Martin Bjerke

Leak Detection in Water
Distribution Networks using Gated
Recurrent Neural Networks

NTNU

Norges teknisk-naturvitenskapelige

Juni 2019

universitet

Fakultet for informasjonsteknologi og elektroteknikk

axJalg unJepn

Institutt for datateknologi og informatikk

\/

@NTNU @ NTNU

Kunnskap for en bedre verden Kunnskap for en bedre verden

BNTNU

Kunnskap for en bedre verden

Leak Detection in Water Distribution
Networks using Gated Recurrent Neural
Networks

Martin Bjerke

Master i Informatikk: Kunstig Intelligens
Innlevert: Juni 2019
Hovedveileder: ~ Agnar Aamodt
Medveileder: Mari Hugaas

Norges teknisk-naturvitenskapelige universitet
Institutt for datateknologi og informatikk

Preface

This Master’s thesis was written as part of the study program Master of Science, Informatics:
Artificial Intelligence at the Norwegian University of Science and Technology(NTNU) and was
carried out during the fall of 2018 and spring of 2019. The topic of this thesis is based on a proof
of concept project that was discussed, but not given, to me during my summer internship at
Norkart in 2017. Norkart is a software provider for many of Norways municipalities and is there-
fore interested in new ways to apply technology to solve the municipalities issues.

Trondheim, June 9, 2019

Martin Bjerke

ii

Acknowledgment

I would like to thank the following persons for their great help during my work on this thesis.

Mari Hugaas, Arne-Ronny Tostibakken and Agnar Aamodt for supervising my work on this
thesis and setting aside time for supervisor meetings on a regular basis.

This thesis was carried out in cooperation with Norkart and I would like to thank them for
their help during the work on this thesis. Specifically I would like to thank Mari Hugaas for her
help as supervisor and Arne-Ronny Testibakken for presenting the topic and problem descrip-
tion. Arne-Ronny has also help with supervising us and helped by answering domain specific
questions concerning water distribution in Norway.

I would also like to thank Rita Ugarelli for her help searching for relevant work in the do-
main of Hydroinformatics, and answering domain relevant questions, without being directly
connected to this thesis.

Lastly I want to thank my fellow students at Alke for keeping me company and helping me
with discussing various problems that I ran into during the work on this thesis.

M.B.

iii

Summary

In this master thesis two different Gated Recurrent Neural Network architectures have been
tested on the multivariate time series classification problem of leak detection in water distri-
bution networks (WDN). Three different machine learning approaches were considered, Con-
volutional Nerual Networks, Case-Based Reasoning and Reccurent Neural Networks. A leak de-
tection system has been implemented and tested which incorporates a Gated Recurrent Unit
(GRU) and Long Short Term Memory (LSTM) with different hyper parameters and have been
shown to be able to detect leaks within two different WDNs, Netl and Hanoi. The leak detection
system managed a true positive rate of 86%, a false positive rate of less than 0.1%, an accuracy
of greater than 99% and a detection time of less than 1 hour on the Netl. To our knowledge, this
is the first time Gated RNNs have been applied for leak detection in water networks.

iv

Sammendrag

I denne masteroppgaven har to forskjellige Gated Recurrent Neural Network-arkitekturer blitt
testet pa det multivariable tidsserie klassifikasjonsproblemet, lekkasjedeteksjon i vannfordel-
ingsnettverk. Tre ulike maskininnleeringsmetoder ble vurdert, Convolutional Nerual Networks,
Case-Based Reasoning og Recurent Neural Networks. Et system er implementert og testet basert
péa Gated Recurrent Unit (GRU) og Long Short Term Memory (LSTM) med forskjellige hyperpa-
rametere og har vist seg & kunne oppdage lekkasjer innenfor to forskjellige vannett, Netl og
Hanoi. Systemet klarte en true positiv rate pa 86%, en false positiv hastighet pa mindre enn
0,1%, en neyaktighet pa over 99% og en deteksjonstid p& mindre enn 1 time pd Netl. Sa vidt vi
vet, er dette forste gang Gated RNN har blitt brukt for lekkasjedeteksjon i vannett.

Contents

Preface e
Acknowledgment e
SUMMAry o e e e e e e e e e e

List of Abbreviations

1 Introduction

1.1
1.2

1.3

Background and motivation L Lo Lo
Goal . . .
1.2.1 ResearchMethodology
Context

2 Background Theory

2.1

2.2

Hydroinformatics e
2.1.1 Water Distribution Networks
Leakagedetection.
2.2.1 Data-drivenmethods e
2.2.2 Transient-basedmethods
2.2.3 Model-basedmethods

2.3 Al-methodologies

2.3.1 CBR . ..
2.3.2 Convolutional Neural Networks
2.3.3 Recurrent Neural Networks

3 Literature Search

3.1
3.2

Methods & Approach e
Relatedworks e
3.2.1 Startset. e e e e e e e e e e e e
3.2.2 Firstiteration e e e e
3.2.3 Seconditeration
3.2.4 Thirditeration e e

4 Implementations

4.1

4.2

Frameworks e e e e e
4.1.1 Pytorch
4.1.2 LeakDB e e e
DataSets e e e e e e e e

ii
ii

10
12
12
12
13
13
15
18

22
22
25
25
28
30
31

CONTENTS

4.3 Leakdetectionsystem e
43.1 GatedRNN
4.3.2 HyperParameters. ittt
43.3 Lossfunction e

5 Experiments & Model Improvements
5.1 Water Distribution Network e
5.2 Data e e e e e e e e e e e
52.1 Trainingset e e e e e e
5.2.2 Testset o e e e e e e e e e e
5.3 MEtTiCS o i e e e e e e e e e e e e
54 Approach e e
5.5 Results i e e e
5.5.1 Net 1: Firstiteration i ittt ..
5.5.2 Netl: Seconditeration e
553 Hanoi e e e e e e
5.6 Evaluation e e
5.6.1 Netl: Firstlteration. i
5.6.2 Netl:SecondIteration,
5.6.3 Hanoi e e

6 Discussion
6.1 LiteratureSearch e
6.2 The Leak Detection System
6.2.1 Comparisonwithrelatedworks
6.3 Contributions e e e e
6.3.1 Futureworks.

7 Conclusion
7.1 Current Methods for Leak Detection
7.2 Almproved Leak DetectionSystem
7.3 Comparing the Leak DetectionSystem

Bibliography

A Model implementations
Al GRUmodel.
A2 LSTMmodel e e

B INP file
C Generated Data Files

D Training and Testing Graphs
D.1 Firstlteration e e
D11 GRU e
D.1.2 LSTM . . . o

36
38
39
40

43
43
43
45
46
47
47
48
48
48
49
50
50
51
53

55
55
55
56
57
57

59
59
59
59

60

65
66
67

68

72

CONTENTS vii

D.2 SecondIteration o i i i i e e e e e e 78
D.2.1 GRU . . . e e e e e e, 78
D.2.2 LSTM . . . e e e e e, 79

List of Tables

3.1 SLRReSUltS o oo e e 24
3.2 SnowballingResults 24
3.3 Restults of Model-Based Methods 26
3.4 Resultsof Flow Prediction 31
3.5 TPR and FPR of Related Methods in Chanetal. 2018) 31
3.6 TPR and FPR of Related Methodsin Wuand Liu (2017) 32
4.1 ImbalanceinDataSets 0 e e e 38
4.2 RNN HyperParameters 40
5.1 Input/Output Exampleof RNN 45
5.2 Firstlteration TestSet i i i i e e e e 46
5.3 SecondIterationTestSet o v i i i i e 46
54 HanoiTestSet e e e e 47
5.5 Results of the First IterationonNetl 49
5.6 Results of the Second IterationonNetl 50
5.7 Resultsof Hanoi o o i e 51
5.8 TPRoflIncipientLeaks i 52
6.1 ResultsofRelevantWork 57

List of Figures

2.1 Water Distribution Network 9
2.2 Diurnal Pattern of HydraulicData 10
2.3 LeakExample e e 11
24 TheCBRCycle 14
2.5 CNNKernel Example e 16
2.6 NodalReceptive Field i 17
2.7 CNN Parameter Sharing 17
2.8 Multi Sensor Leak Example e 18
2.9 RNNTemporal Connection, 19
2.10 LSTM Architecture i 20
2.11 GRU Architecture e 21
3.1 Snowballing Structured Literature Review 23
3.2 Literature Search, Search Words and Criteria 25
3.3 Results of Water Demand Prediction 29
4.1 Decomposistionof DemandPattern 34
4.2 Sensor ReadingsExample 37
4.3 Overview of Leak Detection System 39
4.4 Lossfunctioncomparison e 42
5.1 Netl and Hanoi water distribution network WDN) 44
5.2 Trainingand TestGraph 53
5.3 Normalised and not NormalisedInput 54

Abbreviations

ANN Artificial Neural Network 6, 8, 15, 28-33, 47, 59

CBR Case-based Reasoning 13, 59

CNN Convolutional Neural Network 6, 13, 15, 18, 59

DMA District Metering Area 8-10, 27, 32

DT Detection Time 46, 47

EC Exclusion Criteria 22, 24

FPR False Positive Rate 46, 47

GRU Gated Recurrent Unit 20, 21, 39
IC Inclusion Criteria 22, 24

LSTM Long-Short Term Memory 20, 39

ML Machine-learning6, 7, 13, 15, 24, 36, 55, 59

MLP Multi Layer Perceptron 15, 33, 55, 59

NFA Night-Flow Analysis 10, 11

NN Neural Network 6, 33, 55
QC Quality Criteria 22, 24, 25

RNN Recurrent Neural Network 6, 7, 13, 18, 30, 33, 36, 57, 59

RQ Research Question 6, 25

SLR Structured Literature Review 7, 22-24, 33, 55, 59

SVM Support Vector Machine 6, 28, 59

List of Abbreviations 4

SVR Support Vector Regression 28, 29

SW Search Word 22, 24
TPR True Positive Rate 47

WDN Water Distribution Network 2, 5-13, 17, 18, 21, 25-31, 33-36, 38-40, 43, 45, 47, 53, 55-57,
59, 68, 72

Chapter 1: Introduction

1.1 Background and motivation

In 2016 the United Nations put clean water and sanitation as one of their sustainable develop-
ment goals to be completed by 2030(United Nations, a). To reach this goal the UN set 6 sub
goals, where one was: "By 2030, substantially increase water-use efficiency across all sectors and
ensure sustainable withdrawals and supply of freshwater to address water scarcity and substan-
tially reduce the number of people suffering from water scarcity”"(United Nations, b). In 2011
it was predicted that the global demand for water would be 40% greater than the supply by
2030(Mounce et al., 2013), meaning the current supply must increase to reach this goal. One
way to accomplish this is to reduce the current leakage in WDNs. Farley (2001) reported that
in 1991, the water loss in developed countries, newly-industrialised countries, and developing
countries was 8-24%, 15-24% and 25-45% of water supplied from treatment plants. Puust et al.
(2010) reported more recently that this has improved in some countries like The Netherlands,
where 3-7% of the water distributed is lost because of leaks, but there are still countries where
over 50% of treated water is lost due to leaks. As of 2017, Norway loses 30% of the water dis-
tributed from water treatment plants due to leaks in WDNs(Statistisk Sentralbyrd, 2017).

Farley (2001) lists several problems caused by leaks, both for consumers, society, and water
utility companies:

e Economical: Water utility companies use resources to treat the water that leaks from WDNSs,
so the cost for the companies are doubled if 50% of the water leaks out.

e Structural: Water leaking from pipe networks may erode the ground and cause great struc-
tural damage to surrounding infrastructure and structures, such as sinkholes. This is eas-
ily identified when pipes burst, although the damage is already done, smaller leaks having
the same effect over time may not as easily be detected. However, if the leaks are detected,
they can be fixed before to much damage is caused.

* Consumer inconvenience: Leaks and bursts may cause water shortage or lower pressures
for consumers. Complaints about this are usually the first indication of a leak.

* Health risks: Pressure drops in pipes with holes may introduce contaminants in the pipes
as the water surrounding the pipes are sucked in; this is known as back siphonage. There
are great health risks connected to this as water pipes may lie in ditches together with
sewer pipes which also leaks. Causing sewage to contaminate drinking water.

CHAPTER 1. INTRODUCTION 6

Traditionally, leak management has been done reactively by repairing leaks when the leak
becomes visible above ground. In later years, more and more WDNs have been equipped with
pressure and flow sensors leading to large amounts of data being collected. Along with making it
possible to monitor WDNs online, it has also lead to problems interpreting this data because of
its large volume, missing and erroneous data, and unpredictable pattern changes in the sensor
readings(Mounce et al., 2013).

This increase in data has motivated researchers to apply machine-learning (ML) methods
for leak detection, such as support vector machine (SVM)(Mashford et al., 2009; Mounce et al.,
2010), artificial neural network (ANN) (Caputo and Pelagagge, 2002; Mounce et al., 2013), Kalman
Filtering(Ye and Fenner, 2011), and several more (Wu and Liu, 2017; Chan et al., 2018). However,
there have not been much research in using deeper neural networksand more complex neu-
ral networks (NNs), like convolutional neural networks (CNNs) or recurrent neural networks
(RNNs), or other ML-methods like CBR for leak detection. Because the sensor data collected
from WDNSs has a temporal nature and current research using any type of ANNs have not been
on par with other leak detection methods, it was tempting to test methods capable of taking
advantage of this.

1.2 Goal

The goal of this thesis was to explore the use of MLs techniques to detect leaks in a WDN based
on operational data and the possibility of improving current methods. To reach this goal, we had
to identify which existing methods for leak detection were currently in use, which methods are
being researched, and if any of these methods applied ML methods. To test the improved leak
detection system, it was compared with results from current research using common domain
specific measurements. To summarise, this thesis will answer the following research questions

(RQs):

RQ1 What are the current methods used for leak detection, and which new methods are being
researched?

RQ2 How can a ML method be implemented to improve the methods from RQ1?

RQ3 How does the solution to RQ2 compare to the methods found while answering RQ1?

1.2.1 Research Methodology

This thesis followed the design science research process(Peffers et al., 2006). The process is
composed of 6 nominal steps;

1. Problem identification and motivation; Define research questions and justify why their
answers are important.

2. Objectives of a solution; Define goals for a solution that answers the research questions.
3. Design and development; Create a solution.

4. Demonstration; Verify that the solution can reach the defined goals.

CHAPTER 1. INTRODUCTION 7

5. Evaluation; Evaluate and measure how the solution did in the demonstration.

6. Communication; Communicate the research questions, their answers, and the results of
the solution.

Steps 1 and 2 were conducted as a structured literature review (SLR) process and would answer
RQ1. The SLR would give an overview of which leak detection methods were currently in use,
which methods were currently being researched and what their advantages and disadvantages
were. As we did not have any previous knowledge of how leak detection in WDN were con-
ducted, it also gave us insights into the problem domain and would identify possible ideas that
could be applied in the development of a ML system for leak detection. The structured literature
review was also used to find the best set of papers that covered leak detection while avoiding bi-
ases to specific authors. The approach and results are presented in Chapter 3, where Section 3.2
works as an extension of Chapter 2, and the process is discussed in Section 6.1.

After it was decided to create a leak detection system based on gated RNNs Steps 3, 4 and
5 were done over two iterations. The first iteration tested simple RNN architectures on a small
WDN to identify problems to the approach and to verify possible solutions through two exper-
iments. The second iteration tested the improved leak detection system on the Hanoi WDN,
a popular WDN in the relevant literature. These iterations would answer RQ2, with the initial
design and development step described in Chapter 4 and the implemented models are demon-
strated, evaluated, and improved in Chapter 5.

The final evaluation of the leak detection system was presented in Section 5.6.3 and answers
RQ3. The research approach and methodologies were evaluated and discussed in Chapter 6,
before the answers to the research questions were summarised in Chapter 7 together with future
work.

1.3 Context

This thesis was written over the duration of a year. The original intent of this research was to
study how a case-based reasoning system could be implemented to classify faulty pipes ahead
of time giving water utility companies a way to do proactive maintenance, instead of reactive.
After an initial search and discussion with a domain expert, it was found to be difficult because
of the lack of data and uncertainty of what data could be used for such an endeavor. This lead
to a change in research into pipe burst prediction, then into the more general leak detection
problem. Leak detection was chosen over burst prediction as the literature review in Section
3.2, showed that there are still problems with leak detection methods that can be improved and
after discussion with Arne-Ronny Tastibakken at Norkart it was clear that pipe bursts are quickly
discovered and reported.

It was also intended to test the leak detection method presented in this paper using real-time
operational data. However, the data could not be delivered in time from the data providers. Even
though the leak detection system presented in this paper was only trained and tested on artificial
data generated from historical data, the leak detection system was constructed to be applied to
real operational data. The code developed for this thesis can be found on GitHubBjerke with a
guide on how to run it.

Chapter 2: Background Theory

2.1 Hydroinformatics

Leak detection could be viewed as both an engineering and informatics problem and there-
fore lies in the field of Hydroinformatics. This was a relatively new field within informatics
focusing on the application of information technologies to solve problems within hydraulics,
hydrology, environmental engineering, and water-based systems as WDNs(Vojinovic and Ab-
bott, 2017; K Price and Solomatine, 2019). Hydroinformatics was defined in 1991 by Abbott
(1991) when research expanded from only the numerical modeling of water hydraulics to a more
socio-technological field. Current research still focuses on the modeling of water, but now also
includes generation of flood maps in cities, improved water system planning and management,
sustainable drainage systems, and leak detection, which this thesis focused on. There has also
been a change in methodology inside the field, from previously focusing on numerical methods
to currently applying AI methodologies like ANN and genetic algorithms. These methods were
used both alone to solve issues, or in combination with existing numerical methods to set their
parameters.

Vojinovic and Abbott (2017) predicted that future research would focus on systems that could
handle dynamic changes within a water system that were caused by climate change, i.e., changes
that draw out over several years. Future systems should also handle shorter changes that span
days like flooding, and even more extreme changes that occur over minutes.

2.1.1 Water Distribution Networks

Water distribution network (WDN) were pipe networks that distribute clean drinking water from
water reservoirs out to the public. Figure 2.1 shows the Hanoi WDN from Vietnam, where sen-
sors may be placed at any of the junctions or pipes to measure the flow and pressure. To supply
the public with water, buildings were further connected to these junctions. In this work, it was
assumed that the pressure sensors were in the junctions and the flow sensors were in the pipes.
This was assumed because the data generation algorithm explained in Section 4.1.2 generated
flow measurements for pipes and pressure measurement for junctions. In an optimal scenario,
each of these junctions and pipes would be equipped with a sensor to be able to observe the net-
work as a whole. However, this was not the case because of the costs of installing these sensors,
motivating research into the optimal placement of these sensors within a WDN(Sarrate et al.,
2014).

To monitor leaks, a WDN could be separated into several sub-networks called district meter-
ing areas (DMAs). The DMAs were connected through only a few pipes, and the pipes connect-

CHAPTER 2. BACKGROUND THEORY 9

e
T
»— —'E-'
|II
I|
]
2
s — o |
12 i 0
-
"
.

Figure 2.1: A depiction of the Hanoi WDN. The lines were pipes and nodes were junctions. The
rectangle connected to node 1 was a water reservoir.

Source: Casillas Ponce et al. (2013)

ing them were equipped with pressure and flow sensors. A trivial example of this could be to
split nodes 24, 23, 22, 27, 28, 29, 30 and 31 from the Hanoi WDN in Figure 2.1 into a single DMA,
only needing sensors at the pipes between the nodes 25 and 24, and 22 and 19. A leak could be
narrowed down to this part of the network with only measurements from 2 sensors given the
leaks were large enough to affect one or both of the sensors.

Together with flow and pressure, water demand could also a measure in WDNs. Water de-
mand was the total amount of water that was consumed by the consumers in the network, and
all of the measures follow a diurnal pattern, as shown in Figure 2.2. This pattern was caused by
a change in consumer demand throughout the day and week, with the lowest demand during
night time, when customers usually sleep, and industry was not operating.

The water demand, and therefore also flow and pressure, follow a diurnal pattern. This pat-
tern was caused by the change in customer demand based on the time of day and specific week-
day. Weekdays usually follow the same pattern, while Saturday and Sunday have different pat-
terns. The pattern also follows seasonal changes. Because of these patterns, a demand pattern
could be approximated by decomposing it into three components and approximating each of
the subcomponents; a weekly component, a yearly component and a random component to
simulate the noise in the diurnal pattern(Vrachimis et al., 2018; Eliades and Polycarpou, 2012).
This decomposition was used in the data generation framework described in Section 4.1.2, that
was used to generate data for this thesis.

CHAPTER 2. BACKGROUND THEORY 10

Mean Water Demand

— Monday
- - - Tuesday

a0

-~ Wednesday
-—-- Thursday “, -
Friday

i i
W v ol
Salurday o % b ’I.t £
Sl s - 1 ra #
\ 1? T ',' 1 .
\\,\' /)
24 A

5 10 15 20
Haour of the Day

25

Demand (m*3)
20

Figure 2.2: The diurnal pattern of water demand throughout a day. This was the mean water
demand of a given day calculated over the 8 week data set of Herrera et al. (2010).

Source: Herrera et al. (2010)

2.2 Leakage detection

Leakages in WDNs may have different causes depending on the maintenance, original building
of the infrastructure, placement and much more, but it was reported that from 3% to above 50%
of the input into WDNs were lost due to leaks(Puust et al., 2010). This was not just an economic
waste, through leakage of treated water, but also a health risk as low pressure in pipes may cause
back siphonage.

Today, leaks were usually identified through minimum Night-Flow Analysis (NFA)(Eliades
and Polycarpou, 2012) or by reports from customers to the water utility company. Reports of
low pressure or discolored water were examples of customer reports that may indicate a leak.
Minimum NFA requires flow data that was collected from sensors in a DMA.

In practice, flow sensors were placed at the connecting pipes between DMAs and pressure
sensors were they are needed because they are cheaper and easier to installCasillas Ponce et al.
(2013). It has been shown that pressure measurements were less sensitive to bursts if there was
a limited number of pressure sensors in a network, and these settings flow measures have been
shown to be more sensitive(Wu et al., 2018; Mounce et al., 2010). However, the same has not
been stated for smaller or incipient leaks.

In minimum NFA, the flow measurements of previous nights were compared to identify any
unexplainable changes in flow. The flow at night was used as this was the time of day where the
customer demand was at its lowest, so the measurements were more stable and less likely to be
disturbed by customers. This was either done manually, or an alarm was set to go off in a mon-
itoring system if the minimum flow exceeds a chosen threshold. Measurement noise, customer
demand trends, and seasonal differences may still cause leaks to go unnoticed by this approach
as the method must take these into account. After a possible leak was identified, manual in-
spection was done to verify the leak and to decide how it was going to be handled.

Leaks could be separated into two types(Eliades and Polycarpou, 2012), incipient and abrupt.
Incipient breaks were small breaks that gradually increased over time as the hole grew. Sudden
breaks where the size of the hole remains close to constant were called abrupt breaks, and it
was a standard assumption in the literature that leaks were of this type(Casillas Ponce et al.,

CHAPTER 2. BACKGROUND THEORY 11

Flow - - - - Detection F —— Pressure — — Detection P

14 45

Flow (I/s)
Pressure (m)

0:00
1:00
2:00
3:00
4:00
5:00
6:00
7:00
8:00
9:00 F
0:00

2 0 000 90 90 9 90 o o o
gL e = 223
S - a » I B8 a ® §
9 5 6 o 8 86 88 -+ + "+ 1+ -« o oo o
T2 9 9009009000000 0000090 o o =
Lol < SR < B = = I = B < B = B = I = I = IR = B = B = B = i = I = i < B = T = B = o O T
- - R S o o
R B o o -

- - - - - - - ™ ™ - - "™ "™ "™ "™ "™ "™ " " "™ T T
- - ~ ™ ™ ™ ™ = *™Y= = - = ™ = - ™ *— ™™ T™ ™ "™ T

- = - - - - - - - - - ™ - - - *™- *- *"- " "™ "™ "™
- - - - - - - - ™ - - *™- - *™- - *™- "™ *"- " "™ "™ T

Figure 2.3: The flow and pressure measurements in a node of a WDN during an abrupt leak. The
dotted lines mark where the leak was detected, after the first measurements register the drop in
pressure and increase in flow.

Source: Mounce et al. (2010)

2013). Sufficiently large abrupt leaks were denoted called bursts. Current methods focus on
discovering the abrupt changes in pressure and flow caused by these leaks, as discovering the
slow change after incipient breaks were hard to differentiate from the changes caused by normal
consumer demand. Minimum NFA also had this problem of deciding if a slow increase in flow
was caused by a customer trend or an incipient leak. Figure 2.3 shows how an abrupt leak could
be identified by observing the change in pressure and flow measurements.

An overall problem with leak detection was differentiating a leak from other abnormal events
in the hydraulic data of a WDN. Abnormal events could be caused by several different events,
such as maintenance activities as flushing(Mounce et al., 2010), unusual customer demand,
industrial uses and weather(Herrera et al., 2010; Wu and Liu, 2017).

Reports and NFA might not give an accurate location of the leak. If this was the case more
economically and resource intensive hardware based location methods must be used. These
were usually very accurate, being able to localise a leak to within < 2,5m, compared to current
software-driven methods, which was within < 50m (Li et al., 2014). As the hardware methods
were expensive and time-consuming, improving the software-driven methods accuracy of both
detection and location was desirable. This work focused on leak detection, but leak localisation
was mentioned as it was usually used in conjunction with detection algorithms.

CHAPTER 2. BACKGROUND THEORY 12

Current software leak detection methods were usually split into three categories, Data-driven
methods, Transient-based methods, and Model-based methods based on their approach. These
were leak detection methods and must not be confused with similarly named ML-methods.

2.2.1 Data-driven methods

Data-driven methods focus on identifying leaks using online monitoring data and historic data
of WDNs. The advantage of this was that these methods did not need knowledge of the WDN.
Depending on what information was available, these methods viewed leak detection as differ-
ent problems. If prior knowledge was present and labeled, leaks could be detected using pattern
recognition between patterns in online and historic data. Mounce et al. (2013) built a library of
pressure patterns connected to bursts and did pattern matching against this library. The system
showed promise, but the library required expert domain knowledge to build. Leak detection
could also be viewed as a classification problem where observable data was classified as leaks
based on historic data, and if there were no labels available detection could be done by clus-
tering(Wu et al., 2018). A drawback of these methods was that the system was dependent on
historic data from the WDN. New or newly renovated WDN would not have any historic data.
Another problem arises in real situations, as the available data may not be correctly labeled be-
cause of the difficulty of correctly pinpointing when a leak began given the historic data. The
example leak is shown in Figure 2.3 would be easy to label because of the sudden change in
pressure and flow, but incipient or smaller leaks might not have such a clear change in sensor
readings that it would be easy to pinpoint its beginning.

2.2.2 Transient-based methods

These methods use the changes in pressure/flow that occurs after a burst or leak in the pipe net-
work by tracking the pressure drop/flow increase as it spreads throughout the network(Eliades
and Polycarpou, 2012). To track the transient pressure/flow waves, these methods require a high
sampling frequency and more sensors than other methods(Wu et al., 2018). The high sampling
frequency requirement makes these methods not applicable to current water networks as they
have few sensors with a low sampling frequency.

2.2.3 Model-based methods

Leak detection by model-based methods was done by creating a numerical model of pressures
and/or flows of a WDN without leaks from historic data over a 24 hour time window. Both
pressure and flows could be modeled, but pressure was usually chosen because the sensors
are easier and cheaper to install(Casillas Ponce et al., 2013). After modelling the ideal scenario
without leaks, models were constructed which simulates a leak of a given magnitude at each
node(possible place for aleak) in the WDN at each time step over a 24 hour time window. Ideally,
these models would be constructed analytical, but this was a multivariable non-linear system
of equations which may not have an explicit solution, which was why they were approximated
instead or simulated using a hydraulic simulator like EPANETEPANET. The difference between
the ideal scenario and the simulated scenarios with a leaky node at time k was stored in a sen-

CHAPTER 2. BACKGROUND THEORY 13

sitivity matrix, as explained in Casillas Ponce et al. (2013):

h fm
p; (k)—p1(k) py (k)=p1(k)
% # sll(k) Slm(k)
S(k) = : : = : : 2.1
P 0—p. k) I)= patio) sni(k) .. Spm(k)
e T

where p{j (k) was the expected pressure at sensor i when effected by a leak of magnitude f; at
node j, p;(k) was the pressure of sensor i when there were no leaks in the system, and the differ-
ence was normalised with the magnitude of the leak, f;. s;;(k) represents the effect of a leak f;
on the pressure measured at sensor i at time k. This sensitivity matrix was what all model-based
methods had in common, and they differed in how they use this matrix to identify leaks and if
they used different variations of the matrix. Casillas Ponce et al. (2013) calculated the residual
vector, the difference between the measured pressures in the WDN and the models estimation
of them, and compared it with the columns of the sensitivity matrix using different distance
measurements. The column vector closest to the residue vector indicated what magnitude of
leak was currently present and at which node the leak was. These matrices could also be used
to locate the leak after it has been discovered(Casillas Ponce et al., 2013; Soldevila et al., 2016b).

These methods have two limitations. Firstly, the sensitivity matrix was created, assuming
leaks of specific sizes. If a real leak was of a different size, the residual vector might not match
one of the columns of the sensitivity matrix, causing the system to miss label the leak or not

identifying it at all. Additionally, the approximation of the sensitivity matrix requires historical
data and deep knowledge of the system to estimate pl.f y

the hydraulic simulator.

(k), or it was limited to the accuracy of

2.3 Al-methodologies

In later years more and more sensors have been placed in WDNs increasing the amount of avail-
able operational data. This has caused researchers to test implementations of different ML-
methods for leak detection. To answer RQ2, a leak detection system was implemented based on
one of the three considered ML-methods, Case-based reasoning (CBR), Convolutional neural
network (CNN) and Recurrent neural network (RNN).

2.3.1 CBR

Case-based reasoning was a branch of machine learning based on how the brain induces solu-
tions to new problems from solutions to previously experienced problems. A case-based rea-
soning system was often based on the framework introduced by Aamodt and Plaza (1994). The
CBR-cycle has four phases, retrieval, reuse, revise, retain, each integrating with the case-base,
operating environment, and/or the solution as shown in Figure 2.4. A CBR-system extracts the
features needed from the problem it was supposed to solve during the retrieval phase to search
the case base for similar problems retrieving them and their solutions. The case base stores pre-
viously encountered cases, the combination of problems and their solutions. Similarity mea-
sures were used to measure the similarity between different problems and solutions. The re-

CHAPTER 2. BACKGROUND THEORY 14

Prablem

77—
Previous
= | Cases
e
o
&'
Tested!
e g
¥ Solved
REVISE- Case
Confirmed Suggested
Solution Solution

Figure 2.4: The CBR Cycle

Source: Aamodt and Plaza (1994)

trieval phase usually return several solutions so the system could use several possible solutions
in the future phases.

Next, the system evaluates the retrieved cases for reuse. Some systems might also generate
an explanation for why the cases were retrieved at this step. The retrieved cases might not be
perfect solutions for the current problem, and therefore, the solutions may be adapted. These
adaption could change one of the retrieved cases independently, or they might adapt a case
based on the other retrieved cases to combine favorable features from each case.

After the system has adapted several possible solutions, the reuse phase ends. The solutions
from the previous phase were evaluated in the revise phase to find the most fitting solution to
the problem, and to discover any fault with the possible solutions. The evaluation could be done
through a supervisor, applying it to the environment or with a model.

After the solution was applied, any knowledge discovered through the last phase was re-
tained in the system. The simplest learning done in a CBR system was done through storing the
new case in the case base. Other learning methods were, i.e., updating the cases in the case base
that were similar to the newly solved case.

CBR was reviewed as a possible approach for leak detection. There were several aspects of a
CBR-system that would be beneficial for this problem, exemplified in Mounce et al. (2013). The
paper proposed and tested a system for burst detection in networks that could be reworked into
a CBR system. The authors constructed a pattern library storing several burst patterns consist-
ing of flow data and used pattern matching against this library to identify bursts. The patterns
were stored as normalised vectors of flow data. The example showed to some degree that the
burst patterns could be transferable. However, the approach also had problems; the library had

CHAPTER 2. BACKGROUND THEORY 15

to be constructed manually by a domain expert, and the performance was not as good as other
Al methods tested in the paper.

The analogy to a CBR system was clear; The system could be built using the pattern library
as a case-base, where a case represents the pattern and its classification. Research in CBR pro-
poses many possible improvements to the suggested system. The paper uses Euclidean distance
between inputs and the vectors of the library to match patterns, an improvement could be an-
other similarity measure as cosine distance or learning the measure (Stahl, 2005), although this
would require training data and the representation of this data was not clear. Another improve-
ment could be based on Smyth and Keane (1995), where the pattern library could be improved
by retaining more general patterns and avoiding the swamping problem using competence-
preserving .

However, after some serious attempts to develop a case base, we chose not to construct a
CBR system because of the lack of data and domain expertise needed to construct the pattern
library, as neither an expert nor suitable data sets were sufficiently available. Further more,
the lack of research on using a CBR system with hydraulic data made it unclear how the cases
best could be represented, and how the similarity measures could be improved. However, there
have been attempts on other ML approaches for leak detection, such as Multi layer perceptrons
(MLPs), which made us switch focus to more specialised ANNSs.

2.3.2 Convolutional Neural Networks

Convolutional neural network (CNN) was a specialisation of regular ANNs that has one or more
layers that use the convolution operation. A convolution operation could be viewed as a weighted
function,

Ci,)=U*K){i,) =) Im,n)K(i-m,j—m)

m n

Where [was the input function, K was a matrix of weights called the kernel and * was the
convolution operation. The input function was applied to each feature in the input; then it was
applied to the kernel before being summed into a single output(Goodfellow et al., 2016). If the
kernel was smaller then the input, it was applied to parts of the input at a time, as shown in
Figure 2.5

Convolution has three desirable properties:

» Sparse interactions; By using a kernel smaller than the input, each layer was no longer fully
connected with the previous layer as in regular ANNs as depicted in Figure 2.6. Limiting
the number of connections between layers increases the efficiency of the network as fewer
parameters were needed in the calculation of each node’s output.

* Parameter sharing; Through the use of a smaller kernel, single weights in the kernel also
affect several nodes in the next layer, contrary to regular fully connected networks, where
each weight only affects a single node. The concept was shown in Figure 2.7. This sharing
of weights reduces the storage requirements for the network and causes each weight to be
applied to each input, except around the edge of the input, as shown in Figure 2.5.

CHAPTER 2. BACKGROUND THEORY

Input

@

d

f | q f

Ha

Kernel

Output

_—
aw + b 4+ bw + e + cw dx
ey + fz fu + g gy hz
ew + fr + fw + g + guw hr
iy + = Jjy o+ k= ky I=

16

Figure 2.5: Example of how a smaller kernel was applied to a larger input. Notice that each

weight in the kernel was applied to every input, except at the edges.

CHAPTER 2. BACKGROUND THEORY 17

1 2 3 4 5

B

1 2 3 4 5

(a) The receptive field of a CNN with aker- (b) The receptive field of a fully connected
nel size of 3. ANN.

Figure 2.6: The receptive field of a node indicates which nodes of the previous layer affects the
node. The gray nodes of the previous layer represents the receptive field.

1 2 3 4 5 1.2 3 4 5
1 2 3 4 5

(a) Each coloured edge was a shared (b) A fully connected ANN where each
weight in a CNN with a kernel size of 3. edge was a separate weight.

Figure 2.7: The difference in weights used by a fully connected ANN and a CNN.

* Equivariance representations; Effects on the input also affects the output of a convolution
function. Meaning that if a layer has time series data as input, lag in the input data will
cause lag in the output of the layer.

A convolution layer could be viewed as a single complex layer or a combination of several
layers. These layers were the convolution operation layer, then a detector stage(an activation
function), then a pooling layer. The pooling layer was usually a statistical function that sum-
marises inputs from several nodes in the previous layer into fewer output nodes, i.e., outputting
the average of 4 nodes, or the maximum output of one of the previous nodes. Pooling layers gives
a network invariance to translations in the input, and different combinations of pooling layers
could give invariance to different kinds of translations, i.e., a network that identifies handwrit-
ten numbers could become invariant to both rotation of the input image and scaling by using
several pooling layers. The use of pooling layers makes the network capable of focusing on ab-
stract features in the input, and with deeper layers connecting these features into more abstract
features, i.e., one layer may identify walls, while deeper in the network, a layer identifies corners
by activating when two walls meet.

CNN invariance to translations makes them good with input that has a grid-structured topol-
ogy such as 2-d data as images(Krizhevsky et al., 2012). The sensory data of a WDN can be
viewed as both 1 dimensional, with a single sensor reading of each senor, or 2 dimensional, with
the sensor readings over a time window of each sensor. One approach to applying CNN’s as leak
detection would be to let the CNN learn the local similarities in the sensory input, identifying a
leak as the gap between the sensors that lie close to the leak and those that lie further away from
the leak, as shown by the graph in 2.8. This gap was created by the leaks effect on the sensor
readings through increased and decreased flow and pressure near the leak and this effect dissi-

CHAPTER 2. BACKGROUND THEORY 18

800

600

400}

Flow (I/s)

200/t

N
T

Normalized flow

0:00 6:00 12:00 18:00 24:00
(b) Time
Inlet 1 Inlet 2 Qutlet1 = = = Qutlet2 - —- Outlet 3

Figure 2.8: Plot of five flow meters. The gap between some of the sensors indicate a short burst
in the network, where the most affected sensors lie closest to the burst.

Source: Wu et al. (2018)

pating trough the WDN away from the leak. Detecting this gap requires the input to be sorted
such that positionally close sensors were placed close to each other in the input tensor. Both
CNNs and the next approach, RNNs, could be used for leak detection as they were capable of
handling temporal data. However, the next approach was chosen because the CNNs capability
of handling temporal data was limited by its input. RNNs on the other hand, could store data
from previous inputs in its hidden state and could therefore do classification based on previous
inputs.

2.3.3 Recurrent Neural Networks

Recurrent neural network (RNN) were specialised for sequential data of the type x°, %!, ..., X’.

The architecture of a RNN has temporal connections between nodes, i.e. the network has a
connection to previous time steps as shown in Figure 2.9, where the weights U, V and W were
shared between time steps. By sharing the parameters, the model was able to generalise over the
whole input sequence. The architecture maps each input of the sequence into a hidden state,
h¥ in Figure 2.9, which is used when calculating the next hidden state, h*1. This enables the
model to handle sequences of varying length. The networks hidden state separates RNNs ability
to handle sequences from CNNs, as convolution only detects local similarities within the input,
the hidden state enables earlier input to affect the output of current input in RNNs.

The input sequence was mapped into the hidden state using different versions of Equation
2.2, depending on the implementation of the RNN.

B0 — f(ﬁ(t‘l),)?(t);é) (2.2)

where XY was the input at time step ¢, R~V was the hidden state at the previous time step, and

CHAPTER 2. BACKGROUND THEORY 19

o ot-D o0 o+D

V‘ V’ VI v

N %V.) Lh(t—l)l B w hU+D w ht-)
o o v

Figure 2.9: The folded and unfolded graph of a RNN with connections between hidden units.
The black square represents the hidden state of the previous/next step. The folded graph gives
a general overview of the architecture and the unfolded graph gives an explicit view.

6 was the parameters of the model. As the sequence grows and the hidden states dimension was
fixed, the hidden state represents a summary of previous inputs.

When designing an RNN, there were three different main designs to choose from on how the
units of the network were connected through time:

e The RNN could produce an output at each time step and have connections between the
hidden units, as the network in Figure 2.9.

e The RNN could produce an output at each time step and have connections between the
output of the previous layer and the hidden layer of the next layer.

* The RNN could produce a single output after reading the entire sequence.

The most powerful RNNs were the networks that have hidden-to-hidden connections as these
could learn what was valuable to map into the hidden state and pass to the next time step, while
also learning what to output at each time step. RNNs with output-to-hidden connections has
the handicap that it could only map information from the past through its output, so what the
networks learn to pass into the hidden state of the next layer was dependent on the training.
However, these output-to-hidden networks were able to utilise teacher enforcing. This was done
by using the ground truth of the previous time step y“~Y, together with the input x” to cal-
culate y'¥. This means the gradient could be calculated at each time step independently of
previous time steps. When using hidden-to-hidden connections, the gradient was dependent
on the previous layers gradient. RNNs using hidden-to-hidden connections could be viewed as
Directed Graphical Models, and therefore use Markov Assumptions, so the number of computa-
tional complexity could be lowered on these networks.

In scenarios where the whole input sequence was needed for a prediction, bidirectional
RNNSs were used to get connections between inputs early in the sequence with inputs later in the
sequence. These were implemented by using two sub-RNNs, where one RNN reads the input in
the inputted order, and one reads the input in reversed order. The output of this network was
the combination of these sub-networks, and the network could learn to connect earlier parts of
the sequence with later parts. As the structure has nothing to do with the size of the sequence,
bidirectional networks were also applicable to arbitrary-sized sequences.

CHAPTER 2. BACKGROUND THEORY 20

Cezs /— \\1 Cr iy =o(n,U" + h W)

: f tanin fi = alzUf + Ry lH'-'-}

flT Etr_)'x 0, : op = oz 7" + by W)
Cel r-)l C'; = tanh (29 + hy W)

t Ci=a(fi+xCiy+1i *Iiz'.-jl

tanh({C}) * o

J

Figure 2.10: The architecture of a LSTM cell and the calculations for each gate. Here x; was the
input, f;, i, and o, was the activation of the forget, input and output gates respectively, C, was
the activation of x; and h;_;, and C; and h; was the cell state and hidden sate, with h; also being
the output.

Source: https://isaacchanghau.github.io/post/lstm-gru-formula/

The central problem when trying to learn long-term dependencies with RNNs was the van-
ishing and explosion of gradients. Notice that in Figure 2.9 the matrix W was applied at each
time step to the hidden state, so each output depends on the previous hidden states. Assume
that W has an eigendecomposition W = Vdiag(1)V~!, when W was applied ¢ times, this be-
comes W' = (Vdiag(A)V 1! = Vdiag(A1)'V~!. So if the magnitude of any A; in diag(A) isn't
close to 1, W either explodes if |1;| > 1 or vanishes if |A;| < 1. This effect also impacts the gradi-
ent, resulting in either no learning because of small changes to the weights or unstable learning
because of big changes to the weights.

To combat this problem, Gated RNNs were introduced, which focused on creating links
through time that did not have vanishing/exploding gradients. This was done trough control
gates that were weights and activation functions that were applied to a hidden state and input
of the RNN. Through training, the net learns when and what information to store and remove
from the hidden state using the gates. The Figures 2.10 and 2.11 show the architecture of two
gated RNN units, Long-Short Term Memory (LSTM) and Gated Recurrent Unit (GRU). In net-
works these units were swapped with the regular hidden unit, the & node in Figure 2.9, in the
RNN, and they could be stacked after each other, feeding the output and hidden state to the next
unit.

The LSTM unit has two temporal links, the cell state C; and the hidden state h;(which also
functions as the output). As seen in Figure 2.10 C; and h; were only affected by input based
on the activation and weights of the input, forget, and output gates. This gives the network the
possibility to learn what to forget and what to store. The cell and hidden states have hidden-to-
hidden connections(also called self-loops) that keep the gradients from vanishing or exploding
based on context. LSTMs has been shown to learn long-term dependencies.

A GRU cell was a stripped version of the LSTM cell. The GRU cell has only one state, h;,
and combines the LSTMs input and forget gates into a single update gate for the hidden state.
Although one might think this makes the GRU less effective Jozefowicz et al. (2015) shows that
the GRU could outperform an LSTM on several tasks, except for language modeling, and when

CHAPTER 2. BACKGROUND THEORY 21

he vl
g = o2 U + hy W)

v = oz 0" + hy W)

¢ = tanh (zU" + (ry = by)W)

e = (1 —) % hyoq + 2 % Iy

Ty

Figure 2.11: The architecture of a GRU cell and the calculations for each gate. Here x; is the
input vector, z; and r; is the activation of the update and reset gates, and h; is the hidden state
and output.

Source: https://isaacchanghau.github.io/post/lstm-gru-formula/

testing different LSTM architectures, they found that the best performing architectures were
very close to the GRU architecture. Since none of the problems used for testing were similar to
the leak detection problem, we chose to implement and test both gated RNNs. Because of the
sequential, dynamic nature of the hydraulic data from a WDNs and the gated RNNs ability to
learn temporal information was the main reason for choosing gated RNNs over the other two
Al-methodologies outlines in this chapter.

Chapter 3: Literature Search

This chapter covered the literature search methods used to answer RQ1 and its results. The
approach was evaluated in section 6.1.

3.1 Methods & Approach

A literature study was necessary to answer RQ1. To gain enough competence a literature re-
search protocol was created, following the SLR process outlined in Kofod-Petersen (2018). In
this process a predefined set of search engines, search word (SW), exclusion criteria (EC), inclu-
sion criteria (IC) and quality criteria (QC) was used to find and choose relevant work for further
study. A query was constructed by combining search words using AND and possible synonyms
using OR, for example, "Leak or Anomaly AND detection", and the query was used with the pre-
defined search engines. The abstract of the resulting papers were reviewed using the exclusion-
and inclusion criteria and was either ignored or included for a more thorough study. The in-
cluded papers were then reviewed and scored using the quality criteria, ensuring that only the
best papers were used as a basis for further research.

The SW and criteria outlined by Figure 3.2 and the search engines IEEE Xplore and arXiv(IEEE,
2018; Cornell University Library, 2018) were used in the first attempt at a SLR. The engines used
were chosen based on our prior experience searching for research papers and were thought to
be sufficient as they both cover computer science literature. However, this was proven to be a
bad assumption as it did not give any results that passed the predefined IC listed in Figure 3.2c.
To discover other relevant search engines and publisher, we reached out to Rita M. Ugarelli at
SINTEF Building and Infrastructure after searching for domain experts at NTNU. Rita referred
us to Mounce et al. (2015) and as we only had one paper, a snowballing process (Wohlin, 2014)
was considered instead.

The snowballing procedure was an iterative systematic literature review process. Firstly, a
set of possibly relevant papers were identified to start the literature search. These first papers
could be found using any other literature search method, for example, a database search or the
previously described SLR. The tentative start set was then evaluated using different inclusion-
and exclusion criteria, resulting in a final start set. Each paper in the start set was then used in
the iterative snowballing process by conducting forward and backward snowballing. Backward
snowballing consists of reviewing the references of a paper and forward snowballing reviews
other papers that cite the paper. The papers included in one iteration was then used as the base
for the next iteration. The process was summarised in Figure 3.1.

Mounce et al. (2015) was not directly relevant to this work, as it focuses on dealing with leak
management, not detection and was therefore not used in the SLR. However, the author and

22

CHAPTER 3. LITERATURE SEARCH

Start literature
search

Snowballing

|

Identify a tentative
start set of papers
and evaluate the
papers for
inclusions and
exclusions.
Included papers
enter the
snowballing
procedure

Backward:

Iterate:

1. Look at title in
reference list

2. Look at the place
of reference

End iterate

3. Look at the
abstract of the
paper referenced

4. Look at the full
references paper

Forward:
Look at title of
the paper citing
Look at the
abstract of the
paper citing
Look at the place
of the citation in
the paper
Look at the full
paper citing

23

Iterate until no
NEW papers are
found

In each step in both backward and forward
snowballing, it is possible to decide to exclude
or tentatively include a paper for further
consideration

If no new papers
are found then the
snowballing
procedure is
finished

Final inclusion of a paper should be done based on
the full paper, i.e. before the paper can be included

in a new set of papers that goes into the
snowballing procedure

r Y

Figure 3.1: A summary of the snowballing structured literature review method.

Source: Wohlin (2014)

publisher have published several relevant papers. The paper was published using IWA publish-
ing, who publishes the Journal of Hydroinformatics(IWA Publishing). Their search engine was
added to the SLR process and used to create the initial start set. The snowballing approach was

chosen to extend the SLR for the following reasons;

It would give a broad understanding of the hydroinformatics field and its state of the art
by adding papers reviewing current solutions in the field

* By using reviews of current statistical and ML approaches, sources for comparable results

could be found

e The pool of papers discovered by the snowballing approach could give results that covered
other publishers trough references

* Our lack of knowledge on the domain’s terminology might have a greater effect on the

results of a SLR than on a snowballing approach

CHAPTER 3. LITERATURE SEARCH 24

The two first reasons were covered by a SLR after adding IWA publishings search engine,
and the third by adding new search engines to the search after discovering them through the
references in papers. However, the snowballing process would ensure all four guarantees, and
we hypothesised that the snowballing approach would reduce the number of searches required.

The start set for the snowballing procedure was constructed using the SLR described above.
The search engines leeeXplorer, IWA Publishing, and arXiv were used, and all the search words
and criteria used were listed in Figure 3.2. A combination of the chosen SW were used and the
subsequent papers were selected or removed if their abstract matched one or more of the IC or
EC. The search resulted in 34 papers in the tentative start set, using the IC/EC this was reduced
to seven. No specific ML methods were used as search words as the goal was to identify what
types of methods were in use, per RQ1. The addition of any ML methods would narrow the
search down, and as methods have different names, it might cause papers to be missed.

The papers in the tentative start set were scored using the QC and the top three papers were
chosen as a start set for the snowballing method!. For each QC the paper gets a score if it does
not(0), partially(1/2) or fully(1) comply with the criteria.

The SLR resulted in the start set shown in Table 3.1. The snowballing procedure was con-
ducted and by reviewing the title and abstract using the IC/EC. Between each iteration, the pa-
pers were read and papers that did not comply with the QC were dropped. The result of the full
snowballing process was listed in Table 3.2.

Paper QC1 | QC2 | QC3 | QC4 | QC5 | QC6 | QC7 | QC8 | Total
Casillas Ponce et al. (2013) 1 1 1 1 1 1 1 8
Deniss et al. (2012) 1 1 Yo Yo 1 1 Yo 6.5
Eliades and Polycarpou (2012) 1 1 1 Yo 0 1 1 6.5
Soldevila et al. (2016a) 0 1 Va Va 1 0 Va 4.5
Sanchez-Fernandez et al. (2015) 0 1 Va 0 0 Vs 1 Vs 3.5
Vries et al. (2016) 1 1 Va 0 Vo 0 0 3
Sun et al. (2016) 0 1 Yo 0 0 1 0 0 2.5

Table 3.1: Results of the SLR, the top three papers where chosen for snowballing.

Iterations Papers

Start set | Casillas Ponce et al. (2013) | Eliades and Polycarpou (2012) | Deniss et al. (2012)

1 - Soldevila et al. (2016b) Mounce et al. (2010)
Herrera et al. (2010) Farley (2001)
2 - Chan et al. (2018) Mounce et al. (2013)
Mounce (2013)

3 - - Wu and Liu (2017)

Ye and Fenner (2011)

Table 3.2: Results of each iteration using snowballing. Each column shows which paper from
the start set it originates from.

IThe top three was chosen because of the time constraints of the thesis.

CHAPTER 3. LITERATURE SEARCH 25

(a) Search words (b) Exclusion criteria

SW1: Leak/Anomaly/Fault ECI1: The paper covers a method already
covered by another paper(The highest

SW2: Detection scoring paper was kept)

SW3: Water distribution network EC2:

The same study was found from a dif-
(WDN)/District metering area (DMA)

ferent source

(c) Inclusion criteria (d) Quality criteria

IC1: The paper uses an Al-method to de- QC1: The paper compares different leak de-
tect faults in WDNs tection methods

IC2: The paper wasrelated toone oftheRQ QC2: The paper has a clear aim for the re-

search
IC3: The paper gives an unique view of a

RQ QC3: The paper has a reproducible method

IC4: The paper gives an overview of the QC4: The paper has a reproducible result

current methods for leak detection in
WDN QC5: The paper uses an accessible data set

IC5: The paper contains a fault detection =~ QC6: The paper justifies the design deci-
method for WDN sions used in the solution

QC7: The paper contains comparable re-

IC6: The paper contains comparable re-
sults

sults

QC8: The paper uses explained and justifi-
able metrics

Figure 3.2: Search words and criteria used in the literature search, synonyms were separated
witha/

3.2 Related works

The first papers read was the start set, Casillas Ponce et al. (2013), Eliades and Polycarpou (2012)
and Deniss et al. (2012). These papers were chosen based on their scoring using the QC.

3.2.1 Startset

Casillas Ponce et al. (2013) presents five different model-based methods of leak detection using
a sensitivity matrix and residue vector. The sensitivity matrix was constructed as explained in
Section 2.2.3 by simulating the WDN pressure values with and without leaks at different nodes
in the network. The residue vector, 7, was created by taking the difference between the expected
simulated sensor values, without any leaks, and the actual measured pressure values. The five

CHAPTER 3. LITERATURE SEARCH 26

different leak detection methods presented in the paper differ by how they measured the differ-
ence between the residue vector and the sensitivity matrix. The distance was measured at each
time step within a time window of 24 hours, and each method summarised the difference over
time by different means. The methods were:

e Binarised sensitivity method binarised the sensitivity matrix, S, and residue vector, 7(k),
using two parameters to threshold the values. Then the columns of the sensitivity matrix,
S, was compared with the residue vector and if they were equal, S;(k) = 7(k), it indicated
a candidate leak. Over the time window, these indications were stored in a vector, y, where
each component was the sum of indications on each node during the time window. The
largest component then indicated which node leaked.

* Angle between vectors method calculated the cosine distance, a;, between S; and 7 (k).
The mean angle of each a; within the time window was calculated. The leak was then
identified as the node with the smallest mean angle, i.e., the column vector, that lay closest
to the residue vector indicated a leak.

* Correlation method and Euclidean distance method worked the same as the angle between
vectors method, but uses correlation and Euclidean distance instead of the angle between
columns and the residue vector.

e Least square optimisation method used the least square method by optimising:

L
. - _ fig 2 .
]fj_m}nkE:lH(k) S; ki1 j=1,..m

for each candidate leak size, fj, and the node, j, with the smallest J5; was the leak node.

The experiments in this paper were done on two WDNSs, one in Hanoi and one in Quebra.
Two hundred experiments were conducted per network, where each experiment added a de-
mand noise of £4% and a pressure measurement noise of +2%. The leaks were between 20 and
80 //s on the Hanoi network and between 0.01 and 1//s on the Quebra network. From Table 3.3
it was clear that the best methods were the optimisation and angle methods. These methods all
share the same disadvantages as the model-based methods mentioned in Section 2.2.3.

Method | . . . : : T
Network Binarisation | Correlation | Angle | Distance | Optimisation | Wavelet
Hanoi 48 60 98(31) 46.67 96 21
Quebra 71.5 94.5(56) 98.5 13.33 98.25 62

Table 3.3: Accuracy of the Model-based methods presented in Casillas Ponce et al. (2013) and
Deniss et al. (2012). The results using the angle method of Deniss et al. (2012) were in parenthe-
ses.

Deniss et al. (2012) used model-based leak detection together with wavelet analysis to gener-
ate a comparison matrix that was then used with a voting system to localise leaks. The sensitivity
matrix was constructed in the same way as presented in Section 2.2.3, but it also constructed a

CHAPTER 3. LITERATURE SEARCH 27

sensitivity matrix for the unknown leak, S, = P— P, where P, were the sensor measurements of a
time window. The residue therefore represented a matrix, R, = P— P, instead of the residue vec-
tored used in Casillas Ponce et al. (2013). On the columns of S, S, and R, a continuous wavelet
transform was performed using complex Shannon wavelets(the precise transformation could
be viewed in the paper), obtaining matrices of complex numbers. The matrices were expanded
by separating the real and imaginary parts into separate columns; then they were binarized by
setting the values to 1 or 0 if the real and imaginary parts were above or below 0, respectively.
At the end of this process, the binarized matrices of the transformed columns of S and R, rep-
resent a leak at a specific node at a given time step. These matrices were compared using an
XOR-operation and summed into a comparison matrix where leaks could be identified to be the
indexes with the smallest values.

The paper also implemented the previously mentioned angle between vectors method(Casillas Ponce
et al., 2013) for comparison and tests the methods on the Hanoi and Quebra WDNSs. The tests
done on a single leak were similar, but Deniss et al. (2012) tested using several other levels of
measurement and demand noise, and the measurement noise was increased to +4%. This paper
also used leak sizes in a smaller range, 30—-80//s and 0.01 —0.1//s for Hanoi and Quebra respec-
tively. Table 3.3 shows that the accuracy of the wavelet method was not as good as that of the
other model-based methods. However, it must be noted that the measurement noise added in
Deniss et al. (2012) was +4% versus the +2% in Casillas Ponce et al. (2013), which might explain
why the results of the reproduction of the angle method were worse. The result difference might
also be caused by the difference in how the WDN was modeled, as Casillas Ponce et al. (2013)
used a software framework, EPANET, to model the water network, while this paper used its own
decomposition based approach. As mentioned in Section 2.2.3, these methods are dependent
on the accuracy of the model when constructing the sensitivity matrix, as clearly shown here
where two different models give huge differences in results. This, and the other results noted in
the paper hints at the high impact of noise in the measurements on the leak detection methods
and the importance of the model in these model-based methods.

Eliades and Polycarpou (2012) presented a model-based method where a Fourier Series was
used as a model, and CUSUM was used to detect a leak. Other model-based methods require
well-calibrated models, such as the EPANET simulations and decompositions used in the previ-
ously mentioned methods, while this paper suggested an adaptive model that learns over time.
The model was constructed by decomposing the DMA inflow signal into two components, the
long-term trends(yearly seasonal changes) and weekly trends, an example of this decomposi-
tion could be seen in Figure 4.1. The DMA inflow at time step k could then be described as

q(k) = r(k)s(k)(1 + n(k))

where r(k) described the long-term trend, s(k) the weekly trend and n(k) described a uncer-
tainty component with zero mean normal distribution. The long-term trend was calculated
from historical data using least-squares optimisation on a Fourier series representation of the
trend. The weekly trend, s(k), was represented as two vectors, one of Fourier functions and
one of the Fourier coefficients, where the coefficients were updated using a learning rule. A
leak was detected if the CUSUM of the mean value of the inflow signal was greater then a given
threshold. This threshold could be changed to adjust the resulting FPR and TPR of the system.
The CUSUM method was compared with the baseline night-flow analysis method outlined in
Section 2.2. The testing was done on historical data from a DMA in Limassol, Cyprus, and the

CHAPTER 3. LITERATURE SEARCH 28

method managed at best a TPR of 94.5% and FPR of 0%. However, this method had a detection
delay of 9.8 days when it got the best results, and the other results also showed an average de-
tection delay of several days. The night-flow method did not get as good results as the CUSUM
method, with its best being a TPR of 73% and FPR 0%, it was however faster by having a detec-
tion delay of a couple of days. In contrast, the previously mentioned methods have a detection
delay of at most the size of their time window.

3.2.2 Firstiteration

Mounce et al. (2010) presented a SVM approach for novelty detection in pressure and flow data.
SVMs find the optimal hyperplane to separate two classes, by choosing two vectors i’ and b such
that @’ % — b = y, where ¥ was the input data and y was the class of X. SVMs could be extended
to be applicable to regression, Support Vector Regression (SVR), by having a real valued output
f (X,)), rather than a discrete class, y, so the SVR model becomes f(X,) = wT%—b. The
paper takes into account the diurnal pattern in WDN data and therefore constructs 96 weekday;,
96 Saturday and 96 Sunday models, one model per sensor measurement each day. When the
difference between the predicted value of the model and the observed value was significantly
large it was classified as an abnormal event. When trained using 3 months of data, with sensor
readings every 15 minutes, and tested on 6 months of data, this method managed a TPR of 78%
with a detection time of 2.5 hours.

Herrera et al. (2010) did not implement any leak detection methods, but rather compared
different machine learning methods in forecasting water demand. This paper was chosen be-
cause of its application of ANN and other methods on water data. The methods compared in the
paper were ANN, Projection pursuit regression (PPR), Multivariate adaptive regression splines
(MARS), SVR, random forests, and a weighted function. The ANN was implemented with 3, 5,
and 7 hidden nodes and learning rates of 1074, 1073 and 107!, Each method was evaluated 20
times, where a random time step was chosen, and the model was trained using the eight previ-
ous weeks of data and the next two weeks were used for testing. The methods task was to predict
the water demand for the next time step, ¢+ 1, based on the water demand of the current, ¢, and
previous hour, ¢ — 1, the water demand at that time last week, ¢ +1—24 x 7, and the last known
values of temperature, wind velocity, atmospheric pressure and rain. The paper identified that
the dynamics of the target time series changed over time, and therefore suggested two ways
to update the models during testing, growing, and sliding windows. When using growing win-
dows, the model was first trained using the original eight weeks. After a set sized time window,
the previous inputs and their ground truth were added to the training data, and a new model
was trained using this expanded training set. When using a sliding window, a new model was
trained using the previous eight weeks of data, re training the model with the updating inter-
val as the growing window. During testing window sizes of 1, 12, and 24 hours were used. This
type of online learning would not be possible for a leak detection model as a leak cannot be
verified live, unlike the predictions as they were verifiable within the next sensor measurement.
The experiments were evaluated using RMSE, MAE, Nash-Sutcliffe efficiency and a modification
of Nash-Sutcliffe?, and the results were shown in Figure 3.3. The ANN model achieved best re-
sults when using a sliding window approach where the model was updated every 12 hours when

2The equations could be found in the paper as equations 16, 17, 18 and 19 respectively.

CHAPTER 3. LITERATURE SEARCH

29

evaluated using MAE. However, in each of the evaluations, it was clear that the ANN model was

inferior to other methods.

1 |
Water Demand

[[]

| |
Water Demand

slidewPatt.v16 L. |: shide.wPaty10 . :
[1 [
slide.svr.v13 ~?- sliderivy | @ [-
_ 'J _ M
slide.rfv? J shide.pprvas | (@
' L
slide.pprv2s -|_+ shidennetvag | 0 - ---- 1 .
slide.nnet.v26 | L slide.mars.vi3 EIL:
d]
I oy
grow.mars.vi 1 L 3 grow swvrv2s -, -
T T T T T T T T T T T
4 [8 10 12 0.2 03 0.4 0.5 0.6 0.7
rmse di
1 L I 1 1 L 1 L L 1
Water Demand Water Demand
slide.wPat.vi6 - - -| . t shide.wPan.v16 i »
™) -
slide.rtv? | slida.rtv7? +_ -
LT i
slideppr.v2s]_o‘a slide.ppr.vas n—l -
slide.nnet.v26 e bl siide.nneL.v26 --{ o}
grow svrv25s]—; grow swr.v25s f,
'mm] - .
row.mars.vi | b grow.mars.vi EI 1
w_h []
I I 1 I I I I I | I
4 [8 10 0.4 08 o0.e 1.0 1.2 1.4
mae el

Figure 3.3: The best results of water demand prediction using ANN (nnet), projection pursuit
regression (ppr), multivariate adaptive regression splines (mars), SVR (svr), random forests (rf)
and a weighted function (wPatt). The evaluation was done using RMSE, MAE, Nash-Sutcliffe
efficiency (el) and a modification of Nash-Sutcliffe (d1). The slide and grow prefixes indicates if
the model was trained using sliding or growing windows.

Source: Herrera et al. (2010)

Soldevila et al. (2016b) used k-Nearest Neighbour to localise leaks, given it had already been
identified. This paper was read because it generated the training data similarly to how it was
done in this work, and it reviews the limitations of model-based approaches. It identifies the
problem of labeling real data, as it was not possible to guarantee when a leak starts. Because
of this, the paper suggested using a model of the WDN to create correctly labeled training data.

CHAPTER 3. LITERATURE SEARCH 30

The paper tested its leak localisation approach using the Hanoi network, with a leak size be-
tween 25 and 75 /s, Gaussian noise on the pressure measurement with an amplitude of £12.5%
of the mean value of all pressure residuals, and a demand uncertainty of +5% around the nom-
inal demand. It was shown that the methods performance had trouble handling the demand
uncertainty when presented with only one-time step, having aa accuracy of 43.48%. However, it
was also shown that the accuracy increased significantly when using a whole day as input, gain-
ing an accuracy of 89.95%. The model was also tested on a real case, Nova Icaria, a part of the
Barcelona WDN. The model was first trained using only generated labeled data and was verified
to locate a leak node within a topological distance of 7 nodes. When tested with the real leak, it
managed to localise the leak node within a distance of 13 nodes. Given the network consists of
1036 nodes and 5 sensors, this could be considered as good results. It also showed that a system
trained with generated data could be successfully applied to real data.

Lastly, we would like to mention Farley (2001). As the title suggests, "Leakage management
and control: A best practice training manual”, it was not an academic paper, but a reference
work. It was used during the work on this thesis as such to gain greater insights into the domain,
to look up terms, best practices and other leak domain-specific knowledge, but was not read
cover to cover. It was referenced in several of the studied papers and according to Google Scholar
been cited by 119 articles.

3.2.3 Second iteration

Mounce et al. (2013) presented a method for leak detection by matching operational data with
predefined data patterns stored in an expert constructed library of burst patterns. The paper
identified other attempts at using machine learning techniques for leak detection, and that they
usually followed the same process; Learn from previous data to make a prediction of expected
future data and defines rules for deciding when the measured data deviates enough from the
expected value for it to be considered abnormal. These were prone to problems concerning
a large number of parameters that needed to be tuned and poor data quality. The paper was
originally chosen because of its mention of associative ANNs, but under further study, it was
shown not to go into enough detail in its approach to be more relevant to this thesis.

Mounce (2013) presented a comparative study of ANN implementations for prediction of
WDN flow data. It pointed out the use of ANNs for leak detection was usually done by training
the model to predict future hydraulic data, then a secondary method/process analyses the out-
put for a leak, the model were not trained to classify the leak directly. The paper also pointed
out the lack of research using RNNs within hydroinformatics®. Furthermore, it pointed out that
regular ANNs were designed to detect static pattern. As mentioned in Herrera et al. (2010), the
hydraulic data collected from WDNs were dynamic of nature, indicating that simple ANN archi-
tectures were unfit for the domain, and further encouraging research on using RNNs. The paper
tested four ANN architectures, Multi layer perceptron (MLP), Mixture density network (MDN),
Time Delay Nerual Network (TDNN) and Time-lagged Recurrent Network (TLRN), in predicting
flow data for a sensor 24 hours ahead. The models were trained and tested on two data sets with
eight and three months of training data and six and five weeks of testing data, respectively. The
data were normalised to a range of 0 to 1. The results measured using MAE were summarised

3Referred to as networks with temporal memory in the paper.

CHAPTER 3. LITERATURE SEARCH 31

Network Data set
Structure 1 Structure 2
MLP 96,4,1 0.0385 96,2,1 0.0398
MDN 96,10,1 GMM?2 | 0.0362 | 96,15,1 GMM?2 | 0.0417
TDNN 96,10,1 0.0160 96,10,1 0.0192
TLRN 96,500,1 0.0168 96,200,1 0.0219

Table 3.4: The MAE of the predicted a flow value 24 hours ahead using different ANN structures
from Mounce (2013).

Citation Method Data type TPR FPR
68 Nonlinear Kalman Filter | Simulated Data | 87% | 0.01%
57 ANN, SPC, BIS Historical Data 76% | 10/8%
27 Ensemble CNN-SVM | Engineered Test | 98.2% | 0.2%
77 Multiclass SVM Simulated Data | 99.5% -

Table 3.5: TPR and FPR of some of the reviewed methods in Chan et al. (2018). The citation
number refers to the citation within the paper and "-" means that the measurement was not
available in the paper. BIS = Bayesian Inference System, SPC = statistical process control

in Table 3.4. From the table, it was clear that the networks with a temporal link had better re-
sults. The author of the paper also pointed out that the temporal networks required less training
epochs, between 300 and 500, while the non-temporal networks required 900 or more epochs.
TLRN also had a more predictable performance compared to the TLFN.

Chan et al. (2018) gave a review of current leak detection methods, current research papers
with their methodologies, limitations, and results. As the paper listed the papers case studies,
it would be used to find cases using the same WDNSs as this thesis. Two papers listed used the
Hanoi network, one was Soldevila et al. (2016b), the other used a Bayesian classifier. Of the
machine learning approaches reviewed, problems with detecting small leaks and the need for
large amounts of historical data was listed as limitations for several of them. The authors of
the paper also pointed out that several of the methods(not just the ML ones) required detailed
knowledge of the WDN that cannot be known for certain and that a large number of sensors
were required. Table 3.5 showed the TPR and FPR of some of the reviewed methods.

3.2.4 Third iteration

Wu and Liu (2017) presented a review of data-driven leak detection. It identified the following
problems with data-driven methods:

* Historical data was hard to label correctly as it was difficult to determine when a leak be-
gan. This also affects detection time, as the labels cannot be guaranteed to be correct.

e Tests done using generated data usually gives better results than those done using histor-
ical data.

It was hard to compare data-driven methods as the tests conducted has different param-
eters, both in evaluation criteria, network size, leak size, and leak duration.

CHAPTER 3. LITERATURE SEARCH 32

Method Data type TPR | FPR | Leak size
ANN, TDNN | Historical Data | 75% 0% 2-10%
MDN and FIS | Historical Data | 100% | 15% -
ANN, SPC, BIS | Historical Data | 100% | 8% 5-16%
Modified SPC | Historical Data | 80% | 10% -

Table 3.6: TPR and FPR of the reviewed methods in Wu and Liu (2017). The leak size was pre-
sented as a percentage of the average DMA inflow. FIS = Fuzzy Inference System

¢ Faulty sensors or missing measurement data was a problem in real data.

The paper also presented the TPR and FPR results of the reviewed papers, which were shown in
Table 3.6

Ye and Fenner (2011) presented a Kalman filtering approach, where the Kalman filter was
used to estimate the flow or pressure in a DMA. The paper suggested that the presented method
was more computationally efficient, had a shorter DT, and needed less data to train, than ANN
approaches. Leak detection was done by reviewing the residue vector. As the Kalman filter es-
timated either flow or pressure, a non-zero residue indicates a leak. When the Kalman filter
models the DMA flow, the residue would directly correspond to the leak size. The method as-
sumed that the flow or pressure at time k was equal to the flow or pressure at time k — 1. To be
able to apply this to the diurnal data, each time step of a week had its own filter, resulting in 672
independent filters with a sensor sampling every 15 minutes. Also, because of this assumption,
the method only needed data from the previous week. The method was tested using both engi-
neered tests and historic data. The article did not state the FPR or TPR, but successfully detected
leaks that corresponded with customer complaints. It concluded that the method was better for
detecting sudden bursts and gradually changing leaks than long-term existing leaks.

Chapter 4: Implementations

The SLR showed that previous attempts at using ANNSs for leak detection have only used shal-
low MLPs, meaning the networks has few hidden layers. Only Mounce (2013) tests recurrent
networks, but only to predict the values of a single sensor, not leak detection nor using data
from several sensors. Because of the bad results using shallow network models, the lack of re-
search using RNNs and the temporal nature of hydraulic data, we proposed the application of
gated RNNs for leak detection in WDNSs. A possible reason that RNNs have not been tested be-
fore, might be twofold; They require more data to train since they have more weights than MLPs,
and MLPs has been shown not to work, causing researchers to focus on other, non NN, methods.
However, as more data from WDNs have been gathered and tools to generate artificial data from
historical data have been created, it has become possible to create and train larger networks, as
RNNs, for leak detection. The leak detection system using a Gated RNN would not need several
models for each time step, as the RNN should be able to handle the diurnal pattern. Further-
more, the leak detection method would be part of the system, so the threshold tuning used by
other leak detection systems would be automated.

4.1 Frameworks

4.1.1 Pytorch

For easy and quick prototyping of different network structures, we choose to use PyTorch(PyTorch
Community, a) as the deep learning framework. Other popular deep learning frameworks con-
sidered were TensorFlow and Keras(Migdal and Jakubanis, 2018; Abbass et al., 2018). All three
support gated RNNs, and while TensorFlow was more commonly used, it was not chosen as the
other two frameworks had a simpler API more fitting for prototyping. There was little difference
between Keras and PyTorch, but the Object Oriented Programming(OOP) interface of PyTorch
made it easier to both debug while developing and customise. While Keras required fewer lines
of code(Migdal and Jakubanis, 2018), and was, therefore, quicker to prototype in, this results in
fewer ways to customise the code. As the focus of this thesis was to test and possibly customise
networks to solve a problem, together with our prior experience with the framework, PyTorch
was chosen.

4.1.2 LeakDB

Vrachimis et al. (2018) presented a benchmarking tool for leak detection algorithms written in
Python and Matlab. The benchmarking was done by creating a data set of simulated hydraulic

33

CHAPTER 4. IMPLEMENTATIONS 34

8 (a) Weekly periodic component 0.8 (b) Yearly seasonal component (c) Random component

08
Original component Original component
Fouri . i .
0.6 ourier approx | 06| Fourier approx | 06
0.4 1 041 04F
s s s
8 oz m E E
c c c
8 2 8
® Or T T
2 & 2
= g =
502 5 E
= = =
-0.4 0.4+ 04+
06 “ “ H “ “ u [06! 06
_08 1 i i 4l _08 L 1 L 1 L 4 _08 L L i i i i
500 1000 1500 2000 2 - 6 8 10 2 4 6 8 10
One week (5 min steps) One year (5 min steps) 104 One year (5 min steps) 104

Figure 4.1: The three components of a decomposed demand pattern, showing both the orig-
inal component and the Fourier approximation. (a) Shows the weekly pattern, (b) the yearly
component and (c) the random component.

Source: Vrachimis et al. (2018)

data from WDN, called scenarios, and testing the algorithms on these scenarios. The data gen-
eration was based on historical data and implemented in Python and used the Water Network
Tool for Resilience(WNTR), a python library for simulation and analysis of WDNs(Klise et al.,
2018). WNTR was compatible with EPANET which was widely used to analyse and simulate
WDNSs(EPANET; Soldevila et al., 2016b; Deniss et al., 2012; Casillas Ponce et al., 2013).

The LeakDB algorithm used an EPANET . INP file that described a WDN, an example can be
viewed in Appendix B, and created a new WDN for each scenario in the dataset. The param-
eters(i.e., pipe length and diameter) of each new WDN was changed based on an uncertainty
value, y, which changed the original parameter with +u% of its original value. In LeakDB p was
set to 25, while it was set to 0 while generating data for this thesis as the leak detection models
should be trained for a specific WDN, where the only uncertainty was in the pressures, flow and
demand data.

WNTR needed a demand pattern to simulate the pressure and flow at each node and edge in
the WDN. A demand pattern can be decomposed into three components; a weekly component,
a yearly component, and a random component(Soldevila et al., 2016b; Eliades and Polycarpou,
2012; Vrachimis et al., 2018). LeakDB approximated each of these components to create the de-
mand pattern used by WNTR. The weekly and yearly components were created by approximat-
ing historical data using Fourier series and represented the weekly and yearly demand trends as
in Soldevila et al. (2016b); Eliades and Polycarpou (2012). The random component represented
random events in the network, as unpredictable consumer demand and maintenance, and was
anormal distribution with zero mean and a standard deviation of € = 0.33. Figure 4.1 showed an
example of each of the components. To generate different patterns for each scenario, the coef-
ficients of the Fourier series approximation was randomised in a range of +10% of their original
value.

CHAPTER 4. IMPLEMENTATIONS 35

The leaks were simulated at the WDN nodes by increasing the demand, and the leak was
placed at a node that was randomly chosen in the network at a random time interval. The de-
mand increase was based on the diameter of the hole, ¢ € [2cm,20cm], and the pressure at the
network node. There were two types of leaks simulated; abrupt leaks and incipient leaks. Incip-
ient leaks were small and increased over time; these leaks were the hardest to detect as they may
be mistaken for changes in the water network, change in consumer demands or other events
that cause a natural change on the sensor data. The leaks were originally given in m>/h; this
was converted to [/s to concur with the notation used in literature.

When generating a data set LeakDB also used the following parameters; the number of sce-
narios to generate, start and end date for the scenario, the measurement frequency and how
many scenarios would be simulated in parallel. Each scenario was stored separately, with fold-
ers for flow, demand and leak, and where each nodes sensor readings were stored in a separate
.csv file. For each measurement, there was a time stamp and value. The added demand of the
leaks was stored together with time stamps, and the labels were stored as either 0 or 1 indicating
a leak together with the specific time step. An example can be found in Appendix C.

As mentioned above, only parts of the LeakDB code was used; this was specifically the
leakDBGenerator and demandGenerator. leakDBGenerator generated the scenarios and started
the WNTR simulations, and demandGenerator generated the demand pattern used by WNTR
from Matlab files. The code of leakDBGenerator used removed API calls for WNTR and Pandas,
a data structure and analysis tool for Python, which had to be updated for the code to function.
This was done by replicating the old API calls using newer API calls to not introduce unknown
bugs to the code.

During training and testing, it was discovered a bug when creating the incipient leaks. These
leaks were implemented by slowly increasing the hole of the leak between two-time stamps, the
leak start and the peak leak time. From the peak time until the end time this hole should remain
unchanged and there should be a continuous leak. The continuous leak from the peak time
until the end time was however not created, but the labels were, creating miss labeled data after
each incipient leak. The bug was corrected by extending the leak to the end time. The bug was
discovered and corrected late in the work on this thesis and therefore affected the results of the
first iteration.

LeakDB was implemented with the Python multiprocessing package to speed up the gen-
eration process by utilising parallelism. However, the implementation did not take into account
that each sub process running in parallel inherited the same random seed, in effect causing each
simultaneous sub process to generate the same scenario. This was discovered during the debug-
ging of the previous bug, so this also affected the first experiment as well. Four sub-processes
were used in creating this data set, so of the 200 scenarios generated, only 50 of them were
unique. As this work did not require the computational boost offered by parallelism, it was fixed
by setting the number of sub processes used to one.

The effect of the bugs on the experiments in this thesis were discussed in Sections 5.6 and
6.2. It should also be mentioned that not all scenarios generated by LeakDB were suited. There
could be scenarios with unrealistically short leaks, e.g., a leak duration of 15 minutes since the
start and end time stamps were chosen at random. These were abnormalities, so they were
removed only when discovered.

CHAPTER 4. IMPLEMENTATIONS 36

4.2 Data Sets

The data sets used in this thesis was generated using LeakDB, as explained in Section 4.1.2, and
the two WDNs Hanoi and Net1. LeakDB simulated the hydraulic data of the WDN and generated
the flow, pressure, and water demand every 15 minutes over 30 days, one such simulation was
named a scenario. This measurement frequency was chosen because it was the standard in
Norway, while in the literature this may vary with frequencies between 5 and 60 minute with
most being either 15 or 30 minutes. Figure 4.2 shows example sensor readings at each node in
the Netl WDN for ten time steps.

As mentioned in Section 2.2, it was unrealistic to assume that sensors were placed at each
junction. However, this work focused on testing a ML-approach and comparing it to other rele-
vant work. Since the work in Section 3.2 uses all the sensors, this was done in this work aswell.

Both pressure and flow data could be used for leak detection, but since it was unreasonable
to require both flow and pressure data, one of the two were chosen. As most of the methods in
Section 3.2 used pressure data this was chosen. Each sensor value, x; was normalised at each
time step using the following formula:

Xi

el
max| x|

Where X was the sensor value at a specific time step, in other relevant papers the max value
was chosen from all the sensor values within a given time window. Both methods were tested,
and it was found that it had little difference, so to reduce the amount of data pre-processing
normalisation was done per time step. In a live leak detection system, this would remove the
need to store a time window of previous measurements.

Each time step was labeled as either a leak, 1, or a not a leak, 0. So the leak detection system
would have an input size equal to the number of pressure sensors in the WDN and an output size
of 1. The inputs would range from 0 to 1 because of the normalisation, and the output should
beOor 1.

There was an overweight of nonleak training data in the data sets since LeakDB generated
scenarios without leaks and leaks did not usually appear for more than 50% of a scenario. Ta-
ble 4.1 shows the underweight of leak labels in the data sets. As explained in Section 5.5.1 this
caused some models to classify every input as a nonleak as this gave the system accuracy of
around 70% on average. Two possible solutions to this balancing issue were tested, removing all
nonleak scenarios from the training sets and weighting the loss function. Removing the nonleak
scenarios was enough on the Netl WDN, but not for the Hanoi WDN. The weighted loss func-
tion was therefore implemented and tested for that WDN and will be explained later in Section
4.3.3.

4.3 Leak detection system

As mentioned in Section 2.3.3, RNNs were specialised for sequential data, such as the sensor
data from a WDN, and Gated RNNs can learn what temporal data to store. Because of this, we
chose to build a leak detection system based on Gated RNN architectures, where a single model
would learn the temporal information necessary for leak detection, avoiding the need for several

CHAPTER 4. IMPLEMENTATIONS 37
o1l

1 2 3 10 -

. - + *_C s °

i ¢ - *

oe ol
Sensor 1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Sensor2 | 79.271 | 79.691 | 80.137 | 80.635 | 81.153 | 81.531 | 81.967 | 82.359 | 82.692 | 83.012
Sensor3 | 90.199 | 90.576 | 90.924 | 91.314 | 91.716 | 92.025 | 92.378 | 92.67 | 92.916 | 93.207
Sensor4 | 84.438 | 84.867 | 85.263 | 85.707 | 86.164 | 86.515 | 86.918 | 87.249 | 87.53 | 87.86
Sensor5 | 82.346 | 82.722 | 83.109 | 83.515 | 83.936 | 84.365 | 84.793 | 85.216 | 85.627 | 86.022
Sensor6 | 83.799 | 84.191 | 84.6 | 85.03 | 85.458 | 85.888 | 86.315 | 86.735 | 87.142 | 87.507
Sensor7 | 83.732 | 84.167 | 84.693 | 85.21 | 85.729 | 86.123 | 86.539 | 86.878 | 87.155 | 87.452
Sensor8 | 83.893 | 84.289 | 84.714 | 85.172 | 85.63 | 86.053 | 86.481 | 86.882 | 87.254 | 87.597
Sensor9 | 85.331 | 85.725 | 86.155 | 86.618 | 87.075 | 87.495 | 87.928 | 88.332 | 88.709 | 89.046
Sensor 10 | 83.015 | 83.532 | 84.036 | 84.604 | 85.162 | 85.533 | 85.967 | 86.313 | 86.583 | 86.824
Sensor 11 | 36.576 | 36.948 | 37.332 | 37.733 | 38.151 | 38.58 | 39.008 | 39.434 | 39.85 | 40.25

Figure 4.2: Example of pressure measurements from the sensors of Netl. Each column was the

sensor readings at a specific time step.

CHAPTER 4. IMPLEMENTATIONS 38

Data set Total Total without Training Set
WDN non Leak Scenarios
Netl 1 26.7% 34.9% 15.9%
Netl 2 20.5% 30.1% 32.3%
Hanoi 22.5% 28.6% 28.4%
Hanoi(Only large leaks) | 22.5% 28.6% 36.1%

Table 4.1: The percentage of leak labels in the data sets, showing the imbalance between leak
and non leak data in the data sets.

models trained on specific time periods as was done in other related work(Mounce, 2013; Ye and
Fenner, 2011; Herrera et al., 2010).

To detect a leak, a linear layer was added after the Gated RNN. This would take the output
of the Gated RNN as input and decode final hidden state into a single output, where 0 indicated
a nonleak, and 1 a leak. This approach resembled the model-baed methods were the Gated
RNN would "model" the WDN and the linear layer would do the leak detection. The difference
was that in this system, the model and detector were connected, so both were trained together,
increasing the synergy between the two parts of the leak detection system.

The leak detection system can be summarised as follows, and an overview was shown in
Figure 4.3. The input to the system was a feature vector with the latest sensor reading of each
sensor. The output of each layer of the gated RNNs was fed as input to the next layer. The
output of the final RNN-layer was used as input to a linear layer to map it to a single output. The
sigmoid function was applied to this single output to get a value between 0 and 1. This linear
layer together with the activation function worked as a decoder of the output and as it was a part
of the implemented model would be trained to output a score close to 0 and 1, automating the
threshold tuning mentioned in Mounce (2013). During testing, this final output was binarised
by rounding the output,

0 ifx<0.5

class(x) =
1 otherwise

The leak detection system was implemented without any handling of faulty sensors, as this
was viewed to be outside of the scope of this initial proof of concept work.

4.3.1 Gated RNN

Since there was not a big difference between LSTMs and GRUs, both Gated RNNs were tested on
the smaller Netl WDN to identify which were more fitting. The Gated RNNs were implemented
using their respective PyTorch modules(PyTorch Community, b,c) and example code for each
implementation can be viewed in appendix A. After testing both Gated RNNs, it was decided
to use GRUs for the final leak detection system trained on the Hanoi WDN because the slightly
better results of the GRUs shown in Section 5.5.2 and a GRU has fewer parameters to train than
an LSTM.

CHAPTER 4. IMPLEMENTATIONS 39

Leak
Classification 'l Y+l
0.1 Oi+1
T F 1
Gated RMN | Gated RMN I | Gated RMMN I
- f J
Sensor |

X X b

input t-1 f t+1

Figure 4.3: An overview of the leak detection system. x; was the pressure readings which in
this work was from the generated data set, but in a real world setting would be input from the
monitoring system of a WDN, o; was the output of the Gated RNN, Decoder was the final linear
layer, o was the sigmoid function and y; was the systems calssification of the input, x;, and a
value between 0 and 1.

4.3.2 Hyper Parameters

To test which architectures would work, different hyper parameters were tested. Both LSTMs
and GRUs used the same hyper parameters and the ones tested were listed in Table 4.2. As
the most mentioned limitation for data-driven leak detection methods was the amount of data
needed to train the models, the hyper parameters were chosen to be small to lower the amounts
of weights needed, and therefore the amount of data needed. The parameters were chosen in
an attempt to identify which parameter had an effect on the leak detection system, and what
that effect was. Specifically, the hidden state size, as we wondered if it would be a correlation
between the hidden state size and the size of the WDN. Adam(Kingma and Ba, 2014) was chosen
as an optimiser with parameters £ € (0.9,0.999). As it was an adaptive learning-rate optimiser it
was chosen to avoid having to manually tune the learning rate, but the initial learning rate had
to be chosen. Trough initial testing, it was found that using a learning rate greater than 0.003
caused the system to stagnate at a local optima and label everything as a nonleak. In the first
experiments on Netl dropout was not used, as it cannot be used on one layer architectures and
would have resulted in an advantage to the architectures with more layers. However, on the final
experiment on Hanoi, it was added with a dropout chance of 0.3 to help the models generalise.

CHAPTER 4. IMPLEMENTATIONS 40

Hyper Parameter Value
Number of Layers 1,2,3
Hidden state size | 5, 10, 15, 20
Learning rate 0.003

Table 4.2: The hyper parameters chosen for the initial test on the Netl WDN.

Hidden State Initialisation

The first hidden state of an RNN was one of the parameters to initialise. /) was a matrix and can
be initialised in different ways, where the two simplest ones were to fill it with either random
values or a specific value. There were more complex methods of finding the optimal hj trough
machine learning, but this was viewed as over complicating the problem as the leak detection
system should run for several time steps, so the initial i, should be of little consequence. Of the
two simple methods initialising /2y to a matrix of random numbers from the standard normal
distribution was chosen. This was done so that the system would learn to be indifferent to the
initial state, as it just contained noise(Zimmermann et al., 2012).

Leak Classification

A fully connected linear layer was used to decode the final output of the Gated RNNs to get one
or two outputs, depending on how the output was described. The output of the linear layer
was then sent through a sigmoid function to ensure that the output value was between 0 and 1,
where 0 meant that the input was classified as a nonleak and 1 a leak.

4.3.3 Loss function

Cross-entropy was chosen as the loss function for the first two iterations of the leak detection
system tested on the Netl WDN. Both the Mean Absolute Error (MAE) and Mean Squared Error
(MSE) were considered, but both loss functions caused the models to stagnate and classifying
every input as a nonleak. These functions were more suited for tasks where the outputs were
real-valued and not classifications. Cross-Entropy had not this problem and was therefore cho-
sen.

The leak detection system constructed to be used on the Hanoi WDN used the cross-entropy
loss function, showed in Equation 4.1, where / and n! denotes the leak and nonleak classes, y,
was a binary indicating if, ¢ was the correct classification and x; was the system’s classification
of that class. When there were only two classes, the Equation can be rewritten to be the Bina-
ryCrossEntropy, where x was the output, and y was the correct class.

CrossEntropy(X) = — (Y ye logxc) (4.1)
cel,nl
BinaryCrossEntropy(x) = — (ylogx + (1 — y)log(1 — x)) (4.2)

Cross-entropy with weighting on the classes was tested to combat the imbalance in the data
set. The weighted version of the loss function was shown in Equation 4.3 where w; was the

CHAPTER 4. IMPLEMENTATIONS 41

weight for the leaked class and w;,; was the weight for the nonleak class. PyTorch only imple-
ments the cross-entropy function with weights, not binary cross entropy.

WeightedCrossEntropy(x) = — (Z Weye logxc) (4.3)
cel,nl

So to use weighted cross entropy, the output, y;, of the final linear layer was converted to a
score for each class, (y;,1— y;). Using two output nodes of the final layer would have worked as
well, but this would give the weighted cross entropy and advantage because of the slightly larger
output layer.

The weights were tested with (w;, wy;) € {(0.32,0.68), (1,1.47)}, where both were based on
the percentage of imbalance in the training set, the first being the percentage and the second
were both weights were multiplied by 1.47 to see if a higher loss overall would have any effect.
The training set used consisted of 3 scenarios were 32% of the data set was labeled as leaks. A
smaller training set was used to easier identify possible problems with specific scenarios using
the weighted loss function. The weighted cross entropy was compared with the binary cross
entropy shown in Figure 4.4. When tested it was clear that the weighted cross entropy did not
converge, but the binary cross entropy did.

CHAPTER 4. IMPLEMENTATIONS 42

[200 400 600 800 1000 1200 1400 1600

N —— Training Epoch Error
g 052 —— Test Epoch Error

(a) Weighted Cross Entropy

[200 400 600 800 1000 1200 1400 1600

\g Epoch Error
—— Test Epoch Error

Mo AvL V\M

(b) Binary Cross Entropy

Figure 4.4: Training graph of weighted and not weighted cross entropy. The weighted cross en-
tropy model stagnated with an avg epoch error of 0.48, while the binary cross entropy managed
an avg epoch error of > 0.2.

Chapter 5: Experiments & Model Improve-
ments

5.1 Water Distribution Network

The training and test data used were generated using the updated code of LeakDB explained in
Section 4.1.2 using the Hanoi and Netl WDNs depicted in Figure 5.1. The Hanoi network was
a real WDN consisting of 32 node, each having a pressure sensor. It was regularly used in the
literature for testing leak detection systems. The network has two different representations in
literature, Figure 5.1b shows the representation used in this thesis. Net1 is a small example WDN
from EPANET consisting of 11 nodes. This was used to test the leak detection system on a lower
scale before testing it on the Hanoi network.

5.2 Data

The data was generated using LeakDB and the pressure data was read and normalised as de-
scribed in Section 4.2. The sensor data was stored without the normalisation, and rather nor-
malised before it was fed to the leak detection system to simulate how real world input would be
given. The system takes sensor readings from each sensor at each time step as input, as shown
in Figure 5.1, and has an output at each time step between 0 and 1 during training and binarised
during testing.

Two data sets of 200 and 85 scenarios were generated for Netl and a data set of 400 scenarios
were created for Hanoi. Each scenario lasted from the 1st until the 30th of January and had
sensor reading every 15 minutes, so each scenario contained 2880 data points. Generating every
scenario within the same time frame was done to avoid any problems that might be caused by
training the leak detection system on data from different seasons, as that is out of scope for this
thesis. This should not give the system any advantages compared to other related work, as they
also use data spanning consecutive weeks.

A scenario could contain from 0 to 2 leaks of different types, and leaks could overlap. All of
the scenarios would not be used, but the amount ensured that there was a large enough pool
of scenarios to choose from when constructing the training and test data sets. As mentioned in
Section 4.1.2, not all scenarios were realistic, and when any abnormal scenario was discovered,
they were replaced. Scenarios were chosen for the training and test sets at random, but it was
quickly discovered that this lead to a imbalance in the data sets. This was done to combat the
imbalance problem mentioned in Section 4.2, to ensure that the leak detection system was ex-

43

CHAPTER 5. EXPERIMENTS & MODEL IMPROVEMENTS 44

>—
L
_'- 2 3 10 a9
L.
»
. 1
i 7
[
(a) Netl (b) Hanoi
i
- zl
s
L:"' e,
E ! I.
.II |
i’ i
7 / 'I
_,."i Tau
i |
e -
. * _" :; e |
10 o,
e |
e,
(c) Hanoi

Source: Casillas Ponce et al. (2013)

Figure 5.1: The Netl and Hanoi water distribution networks. The nodes represent pipe links
and lines are pipes. The Hanoi network is represented differently in the literature, (b) is the
representation used in this thesis.

posed to different sized leakages and to remove unrealistic scenarios(leaks with a duration of
less than 1 day) from both the training and test sets. On the Netl data sets, 50 scenarios were
first chosen at random, creating a training set of 40 scenarios and a testing set of 10 scenarios.
Then the training set was sanitised by replacing non leak and unrealistic scenarios with random
scenarios. Only the unrealistic scenarios were replaced in the training set, as the system had to
be tested using non leak scenarios as well.

CHAPTER 5. EXPERIMENTS & MODEL IMPROVEMENTS 45

Sensor 1 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000
Sensor 2 0.7338 | 0.7330 | 0.7275 | 0.7220 | 0.7157 | 0.7057 | 0.6962 | 0.6867 | 0.6781
Sensor 3 0.5959 | 0.5949 | 0.5873 | 0.5791 | 0.5709 | 0.5566 | 0.5447 | 0.5314 | 0.5210
Sensor 4 0.5608 | 0.5597 | 0.5508 | 0.5422 | 0.5317 | 0.5168 | 0.5034 | 0.4906 | 0.4781
Sensor 5 0.6853 | 0.6867 | 0.6962 | 0.7057 | 0.7165 | 0.7340 | 0.7504 | 0.7668 | 0.7817
Sensor 6 0.5100 | 0.5094 | 0.5007 | 0.4909 | 0.4792 | 0.4618 | 0.4458 | 0.4360 | 0.4175
Sensor 7 0.3809 | 0.3802 | 0.3729 | 0.3655 | 0.3565 | 0.3440 | 0.3328 | 0.3201 | 0.3090
Sensor 8 0.4317 | 0.4313 | 0.4237 | 0.4157 | 0.4067 | 0.3933 | 0.3827 | 0.3689 | 0.3579
Sensor 9 0.4694 | 0.4695 | 0.4597 | 0.4462 | 0.4342 | 0.4135 | 0.3959 | 0.3819 | 0.3653
Sensor 10 0.3156 | 0.3141 | 0.3031 | 0.2907 | 0.2773 | 0.2586 | 0.2438 | 0.2249 | 0.2077
Sensor 11 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000
Classification | 0.17 0.17 0.17 0.22 0.35 0.59 0.82 0.91 0.94

Table 5.1: Example of inputs and classifications from the leak detection system using data from
Netl. Each column is a input vector containing normalised pressure readings and the bottom
cell is the prediction of that vector. Only predictions above 0.5 were identified as leaks during
testing.

When testing the leak detection system on the Hanoi WDN the data was split into categories
based on the leak sizes used in the related works in Section 3.2. From these categories, the test
and training sets were constructed so that they would cover every leak size equally. The 400
scenarios in the data set were split into four categories:

¢ Small leak scenarios; Scenarios with leak sizes less then 40[/ s

¢ Medium leak scenarios; Scenarios with leak sizes between 401/s and 80[/s
» Large leak scenarios; Scenarios with leak sizes above 801/ s

* Non leak scenarios

Some scenarios fit multiple categories as they had several leaks. As long as the leaks did not
overlap it was categorised as both. If they did overlap the scenario was categorised based on the
largest leak because there was no way to identify which leak the leak detection system reacted
to, but it is assumed to be the largest of the two, as will be noted in Section 5.5.2.

5.2.1 Training set

The training sets created for the two experiments on Netl contained 40 of the generated scenar-
ios which was generated with different demand patterns. Using 40 scenarios instead of a single
scenario as the methods found in Section 3.2 was done in an attempt to make the leak detection
system indifferent to non leak related changes in demand and to expose the system to different
leaks types, sizes, lengths and leak locations.

It was also noted in Section 5.5.1 that the leak detection system was not able to classify the
smaller leak, it was therefore attempted to increase the number of smaller leak scenarios in the
training set. For the Hanoi training set 13 scenarios from each leak category were first chosen
for the training set.

CHAPTER 5. EXPERIMENTS & MODEL IMPROVEMENTS 46

5.2.2 Test set

The test set was constructed to contain leaks of different sizes and scenarios without leaks. The
different sized leaks would identify any problems with detecting leaks of a specific size, while
the non leak scenarios would ensure that the leak detection system did not classify false posi-
tives. If false positives became a problem, it could be solved by only counting the classification
after several consecutive classifications had been done, as done in the other relevant work. This
would lower the false positive rate (FPR) at the expense of increasing the detection time (DT).
The first test set consisted of 10 scenarios listed in Table 5.2. Scenario 135 contains a rela-
tively small leak compared to the others and would identify if the models were able to detect

small leaks.

Scenario Leak Type Peak Size(l/s) | Duration(d, hh:mm)
2 Incipient 76 (15, 13:00)
10 Abrupt 63 (10, 18:30)
17 Abrupt 139 (11, 22:30)
25 Incipient 128 (1, 4:00)
40 - - -
86 Abrupt 94 (17, 05:00)
127 Abrupt, Incipient 155, 107 (0, 15:30), (12, 15:30)
134 - - -
135 Abrupt 15 (4, 8:45)
191 - - -

Table 5.2: The test cases of the first iteration. "-" indicates that there were no leaks.

The data sets on Netl were regenerated after the first iteration because of the bugs men-
tioned in Section 4.1.2, and the new test set can be viewed in Table 5.3. The test set contained
two non leak scenarios, one small leak(the first leak in scenario 83), abrupt, incipient and both

abrupt and incipient leak scenarios.

Scenario Leak Type Peak Size(l/s) | Duration(d, hh:mm)
3 - - -
4 - - -
70 Incipient 85 (7, 8:15)
73 Abrupt, Incipient 115, 25 (12, 4:15), (2, 4:00)
76 Abrupt 142 (6, 13:45)
77 Incipient 93 (2, 18:15)
81 Abrupt 33 (1, 01:15)
82 Abrupt 97 (7, 15:30)
83 Abrupt, Incipient 16,114 (0, 18:45), (12, 16:45)
84 Incipient 58 (7,10:30)

Table 5.3: The test cases of the second iteration. "-" indicates that there were no leaks.

The test set generated for the last experiment on the Hanoi Network was presented in Table
5.4. It was constructed by chosen 3 of every leak category and two non leak scenarios.

CHAPTER 5. EXPERIMENTS & MODEL IMPROVEMENTS 47

Scenario Leak Type Leak Category | Peak Size(l/s) | Duration(d, hh:mm)
309 - - - -
366 - - - -
20 Abrupt, Incipient Small & Large 15, 205 (11, 17:45), (0, 6:15)
177 Incipient Small 24 (3, 0:15)
379 Abrupt Small 22 (3, 9:45)
13 Incipient Medium 56 (5, 21:15)
157 Incipient Medium 73 (28,11:15)
236 Abrupt, Abrupt Medium & Large 61, 147 (1, 18:15), (7, 19:30)
114 Abrupt Large 223,114 (7, 05:00), (8, 22:15)
257 Incipient, Incipient Large 127, 328 (10, 7:15), (1, 05:30)
324 Abrupt large 94 (8, 06:45)

Table 5.4: The test cases of the Hanoi iteration. "-" indicates that there were no leaks.

5.3 Metrics

The performance of the leak detection system was evaluated using benchmarks found in litera-
ture so the system could be compared with other leak detection systems. The following bench-
marks were tracked:

* True positive rate (TPR) indicated how many of the data points labelled as leaks in the test
set are classified correctly by the leak detection system.

* False positive rate (FPR) indicated how many of the data points labelled as non-leaks were
misclassified as leaks by the leak detection system.

* Detection time (DT) was the time between a leak starts and when it was detected by the
leak detection system.

e Accuracy how many of the data points were labelled correctly by the leak detection system.

True positive rate (TPR) and FPR were used in much of the literature, both in machine learn-
ing and leak detection. DT was specified in Wu and Liu (2017) and the measurement could
be calculated from several other papers as it was usually mentioned, although not specified as
detection time.

When calculating TPR, FPR, accuracy and DT, the output was binarised by rounding the
output of the leak detection system to get either 0 or 1, where 1 indicated a leak. The binarisation
was not used during training, as this would affect the error-term used in gradient decent.

5.4 Approach

The leak detection system went through two experiments with using the Netl WDN and one us-
ing the Hanoi WDN. In the first two experiments the system was tested using the hyper param-
eters described in Section 4.3 to identify which hyper parameters had an affect on the perfor-
mance of the system. Previous attempts at using ANNs trained their system on a single scenario,

CHAPTER 5. EXPERIMENTS & MODEL IMPROVEMENTS 48

splitting it into train and test data. This caused the system to know only one demand pattern,
but as noted in Section 2.2, a change in demand was a normal event that could be mistaken
for a leak. As LeakDB generates scenarios with different demand patterns, using several dif-
ferent scenarios in the training set might make the system indifferent to these normal demand
changes.

The leak detection system was was trained for at least 50 epochs for each hyper parameter,
where one epoch contained all the scenarios. If the avg error on the test set did not stagnate, it
would then be run until it stagnated. This was done to avoid under fitting the implementation
with more weights. Over fitting did not appear as an issue on 50 epochs. The hidden state
was reset at the beginning of each scenario to avoid information from the previous scenario to
be transmitted over to next scenario. Each epoch trained and tested the system on 40 and 10
scenarios, totalling 115200 and 28800 data points.

As mentioned in the previous section, this approach did not work on the Hanoi data set,
which therefore was constructed differently ending with two training sets of 39 and 40 scenarios,
one with 13 from each leak category and one with 40 leak scenarios with a leak size larger than
801/s.

5.5 Results

5.5.1 Net 1: First iteration

A summary of the results of the first iteration can be found in Table 5.5. The accuracy and FPR
is the average of the 10 test scenarios and TPR is the average of the 7 test scenarios with leaks. In
addition to the FPR, TPR, accuracy and DT, five things of note was identified during the testing.

1. The average error of the test set was greater then the average error of the training set at
each epoch. This was credited to the difference in the data sets, and implied that the
training set contains more difficult scenarios.

2. Some architectures stagnated while learning after classify every input as 0. The specific
architectures were the ones with no detection time and 0% TPR in the result tables.

3. None of the architectures managed to classify scenario 135.

4. The models had alow TPR relative to other leak detection methods mentioned mentioned
in Section 3.2, even tough the accuracy was high.

5. Both GRU and LSTM architectures classified consistently, i.e. once a input was classified
it did not change for some time.

5.5.2 Netl: Second iteration

The results of the second iteration are summarised in Table 5.6. Of the points mentioned in
the first iteration number 1 and 5 still applied. Scenario 135 was replaced, but none of the ar-
chitectures managed to detect the leak in scenario 81 and the first leak in scenario 83. So the

CHAPTER 5. EXPERIMENTS & MODEL IMPROVEMENTS 49

GRU
Number of layers | Hidden state size | Epochs | TPR FPR | Accuracy | DT
5 50 68.03% | 0.53% | 95.62% 5.00
| 10 50 74.29% | 2.07% | 95.42% 3.00
15 50 77.43% | 1.52% | 95.63% 1.86
20 60 75.61% | 3.39% | 95.53% 4.29
5 50 0.00% | 0.00% | 75.69% -
9 10 50 71.53% | 2.30% | 95.39% 3.14
15 50 74.17% | 3.58% | 95.33% 4.14
20 50 78.79% | 1.57% | 95.70% 2.43
5 60 68.86% | 0.78% | 95.61% 1.86
3 10 60 78.66% | 5.95% | 94.45% 3.57
15 70 74.47% | 2.79% | 95.31% 1.43
20 90 56.01% | 2.09% | 89.74% | 233.43
LSTM
Number of layers | Hidden state size | Epochs | TPR FPR | Accuracy | DT
5 60 73.40% | 1.20% | 95.53% 3.14
1 10 50 67.99% | 0.43% | 95.60% 7.43
15 70 69.73% | 0.71% | 95.61% 3.57
20 70 76.09% | 2.26% | 95.23% 4.14
5 70 75.26% | 5.07% | 94.25% 2.86
9 10 70 67.30% | 0.25% | 95.64% 8.57
15 60 75.26% | 1.28% | 95.50% 3.86
20 60 67.84% | 0.42% | 95.68% 3.29
5 50 0.00% | 0.00% | 75.69% -
3 10 50 0.00% | 0.00% | 75.69% -
15 50 0.00% | 0.00% | 75.69% -
20 50 0.00% | 0.00% | 75.69% -

Table 5.5: The results using different GRU and LSTM architectures with 40 training and 10 test
scenarios after the first iteration on Netl. Detection time is given as an average of the number
of time steps it took before the leak was found. "-" indicates that no leak was found.

minimum leak size the leak detection system was able to detect lies between 331/s and 581/s.
The incipient leak in scenario 73 was smaller than this, but it happened during the bigger abrupt
leak, suggesting that bigger leak was the one being detected.

5.5.3 Hanoi

The leak detection system was trained using scenarios from every category, but it was discovered
that the system could only detect leaks greater than 80/1/s, the training set was changed to only
contain large leaks. This will be explained further in Section 5.6.3. The results are summarised
in Table 5.7. Because the system was unable to detect leaks using pressure, flow data was also

CHAPTER 5. EXPERIMENTS & MODEL IMPROVEMENTS 50

GRU
Number of layers | Hidden state size | Epochs | TPR FPR | Accuracy DT
5 50 85.66% | 0.09% | 99.13% 7.43
1 10 50 85.73% | 0.0% | 99.24% 6.57
15 60 84.63% | 0.0% | 99.00% 12.00
20 50 86.21% | 0.00% | 99.30% 3.43
5 60 86.13% | 0.00% | 99.28% 4.86
9 10 50 86.26% | 0.00% | 99.29% 3.63
15 60 16.11% | 0.02% | 83.87% | 1098.00
20 70 86.44% | 0.02% | 99.31% 2.71
5 120 13.96% | 0.00% | 83.19% -
3 10 50 0.00% | 0.00% | 80.51% -
15 100 0.00% | 0.00% | 80.51% -
20 50 0.00% | 0.00% | 80.51% -
LSTM
Number of layers | Hidden state size | Epochs | TPR FPR | Accuracy DT
5 50 85.91% | 0.11% | 99.16% 6.14
1 10 50 85.74% | 0.04% | 99.17% 7.00
15 50 85.66% | 0.27% | 99.03% 7.43
20 60 85.79% | 0.36% | 98.98% 6.71
5 50 85.33% | 0.08% | 99.10% 9.43
9 10 50 76.63% | 0.02% | 97.58% 9.43
15 50 86.24% | 0.21% | 99.14% 3.50
20 60 86.24% | 0.03% | 99.26% 4.0
5 50 85.90% | 0.22% | 99.07% 6.71
3 10 70 85.58% | 0.02% | 99.18% 3.71
15 50 86.31% | 0.08% | 99.24% 3.57
20 60 0.00% | 0.00% | 80.51% -

Table 5.6: The results using different GRU and LSTM architectures with 40 training and 10 test
scenarios after the second iteration on Netl. Detection time is given as an average of the number
of time steps it took before the leak was found. "-" indicates that no leak was found.

tested. With flow data, the system managed to detect leaks medium sized using the original 39
scenario training set.

5.6 Evaluation

5.6.1 Netl: First Iteration

After the first iteration of training and testing the leak detection system with different hyper
parameters the results were evaluated and five points of note were discovered and listed. The
bug mentioned in Section 4.1.2 was discovered during the evaluation of the results of this first

CHAPTER 5. EXPERIMENTS & MODEL IMPROVEMENTS 51

Data used | Epochs TPR FPR | Accuracy | DT |
Pressure 110 39.01%, 25.04 267.16
Flow 175 58.66%(87.65%) | 0.76% | 90.68% | 3.56 ‘

Table 5.7: The results from using a GRU based leak detection system with pressure and flow
sensors on the Hanoi WDN. The TPR of only detectable leaks were presented in parenthesis.
Detection time is given as an average of the number of time steps it took before the leak was
found. "-" indicates that no leak was found.

iteration and affected several of the points from Section 5.5.1. Four of these points were worth
evaluating further before implementing and verifying an improvement.

Some of the models stagnated during training, classifying everything as nonleaks. This was
credited to the existence of non leak scenarios in the training set. A scenario with a leak usually
has under 50% of the data points labelled as leaks, causing a imbalance in the data set. Adding
several scenarios without any leakages causes this imbalance to increase remarkably, as each
scenario contribute to 2.5% of the total training data. The non-leak scenarios were therefore
replaced in the training set with leak scenarios in an attempt to reduce the imbalance.

Scenario 135 was the scenario with the smallest leak size of the test leaks and is viewed as a
hard leak to detect. Because of this no special considerations were done to fix this, other then
the previously mentioned replacements of non-leak training scenarios.

The last two points were caused by the same problem, and is credited to the LeakDB bug.
The bug caused the incipient leak to have a "tail" after the peak leak time where normal data
was mislabelled as leaks. This could clearly be seen when inspecting the TPR of each scenario,
were the abrupt leaks had a TPR of 90-100% while the incipient leaks had a TPR of 40-85%. If the
bug was the cause of the low TPR for incipient leaks it greatly increased the belief that the leak
detection system was suitable to identify leaks at the same level of other leak detection methods.

The last thing of note was the generally lower FPR of the LSTM methods. This was also af-
fected by the LeakDB bug, but by reviewing the classifications done by the LSTM and GRU leak
detection systems its clear that the LSTM is more consistent in its change in classification. The
GRUs had a "lagging" tail after a leak where it changed between classifications several times.
The FPR in the LSTM based system were caused by the time it took for the system to change its
classification. The FPR of both the GRUs and LSTMs were assumed to be caused by the system
learning from the incipient leaks that normal data after a leak should be classified as a leak.

Before the next iteration both bugs in LeakDB were fixed and both the training and testing
sets were regenerated. The non leak scenarios in the training set was also replaced with leak
scenarios.

5.6.2 Netl: Second Iteration

From the results in Table 5.6 it was clear that the problem with stagnation was not fixed. Most
of the 3 layer architectures in this iteration and LSTM architectures in the first iteration did not
converge to other optima then classifying everything as non leaks. When reviewing the graphs of
training, testing and average epoch error of the architectures it was clear that the leak detection
system did not have a stable learning curve. An example could be viewed in Figure 5.2 and more
training graphs from the system could be found in Appendix D. Because of this, the amount of

CHAPTER 5. EXPERIMENTS & MODEL IMPROVEMENTS 52

time it took to train the 3 layer architectures and no other indications to other advantages of
using 3 layers, they were not tested on the Hanoi network.

The leak detection system did not detect small leaks, as the leak in scenario 81, and we iden-
tified two possible improvements to fix this. Increasing the number of small leaks in the training
set and add weights to the loss function to increase the loss when a leak was miss classified. Of
these two, the first was viewed as less intrusive. Weighting the loss function could cause a in-
crease in FPR. As the FPR was low compared to the other methods there was still "room" for this,
but the second option did not intuitively have this problem. Weighting the loss function might
also have a positive effect on the stagnation problem as the system would have a higher loss for
miss classifying a leak then miss classifying a non leak.

The previous assumptions that the LeakDB bug caused the TPR of incipient leaks to be low
and the FPR to be high seemed to be correct, as the FPR is generally lower in this iteration and
the average TPR of the incipient leaks are higher, as shown in Table 5.8.

Experiment | Gated RNN | Scenario | Avg TPR Avg TPR
/wo stagnated
2 70.6% 77.0%
GRU 25 46.4% 46.9%
127 85.2% 92.9%
1 2 47.0% 70.6%
LSTM 25 31.5% 47.2%
127 57.4% 86.1%
Total 56.4% 70%
70 56.1% 84.2%
73 61.9% 91.2%
GRU 77 57.2% 85.8%
83 54.7% 82.1%
84 58.3% 87.5%
2 70 87.4% 95.3%
73 91.5% 99.8%
LSTM 77 88.5% 96.5%
83 85.8% 93.6%
84 88.3% 96.3%
Total 73.0% 97.2%

Table 5.8: The average TPR of each incipient leak scenario with and without the leak detection
systems that stagnated.

The results of this iteration, shown in Table 5.6, show little more of notice other than the 2
layer architectures are slightly better the the 1 layer ones and that the GRUs are slightly better
than the LSTMs. Because of this the Hanoi network will only be tested using GRU models with
2 layers. The different hidden state sizes does not seem to have any affect on the results of the
leak detection system either. So it was chosen to be 20 as it had the best results.

It must be noted that the leak detection system has a TPR of 99% and FPR of < 0.5% when

CHAPTER 5. EXPERIMENTS & MODEL IMPROVEMENTS 53

0 4000 500

o 10¢ 000
600 800 1000 1200

AN v»«w_/\ﬁ\d@ﬂ»

60

Figure 5.2: The training, test and average epoch error during training of the GRU with a hidden
state size of 5 and 3 layers in the second iteration. The training and test error graphs shows
the training error per scenario. The Avg epoch error graph averages the the training and testing
errors per epoch.

only considering leaks of size greater than 33 [/s. In effect becoming one of the best methods
for leak detection compared with the methods from Section 3.2. Most other related work also
focuses on abrupt leaks, but from the results in Table 5.8 it is clear that this system was capable
of detecting incipient leaks just as well as the abrupt leaks.

5.6.3 Hanoi

While training the leak detection system on the Hanoi WDN, it was discovered that the system
was unable to detect the small or medium leaks on this WDN. This was confirmed by training
the system several times on single small and medium leak scenario. After this was discovered,
the system was trained using 40 random leak scenarios of a large size so the system could be
trained and tested using the test set in Table 5.4. The results listed in Table 5.7, and the systems
incapability to detect small or medium leaks in the Hanoi network, showed that the system was
not applicable to the network. However, the TPR, FPR and DT of the detected leaks were very
good. The system was also tested using the flow sensors of the network. The system was able
to detect medium and small leaks while using flow sensors and the results shown in Table 5.7
show potential when only medium and larger leaks were counted. This was to be expected,
as it was mentioned in Section 2.2, flow sensors were more prone to react to leaks, and the
leaks have a larger impact on the normalised values, as seen in Figure 5.3. It seemed that the
systems problem with detecting leaks from the pressure data was caused by the diurnal pattern
remaining in the data after the normalisation, as opposed to the flow data. The great change in
flow caused by the leak was more abrupt than the change in pressure.

CHAPTER 5. EXPERIMENTS & MODEL IMPROVEMENTS 54

1.00 4
0.80
@ 0.60 4
E
g
& 0.404
0.20
0.00
T T T T T
1.0+
—— Node_1 —— Node_17
0.8 4 —— Node_2 —— Node_18
—— Node_3 —— MNode_19
0.6 1 —— Node_4 —— Node_20
H —— Node_5 —— Node_21
= o4l — Node 6 —— Node 22
—— Node_7 —— MNode_23
02 —— Node_8 —— Node_24
i —— Node_9 —— Node 25
001 —— Node_10 —— Node_26
: - : : T . —— Node_ 11 —— Node_27
—— Node_12 —— Node 28
1.0 —— Node 13 —— Node 29
—— Node_14 —— Node_30
0.8 4 —— Node_15 —— Node_31
—— Node_16 —— Node_32
_ 064
T
=
3 0.4 +
0.2 4
0.0 4
T T T T T
=3 o o o o
= < = < <
S S S = S
2 4] A a <
=1 & et Il &
=] — o - (=]
e o o o m
o~ o o o o
o = o o =
? 2 e ? 2
~ ~ ~ r~ ~
o = o o =
=1] = o]
&] & &]
Timestamp
70.00 1
60.00
50.00 4
£ 40.00
ﬁ 30.00
£ 30.
20.00 4
10.00
0.00
T T T T T
2000 —— Node_1 —— Node_17
—— Node_2 —— Node_18
1500 1 —— Node 3 —— Node 19
= —— Node_4 —— Node_20
2 10007 —— Node 5 —— Node_21
500 4 —— Node_6 —— Node_22
—— Node_7 —— Node_23
04 —— Node_8 —— Node_24
—— Node_9 —— Node_25
T T T T T —— Node_10 —— Neode_26
—— Node_11 —— Neode_27
1.0 —— Node_12 —— Node_28
—— Node_13 —— Neode_29
0.8 —— HNode 14 —— Node 30
—— Node_15 —— Node_31
5 %87 — Node 16 —— Node_32
E}
3 0.4
0.2
0.04
T T T T T
(=4 (= =4 f=4 [=3
= Q =] =] S
=1 =) S =) =1
2 a] L] <
[=4 ~ (=} m s}
S — o — S
- - o~ o~ m
~ o~ N N o
- - - = =
e @ e < <
~ ~ ~ ~ ~
o = = o =
] = o o =
~ o~ o~ o~ ~
Timestamp

Figure 5.3: The graphs showed an abrupt leaks impact to the normalised and not normalised
flow and pressure reading. The data was normalised using the normalisation described in Sec-
tion 4.2.

Chapter 6: Discussion

6.1 Literature Search

As mentioned in Chapter 3, the initial search resulted in 34 candidate papers for the initial set
for snowballing. Counting each papers references and citations, a maximum of 833 articles were
evaluated during the snowballing process. However, many of these references and citation were
overlapping, so the number is artificially large. The amount of paper reviewed ensured that we
got a broad understanding of the current methods and research within the domain, answer-
ing RQ1, inspiring the leak detection system for RQ2 and finding several relevant papers to use
when answering RQ3. There were few search engines used in the initial literature search which
affected the start set, as the results would be biased towards the publisher’s papers. This should
have been avoided by increasing the number of search engines used in the initial search. The
snowballing process counteracted this as we got papers from a different publisher and we are
confident that the papers presented in Section 3.2 cover the state of the art within leak detection
methods that utilises ML-techniques.

In hindsight, we should have spent a greater effort on a SLR instead of the snowballing pro-
cess. The process took a lot of effort and time that could have been used working on the leak
detection system of RQ2. The papers listed in Figure 3.2 might be found by a better SLR if more
search engines where involved. Since there were few relevant papers that used other NN meth-
ods then MLP a SLR should have also been conducted focusing on finding NN solutions for other
multivariate time series classification problems that might be applicable for leak detection.

6.2 The Leak Detection System

As mentioned in the introduction, more and more sensors have been placed in WDNs, leading
to an abundance of data and the focus of data-driven approaches to leak detection. However,
this data is not published openly, so it can not be used for research. The bugs discovered using
the LeakDB framework and the lack of updates to the project might cause its credibility to be
questioned, but as other papers use the same methodology to model WDNs only the original
implementation could be criticised. If the bugs were discovered earlier in the work, we would
have implemented the method from scratch to simplify it and have it streamlined to our im-
plementation. Though the data is generated, it was generated based on historical data, so we
confident that similar results to those presented in this work can be replicated on real sensor
data. Although with worse scores as generated data usually produced better results, as pointed
out by Chan et al. (2018), because of the more accurate labeling.

55

CHAPTER 6. DISCUSSION 56

The data sets used during training and testing were all from January. Since hydraulic data
follows a yearly trend, it was likely that the leak detection system became biased towards data
of that month. Since the data was generated, we could have trained the system using data from
several different time frames. However, this might introduce problems as the system would have
to handle the seasonal differences in the hydraulic data. This problem was viewed as outside of
the scope of this work, and should not affect the comparability of our results because related
work used data from within a specific period as well.

It was unrealistic to gather as much leak data on a single WDN as was used to train the leak
detection system presented in this work. However, since the data was generated based on his-
toric data, generating this amount can be seen as realistic. It was clear that the system was
dependent on the quality of the simulated WDN, but this was also true for all the model-based
methods, as described in Section 2.2.3. The difference was that the model-based methods re-
quire a simulation for each specific leak size, leak node, and time step. Whereas the leak detec-
tion system presented here only required simulations of leaks for a training set.

It was clear from the final results on Hanoi that the leak detection system presented in this
work did not scale well without any changes to the architecture. This was not a surprise as
the number of inputs almost tripled, 11 in Netl and 32 in Hanoi. When the system was tested
on the Netl with different architectures it was intended that the results of the different hyper
parameters would give us an indication on what hyper parameters would affect the results and
how they would affect them. However, this was not the case as most architectures got similar
results.

When tested on Hanoi, both flow and pressure were tested as input to the network, and it was
discovered that the leak detection system performed better with flow data. This was expected,
but this indicates that the presented system would perform better on a DMA than in a WDN, as
the DMAs use flow sensors at the input and output of the DMA. It also showed that the system
had an advantage over other model-based leak detection methods, as it could use either flow or
pressure measurements, while these were limited to pressure data.

The greatest advantage of this leak detection system was its capability to detect incipient
leaks. Related work usually assumes that a leak was abrupt, and only discover these. This system
shows potential as it has shown that it could detect incipient leaks on the same scale as abrupt
leaks.

6.2.1 Comparison with related works

The results from Section 5.5.2 showed great promise. As mentioned in the section, if compared
with other leak detection methods it was best when ignoring the leaks less than 33 [/s caus-
ing the TPR of the best version of the leak detection system to reach a TPR of 99% and FPR of
< 0.5. Without ignoring the smaller leaks, the system still managed a respectable average TPR
of 86.44%, FPR of 0.2%, accuracy 0of 99.31% and a detection time of 2.71 time steps(45 minutes).
Compared to the results listed in Table 6.1 only the Ensemble CNN-SVM beat the leak detection
system presented here. Depending on how one weighs the TPR compared to FPR, as most of the
methods with higher TPR also had a high FPR, except for Ensemble CNN-SVM. When review-
ing the output of our leak detection system, the false positives only appeared straight after the
leak was over, and the "tail" of false negatives were shorter than 24 hours. In practice, this will,
therefore, be an FPR of 0% as the system operators will know that a leak there have recently been

CHAPTER 6. DISCUSSION 57

Paper Method Data Type TPR FPR
Model-based Historical Data | 79.5% | 20.5%
Chan et al. (2018) Model-based Historical Data | 73.0% 0%
ANN, TDNN Historical Data | 75% 0%
MDN and FIS Historical Data | 100% 15%
Chan etal. (2018) ANN, SPC, BIS Historical Data | 100% | 8%
Modified SPC Historical Data 80% 10%
Nonlinear Kalman Filter | Simulated Data | 87% | 0.01%
. ANN, SPC, BIS Historical Data 76% | 10/8%
Wuand Liu (2017) Ensemble CNN-SVM | Engineered Test | 98.2% | 0.2%
Multiclass SVM Simulated Data | 99.5% -

Table 6.1: Results of other relevant work from Section 3.2 that present the TPR and FPR of the
methods.

fixed and can ignore the leak detection straight after a fix.

Other leak detection methods used a specific threshold to decide when the output of the
methods would be classified as a leak or not. Because of this threshold, it was possible to man-
ually tune the TPR and FPR of the system by increasing/decreasing the threshold causing high-
er/lower TPR and lower/higher/ FPR, depending on the wishes of the operator. This was not
possible in our system as we decided to avoid this rather to have the system learn this, and
therefore not needing to tune this threshold.

Several methods mentioned in Section 3.2 handle the diurnal pattern in hydraulic data by
using several models that are trained on only the data of a given time step during a specific day,
resulting in hundreds of models. The leak detection system used in this work was capable of
handling the diurnal data and detect leakages without the need to retrain parts of the model on
separate time steps of a day or by using several models. As the leak detection system was trained
on data where the leaks were fixed, there were no leak labels before and after the leak; we were
confident that the system would not need any reset or retraining after a leak was fixed.

6.3 Contributions

This work has shown an application of a gated RNNs based system for the multivariate classifi-
cation problem; leak detection in WDNs with promising results.

6.3.1 Future works

This work has only shown that gated RNNs can be used in leak detection using artificial data.
Future works should train a leak detection system on simulated data and test it on real opera-
tional data to see if it is possible to use only artificial data during training, removing the need to
gather data from infrequent leaks that are hard to label.

The leak detection system presented here showed greater results when using flow data in-
stead of pressure data. To take advantage of this, the system should be tested on leak detection

CHAPTER 6. DISCUSSION 58

within DMAs as these are smaller than WDNs and are equipped with flow sensors, exploiting
the systems advantage, while avoiding its disadvantage.

We are confident that the leak detection system could be expanded to use both flow and
pressure input, but this would require some feature engineering to identify how the sensor read-
ings should be fed to the system. Two simple implementations could be either one Gated RNN
that takes both flow and pressure sensor values as input, or two separate Gated RNNs, one for
flow and one for pressure, with a larger linear network after to combine the outputs of the two
Gated RNNs.

Chapter 7: Conclusion

7.1 Current Methods for Leak Detection

A SLR was conducted to answer RQ1 which found that many state of the art leak detection meth-
ods use different types of ML-techniques as SVMs, Kalman filtering and ANNs. Most of the pa-
pers that tested ANNs showed that they did not do well compared to other methods. We hypoth-
esized that this was caused by the simple ANNs used, a MLPs with few layers and hidden nodes.
A comparative study of different ANN approaches showed that ANNs with temporal links are
better than regular ANNs when predicting the flow data of a single flow sensor. This motivated
us to test a temporal network for leak detection.

7.2 AlImproved Leak Detection System

A leak detection system was implemented based on a Gated RNN to answer RQ2, after three
different ML-methods, case-based reasoning (CBR), CNN and RNN, were considered. It was
decided to use the Gated RNNs because of the temporal nature of the sensor data used for leak
detection. This decision was based only on a review of the methods, not any testing, which
might have shown one of the other methods to be better.

The leak detection system was first tested on a simple WDN to test different hyper parame-
ters for the Gated RNNs. The system managed a TPR of 86%, an FPR of > 0.1% and a detection
time of fewer than 2 hours. These are promising results and makes us confident that the system
can be used for leak detection. However, the system struggled with detecting small leaks in the
network, which is a regular problem within the leak detection domain. On the other hand, it had
no problems with detecting incipient leaks, which is something other leak detection methods
usually struggle with. Lastly, it was tested on the Hanoi WDN, which is a popular network within
the literature where it was confirmed that flow measurements give better results than pressure
data.

7.3 Comparing the Leak Detection System
To answer RQ3, the leak detection system was compared to other leak detection methods dis-

covered while answering RQ1 it was found that the systems result on Netl was only overall out-
matched by one other method, an Ensemble CNN-SVM method reviewed in Wu and Liu (2017).

59

Bibliography

Agnar Aamodt and Enric Plaza. Case-based reasoning: Foundational issues, methodological
variations, and system approaches. Al Commun., 7:39-59, 1994.

W. Abbass, Z. Bakraouy, A. Baina, and M. Bellafkih. Classifying iot security risks using deep
learning algorithms. In 2018 6th International Conference on Wireless Networks and Mobile
Communications (WINCOM), pages 1-6, Oct 2018. doi: 10.1109/WINCOM.2018.8629709.

M. B. Abbott. Hydroinformatics: information technology and the aquatic environment. Avebury
Technical, Aldershot, UK, 1991.

Martin Bjerke. Leak Detection System. URL https://github.com/kattn/Master.

Antonio C. Caputo and Pacifico M. Pelagagge. An inverse approach for piping networks monitor-
ing. Journal of Loss Prevention in the Process Industries, 15(6):497 — 505, 2002. ISSN 0950-4230.
doi: https://doi.org/10.1016/S0950-4230(02)00036-0. URL http://www.sciencedirect.
com/science/article/pii/S0950423002000360.

Myrna V. Casillas Ponce, Luis E. Garza Castafion, and Viceng Puig Cayuela. Model-based leak
detection and location in water distribution networks considering an extended-horizon anal-
ysis of pressure sensitivities. Journal of Hydroinformatics, 16(3):649, 2013. doi: 10.2166/hydro.
2013.019. URL http://dx.doi.org/10.2166/hydro.2013.019.

T. K. Chan, C. S. Chin, and X. Zhong. Review of current technologies and proposed intelligent
methodologies for water distributed network leakage detection. IEEE Access, 6:78846-78867,
2018. ISSN 2169-3536. doi: 10.1109/ACCESS.2018.2885444.

Cornell University Library. arxiv, 2018. URLhttps://arxiv.org/.

E. A. Claudia Deniss, G. C. Luis Eduardo, and V. Adriana. Multi-leak detection with wavelet
analysis in water distribution networks. In 2012 20th Mediterranean Conference on Control
Automation (MED), pages 1155-1160, July 2012. doi: 10.1109/MED.2012.6265794.

D. G. Eliades and M. M. Polycarpou. Leakage fault detection in district metered areas of water
distribution systems. Journal of Hydroinformatics, 14(4):992, 2012. doi: 10.2166/hydro.2012.
109. URLhttp://dx.doi.org/10.2166/hydro.2012.109.

EPANET. Epanet | water research. URL https://www.epa.gov/water-research/epanet.

Malcolm Farley. 2001.

60

https://github.com/kattn/Master
http://www.sciencedirect.com/science/article/pii/S0950423002000360
http://www.sciencedirect.com/science/article/pii/S0950423002000360
http://dx.doi.org/10.2166/hydro.2013.019
https://arxiv.org/
http://dx.doi.org/10.2166/hydro.2012.109
https://www.epa.gov/water-research/epanet

BIBLIOGRAPHY 61

Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press, 2016. http:
//www.deeplearningbook. org.

Manuel Herrera, Luis Torgo, Joaquin Izquierdo, and Rafael Pérez-Garcia. Predictive mod-
els for forecasting hourly urban water demand. Journal of Hydrology, 387(1):141 — 150,
2010. ISSN 0022-1694. doi: https://doi.org/10.1016/j.jhydrol.2010.04.005. URL http: //www.
sciencedirect.com/science/article/pii/S0022169410001861.

IEEE. Ieee xplore, 2018. URL https://ieeexplore.ieee.org/Xplore/home. jsp.
IWA Publishing. Journal Of Hydroinformatic.

Rafal Jozefowicz, Wojciech Zaremba, and Ilya Sutskever. An empirical exploration of recurrent
network architectures. In Proceedings of the 32Nd International Conference on International
Conference on Machine Learning - Volume 37, ICML15, pages 2342-2350. JMLR.org, 2015.
URLhttp://dl.acm.org/citation.cfm?id=3045118.3045367.

R K Price and Dimitri Solomatine. A brief guide to hydroinformatics. UNESCO-IHE, 01 2019.

Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. International
Conference on Learning Representations, 12 2014.

K.A. Klise, R. Murray, and T. Haxton. An overview of the water network tool for resilience (wntr).
In Ist International WDSA/CCWI Joint Conference, Kingston, Ontario, Canada, July 2018.

Anders Kofod-Petersen. How to do a structured literature review in computer science, 2018.
URLhttps://research.idi.ntnu.no/aimasters/files/SLR_HowT02018.pdf.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. Imagenet classification with deep con-
volutional neural networks. In Proceedings of the 25th International Conference on Neural
Information Processing Systems - Volume 1, NIPS’12, pages 1097-1105, USA, 2012. Curran As-
sociates Inc. URLhttp://dl.acm.org/citation.cfm?id=2999134.2999257.

Rui Li, Haidong Huang, Kunlun Xin, and Tao Tao. A review of methods for burst/leakage detec-
tion and location in water distribution systems. Water Supply, 15(3):429-441, 12 2014. ISSN
1606-9749. doi: 10.2166/ws.2014.131. URL https://dx.doi.org/10.2166/ws.2014.131.

J. Mashford, D. D. Silva, D. Marney, and S. Burn. An approach to leak detection in pipe net-
works using analysis of monitored pressure values by support vector machine. In 2009 Third
International Conference on Network and System Security, pages 534-539, Oct 2009. doi:
10.1109/NSS.2009.38.

Piotr Migdal and Rafal Jakubanis. Keras or pytorch as your first deep learning framework, 2018.
URLhttps://deepsense.ai/keras-or-pytorch/.

S. R. Mounce, R. B. Mounce, T. Jackson, J. Austin, and J. B. Boxall. Pattern matching and associa-
tive artificial neural networks for water distribution system time series data analysis. Journal
of Hydroinformatics, 16(3):617-632, 10 2013. ISSN 1464-7141. doi: 10.2166/hydro.2013.057.
URLhttps://dx.doi.org/10.2166/hydro.2013.057.

http://www.deeplearningbook.org
http://www.deeplearningbook.org
http://www.sciencedirect.com/science/article/pii/S0022169410001861
http://www.sciencedirect.com/science/article/pii/S0022169410001861
https://ieeexplore.ieee.org/Xplore/home.jsp
http://dl.acm.org/citation.cfm?id=3045118.3045367
https://research.idi.ntnu.no/aimasters/files/SLR_HowTo2018.pdf
http://dl.acm.org/citation.cfm?id=2999134.2999257
https://dx.doi.org/10.2166/ws.2014.131
https://deepsense.ai/keras-or-pytorch/
https://dx.doi.org/10.2166/hydro.2013.057

BIBLIOGRAPHY 62

S.R. Mounce. A comparative study of artificial neural network architectures for time series pre-
diction of water distribution system flow data. In AISB2013 Symposium: Machine Learning in
Water Systems, pages 5—12,2013. URLhttp://eprints.whiterose.ac.uk/83574/.

S.R. Mounce, C. Pedraza, T. Jackson, P. Linford, and J.B. Boxall. Cloud based machine learning
approaches for leakage assessment and management in smart water networks. Procedia En-
gineering, 119:43 — 52, 2015. ISSN 1877-7058. doi: https://doi.org/10.1016/j.proeng.2015.08.
851. URLhttp://www.sciencedirect.com/science/article/pii/S1877705815025217.
Computing and Control for the Water Industry (CCWI2015) Sharing the best practice in water
management.

Stephen R. Mounce, Richard B. Mounce, and Joby B. Boxall. Novelty detection for time series
data analysis in water distribution systems using support vector machines. Journal of Hy-
droinformatics, 13(4):672-686, 11 2010. ISSN 1464-7141. doi: 10.2166/hydro.2010.144. URL
https://dx.doi.org/10.2166/hydro.2010.144.

Ken Peffers, Tuure Tuunanen, Charles Gengler, Matti Rossi, Wendy Hui, Ville Virtanen, and Jo-
hanna Bragge. The design science research process: A model for producing and presenting
information systems research. Proceedings of First International Conference on Design Science
Research in Information Systems and Technology DESRIST, 02 2006.

R. Puust, Z. Kapelan, D. A. Savic, and T. Koppel. A review of methods for leakage management
in pipe networks. Urban Water Journal, 7(1):25-45, 2010. doi: 10.1080/15730621003610878.
URLhttps://doi.org/10.1080/15730621003610878.

PyTorch Community. Pytorch | deep learning framework, a. URL https://pytorch.org/.

PyTorch Community. Lstm | pytorch documentation, b. URL https://pytorch.org/docs/
stable/nn.html#gru.

PyTorch Community. Lstm | pytorch documentation, c. URL https://pytorch.org/docs/
stable/nn.html#lstm.

R. Sarrate, J. Blesa, E Nejjari, and J. Quevedo. Sensor placement for leak detection and location
in water distribution networks. Water Supply, 14(5):795-803, 04 2014. ISSN 1606-9749. doi:
10.2166/ws.2014.037. URLhttps://doi.org/10.2166/ws.2014.037.

Barry Smyth and Mark T. Keane. Remembering to forget: A competence-preserving case dele-
tion policy for case-based reasoning systems. In Proceedings of the 14th International Joint
Conference on Artificial Intelligence - Volume 1, JCAI'95, pages 377-382, San Francisco, CA,
USA, 1995. Morgan Kaufmann Publishers Inc. ISBN 1-55860-363-8, 978-1-558-60363-9. URL
http://dl.acm.org/citation.cfm?id=1625855.1625905.

A. Soldevila, R. M. Fernandez-Canti, J. Blesa, S. Tornil-Sin, and V. Puig. Leak localization in wa-
ter distribution networks using model-based bayesian reasoning. In 2016 European Control
Conference (ECC), pages 1758-1763, June 2016a. doi: 10.1109/ECC.2016.7810545.

http://eprints.whiterose.ac.uk/83574/
http://www.sciencedirect.com/science/article/pii/S1877705815025217
https://dx.doi.org/10.2166/hydro.2010.144
https://doi.org/10.1080/15730621003610878
https://pytorch.org/
https://pytorch.org/docs/stable/nn.html#gru
https://pytorch.org/docs/stable/nn.html#gru
https://pytorch.org/docs/stable/nn.html#lstm
https://pytorch.org/docs/stable/nn.html#lstm
https://doi.org/10.2166/ws.2014.037
http://dl.acm.org/citation.cfm?id=1625855.1625905

BIBLIOGRAPHY 63

Adria Soldevila, Joaquim Blesa, Sebastian Tornil-Sin, Eric Duviella, Rosa M. Fernandez-Canti,
and Viceng Puig. Leak localization in water distribution networks using a mixed model-
based/data-driven approach. Control Engineering Practice, 55:162 — 173, 2016b. ISSN
0967-0661. doi: https://doi.org/10.1016/j.conengprac.2016.07.006. URL http://www.
sciencedirect.com/science/article/pii/S0967066116301526.

Armin Stahl. Learning similarity measures: A formal view based on a generalized cbr model.
In Héctor Munioz-Avila and Francesco Ricci, editors, Case-Based Reasoning Research and De-
velopment, pages 507-521, Berlin, Heidelberg, 2005. Springer Berlin Heidelberg. ISBN 978-3-
540-31855-2.

Statistisk Sentralbyra. Vannforsyning og beredskap. kommunalt drikkevann., 2017. URLhttps:
//www.ssb.no/statbank/table/11787/.

Jilong Sun, Ronghe Wang, and Huan-Feng Duan. Multiple-fault detection in water pipelines
using transient-based time-frequency analysis. Journal of Hydroinformatics, 18(6):975, 2016.
doi: 10.2166/hydro.2016.232. URLhttp://dx.doi.org/10.2166/hydro.2016.232.

A. Sanchez-Fernandez, M. J. Fuente, and G. 1. Sainz-Palmero. Fault detection with distributed
pca methods in water distribution networks. In 2015 23rd Mediterranean Conference on Con-
trol and Automation (MED), pages 156-161, June 2015. doi: 10.1109/MED.2015.7158744.

United Nations. The sustainable development agenda, a. URL https://www.un.org/
sustainabledevelopment/development-agenda/.

United Nations. Goal 6: Ensure access to water and sanitation for all, b. URLhttps://www.un.
org/sustainabledevelopment/water-and-sanitation/.

Zoran Vojinovic and Michael B. Abbott. Twenty-five years of hydroinformatics. Water, 9(1), 2017.
ISSN 2073-4441. doi: 10.3390/w9010059. URL http://www.mdpi.com/2073-4441/9/1/59.

Stelios G. Vrachimis, Marios S. Kyriakou, Demetrios G. Eliades, and Marios M. Polycarpou.
LeakDB : A benchmark dataset for leakage diagnosis in water distribution networks. Zen-
odo, July 2018. doi: 10.5281/zenodo.1313116. URL https://doi.org/10.5281/zenodo.
1313116.

D. Vries, B. van den Akker, E. Vonk, W. de Jong, and J. van Summeren. Application of ma-
chine learning techniques to predict anomalies in water supply networks. Water Science
and Technology: Water Supply, 16(6):1528, 2016. doi: 10.2166/ws.2016.062. URL http:
//dx.doi.org/10.2166/ws.2016.062.

Claes Wohlin. Guidelines for snowballing in systematic literature studies and a replication in
software engineering. In Proceedings of the 18th International Conference on Evaluation and
Assessment in Software Engineering, EASE '14, pages 38:1-38:10, New York, NY, USA, 2014.
ACM. ISBN 978-1-4503-2476-2. doi: 10.1145/2601248.2601268. URL http://doi.acm.org/
10.1145/2601248.2601268.

http://www.sciencedirect.com/science/article/pii/S0967066116301526
http://www.sciencedirect.com/science/article/pii/S0967066116301526
https://www.ssb.no/statbank/table/11787/
https://www.ssb.no/statbank/table/11787/
http://dx.doi.org/10.2166/hydro.2016.232
https://www.un.org/sustainabledevelopment/development-agenda/
https://www.un.org/sustainabledevelopment/development-agenda/
https://www.un.org/sustainabledevelopment/water-and-sanitation/
https://www.un.org/sustainabledevelopment/water-and-sanitation/
http://www.mdpi.com/2073-4441/9/1/59
https://doi.org/10.5281/zenodo.1313116
https://doi.org/10.5281/zenodo.1313116
http://dx.doi.org/10.2166/ws.2016.062
http://dx.doi.org/10.2166/ws.2016.062
http://doi.acm.org/10.1145/2601248.2601268
http://doi.acm.org/10.1145/2601248.2601268

BIBLIOGRAPHY 64

Yipeng Wu and Shuming Liu. A review of data-driven approaches for burst detection in water
distribution systems. Urban Water Journal, 14(9):972-983, 2017. doi: 10.1080/1573062X.2017.
1279191. URL https://doi.org/10.1080/1573062X.2017.1279191.

Yipeng Wu, Shuming Liu, Kate Smith, and Xiaoting Wang. Using correlation between data from
multiple monitoring sensors to detect bursts in water distribution systems. Journal of Wa-
ter Resources Planning and Management, 144(2):04017084, 2018. doi: 10.1061/(ASCE)WR.
1943-5452.0000870. URL https://ascelibrary.org/doi/abs/10.1061/%28ASCE,29WR.
1943-5452.0000870.

Guoliang Ye and Richard Andrew Fenner. Kalman filtering of hydraulic measurements for burst
detection in water distribution systems. Journal of Pipeline Systems Engineering and Practice,
2(1):14-22, 2011. doi: 10.1061/(ASCE)PS.1949-1204.0000070. URL https://ascelibrary.
org/doi/abs/10.1061/%28ASCE,29PS.1949-1204.0000070.

Hans-Georg Zimmermann, Christoph Tietz, and Ralph Grothmann. Forecasting with Recurrent
Neural Networks: 12 Tricks, pages 687-707. Springer Berlin Heidelberg, Berlin, Heidelberg,
2012. ISBN 978-3-642-35289-8. doi: 10.1007/978-3-642-35289-8_37. URL https://doi.
org/10.1007/978-3-642-35289-8_37.

https://doi.org/10.1080/1573062X.2017.1279191
https://ascelibrary.org/doi/abs/10.1061/%28ASCE%29WR.1943-5452.0000870
https://ascelibrary.org/doi/abs/10.1061/%28ASCE%29WR.1943-5452.0000870
https://ascelibrary.org/doi/abs/10.1061/%28ASCE%29PS.1949-1204.0000070
https://ascelibrary.org/doi/abs/10.1061/%28ASCE%29PS.1949-1204.0000070
https://doi.org/10.1007/978-3-642-35289-8_37
https://doi.org/10.1007/978-3-642-35289-8_37

Appendix A: Model implementations

The two models implemented can be seen on the next two pages. For a textual description,
including hyper parameters and the reasoning for them, see section 4.3.

65

)

APPENDIXA. MODEL IMPLEMENTATIONS

A.1 GRU model

import torch
import torch.nn as nn

3 import torch.optim as optim

5

Set seed for reproducability for my code, will not transfer to

; # other platforms

torch . manual_seed (1)

Input size is set to the number of pressure sensors in the wdn
The hidden size is tested with 5, 10, 15 and 20

Number of layers was tested with 1, 2, 3

inputSize = #numbSensors

; hiddenSize = 20

numLayers = 2

; class GRU(nn.Module):

Ir = 0.003

lossFunction = nn.BCELoss ()
optimizer = optim.Adam
output = nn.Sigmoid ()

def __init__ (self):

super (GRU, self).__init__ ()

self .hidden = self.init_hidden ()

self.gru = nn.GRU(
input_size=inputSize, hidden_size=hiddenSize,
num_layers=numlLayers)

self.decoder = nn.Linear (
hiddenSize, 1)

def init_hidden (self, hidden=None):
if hidden is not None:
self.hidden = hidden
else:
self .hidden = (
torch.randn (numLayers, 1, hiddenSize))

return self.hidden

def forward (self, inp):
output, self.hidden = self.gru(inp, self.hidden.detach ())
output = self.decoder (output)
output = self.output(output)
return output

66

)

APPENDIXA. MODEL IMPLEMENTATIONS

A.2 LSTM model

import torch
import torch.nn as nn

3 import torch.optim as optim

Set seed for reproducability for my code, will not transfer to

; # other platforms

torch . manual_seed (1)

Input size is set to the number of pressure sensors in the wdn
The hidden size is tested with 5, 10, 15 and 20

Number of layers was tested with 1, 2, 3

inputSize = #numbSensors

; hiddenSize = 20

numLayers = 2

; class LSTM(nn.Module):

Ir = 0.003

lossFunction = nn.BCELoss ()
optimizer = optim.Adam
output = nn.Sigmoid ()

def __init__ (self):

super (LSTM, self).__init__ ()

self.hidden = self.init_hidden ()

self.Istm = nn.LSTM(
input_size=inputSize, hidden_size=hiddenSize,
num_layers=numLayers)

self.decoder = nn.Linear (
hiddenSize, 1)

def init_hidden (self, hidden=None):
if hidden is not None:
self .hidden = hidden
else:
self.hidden = (
torch.randn (numLayers, 1, hiddenSize),
torch.randn (numLayers, 1, hiddenSize))

return self.hidden

def forward (self, inp):
output, self.hidden = self.lstm(
inp, (
self.hidden[0].detach (),
self.hidden[1].detach()))

output = self.decoder (output)
output = self.output(output)
return output

67

Appendix B: INP file

A WDN can be represented as a . INP file. It describes placements of junctions, pipes, tanks,
reservoirs and other parameters of a WDN. Below is the . INP file of the Netl network used in
this thesis. For clarity some of the white space has been trimmed.

1 [TITLE]

> EPANET Example Network 1

s A simple example of modeling chlorine decay. Both bulk and
+ wall reactions are included.

s [JUNCTIONS]

7 ;1D Elev Demand Pattern

s 10 710 0 ;

9 11 710 150 ;
w12 700 150 ;
13 695 100 ;

2 21 700 150 g

13 22 695 200 ;

23 690 150 ;

15 31 700 100 >
16 32 710 100 ;

17

15 [RESERVOIRS]

19 ;ID Head Pattern
20 9 800 ’
21

» [TANKS]
23 ;1D Elevation InitLevel MinLevel MaxLevel Diameter MinVol VolCurve
u 2 850 120 100 150 50.5 0 5
26 [PIPES]
27 ;ID Nodel Node2 Length Diameter Roughness MinorLoss Status
25 10 10 11 10530 18 100 0 Open 5
29 11 11 12 5280 14 100 0 Open 5
30 12 12 13 5280 10 100 0 Open ;
a1 21 21 22 5280 10 100 0 Open ;
32 22 22 23 5280 12 100 0 Open ;
33 31 31 32 5280 6 100 0 Open 5
30 110 2 12 200 18 100 0 Open 5
35 111 11 21 5280 10 100 0 Open 8
36 112 12 22 5280 12 100 0 Open ;
37 113 13 23 5280 8 100 0 Open ;
33 121 21 31 5280 8 100 0 Open 5
39 122 22 32 5280 6 100 0 Open 5

68

APPENDIX B. INP FILE

5 [VALVES]
; 51D

Nodel

s [TAGS]

[DEMANDS]
;Junction

53 [STATUS]

;ID

; [PATTERNS]

;ID

» ;Demand Pattern

1
1

[CURVES]

53 ;ID

1.0 1.2
1.0 0.8

Nodel Node2

Node2 Diameter

Type

Demand Pattern Category

Status/Setting

Multipliers

1.4
0.6

1.6
0.4

X—Value Y-Value

;PUMP: Pump Curve for Pump 9

1

[CONTROLS]

1500 250

LINK 9 OPEN IF NODE 2 BELOW 110
LINK 9 CLOSED IF NODE 2 ABOVE 140

[RULES]

[ENERGY]

Global Efficiency

Global Price
Demand Charge

[EMITTERS]
;Junction

. [QUALITY]
M Node

10
11
12
13
21
22
23
31
32
9

75
0.0
0.0

Coefficient

InitQual
.5

- O O O OO O O o o
[« B4, BN, NS, INS) IS, BNS) NS INE)

Parameters
HEAD 1 ;

Setting

1.4
0.6

MinorLoss

1.2
0.8

69

APPENDIX B. INP FILE

2 1.0

; [SOURCES]

7 ;Node Type Quality
[REACTIONS]
; Type Pipe/Tank Coefficient

; [REACTIONS]
Order Bulk 1
Order Tank 1
Order Wall 1
Global Bulk -.5
Global Wall -1
Limiting Potential 0.0
Roughness Correlation 0.0

> [MIXING]

; ; Tank Model

5 [TIMES]
Duration 24:00
Hydraulic Timestep 1:00
Quality Timestep 0:05
Pattern Timestep 2:00
Pattern Start 0:00
Report Timestep 1:00
Report Start 0:00
Start ClockTime 12 am
Statistic None
[REPORT]
Status Yes
Summary No
Page 0
[OPTIONS]
Units GPM
Headloss HW
Specific Gravity 1.0
Viscosity 1.0
Trials 40
Accuracy 0.001
CHECKFREQ 2
MAXCHECK 10
DAMPLIMIT 0
Unbalanced Continue 10
Pattern 1
Demand Multiplier 1.0
Emitter Exponent 0.5
Quality Chlorine mg/L
Diffusivity 1.0
Tolerance 0.01

Pattern

70

APPENDIX B. INP FILE

148
119 [COORDINATES]
150 ;Node

5110

152 11

153 12

154 13

155 21

156 22

157 23

158 31

159 32

160 9

161 2

163 [VERTICES]
164 3 Link

166 [LABELS]
167 ;X—Coord
168 6.99

69 13.48

170 43.85

172 [BACKDROP]
173 DIMENSIONS
172 UNITS

175 FILE

176 OFFSET

176 [END]

X—Coord
20.00
30.00
50.00
70.00
30.00
50.00
70.00
30.00
50.00
10.00
50.00

X—Coord

Y—Coord
73.63
68.13
91.21

7.00
None

0.00

Y—Coord
70.00
70.00
70.00
70.00
40.00
40.00
40.00
10.00
10.00
70.00
90.00

Y-Coord

Label & Anchor Node

"

"Source'
HPumpll
n Tank"

6.00

0.00

73.00

94.00

71

Appendix C: Generated Data Files

Example of a . csv file containing simulated pressure values from a node in the Hanoi WDN.

Timestamp, Value

2017-01-01

3 2017-01-01

IS

2017-01-01

5 2017-01-01

; 2017-01-01

2017-01-01

s 2017-01-01

2017-01-01
2017-01-01
2017-01-01
2017-01-01

3 2017-01-01

2017-01-01

5 2017-01-01
; 2017-01-01
7 2017-01-01
s 2017-01-01

2017-01-01
2017-01-01
2017-01-01
2017-01-01

; 2017-01-01

2017-01-01

5 2017-01-01
; 2017-01-01

2017-01-01

s 2017-01-01

2017-01-01
2017-01-01
2017-01-01

00:
00:
00:
00:
01:
01:
01:
01:
02:
02:
02:
02:
03:
03:
03:
03:
04:
04:
04:
04:
05:
05:
05:
05:
06:
06:
06:
06:
07:
07:

00:
15:
30:
45:
00:
15:
30:
45:
00:
15:
30:
45:
00:
15:
30:
45:
00:
15:
30:
45:
00:
15:
30:
45:
00:
15:
30:
45:
00:
15:

00,69
00,69
00,69
00,69
00,69
00,69
00,69
00,69
00,69

00,69.

.897
913
.932
.946
.949
.956
.954
.948
.939
924

00,69.9

00,69
00,69
00,69

00,69.

00,69
00,69

00,69.

.874
.837
.801
76

.726
.677
645

00,69.6

00,69
00,69
00,69
00,69

00,69.

00,69

00,69.

00,69
00,69

00,69.

00,69

.573
.57

577
.59

604
.635
673
.695
712
749
.764

72

Appendix D: Training and Testing Graphs

During training and testing each graph was stored to be used when reviewing the models, these
are some of the graphs. Does it converge quickly, slowly, or not at all are some of the ways they
were reviewed. The training and test error graphs shows the training error per scenario. The Avg
epoch error graph averages the the training and testing errors per epoch.

D.1 First Iteration

D.1.1 GRU

Figure D.1: GRU hs5 nL1

Figure D.2: GRU hs5 nL3

73

APPENDIX D. TRAINING AND TESTING GRAPHS

5075
2 050
£ o b
e 1y 230 S50 o 1000 250 1500 750 2000
4
2 0a
i
02
o
H — tvining Epoch cror
% 0s — est Epoch Error
H
3 o %) %
5 075
o 0.50
g
£ f
5 025
£
0.00
0 500 1000 1500 2000
0.75
s
5 050
K
£ 025
o 100 200 300 400 500 6500
5 —— Training Epoch Error
5 o4 —— Test Epoch Error
-
£
3
2
Q02
ES
2
H
[) 10 20 30 40 50
Figure D.4: GRU hs10 nL3
£ o
2050
§ 02
H
1y o o0) 1000 250 1500 o) o0
06
g
S 0s
i
02
o 13 150 50) P)
£ — Traiming Epoch Error
2 —— Test Epoch Error
3 o % F3 3 E3
10
3
205
£
Iy s 1000 "
™
Eoz
R 5 150 2% 5o %0 750
fos e —
H —— Test Epoch Ertor
202
2

Figure D.6:

GRU hs15nL3

74

APPENDIX D. TRAINING AND TESTING GRAPHS

Training Error

8

o 250 500 750 1000 1250

1500

1750

Test Error

2000

400

Avg epoch error

500

—— Training Epoch Error
—— Test Epoch Error

Figure D.7: GRU hs20 nL.2

Training Error

o 500 1000 1500 2000

2500

3500

Test Error

Avg epoch error

— Training Epoch Error
—— Test Epoch Error

Figure D.8: GRU hs20 nL3

D.1.2 LSTM

8

Training Error

o 500 1000 1500

38

2000

8

Test Error

250,

500

600

£

°

Avg epoch error

—— Training Epoch Error
—— Test Epoch Error

Figure D.9: LSTM hs5 nL1

75

APPENDIX D. TRAINING AND TESTING GRAPHS

10
£
2os
g

00

: 550 1ooo 1500 oo %

5 0s
§o2
£
R 5 ey 250 50 P 50 oo 70
£ — Traiing epoch Error
H " Test Epoch Eror
T2
g e —

Training Error

Test Error

Avg epoch error

Figure D.10: LSTM hs5 nL.2

o o 500 730 1000 1250 1500 1250 000

—— Training Epoch Error
— Test poch Error

TestEror Training Error

Avg epoch error

Training Error
&

ﬁmﬂ
s 8 8

Avg epoch error

o 10 20 E 40 50

Figure D.11: LSTM hs5 nL3

o 500 1000 1500 2000 2500

o 100 200 300 400 500 600 700

— Training Epoch Error
—— Test Epoch Error

1 0 500 0 1000 1250 1500 1750 000

— Training Epoch Error
—— Test Epach Error

o 10 20 30 a0 50

Figure D.13: LSTM hs10 nL3

76

APPENDIX D. TRAINING AND TESTING GRAPHS 77

:
s
" oo
504
g o2
i
g, —— Training Epoch Error
5 ~—— Test Epoch Error
502
z
; 5 % 5 s B @ %
.
Figure D.14: LSTM hs15 nL1
L 075
E
“ 0.50
d
s
£ 025
£
£ 050
2 025
g
S04
2.5 —— Training Epoch Error
g —— Test Epoch Error
£

o 10 20 30 a0 50

Figure D.15: LSTM hs15 nL3

: 0 rony 1500 Goo 20

o

g

& 050

Eox

. 3 T 260 %o a0 60 oo 00

£ o — Training Epoch Error
§ —— Test Epoch Error
802

H

b 1 B %))) ™
S om
5 o0s0
<oz
= 000
3 P From Frem 520 a

g os

§o2

R 3 T ™ % P 5 o60

g, — Traiing Epoch Eror
s . —— Test Epoch Error.
%oz

g

Figure D.17: LSTM hs20 nL.2

APPENDIX D. TRAINING AND TESTING GRAPHS

D.2 Second Iteration

D.2.1 GRU

1000 1500 2000

2501

1y)
5 os
g
- Afiina
150 5o

b,

300 400 00

600

— Training Epoch Error
—— Test Epoch Error

o) 20 30 40 50

000
R 3 i i oo si0 P R

8o

8oz — Taiing epoch Eror
g "~ restEpoch Eror

H

120

Figure D.20: GRU hs10 nL2

Figure D.21: GRU hs10 nL3

78

APPENDIX D. TRAINING AND TESTING GRAPHS

& 05
F 00
e
oo
o3 — Training Epoch Errr
§o2 po
Toa ~ ———
H S
g
o0
i MMWWWWWWMW%WWMMMMW
-
Eoa — Training Epoch Eror
2oz
z
o0
0
[— Training Epoch Error
5 ~—— Test Epoch Error
G0z
2

o 10 20 30 40 EY

Figure D.24: GRU hs20 nL3

D.2.2 LSTM

oo [} 250 500 750 1000 1250 1500 1750 2000

503

5oz

ot AAnA AN A AAAANANAANAMNANAAAAA NN AN NN AAN AN A AN
13 150 250 %0 %0 0

Figure D.25: LSTM hs5 nL1

79

APPENDIX D. TRAINING AND TESTING GRAPHS

80

H
205
" oo

) 250 00 0 1000 1250 1500 1750 2000
5 04
g 02
k4
N 3 160 %0 %0 460 350
£ s — Training Epoch ror
g — —— Test Epoch Error
[f
g —

3 0 2 E) W E)
d
i o5

llll lllllllllll

F oo

3 0 G0 o 1000 1250 1300 1750 oo

04

g MM\WMMWWMWW

1 100

400

500

fos — Traing poch Erar
g —— Test Epoch Error

8 02

201 ~— ——

3 o % » I3 %
g
i os
F o0
2 50 1000 1500 oo 20
s os
£
502
£
s 3 o 250 0o <o 5o %0 2
go o cpoc Eror
5 S —— Test Epoch Error
g0z -
E
B o % B 3 % B3 %
10
205 \| r N'H M " h
" o0
1y o o0 o oo 250 1500) o0
504
ge Mm%
R 13 2o 5o 50 250 50
gos — Training Epoch Error
: [gl
o2 o —
g — — —
% o B3 » 3 E)

Figure D.29: LSTM hs15 nL1

APPENDIX D. TRAINING AND TESTING GRAPHS

Figure D.30: LSTM hs15 nL.2

o 500 1000 150 000 o
o 100 200 300 00 500 600

— Training Epoch Error
—— Test Epoch Error

o) 20 0 a0 50 60

o 500 1000 1500 2000 2500

1 10 00 00 400 0 600

— Training Epoch Error
—— Test Epoch Error

Figure D.32: LSTM hs20 nL.2

81

