
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lt

y
of

 In
fo

rm
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ri
ca

l
En

gi
ne

er
in

g
D

ep
ar

tm
en

t o
f C

om
pu

te
r

Sc
ie

nc
e

M
as

te
r’

s
th

es
is

Markus Andresen
Simen Nordby Johansen

Deep Convolutional Encoder-Decoder
Networks for Digital Rock Porosity
Segmentation

Master’s thesis in Informatics
Supervisor: Frank Lindseth

July 2019

Markus Andresen
Simen Nordby Johansen

Deep Convolutional Encoder-Decoder
Networks for Digital Rock Porosity
Segmentation

Master’s thesis in Informatics
Supervisor: Frank Lindseth
July 2019

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Computer Science

Abstract
Digital rock physics (DRP) is a modern approach for characterizing physical rock properties.
By modeling grain, multi-phase and pore space in different rock types, institutions can be as-
sisted in locating suitable locations for hydrocarbon storage. Furthermore, producing accurate
models of rock structures can economically assist the oil and gas industry in selecting potential
reservoir extraction sites. DRP is captured using non-destructive imaging technology, micro
computed tomography (micro-CT), producing 2D or 3D images.

Deep learning has in recent years become very successful at accurately and efficiently perform-
ing tasks that previously could only be accomplished by humans. Semantic image segmentation
is a computer vision task with the goal of assigning class labels to each pixel in an image. This
thesis explores the application of multiple deep convolutional encoder-decoder networks to per-
form semantic image segmentation of gray-scale rock images. The provided datasets consist of
three different types of sandstone, Bentheimer, Berea and Carbonate. We present experiments
of combining data augmentation techniques to further increase the richness of the dataset.

Results of the different architectures are compared to each other, and the best performing model
achieves an intersection over union (IoU) score of 88.6% (with a categorical accuracy of nearly
98%). The best performing network is further extended to include multiple adjacent images as
channel inputs to provide additional information. We investigate if a network trained on one or
two rock types can generalize and perform accurate predictions on one not included in training.

i

Sammendrag
Digital rock physics (DRP) er en moderne metode for å karakterisere de fysiske egenskapene til
ulike typer stein. Ved å modellere korn-, flerfaset- og porevolum i forksjellige bergarter, kan en
assistere institusjoner med å finne egnede lokasjoner for lagring av hydrokarboner. Utover dette
kan nøyaktige modelleringer av strukturen i bergarter hjelpe olje- og gassindustrien med å velge
potensielle lokasjoner for utbygging av oljefelt. DRP blir fanget opp ved å benytte micro-CT
for å produsere 2D eller 3D bilder.

I nyere tid har dype læringsmetoder blitt effektive på å oppnå gode resultater på oppgaver som
tidligere kun kunne løses av mennesker. Semantisk bildesegmentering er en datasyns opp-
gave med mål om å assosiere hver pixel-verdi i et bilde med en klasse. I denne avhandlingen
utforsker vi å anvende deep convolutional encoder-decoder-nettverk til å utføre automatisk se-
mantisk bildesegmentering av gråtonebilder av bergarter. Dataen vi har jobbet med består av
tre forskjellige bergarter, Bentheimer, Berea og Carbonate. Vi presenterer eksperimenter der vi
kombinerer dataaugmenterings-teknikker for ytterligere å utvide tilgjengelig data.

Resultatene fra de forskjellige arkitekturene blir sammenlignet med hverandre, og modellen
som gir best resultat oppnår 88.6% intersection over union (IoU). Den beste arkitekturen utvides
til å inkludere flere bilder som ligger ved siden av hverandre, for å gi nettverket mer informasjon.
Vi undersøker også om et nettverk trent på en eller to bergarter kan generaliseres og oppnå gode
resultater på en bergart som ikke var inkludert i treningsprosessen.

ii

Preface

This thesis was written in Trondheim at the Norwegian University of Science and Technology
(NTNU), Faculty of Information Technology and Electrical Engineering, Department of Com-
puter Science. The thesis was accomplished in cooperation with Leonardo Ruspini at Petricore
Norway AS, which provided us with both data and computing power.

Supervisor: Frank Lindseth

iii

Shift in Research Focus
The main focus of this thesis was originally to explore the use of computer vision and deep
learning techniques for automatic interpretation of seismic data. Therefore, the first half of this
project went into understanding seismic, and researching relevant literature that applies deep
convolutional neural networks to this domain.

The base of the research was to do automatic segmentation of faults and facies below the
seabed. Braathen et. al defines a fault as: ”Faults are considered strained volumes of rock,
defining a three-dimensional fault envelope in which host-rock structures and petrophysical
properties are altered by tectonic deformation.” This meaning a clear deformation or offset in
the rock structure. Facies is a geological term somewhat diffuse in its definition. The concept of
facies has traditionally been applied to descriptions of sedimentary and metamorphic (change in
form) rocks [1]. The end goal for this project was to develop a method to accurately predict and
identify horizons (separators between different sediment layers) and faults below the seabed, in
order to potentially locate oil and gas depositories.

Due to a delay in the dataset to be provided, initial experimentation was focused on a
challenge posted on Kaggle. Kaggle is a website encouraging professionals and amateurs to
progress the field of Data Science and Machine Learning. The challenge, named TGS Salt
Identification Challenge, asked competitors to develop a model for segmentation of salt bodies
beneath the Earth’s surface, which is also a problem in the seismic domain. Many of the large
accumulations of oil and gas also have huge deposits of salt below the surface.

However, in February it was decided to shift focus from seismic interpretation to digital
rocks and rock property segmentation. This decision was made because of dataset problems
that would not be feasible to resolve. Appendix A describes in detail the problems encountered
with the seismic datasets that led to this shift, and documents some of the efforts that went into
researching the seismic domain.

iv

Table of Contents

Abstract i

Sammendrag ii

Preface iii

Shift in Research Focus iv

Table of Contents vi

List of Tables vii

List of Figures ix

Abbreviations x

1 Introduction 1
1.1 Background and Motivation . 1
1.2 Goals and Research Questions . 2
1.3 Research Method . 2
1.4 Contribution . 2
1.5 Thesis Structure . 3

2 Background 4
2.1 Digital Rocks . 4
2.2 Computer Vision . 5

2.2.1 Object Recognition Tasks . 5
2.2.2 Applications . 6

2.3 Deep Learning . 6
2.3.1 Motivation . 7
2.3.2 Machine Learning . 7
2.3.3 Artificial Neural Networks . 12
2.3.4 Convolutional Neural Networks . 16

2.4 Related Work . 22
2.4.1 Structured Literature Review Protocol 22

v

TABLE OF CONTENTS

2.4.2 Historical Context of Semantic Segmentation 25
2.4.3 Segmentation of Digital Rock Images Using Deep Convolutional Au-

toencoder Networks . 25
2.4.4 Fully Convolutional Networks for Semantic Segmentation 26
2.4.5 U-Net: Convolutional Networks for Biomedical Image Segmentation . 27
2.4.6 Deep Residual Learning for Image Recognition 27
2.4.7 Segmentation of Coronary Arteries from CT-scans of the Heart Using

Deep Learning . 29

3 Methodology 31
3.1 Digital Rocks Dataset . 31

3.1.1 Generation of Ground Truth . 34
3.2 Developing a Digital Rock Segmentation Network 34

3.2.1 Digital Rock Network (DRNet) . 35
3.2.2 Pyramid Digital Rock Network (PDRNet) 36
3.2.3 Hybrid Digital Rock Network (HDRNet) 38

3.3 Evaluation Metrics . 39

4 Experiments and Results 41
4.1 Experimental Plan . 41
4.2 Experimental Setup . 41

4.2.1 Hardware, Software and Environment 41
4.2.2 Data Preprocessing and Augmentation 42
4.2.3 Hyperparameters . 45

4.3 Experimental Results . 45
4.3.1 DRNet vs PDRNet . 45
4.3.2 HDRNet . 47
4.3.3 Results on Different Types of Sandstone 47

5 Discussion and Conclusion 51
5.1 Discussion . 51
5.2 Conclusion . 53
5.3 Future Work . 53

Bibliography 54

Appendices 58

A Seismic and Salt Identification Challenge 58

B 2017 Kjerland, Digital Rocks Results 70

C Bibliography URLs 79

vi

List of Tables

2.1 Search Words . 23
2.2 Inclusion and quality criteria . 24
2.3 The final selection of included articles. 24

3.1 Intersection over Union between each user and the segmented average, and
shows us that Carbonate gives users the most different results (a data parsing
issues resulted in some missing values for user 4). 34

4.1 Weak Augmentation . 43
4.2 Medium Augmentation . 43
4.3 Strong Augmentation . 44
4.4 DRNet, test set results. 45
4.5 PDRNet, test set results. 46
4.6 HDRNet, test set results. 47
4.7 Hybrid network trained only on Bentheimer, tested on all three rock types sep-

arately. 49
4.8 Hybrid network trained only on Berea, tested on all three rock types separately. 49
4.9 Hybrid network trained only on Carbonate, tested on all three rock types sepa-

rately. 49
4.10 Hybrid network trained on Bentheimer and Berea, tested on all three rock types

separately. 50
4.11 Hybrid network trained on Bentheimer and Carbonate, tested on all three rock

types separately. 50
4.12 Hybrid network trained on Berea and Carbonate, tested on all three rock types

separately. 50
4.13 Hybrid network trained on Bentheimer, Berea and Carbonate, tested on all three

rock types separately. 50

5.1 Table showing the dice scores of Kjerland and our thesis, when trained with
different combinations of rock types. BT = Bentheimer, BR = Berea, CA =
Carbonate. Kjerland dice scores are computed by averaging the scores for each
experiment listed in the Appendix, Section B, Kjerland page 51. 52

vii

List of Figures

2.1 Visual explanation of the different object recognition tasks covered in this sec-
tion, figure adapted from [2]. 6

2.2 Flowchart that shows the components in different types of machine learning
pipelines, grayed out boxes is components that learns from data. Figure adapted
from the Deep Learning textbook [3]. 8

2.3 Three different models fitted to the same data points. Model to the left underfits
and is neither able to fit to the training data well, nor generalizing to new data
points. The model in the middle perfectly fits to the training data and has cap-
tured the underlying structure present in the data and will most likely generalize
well to new data points. Model to the right overfits and is perfectly fit to all data
points but has not captured the underlying structure present in the data and will
probably not do well on unseen data. Figure adapted from the Deep Learning
textbook [3]. 9

2.4 Optimal capacity. Figure from Deep learning textbook [3]. 11
2.5 A neuron/perceptron. Figure adapted from [4]. 13
2.6 Basic feed forward network with one hidden layer. Figure adapted from [5]. . . 13
2.7 Illustration of gradient descent, from the Deep Learning textbook [3]. 15
2.8 Batch Normalization transform applied to activation x over a mini-batch. Equa-

tion from the original paper [6]. 15
2.9 Sobel edge detection kernels of size 3x3. 17
2.10 Shows the first step in a convolution process. Figure adapted from [7]. 17
2.11 Shows resulting features after applying horizontal and vertical sobel filter on

the input image, images from [8]. 18
2.12 The top image shows a convolution on input x3 with a kernel width of 3. We

can see that only 3 of the outputs are affected. In contrast, the bottom image
shows that every output is affected when using matrix multiplication (ANN).
Figure adapted from [3]. 19

2.13 Illustration of pooling. Figures adapted from [9]. 20
2.14 Transposed Convolution; blue is input, green is output, figure adapted from [7]. 21
2.15 Visualization of how an 3d kernel is applied to an 3d input array, Figure from

Kaggle notebook [10]. 22
2.16 The Fully Convolutional Network (FCN) architecture. Figure from paper [11]. . 27
2.17 U-Net architecture, figure from original paper [12]. 28
2.18 Single Residual Block, a building block. Figure adapted from [13]. 28

viii

LIST OF FIGURES

3.1 Shows the class distribution for the different sandstone types, Bentheimer and
Berea has a very similar distribution, Carbonate differs slightly. 32

3.2 Core samples of sandstone, Berea (left), Bentheimer (bottom) and Carbonate
(right). 32

3.3 Four slices from each sandstone volume. Left image shows the Micro-CT, to
the right the corresponding segmented ground truth. In the ground truth slices
black corresponds to pore, grey to multi-phase and white to grain. 33

3.4 DRNet architecture, number of residual down-sampling blocks varies. 35
3.5 Lateral connection for PDRNet, one for each bottom-up and top-down block. . 36
3.6 PDRNet high level architecture, details are left out to highlight differences with

DRNet. 37
3.7 Visualization of input x and ground truth y used to train the hybrid model, two

depth slices are added on each side of the current slice to segment (in red), as
additional channels. 38

3.8 A 5-channeled input convolved with a 1x1x3 filter resulting in a 3-channeled
output. Applying a non linearity (ReLU) to this output allows the network to
learn a mapping that can utilizes the depth information available in the input. . 39

3.9 Intersection over Union. 40

4.1 Validation IoU and training time for HDRNet with increasing amount of depth
channels. Results show that performance increases with additional channels be-
fore it saturates, training time also increases quite a lot. We argue that HDRNet
with 4 depth channels is a good compromise between performance and training
time for this task. HDRNet with zero depth channels is equal to DRNet and
provided as a baseline. Data extracted from Tensorboard and plotted manually. 47

4.2 Plotted predicted segmentation maps for a slice of Carbonate during different
stages of training and ground truth (grain in yellow, multi-phase in green and
pore in purple). These plots indicate that the network only uses half a epoch
before it is able to differentiate between pore and grain, and that most of the
training time is spent learning how to properly segment multi-phase. 48

4.3 Confusion matrix shows that the model seldom confuses grain and pore, this
only happens 1% of the time. Most confusion occurs between pore and multi-
phase, together with multi-phase and grain. Results also shows that grain is
the easiest class to predict thereafter pore and multi-phase which is the most
challenging. Matrix was generated with Matplotlib using the best performing
model on the test set. 49

A.1 Seismic survey by vessel (illustration from RagnarockGeo AS). 58
A.2 Illustration of a slice in a 3D seismic volume 59
A.3 TGS Salt Data. The left image shows the original image, while the right is the

mask where blue pixels belong to sediment and red salt 60

ix

LIST OF FIGURES

Abbreviations

ANN = Artificial Neural Network
CNN = Convolutional Neural Network
CPU = Central Processing Unit
CT = Computed Tomography
DRNet = Digital Rocks Network
DRP = Digital Rock Physics
FCN = Fully Convolutional Network
FPN = Feature Pyramid Network
GPU = Graphical Processing Unit
HDRNet = Hybrid Digital Rocks Network
IoU = Intersection over Union
ML = Machine Learning
PDRNet = Pyramid Digital Rocks Network
ReLU = Rectified Linear Unit
RGB = Red Green Blue
RQ = Research Question
SVM = Support Vector Machine
SLR = Structured Literature Review
TPU = Tensor Processing Unit

x

Chapter 1
Introduction

1.1 Background and Motivation
The future of our planet depends on our capacity to stop emitting CO2 to the atmosphere. How-
ever, we also need to keep growing in order to reduce poverty and improve the quality of life
in developing countries. To achieve this, Carbon dioxide Capture and Storage (CCS) and more
efficient oil and gas production will play an important role. The derivation of rock properties
from high-resolution images (Digital Rock) is a disruptive technology in that it can fundamen-
tally change the way rocks are characterized. Digital rocks is a term commonly used to refer to
3D rock images obtained through micro-CT imaging. Micro-CT has emerged as a technology
that can provide valuable insights in understanding the properties of porous media such as rocks.
The industry standard for analyzing and segmenting rock samples today are operator dependant
and to a large extent done manually by domain experts. This is however time-consuming and
includes the risk of human error. Rock-analysis can help the oil and gas industry to better deter-
mine extraction strategies for reservoirs as well as locating potential rock beds suited for storing
CO2. This thesis explores the possibility for automatically segmenting micro-CT images of dif-
ferent rock types into three properties: grain, micro-phase and pore.

Semantic image segmentation and object detection have become more and more feasible in
recent years, due to advancements in convolutional neural networks (CNN) and improved hard-
ware support. Deep convolutional neural networks (DCNN) has further improved the ability to
accurately segment and classify images. Image segmentation is the process of assigning labels
to each pixel in an image. Image segmentation plays an important part in the success of many
domains such as medical imaging, face recognition and self-driving cars.

Ronneberger et. al. proposed in 2015 a new method for segmenting neuronal structures in
electron microscopic stacks[12]. The network was a breakthrough in the segmentation domain
as it performs much faster than previous models, while maintaining spatial awareness. In ad-
dition it performs well on small datasets due to data augmentations with elastic deformations.
The segmentation problem presented in that paper is similar to that of digital rock segmenta-
tion. This thesis will focus mainly on automatic segmentation of high resolution 3D rock images
using deep learning.

This thesis continues research of a previous method used for automatic image segmentation
of medical datasets, which additionally was tested on rock data, based on a 3D convolutional

1

Chapter 1. Introduction

network called DeepMedic. Because of the computational requirements of 3D convolutions on
large volumes, we address the task of segmenting the rock structures using a 2D based approach,
to see if it is able to perform as good or better. Furthermore, we extend this 2D architecture to
also include adjacent depth images as additional channels to supply more information to the
network.

1.2 Goals and Research Questions
The overall goal of this thesis is to explore the use of deep learning and convolutional neural
networks for sandstone pore segmentation on digital rock volumes. We also investigate and
compare the performance of 2D and 3D convolutional architectures on this task.

Research question 1 How does 2D-convolutional architectures compare to a 2.5D hybrid ar-
chitecture that includes depth as input channels?

Sub-goal Develop the best possible 2D-convolutional segmentation network.

Sub-goal Extend this network to include an arbitrary number of depth channels, and see if it
improves performance.

Research question 2 Can deep learning models trained to segment porosity of one rock type
generalize and accurately segment other types of rock?

Sub-goal Compare and evaluate models trained on various subsets of rock types.

1.3 Research Method
This thesis conforms to a design science methodology, defined as science which attempts to
create something that serves human purposes, as opposed to natural science which tries to un-
derstand reality [14]. It follows a technology oriented approach in that the acquired results
are assessed against criteria of value/utility: does it work or is it an improvement? Instead of
producing theoretical knowledge, this thesis presents a way to apply knowledge of tasks (Deep
Learning) or domains (Digital Rocks and seismic) to create effective artifacts (something that
occurs as a result of a preparative or investigative procedure). The working framework consists
mainly of two basic activities, build and evaluate. Building is the task of developing models and
implementing deep learning methods, while the evaluation activity is the process of determin-
ing how well an implementation performs. Although this thesis is experiment driven, there is a
need for some theoretical research in order to understand and explain why and how the resulting
models and implementations work.

1.4 Contribution
This thesis contributes to the continued research into digital rocks in conjunction with deep
learning, specifically the use of convolutional networks for segmentation of rock properties. The
main contribution is a network architecture that efficiently performs automatic segmentation of
porosity in Bentheimer, Berea and Carbonate sandstone samples. We anticipate that this applies

2

Chapter 1. Introduction

to other types of stone as well. In digital rocks physics this can replace conventional multi-
thresholding algorithms, which are difficult to automate since they are based on image color
contrasts, often requiring parameter tuning to fit each sample. This thesis also shows that the
performance of this network can be improved, by providing some adjacent slices as additional
input channels. This idea is not exclusive to rock property segmentation. It can be applied to
any network that segments volumes by taking predictions one slice at a time.

1.5 Thesis Structure
This section presents the structure of the thesis and gives a brief overview of the contents of
each chapter.

Introduction: Presents the background, motivation, research questions and the main contribu-
tions of the work presented in this thesis.

Background: Gives a brief overview of the fields of computer vision, deep learning and digital
rocks in order to provide the reader with the understanding necessary for this thesis. Finally, we
present related work and describe our structured literature protocol.

Methodology: This chapter presents the Digital Rocks dataset and its creation. Then it details
three different architectures for pore segmentation on this dataset. Finally, it discusses evalua-
tion metrics used to compare our models.

Experiments and Results: This chapter starts by presenting the experimental plan. Then we talk
about the experimental setup, including hardware, tools data pre-processing, augmentations and
hyperparameters. Finally we list the results obtained from running the experiments.

Discussion and Conclusion: This chapter concludes the work presented in this thesis. It starts
by discussing the findings presented in Chapter 4, before presenting the conclusion. Finally, we
discuss future work that can potentially improve our findings and results.

3

Chapter 2
Background

This chapter provides the reader with the theory and background necessary for this thesis. Sec-
tion 2.1 explains what Digital Rocks is, how it is collected and its applications. Section 2.2
presents the field of computer vision and object recognition tasks. Section 2.3 gives a brief
overview of deep learning and convolutional neural networks, which in recent years has been
dominating in visual recognition problems. Section 2.4 presents related work and describes our
structured literature protocol.

2.1 Digital Rocks
Digital Rock Physics (DRP) is an innovative approach for computing and analyzing the proper-
ties of rocks. DRP aims to provide a better understanding of rocks such as flow transport units
and geometrical properties. Some rock properties can be very hard and expensive to measure in
the laboratory, which is one of the driving factors for investments in the conjunction of Machine
Learning and DRP. The combination of laboratory measurements and deep learning will com-
pliment well(oil) log analysis and other insights. Improved understanding of rock properties can
open new possibilities for economic exploration and extraction for hydrocarbons. Furthermore
it will give valuable insights in the ability to efficiently store CO2 in various rock types.

The paradigm of DRP is image-and-compute: the rock sample is imaged to obtain a 2D or
3D representation of the mineral phase and pore space, and this representation is then used to
simulate physical processes in the sample. DRP normally consists of three steps:

1. Digital imaging to create a digital representation in 2D/3D at large enough resolution to
capture rock features as pores, organics and grains.

2. Digital image processing to categorize pixels

3. Digital analysis to model rock properties

The data used in this thesis is provided by Petricore, which is a company focusing on digital
rocks and core analyses. Their services deliver 3D digital rock models that enables simulations
of multiple petrophysical and dynamic rock properties. They use nondestructive imaging tech-
niques to provide high-value images for visualization and core assessment. Computed tomogra-
phy scanners (CT), similar to those used in medial applications, are used to capture 3D images
of rock samples. We have worked with data captured by Micro-CT which provide 20-200 times

4

Chapter 2. Background

higher resolution compared to traditional CT-scans. This provide very detailed images of the
rock sample.

2.2 Computer Vision
Computer vision is the task of designing computer systems that can gain high level understand-
ing of digital images or videos and to automate activities that the human visual system is able
to do. Computer vision is closely related to the field of digital image processing and it is hard
to define a sharp boundary between the two fields. A common distinction is that in digital im-
age processing both input and output is an image, while computer vision often in addition to
producing an output image, also tries to understand the image in a higher level than a matrix
of pixel values which makes it possible to answer questions like; What is the image of? Which
person is in the image? Where in the image is this persons face? The biggest difference between
the two fields is in goals, not methods.

There are many sub-domains of computer vision. The one relevant to this thesis is object
recognition, which contains several well defined tasks that aims to recognize objects in images
with different levels of granularity. Common for all these tasks is that they consume digital
images or video in order to produce numerical information that serves as more suitable descrip-
tions of the world, that can be communicated and used in decision making.

2.2.1 Object Recognition Tasks
This section explains different object recognition tasks from the coarse to fine in information
detail. See Figure 2.1 for a visual explanation.

Image Classification is the task of classifying which object is present in an image. This is triv-
ial for humans and require almost no effort, but was for a long time considered notoriously hard
for computers. Before the break-trough of deep learning, state of the art image classification
algorithms was nowhere near human performance.

Classification with Localization is an extension to image classification. In addition to classi-
fying which object is present in a given image, classification with localization also specifies the
spatial location of the object. This is commonly done by drawing a bounding box around the
object.

Object Detection is classification with localization of multiple objects in an image. Object
detection is performed using a technique called sliding window. For an input image, multiple
windows of different sizes are slid on top of the image, and for each window a prediction is
made. This process can be very computationally expensive when images are large and a high
number of windows are used.

Semantic Segmentation is very similar to object detection but are more fine grained. Seg-
mentation aims to infer labels for every pixel, so that each pixel is labeled with the class of its
enclosing object ore region.

5

Chapter 2. Background

Instance Segmentation goes one step further, in addition to assigning a class to every pixel it
separates between different instances of that class.

Figure 2.1: Visual explanation of the different object recognition tasks covered in this section, figure
adapted from [2].

2.2.2 Applications
Computer vision is an important success-factor in many different applications today. It is used
in self driving car technology, facial recognition, biomedical imaging and image search, to
name a few. The applications are expanding increasingly along with improved performance of
computer vision systems, much driven by the success of deep learning.

2.3 Deep Learning
Deep learning is an approach to artificial intelligence that allows computers to learn from experi-
ence, by learning multiple levels of representation that corresponds to some level of abstraction.
Each level represents abstract features that are discovered from the features represented in the
previous level. Hence, the level of abstraction increases with each level. We say that these levels
forms a hierarchy of concepts where each concept is defined in relation to simpler concepts. If
we draw a graph of this hierarchy, the graph is deep with many layers, which is the reason we
call this approach Deep learning. Deep learning is not something new, and have existed since
the 1940s under various names. However, it is not until recent years that deep learning has
really gotten its momentum. This growth in both popularity and usefulness is in large parts due
to increased amount of available data as a bi-product of digitization, increased computational
power and new techniques that allows for training of even deeper models. Today deep learning
algorithms are successfully applied to fields like computer vision, natural language processing,
machine translation, recommender systems and speech recognition and in many cases works so

6

Chapter 2. Background

well that they have completely replaced traditional approaches all together [3]. Deep learning
is a type of representation learning which again is a type of machine learning.

2.3.1 Motivation
In traditional machine learning, the important features of the input are manually designed and
the system automatically learns to map the features to outputs. This is called feature engineer-
ing. Coming up with features requires a lot of domain knowledge and is often both difficult
and time consuming. Even tough humans are able to classify objects in an image, we are not
always able to describe the features in terms of pixel values that lead us to that classification. A
better approach would be to skip this step, and instead design algorithms that inputs raw data
and learns which features that are important in order to solve the task. This is what we call
representation learning and deep learning is a kind of representation learning that builds con-
cept hierarchies that consist of multiple levels of features, where each level is input to the next
one. This allows us to design models that are trained end-to-end, without feature engineering,
that solves problems which was not possible before. These models can generalize to different
domains and sometimes even transfer knowledge learned from solving one task, to better solve
another.

We will in the next sections introduce some basic machine learning concepts before we talk
about the quintessential deep learning model, the deep feed-forward neural network. Section
2.3.4 discusses a class of neural networks called convolutional networks, inspired by the visual
cortex in humans and often applied to visual imagery. This is the model that we in this thesis
further explore for use in conjunction with digital rock physics (DRP).

2.3.2 Machine Learning
Machine Learning is an approach to artificial intelligence that uses statistical models that learn
from data, in order to perform a specific task without any task specific instructions. This allows
us to solve tasks that are too difficult to solve with programs of logical rules written by human
programmers. Learning algorithms builds experience from datasets containing examples where
each example is a collection of features recorded from some object or event. Examples are rep-
resented as a vector x ∈ Rn where each entry xi corresponds to a feature. Learning algorithms
differ in approach, the type of data they input and output, and the type of task or problem that
they are intended to solve. Most algorithms can be classified as either being supervised or un-
supervised.

Supervised learning algorithms builds experience from a dataset that contains examples of fea-
tures where each example X is associated with a label Y . The goal of supervised algorithms is
usually to learn a function that maps new unseen examples to a label F : X → Y . Supervised
learning are commonly used to solve tasks like regression and classification.

Unsupervised learning algorithms builds experience from a dataset containing examples with-
out any explicit labels. The goal of these algorithms are to discover the underlying structure of
a dataset which again can be used to build useful models. An example of unsupervised learning
is clustering, which tries to divide the supplied dataset into clusters of similar examples.

7

Chapter 2. Background

Figure 2.2: Flowchart that shows the components in different types of machine learning pipelines,
grayed out boxes is components that learns from data. Figure adapted from the Deep Learning text-
book [3].

8

Chapter 2. Background

2.3.2.1 Overfitting and Underfitting

Machine learning algorithms are useless if they only perform well on the data used to train
them. The ability to perform well on new/unseen data is what truly matters. If an algorithm
does this we say that it is able to generalize well. When training models we use a training set
and compute an error measure which we call the training error. The training error is reduced
during training, but what we really want is to reduce the test error. This is accomplished by
computing an error measure on a test set that contains unseen data. The two factors that de-
termine how well machine learning algorithms perform is the ability to make the training error
small and make the gap between training and test error small. These two factors corresponds to
whats called underfitting and overfitting. We say that a model is underfitting when it is not able
to reduce the training error to a sufficient level, while overfitting occurs when the gap between
training error and test error is to large. The goal of not only minimizing error, but generaliza-
tion, is what separates machine learning from mathematical optimization. One way to control
whether a model is likely to underfit or overfit is by altering its capacity (controlling the set of
functions that the model can select as possible solutions). Low capacity limits a model from
fitting complex patterns which can cause underfitting. High capacity gives a model the ability
to perfectly fit all possible patterns, thus increasing the possibility of overfitting. The challenge
is to select a capacity that is proportional to the complexity of the dataset and the task that one
is trying to solve.

.

Figure 2.3: Three different models fitted to the same data points. Model to the left underfits and is
neither able to fit to the training data well, nor generalizing to new data points. The model in the middle
perfectly fits to the training data and has captured the underlying structure present in the data and will
most likely generalize well to new data points. Model to the right overfits and is perfectly fit to all data
points but has not captured the underlying structure present in the data and will probably not do well on
unseen data. Figure adapted from the Deep Learning textbook [3].

2.3.2.2 Hyperparameters

A hyperparameter is a parameter which is set manually before initiating the learning process, in
contrast to regular parameters which values are derived during training. Hyperparameters affect
learning algorithms ability to learn and thus also their performance. This is challenging because
there is no set of values that always works. Appropriate values are dependent on both task
and dataset. Finding appropriate values are called hyperparameter tuning. There exists search
algorithms that can find these values, but this involves training a model multiple times with

9

Chapter 2. Background

different set of hyperparameter values. This is not always feasible when applying deep learning
because training can be very time consuming. For this reason deep learning hyperparameter
tuning is commonly done using heuristics and trial and error.

2.3.2.3 Optimization

The majority of supervised learning algorithms involve some sort of optimization. Optimiza-
tion is the task of either minimizing or maximizing a function f(x). The function is referred
to as either a cost or error function. The cost function is a function that is used to measure
inconsistency between the predicted value (ŷ) and the actual label (y). The function outputs a
non-negative value where a smaller value indicates an increase in the robustness of the network.
Optimization is finding the set of parameters θ that greatly reduces the cost function J(θ).

2.3.2.4 Dataset Split

When doing supervised learning, to quantify the performance of a model and detect if we are
underfitting or overfitting, we need some previously unseen data. This is because performing
really well on the training data gives no indication of true generalization. A common approach
to this problem is to divide all available data into three non-overlapping partitions called the
training set, the validation set and the test set. A common way to split is to put 70% of data in
the training set, and 15% both in the validation and test set, but many other splitting schemes
are also reasonable. It is important that the splitting is done in way such that data in the training
set is representative to that of the validation and test set.

Training Set
This is the data available to the learning algorithm during training and used to update model
parameters to minimize loss, thus also expected loss on the validation and test set. This set
should by far be the biggest partition of the three.

Validation Set
Used to validate and tune hyperparameters during the learning phase. How well the model per-
form on the validation set should not be used in any way to update parameters. If performance
on the training set continues to increase while it is decreasing on the validation set, the model
is likely overfitting.

Test Set
Used when the model is completely finished with training and tuned against the validation set.
This important to prevent peeking, which is to use the test set performance to both choose a
hypothesis and evaluate it [15, p. 709]. Test set performance is the closest we can get to that
of a model deployed in the real world, given that the data is drawn from the same probability
distribution.

2.3.2.5 Regularization

A common problem with learning algorithms is that they perform well on the training data, but
has problems with new input, i.e. they overfit. Regularization are strategies designed to reduce
test error possibly at the expense of higher training error. Regularization has a broad definition
and is defined as any method or technique that are designed to reduce a models generalization

10

Chapter 2. Background

error but not the training error. This is important because we want our algorithms to perform
well not only on training data but also on unseen inputs. Regularization is about adjusting es-
timators by trading increased bias for reduced variance. A good regularizer is one that greatly
reduce variance but does not increase the bias too much. Some regularization techniques are
universal and can be applied to almost any learning algorithm while others are more model spe-
cific. Below we cover some of the well known and used techniques.

Parameter Norm Penalties
Regularization technique that adds a penalty to the objective function. By adding a hyperpa-
rameter, α ∈ [0,∞), to our objective function, we can limit the capacity of our model. Setting α
to 0 gives us no regularization, while a large number gives more. The most common parameter
norm penalty is L2, which is also known as weight decay.

Early Stopping
Universal regularization technique that can by applied to any supervised learning algorithm.
Works by halting training when it detects that overfitting is beginning to occur. Overfitting is
detected by comparing training error with validation error, if training error keeps decreasing
while validation error plateaus then increases, we are overfitting. Early Stopping is often im-
plemented using a patience parameter that specifies how many epochs (complete passes over
training set) of non decreasing validation error to tolerate, before halting training. The red line
in Figure 2.4 shows the optimal capacity of a model and the goal of early stopping is to get as
close to this line as possible.

Data Augmentation
A collection of techniques that aims to increase the diversity of training data available, thus
minimizing the risk of overfitting. Further discussed in Section 2.3.3.5.

Dropout
Regularization technique specific to artificial neural networks. In each training step an individ-
ual node is either dropped out of the network with a probability 1− p or kept with a probability
p. It is important to note that dropout should only be active during training, when using the
network for inference all nodes in the network should be considered.

Figure 2.4: Optimal capacity. Figure from Deep learning textbook [3].

11

Chapter 2. Background

2.3.3 Artificial Neural Networks
Artificial Neural Networks (ANN) are networks loosely inspired by human biology and how
neurons in the human brain functions. The original goal of the ANN was to solve problems like
humans. However, over time the attention moved to solving specific tasks like computer vision,
speech recognition, machine translation and medical diagnosis. This has led to a deviation from
biology. The goal of a neural network is to approximate some function f . The neural network
itself is not an algorithm but a tool used in different machine learning algorithms to process
complex data into a space that computers understand. Neural networks generally do not need to
understand and be programmed with specific rules that specifies what to expect from the input.
The ANN instead learns from many examples with the correct answer labeled and using this
labeling to extract what characteristics from the input are needed to calculate correct output.

2.3.3.1 Neurons and Layers

The ANN consists of a collection of nodes called artificial neurons which loosely mimics the
neurons of a brain. Each connection between two nodes (like the synapse in a biological brain)
can transmit a signal from one to the other. A node receives and process one signal and then
signal additional nodes connected to it. The signal in an ANN is usually a real number, and the
output of each node is computed by a non-linear function of the sum of its inputs. Artificial
neurons typically have a weight that adjusts as the learning progress. The weight increases or
decreases the strength of a signal. It is also common that the neurons have a threshold in such
that the signal is only sent if the aggregate signal cross that threshold.

A neuron or node consists of several components as illustrated in Figure 2.5. The output of
some nodes may be input to others. Each node take multiple weighted inputs (a weight vector)
and applies an activation function to the sum of inputs. An activation function takes the input
of the node and maps it to an output signal. The linear output of a node nj can be calculated by:

Output(nj) = bj +
n∑
i=1

xiwi

where xi is the output from the preceding node and wi is the weight. A bias (bj) is also
commonly used in each neuron to be able to change when the node activates.

Multiple neurons in a connected acyclic graph generate what is called a feed forward neural
network (as seen in Figure 2.6). Such networks may include one or more hidden layers, and
when multiple hidden layers are present the network is usually referred to as a deep neural
network.

2.3.3.2 Activation Functions

The use of non-linear activation functions allows neural networks to approximate any function,
not only linear ones. Below some of the most commonly used activation functions are presented.

Sigmoid Closely resembles how we think neurons fire in the brain but suffers from many draw-
backs which makes it rarely used today, except in the output layer when doing regression. Some
of the drawbacks include slow convergence and the vanishing gradient problem (which prevents
the weight from changing its value). Another problem with Sigmoid is that it is not zero cen-

12

Chapter 2. Background

Figure 2.5: A neuron/perceptron. Figure adapted from [4].

Figure 2.6: Basic feed forward network with one hidden layer. Figure adapted from [5].

13

Chapter 2. Background

tered, i.e the output is between 0 and 1. This cause problems because it makes the gradients on
the weight either negative or positive.

f(x) = σ(x) =
1

1 + e−x
(2.1)

Hyperbolic Tangent (TanH) Solves the zero centered problem, the output is between -1 and 1.
However, it still suffers from vanishing gradient.

f(x) = tanh(x) =
ex − e−x
ex + e−x

(2.2)

Rectified Linear Unit (ReLU) Suffers less of the vanishing gradient problem since it only
saturates in one direction. It is by far the most common activation function in use today.

f(x) = relu(x) = max(0, x) (2.3)

2.3.3.3 Gradient Descent

Gradient descent is an optimization algorithm used to minimize some cost function. In an ANN
the algorithm is used to adjust the weights in the graph. Gradient descent works by iteratively
moving in the direction of steepest descent until it reaches a local minimum (see Figure2.7).
How big steps are taken in each iteration is determined by the learning rate. With a high learn-
ing rate, the algorithm completes faster but introduces a risk of overstepping the local minimum.
A lower learning rate gives more precise results, but at the cost of computational time.

Gradient descent suffers when training sets become large which makes it very computation-
ally expensive (O(m) where m = trainingsetsize). A solution to this problem is an extension
of the algorithm called stochastic gradient descent (SGD). The idea of SGD is that the gradi-
ent is an expectation and that we can get a stochastic approximation of the gradient using only
samples of training data. Following this idea SGD use a sample batch, called minibatch, from
the training set at each step of the algorithm. The minibatch size typically includes a couple
to a few hundred samples. This makes it possible to fit billions of examples using only a few
hundred. A technique to further improve the computational speed of SGD is the introduction
of momentum. Momentum is particularly useful for gradients that are of high curvature, small
and consistent or noisy. The algorithm accumulates an exponentially decaying average of past
gradients and continues to move in their direction.

Backpropagation
Backpropagation is an algorithm used to compute the gradients for each weight in the network,
flowing backwards from the cost function throughout the network. Generating an expression
for the gradient is simple, but evaluating it can be expensive. This is what backpropagation does
efficiently, by recursively applying the chain rule. It is important to note that backpropagation
by itself is not a learning algorithm, it is used only to compute gradients, whereas an optimizer
algorithm like stochastic gradient decent uses these gradients to update weights.

2.3.3.4 Batch Normalization

Batch Normalization [6] is a technique that improves learning in neural networks in addition
to having a regularization effect. Batch normalization normalizes the output of a previous acti-

14

Chapter 2. Background

Figure 2.7: Illustration of gradient descent, from the Deep Learning textbook [3].

vation layer by subtracting the batch mean and dividing by the batch standard deviation. Batch
normalization can be applied to any layer in the network, making it very effective and allows
each layer of a network to learn by itself a little bit more independently of other layers. When
using batch normalization no activation becomes very low or high. This is great because it al-
lows for training with higher learning rate yielding faster convergence, in addition to having a
regularizing effect because of the noise it adds to each of the hidden units activation.

µB ←
1

m

m∑
i=1

xi // mini-batch mean

σ2
B ←

1

m

m∑
i=1

(xi − µB)2 // mini-batch variance

x̂i ←
xi − µB√
σ2
B + ε

// normalize

yi ← γx̂i + β ≡ BNγ,β(xi) // scale and shift

Figure 2.8: Batch Normalization transform applied to activation x over a mini-batch. Equation from the
original paper [6].

2.3.3.5 Data Augmentation

Data augmentation is the process of enriching a collection of data. This is particularly important
when working with small datasets in order to have enough training data. A recurring problem
when working with limited datasets is that models trained on them do not generalize well. By
having more training data the network can reduce overfitting and learn its domain on a more
general level. Even when data of poorer quality is introduced, an algorithm can perform bet-
ter as long as useful data is possible to be extracted [16]. Common and generic methods for

15

Chapter 2. Background

augmenting image data is to run algorithms that augments color and alters geometric shapes.
This includes reflecting, flipping, cropping and translating the image. Below are descriptions of
the most commonly used data augmentation strategies when working with machine learning on
images.

Traditional Transformations - for each input image a duplicate is produced where it is either
shifted, scaled, rotated, flipped or distorted. The augmented image can also be a combination
of these. Such simple distortions can be generated by applying affine displacement fields to
images[17]. Both the original and the copy is sent through the network. So if a network of is of
size N , a dataset of 2N is generated.

Elastic Deformation is a technique where a deformation is applied to the input image. It works
by creating creating a grid of displacement fields that has random directions, so it becomes like
a grid of transformed squares.

Color Augmentations: brightness, contrast, saturation, hue

Blur Augmentations - There are different ways to blur an image. This can be don linearly
or non-linearly. Gaussian blur is a linear function which can lose edges in the image. Median
is non-linear and replace pixel values with the median color value in the neighbouring pixels.

Emboss and Sharpen are techniques that translates the image. Emboss add a stamp-like effect
on an image, while sharpening highlights edges.

2.3.4 Convolutional Neural Networks
Convolutional Neural Networks (CNN) is a category of neural networks that has proven to per-
form extremely well in computer vision tasks. As the name implies, the network employs a
mathematical operation called convolution. A CNN is simply a neural network where the con-
volution operation is used in at least one of the layers, instead of regular matrix multiplication.
A convolution network can be applied to many types of data, but this section will focus mainly
on image data.

2.3.4.1 The Convolution Operation

The convolution operation, in its simplest form, is an operation on two functions f(x) and g(x)
that produces a third function, y(x), that shows how the shape of one is modified by the other.
A convolution operation can then be described as:

y(x) =

∫
f(x)g(x)dx (2.4)

In literature, the convolution operation is often denoted with an asterisk:

y(x) = (x ∗ y) (2.5)

The first argument in the convolution is normally treated as the input, while the second is re-
ferred to as the kernel. The output is often called a feature map.

16

Chapter 2. Background

The activation map A is produced by convolving the kernel K over the input I and comput-
ing the dot product between K and the current location of K in I .

S(i, j) = (I ∗K)(i, j) =
∑
m

∑
n

I(i+m, j + n)K(m,n) (2.6)

When working with images we often apply a set of kernels (or filters) in order to extract
features from the image. So in terms of the operation explained above the input is an image and
the kernel is a set of weights that when applied can extract features like for example vertical or
horizontal edges.

(a) Vertical (b) Horizontal

Figure 2.9: Sobel edge detection kernels of size 3x3.

Figure 2.10: Shows the first step in a convolution process. Figure adapted from [7].

Figure2.9 shows kernels that extract horizontal and vertical edges. Figure2.10 shows the
first step in a convolution operation using the vertical kernel. The filter is applied iteratively
to every location in the image. Because the resulting convolution is placed in the center of the
kernel, the resulting image resolution is reduced. When convolving there are two parameters
that can be used to control the output of each layer. These parameters are called stride and
padding. The stride controls how many units the kernel convolves around the input image, that
is to say how many units does it move in each step. By increasing the stride the output volume
shrinks. Padding, or zero-padding, is a process where we simply append a border of zeroes

17

Chapter 2. Background

around the image, making the resulting output maintain its original size. When convolutions
are applied to inputs with multiple channels such as RGB-images, each of the channels are
convolved with its own kernel producing its own output, which is then merged to produce the
final output array. Figure 2.11 shows an example of resulting images after applying two sobel
filters on a input image.

(a) Original image

(b) Vertical sobel applied (c) Horizontal sobel applied

Figure 2.11: Shows resulting features after applying horizontal and vertical sobel filter on the input
image, images from [8].

2.3.4.2 Motivation for CNN

One of the main problems with regular neural networks is that they scale poorly when larger
images are introduced. When working with small images a normal neural network can perform
well. Take the MNIST dataset as an example. The MNIST dataset consists of 70 000 examples
of handwritten digits of 28x28 pixels with one color channel. This means that a single fully-
connected neuron in a first hidden layer would have 28 ∗ 28 = 784 weights. Now consider a
problem that require processing of an image of 256*256 pixels with 3 color channels. A single
neuron in this network would require 256 ∗ 256 ∗ 3 = 196, 608 weights. Furthermore such a
network would require several neurons which quickly becomes unmanageable.

Sparse connectivity, parameter sharing, equivariant representations, enables us to work with
images of variable size.

Sparse connectivity - Traditional ANN layers use matrix multiplication where a matrix of
parameters and a separate parameter describing the interaction between each input and

18

Chapter 2. Background

output unit is used. This means that every output needs to interact with every input. A
CNN have what is called sparse connections. Having a kernel smaller than the input
makes this possible. An input image could potentially have millions of pixels. By using
a small kernel that only occupies i.e ten pixels it is possible to detect meaningful hori-
zontal or vertical edges (among many other properties). This approach enables us to have
a network with fewer parameters, which in turn reduces memory requirements for the
model. Sparse connectivity can greatly improve the efficiency of the network. Lets say
we have m inputs and n outputs, an ANN would need m ∗ n parameters. For a CNN,
where the number of connections each output is limited to k, the network requires only
k ∗ n parameters. See Figure 2.12.

Parameter sharing simply means that the network is able to use the same parameter for mul-
tiple functions. In a ANN, each member of the weight matrix is used only once when
calculating the output of a layer. For the CNN, each member of the kernel is used at every
position of the input.

Equivariance means that if some input change, the output change in the same way. A function
is equivariant if f(g(x)) = g(f(x)).

Figure 2.12: The top image shows a convolution on input x3 with a kernel width of 3. We can see that
only 3 of the outputs are affected. In contrast, the bottom image shows that every output is affected when
using matrix multiplication (ANN). Figure adapted from [3].

2.3.4.3 Pooling

A pooling function replaces the output of the net at a certain location with a summary statis-
tic of the nearby outputs. Several statistic functions can be used, for example average-pooling

19

Chapter 2. Background

and min-pooling, but in deep learning architectures max-pooling is by far the most common.
Max-pooling works by applying a max filter to the input array. In a non-overlapping way, the
maximum value inside the region that the filter covers is used as an element in the output matrix,
see Figure 2.13 for an example showing the details. Adding pooling gives convolutional net-
works in-variance to translation, which means that if we translate the input by a small amount
the value of most pooled outputs do not change. Another benefit of pooling is that it improves
computational efficiency because the layer after a pooling function has k times fewer inputs
to process, making both network training and inference faster. Spatial information is lost in
the pooling process but this is not a problem for tasks like classification where we care more
about whether a feature is present or not, than exactly where it is. However, pooling can cause
problems when solving tasks where localization of features is important such as the semantic
segmentation task. Fortunately there are techniques to deal with this that we will discuss in
Section 2.4.4.

(a) Max-pooling with 2x2 window size and
stride = 2.

(b) Pooling applied to a 64-channeled input array.

Figure 2.13: Illustration of pooling. Figures adapted from [9].

2.3.4.4 Variants of the Convolution Function

Transposed Convolution

A transposed convolution is like a regular convolution, but it reverts the spatial transformation
such that the resulting matrix is of higher dimensions than the input. Transposed convolutions
are used to up-sample images which is useful because many models involves up-sampling from
a low resolution to high resolution. Up-sampling is traditionally done with bi-linear or nearest
neighbour interpolation, but this is like manual feature engineering since there are no parame-
ters for the network to learn. Using transposed convolutions instead makes the network able to
learn how to up-sample directly from training data in one step, and avoids the need to choose
a predefined interpolation method when constructing network architectures. A transposed con-
volution is in some literature called a deconvolution, this is somewhat unfortunate since the
operation does not reverse the effect of a convolution, nor is it the opposite operation. A side
effect of transposed convolutions is checkerboard artifacts in the up-sampled image, but this is
mainly a problem for generative models [18].

1x1 Convolution
There is no difference between a regular convolution and a 1x1 convolution, and at first it might

20

Chapter 2. Background

Figure 2.14: Transposed Convolution; blue is input, green is output, figure adapted from [7].

seem rather useless. All a 1x1 convolution is doing is multiplying the input array with a number
before applying a non-linearity like ReLU, but this is only the case when the input array has one
channel. When operating on input with multiple channels, a 1x1 convolution acts like a fully
connected network within the convolution network over a patch. This idea of a network inside
a network was first described in [19] and is highly used in the famous GoogleNet architec-
ture. 1x1 convolutions allows us to down-sample feature maps in a way that summarizes them,
which is useful because feature maps tend to increase with network depth. A 32x32x100 image
convolved with a 1x1x20 filter will produce a 32x32x20 output, thus shrinking the amount of
channels. Just like pooling reduces the height and width of an image, 1x1 convolutions can be
used to reduce the depth which improves computational efficiency.

1D and 3D Generalizations
Convolutions are not restricted to only 2-dimensional data. The same concept can be applied
in just 1-dimension, to find patterns in sequential data, and even to 3-dimensions to process
3d images which is common when analyzing medical images produced by CT-scans or MRI
machines. When convolutions are applied to 3d images, a 3-dimensional kernel is slid across an
input array with dimensions width×height× depth. This allows the kernel to extract patterns
across all spatial dimensions, which in theory will produce better results than when applying 2d
kernels which are slid across the width and height dimension for every depth slice. However, 3d
convolutions is unfortunately in many cases not feasible to use because of high computational
cost and huge memory requirements.

2.3.4.5 Transfer Learning

Transfer learning is a common and well documented approach to use when you are trying to
solve new tasks with deep learning. Instead of training weights from random initializing you
can make much faster progress by using transferring knowledge from one task to another. Some

21

Chapter 2. Background

Figure 2.15: Visualization of how an 3d kernel is applied to an 3d input array, Figure from Kaggle
notebook [10].

deep convolutional networks can take several weeks to train from scratch. Many datasets are
also not of sufficient size to train independently and in order to train such datasets successfully
you have to rely on transfer learning.

In all the different disciplines and applications of deep learning, computer vision and con-
ditional networks, transfer learning should be considered unless you have access to a very large
dataset.

When working with computer vision, there are numerous sets of pre-trained weights avail-
able. There is published a lot of work on the ImageNet dataset, which consists of over 1 million
labeled images and has had yearly challenges [20]. Many different architectures have been
implemented to try to outperform its competitors, making an abundance of available sets of
pre-trained weights. Even when the task you are trying to solve is different from the source
of pre-trained weights, early layers looking for low level features such as edges, contours and
corners can still benefit from transfer learning.

2.4 Related Work
This section presents the literature review protocol used for searching and selecting relevant
literature, gives some historical context to semantic segmentation and summarizes relevant pre-
vious work.

2.4.1 Structured Literature Review Protocol
The purpose of a structured literature review (SLR) is to assist researchers in searching and
selecting relevant literature. The SLR provides a strict framework for how to identify, evaluate
and interpret available research. It is important for researchers to follow the SLR strictly to
reduce biases that might come from previous expectations. The SLR protocol consists of three
main stages: planning, conducting and reporting [21].

2.4.1.1 Planning

The objective of the SLR is to map what state-of-the-art is in computer vision, specifically for
semantic segmentation. It should address and find available literature that includes semantic
segmentation or digital rock data.

The first step in conducting a SLR is identifying literature research questions(LRQ).

22

Chapter 2. Background

LRQ1 What are state of the art deep learning algorithms for semantic segmentation?

LRQ2 What techniques exists for using deep learning for digital rock interpretation?

LRQ3 How does different CNN architectures compare for semantic segmentation?

2.4.1.2 Conducting

The second step in SLR is defining the search strategy. The goal of conducting the SLR is
to find primary studies that address the above literature research questions as much as possi-
ble. Conducting the literature search is an iterative process where search words are refined as
new knowledge is acquired. Search words are created by breaking down the literature research
questions into individual facets. A list can then be created of these facets that contain syn-
onyms, abbreviations and alternative spellings. Table 2.1 shows the final selection of search
words. When searching for primary studies at least one keyword from group 1 and 2 should be
combined with a keyword from group 3 or 4 .

Search Strategy

After performing trial searches on a number of online scholarly websites it was decided that
future literature searches should be performed on three search engines:

1. IEEE Xplore

2. Google Scholar

3. Springer Link

Additionally we employ the ”snowballing approach”, in which we follow references in papers
to locate other relevant ones. This works well because one paper may only briefly introduce a
concept taken from another publication.

Group 1 Group 2 Group 3 Group 4
Term 1 Deep Learning Computer Vision 3D - Data Digital Rocks
Term 2 Machine Learning Object Detection CT - Scan Rock properties
Term 3 CNN Semantic Segmentation Medical Imaging
Term 4 ANN

Table 2.1: Search Words

Selection and Quality Assessment

To help decide if a primary study is relevant and worth committing to, the material should
comply with the inclusion and quality criteria. These criteria help build the final list of included
literature. Table 2.2 contains the list of quality criteria (QC) and inclusion criteria (IC).

Through a three stage screening the criteria can be applied:

a abstract inclusion criteria screening

b full text inclusion criteria screening

c full text quality criteria screening

23

Chapter 2. Background

Criteria ID Criteria
IC1 The study mainly address at least one of the search word groups
IC2 The study relates to one of the literature research questions
QC1 There are clearly relevant methods and results in the study
QC2 The algorithm design is justified and reproducible
QC3 The abstract should clearly state the goal of the paper
QC4 Findings should be clear in the conclusion
QC5 The study/paper has more than 10 citations
QC6 Results are clearly presented and supported

Table 2.2: Inclusion and quality criteria

2.4.1.3 Reporting

The final step of the SLR is producing the resulting literature list. Table 2.3 contains the final
list of selected papers and articles.

ID Title Authors Year
S001 U-net: Convolutional net-

works for biomedical image
segmentation

O. Ronneberger, P. Fischer, T. Brox 2015

S002 Convolutional neural net-
works for automated seismic
interpretation

A. Waldeland, A. Jensen, L. Gelius 2018

S003 Fully convolutional networks
for semantic segmentation

J. Long, E. Shelhamer, T. Darrel 2015

S004 Deep Learning Convolutional
Neural Networks to Predict
Porous Media Properties

N. Alqahtani, R. Armstrong, T. Mostaghimi 2019

S005 Industrial applications of digi-
tal rock technology

C. Berg, O. Lopez, H. Berland 2017

S006 Segmentation of digital rock
images using deep convolu-
tional autoencoder networks

S. Karimpouli, P. Tahmasebi 2019

S007 The Effectiveness of Data
Augmentation in Image Clas-
sification using Deep Learn-
ing

L. Perez, J. Wang 2017

Table 2.3: The final selection of included articles.

24

Chapter 2. Background

2.4.2 Historical Context of Semantic Segmentation
Most of the successful approaches to semantic segmentation before deep learning relied on hand
crafted features, combined with traditional machine learning classification algorithms such as
random forest and support vector machines. Performance suffered from limitations in the sup-
plied features and was nowhere near that of today. However, in 2012 Alex Krizhevsky, Ilya
Sutskever, and Geoff Hinton entered a submission, a deep convolutional architecture named
AlexNet to the Large Scale Visual Recognition Challenge (ILSVRC) [22]. Their submission
reduced the existing top error rate in half and is considered to be the big deep learning break-
trough. AlexNet combined several ideas that would go on the become the backbone in modern
deep learning architectures.

Convolutional Neural Network (CNN) algorithms are now dominating in visual recognition
problems and this is also true in the case of semantic segmentation. Most algorithms can be
categorized to belong in either one of two classes. The first class of algorithms builds upon
the idea introduced by Ross Girshick et al. in the paper ”Rich feature hierarchies for accurate
object detection and semantic segmentation” [23]. The main idea is to use region proposals
from a decoupled segmentation algorithm as inputs to a deep convolutional network. The shape
information provided by the proposals helps with the increasing loss of spatial information
caused by the pooling operation in each consequent layer. This combination of classical tools
from computer vision and deep learning outperformed earlier approaches. The only drawback
is that the CNN can not recover from errors introduced by the extraction of proposals. The
second class of algorithms are inspired by the fully convolutional network by Jonathan Long et
al. [11], which showed that it is possible to create a CNN-architecture trained end-to-end that
can produce state of the art segmentation. Fully convolutional networks enables the reuse of
successful classification networks by replacing the the fully connected layers with convolutional
layers. Then concatenating features extracted in earlier layers to provide spatial awareness to
the classification process, without the need for any external segmentation algorithms to create
proposals. In this thesis we will focus on and use algorithms that are based upon and/or inspired
by fully convolutional networks to segment porosity in digital rocks.

2.4.3 Segmentation of Digital Rock Images Using Deep Convolutional Au-
toencoder Networks

In 2019 Karimpoulia and Tahmasebi [24] presented two approaches using a convolutional au-
toencoder network for segmenting digital rocks. Their dataset consist of only 20 pre-labeled
images. In the first approach they generate more data by manually segmenting images and in
the second they use a stochastic image generator (HYPPS). For the semi-automatic segmenta-
tion it is mentioned two issues, of which the first one is relevant to our task. That is, that grain
boundaries are brighter than the surface, which makes the segmentation algorithm misclassify
some boundaries. The second is that different minerals are classified as the same class, because
of similarity in pixel-color values. To mitigate these problems they apply the watershed algo-
rithm to enhance the segmentation process, but it did not resolve cases for complex structures.
According to P. Acharjya the watershed algorithm suffers from some unwanted drawbacks. One
is that images can become over segmented, meaning that some segments can arise inside other
segments. The algorithm can also cause the image to be corrupted by Gussian noise [17].

In their second approach segmentation is performed using SegNet, which is similar to U-

25

Chapter 2. Background

Net, in that it based on a encoder-decoder architecture. The main difference is that SegNet
uses fully connected layers which makes it computationally more expensive because it includes
more parameters. The U-Net instead transfers the entire encoder which makes it more memory
consuming. For this approach they use a Hybrid Pattern-Pixel-based Simulation (HYPPS),
which is a data augmentation technique, to generate more training data. This method takes a
dataset of labeled images and produces equiprobable realizations, which put more simply means
they take regions from randomly chosen images in the set and stitch them together to produce
new, unseen data. SegNet is able to achieve a categorical accuracy of 96%.

This paper was published in May of 2019, the research presented was prior to this unknown.
It was later discovered, reviewed and added to our list of relevant literature given its significance.

2.4.4 Fully Convolutional Networks for Semantic Segmentation
The Fully Convolutional Network (FCN) [11] showed that it is possible to build an end-to-end
deep learning architecture by extending successful classification networks, like VGG-16 and
GoogLeNet to produce segmentation maps from arbitrary input sizes and achieve state of the
art performance without any region proposals. The FCN architecture is like its name implies
fully convolutional. This means it only contains locally connected and no dense layers, which
has a fixed number of learned weights to work with such that varying inputs would require a
varying number of weights. The absence of such layers in the FCN architecture enables training
and inference on images of arbitrary input sizes. The architecture is divided into two main parts.
Firstly, the down-sampling path which purpose is to extract features and then interpret the con-
text (what is in the image) in order to make class predictions. Secondly, the up-sampling path
that recovers spatial information lost in the down-sampling path in order to enable precise lo-
calization (where in the image) and produce a segmentation map with dimensions equal to that
of the input image. Between the down-sampling and up-sampling paths there are several skip
connections (connections in the network graph that bypasses at least one layer). The skip con-
nections are used to concatenate the spatial information that exists in the earlier feature maps,
gradually lost by the consecutive pooling operations, with features in the up-sampling path. This
is done in order to improve the quality of the predicted segmentation map. The re-purposing
of classification networks for semantic segmentation works because the down-sampling path
can essentially be any classification network. This is demonstrated in the paper by using the
famous GoogLeNet and VGG-16 architectures, which is important because it allows the FCN
to directly benefit from progress made on classification by always using state of the art networks.

It might sound strange to even include pooling operations in architectures used for segmen-
tation, because it causes loss of spatial information by reducing the input resolution. This is not
a issue when doing classification because all we really care about is what the image contains,
not where it is. The fact is that the segmentation network would perform better without them,
however removing them is not a feasible option since preserving the input image dimension
throughout the entire network would be to computationally expensive. Today such architec-
tures are known as encoder-decoder architectures and the success of the fully convolutional
network spawned many similar architectures.

26

Chapter 2. Background

Figure 2.16: The Fully Convolutional Network (FCN) architecture. Figure from paper [11].

2.4.5 U-Net: Convolutional Networks for Biomedical Image Segmenta-
tion

In 2015 Ronneberger et al.[12] proposed the U-Net architecture for biomedical image segmen-
tation. This architecture builds upon the fully convolutional network. However it modifies and
extends it to allow for fast segmentation of neuronal structures in EM stacks with very few
training images available. The biggest modification is that in the up-sampling part, in addition
to using transposed convolutions for up-sampling, has a large number of feature channels. This
makes it symmetrical to the down-sampling path, enabling the network to learn to assemble
more precise outputs and giving it a U-shape. The way these additional feature channels are
added is by applying two consecutive 3x3 convolutions for every concatenation with features
from the down-sampling path. Another important concept presented in the paper is the overlap-
tiling strategy. Since the network only uses the valid part of each convolution, there are missing
pixels in the border regions. The overlap-tiling strategy extrapolates this missing context by
mirroring the input image, yielding more accurate predictions. These ideas combined with ex-
cessive use of data augmentation gave the authors first place in the 2015 ISBI cell tracking
challenge. The U-Net paper is considered very influential, and the architecture it proposes is
thoroughly documented and tested on many different domains.

2.4.6 Deep Residual Learning for Image Recognition
When the depth of neural networks increase, one would expect in a best case scenario that more
layers would yield better approximations of the function mapping we are trying to learn, thus
reducing the error even more. In a worst case scenario it is expected that the first layers would
act as a shallower network, while the remaining layers would learn the network identity func-
tion (learning the set of parameters such that input is equal to output). This is however not the
case. Instead it has been shown that when depth of networks increase, the accuracy first get
saturated before it starts degrading rapidly [25]. Intuitively one might think that the reason for
this is overfitting, more layers do increase the capacity of the model, but is in reality caused by
what is known as the vanishing gradient problem. With increasing depth, the gradients of the
loss function approaches zero during back-propagation. This makes the network hard to train

27

Chapter 2. Background

Figure 2.17: U-Net architecture, figure from original paper [12].

and leads to the inability to learn simple identity functions. Some activation functions like the
Sigmoid can also contribute to this problem since its derivatives become very small.

An architecture that counteracts this problem is the residual network (ResNet) proposed by
He, Kaiming et. al in the paper Deep Residual Learning for Image Recognition [26]. ResNet is
built up of stacked residual blocks shown in Figure 2.18, that contains a short skip-connection
that bypasses two weight layers and a ReLU activation, with the intuition that it is easier to
learn parameters that makes F (x) = 0 and y = x than learning the direct mapping F (x) = y.
This allows the block to learn an identity function by relying solely on the skip-connection.
Larger gradients can also be propagated back to earlier layers making deep networks consisting
of residual blocks much easier to train.

Figure 2.18: Single Residual Block, a building block. Figure adapted from [13].

To test their architecture [26] trained deep residual networks of 18, 34, 50, 101 and 151
layers on the ImageNet dataset and showed that each of the residual networks converged faster

28

Chapter 2. Background

compared to their plain counter parts. The 34 deep model archived a top-5 validation error of
3.57% winning the 2015 ImageNet Large Scale Visual Recognition Challenge (ILSVRC) [20].
Even tough the residual block was developed as a building block in an architecture that tries
to solve a classification task, it is used to better enable training of various deep convolutional
architectures aimed at other tasks. ResNet is relevant to us since the encoder part of a fully
convolution network can essentially be the convolutional part of any classification network.
Note that the short skip-connections used in residual networks should not be mistaken for the
long skip connections used in encoder-decoder architectures. These connections serves another
purpose, discussed in Section 2.4.4.

2.4.7 Segmentation of Coronary Arteries from CT-scans of the Heart Us-
ing Deep Learning

Kjerland 2017 [27], is a master thesis from NTNU that researched the use of a 3D convo-
lutional neural network for segmenting 3D image volumes in three domains: coronary artery
segmentation, brain tumour segmentation and digital rock segmentation. All segmentation tasks
presented were trained by a 3D CNN architecture called DeepMedic. The DeepMedic archi-
tecture consists of 11 layers and use two paths working on different scales of input. Of the
tasks presented in the thesis, the results of the digital rock segmentation is of most relevance to
us. Because of memory constraints the rock dataset was split into subvolumes of 175x175x175
voxels. Three different models for segmentation is presented, one trained only on Bentheimer,
one on Bentheimer and Berea, and one trained on Bentheimer, Berea and Carbonate. The net-
works perform well on categorizing grain and pore, with a mean dice score of 0.99 and 0.93
respectively, but struggles with multi-phase which only achieves 0.7. Below we list the most
important findings when segmentation on each rock type on the different trained models are
run.

1. Bentheimer

(a) The network performs best when the network is solely trained on bentheiemr sand-
stone.

(b) Second best is when the network is trained on Bentheimer and Berea.

(c) Worst performance is seen when the network is trained on Bentheimer, Berea and
Carbonate.

2. Berea

(a) The network performs best when trained on Bentheimer and Berea.

(b) The network performs worst when only trained on Bentheimer.

3. Carbonate

(a) Carbonate struggles with multi phase segmentation when Carbonate itself was not
included in network.

Furthermore, the results indicate that Berea is best able to learn features from bentheiemer while
Carbonate is unable to utilize features learned from Bentheimer or Berea to any meaningful
extent. Kjerland suggested in Section 6.2.3, Future Work, Digital Rock Segmentation: ”When

29

Chapter 2. Background

training networks on different types of rocks there are several combinations that were not tested.
These permutations should be tested to see if there are some types rock segmentation that ben-
efits from being trained on multiple types.”. We later present our experiments where Carbonate
and Berea is tested against a network trained on itself and the other two, to see if Berea and
Carbonate is able to better extract features from the other rock types than Bentheimer (which
had best score when run on the network only trained on itself).

30

Chapter 3
Methodology

This chapter presents the Digital Rocks dataset and its creation. Then it details three different
architectures for pore segmentation on this dataset. Finally, it discuss evaluation metrics used
to compare our models.

3.1 Digital Rocks Dataset
The rock data that was supplied by Petricore was captured using micrometer computed tomog-
raphy (micro-CT) imaging techniques on core samples of Bentheimer, Berea and Carbonate
sandstone. See Figure 3.2 for pictures of the actual rock types. Micro-CT is used to charac-
terize the 3D structures at the micrometer scales, which is 20-200 times more detailed than
regular CT. The data supplied for use in this thesis are captured at a resolution between 3 and
17 microns, and at this scale one can reveal geometric properties and characterize the pore-
space of a rock sample to calculate porosity and permeability. In the labeled/segmented volume
each voxel is discretized into belonging to one out of three classes, pore, multi-phase and grain,
where each class corresponds to some porosity level. Figure 3.1 shows the class distribution for
each sandstone sample.

The data for each sandstone is contained in its own raw-file specifying a 3D-cube, with
a corresponding raw-file containing the segmented ground truth. The Bentheimer micro-CT
cube has a resolution of 1370x1370x1701 pixels, with a 16 bit depth. The corresponding file
containing the segmentation has the same resolution, but with a 8 bit depth. Combined, this
equals approximately 8.9 GB of data. Berea has a resolution of 1000x1000x2399 pixels =
6.75 GB. Carbonate has a resolution of 1500*1500*3000 pixels = 18.9 GB. This gives the
rock dataset a total size of 34.6 GB, and due to GPU memory constraints, it is not possible to
operate on a single rock volume simultaneously. This is not a problem for networks that uses
2D convolutional kernels to predict the segmentation map for a single slice of this volume at
a time. Architectures based on 3D convolutions would have to divide the original volume into
non-overlapping sub-volumes small enough to fit in memory. Figure 3.3 shows four slices from
the Bentheimer, Berea and Carbonate volume.

Although 34.6 GB might seem like a lot of data, it is only 7100 depth slices, most computer
vision tasks would benefit from more data. Acquiring more micro-CT images of core samples
and labeling them is both expensive and time consuming. To increase the diversity and amount
of data we employed several data augmentation techniques. To avoid a huge increase in dataset

31

Chapter 3. Methodology

Figure 3.1: Shows the class distribution for the different sandstone types, Bentheimer and Berea has a
very similar distribution, Carbonate differs slightly.

Figure 3.2: Core samples of sandstone, Berea (left), Bentheimer (bottom) and Carbonate (right).

32

Chapter 3. Methodology

(a) Bentheimer

(b) Berea

(c) Carbonate

Figure 3.3: Four slices from each sandstone volume. Left image shows the Micro-CT, to the right the
corresponding segmented ground truth. In the ground truth slices black corresponds to pore, grey to
multi-phase and white to grain.

33

Chapter 3. Methodology

size all transformations are applied directly to the mini batches that are feed to the network. The
exact transformations are described in Section 4.2.2.

3.1.1 Generation of Ground Truth
The ground truth porosity segmentation provided by the digital rocks dataset was generated by
combining the segmentation produced by five different users, configuring a multi-thresholding
algorithm with parameters that they believed to be most suitable. The way these segments was
combined was by taking the voxel-by-voxel most common class among all users, yielding a
segmented average considered ground truth. Table 3.1 shows the intersection over union (IoU)
between each user and the segmented average. This shows how much a segmentation differs
depending on different users criteria, and allows us to compare that with a deep learning model
that always produces the same segmentation.

Bentheimer Berea Carbonate
User 1 0.976 0.967 0.826
User 2 0.918 0.905 0.911
User 3 0.942 0.960 0.692
User 4 NaN 0.956 NaN
User 5 0.957 0.924 0.925

Table 3.1: Intersection over Union between each user and the segmented average, and shows us that
Carbonate gives users the most different results (a data parsing issues resulted in some missing values
for user 4).

3.2 Developing a Digital Rock Segmentation Network
When selecting a base network architecture to extend upon to build a porosity segmentation
network, several factors was considered: expected performance, model complexity and avail-
ability of pre-trained weights. The two dominant types of networks used for segmentation in
computer vision literature are region proposal based networks and fully convolutional networks.
Region proposals are mainly used for instance segmentation and are more computational expen-
sive. We chose to proceed with the fully convolutional network, as this architecture is heavily
documented with many variants. Additionally, most frameworks have available open source
implementations.

Although the dataset we are trying to segment is volumetric, we chose to keep the model
complexity low by only using 2D and not 3D convolutional kernels. 2D kernels has far fewer
parameters but are only able to leverage context across the height and width of an image. In
order to segment a full volume, segmentation maps have to be predicted one depth slice at a
time. We hypothesize that this is a good trade off between efficiency and accuracy, especially
with limited resources. The following sections present three architectures developed for digital
rock pore segmentation.

34

Chapter 3. Methodology

3.2.1 Digital Rock Network (DRNet)
Digital Rock network (DRNet) is an extension of the original U-Net architecture which is the
most well documented FCN. The dataset Ronneberger et. al developed this architecture for re-
sembles our dataset, making it a natural starting point. U-Net was developed in 2015, advance-
ments has been made to the computer vision field since, that we incorporated into DRNet. The
up-sampling path consists of five blocks that uses transposed convolution in place of bi-linear
interpolation. Each block has batch normalization layers in between convolution operations
and activation functions. The down-sampling path is a residual network, this allows for experi-
mentation with different layer depths to find the appropriate capacity for the task and still have
the opportunity to use transfer learning. ResNet-18 −→ ResNet-152 all have available weights
online. Figure 3.4 shows the full architecture of DRNet.

Figure 3.4: DRNet architecture, number of residual down-sampling blocks varies.

Given this encoder-decoder architecture there are several ways of implementing transfer
learning. One possibility is to initialize the down-sampling path with pre-trained weights and

35

Chapter 3. Methodology

freeze them, and then only train the up-sampling weights. Weights in the down-sampling path
never changes so saving the output of this network part to disk enables faster convergence, since
there is no need to compute the activation of any node. This is only a good idea when the two
datasets are similar, if not performance can be reduced. We were only able to find pre-trained
weights on ImageNet and this dataset differs very from the digital rocks dataset. What we did
instead was to only freeze the weights in the down-sampling path for two epochs. This was
done order not to damage the properly trained weights with huge gradients during first steps of
training because the loss is so large.

3.2.2 Pyramid Digital Rock Network (PDRNet)
PDRNet is based upon the Feature Pyramid Network (FPN) [28], a generic pyramid feature
extractor initially proposed for object detection. It can however be extended to predict segmen-
tation maps. The PDRNet architecture is similar to DRNet but there are some key differences.
PDRNet conforms to a pyramid shape with a bottom-up and a top-down pathway, this is equiv-
alent to the down-sampling and up-sampling paths in DRNet. However, while the long skip
connections in DRNet directly copy feature maps before concatenation, PDRNet applies a 1x1
convolution to reduce channel dimensions before merging feature maps with element wise ad-
dition. Figure 3.5 shows the details.

Figure 3.5: Lateral connection for PDRNet, one for each bottom-up and top-down block.

The biggest difference is that PDRNet use every block in the top-down pathway to predict
segmentation maps. This yields predictions at different scales and a final segmentation is formed
by merging these predictions. This should benefit small segments since the higher-resolution
maps in the feature hierarchy are directly used for prediction. DRNet only predicts at the last
stage.

36

Chapter 3. Methodology

Figure 3.6: PDRNet high level architecture, details are left out to highlight differences with DRNet.

37

Chapter 3. Methodology

3.2.3 Hybrid Digital Rock Network (HDRNet)
The Hybrid Digital Rock Network (HDRNet) is an extension to DRNet and PDRNet that pro-
vides some depth slices as additional input channels. This allows the network to leverage con-
text from adjacent slices. We hypothesize that this will boost performance without much addi-
tional computational cost.

An inherent problem with both DRNet and PDRNet is that they segment 3D volumes slice
by slice, only considering neighbouring pixels in the width and height dimension. Depth infor-
mation, although it is present in the data, is not utilized. One way to include this information
in the prediction process is by replacing all 2D convolutions with 3D convolutions and train on
3-dimensional patches. 3D convolution has filters that moves in 3-directions (x, y, z). Every
spatial dimension become equally important unless the model learns otherwise. Unfortunately,
this has huge computational costs and it is only feasible to train on smaller subvolumes which
again becomes limiting. Kjerland [27] trained DeepMedic, an 11-layer 3D-convolutional net-
work on 120 175x175x175 voxel subvolumes of digital rock data. This only amounts to 0.065%
of the total available data, and training converged in 8 hours. With HDRNet we propose a com-
promise by not using 3D-convolutions but instead include some of the adjacent slices to the
current depth slice as input channels to the network. This increases memory requirements but
can easily be tuned with varying the number of depth channels. Figure 3.7 shows a training
input-output pair with 4-depth channels.

Figure 3.7: Visualization of input x and ground truth y used to train the hybrid model, two depth slices
are added on each side of the current slice to segment (in red), as additional channels.

To make this work some architectural modifications are necessary. Employing transfer
learning on networks trained on ImageNet or similar datasets with RGB-images force us to
use 3-input channels, one for each color. This cannot change because the weights have been
trained for this specific input configuration. Fortunately, there are ways to work around this.
Training on grayscale images can be done by repeating the same image array 3 times on a new
dimension. In our cases, where we have more than 3 channels we need a way to map N channels
into 3. In HDRNet this accomplished by convolving a 1x1x3 kernel which takes the element
wise product of the N depth channels and the filter before applying a ReLU non linearity. This
acts like one layer in a fully connected neural network that learns a mapping between N and 3
channels.

38

Chapter 3. Methodology

512x512x5 512x512x3* =
1x1x3

Figure 3.8: A 5-channeled input convolved with a 1x1x3 filter resulting in a 3-channeled output. Ap-
plying a non linearity (ReLU) to this output allows the network to learn a mapping that can utilizes the
depth information available in the input.

3.3 Evaluation Metrics
In order to evaluate the performance of our models and compare them with existing research
we need to choose appropriate metrics. Recall that the semantic segmentation task is to predict
the class ci of each pixel in a given image. But how do we evaluate how good a produced
segmentation really is? There exists several metrics and the most commonly used is explained
below. For each input image and predicted segmentation map, there is also a ground truth
segmentation. The goal is to produce a segmentation as close to ground truth as possible. When
comparing the class predicted for a pixel in the segmentation mask with the corresponding pixel
in the ground truth mask, there are four possible outcomes listed below. Many existing metrics
are expressed as combinations of these outcomes, but we will only cover the most relevant for
evaluating semantic segmentation.

• True Positive (TP); the pixel is predicted to be of class ci and the pixel is indeed a part of
ci in the ground truth mask.

• True negative (TN); the pixel is predicted to not be of class ci and the pixel is not a part
of ci in the ground truth mask.

• False Positive (FP); the pixel is predicted to be a part of class ci, but belongs to some
other class cj in the ground truth mask.

• False Negative (FN); the pixel is predicted to not be a part of class ci but belongs to class
ci in the ground truth mask.

Accuracy is one of the simplest and most intuitive measures. In the semantic segmentation task
it is equal to the percent of pixels that are correctly classified and commonly reported for each of
the classes present in the image averaged across all classes. Accuracy is easy to understand and
a widely adopted measure, but can give some misleading results when there exists large class
imbalances in the image. Given a binary segmentation task with two classes c1 and c2 where
c2 only makes up 1% of the pixels in the given image, a classifier that produces a segmentation
with only class c1 will have an pixel accuracy of 99%. For this reason accuracy is not regraded
as well suited for evaluating image segmentation since large class imbalances are very common
in many domains.

accuracy =
TP + TN

TP + TN + FP + FN
(3.1)

39

Chapter 3. Methodology

Figure 3.9: Intersection over Union.

Intersection over Union (IoU), also known as the jaccard similarity coefficient, quantifies the
overlap between the predicted and the ground truth segmentation map. The result is equal to
the number of pixels shared between the two segmentation masks, divided by present pixels
across the two masks. IoU does not suffer from problems with large class imbalance. IoU is
easier to understand visually than with a formula of TP , TN , FP and FN . IoU was selected
as the main metric to judge the performance of models, because it is the best suited metric to
evaluate the quality of segmentation along with the Dice coefficient. IoU is however most used
in semantic segmentation challenges in addition to being the most intuitive of the two. Figure
3.9 shows a geometrical example of how IoU is calculated.

Dice Coefficient is another metric commonly used to evaluate segmentation maps and is closely
related to IoU (IoU = Dice

2−Dice). Dice is hard to describe geometrically, thus it is expressed in
terms of true positives, false negatives and false positives. The Dice coefficient was reported in
addition to IoU, to make comparisons with related work that only reports Dice easier.

Dice =
2TP

(TP + FP) + (TP + FN)
(3.2)

Confusion Matrix is not a metric in itself but an error matrix consisting true positives, that can
give insights to which classes a model struggles with and often confuses with other classes. Can
be normalized to show percentages

40

Chapter 4
Experiments and Results

This chapter starts by presenting the experimental plan. Then we talk about the experimen-
tal setup, including hardware, tools data pre-processing, augmentations and hyperparameters.
Finally we list the results obtained from running the experiments.

4.1 Experimental Plan
The goal of our experimental plan is to help answer the research questions. The first step in
our plan is to determine which of the two network architectures, PDRNet and DRNet, that
perform best on the task of segmenting digital rocks. Our plan is to do this using the computer
setup detailed in the next section and using the evaluation metrics presented in Section 3.3, in
order to quantify performance. Next, the best performing architecture is extended with depth
channels and named HDRNet as detailed in 3.2.3. This is done to see if providing just some
depth context can increase performance, without a high increase in computational time. Finally,
we train the best performing architecture multiple times with different subsets of the original
dataset, containing only some sandstone types. This is to see if the rocks are somewhat drawn
from the same probability distribution, such that models trained on subsets of rock types can
generalize to others.

4.2 Experimental Setup
This section presents the setup used to conduct experiments. This includes the hardware, soft-
ware, data prepossessing techniques and hyperparameters used for model training and evalua-
tion, to ensure that our work is reproducible.

4.2.1 Hardware, Software and Environment
Due to the computational requirements needed to viably perform subsequent development and
testing of different models, a dedicated computer was built in cooperation with Petricore with
the following specifications.

• 2 x 11 GB Nvidia GeForce GTX 1080 Ti GPU

• 6 Core Intel Xeon E5-2650 Processor

41

Chapter 4. Experiments and Results

• 64 GB 1600MHz DDR3 RAM

• 128 GB Samsung SSD

• CUDA Version 10.1

• Nvidia Version 418.56

• Tensorflow GPU 1.13.1

CUDA is a parallel computing platform and programming model developed by Nvidia for com-
puting on a GPU. CUDA greatly increase computing speed by letting the compute intensive
portion of the model runs on thousands of GPU cores and the sequential parts of the program
runs on the CPU, which is optimized for single threaded performance.

TensorFlow is a library for numerical computation using data flow graphs that makes research,
development and deployment of deep neural networks and machine learning models faster and
easier. TensorFlow can run computations across a variety of hardware (CPU, GPU, TPU). It
also includes TensorBoard, a data visualization toolkit which we used to both monitor and de-
bug model training. TensorFlow was originally developed by researchers and engineers working
on the Google Brain team within the Machine Intelligence Research organization at Google, but
has since been open sourced [29].

Keras is a high-level neural network API that is ”designed for human beings, not machines,”
and “follows best practices for reducing cognitive load.” [30]. Keras does not run any computa-
tion, but can delegates it to several back-end engines, TensorFlow being one of them. Network
models created for this thesis used the Keras functional API, which eases the development pro-
cess and enables rapid experimentation while maintaining full flexibility to customize models.

Jupyter Notebook is an open-source web application that makes it easy to create and share
documents that contain live code. Jupyter is well suited for use with machine learning where
one of the the main benefits is the ability to hold datasets in memory between experiments. This
optimizes development speed in that large datasets is loaded once and can then be reused.

4.2.2 Data Preprocessing and Augmentation
Of the original digital rocks dataset 80% of the data is used for training while the remaining 20%
is split equally between the validation and test set. To ensure balanced and unbiased datasets,
the different sandstones is distributed equally between all sets. Training and validation batches
of images are produced with Python generators that reads image slices from disk and normalizes
pixel values, before extracting random 512x512 patches from one slice of Bentheimer, Berea
and Carbonate. This is done to reduce the memory requirements and avoid training with a
extremely low batch size. Even tough the models are trained on smaller patches, they can still be
used to predict segmentation maps on whole slices, because they are fully convolutional and not
dependant on the width and height of the input array. After preprocessing, image augmentation
is applied, but only to training batches with some probability p using a python library called
Albumentations [31]. This library was chosen because it has been shown to be the fastest
on most transformations, which is important when images are augmented in real time during
training, because slow transformations will increase total training time. We experimented with

42

Chapter 4. Experiments and Results

three different augmentation schemes shown in Table 4.1, 4.2 and 4.3, each transformation in a
scheme has a probability of being applied. Some of the transformations is part of a set, where
one of the members are chosen according to the specified probability, if no probability in these
sets are given, the probability is distributed equally.

Augmentation Parameters Probability
Horizontal Flip 0.5

Random Brightness / Contrast
Brightness limit = 0.2
Contrast limit = 0.2 0.2

Shift, Scale, Rotate
Shift limit = 0.162
Scale limit = 0.6
Rotate limit = 0

0.7

Table 4.1: Weak Augmentation

Augmentation Parameters Probability
Horizontal Flip 0.5
Vertical Flip 0.5
Random Rotate 90 0.5
One Of [
Elastic Transfrom,
Grid Distortion
Optical Distortion
]

p=0.5, alpha=120, sigma=120*0.05
p=0.5
p=1, distort limit=2, shift limit=0.5

0.8

Random Brightness Contrast 0.8
Random Gamma 0.8

Table 4.2: Medium Augmentation

43

Chapter 4. Experiments and Results

Augmentation Parameters Probability
Flip
Transpose
Random Rotate 90 0.5
One Of [
Additive Gaussian Noise,
Gauusian Noise
]

0.2

One Of [
Motion Blur,
Median Blur,
Blur
]

p=0.2
blur limit=3, p=0.1
blur limit=3, p=0.1

0.2

Shift, Scale, Rotate shift limit=0.062, scale limit=0.2, rotate limit=45 0.2
One Of [
Optical Distortion,
Grid Distortion,
Piecewise Affine
]

p=0.3
p=0.1
p=0.3

0.2

One Of [
Sharpen,
Emboss
]

0.3

Hue Saturation 0.3

Table 4.3: Strong Augmentation

44

Chapter 4. Experiments and Results

4.2.3 Hyperparameters
Training was performed using the RMSProp optimizer without decay on randomly sampled
512x512 pixels patches augmented using one of schemes presented in the previous section.
Some hyperparameters were experimented with across models and are provided along with
results, the common for all models are given in the list below.

• Learning rate = 0.001

• Epochs = 60

• Batch Size = 32

• Augmentation Probability = 0.5

• Early Stopping Patience = 10 epochs

• Reduce Learning Rate Patience = 7 epochs

• Reduce Learning Rate Factor = 0.25 (0.000001 minimum)

4.3 Experimental Results
This section presents the results obtained from running different experiments with the three
different CNN networks. Chapter 5 discuss the implications of these results.

When reporting results we refer to IoU scores of the trained models. We chose to use IoU as
the main metric because this is the metric most commonly used in other segmentation papers.
The dice coefficient is also reported to make it easier to compare results with related work.

4.3.1 DRNet vs PDRNet
The results presented in Table 4.4 and Table 4.5, shows that DRNet outperforms PDRNet by a
large margin across all tested hyperparameters.

Encoder Frozen Epochs Weights Augmentation IoU Accuracy Dice

ResNet18 0 ImageNet Weak 0.8638 0.9736 0.9219
ResNet34 0 ImageNet Weak 0.8637 0.9732 0.9216
ResNet50 2 ImageNet Weak 0.8536 0.969 0.915
ResNet34 2 ImageNet Weak 0.8516 0.9818 0.9103
ResNet34 0 None Weak 0.8512 0.9695 0.9135
ResNet34 0 ImageNet Medium 0.7605 0.9259 0.8477

Table 4.4: DRNet, test set results.

45

Chapter 4. Experiments and Results

Encoder Frozen Epochs Weights Augmentation IoU Accuracy Dice

ResNet34 0 ImageNet Weak 0.7965 0.946 0.8775
ResNet18 0 ImageNet Weak 0.7782 0.9412 0.8642
ResNet34 2 ImageNet Weak 0.7719 0.9412 0.8569
ResNet50 2 ImageNet Weak 0.7694 0.9322 0.8594
ResNet34 0 None Weak 0.7683 0.9398 0.8569
ResNet34 0 ImageNet Medium 0.7056 0.8974 0.8078

Table 4.5: PDRNet, test set results.

46

Chapter 4. Experiments and Results

4.3.2 HDRNet
We extend DRNet to include depth channels, Table 4.6 shows results obtained by HDRNet on
the test set. Figure 4.1 compares training time and performance of this network, trained with
different amounts of depth channels.

Encoder Frozen Epochs Weights Aug. Depth IoU Accuracy Dice

ResNet34 2 ImageNet Weak 6 0.8860 0.9779 0.935
ResNet34 2 ImageNet Weak 4 0.8859 0.9792 0.9358
ResNet50 2 ImageNet Weak 4 0.8802 0.9769 0.9319
ResNet34 0 ImageNet Medium 4 0.8662 0.974 0.9225
ResNet34 2 ImageNet Weak 2 0.8614 0.9753 0.9191
ResNet34 0 ImageNet Weak 4 0.8404 0.9461 0.9063

Table 4.6: HDRNet, test set results.

Figure 4.1: Validation IoU and training time for HDRNet with increasing amount of depth channels.
Results show that performance increases with additional channels before it saturates, training time also
increases quite a lot. We argue that HDRNet with 4 depth channels is a good compromise between
performance and training time for this task. HDRNet with zero depth channels is equal to DRNet and
provided as a baseline. Data extracted from Tensorboard and plotted manually.

4.3.3 Results on Different Types of Sandstone
Tables 4.7-4.13 presents the results for the experiments that were performed when networks
were trained on different combinations of rock types. We choose to do this comparison using
HDRNet with 4 depth channel, shown in previous experiments to be the best trade off between
training time and performance.

47

Chapter 4. Experiments and Results

(a) Ground Truth (b) 0.5 Epochs, IoU = 0.4372

(c) 3 Epochs, IoU = 0.6921 (d) 30 Epochs, IoU = 0.8632

Figure 4.2: Plotted predicted segmentation maps for a slice of Carbonate during different stages of
training and ground truth (grain in yellow, multi-phase in green and pore in purple). These plots indicate
that the network only uses half a epoch before it is able to differentiate between pore and grain, and that
most of the training time is spent learning how to properly segment multi-phase.

48

Chapter 4. Experiments and Results

Figure 4.3: Confusion matrix shows that the model seldom confuses grain and pore, this only happens
1% of the time. Most confusion occurs between pore and multi-phase, together with multi-phase and
grain. Results also shows that grain is the easiest class to predict thereafter pore and multi-phase which
is the most challenging. Matrix was generated with Matplotlib using the best performing model on the
test set.

Type IoU Accuracy Dice

Bentheimer 0.8598 0.9847 0.9152
Berea 0.3446 0.7815 0.3841
Carbonate 0.3386 0.72430 0.4152
Mean 0.5143 0.8302 0.5715

Table 4.7: Hybrid network trained only on Bentheimer, tested on all three rock types separately.

Type IoU Accuracy Dice

Bentheimer 0.6920 0.93480 0.7616
Berea 0.8918 0.9831 0.9401
Carbonate 0.4207 0.7348 0.5143
Mean 0.6682 0.8842 0.7387

Table 4.8: Hybrid network trained only on Berea, tested on all three rock types separately.

Type IoU Accuracy Dice

Bentheimer 0.0964 0.2122 0.1482
Berea 0.1848 0.2707 0.0300
Carbonate 0.8428 0.9552 0.9119
Mean 0.3747 0.4794 0.4533

Table 4.9: Hybrid network trained only on Carbonate, tested on all three rock types separately.

49

Chapter 4. Experiments and Results

Type IoU Accuracy Dice

Bentheimer 0.8818 0.9868 0.9306
Berea 0.8980 0.9849 0.9437
Carbonate 0.5274 0.8001 0.6431
Mean 0.7691 0.9239 0.8391

Table 4.10: Hybrid network trained on Bentheimer and Berea, tested on all three rock types separately.

Type IoU Accuracy Dice

Bentheimer 0.8548 0.9848 0.9108
Berea 0.3756 0.7923 0.4296
Carbonate 0.8565 0.9623 0.9204
Mean 0.6956 0.9130 0.7536

Table 4.11: Hybrid network trained on Bentheimer and Carbonate, tested on all three rock types sepa-
rately.

Type IoU Accuracy Dice

Bentheimer 0.5163 0.6877 0.6110
Berea 0.8880 0.9828 0.9375
Carbonate 0.8624 0.9540 0.9239
Mean 0.7555 0.8748 0.8241

Table 4.12: Hybrid network trained on Berea and Carbonate, tested on all three rock types separately.

Type IoU Accuracy Dice

Bentheimer 0.876 0.9876 0.9268
Berea 0.9005 0.9853 0.9451
Carbonate 0.8859 0.9792 0.9355
Mean 0.8874 0.9840 0.9358

Table 4.13: Hybrid network trained on Bentheimer, Berea and Carbonate, tested on all three rock types
separately.

50

Chapter 5
Discussion and Conclusion

This chapter concludes the work presented in this thesis. It starts by discussing the findings
presented in Chapter 4, before presenting the conclusion. Finally, we discuss future work that
can potentially improve our results and provide insights.

5.1 Discussion
This section discuss our results with respect to the research questions.

RQ1: How does 2D-convolutional architectures compare to a 2.5D hybrid architecture that
includes depth as input channels?

In order to address RQ1 we compared the results of experimenting with two different convolu-
tional networks, DRNet and PDRNet. Table 4.5 and Table 4.6 show that DRNet outperformed
PDRNet in every experiment. We extend DRNet to include depth channels, Table 4.6 shows
results and training time when training HDRNet. By increasing depth channels, the network
yields better results, but with increased computational cost. When trained with 6 depth chan-
nels, it uses 3.2 times longer when comparing with 0 depth channels. We argue that 4-depth
channels are a good compromise between performance and computation (1.77 times longer
training time). It can be observed that the best run of HDRNet achieves an IoU of 88.6%, which
is 2.2% higher than the best run of DRNet.

RQ2: Can deep learning models trained to segment porosity of one rock type generalize and
accurately segment other types of rock?

In Section 4.3.3 we presented results from the experiments that were performed to help answer
RQ2. Table 4.7, 4.8 and 4.9 indicate that all models trained on individual stones are able to
perform reasonably well when segmentation is performed on themselves. An interesting obser-
vation is that Bentheimer is better able to use features from Berea than the other way around.
When trained only on Bentheimer, Berea get an IoU of 0.3446, but when trained only on Berea,
Bentheimer get an IoU of 0.6920. We can also see that Carbonate perform better when trained
on Berea than Bentheimer. Table 4.9 clearly shows that Carbonate is the hardest stone to ex-
tract common features from by yielding IoUs of only 0.0964 and 0.1848 for Bentheimer and
Berea respectively. When combining two rock types in the training we can observe a general

51

Chapter 5. Discussion and Conclusion

increase in both rock types of which the network was trained. Carbonate benefit when Berea
is included in the training, but Berea IoU is slightly decreased. Both Berea and Bentheimer
benefit from including the other in the training process. When trained on Bentheimer and Car-
bonate, Bentheimer stays nearly constant but Carbonate IoU is increased. Both Bentheimer
and Carbonate is able to use information from a network trained on Berea + Carbonate, and
Bentheimer + Berea, respectively (IoUs of 51.5%-52.7%). By looking at the mean scores of
including a second stone in the training process, we observe almost double mean IoU. Of the
three combinations we see that both Bentheimer and Berea performs better with each other than
when they are combined with Carbonate. To answer the RQ, we conclude that the network is
able to generalize across different rock types to some extent.

A observation made when analyzing the result presented in Table 4.4-4.6, is that deeper
encoders does not increase performance as expected (not to be confused with depth channels
mentioned earlier). Furthermore, by applying medium or strong data augmentations, the IoU
actually decreases. One would expect that stronger augmentations, i.e more training data, would
yield better results. We theorize that this might not be the case for digital rock volumes, as this
might introduce too much noise to features important to the final segmentation.

When comparing our results with the results of Kjerland 2017 thesis, we see a general
improvement in both computational time and dice scores. This is however most evident when
the rock type that is tested on is included in the training process. See Table 5.1 for a list of
the results presented in Kjerland and ours. The table indicate that DeepMedic, the 3D based
convolutional network, is better able to extract features from other rock types when only one
rock type is included in training. However, once two samples are included our network perform
equal or better. Because Kjerland did not run experiments for every possible combination, we
are limited to comparing the three listed combinations.

Trained On Tested On Dice (Kjerland) Dice (Our)

BT Bentheimer 0.89 0.92
BT + BR Bentheimer 0.87 0.93
BT + BR + CA Bentheimer 0.85 0.94

BT Berea 0.78 0.38
BT + BR Berea 0.94 0.94
BT + BR + CA Berea 0.94 0.95

BT Carbonate 0.53 0.41
BT + BR Carbonate 0.57 0.64
BT + BR + CA Carbonate 0.91 0.93

Table 5.1: Table showing the dice scores of Kjerland and our thesis, when trained with different com-
binations of rock types. BT = Bentheimer, BR = Berea, CA = Carbonate. Kjerland dice scores are
computed by averaging the scores for each experiment listed in the Appendix, Section B, Kjerland page
51.

52

Chapter 5. Discussion and Conclusion

5.2 Conclusion
In this thesis, we have presented our work on the task of semantic segmentation of digital rocks.
The produced segments are classified as either grain, micro-phase and pore. The deep learning
architectures have been trained on three different rock types, Bentheimer, Berea and Carbonate.
We have developed three different deep learning models, all of which are implementations of
2D convolutional neural networks. First we developed DRNet, which is a network inspired by
the original U-Net. Second, the PDRNet was developed as an extension of the Feature Pyramid
Network (FPN). Third, we developed a further extension of the two above networks, called
HDRNet. A problem with the two previously mentioned architectures is that they segment 3D
volumes slice by slice. The decision of not doing 3D convolutions was originally made because
of the computational complexity. HDRNet is proposed as a compromise between 2D and 3D
architectures, where we use the depth information available by feeding the network adjacent
slices as channels. HDRNet can be seen as a 2.5D architecture and supports an arbitrary number
of extra depth input channels.

The models are able to extract features from other stones to some degree, where Berea is the
type that both of the others are best able to learn from. Carbonate is difficult to extract common
features from, and does in fact slightly decrease IoU for the other stone types when included.
This is probably due to the high amount of multi-phase pixels, which is the hardest class to
predict (shown by the confusion matrix in Figure 4.3).

We have showed that, when including all sandstones in the training process, HDRNet (the
2.5D based approach) is able to outperform the DeepMedic architecture which is a 3D convo-
lutional network. We believe however, that once hardware capabilities reach a level where it
is viable train 3D-convolutional networks with larger patches and utilize all available data, this
will be a better approach.

The biggest limitation of our work is that the provided dataset ground truth is produced
by averaging several thresholding algorithms. This means that in effect, our solution is in fact
learning the parameters of those algorithms. Section 5.3 presents some ideas on how to improve
this datasets, as well as our view on future work.

5.3 Future Work
Improving the quality and size of the Digital Rocks dataset would be a good starting point
for improving the models presented in this thesis. Our results shows that the impact transfer
learning has is limited. Using pre-trained weights on a dataset more similar to ours, could
speed up training time while also improve results. We have not been able to find such a dataset.
However, with the increasing number of research papers published regarding digital rocks, one
is likely to appear in the future. An interesting experiment, would be to train and evaluate
networks on data from the exact same core sample, but produced by two separate scans. This
could give some insights into how much variation that is present in a scan, and how much this
affects performance.

Another interesting research topic that we think should be looked into, is the use of Single
Image Super Resolution (SISR) as a digital rock segmentation preconditioner. SISR is a chal-
lenging problem that has received a lot of attention the last two years. The goal is to obtain a
high resolution image from a low resolution image [32]. Y. Da Wang et al. [33] used Generative
Adversarial Networks (GANs) to create a model that is capable of obtaining a higher resolution

53

Chapter 5. Discussion and Conclusion

micro-CT from a lower one. This can compensate for the limited field of view in high resolution
scanning devices. By doing this, it is possible create higher quality training data, and directly
improve upon the work presented in this thesis.

54

Bibliography

[1] A. Braathen, J. Tveranger, H. Fossen, T. Skar, N. Cardozo, S. E. Semshaug, E. Bastesen,
and E. Sverdrup, “Fault facies and its application to sandstone reservoirs,” AAPG Bulletin,
vol. 93, no. 7, pp. 891–917, 2009.

[2] J. Mathew, “Medium article: Deep learning for image seg-
mentation.” https://medium.com/datadriveninvestor/
deep-learning-for-image-segmentation-d10d19131113, 2019.

[3] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press, 2016. http:
//www.deeplearningbook.org.

[4] L. Deka and M. Quddus, “Network-level accident-mapping: Distance based pattern
matching using artificial neural network,” Accident; analysis and prevention, vol. 65C,
pp. 105–113, 12 2013.

[5] V. Gupta, “Understanding feedforward neural networks.” https://www.
learnopencv.com/understanding-feedforward-neural-networks/,
2019.

[6] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network training by
reducing internal covariate shift,” arXiv preprint arXiv:1502.03167, 2015.

[7] M. Stewart, “Introduction to convolutional neural networks,” 2019. See appendix for URL.

[8] Rice, “Other methods of edge detection.” https://www.owlnet.rice.edu/

˜elec539/Projects97/morphjrks/moredge.html, 2019.

[9] Unknown, “Max-pooling / pooling.” https://computersciencewiki.org/
index.php/Max-pooling_/_Pooling, 2019.

[10] A. Bzt, “Kaggle notebook: 3d convolutions,” 2019.

[11] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks for semantic seg-
mentation,” in Proceedings of the IEEE conference on computer vision and pattern recog-
nition, pp. 3431–3440, 2015.

[12] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks for biomedical
image segmentation,” Lecture Notes in Computer Science (including subseries Lecture

55

https://medium.com/datadriveninvestor/deep-learning-for-image-segmentation-d10d19131113
https://medium.com/datadriveninvestor/deep-learning-for-image-segmentation-d10d19131113
http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://www.learnopencv.com/understanding-feedforward-neural-networks/
https://www.learnopencv.com/understanding-feedforward-neural-networks/
https://www.owlnet.rice.edu/~elec539/Projects97/morphjrks/moredge.html
https://www.owlnet.rice.edu/~elec539/Projects97/morphjrks/moredge.html
https://computersciencewiki.org/index.php/Max-pooling_/_Pooling
https://computersciencewiki.org/index.php/Max-pooling_/_Pooling

BIBLIOGRAPHY

Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 9351, pp. 234–
241, 2015.

[13] S. Sahoo, “Residual blocks — building blocks of resnet,” 2018. See appendix for URL.

[14] S. T. March and G. F. Smith, “Design and natural science research on information tech-
nology,” Decision Support Systems, vol. 15, no. 4, pp. 251–266, 1995.

[15] S. J. Russell and P. Norvig, Artificial intelligence: a modern approach. Malaysia; Pearson
Education Limited,, 2016.

[16] L. Perez and J. Wang, “The effectiveness of data augmentation in image classification
using deep learning,” arXiv preprint arXiv:1712.04621, 2017.

[17] D. G. Pinaki Pratim Acharjya, “An Overview on Watershed Transform and Its Conse-
quences,” International Journal of Engineering and Innovative Technology (IJEIT), vol. 1,
no. 5, pp. 168–172, 2012.

[18] A. Odena, V. Dumoulin, and C. Olah, “Deconvolution and checkerboard artifacts,” Distill,
2016.

[19] M. Lin, Q. Chen, and S. Yan, “Network in network,” arXiv preprint arXiv:1312.4400,
2013.

[20] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpa-
thy, A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-Fei, “ImageNet Large Scale Visual
Recognition Challenge,” International Journal of Computer Vision (IJCV), vol. 115, no. 3,
pp. 211–252, 2015.

[21] D. Budgen and P. Brereton, “Performing systematic literature reviews in software engi-
neering,” Proceeding of the 28th international conference on Software engineering - ICSE
’06, p. 1051, 2006.

[22] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet Classification with Deep Con-
volutional Neural Networks,” Advances In Neural Information Processing Systems, 2012.

[23] R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature hierarchies for accurate
object detection and semantic segmentation,” in Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 580–587, 2014.

[24] S. Karimpouli and P. Tahmasebi, “Segmentation of digital rock images using deep convo-
lutional autoencoder networks,” Computers and Geosciences, vol. 126, no. October 2018,
pp. 142–150, 2019.

[25] R. K. Srivastava, K. Greff, and J. Schmidhuber, “Highway networks,” CoRR,
vol. abs/1505.00387, 2015.

[26] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in
Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern
Recognition, 2016.

56

BIBLIOGRAPHY

[27] Ø. Kjerland, “Segmentation of coronary arteries from ct-scans of the heart using deep
learning,” Master’s thesis, NTNU, 2017.

[28] T. Y. Lin, P. Dollár, R. Girshick, K. He, B. Hariharan, and S. Belongie, “Feature pyra-
mid networks for object detection,” in Proceedings - 30th IEEE Conference on Computer
Vision and Pattern Recognition, CVPR 2017, 2017.

[29] Google, “Why tensorflow.” https://www.tensorflow.org/, 2019.

[30] F. Chollet et al., “Keras.” https://keras.io, 2015.

[31] E. K. V. I. I. A. Buslaev, A. Parinov and A. A. Kalinin, “Albumentations: fast and flexible
image augmentations,” ArXiv e-prints, 2018.

[32] W. Yang, X. Zhang, Y. Tian, W. Wang, and J.-H. Xue, “Deep Learning for Single Image
Super-Resolution: A Brief Review,” pp. 1–17, 2018.

[33] Y. Da Wang, R. Armstrong, and P. Mostaghimi, “Super resolution convolutional neu-
ral network models for enhancing resolution of rock micro-ct images,” arXiv preprint
arXiv:1904.07470, 2019.

57

https://www.tensorflow.org/
https://keras.io

Appendix A
Seismic and Salt Identification Challenge

This section contains material related to seismic data which was the original research focus.

Seismic data
Seismic surveys is the process of mapping the subsurface. In this project the seismic data con-
sists of images of the geological structures under the seabed. The mapping is done by emitting
sound waves into the rock formations below the sea. The sound waves are reflected back to
sensors which are usually towed behind a vessel performing the survey. The strength of reflec-
tion is proportional to the different properties in the rock layers. 3D images are produced using
multiple parallel sensor cables, providing higher resolution compared to 2D images. A seismic
image shows boundaries between different rock types, but it can be difficult to accurately iden-
tify what class a rock belongs to. Figure A.1 shows how a seismic survey is carried out on sea.
Most seismic 3D data volumes comes in a .segy format which does not always follow the same
specification. This makes it difficult to develop a general method of parsing the datasets and
feeding the information to a network. A typical slice (one image in a 3D volume) of a seismic
dataset is illustrated in Figure A.2.

Figure A.1: Seismic survey by vessel (illustration from RagnarockGeo AS).

58

Chapter A. Seismic and Salt Identification Challenge

Figure A.2: Illustration of a slice in a 3D seismic volume

Problem leading to dismissal of seismic
This thesis was originally going to focus primarily on the task of automatically segment seis-
mic 3D volumes. Two different datasets were explored, before the conclusion of abandoning
seismic in favor of digital rocks.

F3 Netherlands Offshore F3 Block
The first dataset on which preliminary experiments were carried out. The dataset has one major
drawback, and that is the fact that only four slices are labelled, where one is used for validation.
At first this was not an issue regarding the development of the planned model, as datasets with
more labels were to be produced and delivered later. F3 was a good starting point and different
data augmentation techniques were applied in order to generate more training data.

The Volve dataset
Volve was recently (June, 2018) published by Equinor. The dataset consist of very detailed and
large amounts data from a field on the Norwegian continental shelf, with measurements from
2008-2016. The whole dataset amounts to over 5 TB and contains a huge amount of labelled
data. However, a major problem with this dataset is that it specifies every sensor value with
respect to real world coordinates. This results in a very difficult problem of converting the input
from coordinates to fit in a matrix that can be used to feed a network. Originally we were
promised a working solution to transform the dataset into matrices, but was unfortunately not
delivered. This ultimately became the reason the thesis had to shift focus.

TGS Salt Challenge
While trying to parse the Volve dataset we participated in the TGS Salt Identification challenge
on Kaggle.

59

Chapter A. Seismic and Salt Identification Challenge

Data
There are many locations on earth where there are large deposits of salt in the subsurface. A
challenge in seismic data is to identify which part of the subsurface is salt. The dataset provided
by the TGS Salt Identification challenge consists of images of 101x101 pixels chosen from
different locations below the seabed. Each pixel is classified as either sediment or salt. All
images are in .png format and in addition to the image the depth of the location is provided.

Figure A.3: TGS Salt Data. The left image shows the original image, while the right is the mask where
blue pixels belong to sediment and red salt

Results
Our best submission scored a private IoU of 0.77030 and 0.74344 on the public leaderboard.
The following pages documents this submission.

60

10/07/2019 u-net

localhost:8888/notebooks/u-net.ipynb# 1/11

In [1]:

In [2]:

In [3]:

In [4]:

%matplotlib inline
import tensorflow as tf
import pandas as pd
from notify_slack import notify
from skimage.transform import resize
from sklearn.model_selection import train_test_split
import numpy as np
import matplotlib.pyplot as plt
from tensorflow.keras.preprocessing.image import array_to_img, load_img
from tensorflow.keras.models import Model, load_model
from tensorflow.keras.layers import Dense, Dropout, Flatten, Input, Concatenate,
from tensorflow.keras.layers import Conv2D, MaxPooling2D, UpSampling2D, Conv2DTr
from tensorflow.keras.callbacks import EarlyStopping, ModelCheckpoint, ReduceLRO
from tensorflow.keras.layers import Lambda, RepeatVector, Reshape, concatenate,
from tensorflow.keras.utils import multi_gpu_model
from tensorflow.keras.optimizers import Adam
import os

GPU_NUMBER = 0
if GPU_NUMBER != None:
 os.environ["CUDA_VISIBLE_DEVICES"] = str(GPU_NUMBER)

def read_images(path: str):
 images = []
 filenames = []
 for filename in os.listdir(path):
 image_array = np.asarray(load_img(path + filename, grayscale=True)) / 25
 images.append(image_array)
 filenames.append(filename.split(".")[0])
 return filenames, images

depths_df = pd.read_csv("data/depths.csv", index_col="id")
train_df = pd.read_csv("data/train.csv", index_col="id", usecols=[0])
train_df = train_df.join(depths_df)
test_df = depths_df[~depths_df.index.isin(train_df.index)]

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

1
2
3

1
2
3
4
5
6
7
8

1
2
3
4

10/07/2019 u-net

localhost:8888/notebooks/u-net.ipynb# 2/11

In [5]:

Out[5]:

id masks images z

0 b71915a0fe [[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0,...

[[0.5725490196078431,
0.48627450980392156, 0.4... 288

1 8320911258 [[1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
1.0,...

[[0.5254901960784314,
0.5254901960784314, 0.51... 290

2 77608c7770 [[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0,...

[[0.36470588235294116,
0.3686274509803922, 0.3... 512

3 f122ead5f2 [[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0,...

[[0.7019607843137254,
0.6235294117647059, 0.54... 513

4 0c02f95a08 [[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0,...

[[0.5372549019607843,
0.5137254901960784, 0.48... 681

filenames, images = read_images("data/train/images/")
train_df = pd.merge(pd.DataFrame({"id": filenames, "images": images}), train_df,
filenames, masks = read_images("data/train/masks/")
train_df = pd.merge(pd.DataFrame({"id": filenames, "masks": masks}), train_df, o
train_df.head()

1
2
3
4
5

10/07/2019 u-net

localhost:8888/notebooks/u-net.ipynb# 3/11

In [6]:

def visualize(id: str) -> None:
 row = train_df.loc[train_df["id"] == id]
 img = row["images"].values[0]
 mask = row["masks"].values[0]
 plt.figure()
 plt.subplot(121)
 plt.imshow(img, cmap="seismic")
 plt.subplot(122)
 plt.imshow(mask, cmap="seismic")
visualize("0a1742c740")
visualize("f5c2e66754")

1
2
3
4
5
6
7
8
9

10
11

10/07/2019 u-net

localhost:8888/notebooks/u-net.ipynb# 4/11

In [16]:

def get_iou_vector(A, B):
 batch_size = A.shape[0]
 metric = []
 for batch in range(batch_size):
 t, p = A[batch]>0, B[batch]>0
 intersection = np.logical_and(t, p)
 union = np.logical_or(t, p)
 iou = (np.sum(intersection > 0) + 1e-10)/ (np.sum(union > 0) + 1e-10)
 thresholds = np.arange(0.5, 1, 0.05)
 s = []
 for thresh in thresholds:
 s.append(iou > thresh)
 metric.append(np.mean(s))

 return np.mean(metric)

def iou(label, pred):
 return tf.py_func(get_iou_vector, [label, pred>0.5], tf.float64)

def iou2(label, pred):
 return tf.py_func(get_iou_vector, [label, pred >0], tf.float64)

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21

10/07/2019 u-net

localhost:8888/notebooks/u-net.ipynb# 5/11

In [15]:

def conv2d_block(input_tensor, n_filters, kernel_size=3, batchnorm=True):
 x = Conv2D(filters=n_filters, kernel_size=(kernel_size, kernel_size),padding

 if batchnorm:
 x = BatchNormalization()(x)
 x = Activation("relu")(x)

 x = Conv2D(filters=n_filters, kernel_size=(kernel_size, kernel_size), paddin
 if batchnorm:
 x = BatchNormalization()(x)

 x = Activation("relu")(x)
 return x

def get_unet(input_img, n_filters=32, dropout=0.5, batchnorm=True):
 # contracting path
 c1 = conv2d_block(input_img, n_filters=n_filters*1, kernel_size=3, batchnorm
 p1 = MaxPooling2D((2, 2)) (c1)
 p1 = Dropout(dropout*0.5)(p1)

 c2 = conv2d_block(p1, n_filters=n_filters*2, kernel_size=3, batchnorm=batchn
 p2 = MaxPooling2D((2, 2)) (c2)
 p2 = Dropout(dropout)(p2)

 c3 = conv2d_block(p2, n_filters=n_filters*4, kernel_size=3, batchnorm=batchn
 p3 = MaxPooling2D((2, 2)) (c3)
 p3 = Dropout(dropout)(p3)

 c4 = conv2d_block(p3, n_filters=n_filters*8, kernel_size=3, batchnorm=batchn
 p4 = MaxPooling2D(pool_size=(2, 2)) (c4)
 p4 = Dropout(dropout)(p4)

 c5 = conv2d_block(p4, n_filters=n_filters*16, kernel_size=3, batchnorm=batch

 # expansive path
 u6 = Conv2DTranspose(n_filters*8, (3, 3), strides=(2, 2), padding='same') (c
 u6 = concatenate([u6, c4])
 u6 = Dropout(dropout)(u6)
 c6 = conv2d_block(u6, n_filters=n_filters*8, kernel_size=3, batchnorm=batchn

 u7 = Conv2DTranspose(n_filters*4, (3, 3), strides=(2, 2), padding='same') (c
 u7 = concatenate([u7, c3])
 u7 = Dropout(dropout)(u7)
 c7 = conv2d_block(u7, n_filters=n_filters*4, kernel_size=3, batchnorm=batchn

 u8 = Conv2DTranspose(n_filters*2, (3, 3), strides=(2, 2), padding='same') (c
 u8 = concatenate([u8, c2])
 u8 = Dropout(dropout)(u8)
 c8 = conv2d_block(u8, n_filters=n_filters*2, kernel_size=3, batchnorm=batchn

 u9 = Conv2DTranspose(n_filters*1, (3, 3), strides=(2, 2), padding='same') (c
 u9 = concatenate([u9, c1], axis=3)
 u9 = Dropout(dropout)(u9)
 c9 = conv2d_block(u9, n_filters=n_filters*1, kernel_size=3, batchnorm=batchn

 output = Conv2D(1, (1, 1), activation=None)(c9)
 prediction = Activation("sigmoid")(output)

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57

10/07/2019 u-net

localhost:8888/notebooks/u-net.ipynb# 6/11

__

Layer (type) Output Shape Param # Conne
cted to
==
============================
img (InputLayer) (None, 128, 128, 1) 0
__

conv2d_38 (Conv2D) (None, 128, 128, 16) 160 img
[0][0]
__

batch_normalization_36 (BatchNo (None, 128, 128, 16) 64 conv2
d_38[0][0]
__

activation_38 (Activation) (None, 128, 128, 16) 0 batch
normalization 36[0][0]

 model = Model(inputs=[input_img], outputs=[prediction])
 return model

input_img = Input((128, 128, 1), name='img')

model = get_unet(input_img, n_filters=16, dropout=0.15, batchnorm=True)

summary = model.summary()

if GPU_NUMBER == None:
 model = multi_gpu_model(model, gpus=2, cpu_merge=True, cpu_relocation=False)

model.compile(loss="binary_crossentropy", optimizer='adam', metrics=["acc", iou]

58
59
60
61
62
63
64
65
66
67
68
69
70
71
72

10/07/2019 u-net

localhost:8888/notebooks/u-net.ipynb# 7/11

In [8]:

In [9]:

images = []
for image in train_df.images.values:
 image = np.stack((image,)*1, -1)
 image = resize(image, (128, 128, 1), anti_aliasing=True, mode='constant', pr
 images.append(image)

segments = []
for mask in train_df.masks.values:
 segment = np.stack((mask,)*1, -1)
 segment = resize(segment, (128, 128, 1), anti_aliasing=True, mode='constant
 segments.append(segment)

x = np.array(images)
y = np.array(segments)

x_train, x_valid, y_train, y_valid = train_test_split(x, y, test_size=0.1, rando

Data Augmentation

Vertical Flip

Vx = [np.flip(i, axis=0) for i in x_train]
Vy = [np.flip(i, axis=0) for i in y_train]

Horizontal Flip

Hx = [np.flip(i, axis=1) for i in x_train]
Hy = [np.flip(i, axis=1) for i in y_train]

Horizontal Vertical Flip

HVx = [np.flip(i, axis=1) for i in Vx]
HVy = [np.flip(i, axis=1) for i in Vy]

Appending the augmented image and mask to the main dataset.

x_train = np.append(x_train, Vx, axis=0)
x_train = np.append(x_train, Hx, axis=0)
x_train = np.append(x_train, HVx, axis=0)

y_train = np.append(y_train, Vy, axis=0)
y_train = np.append(y_train, Hy, axis=0)
y_train = np.append(y_train, HVy, axis=0)

early_stopping = EarlyStopping(patience=20, verbose=1)
model_checkpoint = ModelCheckpoint("models/model_checkpoint.h5", monitor='iou',
reduce_lr = ReduceLROnPlateau(factor=0.5, patience=6, min_lr=0.0001, verbose=1)

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

1
2
3

10/07/2019 u-net

localhost:8888/notebooks/u-net.ipynb# 8/11

In [14]:

Out[14]:

'\nhistory = model.fit(x=x_train,\n y=y_train,\n
batch_size=batch_size,\n epochs=epochs,\n
validation_data=(x_valid, y_valid),\n callbacks=[mo
del_checkpoint, reduce_lr])\n\n#val_loss, val_acc, val_iou = model.eva
luate(x=x_valid, y=y_valid, batch_size=batch_size, verbose=1)\n#filena
me = f"model - epochs: {epochs} - iou: {round(val_iou,3)} - loss: {rou
nd(val_loss,3)} acc: {round(val_acc,3)}"\n#model.save(f"models/{filena
me}.h5")\n'

epochs = 55
batch_size = 32

if GPU_NUMBER == None:
 batch_size = 2 * batch_size

history = model.fit(x=x_train,
 y=y_train,
 batch_size=batch_size,
 epochs=epochs,
 validation_data=(x_valid, y_valid),
 callbacks=[model_checkpoint, reduce_lr])

val_loss, val_acc, val_iou = model.evaluate(x=x_valid, y=y_valid, batch_size=bat
filename = f"model - epochs: {epochs} - iou: {round(val_iou,3)} - loss: {round(v
model.save(f"models/{filename}.h5")

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

10/07/2019 u-net

localhost:8888/notebooks/u-net.ipynb# 9/11

In [17]:

if history.history:
 plt.figure(figsize=(15, 5))
 plt.subplot(121)
 plt.plot(history.history['loss'])
 plt.plot(history.history['val_loss'])
 plt.title('Model loss')
 plt.ylabel('Loss')
 plt.xlabel('Epoch')
 plt.xlim(1)
 plt.legend(['Train', 'Validation'], loc='upper left')
 plt.subplot(122)
 plt.plot(history.history['iou'])
 plt.plot(history.history['val_iou'])
 plt.title('Model IOU')
 plt.ylabel('IOU')
 plt.xlabel('Epoch')
 plt.xlim(1)
 plt.legend(['Train', 'Validation'], loc='upper left');
 #plt.savefig(f"models/{filename}.png")

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

Appendix B
2017 Kjerland, Digital Rocks Results

Below are pages 47-54 of Kjerland 2017 masters thesis [27]. The content presents the results
he made when segmenting digital rocks with DeepMedic.

70

4.3 Digital rock segmentation

4.3 Digital rock segmentation
Figures 4.16-4.18 show plots of the training and validation DSC on pore, multi phase and
grain segmentation using the networks RockCNN1, RockCNN10 and RockCNN40.
These networks were trained on different amount of subvolumes from the bentheimer
sandstone volume. Figures 4.19-4.19 show the same type of plots but with RockCNNBT ,
RockCNNBT+BR and RockCNNBT+BR+CA instead. The training and validation DSC
for all networks are summarized in table 4.5. The results for RockCNNBT are left out as
these are the same as the results of RockCNN40.

The test DSC for experiments on training and testing on different types of rock are shown
in tables 4.6-4.9.

Figure 4.22 show a slice of a bentheimer sandstone subvolume, corresponding ground truth
and segmentation results of RockCNN1, RockCNN10 and RockCNN40. A similar
comparison of segmentation results and ground truth for RockCNNBT , RockCNNBT+BR

and RockCNNBT+BR+CA is given by figure 4.23.

47

Chapter 4. Results

(a) Training (b) Validation

Figure 4.16: Training and validation plots for pore segmentation experiments RockCNN1 shown
in red, RockCNN10 shown in green and RockCNN40 shown in blue.

(a) Training (b) Validation

Figure 4.17: Training and validation plots for multi phase segmentation experiments RockCNN1

shown in red, RockCNN10 shown in green and RockCNN40 shown in blue.

48

4.3 Digital rock segmentation

(a) Training (b) Validation

Figure 4.18: Training and validation plots for grain segmentation experiments RockCNN1 shown
in red, RockCNN10 shown in green and RockCNN40 shown in blue.

(a) Training (b) Validation

Figure 4.19: Training and validation plots for pore segmentation experiments RockCNNBT

shown in red, RockCNNBT+BR shown in green and RockCNNBT+BR+CA shown in blue.

49

Chapter 4. Results

(a) Training (b) Validation

Figure 4.20: Training and validation plots for multi phase segmentation experiments
RockCNNBT shown in red, RockCNNBT+BR shown in green and RockCNNBT+BR+CA

shown in blue.

(a) Training (b) Validation

Figure 4.21: Training and validation plots for grain segmentation experiments RockCNNBT

shown in red, RockCNNBT+BR shown in green and RockCNNBT+BR+CA shown in blue.

50

4.3 Digital rock segmentation

DSC Training DSC Validation
Experiment Pore Multi phase Grain Pore Multi phase Grain
RockCNN1 0.9933 0.9273 0.9933 0.9693 0.2907 0.9915
RockCNN10 0.9809 0.7935 0.9839 0.9860 0.4731 0.9928
RockCNN40 0.9828 0.7624 0.9872 0.9940 0.6387 0.9952
RockCNNBT - - - - - -
RockCNNBT+BR 0.9843 0.8018 0.9849 0.9939 0.7745 0.9919
RockCNNBT+BR+CA 0.9835 0.8724 0.9564 0.9924 0.8173 0.9257

Table 4.5: Training and validation results.

Experiment DSC Pore DSC Multi phase DSC Grain
RockCNNBT 0.9946 0.6922 0.9956
RockCNNBT+BR 0.9935 0.6434 0.9954
RockCNNBT+BR+CA 0.9921 0.5889 0.9949

Table 4.6: Test DSC scores for type 1, bentheimer sandstone

Experiment DSC Pore DSC Multi phase DSC Grain
RockCNNBT 0.9789 0.4060 0.9751
RockCNNBT+BR 0.9942 0.8558 0.9888
RockCNNBT+BR+CA 0.9937 0.8467 0.9880

Table 4.7: Test DSC scores for type 2, berea sandstone

Experiment DSC Pore DSC Multi phase DSC Grain
RockCNNBT 0.9866 0.1229 0.5048
RockCNNBT+BR 0.9895 0.2146 0.5164
RockCNNBT+BR+CA 0.9940 0.9117 0.8260

Table 4.8: Test DSC scores for type 1, carbonate

Experiment DSC Pore DSC Multi phase DSC Grain
RockCNNBT 0.9867 0.4070 0.8252
RockCNNBT+BR 0.9924 0.5713 0.8335
RockCNNBT+BR+CA 0.9933 0.7824 0.9363

Table 4.9: Mean DSC across all three types.

51

Chapter 4. Results

(a) Bentheimer sandstone (b) Ground truth

(c) RockCNN1 (d) RockCNN10 (e) RockCNN40

Figure 4.22: Results from experiments RockCNN1, RockCNN10 and RockCNN40. For the
ground truth and segmentation results, pore is represented as black, multi phase as gray and grain as
white.

52

4.3 Digital rock segmentation

(a) Bentheimer sandstone (b) Berea sandstone (c) Carbonate

(d) Ground truth (e) Ground truth (f) Ground truth

(g) RockCNNBT (h) RockCNNBT (i) RockCNNBT

(j) RockCNNBT+BR (k) RockCNNBT+BR (l) RockCNNBT+BR

(m) RockCNNBT+BR+CA (n) RockCNNBT+BR+CA (o) RockCNNBT+BR+CA

Figure 4.23: Comparison of the segmentations by the networks. For the ground truth and segmen-
tation results, pore is represented as black, multi phase as gray and grain as white.

53

Chapter 4. Results

4.4 Timing
The training and inference times of the different networks are presented in table 4.10.

Experiment Training time Mean inference time per volume
CoronaryCNN 71254s ⇡ 20h 285s ⇡ 5m
CoronaryCNN0.80mm 28691s ⇡ 8h 40s
CoronaryCNNflip 69714s ⇡ 19h 289s ⇡ 5m
CoronaryCNNROI 70332s ⇡ 20h 290s ⇡ 5m
AortaCNN0.40mm 67865s ⇡ 19h 285s ⇡ 5m
AortaCNN0.80mm 28721s ⇡ 8h 41s
BrainTumorCNN 28356s ⇡ 8h 55s
RockCNN1 28504s ⇡ 8h 30s
RockCNN10 28986s ⇡ 8h 28s
RockCNN40 28599s ⇡ 8h 28s
RockCNNBT+BR 28794s ⇡ 8h 26s
RockCNNBT+BR+CA 28668s ⇡ 8h 30s

Table 4.10: Training and mean inference times for the networks trained in this thesis. The inference
time of the networks used for aorta and coronary artery segmentation were obtained by evaluating
them on the pilot dataset. The table shows that networks trained on smaller volumes have similar
training and inference times. Networks trained on larger volumes use on average 11 to 12 hours
more for training.

54

Appendix C
Bibliography URLs

Below are links that are too long to fir properly in the bibliography.

• https://towardsdatascience.com/simple-introduction-to-convolutional-neural-networks-cdf8d3077bac
[7]

• https://towardsdatascience.com/residual-blocks-building-blocks-of-resnet-fd90ca15d6ec [13]

79

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lt

y
of

 In
fo

rm
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ri
ca

l
En

gi
ne

er
in

g
D

ep
ar

tm
en

t o
f C

om
pu

te
r

Sc
ie

nc
e

M
as

te
r’

s
th

es
is

Markus Andresen
Simen Nordby Johansen

Deep Convolutional Encoder-Decoder
Networks for Digital Rock Porosity
Segmentation

Master’s thesis in Informatics
Supervisor: Frank Lindseth

July 2019

	Abstract
	Sammendrag
	Preface
	Shift in Research Focus
	Table of Contents
	List of Tables
	List of Figures
	Abbreviations
	Introduction
	Background and Motivation
	Goals and Research Questions
	Research Method
	Contribution
	Thesis Structure

	Background
	Digital Rocks
	Computer Vision
	Object Recognition Tasks
	Applications

	Deep Learning
	Motivation
	Machine Learning
	Artificial Neural Networks
	Convolutional Neural Networks

	Related Work
	Structured Literature Review Protocol
	Historical Context of Semantic Segmentation
	Segmentation of Digital Rock Images Using Deep Convolutional Autoencoder Networks
	Fully Convolutional Networks for Semantic Segmentation
	U-Net: Convolutional Networks for Biomedical Image Segmentation
	Deep Residual Learning for Image Recognition
	Segmentation of Coronary Arteries from CT-scans of the Heart Using Deep Learning

	Methodology
	Digital Rocks Dataset
	Generation of Ground Truth

	Developing a Digital Rock Segmentation Network
	Digital Rock Network (DRNet)
	Pyramid Digital Rock Network (PDRNet)
	Hybrid Digital Rock Network (HDRNet)

	Evaluation Metrics

	Experiments and Results
	Experimental Plan
	Experimental Setup
	Hardware, Software and Environment
	Data Preprocessing and Augmentation
	Hyperparameters

	Experimental Results
	DRNet vs PDRNet
	HDRNet
	Results on Different Types of Sandstone

	Discussion and Conclusion
	Discussion
	Conclusion
	Future Work

	Bibliography
	Appendices
	Seismic and Salt Identification Challenge
	2017 Kjerland, Digital Rocks Results
	Bibliography URLs

