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Preface
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effort to create a bigger focus on explainability in AI systems.

This thesis assumes the reader has some degree of familiarity with AI and the concepts related to

it. New techniques and concepts from state of the art literature will be reviewed and explained

according to our interpretation.

We want to take this opportunity to express our gratitude to our supervisor, Agnar Aamodt,

for his valuable guidance and feedback throughout this project. Also, our sincerest thanks to

Kerstin Bach for helping us with myCBR and providing help troubleshooting the system and

Amar Jaiswal for taking the time to discuss ideas related to CBR.

The thesis has a GitHub repository1 with all the code for the implemented system.

Sondre Engen & Piraveen Perinparajan

Trondheim, June 2019.

1https://github.com/piravp/XAI-CBR
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Abstract

Artificial Intelligence is in continuous development in an attempt to solve new and challenging

problems. With the success of AI, the issue of explainability has become more apparent. Many

of the algorithms used are considered opaque models unable to explain their decision to a user,

including deep-neural networks are one of these.

In this thesis, we have taken a closer look at previous attempts to explain AI, both with and

without, case-based reasoning. The use of model-induction methods have been at the center

of our research. We have designed an architecture for a system that is capable of explaining

a deep-neural network, by combining case-based reasoning and model-induction methods. To

showcase the system, we implemented a small part of the designed system to showcase how it

could be used.
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Chapter 1

Introduction

In 1.1 we present a brief example on the power of AI. We continue by talking about the problem

and motivation for this thesis in 1.2. Section 1.2 highlights one aspect of Artificial Intelligence

(AI), namely explainability in AI, which has become increasingly important to consider as AI

continues to rise in popularity. The next sections present the thesis goal, research questions, and

research method. We wrap up this chapter by presenting the structure of the remaining thesis

in section 1.8.

1.1 Introduction

In recent years, AI has seen increasing growth in popularity [47]. This is partly due to increased

and cheaper computing power that has become available as well as the growing availability of big

data. In particular, the interest in Deep Learning (DL) has exploded over the recent years. Its

ability to solve problems in different domains has caught the attention of various industries. DL

is being used in autonomous vehicles, detection of cancer cells, speech-recognition and finance to

mention a few.

For a long time, the Chinese board game, Go, was considered impossible for machines to master

because of its complexity [83]. However, in 2016, Google DeepMind’s AlphaGo was able to defeat

the worlds best Go player, Lee Sedol. This came as a surprise even within the AI community. In

the aftermath of AlphaGo’s deciding move (move 37), there was both surprise and confusion as

to why it acted as it did [30].

1
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1.2 Problem and Motivation

Trust

There is little doubt that DL has helped revolutionize some industries and has helped solve

problems that were previously not solvable. However, it has come with a prize. A weakness of

many of these systems is their inability to explain their advice and decisions to human users.

Despite the head-scratching many scientists experienced after AlphaGo’s deciding move, it didn’t

cause any real danger to human life. There are however other high-stake domains where the lack

of explanation might. A medical doctor, for instance, may get the correct disease classification

from an MRI image classifier, but might find it hard to trust the system as long as no justification

or explanation of how it reached its conclusion can be given. The need for explainable AI systems

has boosted a new interest in this area, also exemplified by the recent research program in the

US by Defense Advanced Research Projects Agency (DARPA) targeting eXplainable Artificial

Intelligence (XAI) [21].

Privacy

In April 2018, EUs General Data Protection Regulation (GDPR) came into force and started

applying to any company processing EU citizens personal data [37]. Under Article 22, ”The data

subject shall have the right not to be subject to a decision based solely on automated processing,

including profiling, which produces legal effects concerning him or her or similarly significantly

affects him or her”. Where profiling is “any form of automated processing of personal data

consisting of the use of personal data to evaluate certain personal aspects relating to a natural

person” which, could also apply to any ML algorithm that make decisions from personal data.

It was believed that this meant the users had the right to explanation - a right to be given an

explanation for a decision made by an algorithm. However, a review by Mittelstadt et al. [66]

highlighted how this is not the case. Nevertheless, this aspect is still important to consider as it

should be expected that, although not mandatory by law yet, we can expect the right for an

explanation to become legally mandated at some point in the near future with AI’s increased

usage. A system built with algorithms solely based on black boxes would have difficulties meeting

this future requirement.

As AI systems continue to partially or fully replace humans, the task of opening the ”black-box”

model has become increasingly important. In order to enable an explanatory functionality, certain

properties, knowledge, and underlying methods of a system will need an explicit representation

at some level. A symbol-processing system could work jointly with a Deep Neural Network

(DNN) to give the total system the prediction accuracy of the DNN while also enabling the

desired explanation capability. The explanation knowledge may be of various types, including

rules, deeper models or past cases. In addition to the benefits it would provide to the system

developer in terms of developing and evaluating mistakes, it would also be a valuable step
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towards providing trust in the system with respect to high stake decisions [93], and uncovering

deeper meaning behind a DNN’s decisions.

CBR as Explainer

The motivation to use CBR as the ”engine” for our explanation system is to assess whether the

advantages of CBR in problem solving can be transferred to generate useful explanations. Our

hypothesis is that advantages such as utilizing previous experiences and the ability to incorporate

domain knowledge and context can bring forth a new dimension to the system, thereby generating

more useful explanations to the user. Based on our literature review from the specialization

project, we did not find any evidence of others who have created an implementation or a proof

of concept where CBR is used to explain a black-box model. Furthermore, CBR is regarded

as better suited to explain the decisions of complex models, such as a DNN, as CBR bases its

reasoning on previous experiences according to Nugent et al. [69].

1.3 Approaches

This thesis has a heavy focus on model induction techniques. Hence, it’s important to establish

the definition of model induction early on. Model induction can be explained as various techniques

that experimentally infer from a black box model, such as a DNN, to explain the decision of the

black box.

A model agnostic approach is when the model to generate explanations can handle any ma-

chine learning model regardless of the underlying architecture, due to its separation from the

architecture itself. This is done by disregarding the internal and only looking at the input and

output. The good thing about these approaches is that they can build on top of any black-box

without the need to alter the underlying model performing the prediction, only expanding with

explanatory abilities.

1.4 Goals and Research Questions

With this in mind, we have formulated goals and research questions which we seek to answer in

this thesis. We have picked up from where we left our research with the specialization project

[27] when doing further research for this thesis. However, the research conducted for the master

thesis has been narrowed down in order to focus on only what is required to design a more

detailed architecture and creating a proof of concept.

Goal: We want to extract information from a DNN using model induction techniques extended

by case-based reasoning to derive an explanation.
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The extracted information should be passed through the case-based explainer which processes

the information with previous information to create knowledge used to generate an explanation

to the user. We hope by combining local interpretation1 techniques along with a case-based

reasoning framework, we should be able to create a global interpretation2 of a DNN model, and

use said interpretation to generate explanations to the user.

Ultimately, we want to end up with a proof of concept for a system that has the capability to

create a convincing explanation using the described architecture. We will base the design of

our proof of concept on previous research from our specialization project and further research

performed during our current work for the master thesis.

Research Question 1: What is the current status of eXplainable Artificial Intelligence (XAI)

and eXplainable Artificial Intelligence (XAI) related to Case-Based Reasoning (CBR)?

In addition to the research that we did in the specialization project, we think there is more

research to be done in order to create a more detailed architecture. Thus, we will continue our

work with the research on XAI and XAI related to CBR.

Research Question 2: How can model-agnostic methods be combined with Case-Based

Reasoning (CBR) to gain knowledge of an underlying Deep Neural Network (DNN)?

We want to research whether model-agnostic methods can be combined with CBR to gain

knowledge of an underlying DNN. This includes a method which is applicable to most of the

popular DNN-architectures. We consider this a desirable property to not limit which datasets

the explainer-module is applicable to.

Research Question 3: Can our proposed system provide a step towards achieving user-

understandable explanations?

We want to see if there is a way to design a system which can generate user-understandable

explanations.

Although it may be possible to design such a system, it is worth noting that this is a proof of

concept. Hence, a full implementation is unlikely given the limited amount of time.

1A simplified model that only approximates decisions made about a few data points, typically only one.
2A simplified model that approximates decisions made for “all” possible data points.
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1.5 Research Method

The research method will consist of design science and then creating a running example. In

practice, both of these methods are connected to the research questions, respectively. The first

part, design science, consists of developing an architecture to show how a DNN extended by

model induction methods and the CBR framework can work together to explain outputs from a

DNN. The second part, consist of testing how well the system performs on an example case.

1.6 Overall Process

As this thesis was a continuation of our previous work in the specialization project, it was clear

that we still lacked relevant projects to design a system based on, and as such, a majority of our

time was used to do further research in the field. The majority of the first months were spent

finding more research. As the field is in continuous development, new papers were discovered

regularly.

From this research, we spent a fair amount of time planning our architecture and expanding

the previous architecture from the specialization project. As it is impossible to verify a good

architecture at first glance, and very difficult to draft the final details, we left the architecture as

general as possible, with the expectation to include final details from our implementation later

on in the project.

The development process started in early April. We spent a good amount of time planning the

process, which would ultimately help in the implementation. As we were two student working

on this theses, we split the development task into two parts. Figuring out the CBR framework

and how to use it, and developing the black-box (neural network) on a pre-selected dataset with

corresponding explanatory libraries. When both of these parts were finished, it was simply a

matter of connecting the two.

In terms of developing our architecture, we had to spend some time figuring out how to apply

the libraries we chose to use. We initially chose to use myCBR for the CBR implementation.

This turned out to be somewhat of a challenge as there were some problems with working

on a different OS than the developers, and some features which were lacking in the original

implementation of the REST API. These problems were fixed by the developers, and the various

features which were needed on our side, were simple to implement with the help of Kerstin Bach.

The XAI libraries that were of interest, which we based our explanation engine on, had a good

amount of open code associated with them, however utilizing these code bases was very difficult

and time consuming, with some of the specifics functions used being deprecated and had to be

replaced, and the code itself was usually not user friendly with no comments.
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The second part of the implementation was the testing phase, where we would use our architecture

on a particular problem to see what explanation produces. The quality of the explanation was

difficult to quantify, and couldn’t really be measured directly.

1.7 Thesis Structure

In the remainder of the thesis the structure is set up in the following manner:

• Chapter 2 - Background Theory: Core concepts the thesis is based on.

• Chapter 3 - Background Research: A summary of relevant research from the special-

ization project with regard to the state of the art in XAI.

• Chapter 4 - Architecture: A deep dive into the final architecture that was designed

and discussions related to this.

• Chapter 5 - Implementation: We present our implementation and show a running

example.

• Chapter 6 - Discussion: General discussion.

• Chapter 7 - Conclusion and Future work: Conclusion and future work.



Chapter 2

Background Theory

This chapter will provide the reader with background theory needed to read this thesis. It will

cover topics such as Artificial Neural Network (ANN), eXplainable Artificial Intelligence (XAI),

Case-Based Reasoning (CBR) and knowledge containers. These topics are covered from 2.1 to

2.3. For our discussion related to XAI, we make a distinction on terms that are often used

interchangeably in XAI research in 2.4. We conclude this chapter by including some relevant

background theory from the specialization project in 2.8. This chapter lays the groundwork for

discussions further in the thesis.

2.1 Aritifical Neural Networks and Deep Neural Networks

Artificial Neural Network (ANN) is a field in computer science which is loosely modeled after

the human brain. It works by combining individual neurons to form what is known as a layer.

Any network needs to have at least an input and an output layer. The input layer takes in a

given number of inputs and outputs a prediction, e.g. whether the system detected a cat or a

dog. What differentiates ANN from Deep Neural Network (DNN) is the number of hidden layers.

Any additional layer between the input and output layer is known as a hidden layer. More than

one hidden layer constitutes a deep neural network. ANN has been successfully applied to many

different domains such as image recognition, speech recognition, music generation, recommender

systems and more. ANN takes in instances of inputs which it then tries to create internal

patterns of. Typically, as the training converges, the system manages to capture a higher degree

of abstraction for each layer. For instance, when dealing with images, the layers may be broken

down into these level of abstractions: individual pixels, edges, objects, and finally complete

image.

7
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Figure 2.1: Visualization of the internal patterns forming inside a neural network. The greater
the edge, the greater the contribution to the final prediction. [89]

As illustrated in figure 2.1, the higher level of abstraction unfolds between each layer. Between

the input and last hidden layer, it has managed to figure out a pattern in the data.

2.1.1 Deep Belief Networks

A Restricted Boltzmann Machine (RBM) is a shallow two layer net, with no intra-connected

layers. RBM can be combined, forming a type of neural network called Deep Belief Network

(DBN) [45], where each layer in the Deep Belief Network (DBN) contain different features. The

goal of a RBM is to reconstruct the input with high-level concepts learned in an unsupervised

fashion, one layer at a time, where the input of one layer is the target of the next, similar to

an auto-encoder. Once all layers are trained, they can be taught to classify by fine-tuning on

supervised data through the whole network using previously learned internal features.
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Figure 2.2: Inner structure of a Deep Belief Network, with internal RBM layers with one-
layer back-propagation at the end. x is the input layer. It is trained using a combination of

unsupervised- and supervised learning [97].

2.1.2 General Additive Models

General Additive Models (GAM) are viewed as a powerful interpretable model in machine

learning and statistics [42]. The purpose of GAMs are to maximize the quality of prediction on

a dependent variable Y from various distributions by estimating non-parametric functions of the

predictor variables (x) that are connected to Y via some link function. The model relates to

any univariate (function of only one variable) response variable Y , to some predictor variable xi,

with E being an exponential family distribution (e.g. normal, binomial or Poisson) along with a

link function g. fi can be any arbitrary non-linear function [92].

g(E(Y )) =
∑

fi(xi) (2.1)

2.2 Case-Based Reasoning

Case-Based Reasoning is the process of solving new problems based on the solution of similar

past cases, where each case is an experience. The principle is broadly based on how humans

solve problems: solving new problems with past experiences in similar situations. It commonly

consists of a 4-step process as described by Aamodt et al. [2]:
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Figure 2.3: CBR Cycle [2], with a overview of how a problem is solved. A case is generated
from a problem (problem characterization) and the steps are completed in sequence to solve the

problem.

• Retrieve: Given a target problem, in the form of a case consisting of a problem and its

corresponding attribute, the system searches among previously solved cases to find similar

cases with a solution.

• Reuse: Map the solution from previous cases to the new problem. Adapting their solutions

to generate a new case that fits the new problem.

• Revise: Verify if the generated solution solved the target problem by applying the solution.

If the solution didn’t solve the target problem, revise if possible, or evaluate by other

means.

• Retain: Anything that needs to be stored is stored in this step. This could either be a

complete case with a solution or a case which contains some status that it is waiting for

solution to be added at a later time.
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In the context of XAI, the explanation is regarded as the solution in CBR [55], sometimes

referred to as CBE (Case-Based Explanation).

2.2.1 Knowledge Containers in CBR

Within the CBR cycle, we have 4 knowledge containers which interplay to perform the various

steps in the CBR cycle. These are commonly know as:

• Vocabulary: How a case is represented, the terminology used to represent information/-

data. Every attribute definition, the possible values for each attribute, the attribute

weights, etc. We also have several sub-containers within: Retrieval Attributes, Input

Attributes and Output Attributes.

• Similarity Measure: Holds all the knowledge that is needed to compute the similarity

between cases. This includes measures to compute the similarity between whole cases, but

also between single attributes.

• Case-Base: Contains the experiences in the form of cases. These are usually stored in

pairs of a problem description and a solution, or only the problem description if unsolved.

• Solution Transformation: Also called the adaptation container. This container is

responsible for adapting previous cases’ solution to fit a new problem.

2.2.2 Knowledge, Information and Data

These are terms that are used frequently in this thesis. A definition is needed to get a clear

distinction between them as they are often used together. We embrace the definition given by

Aamodt [1]: Data is syntactical entities, i.e. patterns with no meaning, information is data with

meaning, i.e. interpreted data, while knowledge is information that is learned, i.e. information

that has been processes and incorporated into the system. The role of knowledge is to enable the

system to interpret data to information to elaborate and derive new information to learn more.

In terms of generating explanations to a system, knowledge is at the core of the reasoning process.

However, it remains a challenge to obtain and use this knowledge to explain a solution with

regards to the domain knowledge of the system.

2.3 Knowledge-Intensive CBR

A CBR system is a lazy-learner. It doesn’t generalize in the learning-phase, but simply stores

the cases in its memory and utilizes the 4-step process to solve new problems at run-time. This
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approach, however, is severely limited with respect to the amount of knowledge the system

contains. Each case usually only contains data, which will make it difficult to create any

explanation or reasoning beyond what’s already encapsulated in it. A user might draw some

information from looking at a specific case, but again, an explanation would be difficult to draw

without knowledge related to this information.

Figure 2.4: Knowledge-Intensive Dimension w.r.t. CREEK and a Knowledge-Poor System -
Knowledge vs Data [1]

The knowledge-intensive dimension in figure 2.4 specifies how a knowledge-intensive system with

domain knowledge compares to a regular CBR system which only stores cases. We have multiple

features along the dimension. The most important one related to explanations, however, is the

similarity metric. If we are able to measure the similarity of new problems compared to previous

problems, we should be more adapt to use our previous experience and knowledge.

2.4 Explainability vs. Interpretability vs. Transparency

In existing research, the terms explainability and interpretability are often used interchangeably.

In fact, depending on the scientific community addressing these terms, there are disagreements

on how to define each of these terms in and of themselves [39]. More specifically, according to

Lipton [58], there is no clear agreement as to what interpretability actually means among the

researches who use these terms. In this section, we want to make the reader aware that there is

a distinction here worth noting for further discussions.

Tomsett et al. [90] define explainability as to which extent the system can provide clarification

for its outputs. They define transparency as the level to which a system can provide information

about its internal working and the data it has been trained on. While interpretability is the

level to which an agent (meaning the user) gains, and can make use of both the information

embedded within an explanation given by the system and the information provided by the

system’s transparency level. This gives us these three definition, that we use as our interpretation:

Explainability - Explainability can be understood as the justification outputted by the system

with regards to a decision or belief.
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Interpretability - Interpretability has no formal definition which is agreed upon. It’s highly

subjective, but for our purpose, we define it as the systems ability to present its reasoning in

understandable terms to the user.

Transparency - While interpretability is to what degree we can gain or understand information

from the model with respect to the user, transparency only refers to the ability to inspect the

underlying model workings.

2.5 Approaches to XAI

DARPA presents three categories for explainable AI [21]. These are somewhat outdated, and as

such, we combine these categories with the sub-categories presented by Molnar [67].

2.5.1 DARPA’s Categories

We start by presenting DARPA’s three categories. Interpretable Models consist of using

machine-learning techniques that learn more structured, interpretable or causal models. This

implies model transparency [24]. The explanation can be obtained from the model itself using

decision trees, bayesian rule lists and so on.

Model induction is a technique that experimentally infer from a black-box model to approxi-

mate an explainable model to explain the decisions of the black-box.

Deep Explanation is a modified or hybrid deep learning approach that learns more explainable

features, explainable representations or explainable generation facilities.

2.5.2 Molnar’s Categories

Model-Specific vs. Model-Agnostic

Model-agnostic refers to the ability to explain any model, regardless of its inner workings. These

tools usually work by examining the input-output pairs from the model. By definition, these do

not have access to the model internals, such as weights or structural information.

Model-specific are interpretable tools limited to specific model classes. For instance, they may

only work for neural networks, or regression weights in a linear model. Gradient based methods

belong to this category. By definition the interpretation of intrinsically interpretable models are

always model-specific.

Intrinsic vs. Post-Hoc

Intrinsic models are models that are inherently interpretable. In essence, this means there are
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no post-processing required to make them interpretable. Despite being inherently interpretable,

it is possible to apply post-hoc methods to decide feature importance.

Post-Hoc is any method where the model is made interpretable after training. Post-hoc methods

are required for models which are considered to be black-boxes, such as deep neural network, to

allow for any interpretability at all.

Local vs. Global

Local models generate explanation based on a few, typically only one, datapoint. The explanation

is meant to give the user an idea of why a particular prediction was given. This is typically

achieved by slightly changing the features to find the prediction boundary.

Global models give a more comprehensive overview of the model by explaining the behaviour of

the model as a whole. The trained model, knowledge of the algorithm and the data is needed to

create a global model.

2.6 Open vs. Closed Black-Box

There is no clear formulation as to what exactly constitutes an open or a closed black-box system

in XAI, as a closed black-box usually refers to a system where only the input and output can be

viewed. To make a black-box more interpretable one can open the box. By opening the box, we

take a look under the hood and use specific knowledge about the underlying machine-learning

algorithm as an extra layer of information, e.g. by looking at activation patterns (neuron

activation) in an ANN or use information from the weights to calculate the importance of the

input features (deconvolution, layer-wise relevance propagation) on the output. With respect to

an open black-box, there is also the possibility of changing elements of the model to be more

transparent, e.g. changing the architecture of an ANN to be more transparent.

2.7 Data Types

Within machine learning, there are multiple different data types used for training the different

models. It’s important to differentiate the most common types used. The most classical type

is tabular, where every record shares the same set of features, and each feature can be either

numerical, categorical or boolean. The other common type is images, where each record is

an image with a corresponding target value. The final type is textual, which is any string

representation, usually used for language modelling, topic classification etc. There are also some

other types, albeit less common, including sequential data, sound frequencies, movement patterns

or a mix of all of the above.
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2.8 Background Theory from Specialization Project

There are central concepts, such as how to explain what constitutes a good explanation and how

this relates to the type of user, presented here from the specialization project which is important

for further reading.

2.8.1 Explanations Goals

Research by Miller et al. [64] indicate that most research conducted in the field of XAI do not

have a solid definition of what constitutes a good explanation, instead relying on the author’s

intuition.

The primary goal when we talk about explainability in this thesis is making whatever explanation

that is presented understandable to the user. It is hard to define what can and can not be

classified as a good explanation [64]. Giving one type of explanation might make more sense

in one context, whilst other aspects need to be considered for other users. Before tackling the

problem of explainability, it would be helpful if we had some explanation goals or properties

which we could use to evaluate an explanation system as a whole. Sørmo et al. [88] present five

explanation goals that can be regarded as inherently important in any explanatory systems:

1. Transparency: Explain how the system reached the answer.

2. Justification: Explain why the answer is a good answer.

3. Relevance: Explain why a question asked is relevant.

4. Conceptualization: Clarify the meaning of concepts.

5. Learning: Teach the user about the domain.

Transparency may be most relevant to knowledge engineers who wish to debug the system. It

is also useful where it may be life critical for the user to know how the system reached the

answer, e.g. a physician treating a cancer patient. Ensuring trust is probably the most important

property of an explanation system. Explaining why the system should be trusted, through

justification, would therefore, be helpful in this regard.

G. Ras et al. [72] highlight another set of properties which they argue any explanation system

should possess. The closer the system is to these properties, the better it should perform in a

general sense.

1. High Fidelity: The degree to which the interpretation method agrees with the input-

output mapping of the system. In other words, to the degree the system is able to generate
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correct explanations with respect to the input and output of the system it’s set out to

explain.

2. High Interpretability: To which extent a user can obtain true insight into how actionable

outcomes are obtained. High interpretability is closely related to what degree a user would

be able to learn from the system.

(a) High Clarity: The degree to which the resulting explanation is unambiguous, i.e.

the explanation cannot be misinterpreted.

(b) High Parsimony: An parsimonious explanation is a simple explanation. Related to

Occams’s razor.

3. High Generalizability: The degree to which the system can be applied to different

underlying architectures.

4. High Explanatory Power: How many different questions the system can answer.

2.8.2 Users

Another aspect that is important to consider, is who will be utilizing the system. Different users

have different needs [73] from among the goals presented by Sørmo et al. [88].

The users can be divided in two categories. One is the lay user of the system. This can be

the owner of the system, the end user, the data subject or the stakeholders. Each of which has

different needs. The owner is concerned with the explainability question about the capacity of

the system, a justification of how the system came to a conclusion and aspects of accountability.

The end user is concerned with the capabilities of the system and requires justification regarding

the predictions made by the underlying system. The data subject, the entity whose information

is being processed by the underlying system, is mostly concerned with the ethical and moral

aspects that results from utilizing the decision from the system, i.e. the consequences of trusting

the system on important matters. The stakeholders are mostly interested in the ethical and legal

concerns raised in every phase of the system.

The other is the expert user: engineers and developers. The engineers are interested in an

explanation of the functional nature of the system, i.e. what effect the various hyper-parameters

have on the performance and how this can be used for model debugging. The developers seek

to understand the goals of the system and figure out if they have been met by the underlying

model and whether it understands the behaviour of the model in various use cases. Another

expert user not mentioned by Ras et al. [73], is the scientists who seek to gain new knowledge

or learn from the model by understanding the deep underlying relation on an explanation to

understand more of the domain in which the model operates.
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2.8.3 User Satisfaction

Alan Cooper’s book [18] compares poorly designed software with inmates running an asylum. It

is an analogy for how software designed by programmers, rather than an interaction designer, will

suffer from a lack of user-oriented design. Miller et al. [64] argue that AI is facing a similar fate -

despite the efforts being made to explain AI. Ultimately, the authors fear that AI researchers

are designing agents for themselves rather than for the intended users. Based on an in-depth

survey, Miller et al. present several key concepts within XAI which are user-oriented. One of

these are contrastive explanations. Contrastive explanations may be more beneficial both to the

user and the designer of the system. Explaining ”Why A and not B?” is often easier than giving

a full cause attribution because the system only needs to understand the difference between

case A and B. If the system was only to explain, ”Why A?”, there is going to be an implicit

contrast case assumed by the system which may be different from what the user had in mind.

By formulating the contrast case explicitly, Miller et al. argues that this is more beneficial for

both the user and the system.

Some of the research done in the field has to do with finding how different kind of justification

types perform with respect to user satisfaction. Herlocker et al. [44] conducted an experiment

on a movie recommender system and found that most users were satisfied when the system

provided the neighbors’ rating or when shown a single strong feature, such as a favorite actor.

They were less receptive to complex justification techniques, such as a full neighbor graph. This

is an indication that lay users prefer simple and concise explanations over more detailed complex

ones.

Symeonidis et al. [87] show that providing the most important feature along with the user’s

past history were rated as more satisfactory by users. Bilgic et al. [11] has conducted a review

of previous studies and found that feature-based justification was superior to neighbor-based

justification.



Chapter 3

Background Research

In this chapter, we will summarize what we found from our previous specialization project, and

expand on this in this chapter by exploring new areas related to CBR and explanation generation.

Chapter 3.2 - 3.4 are grouped accordingly to three of the categories that were described in the

previous chapter. In 3.5, we present what has been done on case-based explanations. This

chapter is a direct attempt at tackling research question 1 on what is the current status of XAI

and CBR.

3.1 Notable Research from the Specialization Project

This section has a selection of previous research from the specialization project [27].

International Joint Conference on Artificial Intelligence 2017 XAI (IJCAI 2017)

[46]

”How should explainable models be designed?”, ”What type of user interactions should be

supported?”, ”How should the quality of an explanation be measured?” and ”What can we learn

about XAI from fields which are not directly related to ML?”. These are some of the questions

raised by the organizers. IJCAI2017 is described by the organizers as a platform for researchers

to learn and share their recent work in XAI. The main themes for this proceeding are: 1) Deep

learnings techniques, 2) Other types of ML and knowledge acquisition models and 3) Application

of symbolic logical methods to facilitate their use in applications where supporting explanations

are critical.

The IJCAI2017 conference had meta-papers discussing and addressing the research field. One of

the papers made the case on why it’s important to work alongside the social- and behaviour-

science community to gain a better understanding of what constitutes a good explanation.

Another paper highlighted how racial, gender and other biases present in the society have proven

18
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to influence the decisions of AI systems and how these biases can be exposed with the assistance

of XAI. Other papers presented various proposals for practical implementations in different

domains ranging from planning to robotics using techniques such as feature analysis, Visual

Question Answering (VQA), Probabilistic Setential Decision Diagram, Explainable Principal

Component Analysis, and Gray-Box Decision Characterization. The practical papers show

promising results, with the meta-papers highlighting important aspects worth dedicating more

research to.

International Joint Conference on Artificial Intelligence 2018 XAI (IJCAI 2018)

[22]

IJCAI 2018 extends the conference from IJCAI17. The conference featured a broad range of

papers in XAI from planning to Reinforcement Learning. With the introduction to GDPR,

we see an emphasis on explanation in terms of different user needs. Systems which are used

directly by users, like recommendation systems, planning, and RL, are the reoccurring topics

on explanation. Some of the main topics included: improved trust in the system and increased

transparency and interpretability. The methods used to achieve this ranged from combining

models of varying transparency to achieve better explainability to modifying the underlying

models to be more transparent. Some techniques included decomposing the reward in a RL

setting using salience maps to aid visual explanations, modifying the underlying black-box,

evaluating planning and backtracking in search, among many others.

International Conference on Cased-Based Reasoning 2018 (ICCBR 2018) [65]

ICCBR is the first conference with a focus on using CBR to explain intelligent systems. The

conference had three position papers and five research and application papers. Two of the

papers focused on combining CBR with other techniques to create an explainable recommender

system. Among several interesting techniques, the first paper introduced a simple yet effective

technique for a more convincing explanation called odds ratio. It’s a way to tell the user that

A was chosen over B because it was twice as likely, instead of just ”A was chosen because it

was more likely than B”. Other interesting ideas was combining an ensemble of learners to

produce several explanations that could be merged into one explanation using fuzzy logic. The

first part of the conference concluded with Adam J Johs et al. review on how to measure the

quality of explanations in explainable case-based reasoning (XCBR). They found that the current

measurement of explanation tends to be binary: either is of quality or is not of quality. The

authors therefore call for a framework for quality measurement.

Attribution

An attribution method is a local (instance based) explanation for how each feature or attribute

contributed to the final prediction, e.g. which pixels in an image were related. This is also called
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the sensitivity mapping between input and prediction.

Perturbation

Perturbation is when we change some input with respect to possible alternative input to observe

to what degree an input feature affects the output. The major drawback to this approach is

the computational cost, which for models with sufficiently large input spaces is not possible to

evaluate every possible perturbation for. Another drawback is the saturation problem[82]. This

is when changes to the input have no observable effect, leading the observer to conclude the

input features are not relevant, when in reality the input is simply being saturated (contribution

is being drowned out). Illustrated with a simple example: let’s say we have a simple function

y = max(x1, x2) when x1 = 1, x2 = 1 =⇒ y = 1. If we perturb x1 = 0 to observe changes, we

wont see any difference to the output, but in reality x1 is just as important as x2 on the function.

One solution to the saturation problem is to perturb combinations of inputs. However, this

increases the computational cost even further.

Shapley values

The Shapley value is from cooperative game theory and measures the average marginal effect of

including input over all possible orderings in which inputs can be included [82] [78]. In other

words, it says something about how important each player(feature) is to the overall cooperation,

and what payoff(score) can be expected from said player(feature).

φi =
∑

S⊆F\{i}

|S|!(|F | − |S| − 1)!

|F |!
[fS∪{i}(xS∪{i})−fs(xs)] (3.1)

The Shapley value, defined in equation 3.1, where F is the set of all features and S is all the

feature subsets we are interested in computing. To compute the importance value for each

feature, which represents the effect on the model prediction of including that feature, a model

fS∪{i} is trained with that feature present and another fS with the feature withheld. The two

models’ predictions are compared to the current input. xs is the values of the input set S.

The Shapley values then computed are used as feature attributions, which are weighted for all

permutations [60]. The actual Shapley value has in most cases a high computational cost, with

the requirements to retrain with the number of features in S and calculate for every possible

permutation of features of interest.
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Figure 3.1: The intuition for LIME. The red cross is observation and the rest are perturbations
of this observation or closely related observations. The background represent the model’s
complex decision function which we try to approximate. The dashed line represent the local

linear approximation [93].

LIME

Tulio Ribeiro et al. [93] created a model-agnostic tool to create explanations of the black-box

algorithm used - a tool known as Local Interpretable Model-Agnostic Explanations (LIME). It

works by approximating (learning) the black-box model locally around the prediction, creating

multiple linear explanations for a given black-box. LIME asserts that it is possible to fit a simple

model around a single observation, which will approximate how the model behaves locally. This

approximation is created by perturbing the observations in a number of different ways with

respect to the feature dimensions to generate locally similar observations for our area of interest.

The perturbed observations are predicted by the black-box model, which an interpretable model

approximates the prediction of (see figure 3.1). This can be used to explain a given feature

dimension along with the similarity weight between the perturbations and observations later to

a user. As a user would easily get swamped with information for every feature, submodular pick

was used to only select the instances with greatest coverage (broad and non-redundant) over the

feature space.

Figure 3.2: Explanation from LIME(Left) and aLIME(Right), aLIME with a rule based
explanation, whilst LIME use an overview of each attributes importance [76].
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Anchor

aLIME (anchor LIME) extends LIME by explaining individual predictions with if-then rules,

combining the benefits of local model-agnostic explanations with the interpretability of rules

where an anchor (explanation) is a rule that sufficiently (Probably Approximately Correct)

explain a prediction, and any changes to the rest of the instance do not break the connection

with the anchor to explain a prediction. The explanations are more interpretable to a user, and

outperform regular LIME in terms of coverage with its flexibility to alter greediness (how specific

to the particular input) of an explanation [76]. Later an improvement of aLIME called Anchor

was introduced. It focuses on solving one big problem with LIME, namely the ”unclear coverage“

problem [75]. LIME is unclear of the coverage of a local explanations, which can mislead users

into thinking a local explanation applies to unseen instances when it does not, with no clear

boundary of a given local explanation. Anchors only present explanations that are sufficiently

meet the conditions for the model with high probability. There are two algorithms which

Anchor uses to generate these rules: Bottom-up Construction and Beam-Search Construction.

Bottom-up try to find the rule with best coverage with a greedy search, which is guaranteed to

find short anchors. It does, however, have a few shortcomings when finding this anchor: it only

maintains a single rule at a time that it incrementally augments, losing any sub-optimal choices.

Beam-Search instead maintain the best candidates, with a guided beam search(explore most

promising candidates) among multiple candidates to identify anchors with high coverage.

Formally an anchor A is defined by Ribeiro et al. [75] as a rule (set of predicates). With the

black box as f : X → Y and x ∈ X where X is all possible instances. The goal is to explain

f(x) to a user, where f(x) is the individual prediction on instance x. This is done by perturbing

the instance x to some perturbation distribution D. In tabular classification problems, D is

the data-set. E is the calculated error rate of the equation. A is an anchor on instance x. If

an anchor fit on x, A(x) = 1, where A(x) returns 1 if all its feature predicates are true for the

instance x. An example of an anchor that would fit any instance, would be the instance itself.

E.g. if x0 = x0 and x1 = x1 . . . the anchor fit.

ED(z|A)[1f(x)=f(z)] ≥ τ,A(x) = 1 (3.2)

With a threshold of τ on precision of the anchors A, with sample z from a section of the validation

data.

We are given two measures for each anchor A: precision and coverage.

prec(A) = ED(z|A) [1f(x)=f(z)] (3.3)
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cov(A) = ED(z)[A(z)] (3.4)

In our example, precision equation 3.3 is defined as: of all instances in D, where the set of

predicates in A apply, how many share the same prediction. Coverage equation 3.4 is how “wide”

the anchor can be applied to the perturbation distribution. How large percentage of the validation

data D can the anchor A be applied to.

An intuitive comparison between Anchor and LIME is shown is figure 3.3.

Figure 3.3: Explanations on the left, with LIME on top and Anchor on bottom. b) is an
intuition of how Anchor differ from LIME’s explanation [75].

DeepLIFT

Deep Learning Important FeaTures (DeepLIFT) [82] which is based on the idea of computing

importance in terms of difference from a reference state to the problem, with reference state

being the default or neutral input, to mitigate internal zero-gradients saturation (vanishing

gradients between internal layers during backpropagation). Using the reference, we calculate the

difference-from-reference of the features, which is the contribution or ”blame” of an input feature

(rescale rule). The improved version of DeepLIFT optionally gives separate consideration to

negative and positive contributions, using the RevealCancel Rule. The intuition is to consider the

impact of the positive terms in the absence of negative terms, and the impact of negative terms

in the absence of positive terms. We are thus able to alleviate some of the issues with positive

and negative terms canceling each other out. DeepLIFT can with this reveal dependencies not

caught by other approaches by using the RevealCancel rule. Figure 3.5 show an example of this.

It can also be considered a faster approximating of the Shapley values of each attribute.
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Figure 3.4: Difference between an explanation from LIME on a target instance vs Anchor:
Anchor has a series of specific IF-ELSE rules, while LIME only has feature attribution [75].

Figure 3.5: Network computing o = min(ii, i2), assume i1 = i2 = 0, when i1 < i2 then dy
di2

= 0

and when i2 < i1 then do
di1

= 0. Using LRP or Integradent Gradients at this network would result
in importance assigned exclusively to either i1 or i2. With the RevealCancel rule, DeepLIFT

assigns 0.5min(i1, i2) attribution to both inputs [82].

Layer-Wise Relevance Propagation

Layer-wise Relevance Propagation (LRP) [12] is a method to calculate the importance of each

feature by applying a propagation rule that distributes class relevance found at a given layer

onto the previous layer, from the output back to the input. Overview of this process is depicted

in figure 3.6. The explanations are presented as these relevance distributions among the input

features (pixels in this instance). Later Binder et al. [13], proposed an extension to the original
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Figure 3.6: Explanation from Layer-Wise Relevance Propagation on image classification task,
using pixel decomposition heatmaps with relevance score R [12].

framework to handle product-type non-linearity networks with local re-normalization (e.g. CNN)

layers, based on first-order Taylor expansions.

SHAP

SHapley Additive exPlanations (SHAP) [60] is a unified framework based on previous methods

such as LIME, DeepLIFT, Layer-Wise Relevance Propagation, Classic Shapley Value Estimation

and game theory (Shapley values 3.1), which is used to interpret predictions. SHAP uses a

variation of equation 3.1, called shapley sampling values, which applies sampling approximations

and approximates the effect of removing a variable from the model by integrating over samples

from the training set. Removing the need to re-train and the differences needed to calculate to

fewer than 2|F |. Essentially turning the Shapley Values method into an optimization problem.

With a focus on some desirable properties which previous methods do not fully adhere to, namely

local accuracy.

Local accuracy, equation 3.5: When approximating the original model f for a specific input, the

explanation model g should at least match the output of f for the simplified input x′, with M

number of simplified features.

Missingness (equation 3.6): Features missing (no value) in the original input should have no



Chapter 3. Background Research 26

impact/contribution.

Consistency (equation 3.7): If a model changes so that some simplified input’s contribution

increase or stay the same regardless of the other inputs, that input’s attribution should not

decrease.

f(x) = g(x′) = φ0 +
M∑
i=1

φix
′
i (3.5)

x′t = 0 =⇒ φi = 0 (3.6)

f ′x(z′)− f ′x(z′ \ i) ≥ fx(z′)− fx(z′ \ i) (3.7)

With Shapley values upholding these properties, Lundberg et al. [60] derive the SHAP value

equation 3.8. |z ∗ | is the number of non-zero entries in z′ and z′ ⊆ x′ represents all z′ vectors

where the non-zero entries are a subset of the non-zero entries in x′.

φi(f, x) =
∑
z′⊆

|z′|!(M − |z′| − 1)!

M !
[fx(z′)− fx(z′ \ i)] (3.8)

The author also presents some model-specific approaches with Shapley values. Kernel SHAP (

Linear LIME + Shapley values), Linear SHAP, low-Order SHAP, Max SHAP and DeepShap

(DeepLIFT + Shapley values).

Figure 3.7: Comparison between the different attribute estimators on MNIST dataset, where
the black-box model(using CNN) predicts it could be an 8 or a 3. A) Red areas increase the
probability, whilst Blue decrease the probability. Masked show the removed pixels in order to
get from 8 to 3. B) show the change in log odds when masking over 20 images, which also show

how DeepLIFT is a close approximation to SHAP [60].

Integrated Gradients

Sundararajan et al. [86] present two axioms that attribution methods must satisfy: sensitivity

and implementation invariance. Sensitivity means that if for every input and baseline that

differ in one feature, but have different predictions, then the differing feature should be given

a non-zero attribution. i.e. features that cause a disturbance/change to the prediction should
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be regarded as having high correlation to the prediction. The second axiom is implementation

invariance, where two networks are functionally equivalent if the outputs are equal for all inputs,

despite different underlying architectures, the attribution of each feature should remain identical

for each network.

According to Sundararajan et al., other attribution methods like LRP and DeepLIFT do not

meet both these demands. LRP and DeepLIFT break implementation invariance since they both

use discrete gradient calculation, which relies on the chain-rule to compute the discrete gradients,

which itself doesn’t satisfy this axiom. Integrated Gradients combines the implementation

invariance of gradients along with the sensitivity of techniques like LRP or DeepLIFT, and is

defined as the path integral of the gradients along the straight line path from the baseline x′ to

the input x.

IntegratedGradi(x) ::= (xi − x′i)×
∫ 1

α=0

∂F (x′ + α× (x− x′)
∂xi

dα (3.9)

IntegratedGradi(x) ≈ (xi − x′i)×
m∑
k=1

∂F (x′ + k
m × (x− x′))
∂xi

× 1

m
(3.10)

The equation 3.9, references the integrated gradient along the ith dimention, with input x and

baseline x′, where F is the prediction function. Equation 3.10 is an approximation of equation

3.9 using m number of Riemann approximations over the integral to speed up the calculation.

The paper also mentioned how 20 to 300 steps usually were enough in practice to approximate

the integral within 5% error.
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Name Authors. Ref. Year Model-agnostic vs. model-specific Intrinsic vs. Post-hoc Local vs. global

SHAP Lundberg et al. [60] 2017 agnostic/specific(extensions) post-hoc local
Shapley values Roth [78] 1988(1953) agnostic post-hoc local

LIME Tulio Ribeiro et al. [93] 2016 agnostic post-hoc local
ANCHORS Ribeiro et al. [75] 2018 agnostic post-hoc local+
DeepLIFT Shrikumar et al. [82] 2017 specific post-hoc local

LRP Binder et al. [12] 2016 agnostic(DNN) post-hoc local
Integraded Gradients Sundararajan et al. [86] 2017 specific(DNN) post-hoc local

Table 3.1: Overview of the most notable XAI papers researched during the specialization
project. Some have no clear distinction between the categories, and as such contain both.

Figure 3.8: Comparison of integrated gradients with the gradients at the images. Visualization
of Integrated gradients and visualization of gradients ∗ image. The integrated gradients are

better at reflecting distinct features of the image important for the classification task [86].

The results shown in figure 3.8, show how integrated gradients compare to regular gradients.

LIME, SHAP (not to be confused with Shapley values), and Anchors are all model-agnostic

approaches which work independently of which algorithm was used to learn the classifier.

Integrated Gradient and LRP only function on DNNs, whilst DeepLIFT only works with some

DNNs.

Table 3.1 show an overview of the most notable papers research from the specialization project

and which sub-category they fit in.
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3.2 Deep Explanation

Deep explanation is a modified or hybrid deep learning approach which learns more explainable

features or explainable representations for DNNs. Since it’s specific for DNNs, it can be considered

to be model-specific. The deep explanation approach is among the least explored in the field,

and the number of papers available shows this.

Chen et al. [16] created a deep neural architecture that dissects the image by finding prototypical

parts related to the image classification, and use previous evidence for the prototypes to make a

prediction. The architecture is built using a sequence of convolutions layers, a prototype layer, a

fully connected layer, followed by the output logits layer. The training of this network is done in

separate stages to target individual layers: the network as a whole, followed by training of the

prototypical layer, followed by an optimization of the last layer. The explanation generated from

this network is shown in figure 3.9.

(a) Explanation

(b) Architecture

Figure 3.9: (A) Image of a clay colored sparrow and the learned prototypical parts of a clay
colored sparrow used to classify the bird’s species. The explanation is the prototype comparison

between similar cases. (B) the altered architecture used to achieve these results. [16]

This prototype classification approach from Chen et al. is not new, previous attempts have

achieved similar results as shown in Li et al. [57]. Where CBR is built into the network itself,

with a special encoding layer in to automatically find the best prototypes, these prototypes

(cases) are compared to new encoded input instances, where the most probable prototype give

the corresponding prediction. The explanation generation part is shown in figure 3.10 with
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the reconstructed input part, which lives in the same space as the encoded inputs, can be

used to visualize the learned prototypes during training, and partially trace the path of a new

classification task, with the activation weights to each prototype. Unlike CBR, this system

does not consist of the typical retain step, the case-base is instead filled during training of the

prototype classifier network h.

Figure 3.10: Network Architecture. Reconstructed input is the explanation. Prototypes are
the learned cases during training. Classification part consists of retrieval from most similar

prototype activations [57].

Tran et al. [91] trained a deep belief network, and showed how to extract knowledge from the

individual Restricted Boltzmann Machine (RBM) in the network. Using an extension of modus

ponens logical inference rules into confidence rules of biconditionals (if-and-only-if). From these

rules, they gained the ability to interpret the decision of each layer in the network, which could

be ultimately used to explain. Knowledge extraction from a deep neural network is unfortunately

considered not to be practical due to an increased computational overhead requirement, as this

would likely be done end-to-end.

Lei et al. [56] incorporate rationale (a set of reasons or a logical basis for a course of action or

belief) generation as an integral part of the overall learning process, by combining two modular

components: a generator that specifies a distribution over possible rationales and an encoder

that uses their rationales to map to task-specific target values. The example in figure 3.11 show

that the rationale is simply the specific sequence of words that justify the classification value.

The authors compare this to a linear approximation of the rationale and note that it suffers

a loss of prediction accuracy when approximating the model locally [93] with a simple model.

Experimentally this holds up with letting the DNN generate these local justifications as well, as

a model is not linear in every region.
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Figure 3.11: Example of a beer review ranking in two categories. The justification for look is
highlighted as the rationale [56].

Tsang et al. [92] treats the knowledge learned in a DNN entangled between the intermediate

hidden layers with the shared representation learning during training. Disentanglement is referred

to as extracting an interpretable representation from the neural network, either during or after

training. The aim of Tsang et al. is to learn or uncover General Additive Models (GAM) blocks

with interactions as a subset of a feed-forward network with fully-connected layers, to obtain the

intrinsic lower-order and interpretable structure of the network. Supported by regularization

during training, limits the maximum interaction order, and encourage smaller interaction orders

and block sparsity. They show that even simple neural networks do indeed entangle information

between layers. Figure 3.12 show this framework on a single layer, where we have to select a

number of GAM blocks B beforehand, either a large number and cancel out unused blocks,

or a smaller amount to keep interpretability. To explain the decisions of the network, we use

the GAM blocks to map out their corresponding value graphs. Note that this approach “only”

applies to one layer at a time, working with multiple layers at a time is still limited to run-time

and the complexity of the network.

Figure 3.12: NIT(Neural Interaction Transparency) Architecture to disentangle a dense layer.
Each B (GAM) block correspond to a single interaction or univariate variable [92]

Alvarez Melis et al. [3] designed a Self-Explaining Neural Network (SENN), which operates as a

simple interpretable model locally, allowing for point-wise interpretation. This was achieved with
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a regularization scheme that ensures that the model behaves like a linear model locally by training

the function h(x) (model) as an auto-encoder, enforcing diversity through sparsity regularization,

and providing interpretation on the concepts by prototyping. Overview of the architecture

is shown in figure 3.13. It consists of 3 components: a concept encoder that transforms the

input into a small set of interpretable basis features, an input-dependent parameterizer that

generates relevance scores, and an aggregation function that combines to produce a prediction.

The robustness loss over the parameters θ(x) encourages the full model to behave as a linear

function locally on h(x), to encourage more interpretable (linear relation) explanation on a given

prediction.

Figure 3.13: SENN architecture overview [3]

Krakovna et al. [51] induct the black-box model using Hidden Markov Models (HMM) on a

Recurrent Neural Network (RNN). It’s a hybrid approach to approximate the decisions of the

RNN to increase the interpretability of the network, combining the predictive power of RNNs

and the interpretability of HMMs. Results show that the RNN and HMM learn complimentary

features which can be used to explain the prediction.

3.3 Interpretable Models

Any learning algorithm that is also inherently interpretable by design is said to be an interpretable

model. Only a select few models can be placed in this category. The biggest concern of

interpretable models has to do with the limitation of the method used to learn the problem,

as each has its own weakness in term of knowledge representation and knowledge reasoning on

the problem and the complexity of the domain. All of which effect interpretability as stated by

Freitas [32]. Decision trees, which are inherently interpretable, works by following a set of if-then
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clauses structured as a tree. The problem with this method is that it is not very scalable in terms

of interpretability. The larger the tree grows with respect to the complexity of the problem,

the less interpretable it becomes. The same can be said for other rule-based methods which

explain in a similar fashion to decision trees. Linear models like Support-Vector Machine (SVM)

are usually a bit more interpretable from their transparency, where the vectors can be used to

explain the decisions on a new problem. Unfortunately, these suffer the same fate as decision

trees: as we increase the number of dimensions (read: features), it’s very difficult to interpret the

prediction into an explanation. k-nearest neighbors (k-NN) faces the same challenges: depending

on the similarity metric used, it can be interpretable at every level. However, this is not practical

as we increase the number of dimensions, as we’re likely to lose the bigger picture. Simply

knowing feature x1 − x3 were deciding factors is not enough. CBR on the other hand, can be

considered somewhat interpretable, depending on the complexity of the similarity measure used

and previous cases, where we don’t need to focus on all the dimensions, rather on only the ones

that were most important for the retrieval. Where as k-NN looks at all the features, CBR usually

only looks at the most important features.

The method that is the most interpretable according to Freitas [32], is rule based classification

methods. Their textual nature allow for easy readability by an user. Individual rules are also

very modular, allowing us to look at a select few relevant rules at a time to see the ”local

patterns” as the explanation.

Malioutov et al. [61], approach the problem of achieving interpretable models as a sparse signal

recovery problem from boolean algebra known as Boolean compressed sensing. Using threshold

group testing to formulate the interpretable rules in a non-heuristic approach. They developed a

linear programming relaxation duality-based technique (1Rule), which guarantees to approach

a near-optimal solution after training a classifier only on a small subset. The rules proposed

were said to be interpretable from the linearity and the small size. The accuracy trade-off

was minimal, and the accuracy was said to be better than existing interpretable methods such

as RuSC(Set covering approach rule learner), RuB(Boosting approach rule learner), DList

(Decision lists algorithm), C5.0 (C5.0 Release 2.06 algorithm with rule set option in SPSS), and

CART(Classification and regression trees algorithm in Matlab’s classregtree function).

Lou et al. [59] extended on regular General Additive Models (GAM) with pairwise interactions

between features into a system called Generalized Additive Models plus Interactions (GA2M).

GAMs are the sums of univariate models. They have a high degree of interpretability because

of their simplicity, but as a result, they suffer in accuracy. GA2M, consists of univariate terms

and a small number of pairwise interactive terms, which can easily be visualized to the user. To

deal with the large number of feature permutations, they developed a method called FAST for

ranking all possible pairs of features as candidates for inclusion into the model. GA2M with
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FAST had almost the same performance as the best fully-complex (black-box) models on a

number of real datasets (in 2013).

Lakkaraju et al. [53] created a rule-based framework, called interpretable decision sets, which

seeks to create rules in a flat structure as opposed to a hierarchical structure like in a decision list.

The idea is that each rule, in the form of if-then clauses, can stand on their own not depending

on other rules to be true. The user should be able to read each rule on its own and understand

what leads to a specific classification. The authors claim this approach is more favorable than

Decision List to achieve interpretability.

Figure 3.14: A comparison between an interpretable decision set (left) and a decision list
(right). The rules are created from the same dataset.

Figure 3.14 compares the type of rules that would be generated for a decision set and decision list

on the same dataset. Each new rule in a decision list (right) is dependent on the previous rule

not to be true to be considered and therefore has to be read in chronological order. Each rule in

the decision set (left) on the other hand is independent of any other rule and can therefore be

considered in any order.

3.4 Model Induction

A very common technique for explaining a black-box is treating the black-box as an oracle. The

oracle is then queried to generate more training instances to help with common problems such

as an incomplete or small training set. This is later used to train a transparent model or more

interpretable model to hopefully derive explanations that are consistent with the black-box.

Sarker et al. [80] combined a trained neural network with semantic web technologies to explain the

input-output mapping by leveraging data from the World Wide Web as background knowledge

to obtain more concise explanations. It works by using a DL-learner (Description Logic) as the

key tool to arrive at the explanations. The trained ANN act as an oracle and its inputs are

used to map to the background knowledge base from the Suggested Upper Merged Ontology

(SUMO) 1. The oracle distinguishes between positive and negative examples. The DL-learner

1http://www.adampease.org/OP/

http://www.adampease.org/OP/
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is then run on the example set to provide explanations based on the concepts encoded in the

background knowledge. If the network is erroneous, we can use the knowledge base to look for

missed annotations. The figure 3.15 show the proposed solutions (right) that the Descriptive

Logic learner proposes to the examples. The problem with this approach is that we don’t know

how the network solved the problem, as we don’t know its internal knowledge and reasoning,

even if the explanations hold with the background knowledge.

(a) Semantic Web Tech Archicecture

(b) Proposed solution

Figure 3.15: (A) The conceptual architecture. (B) The proposed solutions presented by the
DL-learner on images classified with scene annotations(objects). Every solution that explain the

distinction of the examples with respect to the knowledge base. [80]

Deep neural network Rule Extraction via Decision tree induction (DeepRED) [98] is an extension

to the decompositional rule extraction algorithm Continuous/discrete Rule Extractor via Decision

tree Induction (CRED)[81] to more than one hidden layer. Rule extraction is done in a step-wise

process, with one layer at a time where one layer is used to explain the next. As a result, one

is left with a rule-set that describe each layer of the DNN by their respective preceding layers,

which are then merged to mimic the whole network along with input pruning techniques from

Augasta et al. [8] to achieve more comprehensible and generalized rules.

Guidotti et al. [40] created an agnostic method that uses a local interpretable predictor on a

syntactical neighborhood generated by a genetic algorithm called LOcal Rule-based Explanations

(LORE). It works similarly to LIME [93] in the sense that it first learns a local interpretable

predictor on a neighborhood, with the exception of permuting using a genetic algorithm instead

of randomly improving the value of the generated instance. From this, it derives a meaningful

explanation consisting of a decision rule which justifies the reasons for the decisions, along with

a set of counterfactual rules to suggest changes that can be made on the input features to change
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the predicted outcome. The rules are generated using decision trees on the neighbourhood to

mimic the behaviour of the black-box locally to maintain fidelity.

Figure 3.16: Comparison of explanation given from LIME, LORE and Anchor. Note the extra
counter-factual from LORE [40]

Figure 3.16 show the comparison between LORE, LIME and Anchor. The big difference is in

the length of the explanation between LORE/Anchor and LIME, with LIME yielding a lot more

detailed (more specific) local explanation. Anchor gives a better global representation of the

explanation, whereas LORE gives the full local path in the Decision Tree. In addition, LORE

gives a counterfactual explanation as well, generated from the closest difference in the decision

tree.

Dhurandhar et al. [23] created a model-agnostic explanation method called Contrastive Explana-

tions Method (CEM) that generates contrastive explanations. These are created by finding a

minimal amount of features in the input that are sufficient in themselves to provide the same

classification (pertinent positives) and a minimal amount of features that should be absent or

hidden in the input to prevent the result (classification) from changing (pertinent negatives).

These are found by treating the PP and PN as separate optimization problems and solving using

fast iterative shrinkage-thresholding algorithm from Beck et al. [10]. This was later improved on

by Mousavi et al. [68], by using the convolutional autoencoder (CAE) close to the data manifolds.

The figure 3.17 show that CAE improves the results from CEM. The highlighted areas are a

better representation of how humans perceive numbers. The PP results show a clear view of

which pixels correspond to the classification of the numbers, whilst PN shows the smallest change

needed to alter the prediction result.
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Figure 3.17: Explanations on the MNIST dataset. Comparsion between CEM [68] with or
without CAE, LIME [93] and LRP [12]. PP/PN are respectively cyan/pink. For LRP, green
is neutral, red/yellow is positive and blue is negative relevance. For LIME red is positive and

white is neutral [23].

Henelius et al. [43] created an iterative algorithm to find the attributes and dependencies used

by any classifier. The problem of finding groups of attributes whose interaction affect the

performance is treated as an optimization problem. A greedy algorithm called GoldenEye

algorithm was proposed to solve this using fidelity as the performance metric which effectively

randomizes the attributes to select permutations, grouping the attributes, and finally pruning

redundant attributes to increase fidelity. The resulting output is an increased interpretation of

attribute groupings that contributed to a given prediction, e.g. {{1,2}, {3}}, for grouping of

attribute 1 and 2, with singleton group 3 as high contributors.

MES (Model Explanation System) is a model-agnostic explainer from Turner [94]. The general

approach is an augmentation of tools from Gelman et al. [34] of posterior predictive assessment

of model fitness via realized discrepancies. MES only seek explanations for individual cases using

a Monte Carlo algorithm, by deriving a scoring system to find the best explanation based on

formal requirements. The explanations are derived from the interpretability of SVM (or logistic

regression) models that best fit the data.

Plumb et al. [71] created a model-agnostic explainer called MAPLE(Model Agnostic suPervised

Local Explanations). It provides both example-based and local explanations while also being

able to detect global patterns. MAPLE combines the idea of using random forest as a method

for supervised neighborhood selection for local linear modeling from SILO(Supervised Local

modeling method) [14] with feature selection methods from DStump [48]. For a given point, SILO

defines a local neighborhood by assigning weights to each training point based on appearance

frequency in the tree. DStump defines the importance of a feature based on how much it reduces

the impurity of the label when split at the root in the random forest trees. The local explanation

given was suggested to be more faithful than LIME [93], and the global patterns could be uses

to diagnose limitations in its local explanations.
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Krishnan et al. [52] created Partition Aware Local Model (PALM), a tool that learns and

summarizes the responsibility from the training examples used to train the model to aid

debugging (meant for developers). Figure 3.18 shows an overview of the tool. It works by

approximating the complex model using a meta-model that partitions the training data as a

decision tree to allow for examination, and a set of sub-models of arbitrary complexity (could

be same as black-box) to retain the accuracy that approximate the patterns within each data

partition. The most informative neighborhood is the explanation for a given prediction result.

This would give the developer a view of which training data was responsible for a particular

sub-model.

(a) Architecture (b) Dataset example

Figure 3.18: (A) The architecture with the surrogate models, and their connection to the
training data. (B) Example from Fraud and Movies datasets, that show how mispredictions
concentrate around specific sub-models, suggesting that there are specific regions of the feature-

space most associated with mispredictions [52].

Alvarez-Melis et al. [4] created an agnostic explainer called Structured-Output Causal Rationalizer

(SocRat). An explanation consists of a set of inputs and output tokens that are causally related

under the black-box. An overview of the steps involved and explanation example shown in figure

3.19. It consists of 3 steps; The Perturbation Mode-step, where we perturb the black-box to

generate key points. This is done using a Variational Auto-Encoder (VAE), that was extended to

handle sequential data (NLP). The Causal Inference-step that infer causal dependencies between

the original input and output tokens. This is achieved using a Bayesian approach to logistic

regression. The final step, Explanation Selection, is done using a robust optimization technique

seeking to minimize worst case cut values from Fan et al. [29], where the selection can be cast as

a Mixed Integer Programming (MIP) problem.

The TREPAN algorithm from W. Craven et al. [95], approximate the model with M-of-N split

points on a single decision tree. To keep interpretability at a manageable level, the tree size is

limited. The explanation is a result of exploring the path in the tree.

França et al. [31] looks at the problem of extracting first-order logic descriptions from neural net-

works trained to solve relational learning tasks. The Connectionist Inductive Logic Programming

(CILP) was adapted to enable the application of a variation of TREPAN to extract first-order
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(a) Schematic overview

(b) Selection (c) Explanation example

Figure 3.19: (A) Schematic overview of the architecture. (B) Example of going from raw
dependencies in the data to selecting only the most important dependencies. The larger the

edge (width), the greater the connection. (C) Explanation from a translation example [4].

logic rules into CILP++. These rules could then be used to reason about the knowledge they

possess, and the choices the DNN make.

Frosst et al. [33] created a soft decision tree that generalizes better than one learned directly

from training data. This was achieved by transferring the generalization abilities of a neural

network to a soft decision tree (figure 3.20), training the decision tree to mimic the input-output

function from the neural net. Unlike a decision tree which relies on hierarchical features, it relies

on hierarchical decisions instead. The classification is based on an input example to select a

particular static probability distribution over classes as its output.
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(a) Binary Soft Decision Tree

(b) Explanation

Figure 3.20: (A) A soft binary decision tree with a single inner node and two leaf nodes. The
output is the probability distribution over the classes. (B) The visualization of a soft decision
tree of depth 4 trained on MNIST. The non-leaf nodes are learned filters, used to differentiate
the differing inputs. The annotations at each node are the likely classification candidates. [33]

3.5 Case-Based Explanations

This section gives some instances of what has been done in terms of creating an explainable CBR

system, also known as a Case-Based Explainer (CBE). The section also includes ways where

CBR is used to either fully or partially explain systems.

Cunningham et al. [20] points to two possible approaches in CBE: knowledge-light and knowledge-

intensive (KI) CBE. A knowledge-intensive approach may include rule-based methods which can

be used to generate explanations, an example is SWALE [55]. Knowledge-light approaches, on

the other hand, base their explanations on just similarity measures performed during retrieval.

Although the more knowledge-intensive approach also takes advantage of similarity measures,
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the explanations are expressed in terms of causal interactions rather than similarity as in a

knowledge-light approach.

Although Caruana et al. [15] is a relatively early paper that touches on aspects that haven’t

been covered in recent years, despite AIs resurgence. They theorize that patterns that appear

in the hidden units when two cases are similar can be exploited to find similarity, ultimately

enabling explanations. Utilizing the weights connected to the hidden units does indeed imply the

need to open the black-box, which is not where our focus is. However, considering the paper’s

discussion on a topic that isn’t discussed much, especially with a focus on using CBR, we think

it’s an interesting proposal worth mentioning.

Kim et al. [50] present a new framework, namely Bayesian Case Model (BCM), which uses

prototype clustering and subspace learning. Prototyping is the process of extracting the most

representative exemplar from a cluster. Subspace learning is the process of only using features

that are relevant in each cluster (subspace) - so-called hot features. For instance, if user A and

user B are similar users, learning which action movies user A enjoys is irrelevant when we only

want to know similar comedy movies for user B. Hence, BCM is a combination of Bayesian

generative models and case-based reasoning. In BCM, explanations are represented as prototypes

and subspaces. The algorithm will present a prototype, which is the most representative example

from a cluster, along with the subspaces, which is what BCM considers to be the most important

features.

MMD-critic, developed by Kim et al. [49], which is an extension of BCM, uses previous cases in

the form of prototypes, much like BCM, to provide explanations. However, MMD-critic is based

on the notion that prototypes alone aren’t enough to provide interpretability. Instead, it learns

prototypes and criticism. In addition to prototypes, MMD-critic selects criticism samples that

are not explained well by the prototypes. Criticism can be viewed as a counter-example to the

prototype of each respective cluster.

Table 3.2 shows an overview of all the papers research for the current thesis. Each paper is placed

into categories as described in chapter 2.5.2. On model-agnostic vs model-specific, intrinsic vs

post-hoc, and local vs global.
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Name Authors. Ref. Year Model-agnostic vs. model-specific Intrinsic vs. Post-hoc Local vs. global

ThisLooksLikeThat Chen et al. [16] 2018 specific(DNN) intrinsic local
- Li et al. [57] 2017 specific(DNN) intrinsic local

DBN-extraction Tran et al. [91] 2018 specific(DBN) post-hoc global
- Lei et al. [56] 2016 specific intrinsic local

NIT Tsang et al. [92] 2018 specific(NN) intrinsic global
SENN Alvarez Melis et al. [3] 2018 specific(DNN) intrinsic local/global

RNN-HMM Krakovna et al. [51] 2016 specific post-hoc/intrinsic local/global
1Rule Malioutov et al. [61] 2017 specific intrinsic global
GA2M Lou et al. [59] 2013 specific(GAM) intrinsic global

Decision Sets Lakkaraju et al. [53] 2016 specific(data) intrinsic global
- Sarker et al. [80] 2017 specific(DNN) post-hoc local/global

DeepRED Zilke et al. [98] 2016 specific(DNN) post-hoc local/global

LORE Guidotti et al. [40] 2018 agnostic post-hoc local+
CEM Dhurandhar et al. [23] 2018 agnostic post-hoc local

GoldenEye Henelius et al. [43] 2014 agnostic post-hoc local/global
MES Turner [94] 2016 agnostic post-hoc local

MAPLE Plumb et al. [71] 2018 agnostic post-hoc local/global
PALM Krishnan et al. [52] 2017 agnostic post-hoc local/global
SocRat Alvarez-Melis et al. [4] 2017 agnostic post-hoc local/global

TREPAN W. Craven et al. [95] 1999 agnostic post-hoc global
CILP++ França et al. [31] 2015 specific post-hoc local/global
SoftDT Frosst et al. [33] 2017 specific intrinsic/post-hoc local/global

SWALE Leake [55] 1995 - intrinsic local/global
CBE for non-CBR methods Caruana et al. [15] 1999 specific post-hoc local

BCM Kim et al. [50] 2014 specific post-hoc local
BCM+ Doshi-Velez et al. [25] 2017 specific post-hoc local

Table 3.2: Overview of XAI papers researched for this thesis. Some have no clear distinction
between the categories, and as such contain both
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Architecture

This chapter begins by summarizing the proposed architecture from the specialization project.

Chapter 4.2 looks at XAI and CBR both separately and in tandem related to designing an

architecture. Finally, we present the final general architecture in 4.3.

4.1 Summary of Proposed Architecture

Through our work with the specialization project we proposed an architecture for a XAI system.

To the best of our knowledge, there are no existing implementations of what we seek to do.

Nonetheless, we proposed a case-based explainer which encapsulates the DL classifier. A sketch

of the previously proposed architecture is shown in figure 4.1.

Our initial idea was that the DL classifier would be fed with a labeled dataset to perform

supervised learning. After training the model, we would then be able to use one of the model

induction techniques which utilizes the gradients to compute weights. The weights would then

need to be converted to some other form of representation which could be presented to the user

as a potential explanation, e.g. by presenting the most significant features. The specifics on how

to convert said weights to a more human interpretable representation was left for the master

thesis. The purpose of the CBE module was to redefine CBR’s notion of ”similar problems

have similar solutions” to ”similar problems have similar explanations”. The idea was that, as

the case-base grew, we could reuse or adapt a case whenever queried, reusing the information

used to recreate the explanation from a previous case on a new problem. As we keep using the

system, the more information we will have available to generate an explanation. Depending on

how this information is obtained, we might be able to derive some useful general knowledge (i.e.

knowledge-intensive CBR from section 2.3).

43
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Figure 4.1: Both input and prediction (class 2 here) made by the black-box model is passed to
both the model induction processor and CBE [27]

Upon further research, we found the approach of utilizing only weights to be lacking in explanatory

abilities to the user. Because of this, we instead opted for a more knowledge-rich approach with

generated rules.

4.2 Discussion on XAI and CBR

There is some criticism as to what is required to truly explain a black-box, and whether what has

been proposed in previous research can even be classified as explanations [24]. Rudin [79] suggest

that trying to explain a black-box system is in itself a bad idea. The approach of inducting

the behaviour of the network with more transparent or interpretable models are said to not be

faithful to the functionality of the original system. The fidelity of the system might get low

and the approach of using the black-box as an oracle and training a transparent model as the

explainer to draw explanations from the black-box can not have perfect fidelity with respect to

the original model. Ultimately the criticism lies in using models that are not already somewhat

interpretable, and that the accuracy-interpretability trade-off where we chose models that give

better accuracy and decrease interpretability, which is an idea that often appears in XAI papers,
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is said to be a myth [24]. Complex models are not actually required for achieving high accuracy,

but instead easier to work with as a result of being more developed than interpretable models.

Alvarez-Melis et al. [5] used the metric of robustness using local Lipschitz-constants on inter-

pretability methods (LIME, SHAP, etc.), where robustness is a measure of variation to the input

with respect to the explanation (attribution) generated, where similar input-output pairs should

give rise to similar explanations. Experiments showed that model-agnostic perturbation based

methods were more prone to instability than gradient-based interpretability methods. Both

methods however performed for the most part poorly on the robustness metric. Alvarez-Melis

et al. hypothesize that since the underlying model itself is not robust, the interpretability method

suffers the same fate. However, it’s not clear whether robustness is an essential property to

uphold as it only takes into account the sensitivity of the explanations. These gradient-based

methods are also potentially vulnerable against adversarial attacks, as was demonstrated by

Ghorbani et al. [35] where small random perturbation to the input can change the feature

importance, and even give rise to drastically different interpretations without changing the

prediction.

Yeh et al. [96] formulated the metric of sensitivity. Sensitivity is the characterisation of how an

explanation changes with varied input. Results show that the less sensitive the interpretation

method is, the more faithful the explanation otputted turns out to be. Yeh et al. also shown how

we could optimize the black-box model with respect to this property using adversarial training

to reduce its sensitivity.

To achieve truly explainable AI, Doran et al. [24] suggest combining a comprehensible model

with a reasoning engine. A comprehensible model is explained as a system that emits symbols

along with its output to allow the user to relate properties of the inputs to their output. The

figure 4.2 shows that this would include a black-box that provides more information than only

the output, where local interpretation in symbolic form is used by the reasoner along with a

knowledge-base to explain a given prediction.

A knowledge-intensive case-based reasoner would be a system able to fulfill the part of the

reasoner in this system, with the inclusion of feedback and adaptation of explanations. The

comprehensible part would need to be acquired in another way, but we hope that any model

induction technique, more specifically local interpretation that derive symbolic information or

what could be considered to be general knowledge from the data, will suffice as a first step.

Most philosophers, psychologists and cognitive scientists in the field suggest that all ”why”-

questions are in fact contrastive. As such, an explanation engine would need to be able to

differentiate cases to be able to give these type of explanations, resulting in a more human-

interpretable system [64]. Some of the methods discussed do generate contrastive explanations

[23] [40]. However, these type of contrastive explanations are only a local suggestion for changing
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Figure 4.2: Augmenting comprehensible models with a reasoning engine, from a image scene
classification problem [24]

the input of the model to achieve a change for a single prediction instance, and as such cannot

give a global overview of the model.

When it comes to CBR, there are mainly two approaches that are used. Instance based, and

general knowledge based, as shown along the knowledge-intensity dimension in section 2.4.

With instance based, each case is a single instance, where a similar case solution can be used

with some adaptation to solve for a given problem instance. For general knowledge based, we can

have single instances with some form of general external knowledge [81], or general cases as from

Gu [38], where the general knowledge required to solve the problem, hopefully, is encapsulated

by the system. Leake [55] mention that in a case-based model of explanations, that goals and

experiences play a key role in explanation generation in order to guide the process in domains

that are complex and imperfectly understood. The benefits of starting from previous relevant

explanations, such as in CBR, are better candidate explanations that are supported by previous

explanations, more effective explanation generation than when starting from scratch, and a more

precise focus toward useful explanation goals and needs. This could imply that a generalized

explainer would need to be able to utilize recollected instances, instead of relying on pure general

knowledge, resulting in higher explanatory power from the system.

Another problem described in Leake [55] is that many explanation methods do not consider

previous instances when creating an explanation for the input prediction, which limits the system

in terms of their understanding of a domain. If new evidence were to disprove previously given

explanations, we would have to change our (the system’s) underlying understanding of the topic.

This is in itself impossible unless we have a recollection of what has been explained in the

past. This could be categorized as learning over time, as the explanations given improves over

time. This learning could be further improved by incorporating feedback from the users of the

system. If an explanation does not satisfy the user’s demands, or is inconsistent with the user’s
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domain/experts beliefs, the system could keep track of these inconsistencies in its reasoning. As

the systems own experience could be ”lacking” in some areas. Supported by the meta-cognitive

(knowing about knowing) CBR system by Craw et al. [19], where the CBR system itself can learn

to recognize it’s own faults, with curiosity about its domain. Such a system could improve upon

the explanatory capabilities of the common CBR system. A big problem to the knowledge-based

approach is providing the CBR system with this general knowledge. This is called the knowledge

acquisition bottleneck [36], and is usually done by consulting domain experts. We hope to avoid

this problem, by utilizing active learning [77], which is refereed to as query learning by Angluin

[7], where the system itself is able to interactively query an information source to obtain the

desired information to learn from. In our system this could be the oracle or model (black-box)

we want to explain, along with different model-induction techniques, by querying it with varying

inputs of importance which it can learn from, where the model-induction techniques each give a

different perspective of the black-box, which can be used to generate a final explanation by the

CBR system and expand upon the knowledge-base of the CBR system as a whole.

Even though many papers discussing CBE brings forth the argument of only presenting the

nearest neighbor as a sufficient explanation, there are some challenges related to this. As

discussed in Nugent et al. [69], although CBR offers some transparency, there is some knowledge

hidden inside the knowledge containers which are not apparent to the user. McSherry [62] argues

that presenting the feature values in the most similar cases may be misleading. In some cases,

the presence of some feature values may be against the prediction, just presenting these to the

user may not always be as useful. This speaks in favor of finding and highlighting features that

are important factors when designing a successful case-based explanation, also pointed out by

Nugent et al. [70].

4.3 Final Architecture

In this section we present and discuss the final architecture based on everything discussed in

previous sections, namely combining model-agnostic methods from previous relevant research

together with the CBR methodology. Later we will implement a select part of this, and run it

on a selected dataset and network model.
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Figure 4.3: Overview of a modified CBR cycle for a general architecture.

Figure 4.3 shows an overview of the whole CBR cycle. Each step will be described in detail

later in this chapter. First, the black-box takes an input instance, and give a prediction on

this, along with attribution values from the black-box. This is combined to form the target

problem case. If the user wants a specific explanation related to this, he can give some added

information related to what kind of explanation is required to satisfy his demands. If there is

more information regarding the case itself, it should also be given, to make it easier for the CBR

system to find/create a good explanation. This case is now compared against the Case-Base

for cases in the past that are similar (retrieve). If we find a previous case with a explanation,

with the given context, we can utilize this again (reuse). If we didn’t find a sufficiently similar

case to reuse or empty Case-Base, we need to use our model-induction techniques to get the

related general knowledge of this case. The next step is to generate a good explanation from all

this information on the problem case. We can use the contextual information related to what

particular question is being asked from the user as a guide. One kind of user might prefer a very

detailed description of previously similar cases ( if available ), and a lot of the available inducted

information. If the user is not happy with the explanation presented, the system need to keep

adding/removing extra information (revise the explanation). Once a problem is sufficiently

explained, it can be stored in the Case-Base (retain), along with what information was used to

generate the explanation and how the explanation-knowledge was adapted to fit the user (from

adaptation container), and the explanation presented to the user.
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4.3.1 Context and Extra Information

An important feature in CBR is the ability to include extra information related to the domain.

This can also increase the quality of the explanations of the CBR system [55]. Extra information

could be some context related to the explanation goal, like the type of user which is requesting

the explanation or some constraints on the system, like the maximum amount of time given

to compute the explanation (exploitation vs. exploration). The challenge with this is how to

include this kind of extra information without manually implementing every part ourselves for

the different domains. Particularly the two types of contexts, context related to the problem

instance, and the user context (goal of the explained).

There may be various information contained inside a case’s context attribute. In the medical

domain, it may be relevant taking into account whether the doctor is in a doctor’s office or in

an ambulance. A doctor utilizing the explainer system in an ambulance probably has less time

than a doctor in the doctor’s office as he’s probably treating more critical patients. The system

can be designed in such a way that it’s able to present a more simplified version by using fewer

resources, hence requiring less time.

Another instance of extra information is related to the problem after it has been solved. In our

example, we might like to know the status of a patient several weeks after the treatment, in case

of any complications which occurred afterward. The system could in this instance be curious

to know what would have been the correct treatment, and maybe even why. This information

could come in handy at a later time when the black-box suggests imperfect solutions that are

not trusted by the user in regards to the problem.

4.3.2 Feedback

In order for the system to continue to learn, it should handle feedback from the different users.

Stahl [85] presents feedback between each stage in the CBR cycle as an important extension

required to realize advanced learning approaches, where the user can give feedback to each

step in the CBR cycle to improve each element individually. Feedback on the most important

stages in the CBR cycle should be implemented. One might give clues regarding the system’s

performance, or its understanding of the underlying domain. Particularly with context, learning

when different contexts apply to different users and different situations would allow the system

to answer a broad range of questions a user might have.

Since the black-box will undoubtedly give the wrong prediction from time to time, it would be

helpful for the users in this instance to be given clues as to when this happens, as to not give

false explanations. Feedback on the solution itself from the black-box could help in this regard,

if we know that there is a high possibility of a mistaken proposal, it should be noted to the user,
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and why the system thinks this. If the system can differentiate these situations, it could further

increase its degree of trust to the user. E.g. we know that the instance we are predicting could

be an edge-case, if the model-induction methods fails to find any clear representation, which

again points to problems in the underlying black-box, or model-induction method. The system

could even go so far as to alter the prediction itself in these instances, by utilizing the solutions

of previous cases with a different prediction, as we know that the current prediction is most

likely wrong.

Feedback is generally not easy to acquire, as it can be delayed or never given [54]. However in an

explanatory setting, we think that it would be easier to collect this, as the process of generating

explanations can involve the user to a greater extent.

4.3.3 Case Representation

The case-base is the collection of cases, with or without an explanation. These are used to

capture the broad aspect of the case-base. Depending on the similarity measure used, we want

to find a previous experience similar to the current experience to explain a very similar problem

and utilise the same steps used to generate the explanation.

The case part of the CBR system, usually consists of a problem description part, and a solution

description part, which is the solution to the specific problem in the case. In this system, the

problem description part is the input instance to the black box, the prediction on this and the

attribution weights from the black-box. The problem description part should also contain extra

information, as context to the specific problem, that the black-box does not know about. The

solution description part is instead the explanation description.

The attribution value can be generated using a multitude of algorithms, as previously mentioned

in section 3.1. If we want to remain completely model-agnostic (SHAP, LIME, etc.) or more

toward DNN specific (Integrated Gradients etc), there is also the time factor to consider. Methods

that specifically target DNNs with internal gradients are faster than those that rely purely on

permutations. As the complexity of the DNN model increases this will be further noticeable.

There is also the sensitivity/robustness metric as previously discussed in section 4.2, where

permutations generally perform worse on these metrics.

The solution part, on the other hand, is a bit more difficult to quantify. We do not want to

rely only on the instance-based approach where each case has its own solution. Therefore we’ve

decided to keep pointers to a explanation-base that solved the particular problem case, as this

can be multiple, along with which cases were used.
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This also allows us to recall which cases were used to generate the specific explanation knowledge

as added information (provenance). The addition of provenance can be very useful in guiding

maintenance on both the case-base and explanation-base later, as noted by Leake et al. [54].

The particular explanation presented to the user should also be included, as this can be helpful

for reviewing the case-base later. Finally, which adaptation techniques were used to go from

explanation-knowledge to explanation should also be noted in a case, as every step towards

generating an explanation should be as transparent as possible. Direct adaptation on the

explanation presented from an earlier case is however difficult and should be avoided, as it can

lead to false explanations.

4.3.4 Explanation-Base

The explanation-base will be responsible for containing the explanation knowledge extracted

from the case-base instances using model-induction techniques previously mentioned. As the

techniques provide varying degrees of general knowledge, we need to utilize methods that provide

some local-concise knowledge in the form of interpretable rules.

Any knowledge added by a domain expert after the prediction can’t be guaranteed to comply

with any patterns found by the neural network. Thus, using rules which are inserted into the

explanation-base by a domain expert won’t necessarily give the right explanation of a prediction.

However, experts can be useful to check whether some rule generated by the system isn’t making

sense with what the expert already knows about the domain. This way, the experts’ knowledge

can be useful to maintain the case-base, to point out cases which we definitely know to be wrong.

One can then decide what is the best action in order to correct cases in the case-base which are

known to have based their explanation on the wrong case’s explanation.

{
"id -0": {

"method": "Anchor",

"explanation":["18<Age≤30" AND "Blood_Pressure>139" AND ...],

"precision": [80%, 92%, ...],

"coverage": [40%, 10%, ...],

"prediction": "Threatment_A",

"provenance": Case_id

},
"id -1": {

"method": "LORE",

"explanation":["Age<30" AND "Blood_Pressure>139" AND ...],

"prediction": "Treatment_A",
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"counter_factual":[

{
"values":["Age>30" AND "Blood_Pressure>139" AND ...],

"prediction":"Treatment_B"

},
...

],

"provenance": Case_id

},
"id -2": {

"method": "LIME",

"features": ["Age=52", "Blood_Pressure=124", etc],

"attribution":[0.30, 0.15,-0.6],

"prediction": "Treatment_B",

"provenance": Case_id

},
"id -3":{

"method": "Integrated_Gradients",

"features": ["Age=20", "Blood_Pressure=124", etc],

"attribution":[0.11, 0.45, -0.5],

"prediction": "Treatment_D",

"provenance": Case_id

},
"id -4":{

"method": "Expert(User)",

"explanation": ["18<Age≤30" OR "129<Blood_Pressure≤139"],
"prediction": "Treatment_B",

"provenance": User_id

}
...

}

Listing 4.1: Proposed examples of different explanations from varying model induction

techniques in JSON format

Listing 4.1 show an example of how different explanations from different model induction

techniques could be stored. Anchor, LORE, LIME, user(expert) and Integrated Gradients in

this case. Each explanation is part of the explanation-base, and can be used to explain a new

instance in the future, given the provenance case (case that was used to create this knowledge

instance) is similar enough that they fit. The first number is the ID of the explanation, that



Chapter 4. Architecture 53

is used to point to the explanation-base from the case, each with its own explanation method

representation. The “provenance” case id is the ID of a case in the case-base. The first method,

Anchor, has precision values associated with it, which is a partial precision value of a partial

anchor. Precision is defined as: of all the instances in the dataset D, where the set of predicates

of anchor A apply, how many share the same prediction?. Coverage is how “wide” the anchor

can be applied to the perturbation distribution. How large percentage of the whole dataset D

can it be applied to. The explanation from LORE is very similar, but with a counterfactual

explanation as well, which is the closest permutation on the instance to change the prediction. In

this instance it is changing the Age parameter, that result in another treatment being proposed.

The explanation from LIME is very similar to Integrated Gradients, but instead of using the

internal gradients of the model itself, LIME uses only permutations on the model to find these

values. Finally, we got the experts own knowledge, this could be a simple rule that the expert

knows apply to the given domain. With a user id, to keep track of who added this rule.

Explanation-Base Maintenance

As the explanation-base continues to grow, it will be harder to keep track of everything the

system think it knows. It will undoubtedly begin to fill with overlapping explanations. E.g. two

very similar explanation with only minor differences in the Age, could be merged together to

form only a single explanation to save some space.

In another instance, we could have conflicting explanations, in this case, we would need to

take note of potential problems in the explanation-base. As we wouldn’t know which of the

explanations could be “correct” without feedback from an expert. This goes back to the concept

of fidelity and to what degree the explanation conforms to the knowledge hidden in the black-box.

Case-Base Maintenance

Within case-base maintenance, we find some problems, namely the swamping problem, whereas

the number of cases in the case-base increases over time, the cost of searching the case-base

increases. As with the explanation-base, the case-base would need to be kept to a minimum. To

mitigate this problem, a case-deletion strategy should be performed, with the sole purpose of

removing cases which doesn’t help us cover more ”knowledge” ground (competence). We might

also delete cases that might have unnecessary repetition. Smyth et al. [84] attempted to solve

this with a deletion strategy that target cases that aren’t crucial for the performance of the

CBR system. A similar strategy could be implemented, by keeping track of how many times a

case have been used, and the similarity between the cases in the case-base. Where cases that are

the least similar to the rest of the case-base, are probably unique cases.
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4.3.5 Knowledge-Containers

There are four knowledge-containers in CBR: vocabulary-, similarity measure-, adaptation- and

case-base container.

The vocabulary container contains the usual concepts that are needed for the system to explain

the domain. The similarity measure contains knowledge about how to retrieve against the

different cases, but it also need to handle the extra contextual information and the added

attribution weightings. In the solution transformation, or adaptation container, we will have to

store how we adapted the given knowledge-instances for a specific user. Then there is the matter

of presenting this knowledge to the user. This could be as simple as noting which combination of

information receive good feedback, or a more complex adaptation that presents how the specific

explanation generated came about as well, and other statistically significant information that

can be found from the case-base that might be worth presenting. The case-base contains cases

that are fully solved or partially solved. Partially solved means that although an explanation

was generated, depending on the domain, the case cannot be labeled as ”solved” as it may be

dependent on some feedback that comes at a later stage. Note that ”solved” in this context

means an explanation was generated which also satisfied the expectation of the user.

In our system, we also introduce a new container, as part of the knowledge-base - the explanation-

base container. It contains the different explanation-knowledge elements extracted from the

case-base, model-induction methods or the user.

4.3.6 CBR Cycle

This section presents a detailed explanation on the different steps in the CBR cycle as presented

in the architecture figure (figure 4.3).

Retrieve

In CBR, the retrieval step is probably the most important step in the cycle, as every step

afterward is dependent on this step. It doesn’t matter if the case-base contains the solution case

to a new problem if it can’t find the relevant solution in the first place.

In the retrieval step, we want to find previous instances with similar explanations to explain

the new problem. The difficult part of the retrieve step is creating a good similarity measure to

find similar problems. If the system cannot find a similar case that is sufficiently similar, we

need to break out of the traditional CBR cycle and query the system’s model induction method.

This could, for instance, be LIME, LORE and/or Anchor. This is an indication that the case is

unique in the sense that no similar case is present, and hence, our case-base will be prepared for
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a similar case in the future. It’s also important to keep the similarity function simple enough to

be interpreted by the users. Otherwise, we would have difficulty fully explaining the retrieval

step.

To improve upon the retrieval step, we suggest utilizing ideas from Caruana et al. [15], that

use internal weights (activation pattern) for better similarity against other cases. However, this

approach “opens” up and looks at the internal workings of the black-box(DNN). We think it

might be better to keep it closed. Nevertheless, we can use part of the patterns, namely the

attribution weights. As have been mentioned in previous sections, there are a numerous ways to

find a good attribution weighting, either as a closed system, or an open system. We hypothesis

that this would improve the retrieval step to find a similar case from the case-base.

Another factor that should also be considered is utilizing the additional contextual information to

find cases that better match the current situation at hand, as the surroundings of a given instance

could give better retrieval capabilities. If we know two cases has the contextual information of

e.g. being in an ambulance, we know that their similarity is closer than another case in the

hospital.

Reuse

Assuming we have found a sufficiently similar case in the case-base, we can utilize the general

knowledge links in the explanation part of the case. We need to do the necessary adaptation to

fit the new problem. This requires us to be careful in making sure that the explanation has a

high degree of fidelity with respect to the problem-case and the black-box model. The general

knowledge links are tested on the new problem, as we should only use parts that fit the problem

instance.

If we didn’t actually find any relevant cases or failed to fit the explanation part, we need to ask

the model induction algorithms directly. This will give us some new general knowledge regarding

the new problem.

When we have some general knowledge regarding the current problem, we can begin creating the

explanation that will be presented to the user. The context from a target case can be used to

further adapt the explanation towards this goal. Say we know the context of a previous problem

solution case, such as the availability of some specific medicine or a time constraint to generate

an explanation: the explanation for giving this medicine, could then be the that the optimal

medicine wasn’t available in the ambulance at that moment and that the patient was in dire

need of stability.
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Revise

To verify if the explanation satisfies the user-need, feedback is asked from the system. If the

explanation does not meet the expectations of the user, alas he/she couldn’t justify the prediction

proposal with the presented explanation, the system would need to alter the explanation by adding

more information regarding the model. If the system cannot give a good enough explanation,

this problem case should be noted as a problem area that would need to be improved.

Checking the clarity of the explanation requires feedback, and checking to which degree the

explanation agrees with the input-output mapping of the system requires domain knowledge or

feedback from an expert.

Feedback could be used to verify if the solution fit the goals or question related to the explanation

from the system. One type of user could be a doctor or a medical student, each requiring a

different degree of explanation details to trust the system.

Retain

The goal of learning is to turn the newly solved case into a new experience by constructing a new

case and/or modifying parts of the explanation-base to be able to handle new similar problems

that may appear in the future. The cases stored in the case-base will be part of the learning

along with the corresponding knowledge in the explanation-base used to generate an explanation

onto the specific case, similar cases used, how the explanation was generated with respect to the

user context and other related information.

The retain step is very closely linked with the maintenance of the system. In this step, the

maintenance of the explanation-base and the case-base should be run. This is to decide whether

it is actually worth storing a new problem case or instead only keeping parts of what has been

learned is sufficient.

The CBR framework performs multiple induction techniques to extract information about the

DNN. This information is analyzed and treated as explanation-knowledge which is used to

explain a given query to the DNN. With every new case added to the case-base, we need to

figure out if any of the previous cases are related, and update older cases that happen to fit the

same explanation pattern in the explanation-base.
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4.3.7 Explanation Generation

To generate explanations from the local interpretation knowledge extraction methods, we need

to present explanations with regard to a specific input case to explain the prediction of the

black-box.

Explanation representation is also very important, as the representation will affect the inter-

pretability of the explanation given to the user. If the user cannot understand or relate to

the explanation, the system has failed to explain the problem. Lay users, often prefer natural

language representation of an explanation, and as such, using attributions or previous instances

may be unproductive. For more knowledgeable users, these might be perfectly valid explanation

representations.

Like the explanation in figure 4.2, the explanation could incorporate elements of uncertainty

within the systems beliefs. E.g. the explanation could be based on statistical information

gathered from the case-base. Including the possibility of the prediction being wrong or a

statistically strong predictions. Like the inclusion of odds ratios, to support a prediction as

”prediction A was 2 times more likely than B”.

The nature of CBR, also allow raw input features to be used for explaining, where these are said

to be the natural basis for interpretability, when the input is low-dimensional and individual

features are meaningful. In high-dimensions, raw features such as pixels in an image is very hard

to analyze, and often lead to unstable explanations that are prone to noise in the data [3].

An explanation example is given in the listing 4.2, that show the inclusion of multiple parts in

the explanation. The prediction from the black-box, an explanation from one of the induction

techniques, similar problems in the past with its explanation, and whether or not there are any

conflicting records in the case-base that suggest different predictions.

Since the patient is in the age group a < x1 < b and the heart rate is x2, ...

The model suggests giving treatment Y.

This is because of the high blood pressure (higher than c), and above average liver function tests.

A similar problem from the case -base in the past: C23,

with the patient information ... given treatment Y, the patient recovered in 2 weeks.

The treatment was approved by Person P .

Explanation for the previous case was: (...)

There are no conflicting records from any of the X number of cases.

Listing 4.2: Example of explanation presented to the user
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Data, Implementation and Running

Example

This chapter first presents the process of finding a dataset a give a description of the data. In

the next section, we describe the DNN which was trained to be explained. In 5.3 we describe

our implementation, which is a limited version of the architecture described earlier in chapter 4.

Finally, in 5.4, we show a running example.

5.1 Dataset

Before starting the implementation, we did several rounds in our faculty building (IDI) to find

researchers that may have datasets and/or DL models that could be interesting for our thesis.

Unfortunately, few people seemed to have a trained model available. The few who did have

datasets at hand were too complex to be understood or the dataset was image-based, a domain

we had already ruled out. Most people kept pointing to the UCI repository for a dataset that

would fit our need, which may be the closest unofficial collection of standard AI datasets.

After a quick review of the available datasets, we ultimately landed on a dataset which has

already been utilized in many XAI papers before ([93], [40], [75] among others): the Adult-dataset

is from the UCI collection [26]. It’s a dataset that is not very well completed, in terms of top

accuracy score, with a top-score less than 90% 1.

The dataset is a simple classification problem, with 12 attributes describing a given person (age,

education, etc.) and the goal is to classify whether or not the salary exceeds 50.000 USD. It

consisted of a total of 48K labeled instances, split between a training and testing set. The test

1https://www.openml.org/t/7592
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set was further split in half forming a validation set, resulting in approximately 32K examples in

training, and 8K in test and validation, respectively.

Before we could work with the dataset it needed to be pre-processed. This step consisted of

trimming attributes that were deemed unnecessary and simplifying the values for the DNN to

begin training. The pre-possessing steps and implementation were based on Ribeiro et al. [75],

as we needed some key points from the dataset for the Anchor framework. The implementation

code contains some minor modifications to work on updated software packages, and with a

different discretizer. All of which can all be found in the source code of this project [28].

One important pre-processing requirement for utilizing the Anchor framework is discretization.

In DNN it is the step of processing the features in the dataset that are continuous into discrete

values. As this is a requirement by the model agnostic method, namely anchor, to successfully

generate simple concise rules without having to deal with an infinite number of possibilities, we

simply do this beforehand and treat each feature as a category. These discrete feature values

need to be utilized late when we want to query with new data instances.

One problem with discretization is that is is difficult to know which method is best for a given

dataset. E.g. say we want to predict the risk of Alzheimer: it would not be very helpful to split

the data at early age groups, say 15 and 30. Bins for age x: [15 ≤ x, 15 < x ≤ 29, 29 < x].

This would result in a giant bin for 30+, where most Alzheimer patients are. To combat these

types of issues, we need to make meaningful splits. One good method is the entropy-based

discretization [63], which try to maximize how much a split match up with the classifier labels,

i.e. generate a decision tree that best split the dataset with respect to information gain (entropy)

on a particular continuous feature. These splits are later the bins used to discretize.

The attributes of a given person after discretization is as follows in listing 5.1. Each attribute is

placed into a selection of categories, and the continuous variables into bins.

[age]: continuous → [age ≤ 21.50, 21.50 < age ≤ 23.50, 23.50 < age ≤ 24.50,

24.50 < age ≤ 27.50, 27.50 < age ≤ 29.50, 29.50 < age ≤ 35.50,

35.50 < age ≤ 61.50,age > 61.50]

[workclass ]: [Federal -gov , Local -gov , Private , Self -emp -inc , Self -emp -not -inc ,

State -gov , Without -pay]

[fnlgwg ]: Omitted. The number of people the census takers believes

the entry represents (weighting ).

[education ]: [Associates , Bachelors , Doctorate , Dropout , High School grad ,

Masters , Prof -School]

[education -num]: Omitted (duplication of education ).

[marital -status ]: [Married , Never -Married , Separated , Widowed]

[occupation ]: [Admin , Blue -Collar , Military , Other , Professional , Sales ,

Service , White -Collar]

[relationship ]: [Husband , Not -in-family , Other -relative , Own -child , Unmarried , Wife]

[race]: [Amer -Indian -Eskimo , Asian -Pac -Islander , Black , Other , White]

[sex]: [Female , Male]

[capital -gain]: continuous → [High , Low , None]

[capital -loss]: continuous → [High , Low , None]
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[hours -per -week]: continuous → [hours per week ≤ 31.50,

31.50 < hours per week≤ 34.50 ,34.50 < hours per week ≤ 39.50,

39.50 < hours per week ≤ 41.50 ,41.50 < hours per week ≤ 46.50,

46.50 < hours per week ≤ 49.50, 49.50 < hours per week ≤ 65.50,

hours per week > 65.50]

[native -country ]: [British -Commonwealth , China , Euro -east , Euro -south ,

Euro -west , Latin -America , Other , SE -Asia , South -America , United -States]

Listing 5.1: Categories of the features in Adult dataset after preprocessing

For the prediction, we have the simple encoding of class 0 for prediction of less than 50000 USD,

and class 1 for more than 50000 USD.

5.2 DNN

We needed a black-box model to explain. The DNN is made using a high-level neural network API

named Keras[17], which makes it easy to implements the network and corresponding functionally

on the network (training, saving/loading, prediction).

As the dataset which we were set to train on is a challenge for a DNN, we had to utilize a lot of

different regularization techniques and architectures combinations for it to produce good results.

During training, smaller networks were able to achieve approximately similar results. However,

the training was less stable, which is why we went for a deeper approach.

1 Adam( l r =0.002 , beta 1 =0.9 , beta 2 =0.999 , e p s i l o n=None , decay =0.01 , amsgrad=True )

2 # Sequent i a l keras model

3 Dense (512 , input dim=input dim ,

a c t i v a t i o n=” r e l u ” , a c t i v i t y r e g u l a r i z e r=l 2 ( l =0.001) ,

4 b i a s r e g u l a r i z e r=l 1 l 2 ( l 2 =0.001 , l 1 =0.001) ) , Dropout ( 0 . 6 ) ,

5 Dense (256 , input dim=input dim ,

a c t i v a t i o n=” r e l u ” , a c t i v i t y r e g u l a r i z e r=l 2 ( l =0.001) ,

6 b i a s r e g u l a r i z e r=l 1 l 2 ( l 2 =0.001 , l 1 =0.001) ) , Dropout ( 0 . 5 ) ,

7 Dense (128 , input dim=input dim ,

a c t i v a t i o n=” r e l u ” , a c t i v i t y r e g u l a r i z e r=l 2 ( l =0.001) ,

8 b i a s r e g u l a r i z e r=l 1 l 2 ( l 2 =0.001 , l 1 =0.001) ) , Dropout ( 0 . 4 ) ,

9 Dense (96 , input dim=input dim ,

a c t i v a t i o n=” r e l u ” , a c t i v i t y r e g u l a r i z e r=l 2 ( l =0.001) ,

10 b i a s r e g u l a r i z e r=l 1 l 2 ( l 2 =0.001 , l 1 =0.001) ) , Dropout ( 0 . 3 ) ,

11 Dense (64 , input dim=input dim , a c t i v a t i o n=” r e l u ” ,

b i a s r e g u l a r i z e r=l 1 l 2 ( l 2 =0.001 , l 1 =0.001) ) , Dropout ( 0 . 1 ) ,

12 Dense (32 , input dim=input dim ,

a c t i v a t i o n=” r e l u ” , b i a s r e g u l a r i z e r=l 1 l 2 ( l 2 =0.001 , l 1 =0.001) ) , Dropout ( 0 . 1 ) ,

13 Dense (16 , input dim=input dim ,

a c t i v a t i o n=” r e l u ” , b i a s r e g u l a r i z e r=l 1 l 2 ( l 2 =0.001 , l 1 =0.001) ) ,

14 Dense (8 , input dim=input dim ,

a c t i v a t i o n=” r e l u ” , b i a s r e g u l a r i z e r=l 1 l 2 ( l 2 =0.001 , l 1 =0.001) ) ,
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15 Dense ( output dim , a c t i v a t i o n=” sigmoid ” ) # output l a y e r

Listing 5.2: Keras network settings

From listing 5.2, the input dim is a simple reference to the size(length) of the input data. In

our case this is set to 72, with every feature is a one-hot-vector encoded with respect to each

value. We list the parameters that were chosen for the optimizer, Adam, with its standard

parameters. Each line of Dense, represent the parameters settings for one dense layer in the

network. Beginning with the width of the layer, and activation function set to the Rectified

Linear Unit (relu) function f(x) = max(0, x). The first layer is, in this case, a Dense layer

with 512 nodes, and 72 input nodes. The regularization of each layer is set to a combination of

l2(ridge) and l1(lasso) regularization on differing weights, which penalizes specific weights in the

network with respect to loss. After each layer, it follows a dropout regularization layer, which

simply deactivates random inputs during training. This works by training different numbers of

architectures in parallel, which help with generalizing the DNN. The final Dense layer is the

output layer, which is simply the number of classes in the system. In our Boolean classification

problem output dim = 1.

5.2.1 Results After Training the DNN

With a final score of 85.3% accuracy on the test set, this was the final model architecture on

the DNN that performed best from our experiments. Figure 5.1 shows how the model accuracy

peaks at approx epoch 48, resulting in it being the final model weights stored aside and used.

The ROC (Reciever Operating Characteristics) curve, with a score of 1 equaling a perfect score,

in terms of separability between the prediction classes.
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Figure 5.1: Overview of the training process on the network. with epochs=200, batch size=120
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5.3 Architecture of Implemented System

Figure 5.2: An overview of the implemented architecture.

Figure 5.2 depicts the architecture of our implementation. This is a specific implementation

of the general architecture that is described in chapter 4. Many of the general ideas are not

implemented yet, as these would be challenging to implement with the time constraint for

this thesis. The purpose of this implementation is to show how this system can function at a

minimum as a proof of concept. Figure 5.4 explains more detailed how the system works with

regard to the CBR cycle. This figure gives a brief overview of how the system works. Both

figures have some overlap, but this figure depicts some aspect that are not covered by figure 5.4.

Most notably that the unsolved case contains no pointers to the explanation-base as it has not

yet been solved.

Firstly the figure show the black-box (DNN) with its feature value inputs and prediction output.

These, along with the weighting from Integrated Gradients, are included in a unsolved case.

This case is queried against the case-base for similar cases. If a case is found we utilize the

explanation-knowledge in the explanation-base to generate an explanation. If we don’t find any
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previous cases that are sufficient in solving the particular unsolved case, we need to query the

rule extractions directly (Anchor in this instance), which we use along with other information to

explain the problem.

The pseudo-code in algorithm 1, show in broad terms, how the implementation of the architecture

works. It begins by pre-processing the dataset, as required, with already mentioned discretization

techniques. In the next step, Anchor is initialized on the pre-processed dataset. Then, we

find the new problem case, which consists of the attributes values X, the prediction from the

black-box y = f(X) and the attribution values from Integrated Gradients.

The second step is doing a retrieve from the case-base to find similar cases to be used for

explaining the prediction. If we don’t find any cases, we need to query the model induction

method Anchor directly for explanation-knowledge.

The next step is checking if the explanation-knowledge retrieved fit our problem instance: whether

the Anchor is a good fit on the problem case. If it does indeed fit (even if only partially), we can

use it. Otherwise we query Anchor directly.

Once we have an anchor explanation that can be used, we go the explanation generation step.

This step is simply a presentation of the anchor in readable form, along with the previous case

instance used to find this explanation-knowlege in the first place.
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Algorithm 1 Pseudo Code for Explaining prediction y = f(X) from Black-box

Require: DNN available

Require: CBR running (myCBR REST API)

Require: Induction Methods available (Integrated Gradients and Anchor)

Perform pre-processing steps on Dataset (discretization and cleaning)

Initialize Anchor on pre-processed Dataset

X ← Features

y ← f(X)

Case← (X, y,AttributionfromIntegratedGradients)

while Explanation is None do

if Case-Base is empty then

Get knowledge to explain from Anchor

else

Results← Query(Case against Case-Base)

Check if retrieved cases explanation-knowledge from Results fit target case.

if retrieved similar knowledge does not fit case then

Get knowledge to explain from Anchor

end if

end if

if No similar cases retrieved then

Present Explanation to user as Anchor+Attributions

else

Present Explanation to user as previous similar knowledge + Attribution + Previous

Cases

end if

Retain Case as new solved case in Case-Base and corresponding knowledge used in

explanation-base

end while

5.3.1 Attribution Weighting

To generate the attribution weighting, we have options such as DeepSHAP, which is a combination

of SHAP and DeepLift, with DeepLift being a good approximation of integrated gradients [60].

Ultimately we decided to use Integrated Gradients [86], as it is said to work as well as other

gradient methods, but being a bit more general to the type of DNN [6]. Weights generated by

the induction methods can be used to attribute importance to the top k features. These weights

may serve as a form of explanation which is separate from the rule-based explanation.
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The weighting is in the same format as the input to the DNN. In our implementation we used

a one-hot vector per feature, resulting in a vector of size 72. This needed to be reduced to

the original 12 categories, as each features n-one-hot, represented the weights of the complete

feature. E.g. given a weight-vector [0,0,0.24,0,0.4,0,...] with the first 5 indexes representing a

one-hot vector representation of the first feature. The final weight for this feature is 0.24, and so

on for each feature. The attributions are ranked with respect to the features in the following

manner: [age, work class, education, marital status, occupation, relationship, race, sex, capital

gain, capital loss, hours per week, country].

5.3.2 Model-Induction Method

After a thorough literature review, we narrowed the candidates down to LORE [40] and Anchors

[75]. These give a good overview of how the model works on a local level. Anchor, however,

gives a much better picture in relation to the specific area it describes as shown in figure 3.16,

whereas LORE simply presents the rules without considering areas outside of its reach. The

other difference between these is how the knowledge is represented. LORE uses decision trees,

which gives the ability to learn from the different paths created, e.g. contrasting paths (differing

prediction). Anchor on the other hand, maintain the knowledge in simple predicate logic rules.

Another difference is in how the permutations are made against the black-box. LORE utilizes a

genetic algorithm to optimize this permutation step, whilst Anchor uses the same permutation

as LIME, a randomly distributed permutation.

With this in mind, we decided to use Anchors as the final explanation engine with the importance

of keeping the explanation interpretable and concise with the rest of the feature space. As

we’ve discussed in the general architecture chapter 4.3, combining several of the model induction

methods in the future may be even better. Our implementation only utilizes Anchor.

An anchor example is shown in listing 5.3, with the various values returned. Precision is defined

as: of all instances in dataset D, where the set of predicates in A apply, how many share the same

prediction. Coverage is how “wide” the anchor can be applied on the validation dataset. How

large percentage of the validation dataset D can the anchor be applied to. These two measures

are a big part of selecting good anchors. If the precision is set too high, the coverage will fall

short, resulting in anchors that only fit a very small selection of problems. During testing, it was

found that a 95% precision was a good target value resulting in a coverage usually between 1%

and 5% of the validation dataset. Occasionally, the Anchor generated surpassed these numbers.

This anchor in text reads: IF marital status = Never-Married AND education = High School

grad THEN predict salary > 50000. Whats interesting about this particular anchor, is that

with a relatively large coverage of 18%, it can predict the correct class in 97% of the problems.
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1 "4": {
2 "__class__": "Explanation",

3 "names": [

4 1,

5 4

6 ],

7 "feature": [

8 3,

9 2

10 ],

11 "precision": [

12 0.9135338345864662,

13 0.9766666666666667

14 ],

15 "coverage": [

16 0.3202,

17 0.1823

18 ],

19 "prediction": 0,

20 }

Listing 5.3: Example of Anchor in JSON-format

Meaning on 18% of the problems, we find the prediction better than the original networks overall

85%.

5.3.3 CBR Frameworks

There are various frameworks for implementing a case-based reasoning system. The top contenders

are myCBRBach et al. [9] and jCOLIBRI Recio-Garćıa et al. [74]. As there is little up to date

comparisons between the features in each framework, it is hard to know which one best fits our

needs. Since we know that the faculty at NTNU both uses and actively develops myCBR, we

thought it’s better suited for us in terms of available resources to choose myCBR. The XAI and

DNN algorithms presented are however implemented in Python, and there are, as far as we know,

not any suitable implementation frameworks for a CBR system available in Python. Developing

one specifically for our needs is infeasible given the time- and resource-constraint on the thesis.

myCBR2 is an open-source CBR software development kit which is developed in a joint effort by

Competence Centre CBR at DFKI in Germany, School of Computing ant Technology at UWL

in UK and Norwegian University of Science and Technology in Trondheim. myCBR offers the

myCBR Workbench which is a powerful GUI for similarity modeling, similarity-based retrieval

and more. In addition, myCBR has recently added a REST API3 which creates an interface to

2http://mycbr-project.org/index.html
3https://github.com/ntnu-ai-lab/mycbr-rest

http://mycbr-project.org/index.html
https://github.com/ntnu-ai-lab/mycbr-rest
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the code running the myCBR engine. The REST API allows for seamless integration with other

applications regardless of programming language. In our case, this has allowed us to use Python

throughout the system, for both DNN and CBR, as myCBR operations can simply be queried

using the REST API.

The myCBR REST API is very much a work in progress and it’s safe to say we have had some

difficulties along the way. The documentation haven’t been as detailed as we would like and we

have had difficulties running some of the operations. Luckily, one of the myCBR maintainers

have been very helpful and provided guidance whenever needed. In addition to the REST API,

we have utilized the myCBR workbench GUI for operations which are either not yet implemented

in the REST or not as easy to implement using the REST API, such as similarity modelling.

5.3.4 Explanation-Base

The explanation-base was also implemented in Python. The pointers from each case will tell which

explanation was used to explain a given instance. As the dataset is encoded, each value(name)

and feature is labeled according to listing numbers. Listing 5.4 shows two explanations. The

first explanation, with id 0, can be read as IF feature 3 = value 4 AND feature 4 = value 6,

THEN predict class 0. Precision and coverage is calculated on a subset (10.000) of instances in

the validation dataset. The precision on the full anchor 0, is 0.99 % correct on this subset, where

the full anchor hold, with a score of 0.8 on instances in the dataset that contains only feature 3

= value 4. The coverage score is how large percentage of the dataset that the anchor can fit.

The storage of the explanation-base is a simple JSON file where each explanation is an explanation

object. With this implementation, the storage is very flexible with respect to allowing different

types of explanations in the future, other than only Anchors.

1 {
2 "0": {
3 "__class__": "Explanation",

4 "names": [4, 6],

5 "feature": [3, 4],

6 "precision": [0.8, 0.99],

7 "coverage": [0.4, 0.1],

8 "prediction": 0

9 },
10 "1": {
11 "__class__": "Explanation",

12 "names": [5, 7, 1],

13 "feature": [7, 3, 4],
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14 "precision": [0.8, 0.92, 0.99],

15 "coverage": [0.4, 0.23, 0.1],

16 "prediction": 1

17 },
18 ...

19 }

Listing 5.4: Explanation in JSON format

5.3.5 Case-Base

Figure 5.3: How a solved case looks inside the case-base in myCBR.

Figure 5.3 shows how a solved case looks inside myCBR. Apart from Explanation, Weight, which

is weights from integrated gradients, and Prediction, which is the prediction from the black-box,

the rest are input features. Considering the explanation for each case can become quite long if

they were to be stored as strings, only a pointer to the explanation-base is stored in the solved

case itself.
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5.3.6 Modified CBR cycle

Figure 5.4: The lifecycle of each case which enters the modified CBR cycle.

Figure 5.4 shows specifically what happens with regard to the retrieve, reuse, revise and retain-

step in the CBR cycle. How each step is related and how it relates to our architecture will become

clear with a specific instance from the dataset. The given instance will enter the explainer part of

the system as a query case with input (features from data point), prediction given by black-box

and attribution given by integrated gradients. In the first step, the retrieve step, the query

case is compared to cases in the case-base to find similar cases. Similar cases already retained

in the system are useful as explanations have already been generated (from anchor) and can,

therefore, be reused to explain new cases. This is where the various similarity measures which

were predefined are used to find the most similar or the k most similar cases. Given that the

system can’t find any similar cases, Anchor is used to generate new explanations. The anchor

step is skipped otherwise. As implementation of the revise step is left for future work, this step

is skipped. The final explanation given by the system consist of presenting the previous case

with the matching explanation (given that such a case was found), attribution weights showing

the most important features and explanation generated from anchors for that specific case (in

case a similar case wasn’t found in the retrieve step). The learned case is then retained in the

case-base for future instances. The explanation is stored in the explanation-base with a pointer

to the explanation in the case itself.
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Retrieval

To implement the retrieval, we utilised an amalgamation function within myCBR. An amalgama-

tion function is a combination of functions of local similarity between the different attributes in

each case. In the equation 5.1, we get the similarity between case A and B. wi is the weighting

between each attribute, in our system this was set to 1, as we didn’t know the relative importance

of each attribute related to the classification problem.

simg(A,B) =
n∑
i=1

wi · simfn(ai, bi) (5.1)

We performed multiple tests to validate our query results against the explanations from Anchor.

For features which were of type integer, we utilised the openml page on the adult dataset4 to

extract information on min/max/average (which is shown in figure 5.7 for the age-attribute).

Features with the symbol type are considered individually. Some of the features are more

straight forward such as sex and prediction. Others, such as education and occupation, need to

be considered individually. Features with type string are left out when doing retrieval.

Retrieval with weights

In order to figure out if the weights hold any value in the retrieval step, we setup a simple test,

With the use of the cosine similarity in equation 5.2, Euclidean distance in equation 5.3 and

cosine with prediction used. This is to do retrieval between weight vector A and B corresponding

to attribution weights from Integrated Gradients on each case. If the value is close to 0, then

the weights are very similar. To validate the results, the baseline is simply the index of each

case, instead of the cosine similarity query results.

simw = cos(θ) =
A ·B
‖A‖‖B‖

=

n∑
i=1

AiBi√√√√ n∑
i=1

A2
i

√√√√ n∑
i=1

B2
i

(5.2)

simw = euclid(θ) = d(A,B) =

√√√√ n∑
i=1

(ai − bi)2 (5.3)

To improve upon the retrieval step, we utilized the idea from Caruana et al. [15], but instead of

utilizing internal weights (activation patterns) for similarity, we simply connected the attribution

weights to the retrieval. It was a hypothesis we had that this would help us in finding sufficiently

4https://www.openml.org/d/1590

https://www.openml.org/d/1590
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similar cases in the case-base. To test this hypothesis, we derived a few tests on retrieval. Each

case in the case-base had an explanation from Anchors, along with the test cases. The retrieval

on a test case against the case-base was only performed with their weights from Integrated

Gradients. Various similarity measures such as Euclidean distance, cosine distance, cosine

distance with prediction similarity (0 if equal, 1 if not) and None (no ranking, only random

listing), are used to test the case-base. We were interested in finding out whether or not the

anchor explanations are equal. If the Anchors are identical, then we know that the similarity

score should be very high. If the retrieved case was similar, the anchor explanation should be

similar as well, at least partially.

Figure 5.5: Results of query against case-base using only similarity between weights to test
anchor similarity. Hit score is perfect anchor explanation matches.

The graphs in figure 5.5 show results from different similarity measure queries done against

case-bases of different sizes (from 10 at top to 50 at bottom graph) to compare weights from

integrated gradients in the cases. X-axis shows how many exactly similar anchors there are

between the case-base and test-case from the top k cases in the query, while the Y-axis shows
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the number of times the anchor on a test case gives an exact match to one cases anchor from

the case-base, from top k in the query ranking. Each case-base is tested against a pool of 50

randomly picked cases from the test-set. The number of cases in the case-base is increased by 10

for each run to test various case-bases sizes. The cases used in each case-base are taken from the

validation-set, and all of these cases have explanations that have been generated using Anchor.

E.g. In a case-base with 5 cases (c1 to c5), and a query with 2 test-cases (tc1 and tc2 ). We get

two query results per metric. For euclidean distance only we could get [c2, c3, c1, c5, c4] for tc1

and [c4, c2, c1, c3, c5] for tc2 respectively, the hit rate between the anchor in case tc and case c

anchor could be [1,0,1,0,0] and [0,0,1,1,1]. The top-k is calculated as number of hits (successes)

in from the first query result down to index k. The sum of these would be [1,0,2,1,1], and top-k

with k incrementing by 2 (2,4,6) would be [1,4,5]. This is what is plotted for each metrics results

queries, with k incrementing by 10 in figure 5.5.

The results show that using weights in the retrieval to check for the similarity between a test-case

and a case in the case-base improve the results. We want the cases that give a correct solution to

be as close to the top of the query as possible. In the last graph with 50 cases, about 12 of the 24

cases were found in the top 10 spots. This is by no means a perfect retrieval score with regard to

the relevant cases in the top 10 query results, but it does show an improvement compared to the

random similarity measure. The results were consistent with a random distribution of the cases.

Similarity Measures
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(a) Similarity function for age

(b) Similarity function for education

(c) Similarity function for race

Figure 5.6: Similarity functions for three of the attributes in a case.

Figure 5.7: How the instances are distributed for age-attribute.

From figure 5.7, we can see various information on the age-attribute. It shows min at 18, max at

90 and average at 38.
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Figure a) in fig 5.6 shows the similarity function for the age-attribute. It converges to 0 after

reaching the deviation value equal to the average. After running some test, we’ve found that

this is the function that best punishes any values that are overly deviant. A similar function is

modelled for the other integer attribute, namely hours per week.

Figure b) shows the similarity function which has been modelled after which education degree

has the most income. The scores are the result of running various tests and tweaking to find

what works best for this particular attribute. Upon modelling the function for this particular

attribute, we found that it required a lot of time to find the optimal similarity function for

each of the 12 attributes. Therefore, the rest of the attributes, which are of the ”symbol” type

(not including age and hours per week which are integers and explanation and prediction which

are strings) in myCBR are modelled in the simplest form, just as in figure c), where they’re

only considered similar when there’s an exact match. The weight and explanation attribute are

deactivated in the retrieval stage as they are not supported or relevant in the myCBR framework

for the retrieval-stage.

5.4 Running Example

To illustrate how the system works, we have created a project (adult final.prj in the projects

folder) which has been populated with five random cases from the validation set. It’s depicted

in figure 5.8, from a) to e). Then we have one query case, f), which is the target case we want to

explain.
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(a) Case 1 (b) Case 2 (c) Case 3

(d) Case 4 (e) Case 5

(f) Query case

Figure 5.8: Overview of the five cases in the case-base and the query case we want an
explanation for.
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For this query case, Anchor is automatically generated to show how the Anchor compares to the

Anchor generated for the most retrieved case. In practice, the Anchor for a new case could be

set to only be generated when it’s under a certain threshold for a similarity score. For this case,

the similarity is 76.17 %.

Figure 5.9: Most similar explanation

This is the explanation outputted from the system from the case it deemed to be the most

similar. The explanation from the retrieved case is not an exact match, but the partial anchor

of only marital status = Never Married grad holds as an easily interpretable explanation to why

the prediction was set to class 0. The coverage and precision show, that with this partial anchor,

the precision is 91 % correct, and is able to hit 31% of the validation dataset.

Figure 5.10: Most similar case is case 1.
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Additionally, the user is also presented the case that was used to explain.



Chapter 6

Discussion

In this chapter we have a general discussions on topics that hasn’t been covered in earlier

discussions. In the next secion, we present the issue of reproducibility and our approach to

achieve this with the thesis.

6.1 General Discussion

One question that comes up regarding our system is why use the CBR system at all? Why not use

the model induction methods by themselves? One answer to this is that we can’t know whether

or not if it is time-reasonable to predict the behavior of the model from every instance that is to

be explained. We can assume that the time needed might be too long, and above what can be

considered within a reasonable time frame. In our implementation it takes about one second to

generate the Anchor for one given instance, we know that this number will likely increase as we

increase the number of features. If we had even more complex methods as well, this could be an

even more drastic change. Retrieval against a case-base would in this case be much faster. One

possibility is that the time needed to calculate some of the model induction methods doesn’t grow

outside of its usefulness. In this case, we could get some explanation-knowledge to use alongside

the context and the case-base system. This would allow for more precise explanations toward

a particular instance, as we have done with using the attribution weighting from Integrated

Gradients.

By using previous explanations in the explanation generation phase along with the contextual

information given by the user, we should be able to give better explanations that fit the user

needs. These explanations would also be more interpretable with the inclusion of feedback, to

guide the explanation towards the goal of the user.

79
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General Architecture

There is a problem related to the type of explanation that is given in a system like this. Looking

at figure 4.2 with the explanation from the black-box to factory prediction: the explainer is

isolated from the predictor. This results in explanations that seem to fit the prediction, but

confirming whether or not explanation has a high degree of fidelity related to the black-box’

own prediction, is very difficult. An isolated system would in some instances fail to produce an

explanation that really captures the inner workings of the model. If it could, it should be able

to give the prediction itself as stated by Rudin [79]. No model is always correct, and as such

should not always be trusted in every instance. In this instance, the explanation could give a

false sense of trust, where the resulting prediction could be very damaging.

Verifying the different model-induction techniques are also a problem, if the methods themselves

show conflicting explanations between one another, the model-induction technique might be

weak.

How many cases need to be stored in the case-base and how to deal with conflicting anchors is

also a matter of interest. In terms of multiple potential anchors to explain a given instance, it

would probably be a good idea to present the user with the most applicable cases and present

multiple explanations if needed.

6.2 Reproducibility

Reproducibility is important for the trustworthiness of a paper. Following the increased research

in AI, we have seen an increasing number of researchers addressing the issue of reproducibility.

Unfortunately, just as ”explainability” is hard to define, there is no one agreed upon definition

of reproducibility. Nevertheless, Gundersen et al. [41], have a definition which we agree with:

”Reproducibility in empirical AI research is the ability of an independent research team to produce

the same results using the same AI method based on the documentation made by the original

research team.”

According to Gundersen et al., research points to open-data and open-code is an important step

towards reproducibility. In our thesis, we have taken steps to preserve the ability to reproduce

our results. Firstly, the UCI adult dataset we’re using is open and can be looked up by anyone

on their website 1. Secondly, our code is open source and can be found in a public repository

on GitHub [28]. Thirdly, our code is well commented in addition to this thesis which functions

as added documentation to the architecture a whole. Lastly, all our code is written such that

the same seed is sent anytime there is any randomization involved to be reproducible at a later

stage.

1https://archive.ics.uci.edu/ml/datasets/Adult

https://archive.ics.uci.edu/ml/datasets/Adult
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Conclusion and Future Work

In this chapter, we will begin by summing up what has been done in 7.1, listing our contributions

in 7.2, presenting future work in 7.3 and some final words about the thesis in 7.4.

7.1 Conclusion

In this thesis, we have presented why XAI has become a hot topic in the industry, among ordinary

citizens and regulators on issues related to trust and privacy. We’ve performed a literature review

on state of the art in XAI, reviewing, the latest conferences in the field such as IJCAI 2017,

IJCAI 2018 and ICCBR 2018. We have performed a similar literature review for case-based

reasoning and discussed how it has been used to generate explanations. We have presented a

general architecture, implemented parts of it and presented a specific running example. Finally,

we will present the contribution of this thesis and what we think can be done in the future to

improve the system.

In the introduction, we made the reader aware that the implemented system is a proof of concept.

Working on this thesis we have learned that this thesis has been greater in scope than what we

first anticipated. Our solution is by no means a finished product and there are many things

which can be improved upon. We have mentioned in the general architecture and in the future

workings, what can be tweaked to create a better explainer. When we started this thesis, we set

out to answer three research questions. In the remainder of this section, we will summarize how

we have tackled these questions in this thesis:

Research Question 1: What is the current status of eXplainable Artificial Intelligence (XAI)

and eXplainable Artificial Intelligence (XAI) related to Case-Based Reasoning (CBR)?

In the first research question, we were interested in finding state of the art in XAI. XAI has seen

an increased interest in research with conferences, such as IJCAI, solely dedicated to the topic
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of XAI. Chapter 3 is a direct attempt at tackling the first research question. In short, we have

found that most research papers can be divided into one of three categories: model induction,

interpretable models or deep explanation. Although our focus has been on model induction, as

this has been most relevant for our thesis, we have also described state of the art in the other

categories.

Research Question 2: How can model-agnostic methods be combined with Case-Based Rea-

soning (CBR) to gain knowledge of an underlying Deep Neural Network (DNN)?

Chapter 4, and more specifically chapter 4.3, seeks to answer this. Here we presented a general

architecture which could combine various model-induction methods with CBR to explain the

DNN. We believe that by combining model-induction methods directly on a DNN to find patterns,

along with the experience natured CBR system, we can gain direct knowledge about the DNN

itself to fully interpret and justify the predictions.

Research Question 3: Can our proposed system provide a step towards achieving user-

understandable explanations?

Through our work with both the specialization project and the master’s thesis it has become

clear that it is hard to define what constitutes ”a good explanation” with respect to the user.

Also, it’s challenging to increase the interpretability as this is highly subjective. Among others

factors, user types, data complexity, and more, all come into play when defining this. We believe

that with the inclusion of user-context and user-feedback (as described in chapter 4.3) from an

explanation, the system could be able to adjust the explanations to achieve the different goals as

defined by the user itself, and thus give more understandable explanations.

7.2 Contribution

The main contribution of this thesis is:

1. A summary of our review on state of the art from the specialization project. Additionally,

an extension of the research with a focus on model induction techniques in combination

with case-based methods.

2. A presentation of a general architecture for achieving model-agnostic explainable AI on a

black-box algorithm (DNN) utilizing the CBR methodology.

3. Commented implementation code, a trained DNN which has been open-sourced, various

myCBR projects and results from the open dataset used.
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7.3 Future work

There are still questions that need to be answered related to improvements and a full implemen-

tation of the general architecture proposed.

Evaluation of selected model induction methods

The model-induction techniques used may behave poorly under certain circumstances. A broader

evaluation of our selective methods should be considered for further analysis. It would be valuable

to figure out the limitation of these methods, and how “far” they apply. How to evaluate these

methods are in and of itself a great challenge, as there isn’t one defined metric that can be

used. With the current pace of research in XAI, we think that better alternative methods will

appear. Any method that can give more insight than the previous is useful and a step in the

right direction.

This question also applies to how well the model performed, as the method used could be very

reliant on whether the model performed well enough to be used in the first place. E.g. when

testing the Anchor implementation, we noticed that if the model was not trained (only random

initiation of weights) before using Anchor, we couldn’t get any results from Anchor. Figuring

out how the method relate to the performance of the model itself is very important. As many of

the induction techniques’ usefulness may be directly connected to the performance of the DNN,

we might get completely different explanations from say, a DNN with 60% accuracy, versus a

DNN with 90%.

Combining Induction Techniques

We think that by combining multiple methods into one, we should be able to gain insight

into a larger part of the underlying knowledge hidden inside the black-box. Which induction

techniques to combine and how these can be used in tandem is a research point which needs to

be investigated further. In our example, in listing 4.1, we have shown how the explanation-base

may look with Anchor, LIME, LORE, etc. However, the details on how these methods would

work together is something that needs to be taken a closer look at. We want to amplify the

explanatory coverage of each individual method, by utilizing the individual strengths of each

method to create more useful explanations.

Feedback

Feedback from the user is a key property of an explainable system, regardless of whether or not

the explanation was sufficient or even correct. With feedback from the user, the explanatory

reasoner in the CBR system, can be altered to capture patterns that were not only wrong from

the explanation generation itself, but also the DNN models prediction. How to include this type

of feedback, and how to use it is a problem not fully considered in this thesis. As feedback could

have many goals and variations. Handling them all is not an easy task, and is something that

needs to be looked on.
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Knowledge representation

Knowledge representation is an essential part of any knowledge/reasoner system, and as such, a

broader knowledge representation should be utilized. Simple rules as sets of predicates cannot

capture all relevant rules for our tabular problem case, or any other black-box system for that

matter. Simple AND/OR rules are not sufficient for a lot of representations, especially relational

information or information related to a group. The simpler the rule, the easier it is to work with

and present to the user, but the less coverage of the true complexity on the domain is it able to

capture. Finding a middle ground, or combining different representations to work from should

be figured out.

Evaluation on users

Any continuation of this project would be served with conducting user tests throughout the

development process. As it is hard to define what can be said to be a good explanation, continuous

users tests with users who are actually going to utilize the system is highly recommended.

Conducting a user test should be considered a priority to develop this system further. This will

also show if the system actually works in a real-world setting.

Use attribution to find similar cases

Currently, the weights are not used in the final implemented retrieval stage when looking for

similar cases. It would be very valuable to figure out whether the attribution weights do align

with the similarity of the amalgamation function itself. Another test is whether or not the

feature importance weight, which is commonly found in the amalgamation function, can be

substituted with these attribution weights, as this expert knowledge can be hard to obtain in

some domains. In a car domain, the feature related to the paint of the car is probably not as

important as the engine used.

7.4 Final Thoughts

We have found this project to be interesting in numerous ways, but especially from a research

perspective. Although much work still needs to be done before explainable AI reaches human

level capability, it’s a relatively new field which is becoming more important. We can see that

although the concept of explainability has been discussed ever since the dawn of AI, it’s only in

recent years it has gained any traction with full conferences dedicated to the topic. Furthermore,

the conferences and results in the paper’s keep improving in certain areas. Hopefully, the

community sees the advantages that the CBR methodology can bring to this table.
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