each
other with a TCP connection. See figure 3. The standby doesn’t have a database
server process running, but will instead just synchronously write the data it receives
from the primary. A database write operation will be applied to both volumes before
a successful response is sent back, but read operations will be handled by the primary
directly[34]. The replication layer is additionally unaware of any higher level issues,
such as connectivity issues etc. The EC2 instances are therefore managed by an ex-
ternal observer which makes sure availability and performance requirements are met.
Amazon argue that the incurred performance cost of running a Multi AZ configuration
is minimal. Their tests show approx. 2-5 ms increase in database commit latency, but
for general workloads, the practical difference will be minimal[34]. If the primary and
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the standby lose connection with each other, the instances will momentarily pause,
and the observer will direct an available instance to resume the role as primary and
proceed without replication for the time being. Once connection is restored, the pri-
mary and standby will resynchronize. This is done by the primary keeping track of
which blocks are modified while the connection is down. During resynchronization,
the primary only sends the modifications needed to the standby[34].

4.2.1 Single AZ deployments

Amazon in general recommends using a Multi AZ deployment, due to its higher
resiliency to failures[18]. It is, however, possible to deploy single AZ configurations
for scenarios where you either don’t need the added HA requirements or the associated
costs. In both cases, the database will be more vulnerable to failures. Amazon uses
the metrics "recovery time objective" (RTO) and "recovery point objective" (RPO) to
measure the impact of running a single AZ configuration vs a Multi AZ configuration.
RTO corresponds to the amount of time for a recovery to complete in the event of
failure, while RPO refers to the amount of time during which data is at risk for loss
in the event of a failure[47].

Amazon divides the possible failure modes into four categories. These are

• Recoverable instance failures, where the underlying EC2 instance is experiencing
a failure and RDS is able to automatically recover from it

• Non-recoverable instance failures, where the underlying EC2 instance is expe-
riencing a failure, but RDS couldn’t recover from it automatically

• EBS failures, where the EBS volume has experienced a data loss failure

• AZ disruption which affects the RDS instance

For recoverable instance failures, RDS will launch a new EC2 instance and attach the
underlying EBS volume and recover. This gives an RTO of approx. 30 minutes, but
no impact on the RPO[47]. In the case the recovery fails, or an EBS failure happens,
a point-in-time recovery will be necessary. The RTO in this case will amount to the
time it takes to launch a new instance and apply all the changes since the last backup.
The RPO can vary from minutes to hours, depending on the size of the database, the
number of changes made since the last backup, and the workload on the database[47].
It is also worth mentioning that I/O will be impacted during snapshot and backup
creation for a single AZ configuration. For most of the RDS offerings, all other I/O is
temporarily suspended during this period. Similarly, when performing OS patching,
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a single AZ configuration would be unavailable while its maintenance window[18].
These are major limitations that can be avoided in Multi AZ configuration.

4.3 Logging and performance metrics in RDS

The RDS console has some basic statistics readily available. These include CPU uti-
lization, number of DB connections, amount of free storage space, amount of freeable
memory, read IOPS, and write IOPS. However, additional metrics can be obtained
both for the OS and DB performance. OS metrics, such as CPU utilization, disk
IO, memory, and network performance can be monitored in detail when the "Enable
monitoring" option is chosen for the database.

Figure 4: Example dashboard in AWS Performance Insights

DB performance metrics can be enabled by turning on "Performance insights" for
the database. This will in turn enable performance_schema for MySQL databases,
unless explicitly turned off. The performance_schema information will then be exten-
sively used in order to provide insights into the database performance. Additionally,
database logs such as the slow query log, audit log, general log, and error log can be
extracted from the database instance and used for other performance statistics.
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Figure 5: Example dashboard in AWS CloudWatch

AWS has a separate service for logging these metrics, AWS CloudWatch, that can be
used for monitoring the performance over time. This service can be combined with
the RDS service. CloudWatch provides both a dashboard with graphs and plots, as
well as an API to access the data directly. An example dashboard can be seen in
figure 5.
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5 Amazon Aurora

Aurora is one of Amazon’s multiple database offerings for the AWS cloud platform.
Launched in late 2014, and being generally available in 2015, Aurora has changed the
game on how database systems work in the cloud. Aurora is a shared-disk, relational
database system, which claims compatibility with MySQL. It is specially tailored for a
cloud environment, with high performance and scalability as major priorities. Aurora
leverages a distributed, fault-tolerant, self-healing storage system that auto-scales up
to 64 TB of data [13].

The Aurora database system is proprietary, and Amazon limits access to the under-
lying hardware of the Aurora database. Despite this lack of insight into the actual
implementation, Amazon has released several papers on the inner workings of the
Aurora architecture. Aurora was initially based of MySQL, but a PostgreSQL vari-
ant is now also available. For this paper, we will focus on the MySQL variant. The
MySQL version of Aurora has been adapted and optimized to work in Amazon’s
cloud environment. The main changes lie in how InnoDB perform reads and writes
[1]. The Aurora database offers MySQL compatibility up to MySQL 5.7, but with
some missing features, which we will see in section 7.2.

One of the main changes in Aurora is that it has decoupled the compute and storage
components of the database system, and replicates storage across multiple nodes [1].
To ensure consistency, Aurora uses a quorum model [2].

As described in section 4, each AZ in a region is isolated for most faults, but are
interconnected with low latency links. For Aurora, distributing data replicas across
AZ’s should isolate failures to affect only one data replica [2].
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Figure 6: Segments and protection groups in Aurora

Aurora is designed to withstand the loss of an entire AZ and an additional single
storage node without losing data. Aurora should also retain write ability when losing
an entire AZ [2]. They replicate the data item across three AZ’s, where each AZ
stores two copies of each data item. This translates into a quorum model with V = 6,
Vr = 3, and Vw = 4. This will ensure the design principles can be upheld [1].
Furthermore, Aurora divides the database volume into small segments of 10GB in
size. These segments are each replicated six ways into Protection Groups (PG), see
figure 6. The Protection Groups are organized across three AZs, so that each PG has
two segments in each AZ [2].

Another main change in Aurora compared to traditional systems is that they have
pushed the log processing down to the storage layer. The redo log is the only part that
is written from the database layer to the storage layer [1]. One main design principle
is to minimize the latency of the foreground write request. This is done by prioritizing
foreground write requests. Aurora will i.e. not perform background activities such
as garbage collection when the storage node is busy processing a foreground write
request. Most operations, such as materializing pages, are moved to the background
on the storage node.

Amazon argues protocols like two-phase commit and the variants of Paxos can be both
expensive and incur excessive network overhead. Instead, Aurora uses a combination
of quorum I/O, locally observable state, and log-sequence numbers for its commit
and membership processing [2]. Log-sequence numbers (LSN) are used for uniquely
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identifying a log record. The LSN space is monotonically increasing, assigned by the
database instance, and common across the database volume. Aurora uses a segmented
redo log, where the database instance storage driver shuffles the log records to write
buffers individual to each storage node. The storage driver asynchronously sends
the data to the nodes, receives acknowledgements, and establishes consistency points
[2]. All parts of log writes execute asynchronously, including sending the log to the
storage node, processing the log on the storage node, and acknowledging back to the
database instance.

In Aurora, a log record additionally includes the following LSNs:

• The LSN of the preceding log record in the volume. Typically only used for
disaster recovery.

• The previous LSN of the segment. This is used to identify missing records, and
gossip with other storage nodes to fill these holes.

• The previous LSN of the block being modified. This is used to materialize
blocks on demand.

Aurora keeps track of various LSN numbers for its commit and membership pro-
cessing. When a storage node receives new log records, it may advance a Segment
Complete LSN (SCL). This represents the latest point where it knows it has received
all log records, and is used to identify missing writes. The SCL is in turn sent to the
database instance as a write ACK [2]. Once four of the six nodes in a PG respond
with its SCL, the database instance advances a Protection Group Complete LSN
(PGCL) [2]. This represents the point where the PG has made the writes durable.
The database instance also advances a Volume Complete LSN (VCL), when there are
no pending writes preventing PGCL from advancing for one of the PGs in the vol-
ume [2]. A commit is acknowledged once all data modified by the transaction is made
durable. This happens when the commit redo record (System Commit Number/SCN)
is below the VCL [2].

During crash recovery, Aurora will need to recompute the LSN state values. Aurora
has to first establish a read quorum. The database can then recompute the VCL and
PGCL values by finding read quorum consistency points across SCLs [2]. Any records
which are past the newly computed VCL will be truncated. If write quorum can’t
be met, Aurora will start repair and rebuild the failed segments [1]. When both read
and write quorum is met, Aurora increments an epoch in its storage metadata service
and sends this to the storage nodes. Storage nodes will in turn not accept requests
for stale volume epochs [2].

Aurora has taken steps to optimize the read performance. This is mainly achieved
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by avoiding read quorums where possible. The latest version of a data block can
either be found in cache or in the latest durable version of the block in one of the
segments of the PG it belongs to. The database instance will always keep track of
which segments have the last durable version of a data block. It can thus directly
request it directly from that segment [2]. This allows Aurora to avoid quorum reads,
which greatly reduces network overhead.

Aurora is also able to avoid distributed consensus in the general case for writes and
commits by managing consistency points in the database [2]. In Aurora, storage nodes
do not have a vote in whether or not to accept a write. If a node misses a write, they
will gossip with other nodes in the PG to catch up [1]. For commit processing, the
worker thread will hand off the transaction to a commit queue and return to the task
queue to find new requests. A dedicated commit thread will scan the commit queue
and send acknowledgements once the data is durable [2].

Similarly, Aurora uses quorum sets to determine group membership. Like with volume
epochs, Aurora maintains a membership epoch which is monotonically incremented
for each change. Clients with stale membership epochs will have their requests re-
jected and must update their membership information. All membership epoch incre-
ments must have a write quorum, and be passed within the correct epoch [2]. This
is just like any other regular request. The segments of a PG make up a quorum set,
and boolean logic is used to ensure read/write quorum for the PG. If a segment fails,
the segment can be replaced with a new segment. In this case, a new quorum set will
be formed with the healthy segments and the new segment. Aurora will transition
from one quorum set to another by incrementing the membership epoch [2].

The numbers provided by Amazon show that Aurora can scale linearly with instance
sizes for both write-only and read-only workloads. Each increment in instance size
doubles the available memory and vCPUs. In the case of the highest available instance
size, Aurora performs up to 5x better than MySQL 5.7 for reads and writes per second
[1].

For varying database sizes, Amazon heavily outperforms MySQL even for out-of-cache
sizes. With a 100GB database, Aurora performs 67x better for writes/s than MySQL.
With a 1TB database, Aurora performs 34x better. This is with a buffer cache of
170GB [1].

Read replica lag is also significantly reduced. When scaling from 1000 writes per sec
to 10 000 writes per sec, Aurora’s replica lag only grows from 2.62 ms to 5.38 ms.
MySQL on the other hand grows from less than 1000 ms to over 300 000 ms [1].

Amazon has also performed TBC benchmarks to investigate the impact of hot row
contention. They experience a 2.3x to 16.3x improvement of throughput with Aurora
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compared to MySQL 5.7 as the workload ranges from 500 connections with a 10GB
data size to 5000 connections and 100GB data size [1].
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6 Alibaba PolarDB

Similar to Aurora, PolarDB also aims at decoupling compute and storage in order to
be more flexible and allow for shared storage in a cloud environment. However, most
traditional database systems fail to utilize the full potential of emerging technologies
such as RDMA and NVMe SSD’s. Alibaba has therefore created its own distributed
file system, called PolarFS, which provides low latency, high throughput, and high
availability by fully utilizing these emerging technologies [7].

PolarFS also implements a lightweight network and I/O stack which is kept entirely
in user space. PolarFS provides a POSIX-like API which should be compiled into the
database process and replace the regular file system calls [11]. DMA is heavily used
to transfer data between main memory and RDMA NICs/NVMe disks. Furthermore,
they use a specialized version of Raft, called ParallelRaft, to achieve consensus among
nodes [7].

PolarFS is divided into two layers. The storage layer handles the data resources on
the storage nodes and provides a database volume for each database instance. The
file system layer supports file management of the volume, in addition to handling
mutexes and synchronization of file system metadata access [7].

Figure 7: Overall PolarDB architecture. Source: [7]

Figure 7 illustrates PolarFS’s architecture. libpfs is a user space file system with a
POSIX-style API. This is linked into PolarDB. PolarSwitch are located on the com-
pute nodes and redirect I/O from the application to the ChunkServers. ChunkServers
are located on the storage node and serve I/O requests. PolarCtrl is the control plane,
and has a set of masters in addition to agents deployed on the storage and compute
nodes [7].
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The file system should provide shared and parallel file access, where multiple storage
nodes should be able to access the system concurrently. There is also a need for
synchronizing file system metadata across to the various storage nodes in a serializable
manner [11]. In PolarDB, each database instance has a volume, consisting of a list
of chunks. The chunks are distributed across multiple ChunkServers. Each chunk is
at 10GB, and is the smallest unit of data distributed across the nodes. The size is
chosen so the chunk metadata can be cached in main memory by PolarSwitch. The
chunks are replicated across three replicas, which are on separate racks [7]. A chunk
should also not span across disks. The replicas of a chunk forms a consensus group,
with one leader and the rest are followers [11].

A chunk is further divided locally on the ChunkServer. The ChunkServer divides
the chunk into blocks, where each block has a size of 64 kB. The chunks use thin
provisioning, which means new blocks are allocated and mapped to the chunk on
demand [10]. This is the opposite to traditional fat provisioning, where the storage
space is allocated up-front. The ChunkServer also handles the mapping of the chunk’s
LBA (logical block address) to blocks, and is cached in main memory. In addition,
the ChunkServer also handles the bitmap of free blocks on each disk.

In the PolarFS architecture, the PolarSwitch is a daemon which runs on the compute
nodes. The libpfs layer forwards I/O requests to PolarSwitch, which PolarSwitch
translates into a new request which is sent to the underlying leading ChunkServer
where the chunk resides [11]. Only the leader can answer I/O requests for a chunk.
PolarCtrl keeps track of the leadership changes, and PolarSwitch uses a locally cached
and synchronized copy in order to resolve the I/O requests [7].

The ChunkServer’s responsibility is to store and provide access to chunks. Typically,
multiple ChunkServer run on each storage node. Each ChunkServer has a dedicated
NVMe disk and CPU core to avoid any contention between each other [10]. Modifi-
cations to a chunk is written to a WAL before the changes are written to the chunk
blocks. A ChunkServer will typically write the WAL to a 3D XPoint SSD buffer.
However, if the buffer is full and no place can be freed, the log may be written to a
NVMe disk instead [7]. ChunkServers replicate I/O requests to each other using a
ParallelRaft consensus group [43]. If a ChunkServer goes down, it will autonomously
try to reconnect to the group. PolarCtrl will also probe for faulty servers, and remove
it if so deemed necessary.

PolarCtrl is the control plane in the PolarFS architecture [11]. It provides clus-
ter management services such as node/volume management, resource allocation, and
metadata synchronization [10]. PolarCtrl is designed to handle the following respon-
sibilities
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• Keeping track of membership and liveness of ChunkServers and handling ChunkServer
migrations

• Maintaining volume and chunk locations in the metadata cache

• Volume creation and chunk allocation to ChunkServers

• Synchronizing metadata with PolarSwitch

• Monitoring various metrics for volumes and chunks

• Scheduling various CRC checks periodically

PolarSwitch will fetch location metadata from PolarCtrl and store it in a local cache.
If the local cache becomes outdated, a new fetch from PolarCtrl will occur.

A typical write request goes through multiple steps. libpfs and PolarSwitch has a
shared memory segment with multiple ring buffers. When PolarDB writes to libpfs, it
splits up the write request into multiple block requests and enqueues this in the shared
ring buffer. PolarSwitch constantly polls the ring buffers, and upon a new request,
dequeues the request and sends it to the corresponding leading ChunkServer based
on metadata and routing information obtained from PolarCtrl. On the ChunkServer,
the RDMA NIC moves the request into a buffer and notifies the ChunkServer through
a request queue. The ChunkServer constantly polls this queue, and upon finding a
new request, it starts processing said request at once. The ChunkServer then writes
the request to the log block on disk, and propagates the request to the follower
nodes. A similar process happens at the follower nodes; the RDMA NIC adds the
request to a buffer and notifies the ChunkServer through a request queue. The fol-
lower ChunkServers then write the request to disk and respond back to the leader
ChunkServer. When a majority of followers successfully reply back to the leader, the
write request is applied to the data blocks. In turn, the ChunkServer replies back
to PolarSwitch through RDMA, which marks the request done, and respond to the
client [7]. Read requests are on the other hand handled directly on the ChunkServer
leader [10].

PolarFS started out using Raft for group consensus. However, Raft showed to have
multiple limitations in its design that would severely impact both throughput and
latency. Some of the limitations experienced were Raft’s lack of support for having
holes in the log for both leader and follower [7]. This means that followers would
need to acknowledge a request, the leader would commit, and then the followers
would apply the change in sequence. Furthermore, a follower must acknowledge log
entries in sequence, which results in the follower being unable to accept log entries
arriving out of order.
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The PolarDB/FS team therefore chose to build upon Raft to remedy some of these
limitations. The new proposed protocol is named ParallelRaft [43]. ParallelRaft
leverages the database’s own mechanisms for ensuring consistency, and can therefore
relax on some of the constraints of Raft. ParallelRaft has several guarantees that
consistency is maintained, among others that none of the committed modifications
will be lost in any corner cases and that it is compliant with the storage semantics
of traditional database systems. In contrast to Raft, ParallelRaft does both acknowl-
edgement and commit out of order [10]. This also implies you may have holes in the
log. In order to solve the missing holes issue, PolarFS uses a look-behind-buffer which
contains the LBA modified by the previous N log entries. A follower can then tell
if a log entry conflicts with a missing log entry if its overlapping with some missing
previous log entries. In this case, PolarFS will put the log entry in a list and complete
it once the missing log entry is retrieved [7].

Since there may be holes in the log, special care needs to be taken when electing a
new leader. PolarFS solves this by having an additional merge stage where the leader
candidate obtains it’s unseen entries from a quorum and commits them locally [7].
In short, a leader election will go through the following steps.

1. The leader candidate receives the log entries from the followers and merges these
with its local entries.

2. The leader candidate synchronizes the state with the followers.

3. The leader candidate commits the changes and sends a notification to the fol-
lowers to commit as well

ParallelRaft makes use of checkpoints, where log entries before the checkpoint are
applied to disk. However, a checkpoint might also contain some log entries that are
committed after the checkpoint. ParallelRaft uses this checkpointing mechanism for
leader election, where the node with the latest checkpoint is elected to become a
leader candidate [10].

If a follower is lagging or has become stale, the follower would need to catch up to the
leader. PolarFS provides two different mechanisms for catch-up. The method chosen
depends upon how stale the follower is [7]. A fast catch up is done if the follower is
only slightly lagging behind the leader. However, if it has been stale for some time,
a streaming catch up needs to be done. The fast catch up only works if the leaders
checkpoint is older than the latest log index on the follower. Otherwise, the leader
might have pruned the log entries previous to its checkpoint.

With fast catchup, log holes between the followers checkpoint and the leaders check-
point are identified by using the look behind buffer mentioned previously. Once

35



identified, the follower copies these missing modifications directly from the leaders
data blocks [10]. The holes after a leader’s checkpoint is filled by copying directly
from the leaders log blocks.

With streaming catchup, the follower copies the datablocks and content from after the
leaders checkpoint. This is done by dividing the chunks into relatively small pieces of
128KB in small tasks. The motivation behind this is claimed to be more controllable
resynchronization [7].

Most modern databases support taking snapshots of the database for a given mo-
ment in time. PolarFS provides a so-called disk outage consistency snapshot. For
a snapshot initiated at timepoint T , all I/O operations before a timepoint T0 is in-
cluded, while operations after T is excluded. Operations inside the interval [T0, T ] is
undetermined. During crash recovery, the latest disk outage consistency snapshot is
used as a building foundation for the database nodes. PolarFS even allows for user
load during snapshot creation. This is done by PolarCtrl telling PolarSwitch to make
a snapshot. PolarSwitch then attaches a tag to indicate that this request happened
after the snapshot creation begun. When receiving a request with this special tag, a
ChunkServer will make a snapshot by copying block mapping meta information and
handle further requests in a Copy-On-Write fashion. Once the snapshot creation is
finished, PolarSwitch will quit adding this special tag [7].

PolarDB has also made significant changes to the InnoDB storage engine to facili-
tate physical replication. For this, PolarDB utilizes InnoDB’s redo logs[38]. InnoDB
uses the redo log to store physical page level operations for crash recovery. PolarDB
extends this functionality to deploy multiple read replicas for read load sharing. In-
stead of just doing redo application during crash recovery, PolarDB does redo ap-
plication to data pages at runtime where the replica applies redo logs generated on
the primary[39]. The replication lag can in this case thus be represented as pri-
mary.written_lsn - replica.applied_lsn. A stated goal is to reduce the replication
lag. This is both for better service, but also due to the replication lag imposing some
constraints on the primary when it comes to flushing. Additionally, small replication
lag will help reduce memory usage/redo application time on the replica[39].

Alibaba has also taken steps to optimize the redo application code. Traditionally,
redo application was only used for crash recovery and was implemented in a single
threaded fashion. PolarDB instead read the redo logs in a separate asynchronous
reader threads. The parsing of redo logs is single threaded, and are stored in multiple
hash tables. Then, multiple threads apply the redo logs to the pages in the buffer
pool[38]. Alibaba has purposefully made the decision to apply the redo logs without
any consideration of atomicity or ordering, and then deal with the consequences at
a later stage[39]. When a replica receives a batch of redo logs from the primary,
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the replica will only apply the changes made to the pages in the buffer pool. The
replica will keep track of the received batch of redo logs, in case new pages are read
in from disk. In practice, this means PolarDB won’t incur any extra IO for redo log
application[38]. Alibaba has also made the design decision not to apply the batches
atomically, but instead handle the instances where physical inconsistency may occur
on the replica. This would typically happen

• on the primary when multiple pages are modified (such as a B-tree merge or
split)

• on the replica when multiple pages are read (such as a range scan)

In essence, PolarDB is able to solve this problem by introducing a new log entry
(MLOG_INDEX_LOCK_ACQUIRE), so that an mini-transaction (MTR) on the
replica will be able to detect when it’s touching on pages that has undergone a split
during a batch that is being applied. In this case, the MTR will close and restart
the MTR[39]. The advantages to this approach is that there are no system level
locking for atomic batch application, no index level locking for page splits/merges,
only affected MTRs have to retry, but no transaction level retries.

Additionally, the primary has some constraints on when it is able to flush pages.
A replica doesn’t know of any changes that are greater than replica.applied_lsn.
This implies that the primary cannot flush a page if page.newest_modification >
replica.applied_lsn[39]. This creates an issue when dealing with hot pages. When this
happens, the page’s newest_modification will be frequently updated, so the primary
cannot flush it. A consequence of this is that the primary cannot make a checkpoint.
PolarDB makes two approaches to deal with this problem. The first is to pin known
hot pages in the replica’s buffer pool at startup, so that the replicas will never read
them from the disk. This will allow the primary to flush the pages when needed[38].
It doesn’t, however, solve the issue of random hot pages. The way this is dealt with,
is that the primary makes a copy of the flushed page, and once the copied page is
flushable, it will be written to disk and the flush list accordingly[39].

PolarDB has also made some changes to how the read view of open read/write trans-
actions. This is due to the fact that the replica only performs reads and has no local
read view, will thus need to know the open transactions at the primary at the current
applied_lsn[39]. The initial read view is sent by the primary as part of the handshake.
The primary will also send out redo log entries on each transaction start and commit.
The replica will then parse these and build a new read view. The replicas use a global
read view, so the read view on the replicas will be shared among all transactions until
the applied_lsn counter is moved[38]. Additionally to this, PolarDB has also made
some changes to how purging is done.
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Alibaba has also performed various tests, both for measuring PolarDB and PolarFS
performance. The PolarFS system was tested against ext4 on local SSD and CephFS.
CephFS and PolarFS was run with 6 storage nodes and one client. However, Ceph’s
filesystem only support TCP/IP communication, so this had to be used for the tests.
PolarFS came out relatively close to the ext4 system, and outperformed CephFS
substantially when measuring latency [7]. This is mainly because PolarFS avoids
thread context switching and rescheduling. Additionally, PolarFS optimizes memory
allocation and paging. That CephFS is only able to run in a TCP/IP configuration
is also very likely a contributing factor.

Figure 8: PolarFS - I/O throughput under different loads. Source: [7]

With regards to I/O throughput, the same characteristics were produced. PolarFS
came out relatively close to the ext4 system, and outperformed CephFS substantially
also for I/O throughput.
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Figure 9: PolarDB - read/writes per second. Source: [7]

PolarDB was tested against both local SSD, PolarDB when run on PolarFS and the
Alibaba MySQL cloud service. The tests were run with Sysbench for both RO, WO,
and mixed read/write on a database with 250 tables, where each table had 8 500 000
records. As seen in figure 9, PolarDB on PolarFS showed very close performance to
local SSD. This shows the benefits of the ultra-low I/O latency of PolarFS [7].

39



7 Benchmarking RDS MySQL, AWS Aurora, and
Alibaba PolarDB

In the recent years, there has been made significant innovations in how databases can
utilize the infrastructure of the cloud. Alibaba’s PolarDB with its underlying shared
file system PolarFS, and Amazon’s RDS and Aurora services are some of the major
players in this field. The benchmarks and tests presented by Amazon and Alibaba
show that these systems perform significantly better when compared to traditional
setups. The tests published are mostly done by the respective owners, and might
therefore be susceptible of showing their own database offering in a favourable light.
There are also few published tests and benchmarks that compare the new cloud based
database services directly. Instead, most benchmarks compare the database services
to a traditional database setup, typically with MySQL 5.6 or 5.7 with a hot standby
or read replica. The goal of this thesis is to do a fair benchmark comparison of the
database offerings of Amazon and Alibaba. We have therefore carried out similar tests
on comparable hardware on Amazon’s RDS MySQL and Aurora, as well as Alibaba’s
PolarDB offering. These tests gives an insight into how the systems compare to each
other, as well as verifying the benchmarks published by Amazon and Alibaba.

One of the main challenges for testing and comparing results from different systems
is to create a level test ground. This is necessary in order to give a fair comparison
between the systems, where the results can be compared in a meaningful manner.
This section will describe the steps taken to create such an environment and the
various features used in AWS and Alicloud to achieve this.

7.1 Relevant applications and tools

The following section will present some of the tools used for performing the bench-
marks. The main goal was to create an easily reproducible setup, which lends itself
well to automation and scripting. The main tools used for this task are Terraform
[30] for easy setup and configuration of the test infrastructure, and Sysbench [8] for
performing the actual tests towards the databases. These tools are some of the most
common tools used in the market.

7.1.1 Terraform

Terraform is a tool developed by HashiCorp used for describing infrastructure as code.
The stated main goals are to safely and predictably create, change and improve infras-
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tructure by describing it as declarative configuration files which can be easily shared
and versioned. Terraform is able do build a dependency graph of the infrastructure,
allowing it to create and change the infrastructure in a safe way. This is useful for
instance where a small change could have cascading effects. Another benefit is that
since the infrastructure is codified, it becomes easier to automate.

Additionally, Terraform supports a range of different "providers", allowing for inter-
facing between Terraform and external resources. In Terraform, a provider is tasked
with understanding API interactions and exposing resources. Notably, many cloud
platforms have Terraform providers for their services, allowing for easy interaction.
In example, the provider for AWS exposes almost the entire platform to Terraform,
making setup and infrastructure management very easy.

7.1.2 Sysbench

Sysbench is a commonly used tool for performing benchmarking on databases, as well
as other system aspects such as file I/O, CPU, memory etc. When testing databases,
Sysbench will connect to the database through the usual client interfaces (network or
socket-based communication) and perform the tests like normal clients would. The
current version of Sysbench is based on LuaJIT, and as a consequence supports user-
scriptable tests. By default, sysbench provides various tests for OLTP transactions,
namely:

• oltp_delete

• oltp_insert

• oltp_point_select

• oltp_read_only

• oltp_write_only

• oltp_read_write

• oltp_update_index

• oltp_update_non_index

• select_random_points

• select_random_ranges

The Lua scripts are relatively simple. Each script is composed of two functions,
namely prepare_statements() and event(). The prepare_statements() function is re-
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sponsible for creating global nested tables for prepared statements and their parame-
ters. The event() function on the other hand is responsible for performing the actual
queries.

Taking a closer look at oltp_read_only, we see that it will perform point SELECT
queries and, if enabled, a set of range queries. The range queries include a set of
simple range SELECTs, SELECT SUM() ranges, SELECT ORDER BY ranges, and
SELECT DISTINCT ranges.

The oltp_read_write test performs point SELECTs and, if enabled, the same range
queries as the oltp_read_only test. Additionally, it will perform UPDATE index and
non-indexed queries, as well as a set of DELETE/INSERT combinations.

The oltp_write_only test performs the same UPDATE index and non-indexed queries,
in addition to the DELETE/INSERT combinations found in the oltp_read_write test.

The default settings have 10 point SELECTS per transaction, 1 query of each range
category, and then 1 query of of the UPDATE categories, as well as 1 DELETE/IN-
SERT query per transaction. The default range size for the range SELECTs is set to
100.

Typical usage of sysbench consists of preparing a dataset in a separate test database
(typically named ’sbtest’), running tests towards this database using the various test
types and tuning different parameters, before doing a cleanup which wipes the test
database. The size of the database is determined by how many tables are created
and how many rows are inserted in each respective table, controlled by the ’–tables’
and ’–table-size’ parameters. The tables have the following form

1 CREATE TABLE ‘ sbtes t1 ‘ (
2 ‘ id ‘ i n t (11) NOT NULL AUTO_INCREMENT,
3 ‘k ‘ i n t (11) NOT NULL DEFAULT ’ 0 ’ ,
4 ‘ c ‘ char (120) NOT NULL DEFAULT ’ ’ ,
5 ‘ pad ‘ char (60) NOT NULL DEFAULT ’ ’ ,
6 PRIMARY KEY ( ‘ id ‘ ) ,
7 KEY ‘k_1 ‘ ( ‘ k ‘ )
8 ) ENGINE=InnoDB AUTO_INCREMENT=25001 DEFAULT CHARSET=utf8mb4

, with random values for the fields.
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7.2 Test setup

As stated above, one of the main goals were to create a level environment for testing.
This was somewhat challenging, given that Alibaba’s and Amazon’s cloud offerings
differ in aspects such as which services they provide and their underlying infrastruc-
ture. The main goal was to compare Amazon Aurora and Alibaba’s PolarDB. As a
reference point, tests were also performed against a ’regular’ Amazon RDS MySQL
5.7 instance running on Amazon EBS storage, as a baseline reference measurement.

7.2.1 Amazon AWS

As mentioned in section 4, AWS is divided into multiple regions, each having a set
of Availablity Zones (AZs) with low latency high throughput communication links.
Each of the AZ’s operate independently, with separate power and communications
infrastructure. The tests were conducted using a Amazon EC2 instance in conjunction
with the database being tested. The EC2 instance was located in the same region,
and when a single-instance database was tested, also in the same AZ as the database.
This was done in order to minimize latency. For convenience, the US-East-1 region
was used. The test setup made use of the following AWS resources:

• EC2 compute instance located in the same region as the database being tested.

• AWS Aurora/RDS MySQL database, both single-instance and with multiple
read replicas.

• CloudWatch alarms for monitoring performance of both the EC2 and database
instances.

• VPC for allowing the EC2 instance to connect to the DB

The following figure demonstrates the test setup:
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Figure 10: AWS test setup

Aurora is offered in various versions. Aurora is available with both MySQL and
PostgreSQL compatibility. The user is also able to choose which MySQL version
Aurora should be based on. The options are either 5.6 or 5.7. The 5.6 version also
provides the option of enabling parallel query processing. There are some notable
missing features for Aurora based on MySQL 5.7 compared to Aurora based on 5.6
for the time being. These include

• Asynchronous key prefetch

• Hash joins

• Native functions for synchronously invoking AWS Lambda functions

• Scan batching

• Migrating data from MySQL to the Amazon S3 storage service

For the tests we chose to opt for the MySQL 5.7 compatible version, for having a
more level environment.

Aurora has multiple instance types, each optimized for different workloads. The
instance types currently offered are the following

• db.m* series - an all-round instance type that provide a balance of compute,
memory, and network resources. Amazon deems this a good fit for most appli-
cations.
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• db.r* and db.x* series - an instance type optimized for memory-intensive ap-
plications. The db.r* series has previously been used in Amazon’s own bench-
marking tests.

• db.t* series - an instance type that utilize the burst IOPS capabilities, where
an instance is able to burst up above baseline performance for a small amount
of time

There are multiple generations of each series. For the db.m series, the db.m5.* is
currently the latest generation. Similarly are db.r5.* and db.x1e.* the latest for
the memory intensive types. db.t3.* is the latest for the burstable instance types.
Amazon still feature older generations for backwards compatibility, but there’s signs
these are being phased out. For instance, the EU (Paris) and South America (São
Paulo) regions don’t support the older db.r3.* instance types.

The instance types are further divided by the amount of CPU cores, memory, and a
few additional factors. Amazon deals with compute resources a bit differently than
most other providers. Amazon uses a term named "vCPU", short for virtual CPU,
which is described as a "unit of capacity" that can be used to compare instances.
The stated goal is to provide an abstract scale for compute power, separated from the
underlying hardware. In practice, the vCPU count is mapped to the amount of CPU
cores and the amount of threads per core each database instance has available. For
the db.r5.* instance series, for instance, the vCPU count is mapped to the number of
cores multiplied by the number of threads per core.

Amazon also has an "enhanced networking" feature, giving high performance net-
working capabilities to supported instances. This feature makes use of single root
I/O virtualization which gives higher I/O performance and lower CPU utilization
than traditional virtualized network interfaces. Some of the benefits include higher
bandwidth, higher packet per second count, and lower inter-instance latency. There
are two available interfaces. Most instance types support the Elastic Network Adapter
(ENA), which gives speeds up to 100Gbps. Some lower-tiered instances instead sup-
port the Intel 82599 Virtual Function interface, with speeds up to 10Gbps. Addition-
ally, when an RDS database instance is launched into a subnet which contain another
instance (such as a EC2 compute instance), the database instance will automatically
be upgraded to use of the "enhanced networking" feature. The feature also comes
with no additional costs for usage.

Amazon allow customers to choose between burstable IOPS and provisioned IOPS.
When using burstable IOPS, Amazon will use a credits system, where an instance may
draw from credits pool that is refilled at a certain rate. If the credits pool becomes
empty, the instance will fallback to a baseline IOPS rate. This can lead to various
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problems when conducting performance tests. Once the credits pool is emptied, the
baseline rate will act as a bottleneck.

It is therefore important that both the database instance and compute instance isn’t
limited by this rate. This caused problems for the early tests where the EC2 instance
exhausted the credits pool, and thus limited the performance. This was easily reme-
died by choosing the m5.xlarge, m5.2xlarge and c5.2xlarge instance sizes, which isn’t
bound by the credits system. The m5.xlarge was used when running tests on the
smaller database instance sizes, while the m5.2xlarge and c5.2xlarge was used for the
larger instance sizes. The database instances had provisioned IOPS selected. Cloud-
Watch was then set up for monitoring that none of the instances ran out of available
IOPS. The buffer pool size for all tests was set to 3/4 of the available memory for the
instance.

For these tests, we focused on the db.r5.* range. This is the latest generation of
memory-optimized database instances available, and the ones Amazon uses for their
own benchmarking. This would as a consequence be ideal for verifying the perfor-
mance of Aurora and RDS MySQL. The database instances in the db.r5.* range have
some of the following properties:

Instance vCPU Memory (GB)

db.r5.large 2 16
db.r5.xlarge 4 32
db.r5.2xlarge 8 64
db.r5.4xlarge 16 128
db.r5.12xlarge 48 384

Terraform is used to instrument and automate the tests for the AWS setup. Amazon
has a Terraform "provider" that makes it possible to access nearly all AWS services
from Terraform. This allows for easily reproducible tests.

7.2.2 PolarDB

Alibaba’s new database is currently limited to China and some other Asian countries.
As a consequence, international customers wouldn’t normally be able to access it
from abroad. For this masters project, Alibaba granted access to, and free compute
credits for PolarDB and their compute service, ECS. However, there turned out to be
some practical difficulties in order to access the systems. The PolarDB instances can
only be created using a Chinese user account. Account registration further require a
Chinese phone number, which isn’t particularly easy to obtain. The end result was
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that Alibaba created a PolarDB instance using their own accounts, and provided me
with the login credentials and endpoints. Additionally, the user interface for PolarDB
in Alicloud is only available in Chinese, which made it relatively hard to navigate.
Due to these difficulties, the resources and access to perform tests on PolarDB were
ready only first in early April. The test setup made use of the following PolarDB
resources:

• ECS compute instance located in the same region as the database being tested.

• PolarDB database instance with a read replica.

Alibaba provided me with one instance size, namely polar.mysql.x8.xlarge (8 cores
64GB RAM). This is similar to Aurora’s db.r5.2xlarge. However, the setup provided
consisted of a master with a replica. A consequence is that no comparisons to how
well PolarDB scales with instance sizes can be performed. Instead, we have focused
on how PolarDB performs under various workloads, with varying database sizes and
thread counts.
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8 Results

As mentioned in section 7.2.1, a various set of tests has been carried out, mainly
revolving around RO and RW tests. For the AWS setup, we want to compare how
the various instance sizes scaled, and how they scaled with different number of threads.
We want to compare how Aurora and regular RDS MySQL compare in similar setup
configuration. The tests has been based on the db.r5.* series of database instances,
as these are the latest generation memory-optimized databases, which Amazon uses
for their own benchmark tests. We then contrast the findings with how PolarDB
performs on the same tests. Since we only had access to a single instance size for
the PolarDB database, we will not be able to compare how it scales with increasing
instance sizes. However, we will be able to see what impact multiple threads have on
the system.

The tests were run 5 times on each instance size for 600 seconds. There was also a
short warmup period run before the actual tests. The figures below show the average
of these five runs, with error bars corresponding to the standard deviation in the
measurement runs. Tests with varying database sizes were performed. The sizes
ranged from a database containing 25 tables with 25000 records per table, to 250
tables and 2700000 records per table. The thread count varied between 2, 4, 8, 16,
32, 64. The test with 2, 4, and 8 threads were only carried out on PolarDB. This
is due to an early assumption that PolarDB would scale best for a smaller number
of threads. The results gathered and presented in the following sections show that
this isn’t necessarily the case. We also conducted some extra tests to compare the
systems directly to each other, such as Aurora compared to PolarDB for a database
size of 10GB. Additionally, a test with a larger number of threads (500 threads) was
performed. This was done because Aurora seems to perform better for higher thread
counts, and the tests with 64 threads showed signs of not exploiting the full potential
of Aurora.

The following tests were carried out:

• 250 tables and 25000 records per table for RDS MySQL, Aurora (16, 32, and
64 threads scaling across db.r5.large to db.r5.4xlarge).

• 250 tables and 25000 records per table for PolarDB (2, 4, 8, 16, 32, and 64
threads for the polar.mysql.x8.xlarge instance)

• 250 tables and 2700000 records per table for RDS MySQL, Aurora (16, 32, and
64 threads scaling across db.r5.large to db.r5.4xlarge).

• 250 tables and 2700000 records per table for PolarDB (2, 4, 8, 16, 32, and 64
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threads for the polar.mysql.x8.xlarge instance)

• 250 tables and 200000 records per table for Aurora’s db.r5.2xlarge and Po-
larDB’s polar.mysql.x8.xlarge with 64 threads.

• 250 tables and 25000 records per table for RDSMySQL and Aurora db.r5.2xlarge
and PolarDB’s polar.mysql.x8.xlarge with 500 threads

8.1 Results with 250 tables, 25000 records per table

The figures shown below are the result of tests with 250 tables with 25000 records per
table. This is equal to a database size that is close to 1.6GB, and is thus easily held in
memory for all instance sizes. These tests will be presented using queries per second
as metric, as this allows for better mapping to the results presented by Amazon and
Alibaba.

Amazon reported their achieved performance for the various instance sizes in their
SIGMOD 2017 paper[1], which was conducted on a similar dataset with similarly
scaling instance sizes. The main caveats are that Amazon didn’t specify how many
connection threads they performed the tests with, nor did they disclose the exact
configuration the Aurora instances were set up with. It is also worth noting that
the tests were performed on the db.r3.* series of instances, while our new tests were
performed on the db.r5.* instances.
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8.1.1 Amazon Aurora

Figure 11: Aurora read performance

Aurora’s read performance for these tests show that each step up in instance size
brings an increase to performance, but the effect is best seen for the larger thread
counts. With 16 threads, the queries per second are around∼ 35000 for the db.r5.large
database, but scale up to ∼ 72000 for the db.r5.4xlarge instance size, which corre-
spond to a 2x increase in performance. With 64 threads, however, the base perfor-
mance is at ∼ 43000 qps for the db.r5.large, but climb up to ∼ 194000 qps for the
db.r5.4xlarge. This in turn correspond to a 4.6x increase in performance.

We see from the result that the instances scale as thread count is increased. Due to
network latencies, a small but significant amount of time will be lost as the query
and response propagates through the network. As a consequence, a larger count of
database connections can be facilitated than there are hardware threads. This is
especially of significance for writes, where the database must wait for a quorum to
be formed and the changes made durable before being able to respond. The same is
true to a lesser extent for PolarDB, where low-latency RDMA is able to reduce the
impact of this effect.
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CPU characteristics:
Instance CPU load

Aurora large read 16 85-95%
Aurora large read 64 90-100%
Aurora xlarge 16 67-74%
Aurora xlarge 16 90-100%
Aurora 2xlarge 16 20-25%
Aurora 2xlarge 32 35-40%
Aurora 2xlarge 64 65-70%
Aurora 4xlarge 16 21-25%
Aurora 4xlarge 32 38-42%
Aurora 4xlarge 64 60-70%

Monitoring the CPU utilization for the various runs, we see that both the db.r5.large
and db.r5.xlarge have very high CPU utilization, especially for the 64 threads runs.
Especially, the db.r5.large is being CPU-bottlenecked for nearly all tests, staying
somewhere between 85-95% for the 16 threads test, and spiking to 90-100% for the
64 threads test. This explains why the db.r5.large instance see little scaling for the
different thread counts. The db.r5.xlarge, however, start at 67-74% for 16 threads,
and average around 90% for the 64 threads run. The larger instances, such as the
db.r5.2xlarge and db.r5.4xlarge, don’t suffer from this issue, with CPU utilization
being generally low/medium, with a a max utilization of 70% for their respective 64
threads testruns.

The read performance shown here differs somewhat from the presented performance
by Amazon. The db.r5.large and db.r5.xlarge performs slightly better than what is
reported by Amazon. For the db.r5.large instance, Amazon reports approx. 30000
queries per second, but the highest result we achieved is 42746 queries per second.
Similarly for the db.r5.xlarge instance, Amazon achieves close to 70000 queries per
second, while our results show 89872 queries per second. For the larger instance sizes,
our results are lower than that presented by Amazon. Our results for the db.r5.2xlarge
is 109287 queries per second, while Amazon reports around 180000 queries per second.
Similarly, they claim that Aurora’s 4xlarge instance size is able to perform over 300
000 queries per second, while our result tops out on 194295 queries per second. This
might indicate that Amazon’s own tests were carried out with a larger number of
threads, which the larger instances benefit from, but as a consequence also CPU-
bottleneck the smaller instances.
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Figure 12: Aurora write performance

Similarly to the read performance, each increase in instance size brings an increase
in write performance. The largest scaling improvements are seen for the large thread
counts. For the db.r5.large instance size, it is worth noting that the difference between
16 threads and 64 threads is only roughly ∼ 2500 queries per second. The 16 thread
tests see a ∼ 2.95 x increase in performance when going from the db.r5.large instance
size to the db.r5.instance size, while the 64 thread tests show a factor of ∼ 5.34 x
increase between the two instances.
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CPU characteristics:

Instance CPU load

Aurora large 16 85-90%
Aurora large 32 85-95%
Aurora large 64 90-100%
Aurora xlarge 16 63-70%
Aurora xlarge 32 74-80%
Aurora xlarge 64 85-95%
Aurora 2xlarge 16 45-50%
Aurora 2xlarge 32 65-73%
Aurora 2xlarge 64 90-100%
Aurora 4xlarge 16 34-38%
Aurora 4xlarge 32 54-60%
Aurora 4xlarge 64 71-80%

Again, by observing the CPU utilization for this test, we notice that the db.r5.large
instance is running low on CPU, with a utilization of 85-90 for the 16 threads test,
and up to 90-100% for the 64 thread run. This is the reason the db.r5.large instance
doesn’t scale too well with thread counts. The larger instances doesn’t seem to have
any CPU limiting problems for the 16 and 32 thread runs, but some instances show
high utilization for their 64 thread runs. These are the db.r5.xlarge and db.r5.2xlarge
instances.

When compared to Amazon’s results, the achieved write performance is very similar,
or even slightly better with our new tests. The db.r5.large instance is reported by
Amazon to achieve approximately 10000 queries per second, which is close to our
13394 qps. The db.r5.xlarge is reported to achieve results close to 20000 qps, while
our tests show 25983 qps. For the db.r5.2xlarge, Amazon is able to achieve 40000 qps,
with our test topping out on 43636. Lastly, for the r5.4xlarge, Amazon reports a result
close to 75000 queries per second, which is comparatively close to our result at 71611
queries per second. This confirms the results reported by Amazon for Aurora’s write
performance, even in some cases doing slightly better. We see a similar trend to the
read performance in that our performance tests obtain better results for the smaller
instances, while Amazon’s own tests outperform ours on the larger instances. This
support our theory that Aurora might’ve used a larger thread count to obtain better
results for the larger instances, on the sacrifice of CPU-bottlenecking the smaller ones.
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8.1.2 Amazon RDS MySQL (Multi AZ)

Figure 13: MySQL (Multi AZ) read performance

This figure shows the read performance for MySQL when run in the Multi AZ mode.
For the db.r5.large instance, the tests results for all thread counts fall very close to
each other. They are only separated by a margin of 368 queries per second. When
we contrast this against the CPU load, it is clear that the db.r5.large instance is
bound by the CPU for the 32 and 64 thread tests. The 32 and 64 thread test runs
all utilize about 80-100% of the CPU, while the 16 thread test run is a little lower.
For the db.r5.xlarge instance, both the test with 32 threads and the test with 64
threads achieve relatively close results, with the 64 threads test being better by 4000
queries per second. The CPU load for the 64 thread test run, however, is close to
90-100%, which shows that the 64 thread test run is limited by the CPU. With the
db.r5.2xlarge and the db.r5.4xlarge, the differences become more pronounced, with
the 64 threads test peaking out on the db.r5.4xlarge with close to 230000 queries per
second. The scaling factor for the 16 threads test is ∼ 3.71x, while it is up to ∼ 7.6x
for the 64 threads tests.
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CPU utilization:

Instance CPU load

MySQL large 16 80-100%
MySQL large 32 80-100%
MySQL large 64 80-100%
MySQL xlarge 16 47-54%
MySQL xlarge 32 84-90%
MySQL xlarge 64 90-100%
MySQL 2xlarge 16 48-55%
MySQL 2xlarge 32 70-77%
MySQL 2xlarge 64 90-100%
MySQL 4xlarge 16 38-43%
MySQL 4xlarge 32 64-72%
MySQL 4xlarge 64 82-92%

The results for the smaller instance sizes (db.r5.large and db.r5.xlarge) are lower
than their Aurora counterparts. RDS MySQL achieve 30539 qps and 57638 qps for
their respective instance sizes, while Aurora has 42746 qps and 89872 qps for the
same instance sizes. A very interesting aspect however, as shown in the figure 13, is
that the larger instances (db.r5.2xlarge and db.r5.4xlarge) perform better than their
Aurora counterpart. The RDS MySQL db.r5.2xlarge performs with 124788 qps, while
the Aurora equivalent has 109287 qps. Similarly, for the RDS MySQL db.r5.4xlarge
performs with 229415 qps, while Aurora has 194295. These numbers show that in
this case, RDS MySQL performs equal to, or better than Aurora. If contrasted
with Amazon’s reported Aurora performance, Aurora would still outperform RDS
MySQL, with a claimed 180000 qps and over 300000 qps for the 2xlarge and 4xlarge
respectively. One possible explanation to this phenomena is that Aurora first perform
well with a higher thread count than 64 threads. Both results presented by Amazon
and our tests indicate this. Either way, RDS MySQL follow Aurora relatively well,
as instance size increases, with the larger instances performing better than Aurora’s
equivalent with the same configuration.
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Figure 14: MySQL (Multi AZ) write performance

The figure for write performance shows many of the similar traits as seen in the
previous figures. The db.r5.large instance show little difference between the various
thread counts, with the differences being more easily visible for the larger instances.
The scaling factor between the large and 4xlarge for the 16 threads tests are ∼ 2.25x,
while it is ∼ 5.35x for the 64 threads tests.
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CPU utilization:

Instance CPU load

MySQL large 16 71-86%
MySQL large 32 85-94%
MySQL large 64 86-96%
MySQL xlarge 16 44-52%
MySQL xlarge 32 72-83%
MySQL xlarge 64 84-95%
MySQL 2xlarge 16 35-42%
MySQL 2xlarge 32 60-71%
MySQL 2xlarge 64 81-90%
MySQL 4xlarge 16 17-20%
MySQL 4xlarge 32 29-32%
MySQL 4xlarge 64 48-55%

Again, similar to read performance, RDS MySQL performs similar to, or sometimes
better than Aurora with write performance as well. The db.r5.large metric is very
alike to Aurora’s, with both being on the 13000 qps mark. The next instances perform
slightly better with RDS MySQL than with Aurora, with RDS MySQL having 27882
qps, 53904 qps, and 72301 qps for the db.r5.xlarge, db.r5.2xlarge, and db.r5.4xlarge
respectively. For comparison, Aurora has 25983 qps, 43636 qps, and 71611 qps for
the same instance sizes. This might again, as mentioned above, be down to thread
count. As previously mentioned, Aurora shows better performance with a higher
thread count, where most other databases start to fall off.

8.1.3 PolarDB

As previously mentioned, the PolarDB instance is a polar.mysql.x8.xlarge (8 cores
64GB RAM), which corresponds to the Amazon Aurora db.r5.2xlarge instance size.
Since we didn’t have access to more instances, the figures show how that specific
instance scales with the number of threads.
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Figure 15: PolarDB read performance

With this smaller data set, PolarDB show exceptional performance. With just 2
threads, the PolarDB instance is able to perform 14336 queries per second. This
rises close to linearly, so that with 64 threads, the system performs 181485 queries
per second. It is worth mentioning that the scaling factor drops somewhat between
32 and 64 threads, but the achieved queries per second is still impressive. Our tests
show equal, or slightly better results, than those presented [9] by Alibaba in 2018.
Alibaba obtain about 130000+ qps for a 32 thread read only test, while we’re able to
achieve about 150000 qps under the same workload. It’s worth noting that Alibaba’s
test didn’t prewarm the data, which might explain the gap.

Similarly, as explained for the Aurora results, PolarDB will naturally experience some
network latency. This latency comes as a consequence of the testing host and database
instance are two separate instances and thus will need to communicate over the net-
work. This could also happen when PolarDB is accessing its storage nodes, but in
this case the effect would be smaller for PolarDB than with Aurora, since PolarDB
makes use of RDMA technology. This explains why we see scaling beyond the amount
of available hardware threads.

Compared to Amazon’s similar instance sizes, PolarDB outperforms them rather
heavily. With 64 threads, PolarDB achieved 181485 qps in read performance, while
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MySQL tops out at 124788 qps, and Aurora clocking in at 109287 qps. For Aurora’s
part, this is, again, probably due to the low thread count.

Figure 16: PolarDB write performance

Showing similar signs as with the read performance, the write performance also scales
very well and close to linearly for the first four tests. The tests with 2 threads give
a resultant 4507 queries per second, and with 64 threads, this is up to 70861. In
this case, the scaling factor drops for the 32 threads to 64 threads jump, but the
performance is still very good.

PolarDB also heavily outperform Aurora and MySQL for write performance. With
64 threads, PolarDB show writes up to 70861 qps, while Aurora and MySQL clock in
at 43636 and 53904 qps, respectively.

8.1.4 Summary - 250 tables, 25000 records per table

We can identify a few trends from the results

• We have better read and write performance compared to Amazon’s own tests for
.large and .xlarge instances of Aurora, while lower for the .2xlarge and .4xlarge
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instances. This indicates larger instances benefit from larger thread counts.

• It may look like Amazon’s tests were conducted with larger thread counts, giving
better performance for the larger instances, but CPU-bottlenecking the smaller
ones.

• Aurora performs better than MySQL for smaller instances, since they aren’t
that heavily CPU-bound, unlike MySQL.

• MySQL performs better than Aurora for .2xlarge and .4xlarge due to Aurora
first being able to catch up for larger thread counts.

• PolarDB outperforms both Aurora and MySQL for similar thread and instance
sizes.

8.2 Results with 250 tables, 2700000 records per table

The figures shown below are the result of tests with 250 tables with 2700000 records
per table. This is equal to a database size that is close to 150GB. The dataset is
larger than the allocated memory of the tested instances. The largest instance size
tested, the db.r5.4xlarge, has 128GB of memory. These results will therefore show
how the databases handle out-of-cache database sizes. As mentioned previously, the
tests only show how PolarDB scaled with various thread counts, as we only had access
to one instance size.

60



8.2.1 Amazon Aurora

Figure 17: Aurora read performance

The results seen in figure 17 show how Aurora scales under read workload with dif-
ferent thread counts and instance sizes. An interesting point is that larger thread
counts don’t seem to affect the smaller instances sizes (db.r5.large and db.r5.xlarge),
as we will explain in the next paragraph. The db.r5.large tops out at 11543 queries
per second, while the db.r5.xlarge tops out at 28292 queries per second. The larger
instances show better scaling with thread counts, however. The db.r5.2xlarge starts
at 25587 qps for 16 threads, but climb to 80912 for 64 threads. The db.r5.4xlarge
starts at 57877 qps for 16 threads, and climb to 161259 threads for for 64 threads.
The read performance scales well across instance sizes, with a scale factor of 14x from
the smallest to the largest instance size. When compared to the in-cache dataset, it’s
clear that there has been a decrease in performance, as expected. The difference is
although relatively minor. For the db.r5.4xlarge instance, a decrease of 17%, with
the other instance sizes following a similar trend.

The read tests for the db.r5.large clearly topped out its CPU utilization for all thread
counts. The CloudWatch statistics showed the average laying somewhere in between
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90 and 100 for the entire test run. This explains why the graphs in figure 17 are so
even for the db.r5.large instance; the load is clearly CPU bound.

Similarly, the db.r5.xlarge showed to be peaking in CPU utilization as well. During
the read run, for all threads, the utilization varied between 90-100%. This indicates
the load is CPU bound, and is thus the cause for the flat graphs in fig. 17.

The CPU utilization for the db.r5.2xlarge is with 16 threads hovering around 30-40%.
With 32 threads, the utilization is around 60-70%. For 64 threads, the utilization
hovers between 80-90%, and sometimes spiking out to close to 100%. Throughout
the run, the db.r5.2xlarge has reasonable freeable memory available. This might
indicate that the db.r5.2xlarge is well capable of taking load up to 64 threads, where
the utilization appears to become close to CPU bound.

For the db.r5.4xlarge instance, CPU utilization is generally low under this load. The
16 thread read test uses approx. 30 %, while the 32 thread increase to 50%, before
reaching 80% for the 64 thread test run. The freeable memory is also overall high.
This indicates that Aurora possibly would perform even better for higher thread
counts.

Figure 18: Aurora write performance
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Figure 18 shows how Aurora scales writes with varying thread counts and instance
sizes. The amount of threads have little impact for the smaller instances, such as
the db.r5.large and db.r5.xlarge. For the larger instances however, the distinction
between the thread count is clearly visible. The db.r5.large tops out at 5161 qps,
while the db.r5.xlarge is able to perform close to 13000 qps. The db.r5.2xlarge and
db.r5.4xlarge show best performance with the higher thread counts, The db.r5.2xlarge
performs 32233 qps with 64 threads, and the db.r5.4xlarge is able to perform 66662
qps with 64 threads. To contrast this to the small in-cache dataset, we also see a slight
performance decrease. The db.r5.4xlarge sees a 7% decrease, with similar statistics
for the other instance sizes.

The db.r5.large instance showed a slight decrease in CPU utilization for the write
tests. With 16 threads, it lies somewhere between 80-90% in average. This rises to
85-90 for the 32 thread count. The 64 thread tests are bouncing between 93-100%,
so there’s a clear CPU bound impact here as well.

The CPU utilization go slightly down for the db.r5.xlarge write performance, averag-
ing around 80% for the 16 thread run. This is further increased to a bit over 90% for
the 32 and 64 thread count test runs. This shows the instance again is CPU bound.

During the write tests, the db.r5.2xlarge averaged around 70% CPU utilization for
the 16 thread test run, but increased to 80-90% for the following 32 and 64 threads.
However, it didn’t peak out to 100, so Aurora was probably just barely capable of
sustaining this load.

The write tests showed the db.r5.4xlarge averaging around 40% for the 16 thread
count, while rising to 55-60% for the 32 thread count. The 4xlarge instance topped
out at 75-80% for the 64 thread test run, with the freeable memory correspondingly
relatively high. This again indicates that a higher thread count might achieve even
slightly better results.

This is in line with Amazon’s own findings. They conducted a write test, which
showed a decrease in performance with a large, out-of-cache, database size. The
numbers we’ve achieved back this claim up, with a 17% decrease in read, and only
7% decrease for write loads.
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8.2.2 Amazon RDS MySQL (Multi AZ)

Figure 19: MySQL (Multi AZ) read performance

MySQL read performance is relatively good. As seen by figure 19, MySQL scales
close to linear with instance sizes, but thread count doesn’t seem to have too big
an impact on the results for the smaller instances. The larger instances, namely
db.r5.2xlarge and db.r5.4xlarge, however scale well with increasing thread counts.
The read performance for the smaller instances actually outperform Aurora slightly.
Aurora, however, catch up and surpasses MySQL for the db.r5.4xlarge instance, which
it outperforms by more than 27%.

The db.r5.large instance had relatively high CPU utilization for the read tests. The 16
thread, 32 thread, and 64 thread tests all measured around 80-90% CPU utilization.
This is reflected in the results shown in the graph, where the thread size doesn’t make
any significant impact on the results. This shows the db.r5.large instance performance
is CPU bound.

The db.r5.xlarge starts off with a CPU utilization of 63-65% for the 16 thread test,
but quickly rise to 80-100% for both the 32 and 64 thread tests. The graph reflects
this, as both tests give rather even results at 43000 qps.
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For the db.r5.2xlarge read tests, the CPU utilization increases with the thread count,
as expected. With 16 threads, it is at approx. 30% utilization. This increases to
55 % for the 32 threads, and then further increasing to 80-95% for the 64 threads
test run. This is shown in the graphs, where the db.r5.2xlarge instance see increased
performance with higher thread counts.

The db.r5.4xlarge has relatively low CPU utilization, starting at 15-20 % for the 16
thread tests. The 32 thread tests show about 25-30%, while the 64 thread consumes
approx. 50-60%. The tests indicates that perhaps an even greater thread count would
be needed to stress the systems.

Figure 20: MySQL (Multi AZ) write performance

MySQL’s write performance is however somewhat weird, as seen in figure 20. The
three largest instance types seem to have very similar performance characteristics,
where they perform relatively equal regardless of instance size. The db.r5.2xlarge
performs slightly worse than the db.r5.xlarge instance. The db.r5.large in turn out-
perform both of them. This is a phenomena also seen in Amazon’s own benchmarks.
Compared to Aurora, the write performance is abysmal. Even the largest instances
are only close to Aurora’s smaller instances, db.r5.large and db.r5.xlarge.

When looking at the CPU utilization for the db.r5.large instance, it starts off at
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around 50% for the 16 thread write test. This increases to 60% for the 32 thread test,
and further to 80-85% for the 64 threads test run. When looking at the performance
insight statistics gathered, we see three events that cause long waits. This is CPU,
a "io/table/sql/handler" event, as well as "/io/file/innodb/innodb_data_file". The
"io/table/sql/handler" event indicates that the storage engine is processing an I/O
request against a table, and the "io/file/innodb/innodb_data_file" is for accessing
accessing the InnoDB data files. The performance insights show that the I/O events
are the ones generating the longest waits, and we can therefore deduce that this test
is mainly limited by I/O. This trend gets worse as the thread count increases.

The CPU percentage for the db.r5.xlarge instance hovers around 30% for both the
16 and 32 thread tests, before climbing slightly to 30-40% for the 64 thread tests.
When looking at the performance insights for this instance, we see a similar trend,
with comparatively heavy I/O which generate long waits.

The db.r5.2xlarge CPU utilization is generally very low throughout these tests, with
a utilization averaging around 15-22%, which implies that the load is I/O bound.
The CPU utilization increases slightly for the 64 threads, but not very significantly.
Similarly, the I/O events dominate the performance insights for this instance as well.

Identical to the db.r5.2xlarge, the CPU utilization is low for the db.r5.4xlarge tests
as well. For the db.r5.4xlarge, the lies between 7-12% and increases slightly for the
larger thread counts. This is the same as seen with the previous instances. The only
instance that see any major increase is the db.r5.4xlarge. The performance insights
show similarly high waits for I/O.
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8.2.3 PolarDB

Figure 21: PolarDB read performance

As seen in figure 21, PolarDB’s read performance scales close to linearly for increasing
thread counts. While starting at 12887 qps with 2 threads, it quickly increase to 88141
qps with 16 threads, and tops out at 170356 qps for 64 threads. Compared to how
Aurora and RDS MySQL’s db.r5.2xlarge instance, PolarDB heavily outperforms the
systems with close to 40%. This is very strong performance for an instance that is
the equivalent of Aurora’s db.r5.2xlarge instance class.
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Figure 22: PolarDB write performance

PolarDB’s write performance is similarly strong, as seen in fig. 22. The instance
starts at 3826 qps for 2 threads, which is increased to 20896 qps by 16 threads, before
topping out at 45511 qps with 64 threads. It is worth mentioning that there’s some
uncertainty in the measurement for the 64 threads test run, indicated by the error
bar. However, compared to the other systems, PolarDB performs very well, but the
difference to the in-cache dataset is lesser than with the read tests. Compared to
Aurora, it performs approx. 40% better.

8.2.4 Summary - 250 tables, 2700000 records per table

We can identify a few trends from the results

• Overall a decrease in performance compared to in-cache dataset. Aurora read
performance down with 17%/write performance down with 7% for the .4xlarge
instance, with other instance sizes following suit.

• For read and write tests, both Aurora’s .large and .xlarge see high CPU load,
and are CPU-bottlenecked. .2xlarge manages well up to 64 threads where it
is close to becoming CPU bound. .4xlarge doesn’t see these problems, and
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could possible perform even better with higher thread counts. A similar trend
is observed for MySQL read performance.

• MySQL read performance is better than Aurora up to .4xlarge, where Aurora
catches up and outperforms MySQL with more than 27%.

• MySQL write performance is very poor, the larger instances only come close to
Aurora’s .large and .xlarge.

• The MySQL write tests are clearly I/O-bound, as indicated by the performance
insights metrics and CPU load.

• PolarDB shows very strong performance, outmatching both RDS MySQL and
Aurora for read and write performance by close to 40% on equivalent hardware.

8.3 Comparison

The tests and figures presented above give an image of how the systems perform when
scaling thread and instance sizes. The following section focuses on how the various
systems compare to each other. These will be based on both the tests presented
above, and additional head-to-head tests which were carried out. These tests include

• How RDS MySQL and Aurora compare at high thread counts

• How RDS MySQL (both with and without Multi AZ), Aurora, and PolarDB
compare under similar circumstances

• Which impact Multi AZ has on RDS MySQL performance

8.3.1 How RDS MySQL (both with and without Multi AZ), Aurora, and
PolarDB compare under similar circumstances

Comparison with 250 tables and 25000 records per table data set (1.6GB)
As mentioned previously, Alibaba only provided access to a single PolarDB instance
which should be comparable to db.r5.2xlarge. The tests presented in section 8.1.3
thus only present how said PolarDB instance scales with various thread counts. For
a fair comparison to the other systems, we therefore need to compare tests with the
same number of threads and tests done on the same data set. The figures below show
how MySQL (both in Multi AZ and regular mode), Aurora, and PolarDB compare
when tests were run with 64 threads on the 250 tables/25000 records per table dataset.
Since the PolarDB instance type is equal to AWS’s db.r5.2xlarge, the AWS instances
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used will naturally be of this type. The figures present both the read and write
performance.

Figure 23: Comparison read performance
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Figure 24: Comparison write performance

Aurora’s low read and write performance is most likely a consequence of the low
thread count, and relatively small instance size. As mentioned in section 8.1.1, Aurora
must wait longer per thread due to network latencies, which facilitate a larger thread
count. And indeed, Aurora only seems to perform close to AWS’s stated results
when run with a higher thread count. Additionally, there isn’t any significant impact
to running RDS MySQL with Multi-AZ mode enabled. This is also in line with
Amazon’s findings.

As mentioned in section 4.2, Amazon showed that a Multi-AZ deployment would
be penalized by a 2-5ms commit latency, which for most workloads would be of
minimal consequence. We see a slight decrease in write performance for the Multi-
AZ deployment, probably is down to the need to write to an additional volume in a
secondary AZ. This is however, not a severe penalty in performance, with only a 3%
decrease in performance.
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8.3.2 How Aurora and PolarDB compares with 250 tables and 200000
records per table data set (10.8GB)

The tests shown in figures 25 and 26 are conducted on a dataset of 250 tables and
200000 records per table. These tests were only carried out on Aurora’s db.r5.2xlarge
and the polar.mysql.x8.xlarge with 64 threads. This was done to give additional
confirmation to the results on a somewhat larger database than the 250 tables +
25000 records per table dataset.

Figure 25: Comparison read performance

The read performance shows that Aurora performs about 141755 qps, while the Po-
larDB instance shows 180024 qps, which is around 27% better than the Aurora in-
stance. When compared to the 250 tables + 25000 records per table dataset, we see
that PolarDB’s performance is nearly unaltered, whereas the Aurora performance is
up from 109287 to 141755, which is an increase at around 29%. This increase is likely
due to the 250 table 25000 records per table testrun had a relatively low CPU load
on the db.r5.2xlarge, and thus had potential to perform even better, as seen in the
results.
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Figure 26: Comparison write performance

The write results are very identical to those of the previous 250 table, 25000 records
per table test. The PolarDB instance see a drop from 70861 qps to 63886 qps, while
the Aurora instance drops from 43636 qps to 42783. This is virtually the same results
as in the previous test, and confirm the trend of PolarDB outperforming Aurora for
similar hardware on 64 threads.

8.3.3 How RDS MySQL (both with and without Multi AZ), Aurora, and
PolarDB compare with high thread counts

The figures shown below represent test runs with 250 tables and 25000 records per
table run on db.r5.2xlarge instances with a 500 thread count. The goal with these
tests were to see how a higher thread count affected the systems, especially Aurora.
This is because, as indicated in the previous sections, a higher thread count would
negate some of the network latencies experienced for AWS.
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Figure 27: Comparison read performance

In this test, we see Aurora performing best of all three systems, with a read perfor-
mance of 221509 qps, which is significantly higher than PolarDB’s 167430 qps and
RDS MySQL’s 97021 qps. Aurora see an increase of 102% compared to the 64 thread
result. The PolarDB instance also see an decrease in performance, from approx.
184000 qps to 167430 qps, which correspond to a 7% decrease. The RDS MySQL,
however, drop sharply with this high thread count. We see a decrease from 124788
qps to 97021 qps, which is a 22% decrease. The use of a thread pool would in this
case probably limit RDS MySQL’s reduction in performance for low thread counts.
These results is as expected, as the larger thread count allow Aurora to better utilize
the available resources.
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Figure 28: Comparison write performance

When comparing the write results, we see that PolarDB actually tops out of the three
systems. PolarDB sees an increase from 70861 qps to 79666 qps, an increase of 12%.
Similarly, Aurora also see an increase in performance, from 43636 qps to 54670 qps,
which is a 25% increase. RDS MySQL, however, drops from 53904 to 48953, which is
close to a 9% decrease. These results confirm that there is an increase in performance
for Aurora when using a higher thread count. There is a possibility that even better
write performance for Aurora could be achieved with even greater thread numbers,
as the CPU utilization was around 70-80%.
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9 Discussion

As previously mentioned, distributed database systems have evolved significantly in
the face of cloud and the new workloads experienced by the rapid growth of the Inter-
net. Traditional systems haven’t been able to follow and adapt to this development,
and we’ve seen the introduction of cloud based distributed database systems provided
from major companies such as Amazon and Alibaba. These solutions are heavily
optimized for the infrastructure the system runs on top of. Since cloud providers
control the underlying infrastructure, they can design the database systems to both
leverage and work optimally for exactly that infrastructure. By leveraging the in-
frastructure, the systems can introduce major design changes compared to previous
solutions, both with regards to the compute and storage components in the system.
Leveraging existing infrastructure also means that the cloud providers can reduce
development time and maintenance costs. Additionally, emerging technologies have
gradually been adopted and implemented in these systems, and may increase the
performance of these systems drastically.

This discussion will focus on an architectural review of each databases system, as well
as how they perform in benchmark test for various workloads. We will look at how
the decoupling of compute and storage is done. Where does the split happen? What
tasks are offloaded to the storage components? Furthermore, we will look at how
data is stored on the storage nodes. How is consensus maintained, what measures
are taken to provide redundancy of data? Additionally, how do the systems recover
from a crash scenario? In the following sections we’ll see how these approaches differ
and where they share similarities. The discussion will be based around the previously
mentioned systems, namely Amazon Aurora and Alibaba PolarDB.
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9.1 Amazon Aurora

Figure 29: Network IO for mirrored MySQL. Source: [2]

Amazon’s motivation for splitting the compute and storage components is that net-
work bandwidth is a limited resource, and by offloading multiple tasks to the storage
component, Aurora is able to reduce the write amplification problem that usually
arise in traditional database settings. This problem is illustrated by figure 29, where
we see a traditional setup with a primary instance and an active standby replica de-
ployed on Amazon RDS. This setup results in many synchronous and sequential steps,
which would impact both latency and jitter. This is clearly undesirable. By offload-
ing tasks such as redo log processing, crash recovery, and backup/restore, Amazon is
able to greatly reduce this effect[1]. In Aurora, the only writes that cross the network
are redo log records, as seen in figure 30. The local log processor continuously ma-
terialize database pages in the background, which removes the need for materializing
pages from scratch on demand every time[1]. This severely reduces network load.
The storage layer is able to scale independently, without significantly impacting the
database engine’s write throughput. Additional benefits of moving the log processing
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to the storage component is reduced jitter by checkpointing and other background
activities, as well as faster crash recovery times[1].

Figure 30: Network IO for Aurora. Source: [2]

We see this in both our tests, and the tests presented by Amazon. Amazon compared
how a mirrored MySQL configuration spread across multiple AZs compared to Aurora
with replicas across multiple AZs. The tests consisted of WO transactions with a
100GB dataset [1]. When run on similar hardware, Aurora was able to sustain 35
times more transactions over a 30-minute test period, as well as 7.7 times less I/O
per transaction [1]. Our out-of-cache dataset with 250 tables and 2700000 records per
table, as presented in section 8.2, show that Aurora far excel beyond RDS MySQL
in write performance. MySQL write performance is very poor, the larger instances
only come close to Aurora’s db.r5.large and db.r5.xlarge. The MySQL write tests are
clearly I/O-bound, as indicated by the performance insights metrics and CPU load.
This confirms the effectiveness of the approach taken by Aurora.

Aurora has recognized the problem of constant background noise of failures when
running large data centers. They have therefore taken a relatively cautious approach
when it comes to data resiliency. Aurora uses a quorum model for replicas, as de-
scribed in section 3.9.2. However, most systems that use the quorum model only have
3 data copies with a quorum of 2/3 both for read and write. Amazon argue that this
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in practice provides too little resiliency to failures. They have instead opted for a
cautious approach with 6 data copies, where 3 AZ’s store 2 copies of each data item.
With this approach, Aurora can withstand the loss of three nodes without losing data,
or two nodes and still maintain write quorum.

Having this great resilience give additional benefits to maintenance operations. This
allows Amazon to perform actions such as OS and security patching and other software
upgrades. Amazon does this by updating one Availability Zone at a time, and also
ensuring only one storage segment is updated simultaneously [1]. This will, to Aurora,
look like short failures, which Aurora can resiliently handle.

Aurora has found a novel way to maintain consensus in a distributed system. In-
stead of opting for the traditional distributed consensus algorithms, such as 2PC,
Paxos, and Raft, Aurora uses local transient state variables, as described in section
5. Amazon motivate this choice in that the traditional systems are too expensive
and result in additional network overhead[2]. Further, even though they may scale
well, they more than often result in worse performance and cost with potentially high
latency. However, Amazon argues that their approach gives improved performance
and variability at a lower cost compared to other similar systems[1].

Aurora optimizes read performance by avoiding read quorums where possible [2].
The latest version of a data block can either be found in cache or by looking at which
segments have the latest durable version of a data block, which the database instance
keeps track of. In the latter case, this allows Aurora to request it directly from that
segment [2]. By avoiding quorum reads in most circumstances, network overhead can
be greatly reduced.

Our tests indicate that while network latency is reduced, a small but significant
amount of time will be lost as the query and response propagates through the network.
As a consequence, a larger count of database connections can be facilitated than
there are hardware threads. For our read tests, we see clear indications that a larger
number of threads would indeed be beneficial. We have also confirmed that Aurora
will perform astoundingly 102% better when run with 500 threads compared to 64
threads, as described in section 8.3.3.

Additionally we see for both the in-cache and out-of-cache dataset that Aurora per-
forms better than MySQL for smaller instances with similar numbers of threads, since
they aren’t that heavily CPU-bound, unlike MySQL.

For the in-cache dataset, our 64 thread tests show that MySQL performs better than
Aurora for .2xlarge and .4xlarge, due to Aurora first being able to catch up for larger
thread counts. With the out-of-cache dataset, however, MySQL read performance is
better than Aurora up to .4xlarge, where Aurora catches up and outperforms MySQL
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with more than 27%.

Similarly, Aurora is able to avoid distributed consensus for writes and commits by
managing consistency points in the database. In Aurora, storage nodes do not have
a vote in whether or not to accept a write. If a node misses a write, they will gossip
with other nodes in the PG to catch up [1]. As shown in section 5, this can also be
accomplished for commit processing, even without stalling the worker thread in order
to wait for the data modified by the transaction has been made durable. The worker
thread will hand off the transaction to a commit queue and return to the task queue
to find new requests. A dedicated commit thread will scan the commit queue and
send acknowledgements once the data is durable [1].

As mentioned for the read results, Aurora is able to facilitate a large number of threads
due to network latencies, but this is especially of significance for writes, where the
database must wait for a quorum to be formed and the changes made durable before
being able to respond. We see this holds true for our write tests as well. Section 8.3.3
show that Aurora experience a 25% increase in performance when compared to the
same run with 64 threads. Also, the 500 thread test run we see that RDS MySQL
start to struggle with the high thread count, decreasing with 9%. It is worth noting
that Aurora in this case possibly could’ve achieved even better results with a higher
number of threads, as the CPU utilization was around 70-80%.

For the in-cache data sets we see a similar trend for for the write performance as
seen with the read performance. For smaller thread counts, RDS MySQL is able to
perform equal to or better than Aurora. For the out-of-cache dataset, we see Aurora
performing at a whole different level than its RDS MySQL counterpart. Aurora only
see a decrease of around 7% when comparing the in-cache to the out-of-cache test
runs. The smaller Aurora instances even perform better than the larger RDS MySQL
instances. When looking at the data provided by Amazon’s Performance Insights
feature, we see that RDS MySQL is heavily I/O-bound for nearly all the tests, while
Aurora isn’t. This confirms Amazon’s statements with regards to the effectiveness of
their approach.

Consistency must be reestablished on crash recovery. On startup, the database must
recompute the PGCL and VCL variables before proceeding [2]. For this to be possible,
the database instance must be able to reach read quorum for each protection group
the volume consists of. The recovery process will also truncate any uncompleted
partial writes above the newly recomputed Volume Complete LSN. Additionally, redo
records after crash recovery will be allocated LSNs over this truncation range. If the
database instance is unable to reach write quorum, repair is initiated to rebuild the
failed segments. Furthermore, undo of previously active transactions can then be
performed. This can happen after the database has built the list of the in-flight
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transactions from the undo segments, and the undo can be done in parallel with
other user activity [2]. Amazon argues the price of reestablishing consistency on
crash recovery is a trade-off worth making because crashes are a relatively rare event.
Recoveries in Aurora can be done very quickly. Amazon states Aurora can recover in
about 10 sec from a crash where the database processed 100 000 write requests per
second [1].

The Aurora engine performs well, both in theory and in practice. The results seen
in this report slightly less, but still relatively close to the performance presented by
Amazon. It is however worth mentioning that it is obvious that the comparison
presented in Amazon’s 2017 SIGMOD paper is biased to put Aurora in a favourable
light. As we’ve seen in our tests, RDS MySQL is capable of rivalling Aurora for
both read and write performance. The main differentiating factor is with high thread
counts. Aurora performs better with higher thread counts than most other systems.

A point worth noting is that Aurora is significantly cheaper than the comparative RDS
MySQL instances, so while RDS MySQL is capable of delivering equal performance,
the price point is also much higher. Amazon claims Aurora costs the 1/10th of other
similar database offerings.

Even though Aurora performs well, there’s still work left to be done for Aurora.
Since Aurora heavily relies on low latency and high throughput networking, Aurora
has typically been used in a single region deployments. This is because each AZ
in a region is interconnected with fast high capacity network links. Amazon has,
however, added support for replicating Amazon Aurora MySQL DB Clusters across
up to five AWS regions [15]. It is somewhat limited, as only cross-region read replicas
are supported. You can, however, have multiple read replicas per region [15]. This
can be used for scaling reads in an effective manner, and additionally increase disaster
recovery capabilities. This comes at the cost of greatly increased replica lag, as well
as additional costs charged by Amazon for data traffic leaving a region [15].

Similarly, currently Aurora only support single-master. There has been work done to
allow for multi-master deployments in Aurora, This is aimed at being able to hori-
zontally scale writes, as well as improve HA in case of failures [12]. The Multi-master
functionality entered private preview in 2017, but hasn’t been made available to the
general public as of the writing of this article. Little is known of the actual imple-
mentation; no research papers or blog posts have so far outlined this functionality.
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9.2 Alibaba PolarDB

Alibaba’s motivation for decoupling the compute and storage components is mainly
to allow for a more flexible architecture. The stated goals are to gain a single storage
pool where the storage layer could be independently scaled, with the removal of local
persistent state of from the compute node, as well as allowing nodes to utilize different
hardware[7]. Most traditional distributed file systems, such as HDFS and Ceph, don’t
make use of emerging technology such as NVMe and RDMA. This is technology that
has seen increased use and deployment in datacenters. Alibaba also points out that
most blockstorage solutions have lacking protection mechanisms for disk failure, as
well as not utilizing emerging technology such as RDMA and NVMe, and thus being
harder to scale effectively [7].

In light of the drawbacks of traditional distributed file systems, Alibaba decided to
design and implement their own system, PolarFS. PolarFS aims at solving the issues
of traditional FS’s by levering these emerging technologies to obtain low latency,
high throughput, and high availability. PolarDB utilizes PolarFS as a shared storage
system, where i.e. a primary and a replica would access the same underlying database
directory in PolarFS [11], as described in section 4.

Alibaba developed ParallelRaft, a modification to Raft, to manage replica consis-
tency while maximizing I/O throughput [11]. Chunks are replicated across multiple
ChunkServers on separate racks. In the typical case, this will result in three data
copies. This replication group form a consensus group where I/O is replicated using
ParallelRaft. Reads can be satisfied directly by the leading ChunkServer, while writes
will need to be acknowledged by a majority of the followers before the leader replies
back to the client [7]. RDMA and NVMe is heavily used for fast communication and
buffering for communication within the system.

PolarDB also shows excellent performance for both read and write tests, far excelling
both RDS MySQL and Aurora for most tests on comparable hardware. For the in-
cache read tests, PolarDB outperforms RDS MySQL and Aurora with up to 66%.
Similarly, for the write tests, PolarDB outperform the other systems with up to 62%.
For both the out-of-cache read and write tests, PolarDB again outperform the other
contenders with close to 40%. This is very strong performance, and goes to show the
effectiveness of PolarDB and ParallelRaft. This further backs up Alibaba’s claims on
the benefits of emerging technology, such as RDMA and NVMe.

PolarFS originally set out using the Raft consensus protocol, but soon discovered that
Raft didn’t work well with highly concurrent I/O workloads for a number of reasons
[7]. Raft is designed to be easy to understand and reason about, and has therefore
made trade-offs that don’t work to well in a concurrent system, as described in section
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3.8 and 6. Alibaba’s solution with ParallelRaft was therefore to relax on some of Raft’s
constraints for PolarFS, making it more suitable for high I/O concurrency. Alibaba
has allowed the ParallelRaft to do out of order acknowledgements and commits, as
well as apply with holes in the log. Additionally, ParallelRaft has slightly changed the
leader election process to add an additional merge stage to deal with the possibility
that there might be holes in the log. With the steps taken by Alibaba, the correctness
of ParallelRaft can be guaranteed [7].

Alibaba has tested how PolarFS perform when the I/O queue depth grows large. With
a large queue depth, the difference between Raft and ParallelRaft becomes apparent.
With an I/O queue depth of 32, Raft has 2.5x longer latency and 0.5x of the IOPS
compared to ParallelRaft [7]. The results indicate that ParallelRaft’s out-of-order
acknowledgements and commits can significantly improve performance under heavy
workloads.

We see this confirmed for the tests with high thread count. For the read tests with
500 threads, we see an increase of 12% in write performance from the same test with
64 threads. For the write performance, PolarDB actually beat the other systems in
our tests. This confirms that PolarDB is well capable of handling intensive workloads
in an efficient manner.

Recovery is relatively simple in PolarDB. Once the underlying PolarFS is ready for
operations, PolarDB can perform it’s usual recovery mechanism similar to that of
a traditional database system. Little detail is given on the particulars of PolarFS
recovery in the material published this far.
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Figure 31: PolarFS - I/O latency under different loads. Source: [7]

Similarly to Aurora, Alibaba currently only support single-master with multiple read
replicas. No current support seems to be available for multi-master deployments.
This will need addressing in future work.

Since PolarDB is heavily reliant on NVMe and RDMA for its network communica-
tion, it can have problems covering cross-datacenter communications. This is also a
problem that needs to be addressed in future work.

9.3 Comparison

Aurora and PolarDB have different goals in mind when splitting the compute and
storage components. Amazon has mainly focused on minimizing amplified writes,
and opted for a new approach with only replicating the log across the storage servers.
PolarDB on the other hand, has aimed at making an optimized distributed file system
that utilize emerging technologies such as RDMA and NVMe. This is two very
different approaches. Aurora has heavily moved functionality from the compute layer
to the storage layer. PolarDB, however, keeps most of this intact.
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From an architectural point of view, Aurora has probably taken a better approach.
By moving these components to the storage node, you are able to perform operations
close to data and reduce usage of network bandwidth without the need for specialized
hardware. PolarFS, however, tries to optimize these points by utilizing RDMA and
NVMe, and thus remove the problems. For most of the tests we’ve performed, we
see that PolarDB in practice is able to exceed Aurora on similiar hardware when run
with 64 threads. We see however that with a larger number of threads, Aurora is
able to outperform PolarDB for read performance, while PolarDB wins out for write
performance.

The systems provide different resilience guarantees to failures. Aurora holds six copies
of a data item across three AZ’s. It can withstand the loss of three nodes without
data loss, and still keep write quorum in the face of the loss of two nodes. In con-
trast, PolarFS only maintain three data copies by default, where the copies must be
stored on separate racks. It will not be able to perform write requests in case of two
simultaneous ChunkServer failures.

Amazon has in this case taken a relatively cautious approach. They believe failures
will happen too frequently to be handled by a quorum model with three data copies,
and has therefore safeguarded themselves by having six copies across three AZ’s.
PolarFS can configure how many nodes the data can be spread across, but defaults
to three copies, which will work in the cases where failures are infrequent.

Aurora is able to avoid distributed consensus for writes and commits, and is able to
avoid read quorums where possible. These optimizations are possible because of their
quorum model, and clever use of transient state variables. This is a huge improvement
over traditional systems, and greatly reduce the network consumption. PolarDB has
aimed at optimizing Raft to perform better for high I/O concurrency, which is done by
relaxing some of the constraints of Raft. As we saw in section 9.2, this was beneficial
when the I/O queue grew large. These optimizations are great in their own respect.
PolarDB has also realized they can relax some of Raft’s rather strict rules in their
favor while still maintaining the same guarantees as Raft.

We see that for the out-of-cache dataset, PolarDB is able to outperform Aurora for
similar hardware and thread count. Again, this is probably due to the low thread
count of 64, but it illustrates the benefit of the RDMA technology. As we’ve seen,
when run with a larger thread count, Aurora outperforms PolarDB for read perfor-
mance, showing the effectiveness of Aurora’s ability to avoid read quorums.

Crash recovery in Aurora is relatively easy, as Aurora only need a read quorum to
recompute the transient state variables and perform a cleanup. PolarDB can in this
case leverage the similar recovery techniques of traditional database systems once the
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underlying distributed file system is ready for operations. These approaches come as
a result of the architecture of the respective system.
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10 Future work

This section will describe some potential areas of further research.

10.1 Look into other cloud database systems

Amazon and Alibaba are two of the main cloud platforms available, and was thus the
primary goal for this thesis. That doesn’t mean to say there aren’t other interesting
systems out there. Microsoft has recently released Hyperscale (Citrus) for their Azure
platform, as well as other database offerings. Google is also a major contender in
the cloud platform market, with multiple offerings ranging from Cloud Spanner and
Bigtable, to the more traditional Cloud SQL service for MySQL, PostegreSQL, and
SQL Server. Oracle is also in the works of developing their own database service, with
coming support for MySQL. All these cloud databases are interesting in their own
right, and would be interesting to look into both from an architectural standpoint, as
well as from a performance standpoint.

10.2 Test other database configurations

The performance tests carried out in this thesis have mainly revolved around a master
with a standby replica. The instance types have also been narrowed down to db.r5.*
series for AWS, and the polar.mysql.x8.xlarge instance for Alicloud. This was chosen
because it’s a relatively standard setup, with typical instance types. Additionally,
these instance types were chosen on the basis of being relatively equal in terms of
compute power and memory size. A point we’ve seen is that especially Aurora’s
performance is sensitive to the number of connections the tests are run with. A
larger number of threads, might be able to exploit the system better. There are of
course other instance types available that might suit a given workload better. Equally,
many different configurations might be used, such as multi-master, multi-region, and
multiple replicas. An offspring of this thesis would be to see how other configurations
compare, both based on the architecture and how they perform in practice.
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11 Conclusion

Amazon’s RDS cloud service was one of the first major steps in developing a database
platform for the cloud. With the introduction of Aurora in 2015, Amazon has been
able to develop a cloud database that is tailored to and can exploit the full infrastruc-
ture of AWS. Additionally, Aurora has made key innovations in splitting the compute
and storage components, allowing for better and more dynamic scaling. Aurora has
made interesting developments in how they manage the storage nodes, and the use of
quorums with transient state has allowed Aurora to avoid distributed consensus for
most cases. It’s highly optimized, and avoids in most cases the need for read quo-
rums. The AZ’s are interconnected with low latency high throughput network links.
Aurora also only write a segmented log over the network, greatly reducing network
congestion and chatty behaviour.

One of the main takeaways from Aurora’s performance in tests, is that Aurora per-
forms generally well, though slightly less than what reported by Amazon. However,
network latencies result in that Aurora sees better performance with a larger num-
ber of database connections. This is especially of significance for writes, where the
database must wait for a quorum to be formed and the changes made durable before
being able to respond. This is reflected in the tests carried out, as Aurora first really
excel with a large number of threads.

Alibaba’s PolarDB/PolarFS system is also relatively new, just introduced on VLDB
last year. In comparison with Aurora, PolarDB has taken the more traditional ap-
proach with having a distributed file system under a database system. The PolarFS
system utilize emerging technology such as RDMA and NVMe disks to great effect,
with low latency and high throughput. Alibaba has also developed an improvement
over the Raft consensus protocol, named ParallelRaft, that relax some of the con-
straints of Raft while still remaining correct.

In benchmarks, PolarDB/FS show strong performance. We see that for similar hard-
ware and configurations, PolarDB is able to outperform both RDS MySQL and Au-
rora for both the in-cache and out-of-cache datasets, only surpassed by Aurora for
the 500 thread read test. PolarDB also perform close to the benchmarks provided by
Alibaba. This confirms the benefits of ParallelRaft and emerging technologies such
as RDMA and NVMe.
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Appendices

A Terraform test setup

The tests done on the AWS platform were conducted using the Terraform for easy
automation, setup, configuration of the needed infrastructure. Two separate Ter-
raform configurations were used, one for the RDS MySQL setup, and one for the
Aurora setup. This was necessary due to Terraform’s AWS provider being slightly
different for the two setups. The scripts created the database instances, EC2 com-
pute instances and configured the VPC network for allowing communication between
the EC2 and database instances. The EC2 instances were accessed remotely through
SSH, where a bash script configured sysbench and performed the tests against the
database instances. The resultant output was then saved to file. Additionally, alarms
were set up to monitor the performance during the tests, making sure neither the
EC2 nor database instances ran into any resource bottlenecks.

A.1 Terraform files for Aurora

The files listed below are "main.tf", which describe the main infrastructure, followed
by "alarms.tf", which describe the logging and CloudWatch alarms. The files below
are for setting up the Aurora infrastructure.

Main.tf:

1 v a r i a b l e " r eg i on " {}
2 va r i a b l e " sha r ed_c r ed en t i a l s_ f i l e " {}
3 va r i a b l e " p r o f i l e " {}
4 va r i a b l e "my_ami" {
5 type = "map"
6 }
7 va r i a b l e " rds_user " {}
8 va r i a b l e "rds_pw" {}
9 va r i a b l e " rds_instance " {}
10 va r i a b l e "alarms_email " {}
11
12
13 output " ip " {
14 value = "${aws_rds_cluster . d e f au l t . endpoint }"
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15 }
16
17 output " in s t ance " {
18 value = "${var . rds_instance }"
19 }
20
21 prov ide r "aws" {
22 r eg i on = "${var . r eg i on }"
23 sha r ed_c r ed en t i a l s_ f i l e = "${var . s ha r ed_c r ed en t i a l s_ f i l e

}"
24 p r o f i l e = "${var . p r o f i l e }"
25 }
26
27 r e sou r c e " aws_eip_assoc iat ion " " eip_assoc " {
28 instance_id = "${aws_instance . web . id }"
29 a l l o c a t i on_ id = " e i p a l l o c −93391 f f 6 "
30 }
31
32 r e sou r c e " aws_instance " "web" {
33 ami = "${ lookup ( var .my_ami , var . r eg i on ) }"
34 instance_type = "c5 . 4 x l a r g e "
35 /∗ assoc iate_publ ic_ip_address = "True"∗/
36 subnet_id = "<redacted>"
37 vpc_security_group_ids = ["< redacted >"]
38 key_name = "<redacted>"
39 tags = {
40 Name = " sysbench "
41 }
42 }
43
44
45 r e sou r c e " aws_rds_cluster_instance " " c l u s t e r_ in s t an c e s " {
46 count = 2
47 engine = "aurora−mysql"
48 i d e n t i f i e r = "aurora−c l u s t e r−demo−1"
49 c l u s t e r_ i d e n t i f i e r = "${aws_rds_cluster . d e f au l t . id }"
50 in s t ance_c l a s s = "${var . rds_instance }"
51 }
52
53
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54 r e sou r c e " aws_rds_cluster " " d e f au l t " {
55 c l u s t e r_ i d e n t i f i e r = "aurora−c l u s t e r−demo"
56 engine = "aurora−mysql"
57 ava i l a b i l i t y_zon e s = [" us−east−1b " ]
58 db_subnet_group_name = "<redacted>"
59 vpc_security_group_ids = ["< redacted >"]
60 sk ip_f ina l_snapshot = true
61 database_name = " sb t e s t "
62 master_username = "${var . rds_user }"
63 master_password = "${var . rds_pw}"
64 }

Alarms.tf:

1 r e s ou r c e "aws_sns_topic" "alarm" {
2 name = "alarms−t op i c "
3 de l i v e ry_po l i cy = <<EOF
4 {
5 "http " : {
6 " de fau l tHea l thyRet ryPo l i cy " : {
7 "minDelayTarget " : 20 ,
8 "maxDelayTarget " : 20 ,
9 "numRetries " : 3 ,
10 "numMaxDelayRetries " : 0 ,
11 "numNoDelayRetries " : 0 ,
12 "numMinDelayRetries " : 0 ,
13 " backof fFunct ion " : " l i n e a r "
14 } ,
15 " d i s ab l eSub s c r i p t i onOve r r i d e s " : f a l s e ,
16 " d e f au l tTh r o t t l ePo l i c y " : {
17 "maxReceivesPerSecond " : 1
18 }
19 }
20 }
21 EOF
22
23 p r ov i s i o n e r " l o c a l−exec " {
24 command = "aws sns sub s c r i b e −−top ic−arn ${ s e l f . arn} −−

pro to co l emai l −−n o t i f i c a t i o n−endpoint ${var .
alarms_email }"
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25 }
26 }
27
28 r e sou r c e "aws_cloudwatch_metric_alarm" "cpu" {
29 alarm_name = "web−cpu−alarm"
30 comparison_operator = "GreaterThanOrEqualToThreshold"
31 eva luat ion_per iods = "2"
32 metric_name = "CPUUti l izat ion "
33 namespace = "AWS/EC2"
34 per iod = "120"
35 s t a t i s t i c = "Average"
36 th r e sho ld = "80"
37 a larm_descr ipt ion = "This metr ic monitors ec2 cpu

u t i l i z a t i o n "
38 alarm_actions = [ "${aws_sns_topic . alarm . arn }"

]
39
40 dimensions = {
41 Ins tance Id = "${aws_instance . web . id }"
42 }
43 }
44
45 r e sou r c e "aws_cloudwatch_metric_alarm" " hea l th " {
46 alarm_name = "web−health−alarm"
47 comparison_operator = "GreaterThanOrEqualToThreshold"
48 eva luat ion_per iods = "1"
49 metric_name = "StatusCheckFai led "
50 namespace = "AWS/EC2"
51 per iod = "120"
52 s t a t i s t i c = "Average"
53 th r e sho ld = "1"
54 a larm_descr ipt ion = "This metr ic monitors ec2

hea l th s t a tu s "
55 alarm_actions = [ "${aws_sns_topic . alarm . arn }"

]
56
57 dimensions = {
58 Ins tance Id = "${aws_instance . web . id }"
59 }
60 }
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61
62 r e sou r c e "aws_cloudwatch_metric_alarm" " cpuc r ed i t " {
63 alarm_name = "web−cpu−c r ed i t−alarm"
64 comparison_operator = "LessThanThreshold"
65 eva luat ion_per iods = "1"
66 metric_name = "CPUCreditBalance"
67 namespace = "AWS/EC2"
68 per iod = "300"
69 s t a t i s t i c = "Sum"
70 thr e sho ld = "50"
71 a larm_descr ipt ion = "Triggered on low CPU c r e d i t

ba lance "
72 alarm_actions = [ "${aws_sns_topic . alarm . arn }"

]
73
74 dimensions = {
75 Ins tance Id = "${aws_instance . web . id }"
76 }
77 }
78
79 r e sou r c e "aws_cloudwatch_metric_alarm" "swap_usage_too_high"

{
80 alarm_name = "swap_usage_too_high"
81 comparison_operator = "GreaterThanThreshold"
82 eva luat ion_per iods = "1"
83 metric_name = "SwapUsage"
84 namespace = "AWS/RDS"
85 per iod = "600"
86 s t a t i s t i c = "Average"
87 th r e sho ld = "16384"
88 a larm_descr ipt ion = "Average database swap usage over

l a s t 10 minutes too high , performance may s u f f e r "
89 alarm_actions = [" ${aws_sns_topic . alarm . arn }" ]
90
91 dimensions = {
92 DBIns tance Iden t i f i e r = "${ aws_rds_cluster_instance .

c l u s t e r_ in s t an c e s . id }"
93 }
94 }
95
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96 r e sou r c e "aws_cloudwatch_metric_alarm" "
cpu_credit_balance_too_low" {

97 alarm_name = "cpu_credit_balance_too_low"
98 comparison_operator = "LessThanThreshold"
99 eva luat ion_per iods = "1"
100 metric_name = "CPUCreditBalance"
101 namespace = "AWS/RDS"
102 per iod = "600"
103 s t a t i s t i c = "Average"
104 th r e sho ld = "50"
105 a larm_descr ipt ion = "Average database CPU c r e d i t ba lance

over l a s t 10 minutes too low , expect a s i g n i f i c a n t
performance drop soon"

106 alarm_actions = [" ${aws_sns_topic . alarm . arn }" ]
107
108 dimensions = {
109 DBIns tance Iden t i f i e r = "${ aws_rds_cluster_instance .

c l u s t e r_ in s t an c e s . id }"
110 }
111 }

A.2 Terraform files for MySQL

Similarly, the files listed below are "main.tf", followed by "alarms.tf". They describe
the main infrastructure, followed by the infrastructure for the logging and Cloud-
Watch alarms. The files below are for setting up the MySQL infrastructure.

Main.tf:

1 v a r i a b l e " r eg i on " {}
2 va r i a b l e " sha r ed_c r ed en t i a l s_ f i l e " {}
3 va r i a b l e " p r o f i l e " {}
4 va r i a b l e "my_ami" {
5 type = "map"
6 }
7 va r i a b l e " rds_user " {}
8 va r i a b l e "rds_pw" {}
9 va r i a b l e " rds_instance " {}
10 va r i a b l e "alarms_email " {}
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11
12 output " ip " {
13 value = "${aws_db_instance . rds_test_mysql . endpoint }"
14 }
15
16 output " in s t ance " {
17 value = "${var . rds_instance }"
18 }
19
20 prov ide r "aws" {
21 r eg i on = "${var . r eg i on }"
22 sha r ed_c r ed en t i a l s_ f i l e = "${var . s ha r ed_c r ed en t i a l s_ f i l e

}"
23 p r o f i l e = "${var . p r o f i l e }"
24 }
25
26 r e sou r c e " aws_eip_assoc iat ion " " eip_assoc " {
27 instance_id = "${aws_instance . web . id }"
28 a l l o c a t i on_ id = " e i p a l l o c −93391 f f 6 "
29 }
30
31 r e sou r c e " aws_instance " "web" {
32 ami = "${ lookup ( var .my_ami , var . r eg i on ) }"
33 instance_type = "c5 . 4 x l a r g e "
34 /∗ assoc iate_publ ic_ip_address = "True"∗/
35 subnet_id = "<redacted>"
36 vpc_security_group_ids = ["< redacted >"]
37 key_name = "<redacted>"
38 tags = {
39 Name = " sysbench "
40 }
41 }
42
43 r e sou r c e "aws_db_instance" " rds_test_mysql " {
44 a l l o ca t ed_sto rage = 230
45 storage_type = " io1 "
46 i ops = 4500
47 engine = "mysql"
48 eng ine_vers ion = "5.7"
49 in s t ance_c l a s s = "${var . rds_instance }"
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50 name = " sb t e s t "
51 username = "${var . rds_user }"
52 password = "${var . rds_pw}"
53 parameter_group_name = " de f au l t . mysql5 . 7"
54 db_subnet_group_name = "<redacted>"
55 vpc_security_group_ids = ["< redacted >"]
56 apply_immediately = true
57 sk ip_f ina l_snapshot = true
58 multi_az = true
59 per formance_ins ights_enabled = true
60 moni tor ing_interva l = 5
61 monitoring_role_arn = "${aws_iam_role .

rds_enhanced_monitoring . arn }"
62
63 // backup_retention_period = 1
64 // ava i l ab i l i t y_zone = "us−east−1b"
65 }
66
67 r e sou r c e "aws_iam_role" " rds_enhanced_monitoring" {
68 name = "rds−enhanced_monitoring−r o l e "
69 assume_role_policy = "${data . aws_iam_policy_document .

rds_enhanced_monitoring . j son }"
70 }
71
72 r e sou r c e "aws_iam_role_policy_attachment" "

rds_enhanced_monitoring" {
73 r o l e = "${aws_iam_role . rds_enhanced_monitoring . name}"
74 pol icy_arn = "arn : aws : iam : : aws : po l i c y / s e r v i c e−r o l e /

AmazonRDSEnhancedMonitoringRole"
75 }
76
77 data "aws_iam_policy_document" " rds_enhanced_monitoring" {
78 statement {
79 a c t i on s = [
80 " s t s : AssumeRole " ,
81 ]
82
83 e f f e c t = "Allow"
84
85 p r i n c i p a l s {
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86 type = " Se rv i c e "
87 i d e n t i f i e r s = [ " monitor ing . rds . amazonaws . com" ]
88 }
89 }
90 }
91
92 /∗
93 r e sou r c e "aws_db_instance" " rds_test_mysql_repl ica " {
94 a l l o ca t ed_sto rage = 100
95 storage_type = " io1 "
96 i ops = 3000
97 engine = "mysql"
98 eng ine_vers ion = "5.7"
99 in s t ance_c l a s s = "${var . rds_instance }"
100 parameter_group_name = " de f au l t . mysql5 . 7"
101 vpc_security_group_ids = ["< redacted >"]
102 apply_immediately = true
103 sk ip_f ina l_snapshot = true
104 multi_az = f a l s e
105
106 repl icate_source_db = "${aws_db_instance . rds_test_mysql .

id }"
107 username = ""
108 password = ""
109 backup_retention_period = 0
110 ava i l ab i l i t y_zone = "us−east−1a"
111 }
112 ∗/

Alarms.tf:

1 r e s ou r c e "aws_sns_topic" "alarm" {
2 name = "alarms−t op i c "
3 de l i v e ry_po l i cy = <<EOF
4 {
5 "http " : {
6 " de fau l tHea l thyRet ryPo l i cy " : {
7 "minDelayTarget " : 20 ,
8 "maxDelayTarget " : 20 ,
9 "numRetries " : 3 ,
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10 "numMaxDelayRetries " : 0 ,
11 "numNoDelayRetries " : 0 ,
12 "numMinDelayRetries " : 0 ,
13 " backof fFunct ion " : " l i n e a r "
14 } ,
15 " d i s ab l eSub s c r i p t i onOve r r i d e s " : f a l s e ,
16 " d e f au l tTh r o t t l ePo l i c y " : {
17 "maxReceivesPerSecond " : 1
18 }
19 }
20 }
21 EOF
22
23 p r ov i s i o n e r " l o c a l−exec " {
24 command = "aws sns sub s c r i b e −−top ic−arn ${ s e l f . arn} −−

pro to co l emai l −−n o t i f i c a t i o n−endpoint ${var .
alarms_email }"

25 }
26 }
27
28 r e sou r c e "aws_cloudwatch_metric_alarm" "cpu" {
29 alarm_name = "web−cpu−alarm"
30 comparison_operator = "GreaterThanOrEqualToThreshold"
31 eva luat ion_per iods = "2"
32 metric_name = "CPUUti l izat ion "
33 namespace = "AWS/EC2"
34 per iod = "120"
35 s t a t i s t i c = "Average"
36 th r e sho ld = "80"
37 a larm_descr ipt ion = "This metr ic monitors ec2 cpu

u t i l i z a t i o n "
38 alarm_actions = [ "${aws_sns_topic . alarm . arn }"

]
39
40 dimensions = {
41 Ins tance Id = "${aws_instance . web . id }"
42 }
43 }
44
45 r e sou r c e "aws_cloudwatch_metric_alarm" " hea l th " {
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46 alarm_name = "web−health−alarm"
47 comparison_operator = "GreaterThanOrEqualToThreshold"
48 eva luat ion_per iods = "1"
49 metric_name = "StatusCheckFai led "
50 namespace = "AWS/EC2"
51 per iod = "120"
52 s t a t i s t i c = "Average"
53 th r e sho ld = "1"
54 a larm_descr ipt ion = "This metr ic monitors ec2

hea l th s t a tu s "
55 alarm_actions = [ "${aws_sns_topic . alarm . arn }"

]
56
57 dimensions = {
58 Ins tance Id = "${aws_instance . web . id }"
59 }
60 }
61
62 r e sou r c e "aws_cloudwatch_metric_alarm" " cpuc r ed i t " {
63 alarm_name = "web−cpu−c r ed i t−alarm"
64 comparison_operator = "LessThanThreshold"
65 eva luat ion_per iods = "1"
66 metric_name = "CPUCreditBalance"
67 namespace = "AWS/EC2"
68 per iod = "300"
69 s t a t i s t i c = "Sum"
70 thr e sho ld = "50"
71 a larm_descr ipt ion = "Triggered on low CPU c r e d i t

ba lance "
72 alarm_actions = [ "${aws_sns_topic . alarm . arn }"

]
73
74 dimensions = {
75 Ins tance Id = "${aws_instance . web . id }"
76 }
77 }
78
79 r e sou r c e "aws_cloudwatch_metric_alarm" "swap_usage_too_high"

{
80 alarm_name = "swap_usage_too_high"
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81 comparison_operator = "GreaterThanThreshold"
82 eva luat ion_per iods = "1"
83 metric_name = "SwapUsage"
84 namespace = "AWS/RDS"
85 per iod = "600"
86 s t a t i s t i c = "Average"
87 th r e sho ld = "16384"
88 a larm_descr ipt ion = "Average database swap usage over

l a s t 10 minutes too high , performance may s u f f e r "
89 alarm_actions = [" ${aws_sns_topic . alarm . arn }" ]
90
91 dimensions = {
92 DBIns tance Iden t i f i e r = "${aws_db_instance . rds_test_mysql .

id }"
93 }
94 }
95
96 r e sou r c e "aws_cloudwatch_metric_alarm" "

cpu_credit_balance_too_low" {
97 alarm_name = "cpu_credit_balance_too_low"
98 comparison_operator = "LessThanThreshold"
99 eva luat ion_per iods = "1"
100 metric_name = "CPUCreditBalance"
101 namespace = "AWS/RDS"
102 per iod = "600"
103 s t a t i s t i c = "Average"
104 th r e sho ld = "50"
105 a larm_descr ipt ion = "Average database CPU c r e d i t ba lance

over l a s t 10 minutes too low , expect a s i g n i f i c a n t
performance drop soon"

106 alarm_actions = [" ${aws_sns_topic . alarm . arn }" ]
107
108 dimensions = {
109 DBIns tance Iden t i f i e r = "${aws_db_instance . rds_test_mysql .

id }"
110 }
111 }
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B Sysbench results

B.1 mysql-db.r5.large-32-read-run-1

1 t r an s a c t i on s : 1501385 (2502 .26 per s ec . )
2 qu e r i e s : 18016620 (30027 .10 per s ec . )

B.2 mysql-db.r5.large-32-read-run-2

1 t r an s a c t i on s : 1583813 (2639 .63 per s ec . )
2 qu e r i e s : 19005756 (31675 .61 per s ec . )

B.3 mysql-db.r5.large-32-read-run-3

1 t r an s a c t i on s : 1571151 (2618 .53 per s ec . )
2 qu e r i e s : 18853812 (31422 .37 per s ec . )

B.4 mysql-db.r5.large-32-read-run-4

1 t r an s a c t i on s : 1541962 (2569 .89 per s ec . )
2 qu e r i e s : 18503544 (30838 .64 per s ec . )

B.5 mysql-db.r5.large-32-read-run-5

1 t r an s a c t i on s : 1584257 (2640 .37 per s ec . )
2 qu e r i e s : 19011084 (31684 .43 per s ec . )

B.6 mysql-db.r5.xlarge-32-read-run-1

1 t r an s a c t i on s : 2787900 (4646 .41 per s ec . )
2 qu e r i e s : 33454800 (55756 .91 per s ec . )
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B.7 mysql-db.r5.xlarge-32-read-run-2

1 t r an s a c t i on s : 2823181 (4705 .21 per s ec . )
2 qu e r i e s : 33878172 (56462 .51 per s ec . )

B.8 mysql-db.r5.xlarge-32-read-run-3

1 t r an s a c t i on s : 2840713 (4734 .43 per s ec . )
2 qu e r i e s : 34088556 (56813 .14 per s ec . )

B.9 mysql-db.r5.xlarge-32-read-run-4

1 t r an s a c t i on s : 2875523 (4792 .44 per s ec . )
2 qu e r i e s : 34506276 (57509 .33 per s ec . )

B.10 mysql-db.r5.xlarge-32-read-run-5

1 t r an s a c t i on s : 2870306 (4783 .75 per s ec . )
2 qu e r i e s : 34443672 (57405 .00 per s ec . )

B.11 mysql-db.r5.xlarge-32-read-run-1

1 t r an s a c t i on s : 2787900 (4646 .41 per s ec . )
2 qu e r i e s : 33454800 (55756 .91 per s ec . )

B.12 mysql-db.r5.xlarge-32-read-run-2

1 t r an s a c t i on s : 2823181 (4705 .21 per s ec . )
2 qu e r i e s : 33878172 (56462 .51 per s ec . )
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B.13 mysql-db.r5.xlarge-32-read-run-3

1 t r an s a c t i on s : 2840713 (4734 .43 per s ec . )
2 qu e r i e s : 34088556 (56813 .14 per s ec . )

B.14 mysql-db.r5.xlarge-32-read-run-4

1 t r an s a c t i on s : 2875523 (4792 .44 per s ec . )
2 qu e r i e s : 34506276 (57509 .33 per s ec . )

B.15 mysql-db.r5.xlarge-32-read-run-5

1 t r an s a c t i on s : 2870306 (4783 .75 per s ec . )
2 qu e r i e s : 34443672 (57405 .00 per s ec . )

B.16 mysql-db.r5.4xlarge-32-read-run-1

1 t r an s a c t i on s : 5683153 (9471 .74 per s ec . )
2 qu e r i e s : 68197836 (113660 .82 per s ec . )

B.17 mysql-db.r5.4xlarge-32-read-run-2

1 t r an s a c t i on s : 5698652 (9497 .56 per s ec . )
2 qu e r i e s : 68383824 (113970 .71 per s ec . )

B.18 mysql-db.r5.4xlarge-32-read-run-3

1 t r an s a c t i on s : 5627710 (9379 .33 per s ec . )
2 qu e r i e s : 67532520 (112551 .91 per s ec . )
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B.19 mysql-db.r5.4xlarge-32-read-run-4

1 t r an s a c t i on s : 5680778 (9467 .77 per s ec . )
2 qu e r i e s : 68169336 (113613 .30 per s ec . )

B.20 mysql-db.r5.4xlarge-32-read-run-5

1 t r an s a c t i on s : 5641503 (9402 .32 per s ec . )
2 qu e r i e s : 67698036 (112827 .85 per s ec . )

B.21 mysql-multiaz-db.r5.large-16-read-run-1

1 t r an s a c t i on s : 1515140 (2525 .20 per s ec . )
2 qu e r i e s : 18181680 (30302 .41 per s ec . )

B.22 mysql-multiaz-db.r5.large-16-read-run-2

1 t r an s a c t i on s : 1569451 (2615 .72 per s ec . )
2 qu e r i e s : 18833412 (31388 .63 per s ec . )

B.23 mysql-multiaz-db.r5.large-16-read-run-3

1 t r an s a c t i on s : 1516419 (2527 .33 per s ec . )
2 qu e r i e s : 18197028 (30327 .99 per s ec . )

B.24 mysql-multiaz-db.r5.large-16-read-run-4

1 t r an s a c t i on s : 1554832 (2591 .36 per s ec . )
2 qu e r i e s : 18657984 (31096 .26 per s ec . )
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B.25 mysql-multiaz-db.r5.large-16-read-run-5

1 t r an s a c t i on s : 1448180 (2413 .60 per s ec . )
2 qu e r i e s : 17378160 (28963 .23 per s ec . )

B.26 mysql-multiaz-db.r5.xlarge-16-read-run-1

1 t r an s a c t i on s : 1511682 (2519 .43 per s ec . )
2 qu e r i e s : 18140184 (30233 .14 per s ec . )

B.27 mysql-multiaz-db.r5.xlarge-16-read-run-2

1 t r an s a c t i on s : 1512733 (2521 .19 per s ec . )
2 qu e r i e s : 18152796 (30254 .24 per s ec . )

B.28 mysql-multiaz-db.r5.xlarge-16-read-run-3

1 t r an s a c t i on s : 1511667 (2519 .41 per s ec . )
2 qu e r i e s : 18140004 (30232 .88 per s ec . )

B.29 mysql-multiaz-db.r5.xlarge-16-read-run-4

1 t r an s a c t i on s : 1524832 (2541 .35 per s ec . )
2 qu e r i e s : 18297984 (30496 .18 per s ec . )

B.30 mysql-multiaz-db.r5.xlarge-16-read-run-5

1 t r an s a c t i on s : 1519324 (2532 .17 per s ec . )
2 qu e r i e s : 18231888 (30386 .04 per s ec . )
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B.31 mysql-multiaz-db.r5.xlarge-16-read-run-1

1 t r an s a c t i on s : 1511682 (2519 .43 per s ec . )
2 qu e r i e s : 18140184 (30233 .14 per s ec . )

B.32 mysql-multiaz-db.r5.xlarge-16-read-run-2

1 t r an s a c t i on s : 1512733 (2521 .19 per s ec . )
2 qu e r i e s : 18152796 (30254 .24 per s ec . )

B.33 mysql-multiaz-db.r5.xlarge-16-read-run-3

1 t r an s a c t i on s : 1511667 (2519 .41 per s ec . )
2 qu e r i e s : 18140004 (30232 .88 per s ec . )

B.34 mysql-multiaz-db.r5.xlarge-16-read-run-4

1 t r an s a c t i on s : 1524832 (2541 .35 per s ec . )
2 qu e r i e s : 18297984 (30496 .18 per s ec . )

B.35 mysql-multiaz-db.r5.xlarge-16-read-run-5

1 t r an s a c t i on s : 1519324 (2532 .17 per s ec . )
2 qu e r i e s : 18231888 (30386 .04 per s ec . )

B.36 mysql-multiaz-db.r5.4xlarge-16-read-run-1

1 t r an s a c t i on s : 5631658 (9386 .02 per s ec . )
2 qu e r i e s : 67579896 (112632 .21 per s ec . )
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B.37 mysql-multiaz-db.r5.4xlarge-16-read-run-2

1 t r an s a c t i on s : 5659505 (9432 .43 per s ec . )
2 qu e r i e s : 67914060 (113189 .13 per s ec . )

B.38 mysql-multiaz-db.r5.4xlarge-16-read-run-3

1 t r an s a c t i on s : 5643466 (9405 .69 per s ec . )
2 qu e r i e s : 67721592 (112868 .31 per s ec . )

B.39 mysql-multiaz-db.r5.4xlarge-16-read-run-4

1 t r an s a c t i on s : 5648478 (9414 .05 per s ec . )
2 qu e r i e s : 67781736 (112968 .57 per s ec . )

B.40 mysql-multiaz-db.r5.4xlarge-16-read-run-5

1 t r an s a c t i on s : 5632216 (9386 .94 per s ec . )
2 qu e r i e s : 67586592 (112643 .28 per s ec . )

B.41 mysql-multiaz-db.r5.large-32-read-run-1

1 t r an s a c t i on s : 1537281 (2562 .08 per s ec . )
2 qu e r i e s : 18447372 (30744 .96 per s ec . )

B.42 mysql-multiaz-db.r5.large-32-read-run-2

1 t r an s a c t i on s : 1526942 (2544 .85 per s ec . )
2 qu e r i e s : 18323304 (30538 .19 per s ec . )
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B.43 mysql-multiaz-db.r5.large-32-read-run-3

1 t r an s a c t i on s : 1539045 (2565 .02 per s ec . )
2 qu e r i e s : 18468540 (30780 .26 per s ec . )

B.44 mysql-multiaz-db.r5.large-32-read-run-4

1 t r an s a c t i on s : 1530477 (2550 .74 per s ec . )
2 qu e r i e s : 18365724 (30608 .91 per s ec . )

B.45 mysql-multiaz-db.r5.large-32-read-run-5

1 t r an s a c t i on s : 1501238 (2502 .01 per s ec . )
2 qu e r i e s : 18014856 (30024 .15 per s ec . )

B.46 mysql-multiaz-db.r5.xlarge-32-read-run-1

1 t r an s a c t i on s : 2673621 (4455 .94 per s ec . )
2 qu e r i e s : 32083452 (53471 .26 per s ec . )

B.47 mysql-multiaz-db.r5.xlarge-32-read-run-2

1 t r an s a c t i on s : 2729938 (4549 .80 per s ec . )
2 qu e r i e s : 32759256 (54597 .57 per s ec . )

B.48 mysql-multiaz-db.r5.xlarge-32-read-run-3

1 t r an s a c t i on s : 2691213 (4485 .26 per s ec . )
2 qu e r i e s : 32294556 (53823 .11 per s ec . )
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B.49 mysql-multiaz-db.r5.xlarge-32-read-run-4

1 t r an s a c t i on s : 2678955 (4464 .83 per s ec . )
2 qu e r i e s : 32147460 (53577 .92 per s ec . )

B.50 mysql-multiaz-db.r5.xlarge-32-read-run-5

1 t r an s a c t i on s : 2654307 (4423 .74 per s ec . )
2 qu e r i e s : 31851684 (53084 .91 per s ec . )

B.51 mysql-multiaz-db.r5.xlarge-32-read-run-1

1 t r an s a c t i on s : 2673621 (4455 .94 per s ec . )
2 qu e r i e s : 32083452 (53471 .26 per s ec . )

B.52 mysql-multiaz-db.r5.xlarge-32-read-run-2

1 t r an s a c t i on s : 2729938 (4549 .80 per s ec . )
2 qu e r i e s : 32759256 (54597 .57 per s ec . )

B.53 mysql-multiaz-db.r5.xlarge-32-read-run-3

1 t r an s a c t i on s : 2691213 (4485 .26 per s ec . )
2 qu e r i e s : 32294556 (53823 .11 per s ec . )

B.54 mysql-multiaz-db.r5.xlarge-32-read-run-4

1 t r an s a c t i on s : 2678955 (4464 .83 per s ec . )
2 qu e r i e s : 32147460 (53577 .92 per s ec . )
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B.55 mysql-multiaz-db.r5.xlarge-32-read-run-5

1 t r an s a c t i on s : 2654307 (4423 .74 per s ec . )
2 qu e r i e s : 31851684 (53084 .91 per s ec . )

B.56 mysql-multiaz-db.r5.4xlarge-32-read-run-1

1 t r an s a c t i on s : 8671792 (14452 .78 per s ec . )
2 qu e r i e s : 104061504 (173433 .42 per sec . )

B.57 mysql-multiaz-db.r5.4xlarge-32-read-run-2

1 t r an s a c t i on s : 8660634 (14434 .19 per s ec . )
2 qu e r i e s : 103927608 (173210 .27 per sec . )

B.58 mysql-multiaz-db.r5.4xlarge-32-read-run-3

1 t r an s a c t i on s : 8715910 (14526 .31 per s ec . )
2 qu e r i e s : 104590920 (174315 .77 per sec . )

B.59 mysql-multiaz-db.r5.4xlarge-32-read-run-4

1 t r an s a c t i on s : 8681152 (14468 .37 per s ec . )
2 qu e r i e s : 104173824 (173620 .45 per sec . )

B.60 mysql-multiaz-db.r5.4xlarge-32-read-run-5

1 t r an s a c t i on s : 8668996 (14448 .13 per s ec . )
2 qu e r i e s : 104027952 (173377 .50 per sec . )
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B.61 mysql-multiaz-db.r5.large-64-read-run-1

1 t r an s a c t i on s : 1517586 (2529 .20 per s ec . )
2 qu e r i e s : 18211032 (30350 .39 per s ec . )

B.62 mysql-multiaz-db.r5.large-64-read-run-2

1 t r an s a c t i on s : 1514653 (2524 .32 per s ec . )
2 qu e r i e s : 18175836 (30291 .89 per s ec . )

B.63 mysql-multiaz-db.r5.large-64-read-run-3

1 t r an s a c t i on s : 1473043 (2454 .98 per s ec . )
2 qu e r i e s : 17676516 (29459 .70 per s ec . )

B.64 mysql-multiaz-db.r5.large-64-read-run-4

1 t r an s a c t i on s : 1516598 (2527 .57 per s ec . )
2 qu e r i e s : 18199176 (30330 .83 per s ec . )

B.65 mysql-multiaz-db.r5.large-64-read-run-5

1 t r an s a c t i on s : 1521308 (2535 .41 per s ec . )
2 qu e r i e s : 18255696 (30424 .95 per s ec . )

B.66 mysql-multiaz-db.r5.xlarge-64-read-run-1

1 t r an s a c t i on s : 2929399 (4882 .14 per s ec . )
2 qu e r i e s : 35152788 (58585 .66 per s ec . )
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B.67 mysql-multiaz-db.r5.xlarge-64-read-run-2

1 t r an s a c t i on s : 2874429 (4790 .53 per s ec . )
2 qu e r i e s : 34493148 (57486 .39 per s ec . )

B.68 mysql-multiaz-db.r5.xlarge-64-read-run-3

1 t r an s a c t i on s : 2904308 (4840 .33 per s ec . )
2 qu e r i e s : 34851696 (58083 .95 per s ec . )

B.69 mysql-multiaz-db.r5.xlarge-64-read-run-4

1 t r an s a c t i on s : 2868739 (4781 .04 per s ec . )
2 qu e r i e s : 34424868 (57372 .51 per s ec . )

B.70 mysql-multiaz-db.r5.xlarge-64-read-run-5

1 t r an s a c t i on s : 2833278 (4721 .95 per s ec . )
2 qu e r i e s : 33999336 (56663 .38 per s ec . )

B.71 mysql-multiaz-db.r5.xlarge-64-read-run-1

1 t r an s a c t i on s : 2929399 (4882 .14 per s ec . )
2 qu e r i e s : 35152788 (58585 .66 per s ec . )

B.72 mysql-multiaz-db.r5.xlarge-64-read-run-2

1 t r an s a c t i on s : 2874429 (4790 .53 per s ec . )
2 qu e r i e s : 34493148 (57486 .39 per s ec . )
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B.73 mysql-multiaz-db.r5.xlarge-64-read-run-3

1 t r an s a c t i on s : 2904308 (4840 .33 per s ec . )
2 qu e r i e s : 34851696 (58083 .95 per s ec . )

B.74 mysql-multiaz-db.r5.xlarge-64-read-run-4

1 t r an s a c t i on s : 2868739 (4781 .04 per s ec . )
2 qu e r i e s : 34424868 (57372 .51 per s ec . )

B.75 mysql-multiaz-db.r5.xlarge-64-read-run-5

1 t r an s a c t i on s : 2833278 (4721 .95 per s ec . )
2 qu e r i e s : 33999336 (56663 .38 per s ec . )

B.76 mysql-multiaz-db.r5.4xlarge-64-read-run-1

1 t r an s a c t i on s : 11537383 (19228 .50 per s ec . )
2 qu e r i e s : 138448596 (230741 .98 per sec . )

B.77 mysql-multiaz-db.r5.4xlarge-64-read-run-2

1 t r an s a c t i on s : 11447493 (19078 .67 per s ec . )
2 qu e r i e s : 137369916 (228944 .09 per sec . )

B.78 mysql-multiaz-db.r5.4xlarge-64-read-run-3

1 t r an s a c t i on s : 11496019 (19159 .56 per s ec . )
2 qu e r i e s : 137952228 (229914 .72 per sec . )
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B.79 mysql-multiaz-db.r5.4xlarge-64-read-run-4

1 t r an s a c t i on s : 11468609 (19113 .87 per s ec . )
2 qu e r i e s : 137623308 (229366 .44 per sec . )

B.80 mysql-multiaz-db.r5.4xlarge-64-read-run-5

1 t r an s a c t i on s : 11405875 (19009 .33 per s ec . )
2 qu e r i e s : 136870500 (228111 .93 per sec . )

B.81 aurora-db.r5.large-16-read-run-1

1 t r an s a c t i on s : 1934444 (3224 .01 per s ec . )
2 qu e r i e s : 23213328 (38688 .17 per s ec . )

B.82 aurora-db.r5.large-16-read-run-2

1 t r an s a c t i on s : 1947570 (3245 .91 per s ec . )
2 qu e r i e s : 23370840 (38950 .88 per s ec . )

B.83 aurora-db.r5.large-16-read-run-3

1 t r an s a c t i on s : 1887892 (3146 .44 per s ec . )
2 qu e r i e s : 22654704 (37757 .32 per s ec . )

B.84 aurora-db.r5.large-16-read-run-4

1 t r an s a c t i on s : 1950697 (3251 .12 per s ec . )
2 qu e r i e s : 23408364 (39013 .41 per s ec . )
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B.85 aurora-db.r5.large-16-read-run-5

1 t r an s a c t i on s : 1919590 (3199 .27 per s ec . )
2 qu e r i e s : 23035080 (38391 .24 per s ec . )

B.86 aurora-db.r5.xlarge-16-read-run-1

1 t r an s a c t i on s : 2932605 (4887 .61 per s ec . )
2 qu e r i e s : 35191260 (58651 .38 per s ec . )

B.87 aurora-db.r5.xlarge-16-read-run-2

1 t r an s a c t i on s : 2936041 (4893 .34 per s ec . )
2 qu e r i e s : 35232492 (58720 .14 per s ec . )

B.88 aurora-db.r5.xlarge-16-read-run-3

1 t r an s a c t i on s : 2935896 (4893 .09 per s ec . )
2 qu e r i e s : 35230752 (58717 .11 per s ec . )

B.89 aurora-db.r5.xlarge-16-read-run-4

1 t r an s a c t i on s : 2929047 (4881 .67 per s ec . )
2 qu e r i e s : 35148564 (58580 .09 per s ec . )

B.90 aurora-db.r5.xlarge-16-read-run-5

1 t r an s a c t i on s : 2932008 (4886 .63 per s ec . )
2 qu e r i e s : 35184096 (58639 .51 per s ec . )

115



B.91 aurora-db.r5.2xlarge-16-read-run-1

1 t r an s a c t i on s : 1537217 (2562 .00 per s ec . )
2 qu e r i e s : 18446604 (30744 .00 per s ec . )

B.92 aurora-db.r5.2xlarge-16-read-run-2

1 t r an s a c t i on s : 1536761 (2561 .23 per s ec . )
2 qu e r i e s : 18441132 (30734 .80 per s ec . )

B.93 aurora-db.r5.2xlarge-16-read-run-3

1 t r an s a c t i on s : 1535421 (2559 .00 per s ec . )
2 qu e r i e s : 18425052 (30708 .01 per s ec . )

B.94 aurora-db.r5.2xlarge-16-read-run-4

1 t r an s a c t i on s : 1536403 (2560 .64 per s ec . )
2 qu e r i e s : 18436836 (30727 .67 per s ec . )

B.95 aurora-db.r5.2xlarge-16-read-run-5

1 t r an s a c t i on s : 1539938 (2566 .53 per s ec . )
2 qu e r i e s : 18479256 (30798 .35 per s ec . )

B.96 aurora-db.r5.4xlarge-16-read-run-1

1 t r an s a c t i on s : 4541698 (7569 .42 per s ec . )
2 qu e r i e s : 54500376 (90833 .06 per s ec . )
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B.97 aurora-db.r5.4xlarge-16-read-run-2

1 t r an s a c t i on s : 4482763 (7471 .20 per s ec . )
2 qu e r i e s : 53793156 (89654 .44 per s ec . )

B.98 aurora-db.r5.4xlarge-16-read-run-3

1 t r an s a c t i on s : 4637420 (7728 .96 per s ec . )
2 qu e r i e s : 55649040 (92747 .47 per s ec . )

B.99 aurora-db.r5.4xlarge-16-read-run-4

1 t r an s a c t i on s : 4615660 (7692 .70 per s ec . )
2 qu e r i e s : 55387920 (92312 .37 per s ec . )

B.100 aurora-db.r5.4xlarge-16-read-run-5

1 t r an s a c t i on s : 4609188 (7681 .90 per s ec . )
2 qu e r i e s : 55310256 (92182 .77 per s ec . )

B.101 aurora-db.r5.large-32-read-run-1

1 t r an s a c t i on s : 2188290 (3647 .07 per s ec . )
2 qu e r i e s : 26259480 (43764 .81 per s ec . )

B.102 aurora-db.r5.large-32-read-run-2

1 t r an s a c t i on s : 2171600 (3619 .25 per s ec . )
2 qu e r i e s : 26059200 (43431 .03 per s ec . )
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B.103 aurora-db.r5.large-32-read-run-3

1 t r an s a c t i on s : 2194521 (3657 .45 per s ec . )
2 qu e r i e s : 26334252 (43889 .44 per s ec . )

B.104 aurora-db.r5.large-32-read-run-4

1 t r an s a c t i on s : 2180721 (3634 .46 per s ec . )
2 qu e r i e s : 26168652 (43613 .48 per s ec . )

B.105 aurora-db.r5.large-32-read-run-5

1 t r an s a c t i on s : 2154863 (3590 .69 per s ec . )
2 qu e r i e s : 25858356 (43088 .30 per s ec . )

B.106 aurora-db.r5.xlarge-32-read-run-1

1 t r an s a c t i on s : 3933454 (6555 .62 per s ec . )
2 qu e r i e s : 47201448 (78667 .42 per s ec . )

B.107 aurora-db.r5.xlarge-32-read-run-2

1 t r an s a c t i on s : 3917773 (6528 .13 per s ec . )
2 qu e r i e s : 47013276 (78337 .60 per s ec . )

B.108 aurora-db.r5.xlarge-32-read-run-3

1 t r an s a c t i on s : 3973434 (6622 .24 per s ec . )
2 qu e r i e s : 47681208 (79466 .94 per s ec . )
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B.109 aurora-db.r5.xlarge-32-read-run-4

1 t r an s a c t i on s : 3976620 (6627 .55 per s ec . )
2 qu e r i e s : 47719440 (79530 .62 per s ec . )

B.110 aurora-db.r5.xlarge-32-read-run-5

1 t r an s a c t i on s : 3922834 (6537 .92 per s ec . )
2 qu e r i e s : 47074008 (78455 .08 per s ec . )

B.111 aurora-db.r5.2xlarge-32-read-run-1

1 t r an s a c t i on s : 2937202 (4894 .84 per s ec . )
2 qu e r i e s : 35246424 (58738 .03 per s ec . )

B.112 aurora-db.r5.2xlarge-32-read-run-2

1 t r an s a c t i on s : 2941758 (4902 .85 per s ec . )
2 qu e r i e s : 35301096 (58834 .20 per s ec . )

B.113 aurora-db.r5.2xlarge-32-read-run-3

1 t r an s a c t i on s : 2947068 (4911 .70 per s ec . )
2 qu e r i e s : 35364816 (58940 .38 per s ec . )

B.114 aurora-db.r5.2xlarge-32-read-run-4

1 t r an s a c t i on s : 2946985 (4911 .57 per s ec . )
2 qu e r i e s : 35363820 (58938 .79 per s ec . )
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B.115 aurora-db.r5.2xlarge-32-read-run-5

1 t r an s a c t i on s : 2961252 (4935 .34 per s ec . )
2 qu e r i e s : 35535024 (59224 .07 per s ec . )

B.116 aurora-db.r5.4xlarge-32-read-run-1

1 t r an s a c t i on s : 6686282 (11143 .63 per s ec . )
2 qu e r i e s : 80235384 (133723 .58 per s ec . )

B.117 aurora-db.r5.4xlarge-32-read-run-2

1 t r an s a c t i on s : 6633615 (11055 .86 per s ec . )
2 qu e r i e s : 79603380 (132670 .28 per s ec . )

B.118 aurora-db.r5.4xlarge-32-read-run-3

1 t r an s a c t i on s : 6713095 (11188 .31 per s ec . )
2 qu e r i e s : 80557140 (134259 .75 per s ec . )

B.119 aurora-db.r5.4xlarge-32-read-run-4

1 t r an s a c t i on s : 6648030 (11079 .89 per s ec . )
2 qu e r i e s : 79776360 (132958 .66 per s ec . )

B.120 aurora-db.r5.4xlarge-32-read-run-5

1 t r an s a c t i on s : 6696640 (11160 .89 per s ec . )
2 qu e r i e s : 80359680 (133930 .71 per s ec . )
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B.121 aurora-db.r5.large-64-read-run-1

1 t r an s a c t i on s : 2193875 (3656 .31 per s ec . )
2 qu e r i e s : 26326500 (43875 .76 per s ec . )

B.122 aurora-db.r5.large-64-read-run-2

1 t r an s a c t i on s : 2066346 (3443 .78 per s ec . )
2 qu e r i e s : 24796152 (41325 .33 per s ec . )

B.123 aurora-db.r5.large-64-read-run-3

1 t r an s a c t i on s : 2140669 (3567 .63 per s ec . )
2 qu e r i e s : 25688028 (42811 .59 per s ec . )

B.124 aurora-db.r5.large-64-read-run-4

1 t r an s a c t i on s : 2136602 (3560 .87 per s ec . )
2 qu e r i e s : 25639224 (42730 .44 per s ec . )

B.125 aurora-db.r5.large-64-read-run-5

1 t r an s a c t i on s : 2149448 (3582 .28 per s ec . )
2 qu e r i e s : 25793376 (42987 .42 per s ec . )

B.126 aurora-db.r5.xlarge-64-read-run-1

1 t r an s a c t i on s : 4493128 (7488 .29 per s ec . )
2 qu e r i e s : 53917536 (89859 .44 per s ec . )
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B.127 aurora-db.r5.xlarge-64-read-run-2

1 t r an s a c t i on s : 4463505 (7438 .90 per s ec . )
2 qu e r i e s : 53562060 (89266 .77 per s ec . )

B.128 aurora-db.r5.xlarge-64-read-run-3

1 t r an s a c t i on s : 4489672 (7482 .51 per s ec . )
2 qu e r i e s : 53876064 (89790 .13 per s ec . )

B.129 aurora-db.r5.xlarge-64-read-run-4

1 t r an s a c t i on s : 4468455 (7447 .15 per s ec . )
2 qu e r i e s : 53621460 (89365 .79 per s ec . )

B.130 aurora-db.r5.xlarge-64-read-run-5

1 t r an s a c t i on s : 4554236 (7590 .09 per s ec . )
2 qu e r i e s : 54650832 (91081 .13 per s ec . )

B.131 aurora-db.r5.2xlarge-64-read-run-1

1 t r an s a c t i on s : 5473537 (9122 .31 per s ec . )
2 qu e r i e s : 65682444 (109467 .72 per s ec . )

B.132 aurora-db.r5.2xlarge-64-read-run-2

1 t r an s a c t i on s : 5457045 (9094 .85 per s ec . )
2 qu e r i e s : 65484540 (109138 .20 per s ec . )
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B.133 aurora-db.r5.2xlarge-64-read-run-3

1 t r an s a c t i on s : 5444577 (9074 .04 per s ec . )
2 qu e r i e s : 65334924 (108888 .47 per s ec . )

B.134 aurora-db.r5.2xlarge-64-read-run-4

1 t r an s a c t i on s : 5474813 (9124 .46 per s ec . )
2 qu e r i e s : 65697756 (109493 .51 per s ec . )

B.135 aurora-db.r5.2xlarge-64-read-run-5

1 t r an s a c t i on s : 5472622 (9120 .79 per s ec . )
2 qu e r i e s : 65671464 (109449 .54 per s ec . )

B.136 aurora-db.r5.4xlarge-64-read-run-1

1 t r an s a c t i on s : 9846945 (16411 .15 per s ec . )
2 qu e r i e s : 118163340 (196933 .79 per sec . )

B.137 aurora-db.r5.4xlarge-64-read-run-2

1 t r an s a c t i on s : 9856589 (16427 .23 per s ec . )
2 qu e r i e s : 118279068 (197126 .73 per sec . )

B.138 aurora-db.r5.4xlarge-64-read-run-3

1 t r an s a c t i on s : 9763962 (16272 .84 per s ec . )
2 qu e r i e s : 117167544 (195274 .10 per sec . )
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B.139 aurora-db.r5.4xlarge-64-read-run-4

1 t r an s a c t i on s : 9614825 (16024 .31 per s ec . )
2 qu e r i e s : 115377900 (192291 .71 per sec . )

B.140 aurora-db.r5.4xlarge-64-read-run-5

1 t r an s a c t i on s : 9492753 (15820 .83 per s ec . )
2 qu e r i e s : 113913036 (189849 .99 per sec . )

B.141 polardb-manythreads-2-read-run-1

1 t r an s a c t i on s : 711003 (1185 .00 per s ec . )
2 qu e r i e s : 8532036 (14219 .96 per s ec . )

B.142 polardb-manythreads-2-read-run-2

1 t r an s a c t i on s : 721548 (1202 .57 per s ec . )
2 qu e r i e s : 8658576 (14430 .87 per s ec . )

B.143 polardb-manythreads-2-read-run-3

1 t r an s a c t i on s : 718696 (1197 .82 per s ec . )
2 qu e r i e s : 8624352 (14373 .82 per s ec . )

B.144 polardb-manythreads-2-read-run-4

1 t r an s a c t i on s : 716228 (1193 .71 per s ec . )
2 qu e r i e s : 8594736 (14324 .46 per s ec . )
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B.145 polardb-manythreads-2-read-run-5

1 t r an s a c t i on s : 716741 (1194 .56 per s ec . )
2 qu e r i e s : 8600892 (14334 .73 per s ec . )

B.146 polardb-manythreads-4-read-run-1

1 t r an s a c t i on s : 1401414 (2335 .67 per s ec . )
2 qu e r i e s : 16816968 (28028 .03 per s ec . )

B.147 polardb-manythreads-4-read-run-2

1 t r an s a c t i on s : 1400264 (2333 .75 per s ec . )
2 qu e r i e s : 16803168 (28005 .05 per s ec . )

B.148 polardb-manythreads-4-read-run-3

1 t r an s a c t i on s : 1396134 (2326 .87 per s ec . )
2 qu e r i e s : 16753608 (27922 .49 per s ec . )

B.149 polardb-manythreads-4-read-run-4

1 t r an s a c t i on s : 1406671 (2344 .43 per s ec . )
2 qu e r i e s : 16880052 (28133 .20 per s ec . )

B.150 polardb-manythreads-4-read-run-5

1 t r an s a c t i on s : 1402650 (2337 .73 per s ec . )
2 qu e r i e s : 16831800 (28052 .80 per s ec . )
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B.151 polardb-manythreads-8-read-run-1

1 t r an s a c t i on s : 2603011 (4338 .29 per s ec . )
2 qu e r i e s : 31236132 (52059 .51 per s ec . )

B.152 polardb-manythreads-8-read-run-2

1 t r an s a c t i on s : 2620029 (4366 .67 per s ec . )
2 qu e r i e s : 31440348 (52400 .10 per s ec . )

B.153 polardb-manythreads-8-read-run-3

1 t r an s a c t i on s : 2626009 (4376 .64 per s ec . )
2 qu e r i e s : 31512108 (52519 .67 per s ec . )

B.154 polardb-manythreads-8-read-run-4

1 t r an s a c t i on s : 2587242 (4312 .03 per s ec . )
2 qu e r i e s : 31046904 (51744 .35 per s ec . )

B.155 polardb-manythreads-8-read-run-5

1 t r an s a c t i on s : 2633504 (4389 .13 per s ec . )
2 qu e r i e s : 31602048 (52669 .58 per s ec . )

B.156 polardb-manythreads-16-read-run-1

1 t r an s a c t i on s : 4587733 (7646 .11 per s ec . )
2 qu e r i e s : 55052796 (91753 .29 per s ec . )
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B.157 polardb-manythreads-16-read-run-2

1 t r an s a c t i on s : 4637825 (7729 .60 per s ec . )
2 qu e r i e s : 55653900 (92755 .15 per s ec . )

B.158 polardb-manythreads-16-read-run-3

1 t r an s a c t i on s : 4640727 (7734 .44 per s ec . )
2 qu e r i e s : 55688724 (92813 .23 per s ec . )

B.159 polardb-manythreads-16-read-run-4

1 t r an s a c t i on s : 4639116 (7731 .75 per s ec . )
2 qu e r i e s : 55669392 (92781 .02 per s ec . )

B.160 polardb-manythreads-16-read-run-5

1 t r an s a c t i on s : 4593912 (7656 .41 per s ec . )
2 qu e r i e s : 55126944 (91876 .90 per s ec . )

B.161 polardb-manythreads-32-read-run-1

1 t r an s a c t i on s : 7695923 (12826 .24 per s ec . )
2 qu e r i e s : 92351076 (153914 .90 per s ec . )

B.162 polardb-manythreads-32-read-run-2

1 t r an s a c t i on s : 7755410 (12925 .38 per s ec . )
2 qu e r i e s : 93064920 (155104 .59 per s ec . )
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B.163 polardb-manythreads-32-read-run-3

1 t r an s a c t i on s : 7721812 (12869 .40 per s ec . )
2 qu e r i e s : 92661744 (154432 .75 per s ec . )

B.164 polardb-manythreads-32-read-run-4

1 t r an s a c t i on s : 7824645 (13040 .78 per s ec . )
2 qu e r i e s : 93895740 (156489 .31 per s ec . )

B.165 polardb-manythreads-32-read-run-5

1 t r an s a c t i on s : 7729359 (12881 .96 per s ec . )
2 qu e r i e s : 92752308 (154583 .54 per s ec . )

B.166 polardb-manythreads-64-read-run-1

1 t r an s a c t i on s : 9087806 (15145 .66 per s ec . )
2 qu e r i e s : 109053672 (181747 .97 per sec . )

B.167 polardb-manythreads-64-read-run-2

1 t r an s a c t i on s : 9077099 (15127 .80 per s ec . )
2 qu e r i e s : 108925188 (181533 .65 per sec . )

B.168 polardb-manythreads-64-read-run-3

1 t r an s a c t i on s : 9071517 (15118 .50 per s ec . )
2 qu e r i e s : 108858204 (181421 .98 per sec . )
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B.169 polardb-manythreads-64-read-run-4

1 t r an s a c t i on s : 9042363 (15069 .90 per s ec . )
2 qu e r i e s : 108508356 (180838 .78 per sec . )

B.170 polardb-manythreads-64-read-run-5

1 t r an s a c t i on s : 9094647 (15157 .06 per s ec . )
2 qu e r i e s : 109135764 (181884 .74 per sec . )

B.171 polardb-150GB-2-read-run-1

1 t r an s a c t i on s : 601289 (1002 .14 per s ec . )
2 qu e r i e s : 7215468 (12025 .71 per s ec . )

B.172 polardb-150GB-2-read-run-2

1 t r an s a c t i on s : 626077 (1043 .46 per s ec . )
2 qu e r i e s : 7512924 (12521 .46 per s ec . )

B.173 polardb-150GB-2-read-run-3

1 t r an s a c t i on s : 652003 (1086 .66 per s ec . )
2 qu e r i e s : 7824036 (13039 .97 per s ec . )

B.174 polardb-150GB-2-read-run-4

1 t r an s a c t i on s : 672753 (1121 .25 per s ec . )
2 qu e r i e s : 8073036 (13454 .97 per s ec . )
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B.175 polardb-150GB-2-read-run-5

1 t r an s a c t i on s : 669660 (1116 .09 per s ec . )
2 qu e r i e s : 8035920 (13393 .10 per s ec . )

B.176 polardb-150GB-4-read-run-1

1 t r an s a c t i on s : 1318893 (2198 .14 per s ec . )
2 qu e r i e s : 15826716 (26377 .66 per s ec . )

B.177 polardb-150GB-4-read-run-2

1 t r an s a c t i on s : 1343048 (2238 .40 per s ec . )
2 qu e r i e s : 16116576 (26860 .76 per s ec . )

B.178 polardb-150GB-4-read-run-3

1 t r an s a c t i on s : 1329133 (2215 .20 per s ec . )
2 qu e r i e s : 15949596 (26582 .46 per s ec . )

B.179 polardb-150GB-4-read-run-4

1 t r an s a c t i on s : 1326493 (2210 .81 per s ec . )
2 qu e r i e s : 15917916 (26529 .67 per s ec . )

B.180 polardb-150GB-4-read-run-5

1 t r an s a c t i on s : 1315901 (2193 .15 per s ec . )
2 qu e r i e s : 15790812 (26317 .82 per s ec . )
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B.181 polardb-150GB-8-read-run-1

1 t r an s a c t i on s : 2486416 (4143 .99 per s ec . )
2 qu e r i e s : 29836992 (49727 .85 per s ec . )

B.182 polardb-150GB-8-read-run-2

1 t r an s a c t i on s : 2499809 (4166 .31 per s ec . )
2 qu e r i e s : 29997708 (49995 .69 per s ec . )

B.183 polardb-150GB-8-read-run-3

1 t r an s a c t i on s : 2486262 (4143 .73 per s ec . )
2 qu e r i e s : 29835144 (49724 .78 per s ec . )

B.184 polardb-150GB-8-read-run-4

1 t r an s a c t i on s : 2501454 (4169 .05 per s ec . )
2 qu e r i e s : 30017448 (50028 .63 per s ec . )

B.185 polardb-150GB-8-read-run-5

1 t r an s a c t i on s : 2495410 (4158 .98 per s ec . )
2 qu e r i e s : 29944920 (49907 .72 per s ec . )

B.186 polardb-150GB-16-read-run-1

1 t r an s a c t i on s : 4384244 (7306 .97 per s ec . )
2 qu e r i e s : 52610928 (87683 .66 per s ec . )
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B.187 polardb-150GB-16-read-run-2

1 t r an s a c t i on s : 4422999 (7371 .56 per s ec . )
2 qu e r i e s : 53075988 (88458 .74 per s ec . )

B.188 polardb-150GB-16-read-run-3

1 t r an s a c t i on s : 4390492 (7317 .38 per s ec . )
2 qu e r i e s : 52685904 (87808 .60 per s ec . )

B.189 polardb-150GB-16-read-run-4

1 t r an s a c t i on s : 4419221 (7365 .26 per s ec . )
2 qu e r i e s : 53030652 (88383 .10 per s ec . )

B.190 polardb-150GB-16-read-run-5

1 t r an s a c t i on s : 4418691 (7364 .38 per s ec . )
2 qu e r i e s : 53024292 (88372 .58 per s ec . )

B.191 polardb-150GB-32-read-run-1

1 t r an s a c t i on s : 7156728 (11927 .61 per s ec . )
2 qu e r i e s : 85880736 (143131 .30 per s ec . )

B.192 polardb-150GB-32-read-run-2

1 t r an s a c t i on s : 7125212 (11875 .09 per s ec . )
2 qu e r i e s : 85502544 (142501 .12 per s ec . )
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B.193 polardb-150GB-32-read-run-3

1 t r an s a c t i on s : 7211676 (12019 .20 per s ec . )
2 qu e r i e s : 86540112 (144230 .34 per s ec . )

B.194 polardb-150GB-32-read-run-4

1 t r an s a c t i on s : 7195627 (11992 .45 per s ec . )
2 qu e r i e s : 86347524 (143909 .35 per s ec . )

B.195 polardb-150GB-32-read-run-5

1 t r an s a c t i on s : 7123551 (11872 .32 per s ec . )
2 qu e r i e s : 85482612 (142467 .86 per s ec . )

B.196 polardb-150GB-64-read-run-1

1 t r an s a c t i on s : 8497017 (14161 .06 per s ec . )
2 qu e r i e s : 101964204 (169932 .73 per sec . )

B.197 polardb-150GB-64-read-run-2

1 t r an s a c t i on s : 8556074 (14259 .48 per s ec . )
2 qu e r i e s : 102672888 (171113 .80 per sec . )

B.198 polardb-150GB-64-read-run-3

1 t r an s a c t i on s : 8532114 (14219 .57 per s ec . )
2 qu e r i e s : 102385368 (170634 .85 per sec . )
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B.199 polardb-150GB-64-read-run-4

1 t r an s a c t i on s : 8489539 (14148 .62 per s ec . )
2 qu e r i e s : 101874468 (169783 .48 per sec . )

B.200 polardb-150GB-64-read-run-5

1 t r an s a c t i on s : 8516196 (14193 .00 per s ec . )
2 qu e r i e s : 102194352 (170316 .05 per sec . )

B.201 polardb-manythreads-1GB-500-read-run-1

1 t r an s a c t i on s : 8343905 (13901 .58 per s ec . )
2 qu e r i e s : 100126860 (166818 .97 per sec . )

B.202 polardb-manythreads-1GB-500-read-run-2

1 t r an s a c t i on s : 8330306 (13878 .96 per s ec . )
2 qu e r i e s : 99963672 (166547 .56 per s ec . )

B.203 polardb-manythreads-1GB-500-read-run-3

1 t r an s a c t i on s : 8366140 (13938 .75 per s ec . )
2 qu e r i e s : 100393680 (167265 .03 per sec . )

B.204 polardb-manythreads-1GB-500-read-run-4

1 t r an s a c t i on s : 8394940 (13986 .80 per s ec . )
2 qu e r i e s : 100739280 (167841 .61 per sec . )
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B.205 polardb-manythreads-1GB-500-read-run-5

1 t r an s a c t i on s : 8436993 (14056 .74 per s ec . )
2 qu e r i e s : 101243916 (168680 .89 per sec . )

B.206 mysql-db.r5.large-32-write-run-1

1 t r an s a c t i on s : 457173 (761 .88 per sec . )
2 qu e r i e s : 9144037 (15238 .58 per s ec . )

B.207 mysql-db.r5.large-32-write-run-2

1 t r an s a c t i on s : 459900 (766 .45 per sec . )
2 qu e r i e s : 9198801 (15330 .39 per s ec . )

B.208 mysql-db.r5.large-32-write-run-3

1 t r an s a c t i on s : 458713 (764 .47 per sec . )
2 qu e r i e s : 9174806 (15290 .36 per s ec . )

B.209 mysql-db.r5.large-32-write-run-4

1 t r an s a c t i on s : 460530 (767 .46 per sec . )
2 qu e r i e s : 9211493 (15350 .62 per s ec . )

B.210 mysql-db.r5.large-32-write-run-5

1 t r an s a c t i on s : 456208 (760 .30 per sec . )
2 qu e r i e s : 9124747 (15206 .90 per s ec . )
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B.211 mysql-db.r5.xlarge-32-write-run-1

1 t r an s a c t i on s : 866061 (1443 .34 per s ec . )
2 qu e r i e s : 17321942 (28867 .99 per s ec . )

B.212 mysql-db.r5.xlarge-32-write-run-2

1 t r an s a c t i on s : 865601 (1442 .54 per s ec . )
2 qu e r i e s : 17312893 (28852 .25 per s ec . )

B.213 mysql-db.r5.xlarge-32-write-run-3

1 t r an s a c t i on s : 871768 (1452 .84 per s ec . )
2 qu e r i e s : 17436007 (29057 .89 per s ec . )

B.214 mysql-db.r5.xlarge-32-write-run-4

1 t r an s a c t i on s : 871895 (1453 .06 per s ec . )
2 qu e r i e s : 17439009 (29063 .01 per s ec . )

B.215 mysql-db.r5.xlarge-32-write-run-5

1 t r an s a c t i on s : 881327 (1468 .76 per s ec . )
2 qu e r i e s : 17627201 (29376 .38 per s ec . )

B.216 mysql-db.r5.xlarge-32-write-run-1

1 t r an s a c t i on s : 866061 (1443 .34 per s ec . )
2 qu e r i e s : 17321942 (28867 .99 per s ec . )
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B.217 mysql-db.r5.xlarge-32-write-run-2

1 t r an s a c t i on s : 865601 (1442 .54 per s ec . )
2 qu e r i e s : 17312893 (28852 .25 per s ec . )

B.218 mysql-db.r5.xlarge-32-write-run-3

1 t r an s a c t i on s : 871768 (1452 .84 per s ec . )
2 qu e r i e s : 17436007 (29057 .89 per s ec . )

B.219 mysql-db.r5.xlarge-32-write-run-4

1 t r an s a c t i on s : 871895 (1453 .06 per s ec . )
2 qu e r i e s : 17439009 (29063 .01 per s ec . )

B.220 mysql-db.r5.xlarge-32-write-run-5

1 t r an s a c t i on s : 881327 (1468 .76 per s ec . )
2 qu e r i e s : 17627201 (29376 .38 per s ec . )

B.221 mysql-db.r5.4xlarge-32-write-run-1

1 t r an s a c t i on s : 1952418 (3253 .83 per s ec . )
2 qu e r i e s : 39050524 (65080 .14 per s ec . )

B.222 mysql-db.r5.4xlarge-32-write-run-2

1 t r an s a c t i on s : 1981335 (3302 .02 per s ec . )
2 qu e r i e s : 39628917 (66044 .15 per s ec . )
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B.223 mysql-db.r5.4xlarge-32-write-run-3

1 t r an s a c t i on s : 2032445 (3387 .20 per s ec . )
2 qu e r i e s : 40650981 (67747 .37 per s ec . )

B.224 mysql-db.r5.4xlarge-32-write-run-4

1 t r an s a c t i on s : 1965038 (3274 .18 per s ec . )
2 qu e r i e s : 39302428 (65486 .35 per s ec . )

B.225 mysql-db.r5.4xlarge-32-write-run-5

1 t r an s a c t i on s : 1905262 (3174 .89 per s ec . )
2 qu e r i e s : 38107111 (63501 .00 per s ec . )

B.226 mysql-multiaz-db.r5.large-16-write-run-1

1 t r an s a c t i on s : 376951 (628 .22 per sec . )
2 qu e r i e s : 7539099 (12564 .45 per s ec . )

B.227 mysql-multiaz-db.r5.large-16-write-run-2

1 t r an s a c t i on s : 364554 (607 .56 per sec . )
2 qu e r i e s : 7291342 (12151 .60 per s ec . )

B.228 mysql-multiaz-db.r5.large-16-write-run-3

1 t r an s a c t i on s : 352446 (587 .27 per sec . )
2 qu e r i e s : 7049148 (11745 .88 per s ec . )
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B.229 mysql-multiaz-db.r5.large-16-write-run-4

1 t r an s a c t i on s : 374083 (623 .44 per sec . )
2 qu e r i e s : 7481887 (12469 .21 per s ec . )

B.230 mysql-multiaz-db.r5.large-16-write-run-5

1 t r an s a c t i on s : 376676 (627 .75 per sec . )
2 qu e r i e s : 7533677 (12555 .28 per s ec . )

B.231 mysql-multiaz-db.r5.xlarge-16-write-run-1

1 t r an s a c t i on s : 443439 (739 .02 per sec . )
2 qu e r i e s : 8868911 (14780 .62 per s ec . )

B.232 mysql-multiaz-db.r5.xlarge-16-write-run-2

1 t r an s a c t i on s : 449827 (749 .67 per sec . )
2 qu e r i e s : 8996740 (14993 .67 per s ec . )

B.233 mysql-multiaz-db.r5.xlarge-16-write-run-3

1 t r an s a c t i on s : 437178 (728 .59 per sec . )
2 qu e r i e s : 8743847 (14572 .26 per s ec . )

B.234 mysql-multiaz-db.r5.xlarge-16-write-run-4

1 t r an s a c t i on s : 452234 (753 .68 per sec . )
2 qu e r i e s : 9044829 (15073 .77 per s ec . )
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B.235 mysql-multiaz-db.r5.xlarge-16-write-run-5

1 t r an s a c t i on s : 446740 (744 .52 per sec . )
2 qu e r i e s : 8934968 (14890 .66 per s ec . )

B.236 mysql-multiaz-db.r5.xlarge-16-write-run-1

1 t r an s a c t i on s : 443439 (739 .02 per sec . )
2 qu e r i e s : 8868911 (14780 .62 per s ec . )

B.237 mysql-multiaz-db.r5.xlarge-16-write-run-2

1 t r an s a c t i on s : 449827 (749 .67 per sec . )
2 qu e r i e s : 8996740 (14993 .67 per s ec . )

B.238 mysql-multiaz-db.r5.xlarge-16-write-run-3

1 t r an s a c t i on s : 437178 (728 .59 per sec . )
2 qu e r i e s : 8743847 (14572 .26 per s ec . )

B.239 mysql-multiaz-db.r5.xlarge-16-write-run-4

1 t r an s a c t i on s : 452234 (753 .68 per sec . )
2 qu e r i e s : 9044829 (15073 .77 per s ec . )

B.240 mysql-multiaz-db.r5.xlarge-16-write-run-5

1 t r an s a c t i on s : 446740 (744 .52 per sec . )
2 qu e r i e s : 8934968 (14890 .66 per s ec . )
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B.241 mysql-multiaz-db.r5.4xlarge-16-write-run-1

1 t r an s a c t i on s : 828649 (1381 .00 per s ec . )
2 qu e r i e s : 16573659 (27621 .13 per s ec . )

B.242 mysql-multiaz-db.r5.4xlarge-16-write-run-2

1 t r an s a c t i on s : 847287 (1412 .09 per s ec . )
2 qu e r i e s : 16946463 (28243 .03 per s ec . )

B.243 mysql-multiaz-db.r5.4xlarge-16-write-run-3

1 t r an s a c t i on s : 842589 (1404 .26 per s ec . )
2 qu e r i e s : 16852480 (28086 .41 per s ec . )

B.244 mysql-multiaz-db.r5.4xlarge-16-write-run-4

1 t r an s a c t i on s : 825515 (1375 .80 per s ec . )
2 qu e r i e s : 16510782 (27516 .78 per s ec . )

B.245 mysql-multiaz-db.r5.4xlarge-16-write-run-5

1 t r an s a c t i on s : 803551 (1339 .17 per s ec . )
2 qu e r i e s : 16071446 (26784 .20 per s ec . )

B.246 mysql-multiaz-db.r5.large-32-write-run-1

1 t r an s a c t i on s : 404236 (673 .66 per sec . )
2 qu e r i e s : 8085333 (13474 .21 per s ec . )
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B.247 mysql-multiaz-db.r5.large-32-write-run-2

1 t r an s a c t i on s : 412699 (687 .77 per sec . )
2 qu e r i e s : 8254388 (13755 .99 per s ec . )

B.248 mysql-multiaz-db.r5.large-32-write-run-3

1 t r an s a c t i on s : 408288 (680 .41 per sec . )
2 qu e r i e s : 8166382 (13609 .18 per s ec . )

B.249 mysql-multiaz-db.r5.large-32-write-run-4

1 t r an s a c t i on s : 407965 (679 .86 per sec . )
2 qu e r i e s : 8159920 (13598 .29 per s ec . )

B.250 mysql-multiaz-db.r5.large-32-write-run-5

1 t r an s a c t i on s : 409674 (682 .72 per sec . )
2 qu e r i e s : 8193949 (13655 .23 per s ec . )

B.251 mysql-multiaz-db.r5.xlarge-32-write-run-1

1 t r an s a c t i on s : 712448 (1187 .30 per s ec . )
2 qu e r i e s : 14249412 (23746 .81 per s ec . )

B.252 mysql-multiaz-db.r5.xlarge-32-write-run-2

1 t r an s a c t i on s : 719549 (1199 .14 per s ec . )
2 qu e r i e s : 14391448 (23983 .48 per s ec . )
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B.253 mysql-multiaz-db.r5.xlarge-32-write-run-3

1 t r an s a c t i on s : 724611 (1207 .57 per s ec . )
2 qu e r i e s : 14492865 (24152 .41 per s ec . )

B.254 mysql-multiaz-db.r5.xlarge-32-write-run-4

1 t r an s a c t i on s : 718041 (1196 .60 per s ec . )
2 qu e r i e s : 14361453 (23933 .15 per s ec . )

B.255 mysql-multiaz-db.r5.xlarge-32-write-run-5

1 t r an s a c t i on s : 725442 (1208 .93 per s ec . )
2 qu e r i e s : 14509390 (24179 .59 per s ec . )

B.256 mysql-multiaz-db.r5.xlarge-32-write-run-1

1 t r an s a c t i on s : 712448 (1187 .30 per s ec . )
2 qu e r i e s : 14249412 (23746 .81 per s ec . )

B.257 mysql-multiaz-db.r5.xlarge-32-write-run-2

1 t r an s a c t i on s : 719549 (1199 .14 per s ec . )
2 qu e r i e s : 14391448 (23983 .48 per s ec . )

B.258 mysql-multiaz-db.r5.xlarge-32-write-run-3

1 t r an s a c t i on s : 724611 (1207 .57 per s ec . )
2 qu e r i e s : 14492865 (24152 .41 per s ec . )
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B.259 mysql-multiaz-db.r5.xlarge-32-write-run-4

1 t r an s a c t i on s : 718041 (1196 .60 per s ec . )
2 qu e r i e s : 14361453 (23933 .15 per s ec . )

B.260 mysql-multiaz-db.r5.xlarge-32-write-run-5

1 t r an s a c t i on s : 725442 (1208 .93 per s ec . )
2 qu e r i e s : 14509390 (24179 .59 per s ec . )

B.261 mysql-multiaz-db.r5.4xlarge-32-write-run-1

1 t r an s a c t i on s : 1309751 (2182 .77 per s ec . )
2 qu e r i e s : 26196797 (43658 .43 per s ec . )

B.262 mysql-multiaz-db.r5.4xlarge-32-write-run-2

1 t r an s a c t i on s : 1295922 (2159 .71 per s ec . )
2 qu e r i e s : 25920176 (43197 .03 per s ec . )

B.263 mysql-multiaz-db.r5.4xlarge-32-write-run-3

1 t r an s a c t i on s : 1326942 (2211 .44 per s ec . )
2 qu e r i e s : 26540579 (44231 .60 per s ec . )

B.264 mysql-multiaz-db.r5.4xlarge-32-write-run-4

1 t r an s a c t i on s : 1312488 (2187 .32 per s ec . )
2 qu e r i e s : 26251536 (43749 .27 per s ec . )

144



B.265 mysql-multiaz-db.r5.4xlarge-32-write-run-5

1 t r an s a c t i on s : 1270827 (2117 .88 per s ec . )
2 qu e r i e s : 25418413 (42360 .81 per s ec . )

B.266 mysql-multiaz-db.r5.large-64-write-run-1

1 t r an s a c t i on s : 404865 (674 .62 per sec . )
2 qu e r i e s : 8098160 (13493 .89 per s ec . )

B.267 mysql-multiaz-db.r5.large-64-write-run-2

1 t r an s a c t i on s : 403392 (672 .14 per sec . )
2 qu e r i e s : 8068600 (13444 .16 per s ec . )

B.268 mysql-multiaz-db.r5.large-64-write-run-3

1 t r an s a c t i on s : 404237 (673 .58 per sec . )
2 qu e r i e s : 8085845 (13473 .45 per s ec . )

B.269 mysql-multiaz-db.r5.large-64-write-run-4

1 t r an s a c t i on s : 404921 (674 .63 per sec . )
2 qu e r i e s : 8099347 (13494 .12 per s ec . )

B.270 mysql-multiaz-db.r5.large-64-write-run-5

1 t r an s a c t i on s : 409387 (682 .17 per sec . )
2 qu e r i e s : 8188740 (13645 .11 per s ec . )
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B.271 mysql-multiaz-db.r5.xlarge-64-write-run-1

1 t r an s a c t i on s : 841621 (1402 .41 per s ec . )
2 qu e r i e s : 16833821 (28050 .49 per s ec . )

B.272 mysql-multiaz-db.r5.xlarge-64-write-run-2

1 t r an s a c t i on s : 838945 (1397 .98 per s ec . )
2 qu e r i e s : 16780466 (27962 .14 per s ec . )

B.273 mysql-multiaz-db.r5.xlarge-64-write-run-3

1 t r an s a c t i on s : 838189 (1396 .71 per s ec . )
2 qu e r i e s : 16765072 (27936 .45 per s ec . )

B.274 mysql-multiaz-db.r5.xlarge-64-write-run-4

1 t r an s a c t i on s : 835151 (1391 .63 per s ec . )
2 qu e r i e s : 16704500 (27835 .15 per s ec . )

B.275 mysql-multiaz-db.r5.xlarge-64-write-run-5

1 t r an s a c t i on s : 829095 (1381 .33 per s ec . )
2 qu e r i e s : 16583368 (27629 .11 per s ec . )

B.276 mysql-multiaz-db.r5.xlarge-64-write-run-1

1 t r an s a c t i on s : 841621 (1402 .41 per s ec . )
2 qu e r i e s : 16833821 (28050 .49 per s ec . )
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B.277 mysql-multiaz-db.r5.xlarge-64-write-run-2

1 t r an s a c t i on s : 838945 (1397 .98 per s ec . )
2 qu e r i e s : 16780466 (27962 .14 per s ec . )

B.278 mysql-multiaz-db.r5.xlarge-64-write-run-3

1 t r an s a c t i on s : 838189 (1396 .71 per s ec . )
2 qu e r i e s : 16765072 (27936 .45 per s ec . )

B.279 mysql-multiaz-db.r5.xlarge-64-write-run-4

1 t r an s a c t i on s : 835151 (1391 .63 per s ec . )
2 qu e r i e s : 16704500 (27835 .15 per s ec . )

B.280 mysql-multiaz-db.r5.xlarge-64-write-run-5

1 t r an s a c t i on s : 829095 (1381 .33 per s ec . )
2 qu e r i e s : 16583368 (27629 .11 per s ec . )

B.281 mysql-multiaz-db.r5.4xlarge-64-write-run-1

1 t r an s a c t i on s : 2174491 (3623 .69 per s ec . )
2 qu e r i e s : 43492938 (72479 .03 per s ec . )

B.282 mysql-multiaz-db.r5.4xlarge-64-write-run-2

1 t r an s a c t i on s : 2159299 (3598 .38 per s ec . )
2 qu e r i e s : 43189200 (71972 .88 per s ec . )
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B.283 mysql-multiaz-db.r5.4xlarge-64-write-run-3

1 t r an s a c t i on s : 2159394 (3598 .53 per s ec . )
2 qu e r i e s : 43190604 (71975 .05 per s ec . )

B.284 mysql-multiaz-db.r5.4xlarge-64-write-run-4

1 t r an s a c t i on s : 2184641 (3640 .59 per s ec . )
2 qu e r i e s : 43695636 (72816 .54 per s ec . )

B.285 mysql-multiaz-db.r5.4xlarge-64-write-run-5

1 t r an s a c t i on s : 2167996 (3612 .85 per s ec . )
2 qu e r i e s : 43362731 (72261 .61 per s ec . )

B.286 aurora-db.r5.large-16-write-run-1

1 t r an s a c t i on s : 325650 (542 .70 per sec . )
2 qu e r i e s : 6513292 (10854 .56 per s ec . )

B.287 aurora-db.r5.large-16-write-run-2

1 t r an s a c t i on s : 324600 (540 .97 per sec . )
2 qu e r i e s : 6492257 (10819 .75 per s ec . )

B.288 aurora-db.r5.large-16-write-run-3

1 t r an s a c t i on s : 328289 (547 .12 per sec . )
2 qu e r i e s : 6566133 (10943 .06 per s ec . )
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B.289 aurora-db.r5.large-16-write-run-4

1 t r an s a c t i on s : 327796 (546 .30 per sec . )
2 qu e r i e s : 6556206 (10926 .38 per s ec . )

B.290 aurora-db.r5.large-16-write-run-5

1 t r an s a c t i on s : 328637 (547 .70 per sec . )
2 qu e r i e s : 6573031 (10954 .49 per s ec . )

B.291 aurora-db.r5.xlarge-16-write-run-1

1 t r an s a c t i on s : 502008 (836 .62 per sec . )
2 qu e r i e s : 10041003 (16733 .82 per s ec . )

B.292 aurora-db.r5.xlarge-16-write-run-2

1 t r an s a c t i on s : 502198 (836 .95 per sec . )
2 qu e r i e s : 10044565 (16739 .99 per s ec . )

B.293 aurora-db.r5.xlarge-16-write-run-3

1 t r an s a c t i on s : 506690 (844 .44 per sec . )
2 qu e r i e s : 10134658 (16890 .22 per s ec . )

B.294 aurora-db.r5.xlarge-16-write-run-4

1 t r an s a c t i on s : 507430 (845 .66 per sec . )
2 qu e r i e s : 10149407 (16914 .53 per s ec . )
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B.295 aurora-db.r5.xlarge-16-write-run-5

1 t r an s a c t i on s : 508919 (848 .14 per sec . )
2 qu e r i e s : 10179177 (16964 .14 per s ec . )

B.296 aurora-db.r5.2xlarge-16-write-run-1

1 t r an s a c t i on s : 561237 (935 .36 per sec . )
2 qu e r i e s : 11225462 (18708 .44 per s ec . )

B.297 aurora-db.r5.2xlarge-16-write-run-2

1 t r an s a c t i on s : 562713 (937 .81 per sec . )
2 qu e r i e s : 11255045 (18757 .52 per s ec . )

B.298 aurora-db.r5.2xlarge-16-write-run-3

1 t r an s a c t i on s : 563264 (938 .74 per sec . )
2 qu e r i e s : 11266139 (18776 .15 per s ec . )

B.299 aurora-db.r5.2xlarge-16-write-run-4

1 t r an s a c t i on s : 564229 (940 .34 per sec . )
2 qu e r i e s : 11285422 (18808 .28 per s ec . )

B.300 aurora-db.r5.2xlarge-16-write-run-5

1 t r an s a c t i on s : 565302 (942 .12 per sec . )
2 qu e r i e s : 11306764 (18843 .56 per s ec . )
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B.301 aurora-db.r5.4xlarge-16-write-run-1

1 t r an s a c t i on s : 956765 (1594 .55 per s ec . )
2 qu e r i e s : 19136691 (31893 .23 per s ec . )

B.302 aurora-db.r5.4xlarge-16-write-run-2

1 t r an s a c t i on s : 958215 (1596 .96 per s ec . )
2 qu e r i e s : 19165665 (31941 .43 per s ec . )

B.303 aurora-db.r5.4xlarge-16-write-run-3

1 t r an s a c t i on s : 963499 (1605 .78 per s ec . )
2 qu e r i e s : 19271327 (32117 .75 per s ec . )

B.304 aurora-db.r5.4xlarge-16-write-run-4

1 t r an s a c t i on s : 962242 (1603 .67 per s ec . )
2 qu e r i e s : 19246097 (32075 .49 per s ec . )

B.305 aurora-db.r5.4xlarge-16-write-run-5

1 t r an s a c t i on s : 971385 (1618 .91 per s ec . )
2 qu e r i e s : 19429186 (32380 .66 per s ec . )

B.306 aurora-db.r5.large-32-write-run-1

1 t r an s a c t i on s : 385512 (642 .38 per sec . )
2 qu e r i e s : 7711138 (12849 .19 per s ec . )
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B.307 aurora-db.r5.large-32-write-run-2

1 t r an s a c t i on s : 382939 (638 .15 per sec . )
2 qu e r i e s : 7659722 (12764 .52 per s ec . )

B.308 aurora-db.r5.large-32-write-run-3

1 t r an s a c t i on s : 387972 (646 .55 per sec . )
2 qu e r i e s : 7760371 (12932 .60 per s ec . )

B.309 aurora-db.r5.large-32-write-run-4

1 t r an s a c t i on s : 387111 (645 .10 per sec . )
2 qu e r i e s : 7742994 (12903 .37 per s ec . )

B.310 aurora-db.r5.large-32-write-run-5

1 t r an s a c t i on s : 391468 (652 .38 per sec . )
2 qu e r i e s : 7830413 (13049 .30 per s ec . )

B.311 aurora-db.r5.xlarge-32-write-run-1

1 t r an s a c t i on s : 655644 (1092 .64 per s ec . )
2 qu e r i e s : 13115382 (21856 .89 per s ec . )

B.312 aurora-db.r5.xlarge-32-write-run-2

1 t r an s a c t i on s : 659793 (1099 .51 per s ec . )
2 qu e r i e s : 13197667 (21993 .30 per s ec . )

152



B.313 aurora-db.r5.xlarge-32-write-run-3

1 t r an s a c t i on s : 659003 (1098 .20 per s ec . )
2 qu e r i e s : 13181935 (21967 .13 per s ec . )

B.314 aurora-db.r5.xlarge-32-write-run-4

1 t r an s a c t i on s : 652358 (1087 .15 per s ec . )
2 qu e r i e s : 13049395 (21746 .77 per s ec . )

B.315 aurora-db.r5.xlarge-32-write-run-5

1 t r an s a c t i on s : 650250 (1083 .63 per s ec . )
2 qu e r i e s : 13006688 (21675 .41 per s ec . )

B.316 aurora-db.r5.2xlarge-32-write-run-1

1 t r an s a c t i on s : 987055 (1644 .97 per s ec . )
2 qu e r i e s : 19743810 (32904 .00 per s ec . )

B.317 aurora-db.r5.2xlarge-32-write-run-2

1 t r an s a c t i on s : 992079 (1653 .32 per s ec . )
2 qu e r i e s : 19844522 (33071 .35 per s ec . )

B.318 aurora-db.r5.2xlarge-32-write-run-3

1 t r an s a c t i on s : 991867 (1652 .97 per s ec . )
2 qu e r i e s : 19840099 (33064 .03 per s ec . )
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B.319 aurora-db.r5.2xlarge-32-write-run-4

1 t r an s a c t i on s : 992474 (1653 .99 per s ec . )
2 qu e r i e s : 19852014 (33084 .01 per s ec . )

B.320 aurora-db.r5.2xlarge-32-write-run-5

1 t r an s a c t i on s : 985782 (1642 .84 per s ec . )
2 qu e r i e s : 19718679 (32861 .87 per s ec . )

B.321 aurora-db.r5.4xlarge-32-write-run-1

1 t r an s a c t i on s : 1539589 (2565 .78 per s ec . )
2 qu e r i e s : 30795602 (51321 .92 per s ec . )

B.322 aurora-db.r5.4xlarge-32-write-run-2

1 t r an s a c t i on s : 1541574 (2569 .13 per s ec . )
2 qu e r i e s : 30835278 (51388 .91 per s ec . )

B.323 aurora-db.r5.4xlarge-32-write-run-3

1 t r an s a c t i on s : 1541662 (2569 .23 per s ec . )
2 qu e r i e s : 30836465 (51390 .00 per s ec . )

B.324 aurora-db.r5.4xlarge-32-write-run-4

1 t r an s a c t i on s : 1541631 (2569 .20 per s ec . )
2 qu e r i e s : 30836371 (51390 .21 per s ec . )
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B.325 aurora-db.r5.4xlarge-32-write-run-5

1 t r an s a c t i on s : 1539110 (2565 .01 per s ec . )
2 qu e r i e s : 30785683 (51305 .95 per s ec . )

B.326 aurora-db.r5.large-64-write-run-1

1 t r an s a c t i on s : 400639 (667 .55 per sec . )
2 qu e r i e s : 8014499 (13353 .86 per s ec . )

B.327 aurora-db.r5.large-64-write-run-2

1 t r an s a c t i on s : 404125 (673 .41 per sec . )
2 qu e r i e s : 8084224 (13471 .06 per s ec . )

B.328 aurora-db.r5.large-64-write-run-3

1 t r an s a c t i on s : 398920 (664 .72 per sec . )
2 qu e r i e s : 7980207 (13297 .40 per s ec . )

B.329 aurora-db.r5.large-64-write-run-4

1 t r an s a c t i on s : 402554 (670 .72 per sec . )
2 qu e r i e s : 8052828 (13417 .24 per s ec . )

B.330 aurora-db.r5.large-64-write-run-5

1 t r an s a c t i on s : 403022 (671 .57 per sec . )
2 qu e r i e s : 8062129 (13434 .12 per s ec . )
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B.331 aurora-db.r5.xlarge-64-write-run-1

1 t r an s a c t i on s : 774612 (1290 .71 per s ec . )
2 qu e r i e s : 15495699 (25819 .88 per s ec . )

B.332 aurora-db.r5.xlarge-64-write-run-2

1 t r an s a c t i on s : 779653 (1299 .13 per s ec . )
2 qu e r i e s : 15596175 (25987 .86 per s ec . )

B.333 aurora-db.r5.xlarge-64-write-run-3

1 t r an s a c t i on s : 781060 (1301 .51 per s ec . )
2 qu e r i e s : 15624965 (26036 .51 per s ec . )

B.334 aurora-db.r5.xlarge-64-write-run-4

1 t r an s a c t i on s : 780848 (1301 .17 per s ec . )
2 qu e r i e s : 15620424 (26029 .23 per s ec . )

B.335 aurora-db.r5.xlarge-64-write-run-5

1 t r an s a c t i on s : 781239 (1301 .81 per s ec . )
2 qu e r i e s : 15628292 (26042 .03 per s ec . )

B.336 aurora-db.r5.2xlarge-64-write-run-1

1 t r an s a c t i on s : 1307094 (2178 .20 per s ec . )
2 qu e r i e s : 26144516 (43568 .46 per s ec . )
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B.337 aurora-db.r5.2xlarge-64-write-run-2

1 t r an s a c t i on s : 1307479 (2178 .83 per s ec . )
2 qu e r i e s : 26152289 (43581 .02 per s ec . )

B.338 aurora-db.r5.2xlarge-64-write-run-3

1 t r an s a c t i on s : 1310803 (2184 .34 per s ec . )
2 qu e r i e s : 26219279 (43692 .24 per s ec . )

B.339 aurora-db.r5.2xlarge-64-write-run-4

1 t r an s a c t i on s : 1309273 (2181 .84 per s ec . )
2 qu e r i e s : 26188020 (43640 .99 per s ec . )

B.340 aurora-db.r5.2xlarge-64-write-run-5

1 t r an s a c t i on s : 1311042 (2184 .81 per s ec . )
2 qu e r i e s : 26223572 (43700 .66 per s ec . )

B.341 aurora-db.r5.4xlarge-64-write-run-1

1 t r an s a c t i on s : 2153272 (3588 .26 per s ec . )
2 qu e r i e s : 43072058 (71776 .30 per s ec . )

B.342 aurora-db.r5.4xlarge-64-write-run-2

1 t r an s a c t i on s : 2147448 (3578 .62 per s ec . )
2 qu e r i e s : 42956003 (71584 .19 per s ec . )
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B.343 aurora-db.r5.4xlarge-64-write-run-3

1 t r an s a c t i on s : 2150415 (3583 .55 per s ec . )
2 qu e r i e s : 43015569 (71683 .18 per s ec . )

B.344 aurora-db.r5.4xlarge-64-write-run-4

1 t r an s a c t i on s : 2149513 (3582 .04 per s ec . )
2 qu e r i e s : 42997084 (71652 .10 per s ec . )

B.345 aurora-db.r5.4xlarge-64-write-run-5

1 t r an s a c t i on s : 2140786 (3567 .48 per s ec . )
2 qu e r i e s : 42822844 (71361 .53 per s ec . )

B.346 polardb-manythreads-2-write-run-1

1 t r an s a c t i on s : 451419 (752 .35 per sec . )
2 qu e r i e s : 2708514 (4514 .12 per sec . )

B.347 polardb-manythreads-2-write-run-2

1 t r an s a c t i on s : 454478 (757 .46 per sec . )
2 qu e r i e s : 2726868 (4544 .74 per sec . )

B.348 polardb-manythreads-2-write-run-3

1 t r an s a c t i on s : 446212 (743 .68 per sec . )
2 qu e r i e s : 2677272 (4462 .08 per sec . )
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B.349 polardb-manythreads-2-write-run-4

1 t r an s a c t i on s : 448781 (747 .96 per sec . )
2 qu e r i e s : 2692686 (4487 .75 per sec . )

B.350 polardb-manythreads-2-write-run-5

1 t r an s a c t i on s : 452924 (754 .86 per sec . )
2 qu e r i e s : 2717544 (4529 .16 per sec . )

B.351 polardb-manythreads-4-write-run-1

1 t r an s a c t i on s : 804149 (1340 .23 per s ec . )
2 qu e r i e s : 4824894 (8041 .40 per sec . )

B.352 polardb-manythreads-4-write-run-2

1 t r an s a c t i on s : 806172 (1343 .60 per s ec . )
2 qu e r i e s : 4837032 (8061 .62 per sec . )

B.353 polardb-manythreads-4-write-run-3

1 t r an s a c t i on s : 805903 (1343 .16 per s ec . )
2 qu e r i e s : 4835418 (8058 .93 per sec . )

B.354 polardb-manythreads-4-write-run-4

1 t r an s a c t i on s : 797450 (1329 .06 per s ec . )
2 qu e r i e s : 4784700 (7974 .38 per sec . )
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B.355 polardb-manythreads-4-write-run-5

1 t r an s a c t i on s : 804696 (1341 .14 per s ec . )
2 qu e r i e s : 4828176 (8046 .86 per sec . )

B.356 polardb-manythreads-8-write-run-1

1 t r an s a c t i on s : 1496709 (2494 .47 per s ec . )
2 qu e r i e s : 8980254 (14966 .84 per s ec . )

B.357 polardb-manythreads-8-write-run-2

1 t r an s a c t i on s : 1512707 (2521 .12 per s ec . )
2 qu e r i e s : 9076242 (15126 .71 per s ec . )

B.358 polardb-manythreads-8-write-run-3

1 t r an s a c t i on s : 1493245 (2488 .69 per s ec . )
2 qu e r i e s : 8959470 (14932 .15 per s ec . )

B.359 polardb-manythreads-8-write-run-4

1 t r an s a c t i on s : 1500650 (2501 .02 per s ec . )
2 qu e r i e s : 9003900 (15006 .13 per s ec . )

B.360 polardb-manythreads-8-write-run-5

1 t r an s a c t i on s : 1508033 (2513 .33 per s ec . )
2 qu e r i e s : 9048198 (15079 .95 per s ec . )
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B.361 polardb-manythreads-16-write-run-1

1 t r an s a c t i on s : 2764963 (4608 .12 per s ec . )
2 qu e r i e s : 16589778 (27648 .71 per s ec . )

B.362 polardb-manythreads-16-write-run-2

1 t r an s a c t i on s : 2772253 (4620 .25 per s ec . )
2 qu e r i e s : 16633518 (27721 .53 per s ec . )

B.363 polardb-manythreads-16-write-run-3

1 t r an s a c t i on s : 2820359 (4700 .43 per s ec . )
2 qu e r i e s : 16922154 (28202 .55 per s ec . )

B.364 polardb-manythreads-16-write-run-4

1 t r an s a c t i on s : 2848370 (4747 .10 per s ec . )
2 qu e r i e s : 17090220 (28482 .62 per s ec . )

B.365 polardb-manythreads-16-write-run-5

1 t r an s a c t i on s : 2850690 (4750 .99 per s ec . )
2 qu e r i e s : 17104140 (28505 .94 per s ec . )

B.366 polardb-manythreads-32-write-run-1

1 t r an s a c t i on s : 4845779 (8075 .82 per s ec . )
2 qu e r i e s : 29074674 (48454 .91 per s ec . )

161



B.367 polardb-manythreads-32-write-run-2

1 t r an s a c t i on s : 4835186 (8058 .10 per s ec . )
2 qu e r i e s : 29011116 (48348 .62 per s ec . )

B.368 polardb-manythreads-32-write-run-3

1 t r an s a c t i on s : 4845852 (8075 .95 per s ec . )
2 qu e r i e s : 29075112 (48455 .70 per s ec . )

B.369 polardb-manythreads-32-write-run-4

1 t r an s a c t i on s : 4853880 (8088 .68 per s ec . )
2 qu e r i e s : 29123280 (48532 .10 per s ec . )

B.370 polardb-manythreads-32-write-run-5

1 t r an s a c t i on s : 4834847 (8057 .55 per s ec . )
2 qu e r i e s : 29009082 (48345 .31 per s ec . )

B.371 polardb-manythreads-64-write-run-1

1 t r an s a c t i on s : 7097935 (11828 .52 per s ec . )
2 qu e r i e s : 42587610 (70971 .10 per s ec . )

B.372 polardb-manythreads-64-write-run-2

1 t r an s a c t i on s : 7050196 (11748 .90 per s ec . )
2 qu e r i e s : 42301176 (70493 .41 per s ec . )
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B.373 polardb-manythreads-64-write-run-3

1 t r an s a c t i on s : 7062840 (11769 .97 per s ec . )
2 qu e r i e s : 42377040 (70619 .83 per s ec . )

B.374 polardb-manythreads-64-write-run-4

1 t r an s a c t i on s : 7116718 (11859 .75 per s ec . )
2 qu e r i e s : 42700308 (71158 .49 per s ec . )

B.375 polardb-manythreads-64-write-run-5

1 t r an s a c t i on s : 7107383 (11844 .21 per s ec . )
2 qu e r i e s : 42644300 (71065 .24 per s ec . )

B.376 polardb-150GB-2-write-run-1

1 t r an s a c t i on s : 381864 (636 .43 per sec . )
2 qu e r i e s : 2291184 (3818 .60 per sec . )

B.377 polardb-150GB-2-write-run-2

1 t r an s a c t i on s : 371589 (619 .31 per sec . )
2 qu e r i e s : 2229534 (3715 .83 per sec . )

B.378 polardb-150GB-2-write-run-3

1 t r an s a c t i on s : 377432 (629 .04 per sec . )
2 qu e r i e s : 2264592 (3774 .27 per sec . )
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B.379 polardb-150GB-2-write-run-4

1 t r an s a c t i on s : 387651 (646 .08 per sec . )
2 qu e r i e s : 2325906 (3876 .48 per sec . )

B.380 polardb-150GB-2-write-run-5

1 t r an s a c t i on s : 394853 (658 .08 per sec . )
2 qu e r i e s : 2369118 (3948 .49 per sec . )

B.381 polardb-150GB-4-write-run-1

1 t r an s a c t i on s : 702833 (1171 .37 per s ec . )
2 qu e r i e s : 4216998 (7028 .24 per sec . )

B.382 polardb-150GB-4-write-run-2

1 t r an s a c t i on s : 708522 (1180 .85 per s ec . )
2 qu e r i e s : 4251132 (7085 .11 per sec . )

B.383 polardb-150GB-4-write-run-3

1 t r an s a c t i on s : 720585 (1200 .96 per s ec . )
2 qu e r i e s : 4323510 (7205 .74 per sec . )

B.384 polardb-150GB-4-write-run-4

1 t r an s a c t i on s : 670219 (1117 .01 per s ec . )
2 qu e r i e s : 4021314 (6702 .09 per sec . )
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B.385 polardb-150GB-4-write-run-5

1 t r an s a c t i on s : 673649 (1122 .74 per s ec . )
2 qu e r i e s : 4041894 (6736 .42 per sec . )

B.386 polardb-150GB-8-write-run-1

1 t r an s a c t i on s : 1250839 (2084 .68 per s ec . )
2 qu e r i e s : 7505034 (12508 .09 per s ec . )

B.387 polardb-150GB-8-write-run-2

1 t r an s a c t i on s : 1211925 (2019 .84 per s ec . )
2 qu e r i e s : 7271550 (12119 .02 per s ec . )

B.388 polardb-150GB-8-write-run-3

1 t r an s a c t i on s : 1372472 (2287 .41 per s ec . )
2 qu e r i e s : 8234832 (13724 .47 per s ec . )

B.389 polardb-150GB-8-write-run-4

1 t r an s a c t i on s : 1293754 (2156 .21 per s ec . )
2 qu e r i e s : 7762524 (12937 .25 per s ec . )

B.390 polardb-150GB-8-write-run-5

1 t r an s a c t i on s : 1231165 (2051 .75 per s ec . )
2 qu e r i e s : 7386990 (12310 .51 per s ec . )
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B.391 polardb-150GB-16-write-run-1

1 t r an s a c t i on s : 2065902 (3443 .05 per s ec . )
2 qu e r i e s : 12395412 (20658 .32 per s ec . )

B.392 polardb-150GB-16-write-run-2

1 t r an s a c t i on s : 2096504 (3492 .65 per s ec . )
2 qu e r i e s : 12579024 (20955 .87 per s ec . )

B.393 polardb-150GB-16-write-run-3

1 t r an s a c t i on s : 2067163 (3444 .85 per s ec . )
2 qu e r i e s : 12402978 (20669 .09 per s ec . )

B.394 polardb-150GB-16-write-run-4

1 t r an s a c t i on s : 2105095 (3508 .36 per s ec . )
2 qu e r i e s : 12630570 (21050 .14 per s ec . )

B.395 polardb-150GB-16-write-run-5

1 t r an s a c t i on s : 2114775 (3524 .51 per s ec . )
2 qu e r i e s : 12688650 (21147 .07 per s ec . )

B.396 polardb-150GB-32-write-run-1

1 t r an s a c t i on s : 2797575 (4658 .04 per s ec . )
2 qu e r i e s : 16785450 (27948 .25 per s ec . )
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B.397 polardb-150GB-32-write-run-2

1 t r an s a c t i on s : 2774162 (4622 .19 per s ec . )
2 qu e r i e s : 16644972 (27733 .16 per s ec . )

B.398 polardb-150GB-32-write-run-3

1 t r an s a c t i on s : 2835099 (4715 .84 per s ec . )
2 qu e r i e s : 17010594 (28295 .06 per s ec . )

B.399 polardb-150GB-32-write-run-4

1 t r an s a c t i on s : 2863422 (4772 .07 per s ec . )
2 qu e r i e s : 17180532 (28632 .43 per s ec . )

B.400 polardb-150GB-32-write-run-5

1 t r an s a c t i on s : 2843491 (4738 .87 per s ec . )
2 qu e r i e s : 17060946 (28433 .22 per s ec . )

B.401 polardb-150GB-64-write-run-1

1 t r an s a c t i on s : 3914662 (6521 .90 per s ec . )
2 qu e r i e s : 23487972 (39131 .40 per s ec . )

B.402 polardb-150GB-64-write-run-2

1 t r an s a c t i on s : 4259803 (7098 .78 per s ec . )
2 qu e r i e s : 25558818 (42592 .70 per s ec . )
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B.403 polardb-150GB-64-write-run-3

1 t r an s a c t i on s : 4681078 (7797 .84 per s ec . )
2 qu e r i e s : 28086468 (46787 .06 per s ec . )

B.404 polardb-150GB-64-write-run-4

1 t r an s a c t i on s : 4937870 (8227 .82 per s ec . )
2 qu e r i e s : 29627220 (49366 .93 per s ec . )

B.405 polardb-150GB-64-write-run-5

1 t r an s a c t i on s : 4973430 (8280 .02 per s ec . )
2 qu e r i e s : 29840580 (49680 .10 per s ec . )

B.406 polardb-manythreads-1GB-500-write-run-1

1 t r an s a c t i on s : 7898510 (13151 .63 per s ec . )
2 qu e r i e s : 47391062 (78909 .81 per s ec . )

B.407 polardb-manythreads-1GB-500-write-run-2

1 t r an s a c t i on s : 7990975 (13305 .60 per s ec . )
2 qu e r i e s : 47945850 (79833 .59 per s ec . )

B.408 polardb-manythreads-1GB-500-write-run-3

1 t r an s a c t i on s : 7972243 (13274 .37 per s ec . )
2 qu e r i e s : 47833458 (79646 .23 per s ec . )
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B.409 polardb-manythreads-1GB-500-write-run-4

1 t r an s a c t i on s : 8007720 (13333 .30 per s ec . )
2 qu e r i e s : 48046320 (79999 .80 per s ec . )

B.410 polardb-manythreads-1GB-500-write-run-5

1 t r an s a c t i on s : 8002117 (13323 .77 per s ec . )
2 qu e r i e s : 48012705 (79942 .60 per s ec . )
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