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i

Abstract

Football betting has increased in popularity over the past years. Several studies have attempted
to predict the outcome of matches, both for fun and in an attempt to gain profit by using the
predictions for betting. Most previous works have tried to predict the outcome of a match, prior
to its start. This project will, on the other hand, focus on making predictions in an ongoing
match.

In this project, neural networks are used in order to predict the next goal-scoring team in a
live football match. Different set of features are used to detect which have the best predictive
capabilities. These predictions are combined with several betting strategies, to decide if a bet
should be placed or not, and how much to potentially bet, in an effort to generate a profit.

Through the project, we have achieved results that show it is possible to achieve high accuracy
when predicting the next goal-scoring team in a football match. Further, the results show that
using these predictions in order to beat the bookmakers can be achievable.
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Sammendrag

Fotballbetting har i senere tid økt i popularitet. Det har vært utført mange studier som har
prøvd å predikere utfallet av fotballkamper, b̊ade for moro skyld og for å prøve å profitere ved
å bruke prediksjonene i bettingsammenheng. Mye av det tidligere arbeidet som er utført, har
forsøkt å predikere utfall av en kamp, før kampstart. I motsetning til tidligere arbeid, skal dette
prosjektet fokusere p̊a å prøve å predikere i kamper mens de spilles.

I dette prosjektet skal vi bruke nevrale nett for å predikere neste lag som scorer i en kamp,
mens den spilles. Forskjellig data er blir brukt sammen med det nevrale nettet, for å prøve å
finne ut hvilke som har de beste prediktive egenskapene. Prediksjonene er videre brukt sammen
med spillstrategier, for å bestemme hvor mye som eventuelt skal settes p̊a et spill, i et forsøk p̊a
å f̊a en positiv gevinst.

Resultatene fra prosjektet viser at det er mulig å predikere neste lag som scorer i en kamp, med
høy nøyaktighet. Resultatene viser ogs̊a at det er mulig å profitere ved bruk disse prediksjonene
i bettingsammenheng.
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Chapter 1

Introduction

This initial chapter introduces the motivation for this work, the research questions, and the
overall goal. Further, the structure of the thesis is presented.

1.1 Background and Motivation

Football is considered being one of the world’s most popular sports, and a huge amount of money
is involved in the game. This makes the betting market for football huge. In fact, football tops
the list over the most betted on sports worldwide [van Lier, 2018].

This project is a continuation of our own specialization project [Haug̊ard and Vu, 2018]. In
that project, we looked at the state of the art in the field of predicting the outcome of football
matches, and further, in some cases, applying these predictions in football betting. Most of these
studies were about predicting the winner of a match, prior to its start.

The studies we researched in Haug̊ard and Vu [2018] concerning live predictions did not apply
their predictions for betting. Live predictions will be the focus in the project, where predictions
are made while the match plays out, and further applying these predictions for betting. More
specifically, the focus is on the betting market of predicting the next goal-scoring team. This
means that at any given time in the match, it should be possible to make a prediction about
which team is going to score the next goal, if any, and applying the prediction in betting.

1.2 Goal and Research Questions

The overall goal we try to achieve with this work is:

Goal Use machine learning to predict the next goal-scoring team in a football match, in order
to get an edge on bookmakers.

To help us achieve this goal, the two following research questions are defined:

Research question 1 What features are important when using machine learning to predict the
next goal-scoring team?

There are several potential features available that could be used in football predictions. We
would like to find the ones that have the best predictive capabilities.

Research question 2 How can the predictions be used to gain profit when betting?

1



2 CHAPTER 1. INTRODUCTION

There are different money-management strategies when it comes to betting (these are de-
scribed in Section 3.3). Even if the predictions are good, it is important to have a good betting
system, in order to not go bankrupt after a couple of bets.

1.3 Thesis Structure

This project is divided into the following chapters:

Chapter 2: Background introduces the main theoretical aspects of this project. This chapter
also looks at previous work done in the field of predicting ongoing football matches.

Chapter 3: Data and Model presents the model for predicting the next goal-scoring team,
and the data used as input. In addition, the betting strategies used are presented.

Chapter 4: Experiments and Results describes how the experiments are set up, and presents
the results from these experiments.

Chapter 5: Discussion looks further into the results from the previous chapter, analyses and
discusses these.

Chapter 6: Conclusion and Future Work concludes the project, with regards to the re-
search questions. Further, suggestions for future work are presented.



Chapter 2

Background

The following chapter presents a brief theoretic introduction to neural networks and money
management in betting. Further, previous work in the field is presented.

2.1 Theory

This first section is a theoretic section that describes neural networks and money management.
Some of the sections about the neural networks are also found in our specialization project
[Haug̊ard and Vu, 2018].

2.1.1 Neural Networks

Neural networks, also called artificial neural networks, are computer systems inspired by the use
of neurons in the human brain. Each neuron produces an output when a linear combination of
its inputs exceeds a threshold, which can be of a soft threshold or a hard threshold. A collection
of several neurons that are connected together is called a neural network. The properties of the
neurons and the topology makes the property of the network. The mathematical representation
of the neuron can be seen in Figure 2.1. The neurons are called units or nodes in the networks
and are connected via links between each other. A link from node i to node j serves as a way

Figure 2.1: A mathematical representation of a neuron. The neurons output activation aj =
g(
∑n

i=0 wi,j ai), where ai is the output activation of unit i and wi,j is the weight on the link
from unit i to this limit. [Russell and Norvig, 2016]

3



4 CHAPTER 2. BACKGROUND

to propagate the activation ai from i to j. Every link has a numeric weight wi,j to it, which
determines the power and sign of the connection [Russell and Norvig, 2016].

To produce an output from the network, each unit j has to compute the weighted sum of its
inputs:

inj =

n∑
i=0

wi,jai

And then use an activation function g to derive the output, where the activation function g
is typically a hard threshold function or a soft threshold function, creating a perceptron or a
sigmoid perceptron:

aJ = g(inj) = g(

n∑
i=0

wi,jai)

Layers is a central concept in neural networks, which forces each node to receive its inputs
from other nodes in the preceding layer. A single-layer network will have its nodes connected
directly from the input to the output, while a multilayer network will have one or more hidden
layers that are connected to each other rather than directly to the output. Figure 2.2 illustrates
a neural network with a single hidden layer.

Figure 2.2: A neural network with two inputs, one hidden layer of two units, and one output
unit. Wi,j represents the associated weights from node i to j. [Russell and Norvig, 2016]

In order for the network to be able to learn from the predictions, a loss function is needed to
asses how good the predictions are. There are different loss functions that calculate the model
error, and cross-entropy is one of these. The cross-entropy is common to use with a classification
model. Given two correct predictions, with a difference in their probabilities, the one with the
higher probability will be considered more correct [Shibuya, 2018].

Optimizers are used to reduce the error. Adam is a popular optimizer, that calculates indi-
vidual adaptive learning rates for each parameter. The Adam optimizer combines advantages
from other optimizers, such as AdaGrad’s ability to deal with sparse data and RMSProp’s ability
to deal with non-stationary problems. Adam is popular as it often achieves good results fast.
[Brownlee, 2017].

After choosing the mathematical model for the neurons, a way of connecting them is required.
Two different ways to connect the neurons are with a feedforward neural network, and with a
recurrent neural network.
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Feedforward neural networks

A feedforward network has only connections one direction, meaning that it creates an acyclic
graph. Every node gets its input from an upstream node(s) and produces output to a downstream
node(s). It has no internal state and no connections forming any cycles in the network. The
feedforward network itself represents a function of its current input because of its lack of internal
states [Russell and Norvig, 2016]. Figure 2.2 shows a simple feedforward network.

Recurrent neural networks

An RNN uses the output from a node and feeds it into its own input, thus creating a cycle. This
creates the possibility for the activation levels of the network to create a dynamic system that
might reach a stable state or chaotic state. Since these types of networks have nodes where the
output may be dependent on previous inputs, we can say that RNN supports short-term memory
[Russell and Norvig, 2016]. In other words, the network remembers the past and its decision are
influenced by what it has learned from the past. On the other hand, the feedforward network
also has the ability to remember, but only during training [Venkatachalam, 2019]. Figure 2.3
shows an illustration of the cyclic connection in an RNN.

Figure 2.3: A simple RNN, showing the cyclic connection. [Donges, 2018]

The memory is stored in the hidden layers of the network and works as a context based on
the previous inputs and outputs. The hidden layer is used together with weights to influence
the produced output. This means that a produced output could be different based on previous
input, thus using crucial information that is in the sequence of data, enabling the algorithm to
find tendencies in the sequence itself [Venkatachalam, 2019; Donges, 2018].

Long short-term memory

Long short-term memory (LSTM) is an extension to the RNN and works as the memory in the
hidden layer. An RNN can either have one or many (stacked) LSTM units in its network, where
each unit remembers their inputs over a time period. LSTM units have similarities to regular
computers as it can read, update and delete information stored in its memory. The memory
can be considered as a gated cell, which is a cell that determines whether or not to store or
delete data based on the level of importance on the information. The importance of information
is assigned over time where important and unimportant information is learned. The learning
happens through weights, which occurs while training the network [Donges, 2018].

There are three different gates in an LSTM unit: The input, the forget and the output
gate. The input gate decides whether or not new input should enter the memory, the forget
gate removes unimportant information based on its assigned importance, and the output gate
decides if the stored information is affecting the output in the current time step [Donges, 2018].
A representation of an LSTM unit can be seen in Figure 2.4.
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Figure 2.4: The internal model of an LSTM unit. [Donges, 2018]

Overfitting

As the network expands, introducing more parameters to the model, the problem with overfitting
may occur. Overfitting can occur to all kinds of learners and causes the learner to produce an
output that corresponds too similar to a particular set of data. The result of this is having a
learner that fails to fit unseen data or produces future predictions inaccurately.

There are many techniques to prevent overfitting in neural networks. Early stopping is a
form of regularization where the method stops the model from learning at given iterations when
the model starts to overfit. A set limit could be specified, i.e. the maximum number of iterations
during which no progress will be recorded. Exceeding this number will stop the model from
learning. A validation set, which differs from the training set is often used to calculate the
validation loss and validation accuracy. These values will then be saved and compared for each
iteration until the validation loss is increasing and the validation accuracy decreasing [Skalski,
2018].

Figure 2.5: A neural network where four neurons have been ignored. The green dots represent
active neurons, while the blue/red represents inactive neurons. [Skalski, 2018]

Dropout is another regularization method commonly used where every unit of the neural
network, expect the units in the output layer, is given a probability of being ignored temporarily
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in the calculations. Then for each iteration, neurons get randomly selected to drop according to
the probability that is defined. The result of this is that for each time we use the network, we
get a smaller neural network, which tends to overfit less. Figure 2.5 illustrates a network where
four neurons have been dropped.

2.1.2 Money Management

Expected value

To decide if a bet should be placed, it is important to calculate the expected value of the bet. A
commonly used formula for this is [Langseth, 2013]

Expected value = (Odds · probability of winning)− 1.

In an imaginary match between Liverpool and Arsenal, where it is believed that Liverpool
has a 40% chance of winning and a bookmaker offering an odds of 3, the expected value of a 1
unit would be

(3 · 0.4)− 1 = 0.2.

Theoretically over time, one could expect to profit 20% on this bet. If the odds were to be
adjusted however, this value could also be negative. Image the odds being 2 instead of 3 in the
same game, with the same probabilities. The expected value would then be

(2 · 0.4)− 1 = −0.2,

which indicates that this bet would not profit over time.
Calculating the expected value of a bet can give a good indication if a bet should be placed

or not. However, a positive value does not guarantee a profit, nor does a negative guarantee
loss. But consistently placing bets that have positive, and preferably high expected value gives
a better chance of gaining profit.

Betting strategies

Two different bets can have the same expected value, but still have different probabilities and
odds. One could argue that the bet with the highest probability is a better bet, but then
one would have to have more money at the stake for the same potential reward. There are
different strategies to this problem. Langseth [2013] presents different strategies that deal with
the problem of how much one should place on a bet. The strategies output an amount ci, that
are to be placed on each bet i= 1, ..., n, where ci ≤ C and C is the bankroll of the bettor. These
outputs are based on the probability pi and the odds oi. Four of these strategies are:

• Fixed bet: Place the same amount of money on each bet, ci ∝ 1.

• Fixed return: Place the amount that makes sure that the same winnings can be won

from each bet, ci ∝
1

oi
. This results in lower amounts placed on high-odds bets, and vice

versa.

• Kelly ratio: Kelly [1956] proposed to use a decision-theoretic based approach as a strategy.
In this setup, the utility of having a bankroll C after a bet is set to ln(C ), meaning the
utility of going broke is minus infinity. The expected utility of a bet is pi · ln(C + (oi −
1)ci) + (1− pi) · ln(C − ci), which is maximized for ci ← C · pioi − 1

oi − 1
. Langseth proposes a



8 CHAPTER 2. BACKGROUND

modified version of this strategy, where the size of ci cannot exceed a predefined value C0,
which is chosen to be considerably smaller than the bankroll C. Having a predefined limit
ensures that the system does not lose too heavily during the first round and potentially get
punished for this in later stages. Other versions of the Kelly strategy has also been used to
limit the risk of losing the whole bankroll. One of these versions is called Fractional-Kelly
betting [Australia Sports Betting, 2010]. Instead of having a cap C0 as Langseth proposed,
you multiply ci by a number between 0 and 1. By using a lower number for this value,
creates a more conservative strategy and minimizing the risk of going bankrupt in the long
run. On the other, the potential winnings are also smaller than with regular Kelly.

• Variance-adjusted: The strategy proposed in Rue and Salvesen [2000] minimizes the
difference between the expected profit and the variance of that profit. After placing a
bet ci, the difference is pioici − pi(1 − pi)(oici)

2, which is minimized by choosing ci ←
(2oi(1− pi))−1.

Yield

Yield is a metric that can be used when evaluating the profit made in betting. This is given by

Y ield =
Profit

Total units betted
· 100,

which gives a percentage representing the betting efficiency [Betacademy, 2019].
Return on investment (ROI) is also a commonly used metric for the same purpose. ROI is

given by,

Y ield =
Profit

Initial bankroll
· 100,

where the initial bankroll is the number of units available. In contrary to when calculating yield,
the ROI does not take into consideration the amount placed in bets.

2.2 Previous Work in the Field

This section presents previous work relevant to our field of work, which is predicting ongoing
matches. We will look at Maher’s contribution to this subject, and a couple attempts to predict
the outcome of ongoing football matches. Only the most relevant studies are included in this
section. For the interested reader, this was also reviewed in our specialization project, where we
had a broader scope [Haug̊ard and Vu, 2018].

2.2.1 Maher

A common approach to predict match outcome, without the use of machine learning, is to use
Poisson distribution to measure the probability of the number of goals scored in a match. Maher
is one of the first to investigate the use of the Poisson model with football scores. Earlier attempts
have been made to fit a Poisson distribution to the number of goals scored in a match, but as
Maher states in his paper, these earlier attempts rejected the use of the Poisson model in favor
of another model [Moroney, 1951; Reep et al., 1971].

Maher works further with the Poisson model in his paper. To calculate the Poisson distri-
bution for football results, the two opposing teams’ attacking and defencing strength, α and β
respectively, are used. Only the number of goals, the opposing teams, and the venue of the match
are parameters for calculating the strengths values. When playing at home, team i ’s number
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of goals against team j is modelled as a Poisson variable, Xij. The number of goals scored by
team j is also modeled as a Poisson variable, Yij. Maher assumes these two, Xij and Yij, to be
independent of each other, meaning they can be evaluated as two separate games at each end
of the pitch. Based on this, the outcome of a game between team i and team j is given by the
distribution

P (Xij = x, Yij = y|α, β, k) = Poisson(x|k · αiβj) · Poisson(y|αjβi), (2.1)

where k is the home field advantage assumed to be equal for all teams. An important note is
that α and β do not vary over time.

The model was used on four English leagues over three seasons, giving a total of 12 data
sets. Comparing the expected (calculated) with the observed (actual) goal frequencies, some
systematic differences could be noticed. The model underestimated the probability for one and
two goals to be scored and overestimated the probability that none and more than four goals
would be scored. The difference between the expected and the observed frequencies are quite
small, but added together would lead to a rejection of the model.

Further extensions of this model have been made to Maher’s model. Dixon and Coles [1997]
used results from 6629 league and cup matches from the top four English divisions from 1992 to
1995, and made a model that was able to generate score probabilities. They added a function
τ(x, y) to Equation 2.1, that adjusted the probability for the low-scoring match results compared
to Maher’s model. Dixon and Coles also brings up the limitation with the model being static
and that the attack and defence strength of a team is considered as constant through time by
this model. This is not the case in reality, as a team’s performance, considering both attack and
defence, could vary from one time period to another. Dixon and Coles handles this by taking
into account that recent matches reflect a team’s current form better than matches earlier in
history.

Even though Maher’s paper was published in 1982, the model is still relevant today. With
football being one of the most popular sports to bet on, many hobbyists have used similar
kind of models to predict the outcome of matches [Ammon, 2016; Cronin, 2017]. These models
calculate the goal probabilities for each team, which could be a good aid for different kinds of
bets. Multiplying these probabilities and plotting the data into a table, as shown in Table 2.1,
makes it easier to see what the probability for different outcomes is. E.g. is the probability that
the home team does not score is below 4%.

Table 2.1: Results from prediction for a match using Poisson distribution. The blue field indicates
the Poisson distribution for each of the teams while the green fields indicate home win, the red
field indicates away win and the yellow field shows the probabilities for the different draw scores.

Goals:
Home team

0 1 2 3 4

Goals:
Away Team

Probability for
number of goals

3.65% 12.07% 19.99% 22.07% 18.27%

0 36.11% 1.32% 4.36% 7.22% 7.97% 6.60%
1 36.78% 1.34% 4.44% 7.35% 8.12% 6.72%
2 18.73% 0.68% 2.26% 3.74% 4.13% 3.42%
3 6.36% 0.23% 0.77% 1.27% 1.40% 1.16%
4 1.62% 0.06% 0.20% 0.32% 0.36% 0.30%

The two articles, by Ammon and Cronin, do not mention how their model’s predictions did
compare to the actual results. Even though they do not record any results, it seems like this
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model uses features that are necessary to predict a football match. The attacking and defencing
strength for each team, which is the basis of this model, are calculated using other factors that
could be useful in other models as well. These are the goal statistics during the season for each
team, the number of goals scored and conceded in both home and away matches.

2.2.2 Live Predictions

The use of RNNs to predict the outcome of football matches has been explored by Pettersson
and Nyquist [2017]. The data set consisted of matches from multiple seasons of many leagues
from different countries (63 in total), in addition to tournaments that included teams from
several countries (e.g Champions League). Information and events from these matches were
used as input into the network. This includes lineups, the starting players’ starting positions,
goals, cards, substitutions, and penalties. Using an RNN ensures that the input data can have
different sizes, which is important as the number of events in a match varies. Still, the input
vector for each event has to have the same shape when fed into the network. This requires the
information for different events to be merged into an input form that the network can handle.
One of the methods Pettersson and Nyquist used to solve this problem is by using a one-hot
vector containing all attributes for all events. Pettersson and Nyquist’s model uses LSTM units,
with a softmax classifier to represent a probability distribution over the three possible classes.
The architecture of the model is shown in Figure 2.6.

Figure 2.6: The RNN’s high level architecture. [Pettersson and Nyquist, 2017]

Two different RNNs are compared, a many-to-one RNN and a many-to-many RNN. A many-
to-many has an output at each timestep, while a many-to-one only has an output after the
sequence of input (see Figure 2.7). Predictions were done using these RNNs, with 15-minute
intervals for each match. The results from the prediction showed that the many-to-one performed
better from the 60th minute and onwards, while a configuration of the many-to-many performed
better up to this point. For each time step, the predictions are made by using events that have
occurred up to this point. Table 2.2 shows the prediction accuracy at each time step for one of
the many-to-many models and the many-to-one model. Initially, with only teams and lineups
being known, the systems do not perform much better than random guessing. Both get higher

Table 2.2: Prediction comparison between the best configuration of the many-to-many model
and the many-to-one model. Derived from Table 4.6 in Pettersson and Nyquist [2017].

Prediction accuracy during match

Model 0 15 30 45 60 76 90
Full
Time

Many
to

many
0.4396 0.4479 0.4705 0.5151 0.5831 0.6797 0.8048 0.8868

Many
to

one
0.3335 0.3539 0.4151 0.5048 0.6280 0.7409 0.8825 0.9863
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accuracy as the match nears the final whistle, as to be expected with more events fed into the
system and less time left to score for the teams.

(a) Many-to-many RNN model, with an output at each time step.

(b) Many-to-one RNN model, with an output only
after the sequence of input.

Figure 2.7: The two different RNN models that were used in Pettersson and Nyquist [2017].

The test consisted of both classification and prediction, where the many-to-one model showed
an overall higher accuracy than the many-to-many model. The many-to-many model was tested
with different parameters, none performing better than the many-to-one model. The many-
to-one approach calculates the accuracy at the end of the sequence, while the many-to-many
averages over all the events. The classification results had a training accuracy of 100% and a test
accuracy of 98% using the many-to-one model. The best test accuracy from a many-to-many
model was 88%. However, the many-to-many model was ”closer” to the correct answer when
classifying wrong in the cases of home-win and away-win. Meaning in the cases of home win,
only a few were classified as away win compared to draw. The same goes for the cases with away
win; when classified wrong the system classified mostly as draw and not home win. With the
many-to-one model, the model often classified the other team winning, rather than draw when
classifying wrong. This is illustrated by the confusion matrices in Figure 2.8.

An approach related to live prediction is Boice’s attempt to predict the outcome of the 2018
World Cup. In Boice [2018], a model is made based on creating Poisson distributions for each
team and a matrix showing all the possible match scores with their probability. This makes
it possible to find the pre-game probability of winning for each team. The difference with this
model and the models based on Maher is that the attack and defence strengths used in this
model are FiveThirtyEight’s own variable called SPI rating. SPI rating is their own estimates
of overall team strength, which are made up from match-based and roster-based ratings. These
ratings are generated from data stored in their own database that contains matches that dates
back to 1905. Based on the teams’ ratings, a win/loss/draw probability matrix for a match is
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(a) Confusion matrix from the
many-to-many model.

(b) Confusion matrix from the
many-to-one model.

Figure 2.8: The two matrices show the classification results from the many-to-many model (a)
and the many-to-one model (b). Each row corresponds to the actual results home win, draw,
and away win respectively. The column represents, with the same order, what was predicted. A
perfect classification would only have complete black cells along the diagonal, indicating 100%
accuracy in the predictions. [Pettersson and Nyquist, 2017]

generated with the use of the Poisson distributions of expected goals for each team. Further,
in order to forecast which team will win the World Cup, they used all the matrices with Monte
Carlo simulations. This consists of simulating thousands of tournaments resulting in a winner
based on how many times the team occurs in a winning simulation.

Live match predictions were also implemented in their work, which calculated each teams
chances of winning, losing or drawing a match in real time. The live model works almost the
same way as the pre-game predictions. First, the number of goals expected in the remaining
time was calculated for each team. Then the Poisson distribution is created based on these
numbers and fused together to create a matrix. In the end, the current score of the match is
combined with the matrix, which gives the score probabilities in real time. Figure 2.9 shows how
the probability matrix differences for the Brazil - Croatia match in the 2014 World Cup. Brazil
was initially expected to be a clear winner, with a probability of 86%. After 65 minutes, with
the score 1-1, this probability has now declined to 48%.

There are factors that need to be taken into consideration as the match plays out. Some
important aspects Boice have considered, are that the scoring intensity at the end of a match is
higher than at the beginning. Added time is also important, which extends the last period of
the match. This is calculated by the number of bookings so far in the match, and whether or
not it is a close match. Red cards also give a significant advantage and are taken into account.
According to Boice, having one more player than the opposing team is worth three times more
than a home-field advantage. In addition, after exploring the data, Boice discovered that a team
that is down by a goal tends to have a higher scoring rate than what is indicated prior to the
match.

Boice provided both pre-game and live predictions based on their model on their website
throughout the World Cup, with the probabilities adjusted as the matches played out. As the
article was written prior to the World Cup start, they have not concluded with how well their
system performed. They do however have the predictions on which team will advance through
each stage available on their website [FiveThirtyEight, 2018]. Comparing the predictions for the
group stage and the actual results indicate that their system performed rather well. Of the 16
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(a) Pre-game (b) After 65 minutes

Figure 2.9: Pre-game vs. live probabilities for the outcome in Brazil - Croatia, 2014 World Cup.
How the probabilities of the final score changed after the game had played 65 minutes. [Boice,
2018]

teams that advanced from the group stage, Boice [2018] predicted 14 of them. Considering each
team are in a group with three others, and in total two of them advances, 0.875% correct is at
least better than random guessing (given the probabilities for different outcomes [Smith, 2017]).
The two teams that were predicted to advance, but got knocked out of the group stage, are
Germany and Poland. At least Germany was considered by many to have an easy process in
advancing to the next stage. Of the 14 correctly predicted teams to advance, 11 of them were
also predicted correctly whether they would finish first or second in their respective groups.
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Chapter 3

Data and Model

This chapter presents the model for predicting the next goal-scoring team, and the data used as
input. In addition, the betting strategies used are presented.

3.1 Data

The data set used for this project consists of matches from the last three seasons in the five
biggest European leagues, which are the Premier League (England), La Liga (Spain), Serie A
(Italy), Ligue 1 (France) and Bundesliga (Germany). Since one of the features used in the set,
EGRT (Section 3.1.2), uses season averages to calculate its values, only matches in the second
half of the season are included in the data set. The matches in the first half of the season are used
to populate the tables which are used to calculate the season averages. Therefore, the 2017-2018
Premier League season matches before January 1st 2018 are used to populate the table, while
the matches after this are included in the data set. The models (Section 3.2) use matches from
the 2016-2017 and 2017-2018 seasons for training, while the matches from the current season are
used for testing. That gives a total of 1880 matches in the training set, and 353 matches in the
test set.

Finding good features with predictive power is important in prediction tasks. As Sportradar
provided access to their API, most of the features are derived from the data gathered from this,
which includes important match events (Section 3.1.1). Figure 3.1 shows Sportradar’s API Map,
which illustrates the information flow and how the data can be accessed. This was discussed
in detail in Haug̊ard and Vu [2018]. Data from Sportradar’s API are also used to calculate the
teams’ EGRT values. The EGRT value is the number of goals the teams are expected to score
in the remaining time of the match (Section 3.1.2).

3.1.1 Match Events

Pettersson and Nyquist [2017] used match events in their work, but these were limited to goals,
cards, substitutions, and penalties. From Sportradar’s Match Timeline API request, data on
additional match events occurring during a match can be gathered as well. How detailed the
data is presented depends on the leagues’ coverage levels, but the matches included in the data
set all include the following match events (if they occurred in the match): Score changes, goal
kicks, throw-ins, shots saved, shots on target, shots off target, free kicks, injuries, corner kicks,
offsides, cards, and penalties.

15
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Figure 3.1: Sportradar’s API Map. [Sportradar, 2019]

These events are tagged with either home or away depending on whichever team the event
belongs to. The API request returns the events ordered by the sequence they occurred, and also
with a time tag, called match time, allowing us to know when in the match the event happened.
Figure 3.2 shows two of the events from the first match of the English Premier League in the
2018-2019 season, a match between Manchester United and Leicester City.
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Figure 3.2: Sportradar API - Match events. [Sportradar, 2019]

3.1.2 EGRT

Based on the work from Section 2.2.1, we have calculated the teams’ expected number of goals,
which will be referred to as EG, based on the teams’ attacking and defending strengths. The
strengths are based on the teams’ average goals and their belonging leagues’ average. The
attacking strength for the home team is given by

AH =
Home team’s average goals scored home

The league’s average home goals scored
,

where AH is the home team’s attacking strength. The defending strengths are calculated in a
similar manner. The away team’s defending strength is calculated like this:

DA =
Away team’s average goals conceded away

The league’s average away goals conceded
,

where DA is the away team’s defending strength. A team’s attacking strength combined with
the opposing team’s defending strength are used when calculating the number of goals to be
expected by a team in a match, and vice versa. The expected number of goals for the home team
is therefore given by

EGH = AH ·DA · The league’s average home goals scored.
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This EG value is how many goals one could expect a team to score in a match, based on
the two facing teams’ results in the current season. However, as we want to predict the next
goal-scoring team at any given moment in a match, we would have to tweak this value to get the
teams’ expected number of goals in the remaining time (EGRT).

Pinnacle has one method for calculating this, by adjusting the initial expectation as time
goes by [Pinnacle, 2019]. Their formula gives that 45% of the expected goals are scored in the
first half, while the remaining 55% are scored in the second. This is naturally not the case for
all teams, which is why we have chosen another approach.

This approach uses Match Timeline from Sportradar’s API. As Match Timeline also logs
the time for each event, making it possible to gather information about the match time of each
goal scored by the different teams. Using this information, an EG value can be calculated for
different time periods of a match. We chose to split the match into three equal periods, and
generated tables for the different leagues with information on how many goals each team scored
and conceded in each of the periods. The table for the English Premier League from the 2018-
2019 season, until March, can be seen in Table 3.1.

The EG values and the EGRT values calculated prior to a match will be the same. The
EGRT values will, however, decrease as the match plays out. In a hypothetical match between
Tottenham and Arsenal, where Tottenham plays at home, the teams’ EGRT values for the
remaining 45 minutes will be as following:

Tottenham’s EGRT

Considering we want to find the EGRTs after 45 minutes being played, we will only use the
number of goals in the last two time periods to calculate Tottenham’s attacking strength playing
at home, and Arsenal’s defending strength playing away.

A31−60 =
6/13

131/279
= 0.9830

D31−60 =
10/13

131/279
= 1.6383

The values above represent the home team’s attacking strength and the away team’s defending
strength, in the time period 31-60 minutes. These values are generated from the goals scored
and conceded in the second 30-minutes period we have split the matches in. We assume a goal
can happen whenever within these periods with the same probability. The EG value is therefore
multiplied with 15/30, as we only want to find the value for 15 minutes of the 30-minutes period.

EG46−60 = A31−60 ·D31−60 ·
131

279
· 15

30
= 0.3781

Further, the values for the last period (61-90 minutes) is:

A61−90 =
11/13

184/279
= 1.2830

D61−90 =
9/13

184/279
= 1.0497

EG61−90 = A61−90 ·D61−90 ·
184

279
= 0.8882

This gives that following number of expected goals for the home team after 45 minutes has been
played:
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EGRT45 = EG46−60 + EG61−90 = 1.2663

Table 3.1: Premier League table from the 2018-2019 season showing how many goals each team
have scored and conceded in each of the three periods when splitting a match into three equal
periods.

Team Matches Scored Conceded

Home: 14 8 - 8 - 10 4 - 6 - 8
AFC Bournemouth

Away: 14 3 - 7 - 3 10 - 13 -12

Home: 15 9 - 9 - 17 5 - 2 - 5
Arsenal FC

Away: 13 9 - 9 - 7 7 - 10 - 9

Home: 13 5 - 6 - 5 3 - 5 -7
Brighton & Hove Albion FC

Away: 14 4 - 4 - 5 8 - 8 - 10

Home: 13 5 - 8 - 4 9 - 5 - 9
Burnley FC

Away: 15 2 - 5 - 7 6 - 8 - 13

Home: 15 4 - 4 - 8 10 - 9 - 12
Cardiff City

Away: 13 1 - 0 - 8 5 - 6 - 13

Home: 14 7 - 7 - 14 1 - 6 - 2
Chelsea

Away: 13 4 - 8 - 7 7 - 6 - 7

Home: 14 2 - 3 - 5 1 - 8 - 6
Crystal Palace

Away: 14 1 - 10 - 11 3 - 7 - 13

Home: 14 5 - 8 - 8 4 - 10 - 7
Everton FC

Away: 14 6 - 2 - 10 2 - 9 - 7

Home: 13 2 - 8 - 7 11 - 5 - 10
Fulham

Away: 15 3 - 3 - 3 14 - 9 - 14

Home: 15 3 - 2 - 2 6 - 11 - 5
Huddersfield Town

Away: 13 2 - 3 - 3 9 - 7 - 12

Home: 14 6 - 3 - 7 7 - 5 - 6
Leicester City

Away: 14 1 - 8 - 9 6 - 7 - 8

Home: 14 13 - 12 - 15 1 - 3 - 3
Liverpool FC

Away: 14 5 - 6 - 13 2 - 2 - 4

Home: 15 19 - 16 - 15 3 - 6 - 2
Manchester City

Away: 13 8 - 11 - 6 1 - 3 - 5

Home: 13 9 - 5 - 11 3 - 5 - 8
Manchester United

Away: 15 6 - 15 - 9 9 - 4 - 7

Home: 15 5 - 4 - 7 7 - 3 - 8
Newcastle United

Away: 13 7 - 3 - 0 3 - 5 - 8

Home: 14 5 - 7 - 5 3 - 10 - 8
Southampton FC

Away: 14 4 - 6 - 3 9 - 9 - 7

Home: 13 7 - 6 - 11 1 - 5 - 6
Tottenham Hotspur

Away: 15 10 - 13 - 8 4 - 4 - 9

Home: 13 3 - 5 - 9 2 - 10 - 6
Watford

Away: 15 8 - 4 - 10 7 - 4 - 11

Home: 14 4 - 7 - 10 6 - 6 - 8
West Ham United

Away: 14 7 - 3 - 4 5 - 7 - 9

Home: 14 3 - 3 - 14 8 - 3 - 8
Wolverhampton Wanderers

Away: 14 4 - 3 - 8 7 - 3 - 6
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Arsenal’s EGRT

Similarly, Arsenal’s EGRT at minute 45 is calculated the following way:

A31−60 =
9/13

123/279
= 1.5704

D31−60 =
5/13

123/279
= 0.8724

EG46−60 = A31−60 ·D31−60 ·
123

279
· 15

30
= 0.3020

A61−90 =
7/13

134/279
= 1.1211

D61−90 =
6/13

134/279
= 0.9610

EG61−90 = A61−90 ·D61−90 ·
134

279
= 0.5174

EGRT45 = EG46−60 + EG61−90 = 0.8194

The EGRT values can be calculated at any given time during a match between two teams
in the same league, and further, be used as features. The example showed a calculation of the
EGRT values for a match between Tottenham and Arsenal, based on the number from the leagues
up until the 1st of March. The actual match between the two teams that played out on the 2nd
of March ended up with only Tottenham scoring in the last 45 minutes. [Premier League, 2019]

3.1.3 xG

In addition to the data from Sportradar, the expected goals metric (xG) is gathered from Under-
stat and used as a feature as well. This was also reviewed in detail in our specialization report
[Haug̊ard and Vu, 2018]. This metric gives an indication of how great the chance is for a given
goal-scoring attempt to be converted into a goal. The xG metric has the possibility to reveal that
a team should have scored more goals statistically, either during a single match or over an entire
season. We have gathered the xG data for the matches from Understat, as this was something
not available from Sportradar. Understat keeps detailed xG data on the matches that have been
played in the top European leagues. The xG value of a shot is determined by a neural network
trained on over 100.000 shots with over 10 parameters for each shot [Understat, 2019b].

According to Understat, the xG value usually gives a better picture of two teams’ performance
and how a match actually played out rather than the final match score, especially in a low-scoring
game. Imagine a match where the half-time score is 1-0, but the xG values for the same match is
actually 0.65 - 3.43. This indicates that the leading team currently has had a very good pay off
on the few chances they had, while the losing team has had a higher amount of chances without
any of them resulting in a goal. If the teams keep up the same frequency of chances in the second
half, one could expect that the losing team would get an equalizer, at the very least.

Figure 3.3 shows a chart with the xG values for each minute of the match between Eibar
and Celta Vigo, played on the 3rd of March. The figure shows that Eibar clearly created more
chances than Celta Vigo. At the 80th minute, Eibar’s xG value is 1.86, indicating that they
statistically should have at least scored one goal. At this point, the score was still 0-0. However,

https://understat.com/
https://understat.com/
https://understat.com/
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Eibar finally scored the match’s only goal six minutes later, where the new score now better
reflects the teams’ effort throughout the match.

Figure 3.3: Understat - xG values’ development during a match between Eibar and Celta Vigo.
[Understat, 2019a]

3.2 Neural Networks

To solve the task of predicting the next goal-scoring team, two different neural networks have
been created. One feedforward neural network and one RNN. Different network structures were
later tested in order to find the optimal set of hyperparameters, which would give the best
predictions.

3.2.1 Feedforward Neural Network

Feedforward networks require the input to be the same size, meaning the input vectors fed into
the network need to be of the same length. This is done by using a vector that includes all
the features. This often leads to the input being very sparse, as all the events do not occur
every match, but all the features could be included in the same vector. Figure 3.4 shows an
example of an input vector from a match at the 75th minute where EGRT, score changes, shots
on target and match time are used as features. The match events each has four elements in the
vector: Home team’s match total, away team’s match total, home team’s number of the event’s
occurrences in the last 15 minutes and away team’s number of the event’s occurrences in the last
15 minutes. So even if some matches have different types of events, the size of the input vectors
will remain the same, which is required in a feedforward network.

The cross-entropy is used as the loss function, while the Adam optimizer is used to reduce
the error. As mentioned in Section 2.1.1, these are common to use with classification tasks.
Further, Softmax is used as the activation function in the output layer, with three possible
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Figure 3.4: Input vector for the feedforward network, with some of the features used. The
blue-colored background indicates the home team’s values.

classes. This gives a vector with the probability for each of the three outcomes. When training,
the probabilities from the predictions are compared to the target vector y, which is one of
following depending on which team scores the next goal:

y =


[1, 0, 0] Home team scoring next goal

[0, 1, 0] No more goals in the match

[0, 0, 1] Away team scoring next goal

The accuracy is calculated by comparing the target vector with the output vector. Given a
prediction vector [0.3, 0.2, 0.5] in a case where the away team is the next goal-scoring team, the
prediction would be considered correct.

To avoid overfitting, early stopping is used. The models stop training when the validation
loss stops decreasing, with a threshold of five iterations. The validation happens after every
epoch, where the model is tested on the validation set, which is a part of the training data set
that has not been trained on.

3.2.2 Recurrent Neural Network

An RNN was also implemented in an attempt to learn the match dynamics from the sequence
of match events better. Previous work with the use of LSTM cells in RNN has shown promising
results, as we have seen in Section 2.2.2. The RNN developed in our case uses LSTM cells, with a
different number of LSTM cells. The data set used for the RNN consist of the same matches that
were used with the feedforward network. However, the data had to be preprocessed differently
before feeding it into the network. Instead of summing up the number of times an event has
happened, the events are represented by a one-hot vector and fed into the network as a sequence,
in the order the events occur. As there are a different number of events in matches, the number
of input vectors for a match can vary. However, the length of each vector is constant. Figure 3.5
shows how the match events are represented in the input vector, where the first event is a throw
in for the home team and the last is a free kick for the away team. Match time, EGRT and xG
values are also used as features in the RNN and represented the same way as in the feedforward
network.

As with the feedforward network, the cross-entropy loss function is used together with the
Adam optimizer. The output layer has a Softmax activation function giving a prediction vector of
[Probability home team scoring next goal, Probability no more goals, Probability away team scoring
next goal ]. The prediction is compared with the target vector before the loss is calculated and
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Figure 3.5: The sequence of match events represented by one-hot vectors (vertical) the way they
are fed into the RNN. At time t we can see that the away team got a corner. The blue-colored
background indicates the home team’s values.

back propagated to modify the weights. The highest value of the three predicted probabilities is
considered the produced prediction from the model.

Similar to the feedforward network, early stopping is used to avoid overfitting. In addition
to early stopping, dropout is also used to help avoid this problem. This means that each node in
the last LSTM layer has a chance of being left out during the training, thus reducing the chance
to overfit.

3.3 Betting Simulator

The four different betting strategies from Section 2.1.2 are implemented in order to decide how
much to place on each bet in betting simulations. This is based on the probability from the
predictions produced by the neural networks and the odds provided by Sportradar. For the
Kelly strategy, the Fractional-Kelly strategy is used. Each strategy is implemented to run its
own betting simulation, which consists of matches from the current season. Bets are placed on
the most likely outcome according to the network, and only if the bets are feasible, meaning the
expected value is positive. Each simulation starts with an initial bankroll, which gets updated
for each bet.

The four strategies only consider how much to place on single bets, and does not consider
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multiple bets in the same match. To test this we have created our own strategies to test the
possibility to place several bets on the same outcome. The strategies are based on the fluctuations
of odds and calculated probabilities, but also considering the amount that is already placed in
the same bet. In other words, if a bet already has been placed early in a match, should one place
more bets later in the game if one of the team seems to be more likely to score than initially
predicted? Based on the Kelly and the variance-adjusted strategies, we propose two strategies
for this purpose:

• Continuous Kelly: With the original version, the expected utility of a bet is pi · ln(C +
(oi − 1)ci) + (1− pi) · ln(C − ci). As we now also want to consider how much to place on
a bet, while also taking the amount X already placed on a bet into account, the modified
expression for the expected utility is pi · ln(C+(oi−1)(ci +X))+(1−pi) · ln(C− (ci +X)).

This is maximized for ci ← C · pioi − 1

oi − 1
−X.

• Continuous Variance-adjusted: This strategy is also modified in a way that includes the
amount X that has already been placed. We still want to minimize the difference between
the expected profit and the variance of that profit, which now is pioi(ci + X) − pi(1 −
pi)(oi(ci +X))2 after placing a bet ci. This is done by choosing ci ← (2oi(1− pi))−1 −X.

Both of these are similar to their original expression, with the difference of X now being sub-
tracted. For these two strategies, two additional factors need to be taken into consideration:

1. Betting frequency - How often during a match one should consider a new bet.

2. Change in predicted outcome - What to do if the neural network predicts an outcome
to be the most likeliest, which differs from the one that has been betted on.

For changes in the predicted outcome, we have implemented two different approaches. The
first approach considers bets on other outcomes as lost bets, and bets on the new recommended
outcome without considering how much has been placed on other outcomes. This means that
the potential winnings from each match will be smaller, as some bets will be against each other.
The loss will also be smaller with this approach. The second approach goes all in on the new
prediction. In addition to betting the amount decided by the strategies, we will also place an
additional bet that cancels out previous bets on the other outcomes. For instance, in a match
where 5 units have been placed on the home team scoring the next goal, but the network now
predicts that the away team is the most likely next goal-scoring team with a probability of 0.55.
With an odds being 2, the total amount to bet on the new outcome, using the variance-adjusted
strategy is

(2 ∗ 2(1− 0.55))−1 +
5

2
= 3.06,

where the second term is to cancel out previous bets.
Both approaches are implemented with both the Kelly and the variance-adjusted strategies,

giving a total of 4 different strategies for betting multiple times in a match:

• Continuous Kelly 1: Considers bets on other outcomes as lost bets using the Kelly
strategy.

• Continuous variance-adjusted 1: Considers bets on other outcomes as lost bets using
the variance-adjusted strategy.

• Continuous Kelly 2: Goes all in on the new prediction using the Kelly strategy.
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• Continuous variance-adjusted 2: Goes all in on the new prediction using the variance-
adjusted strategy.
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Chapter 4

Experiments and Results

This chapter starts by describing the experimental plan and the experimental setup, which
describes how to test the model and validate the predictions made by the model. Further, this
chapter presents the results from the experiments.

4.1 Experimental Plan

As stated in Section 1.2, the main goal with this project is:

Goal Use machine learning to predict next goal-scoring team in a football match, in order to get
an edge on bookmakers,

and to achieve this, we first need a model that has a satisfyingly high accuracy when making
predictions. Further, the model will be used in betting simulations to verify if it is possible to
profit from the predictions.

Our first research question is

Research question 1 What features are important when using machine learning to predict the
next goal-scoring team?

To answer this, we will train different models using different feature sets. As we want to predict
the next goal-scoring team at any given point in the match, we will also test how well an RNN
performs compared to a feedforward network. Considering the RNN being able to take the
sequence of match events as input, we might learn that certain sequences often lead to goals.

To evaluate the models, we will compare the validation accuracies of the models. These
accuracies are also to be tested against several baselines, and should obtain values that are
better than these. These baselines are the accuracy when always choosing the home team to
score the next goal, the accuracy when always choosing that there will be no more goals, the
accuracy when always choosing the team with the highest EGRT, and the accuracy when always
choosing the team with the highest xG-value.

Further, our second research question is

Research question 2 How can the predictions be used to gain profit when betting?

Therefore, the models that achieved the highest validation accuracy in each of the cases are to
be used in betting simulations on the test set. The predictions made by the models are tested

27
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against actual odds from Sportradar, in order to validate the reliability of the predictions. Each
of the cases will get evaluated with different betting strategies described in Section 3.3. These
strategies are also tested against the yield achieved when always betting on the home team,
always betting that there will be no more goals, always betting on the team with the highest
EGRT, always betting on the team with highest xG value, and always betting on the team with
the lowest odds.

4.2 Experimental Setup

Six different cases are to be tested with both networks, where different combinations of features
are used in the different cases. Three of the cases include matches only from Premier League,
while the remaining cases include matches from all five leagues. If there are any differences in
how the different features interrelate with who the next goal scorer is in the different leagues,
then having a model training on only one league could give a higher accuracy. The specification
for each of the cases can be seen in Table 4.1. As discussed in Boice [2018], time is an important
factor when predicting ongoing matches. For instance, the scoring intensity at the end of a match
is higher than at the beginning. Thus, in addition to the features listed in the table, all cases
include the match time as a feature.

Table 4.1: Overview of the features included in the different cases.

Premier League Other 4 leagues EGRT & xG Events
Case 1 Yes Yes Yes Yes
Case 2 Yes Yes Yes No
Case 3 Yes Yes No Yes
Case 4 Yes No Yes Yes
Case 5 Yes No Yes No
Case 6 Yes No No Yes

The experimental setup consist of two main parts for each case, testing different combinations
of network parameters that give good predictions, and the betting simulation part. As mentioned
in Section 3.1, data from the five big European Leagues will be used, which are the Premier
League (England), La Liga (Spain), Serie A (Italy), Ligue 1 (France) and Bundesliga (Germany).
The models are trained on matches from the second part (starting January 1st) of the season,
in the 2016-2017 and 2017-2018 seasons. The training set consist of 1880 matches in total. The
test set consist of the matches played in January and February in the 2018-2019 season, a total
of 353 matches. Testing different combinations of network parameters are done on the training
set, while the betting simulation part is executed on the test set.

4.2.1 Finding the Best Network Parameters

For each case, the goal is to find the best network parameters for both the feedforward network
and the RNN. The size of the input layer varies with the number of features used as input,
while the output layer always consist of three nodes as there are always three possible outcomes.
However, the other parameters in the networks can be adjusted. For the feedforward network,
these are: Different number of hidden layers and number of nodes in these layers, hidden layer’s
activation function, learning rate and batch size. For the RNN, the parameters are: Number of
LSTM layers, number of nodes in the hidden layers and learning rate.
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For the feedforward network, the training set consists of data from four randomly chosen
time points in each match, which gives a total of 1880 times 4 cases in the training set. The
data set for the RNN consist of the same matches, but each match event is represented by its
own input vector (see Figure 3.5). These are fed into the RNN sequentially for each match. To
find the best combination of feature set and network parameters for both networks, 20% of the
training set are used as validation set. An important notice is that this is 20% of the matches,
and not 20% of the cases. This means that for the feedforward network, if one of the four cases
from a match is in the validation set, the remaining three cases from the same match will also
be in the validation set. The validation accuracy is used as the criteria when comparing the
different setups. Another option would be to use actual odds and run betting simulations on
the validation set, and select the setup that achieved the highest yield with the validation set.
However, we do not have odds for the matches in the validation set available, which leaves using
the validation accuracy as the only option. Hence, the setup achieving the highest validation
accuracy for each case are used in the betting simulations.

4.2.2 Betting Simulation

With regard to the second research question, we will run betting simulations based on the
predictions made by the networks. The seemingly best combinations network parameters are
going to be used for the simulation for each of the cases. As mentioned previously, the test set
used for the betting simulation consists of the matches from January and February in the current
season. This consist of 353 matches when all five leagues are included, and 79 when only Premier
League matches are included. The odds for these matches are provided by Sportradar.

Three different simulation experiments based on the predictions will be done. Each simulation
starts with an initial bankroll of 100 units where the first two simulations are using the strategies
for single bets stated in Section 3.3, with 0.25 as the multiplier in the Fractional-Kelly strategy.

• Betting simulation 1: The first simulation places a bet at one random time point in
each of the matches.

• Betting simulation 2: The second one is too see whether there are any time points in
the match where it is easier to gain a profit from than others. Thus, running six times at
six fixed time points, which are the 15th, 30th, 35th, 60th, 75th and 90th minute.

• Betting simulation 3: The last simulation experiment deals with the possibility to place
multiple bets during a single match. For instance, this occurs when a bet already is placed
at the 20th minute, but at minute 25 the prediction has changed, indicating that you
should have betted more, or less, than you actually did five minutes ago. The four different
strategies proposed in Section 3.3 for placing multiple bets in a single match are used for
this. The betting frequency is chosen to be five minutes, meaning a new bet is considered
with five minutes apart.

Further, each simulation is executed five times, each time with a different network instance,
trained with the best combination of parameters. The 20% of the training set that are used as
the validation set is random for each of the five instances. This is to get a better indication of
the robustness of the network. The worst, the best and the average results are presented.

4.3 Experimental Results

This section presents the results of the experiments for each of the six cases. For each case, a
table showing the accuracy with different network parameters and charts displaying the results
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from the betting simulations are presented.

4.3.1 Baselines

To evaluate the models and their predictions, we will compare them to several baselines. The
baselines represent the lowest values that our models should obtain. As mentioned in Section
4.1, these baselines are based on:

• Home team: Always choosing the home team to be the next goal-scoring team.

• No goals: Always choosing that there will be no more goals in the match.

• EGRT: Always choosing the team with the highest EGRT value to be the next goal-scoring
team. If the teams have the same EGRT, the home team will be chosen.

• xG: Always choosing the team with the highest xG value to be the next goal-scoring team.
If the teams have the same xG, the home team will be chosen.

• Odds: Always choosing the team with the lowest odds to be the next goal-scoring team.
If the teams have the same odds, the home team will be chosen. This is only used for the
yield baseline, as we do not have the odds for the training set available.

The accuracies and yields for the baselines are shown in Table 4.2. These are generated from
the entire training set, where four random time points are chosen in each match. The yields
are generated from the test set, where random time points are chosen in each match. The fixed
bet strategy from Section 3.3 is used, as it does not require probabilities. The accuracies are
between 0.41 and 0.44, where always choosing the team with the highest EGRT value gave the
highest accuracy. The baselines for the yields had a greater variety than the accuracy. Placing
bets based on the EGRT and xG values did not generate a positive yield, while always betting
on the home team gave the highest yield at 6.23.

Table 4.2: The accuracies and yields for the baselines.

Home None EGRT xG Odds
Accuracy 0.41 0.28 0.44 0.42 -

Yield 6.23 5.43 -4.50 -8.24 4.62

4.3.2 Case 1

Case 1 consists of data from all the leagues and uses all the available features as input.

Network parameters

For the first part, we wanted to find the combination of network parameters that gave the highest
validation accuracy. The accuracy should be at least as high as the ones achieved by the baselines,
where the highest was 0.44. Table 4.3 shows the ten combinations of network parameters that
obtained the highest accuracies, for both the feedforward network and the RNN. RNNs are
indicated with a blue-colored background and no batch size specified, as they are not trained in
batches. An RNN with 4 LSTM layers, 32 units in each layer, and a 0.001 learning rate gave
the highest validation accuracy. This network had a validation accuracy of 0.53499, which is
significantly higher than the baselines.
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Table 4.3: Best network parameters with Case 1. The blue-colored background indicates an
RNN.

Number of
hidden layer(s)

and nodes
in each layer

Hidden layer(s)
activation

Learning rate Batch size
Validation
accuracy

4 layers
32 nodes

LSTM
with tanh

0.001 - 0.53499

2 layers
32 nodes

LSTM
with tanh

0.001 - 0.53386

6 layers
64 nodes

LSTM
with tanh

0.001 - 0.53202

1 layer
57 nodes

relu 0.002 256 0.53158

1 layer
57 nodes

relu 0.001 32 0.53001

1 layer
30 nodes

relu 0.002 32 0.52979

4 layers
64 nodes

LSTM
with tanh

0.001 - 0.52861

4 layers
256 nodes

LSTM
with tanh

0.001 - 0.52843

2 layers
64 nodes

LSTM
with tanh

0.001 - 0.52828

1 layer
57 nodes

relu 0.001 256 0.52708

Betting simulation 1

Figures 4.1 to 4.4 show how the bankroll develops during the betting simulations, using the
different betting strategies while betting at random time points. The yields from the simulation
are showed in Table 4.4. None of the average yields are better than the baseline yields achieved
by always betting on the home team. For Case 1, the best average and the only positive result
was with using the variance-adjusted strategy.

Table 4.4: Yields, in percent, from different betting strategies with single bets placed at random
time points in each match.

Fixed
bet

Fixed
return

Kelly
Variance-
adjusted

Minimum -6.76 -5.70 -11.72 -3.03
Maximum 7.95 7.54 2.62 7.66
Average -0.15 -0.24 -4.43 1.11

The figures show three graphs each. The red and green graphs represent the bankroll de-
velopment of the runs that gave the worst and best yields, respectively. These are the worst
and best runs, according to their final bankroll value, out of the five runs. The multiple runs
were performed in order to test the robustness of the network. A large gap between these charts
indicates a less robust network, and the performance depends largely on how the training data
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Figure 4.1: Bankroll values with the fixed bet strategy. Shows the worst and the best simulation,
and the average bankroll value.

Figure 4.2: Bankroll values with the fixed return strategy. Shows the worst and the best simu-
lation, and the average bankroll value.
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Figure 4.3: Bankroll values with the Kelly strategy. Shows the worst and the best simulation,
and the average bankroll value.

Figure 4.4: Bankroll values with the variance-adjusted strategy. Shows the worst and the best
simulation, and the average bankroll value.
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was split, which can cause small differences in the predicted probabilities. These small differences
can be enough to decide if a bet is considered feasible or not. We can see from the figures that
the difference in the final bankroll values are big with all the betting strategies. This could be
acceptable if the worst run also generated a positive yield, but this is not the case.

The yellow graphs indicate the five simulations’ average bankroll value after each match. To
consider using a betting strategy, the average run should generate a positive yield. This is only
the case with the variance-adjusted strategy.

Betting simulation 2

Table 4.5 shows the yields from the simulations where bets were placed at the same fixed time
point in each simulation. This was explored in order to see if there were any specific time points
during the matches that effortlessly generated positive yield. With Case 1, placing bets at the
end of the match, specifically at the 75th and 90th minute, gave positive yields independent of
the betting strategy used. Placing bets prior to this gave, without exception, negative yields.
Only placing bets at the 90th minute also achieved yields that are higher than the baselines.
The highest yield was achieved using the Kelly strategy, at the 90th minute in the matches.

Table 4.5: Yields, in percent, when placing bets at fixed time points in each match.

Min
Fixed
bet

Fixed
return

Kelly
Variance-
adjusted

15 -0.57 -1.42 -1.18 -1.43
30 -2.39 -2.68 -7.04 -2.45
45 -4.29 -3.87 -14.01 -3.69
60 -7.15 -3.65 -22.36 -2.90
75 6.26 6.19 2.14 6.22
90 48.25 48.69 54.11 48.63

Betting simulation 3

Table 4.6 shows the results from the simulations where multiple bets could be placed in each
match. The best average yield was achieved using the variance-adjusted strategy where previous
bets on other outcomes are considered as lost bets. The simulations with this strategy are
displayed in Figure 4.5. The variance-adjusted strategy that goes all in on new predictions also
gave a positive average yield. Compared to the betting simulation where we only placed one
bet each match, the difference between the minimum and maximum yields are much smaller.
However, the increased number of bets means that the yield has a greater impact on the final
bankroll value. A yield at -5.43, which is the case with the worst run using the Kelly strategy,
results in a bankrupt simulation. This is shown in Figure 4.6.

Table 4.6: Yields, in percent, when possibly placing multiple bets in each match.

Continuous
Kelly 1

Continuous
variance-

adjusted 1

Continuous
Kelly 2

Continuous
variance-

adjusted 2
Minimum -5.43 -1.43 -4.76 -1.97
Maximum 0.88 2.57 1.01 2.19
Average -1.53 0.60 -1.19 0.19
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Figure 4.5: Bankroll values with the variance-adjusted strategy where previous bets on other
outcomes are considered as lost bets. Shows the worst and the best simulation, and the average
bankroll value.

Figure 4.6: Bankroll values with the Kelly strategy where previous bets on other outcomes are
considered as lost bets. Shows the worst and the best simulation, and the average bankroll value.
The worst simulation goes bankrupt.
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These strategies have much better results than when placing multiple bets in each match using
the regular Kelly and variance-adjusted strategies. The regular versions of these strategies do not
take previous bets into account. This means that if the strategy recommends you to bet 10 units
at the 5th minute and the odds and probabilities remain unchanged, it will recommend you to
bet 10 new units. Table 4.7 shows the yields using these strategies. Only the variance-adjusted’s
best run had a positive yield. Using the Kelly strategy, even the best run went bankrupt before
50 matches. This is shown in Figure 4.7.

Table 4.7: Yields, in percent, when possibly placing multiple bets in each match and not consid-
ering previous bets.

Kelly
Variance-
adjusted

Minimum -70.97 -6.99
Maximum -17.99 1.33
Average -40.67 -1.72

Figure 4.7: Bankroll values with the regular Kelly strategy. Shows the worst and the best
simulation, and the average bankroll value. All simulation goes bankrupt.

4.3.3 Case 2

Case 2 consists of data from all the leagues, and uses only EGRT and xG as input.

Network parameters

Table 4.8 shows the ten combinations of network parameters that obtained the highest accuracies,
for both the feedforward network and the RNN. A feedforward network with 2 hidden layers,
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4 nodes in each layer, the tanh activation function, a 0.002 learning rate, and batch size of
64 gave the highest validation accuracy. This network had a validation accuracy of 0.55002,
which is higher than the best network in Case 1. In fact, all the top ten combinations of network
parameters achieved a validation accuracy better than the top network in Case 1, and also better
than the baselines. Compared to Case 1, the highest validation accuracies were achieved with
feedforward networks in Case 2.

Table 4.8: Best network parameters with Case 2. The blue-colored background indicates an
RNN.

Number of
hidden layer(s)

and nodes
in each layer

Hidden layer(s)
activation

Learning rate Batch size
Validation
accuracy

2 layers
4 nodes

tanh 0.002 64 0.55002

2 layers
5 nodes

relu 0.002 32 0.54709

1 layers
5 nodes

sigmoid 0.002 128 0.54666

2 layer
5 nodes

tanh 0.002 256 0.54531

2 layer
4 nodes

tanh 0.002 128 0.54463

1 layer
5 nodes

sigmoid 0.002 64 0.54417

2 layers
64 nodes

LSTM
with tanh

0.001 - 0.54400

1 layer
5 nodes

tanh 0.0005 32 0.54374

2 layers
5 nodes

tanh 0.002 32 0.54349

2 layer
5 nodes

tanh 0.0005 256 0.54328

Betting simulation 1

Figures 4.8 to 4.11 show how the bankroll develops during the betting simulations, using the
different betting strategies while betting at random time points. The yields from the simulation
are showed in Table 4.9. For Case 2, using the variance-adjusted strategy gave the best average
yield. However, this is still not better than the baseline.

Table 4.9: Yields, in percent, from different betting strategies with single bets placed at random
time points in each match.

Fixed
bet

Fixed
return

Kelly
Variance-
adjusted

Minimum -11.86 -8.03 -12.35 -5.42
Maximum 5.25 6.95 -3.59 7.52
Average -2.84 0.14 -7.25 1.91
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Figure 4.8: Bankroll values with the fixed bet strategy. Shows the worst and the best simulation,
and the average bankroll value.

Figure 4.9: Bankroll values with the fixed return strategy. Shows the worst and the best simu-
lation, and the average bankroll value.
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Figure 4.10: Bankroll values with the Kelly strategy. Shows the worst and the best simulation,
and the average bankroll value.

Figure 4.11: Bankroll values with the variance-adjusted strategy. Shows the worst and the best
simulation, and the average bankroll value.
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We can observe from the figures that the gap between the worst and best run is big in Case
2, as it was with Case 1. The Kelly strategy graphs show that the runs are pretty similar,
which also can be read from the final yield values. However, even the best run gave a negative
Yield using the Kelly strategy. Two of the strategies, the fixed return and variance-adjusted,
performed better than Case 1 on average, but the worst run was better in Case 1.

Betting simulation 2

Table 4.10 shows the yields from the simulations where bets were placed at the same fixed time
point in each simulation. Similar to Case 1, placing bets late in the game gave positive yields.
The highest yield was achieved using the fixed return strategy, at the 90th minute in the matches.
This gave a yield of 34.96, which is better than the baseline.

Table 4.10: Yields, in percent, when placing bets at fixed time points in each match.

Min
Fixed
bet

Fixed
return

Kelly
Variance-
adjusted

15 -9.54 -9.18 -9.42 -8.47
30 -8.29 -6.36 -11.08 -5.32
45 -11.97 -9.80 -18.48 -8.25
60 -13.16 -11.55 -16.67 -10.97
75 5.13 4.97 -2.48 4.23
90 26.03 34.96 -9.25 34.77

Betting simulation 3

Table 4.11 shows the results from the simulations where multiple bets could be placed in each
match. None of the strategies generated a positive yield, not even in their best run. The best
average yield was achieved using the variance-adjusted strategy that goes all in on the new
prediction. The Kelly strategies resulted in bankruptcy, also in their best runs. Figure 4.12
shows the simulations using the Kelly strategy that goes all in on the new prediction.

Table 4.11: Yields, in percent, when possibly placing multiple bets in each match.

Continuous
Kelly 1

Continuous
variance-

adjusted 1

Continuous
Kelly 2

Continuous
variance-

adjusted 2
Minimum -8.80 -2.55 -7.53 -2.62
Maximum -5.50 -1.03 -4.91 -0.83
Average -7.51 -1.61 -6.53 -1.50
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Figure 4.12: Bankroll values with the Kelly strategy that goes all in on new predictions. Shows
the worst and the best simulation, and the average bankroll value. All goes bankrupt.

4.3.4 Case 3

Case 3 consists of data from all the leagues and uses match events as input.

Network parameters

Table 4.12 shows the ten combinations of network parameters that obtained the highest accu-
racies. Unlike the two previous cases, all the top accuracies were achieved by the feedforward
network. A feedforward network with 2 hidden layers, 53 nodes in each layer, the tanh activation
function, a 0.001 learning rate, and batch size of 256 gave the highest validation accuracy. With
0.51401, this accuracy is lower than the ones achieved by the previous cases but still better than
the baselines.

Betting simulation 1

Figures 4.13 to 4.16 show how the bankroll develops during the betting simulations, using the
different betting strategies while betting at random time points. The yields from the simulation
are shown in Table 4.13. For Case 3, using the variance-adjusted strategy gave the best average
yield, which is also significantly better than than the baseline. Additionally, the fixed bet and
fixed return strategies had an average yield better than the baseline.
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Table 4.12: Best network parameters with Case 3.

Number of hidden
layer(s) and

number of nodes
in each layer

Hidden layer(s)
activation

Learning rate Batch size
Validation
accuracy

2 layers
53 nodes

tanh 0.001 256 0.51401

2 layers
53 nodes

tanh 0.001 32 0.51104

1 layer
53 nodes

tanh 0.001 256 0.50997

2 layers
28 nodes

tanh 0.001 128 0.50997

1 layer
53 nodes

sigmoid 0.002 32 0.50952

2 layers
28 nodes

relu 0.002 64 0.50909

2 layers
53 nodes

tanh 0.0005 128 0.50906

1 layer
28 nodes

relu 0.0005 32 0.50906

1 layer
28 nodes

sigmoid 0.001 512 0.50885

1 layer
28 nodes

tanh 0.001 512 0.50885

Table 4.13: Yields, in percent, from different betting strategies with single bets placed at random
time points in each match.

Fixed
bet

Fixed
return

Kelly
Variance-
adjusted

Minimum -0.58 4.45 -6.31 8.99
Maximum 10.66 15.65 0.12 18.31
Average 6.37 11.87 -1.68 14.57
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Figure 4.13: Bankroll values with the fixed bet strategy. Shows the worst and the best simulation,
and the average bankroll value.

Figure 4.14: Bankroll values with the fixed return strategy. Shows the worst and the best
simulation, and the average bankroll value.
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Figure 4.15: Bankroll values with the Kelly strategy. Shows the worst and the best simulation,
and the average bankroll value.

Figure 4.16: Bankroll values with the variance-adjusted strategy. Shows the worst and the best
simulation, and the average bankroll value.
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As shown in the figures, the difference between the worst and the best runs are smaller,
compared to the previous cases. Two of the strategies, the variance-adjusted and fixed return
strategy, also achieved a positive yield on their worst run. The Kelly strategy’s results are still
rather poor, where the best run is barely giving a positive yield.

Betting simulation 2

Table 4.14 shows the yields from the simulations where bets were placed at the same fixed
time point in each simulation. Placing bets at the 75th and 90th gives a positive yield for all the
strategies, except for the Kelly strategy. The Kelly strategy gives a negative yield for all the time
points, which matches the results from the first betting simulation. The three other strategies
also give a positive yield at the 30th minute, which has not been the case for the previous cases.
The highest yield was achieved using the variance-adjusted strategy, at the 90th minute in the
matches.

Table 4.14: Yields, in percent, when placing bets at fixed time points in each match.

Min
Fixed
bet

Fixed
return

Kelly
Variance-
adjusted

15 -1.98 -0.89 -4.86 0.43
30 2.28 3.58 -3.55 3.86
45 -5.67 -1.01 -11.44 0.24
60 -1.97 -3.28 -4.91 -3.32
75 2.37 3.25 -3.20 3.36
90 8.09 27.09 -43.46 28.06

Betting simulation 3

Table 4.15 shows the results from the simulations where multiple bets could be placed in each
match. Considering the good results from the first betting simulation, the results from this
simulation were rather poor. None of the strategies produced a positive average yield. The
best average yield was achieved using the variance-adjusted strategy that goes all in on the new
prediction. The simulations with this strategy are displayed in Figure 4.17.

Table 4.15: Yields, in percent, when possibly placing multiple bets in each match.

Continuous
Kelly 1

Continuous
variance-

adjusted 1

Continuous
Kelly 2

Continuous
variance-

adjusted 2
Minimum -16.52 -3.55 -13.88 -3.24
Maximum -5.51 0.56 -4.58 0.45
Average -9.52 -0.63 -8.59 -0.49
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Figure 4.17: Bankroll values with the variance-adjusted strategy that goes all in on the new
prediction. Shows the worst and the best simulation, and the average bankroll value.

4.3.5 Case 4

Case 4 consists of data from the English Premier League and uses all the available features as
input.

Network parameters

Table 4.16 shows the ten combinations of network parameters that obtained the highest accura-
cies. All the top accuracies were achieved by the RNN. An RNN with 2 LSTM layers, 64 units in
each layer, and a 0.001 learning rate gave the highest validation accuracy. This setup achieved
an accuracy of 0.56274, which is better than the previous cases.

Betting simulation 1

Figures 4.18 to 4.21 show how the bankroll develops during the betting simulations, using the
different betting strategies while betting at random time points. The yields from the simulation
are showed in Table 4.17. For Case 4, using the Kelly strategy gave the best average yield, which
was not the case for any of the previous cases. The Kelly strategy’s average yield is also better
than the baseline. The other strategies gave a positive average yield as well.
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Table 4.16: Best network parameters with Case 4. The blue-colored background indicates an
RNN.

Number of hidden
layer(s) and

number of nodes
in each layer

Hidden layer(s)
activation

Learning rate Batch size
Validation
accuracy

2 layers
64 nodes

LSTM
with tanh

0.001 - 0.56274

2 layers
64 nodes

LSTM
with tanh

0.003 - 0.55283

4 layers
64 nodes

LSTM
with tanh

0.001 - 0.55221

6 layers
64 nodes

LSTM
with tanh

0.001 - 0.54660

4 layers
128 nodes

LSTM
with tanh

0.001 - 0.54512

4 layers
32 nodes

LSTM
with tanh

0.001 - 0.54431

2 layers
128 nodes

LSMT
with tanh

0.003 - 0.54319

2 layers
64 nodes

LSTM
with tanh

0.002 - 0.54290

2 layers
32 nodes

LSTM
with tanh

0.001 - 0.54285

2 layers
32 nodes

LSTM
with tanh

0.003 - 0.54249

Table 4.17: Yields, in percent, from different betting strategies with single bets placed at random
time points in each match.

Fixed
bet

Fixed
return

Kelly
Variance-
adjusted

Minimum -1.73 -6.65 -6.83 -7.30
Maximum 8.24 8.29 17.51 15.72
Average 2.60 2.90 6.98 3.81
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Figure 4.18: Bankroll values with the fixed bet strategy. Shows the worst and the best simulation,
and the average bankroll value.

Figure 4.19: Bankroll values with the fixed return strategy. Shows the worst and the best
simulation, and the average bankroll value.
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Figure 4.20: Bankroll values with the Kelly strategy. Shows the worst and the best simulation,
and the average bankroll value.

Figure 4.21: Bankroll values with the variance-adjusted strategy. Shows the worst and the best
simulation, and the average bankroll value.
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The figures show that the worst run generates a negative yield with all the strategies. There
is a big difference between the worst and best run, indicating that the network is not very robust.
However, the test set is much smaller for Case 4, as it only includes matches from the Premier
League. Therefore, each match has a greater impact on the final yield. This is the only case
that generated a positive average yield for all the strategies, which we can see from the yellow
graphs. The best runs also gave high yield for all the strategies, where the previous cases had
bigger differences between the strategies.

Betting simulation 2

Table 4.18 shows the yields from the simulations where bets were placed at the same fixed time
point in each simulation. Unlike the previous cases, Case 4 gave positive yields when placing bets
at the 15th and 30th minute, with all the strategies. Three of the strategies also gave positive
yields at the 60th minute, except Kelly. Similar to the other cases, placing bets at the 90th
minute gave high yield. The highest yield was achieved using the Kelly strategy, at the 90th
minute in the matches.

Table 4.18: Yields, in percent, when placing bets at fixed time points in each match.

Min
Fixed
bet

Fixed
return

Kelly
Variance-
adjusted

15 8.15 5.69 16.37 6.29
30 5.32 2.27 12.81 4.29
45 -4.51 -4.33 -8.74 -1.74
60 7.60 5.66 -11.54 2.65
75 -2.80 -1.72 -10.23 -2.36
90 46.51 46.46 47.84 46.56

Betting simulation 3

Table 4.19 shows the results from the simulations where multiple bets could be placed in each
match. All the strategies gave a positive average yield, where both Kelly strategies gave yields
that are better than the baselines. The best average yield was achieved using the Kelly strategy
that goes all in on the new prediction. The simulations with the best strategy are displayed in
Figure 4.22. This strategy gave an average yield of 11.72, and a maximum Yield of 23.91. As
seen from the charts, the simulation giving the maximum yield ended with finale bankroll value
over 1750, while the finale bankroll value is slightly above 900 on average.

Table 4.19: Yields, in percent, when possibly placing multiple bets in each match.

Continuous
Kelly 1

Continuous
variance-

adjusted 1

Continuous
Kelly 2

Continuous
variance-

adjusted 2
Minimum -2.71 -7.77 -1.71 -5.17
Maximum 23.96 8.87 23.91 8.26
Average 10.59 2.68 11.72 2.75
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Figure 4.22: Bankroll values with the Kelly strategy that goes all in on the new prediction.
Shows the worst and the best simulation, and the average bankroll value.

4.3.6 Case 5

Case 5 consists of data from the English Premier League and uses only EGRT and xG as input.

Network parameters

Table 4.20 shows the ten combinations of network parameters that obtained the highest accura-
cies. For Case 5, all the top accuracies were achieved by the feedforward network. A feedforward
network with 1 hidden layer, 5 nodes in the hidden layer, the tanh activation function, a 0.001
learning rate, and batch size of 64 gave the highest validation accuracy. This gave an accuracy
of 0.60052, which is by far the highest accuracy achieved out of all the cases. All top ten combi-
nations of parameters for Case 5 gave a higher validation accuracy than what has been achieved
with the other cases.

Betting simulation 1

Figures 4.23 to 4.26 show how the bankroll develops during the betting simulations, using the
different betting strategies while betting at random time points. The yields from the simulation
are showed in Table 4.21. For Case 5, using the variance-adjusted strategy gave the best average
yield. Further, all strategies generated a positive yield on average, but none were better than
the top baseline.
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Table 4.20: Best network parameters with Case 5.

Number of hidden
layer(s) and

number of nodes
in each layer

Hidden layer(s)
activation

Learning rate Batch size
Validation
accuracy

1 layer
5 nodes

tanh 0.001 64 0.60052

1 layer
4 nodes

relu 0.002 32 0.60050

1 layer
5 nodes

tanh 0.002 32 0.59813

1 layer
5 nodes

tanh 0.002 256 0.59577

1 layer
4 nodes

tanh 0.001 64 0.59460

1 layer
4 nodes

tanh 0.002 64 0.59220

1 layer
4 nodes

relu 0.0005 32 0.58980

1 layer
5 nodes

sigmoid 0.002 32 0.58868

1 layer
5 nodes

tanh 0.002 64 0.58863

1 layer
4 nodes

tanh 0.001 32 0.58746

Table 4.21: Yields, in percent, from different betting strategies with single bets placed at random
time points in each match.

Fixed
bet

Fixed
return

Kelly
Variance-
adjusted

Minimum -25.94 -19.83 -28.50 -15.15
Maximum 31.82 22.36 25.32 21.83
Average 2.02 1.27 0.19 3.84
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Figure 4.23: Bankroll values with the fixed bet strategy. Shows the worst and the best simulation,
and the average bankroll value.

Figure 4.24: Bankroll values with the fixed return strategy. Shows the worst and the best
simulation, and the average bankroll value.
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Figure 4.25: Bankroll values with the Kelly strategy. Shows the worst and the best simulation,
and the average bankroll value.

Figure 4.26: Bankroll values with the variance-adjusted strategy. Shows the worst and the best
simulation, and the average bankroll value.
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As with the previous case, we can see a big difference between the best and the worst run.
Common for all the strategies is a large positive yield for the best runs and a similarly large
negative yield for the worst runs. The yellow graph reveals that all of the strategies, on average,
finished with a bankroll bigger than the initial bankroll, which is also visible from the yields in
Table 4.21.

Betting simulation 2

Table 4.22 shows the yields from the simulations where bets were placed at the same fixed time
point in each simulation. As with Case 4, Case 5 also generated positive yields when placing
bets at the 15th and 30th minute. The only exception is using the fixed return strategy at the
15th minute, which gave a yield of -0.57. A negative yield was achieved when placing bets at
the other time points. All the other time points gave negative yields, with the exception of the
Kelly strategy at the 45th minute. At the 90th minute, none of the strategies placed any bets
in any of the 79 matches. The highest yield was achieved using the Kelly strategy, at the 30th
minute in the matches.

Table 4.22: Yields, in percent, when placing bets at fixed time points in each match.

Min
Fixed
bet

Fixed
return

Kelly
Variance-
adjusted

15 0.08 -0.57 4.07 1.74
30 10.71 7.79 12.90 8.96
45 -5.77 -10.43 12.38 -7.01
60 -10.80 -11.64 -23.53 -12.74
75 -2.05 -1.59 -10.75 -1.82

90
No bets
taken

No bets
taken

No bets
taken

No bets
taken

Betting simulation 3

Table 4.23 shows the results from the simulations where multiple bets could be placed in each
match. All strategies gave a negative average yield, and only the variance-adjusted strategies
gave a positive yield on their best run. The best average yield was achieved using the variance-
adjusted strategy that goes all in on the new prediction. The simulations with this strategy are
displayed in Figure 4.27.

Table 4.23: Yields, in percent, when possibly placing multiple bets in each match.

Continuous
Kelly 1

Continuous
variance-

adjusted 1

Continuous
Kelly 2

Continuous
variance-

adjusted 2
Minimum -8.56 -5.56 -6.80 -2.79
Maximum -1.75 0.32 -1.41 0.59
Average -6.01 -1.27 -4.14 -0.45
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Figure 4.27: Bankroll values with the variance-adjusted strategy where previous bets on other
outcomes are considered as lost bets. Shows the worst and the best simulation, and the average
bankroll value.

4.3.7 Case 6

Case 6 consists of data from the English Premier League and uses match events as input.

Network parameters

Table 4.24 shows the ten combinations of network parameters that obtained the highest accura-
cies. All the top accuracies were achieved by the feedforward network while betting at random
time points. A feedforward network with 1 hidden layer, 53 nodes in the hidden layer, the tanh
activation function, a 0.0005 learning rate, and a batch size of 64 gave the highest validation
accuracy. This setup gave an accuracy of 0.53754, which is higher than the top accuracy in Case
3, which also only used match events as input.

Betting simulation 1

Figures 4.28 to 4.31 show how the bankroll develops during the betting simulations, using the
different betting strategies. The yields from the simulation are showed in Table 4.25. For Case
6, using the variance-adjusted strategy gave the best average yield. This was the only strategy
that achieved a positive average yield, which also is better than the top baseline.
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Table 4.24: Best network parameters with Case 6.

Number of hidden
layer(s) and

number of nodes
in each layer

Hidden layer(s)
activation

Learning rate Batch size
Validation
accuracy

1 layer
53 nodes

tanh 0.0005 64 0.53754

2 layers
53 nodes

relu 0.002 64 0.53635

2 layers
28 nodes

tanh 0.001 32 0.53630

1 layer
28 nodes

relu 0.002 32 0.53512

1 layer
28 nodes

tanh 0.002 256 0.53397

2 layers
53 nodes

tanh 0.002 64 0.53394

3 layers
28 nodes

tanh 0.001 32 0.53273

1 layer
28 nodes

tanh 0.0005 64 0.53036

1 layer
28 nodes

relu 0.002 256 0.53034

1 layer
53 nodes

tanh 0.001 256 0.53034

Table 4.25: Yields, in percent, from different betting strategies with single bets placed at random
time points in each match.

Fixed
bet

Fixed
return

Kelly
Variance-
adjusted

Minimum -7.47 -7.13 -8.25 1.92
Maximum 3.66 7.88 3.69 14.72
Average -1.77 0.81 -1.94 9.33
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Figure 4.28: Bankroll values with the fixed bet strategy. Shows the worst and the best simulation,
and the average bankroll value.

Figure 4.29: Bankroll values with the fixed return strategy. Shows the worst and the best
simulation, and the average bankroll value.



4.3. EXPERIMENTAL RESULTS 59

Figure 4.30: Bankroll values with the Kelly strategy. Shows the worst and the best simulation,
and the average bankroll value.

Figure 4.31: Bankroll values with the variance-adjusted strategy. Shows the worst and the best
simulation, and the average bankroll value.
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Similar to the two other cases using only matches from the Premier League, the difference
between the best and worst run is big. This can be seen in the figure. However, the variance-
adjusted strategy gives a positive yield even on its worst run, which is shown with the red graph.

Betting simulation 2

Table 4.26 shows the yields from the simulations where bets were placed at the same fixed time
point in each simulation. A positive yield was achieved when placing bets at the 15th, 30th
and 60th minute, with all the strategies. The other time points generated negative yields, with
all strategies. The highest yield was achieved using the variance-adjusted strategy, at the 15th
minute in the matches.

Table 4.26: Yields, in percent, when placing bets at fixed time points in each match.

Min
Fixed
bet

Fixed
return

Kelly
Variance-
adjusted

15 10.75 11.43 16.16 19.83
30 5.36 7.49 5.45 13.72
45 -7.10 -6.38 -14.64 -5.15
60 6.67 1.23 5.98 0.22
75 -15.36 -16.05 -8.52 -15.35
90 -10.25 -10.25 -10.25 -10.25

Betting simulation 3

Table 4.27 presents the results from the simulations where multiple bets could be placed in each
match. All the strategies produced a positive average yield, but none that were better than the
best baseline. Only the best Kelly run, where previous bets on other outcomes are considered as
lost bets, achieved a yield better than the best baseline. Further, the variance-adjusted strategy
where previous bets on other outcomes are considered as lost bets finished with positive yield
on its worst run. This strategy also achieved the best average yield. The simulations with this
strategy are displayed in Figure 4.32.

Table 4.27: Yields, in percent, when possibly placing multiple bets in each match.

Continuous
Kelly 1

Continuous
variance-

adjusted 1

Continuous
Kelly 2

Continuous
variance-

adjusted 2
Minimum -2.42 0.82 -2.73 -0.20
Maximum 6.37 4.01 5.52 4.76
Average 1.87 2.44 1.53 2.18
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Figure 4.32: Bankroll values with the variance-adjusted strategy where previous bets on other
outcomes are considered as lost bets. Shows the worst and the best simulation, and the average
bankroll value.

4.3.8 Summary

The first part of experiments, finding network parameters that resulted in a high validation
accuracy, delivered promising results for all the cases. All cases had a validation accuracy, with
their top setup, higher than the baseline at 0.44. Case 5 achieved the highest accuracy, at
0.60052.

Table 4.28: The average yield values, where one bet was placed in each match at a random time.
Yellow-colored background marks a positive average yield. Green-colored background indicates
that also the worst run had a positive yield.

Fixed
bet

Fixed
return

Kelly
Variance-
adjusted

Case 1 -0.15 -0.24 -4.43 1.11
Case 2 -2.84 0.14 -7.25 1.91
Case 3 6.37 11.87 -1.68 14.57
Case 4 2.60 2.90 6.98 3.81
Case 5 2.02 1.27 0.19 3.84
Case 6 -1.77 0.81 -1.94 9.33

Table 4.28 summarizes the yield achieved by all the betting strategies in the different cases
for the first betting simulation. For the first betting simulation, where only one bet was placed
in each match, all cases were able to generate profit with at least one of the strategies. The
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variance-adjusted strategy achieved a positive yield with all cases, while the other strategies had
varying results. The Kelly strategy performed the worst, and only achieved a positive yield in
Case 4 and Case 5. This strategy is also the only strategy that went bankrupt in some runs.
However, in Case 4, the Kelly strategy achieved the highest average yield out of all the strategies.
Case 4 and Case 5 were also the only cases that achieved positive average yields with all betting
strategies.

There are three combinations of cases and betting strategies that achieved a positive yield
also on their worst run. Out of these, the one using the variance-adjusted strategy with Case 3
gave the highest average yield at 14.57. This combination’s worst run had a yield as big as 8.99.

For the second part of the simulations, where bets were placed at fixed time points, the results
varied. In general, a positive yield was achieved when betting late in the match with the three
first cases, which consisted of data from all five leagues. For the three last cases, which consisted
of data from only the Premier League, a positive yield was achieved when betting early in the
match. The highest yield, 54.11, was achieved in Case 1, with the Kelly strategy at the 90th
minute.

Table 4.29 summarizes the yield achieved by all the betting strategies in the different cases
for the last betting simulation. The last betting simulation allowed multiple bets in each match,
where previous bets were taken into consideration. Case 4 and Case 6 achieved positive yield
with all the strategies. The variance-adjusted strategy that considered previous bets on other
outcomes as lost bets also had a positive yield on its worst in Case 6. Case 2, Case 3 and Case
5 had a negative yield with all strategies.

Table 4.29: The average yield values, where multiple bets were placed in each match. A yellow-
colored background marks a positive average yield. A green-colored background indicates that
also the worst run had a positive yield.

Continuous
Kelly 1

Continuous
variance-
adjusted 1

Continuous
Kelly 2

Continuous
variance-
adjusted 2

Case 1 -1.53 0.60 -1.19 0.19
Case 2 -7.51 -1.61 -6.53 -1.50
Case 3 -9.52 -0.63 -8.59 -0.49
Case 4 10.59 2.68 11.72 2.75
Case 5 -6.01 -1.26 -4.14 -0.45
Case 6 1.87 2.44 1.53 2.18



Chapter 5

Discussion

In this chapter, we will discuss the model and take a deeper look into the results from the previous
chapter.

5.1 Calibration

The networks output predictions as probabilities. In order to measure how accurate the proba-
bilities generated are, a calibration is performed. This method validates, for instance, whether
a 60% prediction actually happens 60% of the times and not just 50%. If an outcome has an
odds of 2, there is a difference in how much one should consider betting if the probability of
the outcome happening is 60% instead of 50%. This method is also used by FiveThirtyEight, a
website specializing in forecasts when they evaluate their predictions [Silver, 2019].

We will take a look at the probabilities generated by the network in Case 3 and Case 4.
The data in Case 3 consisted of matches from all the five leagues and used only match events
as input. This case had good results from Betting simulation 1, where the variance-adjusted
strategy had an average yield of 14.57. However, in Betting simulation 3, none of the strategies
used generated a positive average yield. Case 4 had positive yields with all strategies in the two
simulations and is the only case achieving this.

Figures 5.1 and 5.2 show the calibration plots for the two cases, which compares predictions to
the actual outcomes. The calibrations are performed on the test set used for Betting simulation
3, and includes all the possible outcomes. For both plots, all predictions have been rounded to the
nearest ten. The missing points in the charts, e.g. for 90% in Case 3, indicates that the network
made no predictions where the outcome had a probability between 85% - 94%. Optimally, each
point should be on the diagonal. In general, if a point is in the top triangle, above the diagonal,
the predictions are underconfident. This means that the predicted probabilities are lower than
the actual probabilities, which can lead to missed opportunities in betting. A point placed in the
bottom triangle indicates the predictions being overconfident, meaning the predicted probabilities
being higher than the actual probabilities. This can lead to a number of suboptimal bets being
placed.

The figures indicate that Case 3 is well calibrated. Most of the points are either on the diag-
onal, or close to it. The only exception is that it is being underconfident at the 0%-predictions.
The calibration for Case 4 also seems to be rather good, but are a little overconfident from the
50%-predictions to 80%-predictions compared to Case 3, meaning the probabilities generated
from the neural network are slightly too high.
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Figure 5.1: Case 3 predictions - Calibration on test set.

Figure 5.2: Case 4 predictions - Calibration on test set.
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Figure 5.3: Case 3 odds - Calibration on test set.

The results from Case 4, on average, generated positive yields with all betting strategies (see
Table 4.28 and 4.29). However, Case 4 had negative yields on the worst run with all strategies.
With Case 4 being overconfident, the probabilities made by the neural network are higher than
the odds indicate, causing us to bet more than a better-calibrated network. Even if the calibration
is rather good, being a little overconfident can ultimately lead to a negative yield. Case 3, being
better calibrated than Case 4, produces probabilities that better match the actual outcome. This
could be the reason some of the strategies used with Case 3 always have a positive yield, even
on the worst run. On the other hand, all the strategies where multiple bets in each match where
allowed generated a negative average yield with Case 3.

Further, Figure 5.3 shows the calibration plot for the odds from Sportradar. The figure
illustrates that their calibration is pretty good, almost all the points are on the diagonal. As
these are the odds the betting simulations are running against, getting an upper hand for a
bettor is not easy as they are nearly spot on with their predicted probabilities. However, there
are small differences in the probabilities that decides if a bet is to be placed, and we have seen
in Section 4.3 that making a profit is possible. Calibration is not everything, and the optimal
solution is not a model that is calibrated well. That would be a system that is calibrated and
always says that the probability is either 0% or 100%.

5.2 Predictions vs. Actual Outcomes

From the first part of the tests, Case 2 had the worst validation accuracy, while Case 5 achieved
the highest. Further, in Betting simulation 1, Case 5 generated a positive average yield with all
strategies, while Case 2 had varying results. Figures 5.1 and 5.2 show the confusion matrices
generated by the predictions on the test sets, for Case 2 and Case 5 respectively.
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Figure 5.4: Case 2 - Confusion matrix, the normalized row sum is equal to 1.

Figure 5.5: Case 5 - Confusion matrix, the normalized row sum is equal to 1.
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Case 2 predicted rather well when the home team actually scored the next goal, and when
there were no more goals in the game. It struggled more with producing the correct prediction
when the away team was the next goal-scoring team, where 49% of the predictions where in-
correctly on the home team. When the away team was the actual outcome, Case 2 predicted
correctly only 32% of the times. Case 5 struggled even more with predicting correctly when the
away team was the correct outcome, predicting this only 13% of the time. However, it performs
considerably better than Case 2 when it comes to the two other outcomes. When the home team
scoring the next goal is the actual outcomes, Case 5 predicts correct 73% of the times. Even
though Case 5 almost exclusively predicts wrong when the away team is the next goal-scoring
team, the overall accuracy is better than with Case 2. The overall accuracy with the test set for
Case 2 and Case 5 was 0.50 and 0.53, respectively.

5.3 The 90th-Minute Betting

The yields from the different simulations had varying results, but some were exceptionally high.
The highest yield achieved across all cases and simulations were when betting only at the 90th
minute using the Kelly strategy, in Case 1. This achieved an average yield of 54.11, where the
worst and best runs had yields of 34.29 and 72.95, respectively. Looking more detailed into this
betting simulation reveals that this might not be the best strategy.

The highest yield was achieved in a run that only placed three bets during a total of 353
games. All the bets were placed on that none of the teams would score a goal in the remaining
time, and at the 90th minute, the probability for this is rather high. The worst run, with a yield
of 34.29, placed a total of 20 bets. 19 of these bets were placed on none, while the remaining bet
was placed on the home team. The bet on the home team was the only bet that lost and the
only bet that was placed on either of the teams scoring in all the five runs.

Using this strategy means the bettor has to be patient. This requires the bettor to wait for
the bets to be feasible, which previously mentioned does not happen very often during the 353
games. If the bettor is patient and able to follow the odds at every game to check if a bet is
feasible, making a profit is possible. However, for a bettor, placing only three bets during 353
games is probably not very fulfilling for the bettor’s satisfaction. On the other hand, creating
an automated system for this is possible, but placing only three bets is not sufficient to get a
statistically significant result.

5.4 Feature Impact

This section will look at how the predictions in a match vary with the different cases, as different
features are used. Adding EGRT and xG to the data set had a big impact on the predictions.
A big difference between the EGRT values would make the model choose the team with the
greatest value to be the next goal scorer. With a small difference between the EGRT values, the
xG values would be the deciding factor. Match events, on the other hand, did not have a major
impact on the predictions, compared to EGRT and xG. Match time was also used as a feature in
every case, and proved to be useful to discover the increase of the probability of no more goals
throughout a match. Using the match time as a feature was redundant in the cases where EGRT
and xG were included. The EGRT was already using the time to calculate its values, in other
words, time is already represented in the EGRT value.

Figures 5.6 to 5.8 show the probability distribution during a match, with Case 1 to 3. These
cases use different features, which are impacting the predictions. The match is between AFC
Bournemouth and Wolverhampton Wanderers, where AFC Bournemouth played at home. The
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Figure 5.6: Probability distribution during a match for Case 1. Case 1 uses the EGRT value,
the xG value and match events as input.

Figure 5.7: Probability distribution during a match for Case 2. Case 2 uses the EGRT and xG
values as input.
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Figure 5.8: Probability distribution during a match for Case 3. Case 3 uses only match events
as input.

match ended with both teams scoring one goal each, both on a penalty. In all three cases, the
home team is being favored as the team that scores the next goal. Case 3 gives the home team a
probability of being the first goal scorer around 0.5, at the beginning of the match. This model
does not use the EGRT and xG values, but only match events as input. In Case 1 and 2, which
use the EGRT and xG values as input, the initial probability is around 0.6. This is caused by
AFC Bournemouth having a larger EGRT value. The EGRT is almost even after 20 minutes,
but the home team’s xG value is much larger than the away team’s, indicating that they have
had more chances up to this point. Therefore, AFC Bournemouth is still considered being the
most likely team to score the next goal.

Right around the 15th-minute mark, we can see a large spike for the home team and a decrease
for the enemy team, caused by a penalty shot for the home team. This can only be seen in the
figures for Case 1 and 3, as Case 2 does not use match events as input. Even though Case 2
does not use these, increases in probability are still visible for the team that was awarded the
penalty. However, this increase occurs right after the penalty, which is caused by a significant
increase in the team’s xG, as a penalty is considered a big chance. Two other spikes occur at the
80th-minute mark, both caused by penalty shots for away team and home team. The penalty
shots causes the probability to increase to just below 0.8, which corresponds well to the average
percentage of successful penalty shots at 76.8% [Hawerchuk, 2010]. With the first penalty, the
probability for the awarded team to score the next goal increases at the expense of the opposing
team. For the two other penalties, occurring in the later stages of the match, the probability
now increases at the expense of the probability for no more goals. Penalties are the only event
that changes the predictions this substantially.

From the figures for Case 1 and 3, we can see there are no other major spikes caused by events
besides the ones caused by the penalties, only a lot of minor ones. These are created by match
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events, such as cards and corners. However, these smaller spikes in the predicted probabilities
can be enough to decide if a bet is to be placed or not. Further, we can see from all three graphs
that the probability for no more goals in the game increases as the match time increases. This
naturally applies to most of the matches, as there is less time for the teams to score a goal.
For Case 2, the team’s probability decreases smoothly without any spikes, as the match time
increases and the EGRT values gradually decrease. However, as mentioned, Case 2 has a couple
of bumps in its smoothly-decreasing graphs for the teams’ probability. This can be caused by a
penalty, or other types of chances created that affects the xG values. This can be seen in Figure
5.7 around the 30th minute, where a decrease in the home team’s probability occurs after an
increase in the away team’s xG value. Match events that causes spikes in Case 1 and 3 does not
affect the the probabilities in Case 2, unless they increase the xG values.

5.5 Using Other Network Parameters

Case 1 is the case that uses the most data. It consists of data from all the leagues and uses all the
features as input. However, in Betting simulation 1, Case 1 was one of the worst cases in terms of
the yield. The seemingly best network setup, the one achieving the highest validation accuracy,
was with an RNN. Throughout the results in Section 4.3, we have seen that the highest validation
accuracy does not necessarily generate the highest yield. Running the betting simulations on
Case 1 with another setup, that initially had a lower validation accuracy, might not give poorer
results.

The best setup using a feedforward network for Case 1, was the fourth best overall. Choosing
the combination of network parameters for this setup gives better results than when the param-
eters achieving the highest accuracy were used. The results from Betting simulation 1 are shown
in Table 5.1. The results are remarkably better than previously achieved with Case 1. All the
strategies achieve a positive average yield, which was previously only achieved with two cases. In
addition, the fixed return strategy and the variance-adjusted strategy achieved a positive yield
on their worst run. This has previously happened in two cases as well, but not while the average
yield was positive with all strategies.

Table 5.1: Yields, in percent, from different betting strategies with single bets placed at random
time points in each match.

Fixed
bet

Fixed
return

Kelly
Variance-
adjusted

Minimum -2.91 2.18 -4.03 6.29
Maximum 11.05 11.73 8.29 13.17
Average 4.33 6.99 1.95 9.33

The results from the Betting simulation 2, also differs from the previous results with Case 1.
This is shown in Table 5.2. Positive yields are now generated when betting in the 15th and 30th
minute, which previously produced negative yields. The yield is still positive when betting at
the end of the game, as before, but not with all strategies. Using the Kelly strategy at the 90th
minute generates a yield of -21.71. This was previously as high as 54.11. As the results from
Section 4.3 indicates, the Kelly strategy can give varying results.
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Table 5.2: Yields, in percent, when placing bets at fixed time points in each match.

Min
Fixed
bet

Fixed
return

Kelly
Variance-
adjusted

15 3.68 2.99 2.21 2.61
30 7.89 9.21 0.37 10.54
45 -12.50 -9.34 -12.40 -7.46
60 -0.64 -0.79 -9.72 -1.88
75 0.34 2.27 -6.53 2.89
90 -8.76 2.57 -21.71 5.19

The results from the last simulation, Betting simulation 3, are still pretty poor. Table 5.3
displays this. Both the average yields and the maximum yields are worse with all strategies. The
only improvement on the average yields is with the variance-adjusted strategy, that goes all in
on new predictions, which increased from 0.19 to 0.35. In contrary to Betting simulation 1 and
2, the results from Betting simulation 3 are not better than what was previously achieved.

Table 5.3: Yields, in percent, when possibly placing multiple bets in each match.

Continuous
Kelly 1

Continuous
variance-

adjusted 1

Continuous
Kelly 2

Continuous
variance-

adjusted 2
Minimum -8.98 -1.26 -7.75 -1.05
Maximum -3.73 1.32 -2.89 1.30
Average -6.11 0.32 -4.92 0.35

5.6 Discussion

Looking at the results in Section 4.3, we can see that the results from the different cases are
varying. In the first betting simulations, where one bet was placed at a random time point in
each match, the variance-adjusted strategy generated the highest yields in general. Two of the
cases, Case 3 and Case 6, also had positive yields on their worst run, while the average in these
cases was also better than the baselines. Only the Kelly strategy achieved a higher average yield
in one of the cases, but this strategy had a negative yield with most of the cases.

Further, the model with the highest validation accuracy does not necessarily give the best
yield. The variance-adjusted strategy, which was the best strategy overall, showed that Case 3
is the most successful case when it comes to average yield. As mentioned, this case also had a
positive yield on its worst run. However, this is the case with the worst validation accuracy by
far, out of all the cases. Case 6 is considered the best case when it comes to yield, compared to
the two other cases using only matches from the Premier League. As with Case 3, this case has
the worst validation accuracy out of the three cases using only matches from the Premier League.
Common for Case 3 and Case 6 is that both cases only use match events as input, which we
saw in Section 5.4 resulted in a lot of spikes for the predicted probabilities. These small spikes,
caused by different match events, could be enough for a betting strategy to decide if a bet is to
be placed or not.

The indication that the highest validation accuracy does not give the highest yield, is also
demonstrated in Section 5.5. This covers our test with Case 1 and new network parameters,
which had a lower validation accuracy than the initial network setup. This revealed that the
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yield from the network with these parameters was superior to the previous network setup. A
solution for this could be running a betting simulation on the validation set, and choosing the set
of network parameters that generated the highest yield. However, we did not have odds available
for the validation set, and could therefore not run any betting simulations based on this.

Looking at Betting simulation 2 with the variance-adjusted strategy, gave varying results. In
general, a positive yield was achieved when betting late in the match with the three first cases,
which consisted of data from all five leagues. For the three last cases, which consisted of data
from only the Premier League, a positive yield was achieved when betting early in the match.
Case 3 is the exception, which generated a positive yield at all time points, except when betting at
the 60th minute. However, only betting at one time-point may not be the most realistic betting
scenario. As we have seen in Section 5.3, betting only at the 90th minute greatly restricts the
number of bets placed. On average, under 15 bets were placed in each of these simulation, out
of 353 matches.

The continuous betting gave rather poor results, compared to Betting simulation 1. Only
three of the cases had a positive average yield using a variant of the variance-adjusted strategy,
while the first betting simulation had a positive yield in all cases. This indicates that the proposed
strategies for continuous betting might not be the optimal strategy.



Chapter 6

Conclusion and Future Work

This chapter concludes the thesis, and proposes some suggestions for future work.

6.1 Conclusion

Throughout this project, the tests done have been in an attempt to find answers to the research
questions from Section 1.2, and to try to reach the main goal of the project.

Research question 1 What features are important when using machine learning to predict the
next goal-scoring team?

The accuracies from the different cases revealed that the cases using only matches from the
Premier League achieved the highest accuracies. The highest accuracy, by far, was achieved by
Case 5. This case used only matches from the Premier League and the EGRT and xG values as
input. For the three cases including matches from all the leagues, Case 2 achieved the highest
accuracy. This case used the EGRT and xG values as input, as with Case 5. Based on this,
it seems like only including a single league gives the highest accuracy. Further, using only the
EGRT and xG values as input gives higher accuracy than the cases where the match events are
included. In addition, the accuracies achieved by all the cases were higher than the baselines.

Research question 2 How can the predictions be used to gain profit when betting?

When placing only single bets in each match in Betting simulation 1, positive yields were often
achieved. Overall, the variance-adjusted strategy gave the best results. In the first betting
simulation, when bets were placed at a random time point, this strategy achieved a positive
yield in all cases. Contrary to the cases achieving the highest accuracies, the cases using match
events and excluding the EGRT and xG values as input gave the highest yields. This was Case 3
and Case 6. These two cases generated positive yields even on their worst run, and their average
yield is also higher than the baselines.

The continuous betting did not achieve positive yields as frequent as Betting simulation 1.
Case 4 and 6 had positive average yields with all strategies, but only one of the strategies in
Case 6 had a positive yield in its worst run. Case 4 achieved average yields that were higher than
the baselines using the Kelly strategies. Case 4 and 6 included only matches from the Premier
League. The poorer yields in continuous betting can indicate that the strategies might not be
optimal.
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Goal Use machine learning to predict next goal-scoring team in a football match, in order to get
an edge on bookmakers,

Even though there is a lot of uncertainty in football, and the bookmaker’s odds are well cal-
ibrated, we have shown that it is possible to beat the bookmakers based on predictions made
using machine learning. The variance-adjusted strategy, which gave promising results, uses the
predicted probability from the neural network to decide how much to place in a potential bet,
which was the overall goal with the project.

6.2 Future Work

There have been some limitations to the project, which can be explored in future work.

• Parameters-selection criteria: We have seen that the combination of network param-
eters that achieves the highest validation accuracy, not necessarily gives the highest yield
on a test set. A possibility would be to run a betting simulation on the validation set and
choose the network parameters that achieve the highest yield. We did not have the odds
available for the matches in the validation set and were therefore not able to test this.

• Features: Additional features should also be experimented with. Some of these features
that could be considered are crosses, ball possession and duels won. We did not use these
features as we only included match events that had a timestamp, which these did not
have in the data provided by Sportradar. Other features such as kilometer covered by the
players, heat maps of where the players have been, player ratings and lineups could also
be considered if the data is available.

• More data: Having more matches in the test set would also give results that are more sta-
tistically significant. We only had odds from the matches played in January and February
in the current season available for the simulations.

• Continuous betting: The results from Betting simulation 3 gave rather poor results.
Given the high accuracies achieved, and the good results from Betting simulation 1, these
results might indicate that the proposed strategies for continuous betting might not be
optimal. For future work in this field, finding better strategies for the continuous betting
can be a good starting point.
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