
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lt

y
of

 In
fo

rm
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ri
ca

l
En

gi
ne

er
in

g
D

ep
ar

tm
en

t o
f C

om
pu

te
r

Sc
ie

nc
e

M
as

te
r’

s
th

es
is

Christoffer Wilhelm Gran

HD-Maps in Autonomous Driving

Master’s thesis in Computer Science
Supervisor: Frank Lindseth

June 2019

Christoffer Wilhelm Gran

HD-Maps in Autonomous Driving

Master’s thesis in Computer Science
Supervisor: Frank Lindseth
June 2019

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Computer Science

HD-Maps in Autonomous Driving

Abstract

The car industry is heading in an autonomous direction, and many of the world’s biggest technology
companies are investing in the area. In 2018, The Norwegian University of Science and Technology
(NTNU) started it’s own project, NTNU Autonomous Perception (NAP). This project’s goal is to
continously develop and research state-of-the-art models for autonomous driving that are robust to
a Nordic environment.

Other projects have already come far in the development of autonomous cars, and during the
fall of 2018 it was decided that the NAP project should use the Apollo framework for autonomous
driving to quickly reach the state-of-the-art. The Apollo framework is an open source framework
developed by chinese company Baidu. In order to use this framework it is necessary to have an
HD-map of the area that the car is to drive in. An HD-map is a detailed map made to contain all
information a car may require about an area. This includes detailed and accurate information about
the road network like number of lanes, the width of each lane and signs along the roads.

There is several ways of obtaining such maps, and during the early stages of this project it was
decided that the best way at this time is developing our own method for map generation. This
task, with a focus on making maps compatible with the Apollo framework, is the subject of this
thesis. As a basis for the maps this project uses data retrieved from the open source map service
OpenStreetMap.

The project was successfull in generating maps compatible with Apollo, but with reduced func-
tionality and accuracy. The roads are represented correctly, and they are connected as specified in
the specification. The car of the project was being setup simultaneously to this project, so there
was limited time for testing the maps in a real situation. The accuracy of the generated maps are
relatively low, and should be a focus for future projects. This report hopefully gives useful insight
into the Apollo map format that will make map generation easier in the future.

i

HD-Maps in Autonomous Driving

Sammendrag

Bilindustrien går i en autonom retning, og mange av de største teknologifirmaene i verden in-
vesterer ressurser i utvikling innenfor dette området. Norsk teknisk-vitenskapelige universitet (NTNU)
startet i 2018 sitt eget prosjekt innenfor autonom bilkjøring, NTNU Autonomous Perception (NAP).
Dette prosjektet har som mål å utvikle og undersøke løsninger for autonome biler i nordiske forhold.

Andre prosjekter har kommet langt i utviklingen av autonome biler, og for å nå et tilsvarende
nivå raskt ble det høsten 2018 besluttet at NAP-prosjektet skal ta i bruk et rammeverk for autonom
kjøring, Apollo. Dette rammeverket er laget av kinesiske Baidu, og har åpen kildekode. For å ta i
bruk dette rammeverket er det nødvendig å ha et såkalt HD-kart over området bilen skal kjøre i.
Et HD-kart er et detaljert kart laget for å inneholde informasjon en bil kan trenge om et område.
Dette inkluderer detaljert og nøyaktig informasjon om veinettet som antall filer, filenes grenser og
skilt langs veien.

Det finnes flere ulike måter å få tak i HD-kart på, men det ble i starten av prosjektet besluttet
at det mest hensiktsmessige ville være å utvikle en egen løsning for generering av HD-kart. Dette
prosjektet tar for seg denne oppgaven, med fokus på å lage kart som er kompatible med det utvalgte
rammeverket Apollo. Som en basis for kart-genereringen ble data hentet fra den åpne kartløsningen
OpenStreetMap (OSM). Dette ble gjort for å komme raskt i gang med utviklingen.

Prosjektet klarte å generere kart som er kompatible med Apollo, men med redusert funksjonalitet
og nøyaktighet. Veiene er representert på riktig måte, og de er koblet sammen etter spesifikasjonen.
Prosjektets bil ble satt opp parallelt med dette prosjektet, noe som førte til at det ble lite tid til å
teste kartet i en reel situasjon. Nøyaktigheten på kartet er relativt lav, og bør være et fokusområde
på fremtidige prosjekter. Denne rapporten gir forhåpentligvis nyttig innsikt i Apollos kartformat
som vil gjøre det enklere å generere mer nøyaktige kart fremover.

iii

HD-Maps in Autonomous Driving

Preface

This thesis is written for the Department of Computer Science (IDI) at Norwegian University of Sci-
ence and Technology (NTNU) as a result of the project in the course "TDT4900 Computer Science,
Master’s Thesis".

I would like to thank my supervisor Frank Lindseth for continous support throughout the semester.
I would also like to thank Florent Revest for ideas for the project and great help during the project.

Christoffer Wilhelm Gran

v

HD-Maps in Autonomous Driving

Contents

Abstract . i
Sammendrag . iii
Preface . v
Contents . vii
List of Figures . ix
List of Tables . x
Listings . xi
1 Introduction . 1

1.1 Background and motivation . 1
1.2 Research questions . 2
1.3 Contributions . 2
1.4 Theses outline . 2

2 Background . 3
2.1 HD-maps . 3

2.1.1 Existing HD-map solutions . 3
2.1.2 Techniques for HD-map generation . 5
2.1.3 HD-maps from sensor data . 5
2.1.4 HD-maps from available map data . 6

2.2 Apollo . 8
2.3 OpenDRIVE . 9

2.3.1 Roads . 9
2.3.2 Lanes . 10
2.3.3 Objects and signals . 10

2.4 Apollo OpenDRIVE . 11
2.4.1 Geometry . 11
2.4.2 Roads . 11
2.4.3 Road-record . 12
2.4.4 Lanes . 12
2.4.5 Road Objects and Signals . 14
2.4.6 Junctions . 14
2.4.7 Differences from OpenDRIVE . 15

2.5 Global Navigation Satellite System . 17
2.5.1 World Geodetic System . 17
2.5.2 Universal Transverse Mercator coordinate system 17

vii

HD-Maps in Autonomous Driving

3 Methodology . 18
3.1 Data source . 18

3.1.1 Data for road generation . 18
3.1.2 Available existing map data . 18
3.1.3 Recording sensor data . 19
3.1.4 Data source conclusion . 19

3.2 Map generation . 20
3.2.1 Information parsing . 20
3.2.2 Road generation . 21
3.2.3 Road connections and junctions . 25

3.3 Apollo OpenDRIVE . 26
3.3.1 Lanes and center lines . 26
3.3.2 Border types . 26
3.3.3 Sample Associations . 26

3.4 Pipe-line for map generation . 26
3.4.1 Data gathering . 27
3.4.2 Map generation . 27
3.4.3 Map conversion . 28

4 Results . 30
4.1 Map results . 30

4.1.1 Road lanes and width . 30
5 Discussion . 35

5.1 Generated maps . 35
5.2 Lanes . 35
5.3 Junctions . 36
5.4 Objects and Signals . 36
5.5 Performance . 37
5.6 Base data . 37
5.7 Reflection . 37

6 Conclusion . 39
6.1 Future work . 39

Bibliography . 40
A Appendices . 43

A.1 road.py . 43
A.2 osm2od.py . 44

viii

HD-Maps in Autonomous Driving

List of Figures

1 A screenshot of the Vegkart website. 7
2 The Apollo architecture. The image is made by Apollo[1]. 8
3 An illustration of different types of geometries in OpenDRIVE. The image is taken

from the OpenDRIVE specification . 10
4 The UTM zones. Note how some zones differ in size, like the one for southern Nor-

way, 32V. The image is retrieved from Wikipedia. [2] 17
5 A visualization of a road segment. The red lines represent the coordinate data Apollo

OpenDRIVE would require to store this segment. 19
6 An illustration of the issue with the first vector based approach. 22
7 An illustration of the scaled vector length to preserve lane width. 23
8 An illustration of the issue with meeting single lane roads that are plotted in different

directions. The dotted lines are those generated, the solid lines are the data from OSM. 24
9 How the roads appear when the data from OSM is used as the center line. 24
10 An illustration of connecting roads within junctions. The image is taken from the

OpenDRIVE specification [3] . 25
11 A screenshot of the OSM website showing how to download XML files. 27
12 Two plots of the same map . 30
13 The same roads, but the map is using a config-file telling one of the roads to be wider. 31
14 The same roads, but this time, one of the roads have been configured to have two

lanes. 31
15 A plot of a junction where two of the roads meet at a very sharp angle. 32
16 A screenshot from the Dreamview interface showing the simple version of the map. . 33
17 A screenshot showing an overview of a generated map in the Dreamviewer GUI. . . . 33
18 A closer look at the simplified map. 34

ix

HD-Maps in Autonomous Driving

List of Tables

1 An overview of companies in the mapping field. 4
2 The structure of the geometry records. 11
3 The structure of the center record within lanes. 13
4 The structure of the left and right records within lanes. Some Overlap related records

have been left out as they are optional and not used in this thesis. 13
5 The structure of the junction record. 15

x

HD-Maps in Autonomous Driving

Listings

3.1 Example code for reading data from an OSM XML file. 20
3.2 An example of a node from an OSM XML file. 20
A.1 road.py . 43
A.2 osm2od.py . 44

xi

HD-Maps in Autonomous Driving

1 Introduction

1.1 Background and motivation

The future on the road seem to be going in an autonomous direction. Many of the biggest technol-
ogy and automotive companies are putting much resources into the field of autonomous vehicles
and artificial intelligence.

NTNU has created its own project on autonomous vehicles, NTNU Autonomous Perception
(NAP)[4]. This project’s goal is to continously develop and research models for autonomous driving
that are robust to a Nordic environment and aims to get to the state of the art quickly. To achieve
this, the project will be making use of the open source framework for autonomous driving Apollo.
In addition to this, students are working on different problems related to different tasks separately
from Apollo. The project is divided into several teams, each with different responsibilities:

Team 1 Sensors, compute and control
Team 2 Mapping and localization
Team 3 Perception (and data)
Team 4 Planning
Team 5 Simulation (and validation)
Team 6 Safety and security
Team 7 Connected vehicles
Team 8 Shared vehicles
Team 9 Privacy and ethics

This thesis is written within Team 2: Mapping and localization, and will be focusing on HD-maps.
Normal maps are made for humans, and thus feature information relevant to them. HD-maps are
different, firstly in that they are made for computers, not humans. They are made to give extra
context to the location of a vehicle, and potentially also for assisting in finding a vehicles exact
location in the first place. An HD-map can often include information about lanes, speed limits,
signs, lights, junctions, and even objects around the road.

Apollo uses HD-maps actively. For instance, the map is used to determine whether a traffic light
is near the vehicle, enabling the traffic light module. When a traffic light is not present according
to the HD-map, the perception module will not be checking for traffic lights.

This means that to use Apollo, we are in need of an HD-map of the area we will be driving
in. Apollo has not made publicly available how they generate maps, but they do provide a service
for map generation[5]. This service is based on sensor data, and the process is also partly manual,
improving the accuracy and correctness of the resulting maps. To make use of this service, Apollo
requires sensor data of the relevanta area recorded with a so-called data collection vehicle, a vehicle

1

HD-Maps in Autonomous Driving

setup with sensors for data recording. The NAP lab’s vehicle was not ready for data collection during
this semester, so we were required to make a different approach. Another issue is that Apollos way
of generating maps is dependant on road border markings. Many roads, specially in cities, do not
have such markings. This leads us to the purpose of this thesis. Our vehicle is in need of an HD-map,
and we do not have a vehicle set up for data recording. The only viable way the project can obtain
an HD-map is making one.

1.2 Research questions

The main goal of this master’s thesis is to produce an HD-map for the NAP project. Generating a
HD-map involves two main sub-objectives, data gathering and map generation. This leads to the
following research questions:

RQ1: How can we obtain an HD-map for the NAP project?

RQ1.1: Are there any available open source solutions for HD-map generation?
RQ1.2: Can openly available data be used as a basis for making HD-maps?
RQ1.3: Is it possible to make a map based on open data compatible with the Apollo

framework?

1.3 Contributions

This thesis aims to explore HD-maps with a special focus on how they are made. In order to make
HD-maps it is necessary to understand how they are represented, and how the data is gathered.
This thesis will aim to get an understanding of the format Apollo uses to represent HD-maps as well
as an overview of how data is gathered for HD-map generation.

1.4 Theses outline

Section Description
Section 1: Introduction Explains what this report is aiming to do, and why.

Section 2: Background
Contains information about the different technologies that were used
to solve the problem. Also describes some existing solutions.

Section 3: Methodology Describes what was done, what was implemented.
Section 4: Results Contains the results from the implementations.

Section 5: Discussion
Discusses the results presented in section 4, and what could possibly
have been done differently to achieve better results

Section 6: Conclusion The conclusion and discussion about future work with HD-maps.

2

HD-Maps in Autonomous Driving

2 Background

2.1 HD-maps

HD-maps are maps made for computers, and not for humans like maps normally are.[6] An au-
tonomous vehicle obviously need a map for planning and knowing where it should drive, but maps
can also have more advanced uses. It is important to have information about how many lanes the
road has, where the car has to be positioned to get to its destination.

Regular maps are usually made to be useful for humans, but the same maps does not necessarily
make good maps for computers. HD-maps are maps that focus on different things than regular
maps. High accuracy is more important, and HD-maps often have centimeter-accuracy. In addition
to the high accuracy requirement, HD-maps often feature more and different details in comparison
to regular maps. This can include information about speed limits, lanes, as well as descriptions of
the buildings and objects around the roads.

HD-maps may strictly not be needed for autonomous driving, but they make several tasks easier.
An example is how Apollo deals with traffic lights. Unless their HD-map finds a nearby traffic light,
the module reading traffic lights is turned off. Apollo queries the HD-map to recieve information
about the world around the vehicle. Uses like this is the most obvious use case, providing informa-
tion to an autonomous driving agent that would be difficult for the agent to obtain from raw sensor
data on the fly. Another possible use is localization, by comparing input from a vehicles sensors
to the HD-map the car can get improved accuracy on its current position. This can also work as
a backup in case the car would lose its GPS signal. This would require the map both to be very
accurate, and also would need the map contents to include buildings and other landmarks.

2.1.1 Existing HD-map solutions

Maps for driving is not a new thing, and some companies involved in the mapping field have
are starting to realise that autonomous driving is the future. In addition to already established
companies like TomTom, there are a number of startups aiming to create HD-maps or provide some
map-related product. Some of these companies the are presented in table 1 below.

3

HD-Maps in Autonomous Driving

Organization HD-map Open source Service
comma.ai[7] Y Partly Main product is OpenPilot for lane following

and adaptive cruise control. Also have made a
HD-map[8], although difficult to actually find
anywhere. comma.ai’s solutions are mostly
open source.

Mapillary[9] N N Enhance maps with street level images. De-
tect map features from street level images.
Not necessarily for HD-maps.

DeepMap[10] Y N Accurate and maintainable HD-maps for au-
tonomous driving. Not much further informa-
tion available.

TomTom[11] Y N HD-map for autonomous driving. Addition-
ally offer RoadDNA, for localization pur-
poses through comparing input signals with
RoadDNA.

lvl5[12] Y N Aims to make HD-maps from cheap sensors,
equivalent to those of a smart phone.

HERE[13] Y N HERE claims to provide a continously updated
HD-map for autonomous driving. They spe-
cially point out the important of accurate lane
border data, and the importance of updated
maps.

Civil Maps[14] Y N Provides a scalable edge-based HD mapping
and localization platform.

Carmera[15] Y N One of CARMERA’s products is a HD map
for autonomous driving. There is not that
much information available about their map
service. CARMERA has teamed up with
Toyota Research Institute-Advanced Develop-
ment, Inc. (TRI-AD) to cooperate on a HD
map solution[16].

Table 1: An overview of companies in the mapping field.

As clearly shown in the table, few of these companies have open source solutions. Many of their
products are also difficult to get a good overview of, and there is often little available information.
It can be difficult to get a clear idea of the quality and overall status of their products. In addition to
this they mostly don’t specify which format their map supports, possibly making them incompatible
with the NAP lab’s software stack.

Other available solutions

In addition to companies producing HD-maps there are a few existing ways of generating HD-maps
compatible with Apollo. This section will discuss these briefly.

4

HD-Maps in Autonomous Driving

Apollo scripts for map generation

Even though Apollo does not explain in detail how they generate HD-maps, they have a few avail-
able undocumented scripts for map generation. One of these is called map_gen_single_lane.py and
simply takes a list of points and makes it into a road in an Apollo OpenDRIVE map. This tool does,
however, simply create one road, not a network of roads. Some other more advanced tools are also
available, and these can make maps from Mobileye data[17].

LGSVL Simulator

The LGSVL Simulator is a simulator created by LG for testing and development of autonomous
driving systems. It is fully integrated with Apollo and AutoWare[18]. This system allows exporting
existing Unity scenes to maps following the Apollo OpenDRIVE standard[19].

2.1.2 Techniques for HD-map generation

Making an HD-map can be looked upon as consisting of two major parts, data gathering and map
generation. The data gathering process involves obtaining all the relevant data of a certain area, all
data the vehicle can possibly make use of. There are mainly two ways of approaching this problem.
The first approach is based on using a special vehicle configured for data gathering to collect sensor
data, and then use this collected data as a base for the map generation. The second approach is
based on already existing, processed map data. The map generation method relies heavily on what
kinds of data it is to be based on, and also what kind of output it is supposed to generate. The
following sections will firstly take a closer look at the two approaches for data gathering, and then
describe the output formats the NAP lab’s software stack requires.

2.1.3 HD-maps from sensor data

Generating maps from sensor data is probably the most used method for map generation. This
method involves using a data collection vehicle for sensor data collection, and then basing the map
generation process on this data. Such vehicles typically have the following sensors:

GPS/IMU The GPS/IMU unit will record coordinates that will make up the basis for the roads.
Having a high precision GPS is important to achieve highly accurate maps.

Camera There can be one camera, or several cameras facing different directions. This is for
detecting and locating objects around the road, and road features like lanes.

LiDAR Used with the cameras to localise objects and details around the road. Some compa-
nies try to generate maps without using a LiDAR to keep the sensor package cost down
as LiDARs are very expensive.

5

HD-Maps in Autonomous Driving

Road generation

For road generation, the most important sensor is the GPS/IMU-unit. In all maps, roads are simply
arrays of points, and HD-maps are not different. The difference is rather all the extra information
that HD-maps contain, and the overall accuracy of all information within the map. A stream of
coordinate points recorded from the vehicle can be used as a basis for the reference line for a road.
Other information about the road, such as the road and lane borders, will be based on this line.
Additional LiDAR and Camera information can provide information about the lanes, like how wide
the lanes are and where the borders should be and what color and type the borders are. This
combination of sensor data can result in very accurate maps.

2.1.4 HD-maps from available map data

Available sources

HD-maps can also be made by combining and modifying existing data sources. By doing this it is
possible to make a map representation of an area without collecting sensor data. As described more
thoroughly below, there exist a number of good data sources for road topology as well as sources for
speed limits, traffic signs and other road elements. One problem with this approach, however, is the
accuracy. Most of the available sources are mare for humans, with a different accuracy-requirement
than cars sometimes have. If the map is to be used for localisation, a centimeter accurate map might
be required. If the only requirement is knowing some metadata about the roads as well as some
rough model of the topology of the road, this can be a good solution as it does not require sensor
data and is simple to assemble.

OpenStreetMap

Founded in 2004, OpenStreetMap is a community driven map service that provides open data freely
useable for any purpose. The map is created by volunteers using GPS trackers, cameras and similar
tools[20]. OpenStreetMap has a Wiki explaining details about the map and the format the map
should follow[21]. Some of the core elements of this format is explained below:

Data format OpenStreetMap data is available in XML-format, and can easily be downloaded from
their website, or through third party APIs. In this section, some of the most useful con-
cepts of the OSM data format will be explained.

Node A Node represent a single point in space, defined by latitude/longitude coordinates.
Each node can also contain additional information, such as who added it, and when.

Way A Way is as described in the OpenStreetMap wiki an ordered list of nodes. Ways are
usually categorized into different types depending on what kind of road it is to repre-
sent. They also often contain further information about the road, like the street name.
Each way can have different tags, and no way is guaranteed to have any information.

6

HD-Maps in Autonomous Driving

Intersections Intersections in OpenStreetMap are represented in a very simple manner. Whenever
two or more roads intersect, they will all share one common node. In contrast to Open-
DRIVE, there is no specific tags for intersections in OpenStreetMap.

Relation Relations are groups of elements, and can contain nodes, ways, areas and other rela-
tions. They are used to give logical or geographical relations between elements. Rela-
tions can have different types, with the most common being Multipolygon and Route.
An example of a reation is bus routes, which can be represented as a relation with a
Route tag

Area Area is not an element in OSM like the others, but it is still a term in frequent use. It
can be defined either by the use of closed ways, or by using multipolygon relations.
The idea is to represent some closed area.

Nasjonal vegdatabank

The national road data bank is a database containing information about the norwegian road net[22].
In addition to information about the road topology and geometry, it includes statistics about traffic
accidents and messages and other information that would otherwise not be easily obtainable.

An online map displaying the database contents is available, a screenshot of this is shown in
figure. It is also possible to download data from an online API. The data is accessible under the Nor-
wegian Licence for Open Government Data, and it can mostly be used by anyone for any purpose[23].
One drawback with this API is that the topology of the road network is not available. This means
that the topology needs to be built by retrieving road network links from the API and connecting
the roads manually.

Figure 1: A screenshot of the Vegkart website.

7

HD-Maps in Autonomous Driving

2.2 Apollo

Apollo[24] is an open source architecture for autonomous driving developed by chinese company
Baidu. Apollo has been in development since 2017 and the newest version as of june 2019 is version
3.5. The first version of Apollo focus on simply driving a car between two coordinates. Gradually
the versions extend on this by adding more sensors and more functionality. Version 1.5 support lane
following, and the newest version claim to be able to navigate through complex driving scenarios
such as residential and downtown areas[25]. Because of a sensor requirement issue[26], the NAP
lab is currently built on version 3.0 of Apollo.

Apollo is made up of several modules that solves different parts of the automation process. The
architecture of version 3.0 is shown in figure 2. The modules communicate via messages. Until
version 3.0 Apollo was built on a modified version of the Robot Operating System (ROS), but from
version 3.5 this was changed to their own solution, Cyber. ROS allows so-called nodes to publish
messages to topics that other nodes can subscribe to.

Figure 2: The Apollo architecture. The image is made by Apollo[1].

A part of the architecture shown in figure 2 is the Cloud Service Platform. This is a collection
of services that Apollo provide as a cloud service, and these are not open source. The HD-map
generation feature they provide is a part of the cloud services.

8

HD-Maps in Autonomous Driving

2.3 OpenDRIVE

OpenDRIVE is an open file format for describing road networks. The standard was initially released
in 2005, and the latest specification release was published in 2019 [3]. In 2018 OpenDRIVE was
transferred from Vires Simulationstechnologie to Association for Standardization of Automation and
Measuring Systems (ASAM). Following this transfer, ASAM expect to release the next version of the
standard in 2019.

The OpenDRIVE standard features a number of data models to describe the different elements
of a road environment accurately. As this thesis is based on a modified version of the OpenDRIVE
standard, the standard itself is only described briefly in this section, with the modified version being
explained in more detail in section 2.4.

2.3.1 Roads

One of the main components of OpenDRIVE is the road. Roads in OpenDRIVE consist of a few
different parts, the most important being the reference line, the lanes, and the road linkage. The
reference line defines the main geometry of the road, the shape of the road. The lanes represent
the different lanes of the road, this includes how wide the lanes are, and how many of them there
are. The road linkage connects the roads to eachother, advanced intersections use a special junction
record. In this section these concepts will be described a bit closer.

Geometry

Many maps define roads as a set of nodes, where the nodes mark points along a road. This is the
case for OpenStreetMap. OpenDRIVE, however, defines a road’s reference line through what they
have called geometrics. There is four types of geometric elements:

- Straight lines
- Spirals
- Arcs
- Cubic polynomials

Depending on the type of geometry, it includes different parameters to accurately represent the
real world road. The main difference between the type is the curvature. For lines, the curvature is
constant zero, for spirals the curvature changes linearly. Arcs have a constant non-zero curvature.
A sequence of geometry records define each road’s reference line. Some of the different geometry
types are illustrated in figure 3.

9

HD-Maps in Autonomous Driving

Figure 3: An illustration of different types of geometries in OpenDRIVE. The image is taken from
the OpenDRIVE specification

2.3.2 Lanes

Within each road there is a number of lanes. These all have attributes containing metadata about
the lane. Most importantly they describe the width and the borders of each lane. The width of the
lanes can simply be given in a number in meters, or it can be described in more detail through
a polynomial function of third order. In addition to the position of the borders, the lane records
support storing information about the road markings, lane material and lane access.

2.3.3 Objects and signals

In real roads, information is broadcast to the drivers mainly though road signs, lights, and markings.
OpenDRIVE provides a way of representing this information in the map. Each road can have a
number of objects related to it. These objects are defined by a number of attributes that describe
the object’s location, shape and other relevant information. Signals are similar to objects, they
describe signs and signals. Signals are dynamic signs, signs that can change state. Both objects and
signals are defined to be a type which defines what kind of object or signal the instance represents.

10

HD-Maps in Autonomous Driving

2.4 Apollo OpenDRIVE

For their HD-map solution, Apollo uses a modified version of the OpenDRIVE standard. While the
overall structure is similar, Apollo’s modified version is very different from the standard as they
have changed several fundamental details, for instance how roads are represented. The following
section will take a closer look at the Apollo specification of OpenDRIVE[27], and how it differs from
regular OpenDRIVE. It should be noted that the Apollo OpenDRIVE specification is only obtainable
by requesting it from Apollo directly[28].

2.4.1 Geometry

One of the fundamental records in the OpenDRIVE standard is the geometry record. While its func-
tion is the same as in the standard, the Apollo specification of OpenDRIVE requires the geometry
record to follow a different structure. It is also more actively used in Apollo OpenDRIVE, being used
for defining lane borders and center lines as well as road reference lines. Where in regular Open-
DRIVE geometries are defined by geometries, in Apollo OpenDRIVE, they should simply be defined
by a set of points.

Tag Parent Instances Attributes
geometry 1 sOffset, x, y, z, length
pointSet geometry 1 none
point pointSet 2+ x, y, z

Table 2: The structure of the geometry records.

The geometry records within the Apollo OpenDRIVE standard generally follow the same format.
The only exception is when used for defining the boundaries of a lane. In this situation the geometry
tag does not use any attributes, but the rest of the structure is identical.

2.4.2 Roads

The way roads are represented is one of the big differences between regular OpenDrive and the
Apollo specification. As described earlier, regular OpenDrive uses geometries to represent the refer-
ence line of the roads. While the tag uses the same name, geometry, the Apollo-specification uses
points rather than actual geometries to represent the roads. This geometry tag is used frequently
in different parts of files following the Apollo OpenDRIVE specification, and it is not only used for
describing road center lines. This also ties into how lanes are represented in Apollo OpenDRIVE,
which is more detailed than in regular OpenDRIVE. In Apollo OpenDRIVE, lanes are required to
specify a number of boundaries and borders with separate point sets from the road’s reference line.
This allows for more detailed lane shapes, but also requires more data. In regular OpenDRIVE,
while there is support for describing lane widths with the same type of geometries as used for de-
scribing road reference lines, there is also possible to simply specify lane width. The lane does then
not contain further information about where the actual borders lie. This is not possible in Apollo
OpenDRIVE where it is required to specify the borders.

11

HD-Maps in Autonomous Driving

2.4.3 Road-record

The road-record represents a road within the map. The structure of road records are explained
below.

Road

x Route View

x geometry

x Road Link
x Road Lanes
x Road Objects
x Road Signals

Route View

The Route View-record is poorly explained in the Apollo OpenDRIVE specification, as it is not ex-
plained at all apart from the actual XML format. It is also not a required tag. It is easy to get the
impression that this is the record specifying a roads geometry, but that is seemingly not the case. Its
format is simple, it has no attributes, and consists of a basic geometry child element with following
pointSet and point children as explained in section 2.4.1.

Road Link

Road links describe a road’s relation to other nearby roads, namely the previous, the next and
parallel roads. This follows the same format as the regular OpenDRIVE standard, and is beter
explained in that specification.

2.4.4 Lanes

The lanes of a road are specified within the lanes-record. The biggest difference between lanes in
Apollo OpenDRIVE and the OpenDRIVE standard is that the borders have to be defined by coor-
dinates, and that it is required to specify a center line. The overall structure of the lane record in
Apollo OpenDRIVE is shown below:

Lanes

x Lane Section

x Boundaries

x Geometry

x Center
x Left & Right

Lane Sections

Lane sections represent different parts of the road. In the Apollo OpenDRIVE specification these
sections are specified differently from the standard. Instead of simply specifying the start coordi-

12

HD-Maps in Autonomous Driving

nate of the section as in the OpenDRIVE standard, it is necessary to define the area explicitly by
specifying left and right boundaries with geometries. Note, however, that the geometries used to
define borders are different from other geometries. These geometry tags do not have any attributes,
but the structure otherwise is identical to other instances of the geometry record.

Center, Left and Right

Within each lane section, it is necessary to define the lanes. The first tag that is required is a left,
center or right tag. While these are presented as equivalent in the Apollo OpenDRIVE specification,
this does not appear to be the case when looking at example files. The center tag is different from
the other two, and represents the reference line of the road. The structure of the center records
are simpler than the scructure of the right and left records. This is, however, not explained in the
specification. The differences are shown below, also bear in mind that the attributes necessary
within the center tag’s children are different from the left and right tag’s children’s attributes. The
tables below show the differences between the center tag and the left and right tags.

center
Tag Parent Instances Attributes
lane center 1 id, uid, type
border lane 1 virtual
borderType border 1+ sOffset, type, color
geometry border 1+ See section 2.4.1

Table 3: The structure of the center record within lanes.

left/right
Tag Parent Instances Attributes
lane left/ right 1 id, uid, type, direction, turnType
centerLine lane 1 None
geometry centerLine 1+ See section 2.4.1
border lane 1 virtual
borderType border 1+ sOffset, type, color
speed lane 0...1 min, max
geometry border 1+ See section 2.4.1
sampleAssociates lane 1 None
sampleAssociate sampleAssociates 1+ sOffset, leftWidth, rightWidth
roadSampleAssociations lane 1 None
roadSampleAssociation roadSampleAssociations 1+ sOffset, leftWidth, rightWidth

Table 4: The structure of the left and right records within lanes. Some Overlap related records have
been left out as they are optional and not used in this thesis.

The left and right-lanes defines the lanes of the road. These records need to specify coordinates
for the border on the left or right side respectively. For the border it is also required to specify type

13

HD-Maps in Autonomous Driving

and color. In addition to this, the Apollo OpenDRIVE specification also require coordinates for the
center line of the lane. Any speed limit information available should also be stored within the lane,
namely in the speed record.

Sample Associations

There are two records within lanes in the Apollo OpenDRIVE specification that are not present in
the OpenDRIVE standard, the Sample Association records. There are two versions of the Sample As-
sociation record, Road Sample Associations and Sample Associations. These records are not explained
much in the specification, but they specify the distance from the center of each lane to the bound-
aries of the roads and lane respectively. According to the specification these records are optional,
but some of the scripts for working with maps provided by Apollo seem to require the records. The
specification is also inconsistent with these scrips when it comes to the record’s names. Table 4
describes the actual format.

2.4.5 Road Objects and Signals
Road objects

One of the main parts of a map is road objects. This is all kinds of objects that can have a relation
and an importance to the roads in a map. Such objects are represented with the object record in
Apollo OpenDRIVE. The object record in Apollo OpenDRIVE is very similar to the one in regular
OpenDRIVE, but it’s parameters varies more based on which type of object is being referenced.
The overall structure usually has some metadata in the object attributes, including id and type. The
objects then also defines an outline the same way as it’s defined for junctions, by listing the corner
points. In addition to this, some points also have an associated geometry represented in the same
way, by defining the corners. One difference between the Apollo specification of OpenDRIVE and
the OpenDRIVE standard is that these points should be defined in WGS84 coordinates in Apollo
OpenDRIVE, but should be defined relative to the road in the OpenDRIVE standard.

Road signals

In Apollo OpenDRIVE, the Road Signal record represents traffic lights, stop signs and yield signs.
Similarly to the road objects, the road signals are very similar in Apollo OpenDRIVE and in the
OpenDRIVE standard, but Apollo OpenDRIVE only implements a small subset of the signals that the
OpenDRIVE standard does. This also means that Apollo OpenDRIVE generally uses fewer attributes
for the road signals than the OpenDRIVE standard does. The different signals refer to road objects
for describing the line on the ground related to the signals. This line represents where the car has to
stop. This means that each signal record will refer to some roadmark object to describe the location
of this line.

2.4.6 Junctions

When roads meet, there needs to be some connection in the map representing the intersection.
When it is simply two roads meeting this can be done with the roads own link records. However,
it is often the case that more than two roads are meeting, making a more advanced intersection

14

HD-Maps in Autonomous Driving

structure necessary. In Apollo OpenDRIVE this is solved using the junction record. The structure of
the junction record is shown in table 5.

junction
Tag Parent Instances Attributes
junction OpenDRIVE 0+ id
outline junction 1 None
cornerGlobal outline 3+ x, y, z
connection junction, 1+ id, incomingRoad, connectingRoad
laneLink connection 1+ from, to
objectOverlapGroup junction 0+ None
objectReference objectOverlapGroup 1+ id

Table 5: The structure of the junction record.

Outline

The outline record describes the outline of the junction, simply the area that the junction spans.
This area is defined by plotting it’s corners using the cornerGlobal record.

Connection

In order to connect roads to eachother, the connection record is used. This simply states which
incoming road to connect to which connecting road. A connecting road is a road connecting two
incoming roads, it describes the path between two roads. The connection record also incldues a
subrecord, laneLink, that describes which lanes in the incoming road links to which lanes in the
connecting road.

2.4.7 Differences from OpenDRIVE
Geometry

The geometries is maybe the most obvious difference between the OpenDRIVE standard and the
Apollo OpenDRIVE specification. In the Apollo specification, the reference line of a road is defined
by a simple list of latitude longitude points. In the OpenDRIVE standard, however, these lines are
represented as functions of five different types.

Lanes

The overall structure of the lanes is very similar between the two versions of the standard, and
they both use the same lane identification scheme. The main difference here is that Apollo requires
more data. Where the OpenDRIVE standard allows to only specify the width of a lane, the Apollo
specification requires points for describing lane borders. In addition to this the Apollo specification
needs points for the center of each lane, and boundaries for the road.

Junctions

Junctions are more thoroughly defined in the OpenDRIVE specification than they are in the Apollo
OpenDRIVE specification. The structure is very similar, but with a few differences. Apollo Open-
DRIVE appear to implement a simpler version of junctions than the OpenDRIVE standard provides,

15

HD-Maps in Autonomous Driving

ignoring concepts like junction groups, junction priority, and junction controllers. Apollo Open-
DRIVE does require the area of a junction to be defined, as opposed to the OpenDRIVE standard.
Apart from this, the structure of the connections and links is more or less the same.

Objects and signals

The objects and signals are very similar, and the main difference here is maybe the reduced amount
of attributes in Apollo objects, and the limited number of object types that are supported.

16

HD-Maps in Autonomous Driving

2.5 Global Navigation Satellite System

2.5.1 World Geodetic System

WGS84[29] is a standard used in cartography, geodesy and satellite navigation. WGS operates
with two degrees, latitude and longitude. When describing a point using the WGS-standard, the
longitude degree represents east-west, and latitude represents north-south. The longitude value is
a number between -180 and 180, similarly the latitude degree should be a value between -90 and
90.

2.5.2 Universal Transverse Mercator coordinate system

The Universal Transverse Mercator coordinate system (UTM) is a system of map projections.[30] It
divides the surface of earth into a grid of different zones. To refer to a location you will need both
an x and y coordinate and which zone they are located within. One very practical property of UTM
is that the coordinates are simply in meters, making it very convenient to use for calculations in
contrast to the angle-based WGS.

Figure 4: The UTM zones. Note how some zones differ in size, like the one for southern Norway,
32V. The image is retrieved from Wikipedia. [2]

17

HD-Maps in Autonomous Driving

3 Methodology

The goal of this master’s thesis is producing a map that is compatible with the software stack of the
NAP project’s vehicle. This means generating a map following the Apollo OpenDRIVE specification
for map representation. The map should be of the area surrounding Campus Gløshaugen in Trond-
heim, Norway. The main focus of this thesis is exploring the Apollo OpenDRIVE specification and
learning how to use it.

3.1 Data source

In order to generate a map, some data is required as a basis. For road generation the desired data is
mainly sets of coordinates with any associated metadata. As discussed in the background chapter,
there is mainly two approaches to retrieve such data, gathering data from sensors or using existing
openly available map data. This section will firstly discuss what information is desired, and then
which method is best suited to obtain that information.

3.1.1 Data for road generation

The Apollo OpenDRIVE format requires several sets of coordinate points to represent each road. The
center of the road represents the reference line, and each road has an overall boundary. In addition
to this, every lane requires coordinates for the center of the lane, and for the boundaries of the lane.
Assuming that these lines are parallell, the minimum requirement will be to have coordinates for
any one of them, as the other lines can be generated using the known coordinates as a base. This is
shown in figure 5.

In order to build a map, it is also necessary to have information about the road network topology.
This means information about the road network and how the roads are connected to eachother. This
includes information about the junctions within the area. Road network topology is a fundamental
part of a map, and is necessary to make routes that the car can follow to get between two locations.

3.1.2 Available existing map data

Online map-services such as OpenStreetMap contain much information about roads across the en-
tire world, often including metadata in addition to some line representation of the roads. Informa-
tion from these sources are often easily available through APIs.

Although specialised sources exist, openly available online sources are usually not made for HD
maps, and they rarely meet HD maps accuracy requirements. As for usage with the Apollo Open-
DRIVE specification they also rarely include more than one set of points for each road. The metadata
is also often inconsistent between roads, and there is no guarantee that important information is
present.

Road network topology is usually obtainable through open maps, making it easy to build a

18

HD-Maps in Autonomous Driving

Figure 5: A visualization of a road segment. The red lines represent the coordinate data Apollo
OpenDRIVE would require to store this segment.

network of roads, not having to do it from scratch.

3.1.3 Recording sensor data

In its simplest form, it could be sufficient to record coordinates using some simple GPS-device like a
cell phone. The metadata would be added manually according to the projects needs. Depending on
the accuracy of the GPS device, separate point sets could be recorded for each of the lines necessary
in Apollo, although this could be difficult for large roads that would not allow travel by foot.

A more advanced way of doing such data colleciton would be mounting relevant sensors on a
vehicle. Using camera and LiDAR input could make it possible to find the lane boundaries through
perception and generate point sets of higher accuracy. Such a setup is expensive and requires sub-
stantial work to setup properly.

A challenge with using a sensor based approach for data collection, is gathering road network
topology information. Retrieving such information is not necessarily that easy to do through sensors,
and may require some other approach. One potential solution to this could be manually connecting
and separating roads. Such an approach would require large amounts of manual work for gener-
ating large maps. Another potential solution could be using a third party map as a basis for the
topology. This could possibly be done by matching collected GPS data to the third party map to
obtain relevant metadata, however it is an advanced solution.

3.1.4 Data source conclusion

In this project, it was decided to use existing available map data as the method for data gathering.
This decision was based on several factors. Firstly, the project’s car was not ready for data collection
yet as it was being setup simultaneously to this project. This greatly complicates the data gathering
process in a sensor based approach. Although a simpler setup using a single GPS/IMU unit and

19

HD-Maps in Autonomous Driving

a camera could possibly be used to gather similar data, this was decided against. Another reason
against basing the data gathering on sensor data is the road network topology issue. An HD-map
should accurately describe the road network, and this would include intersections and road con-
nections. A final reason for using existing map data is the project’s goal of exploring the Apollo
OpenDRIVE format. Using already available data meant that time spent processing sensor data and
researching relevant algorithms could rather be spent researching the Apollo OpenDRIVE format
and generating maps.

For many of the same reasons, it was decided to use OpenStreetMap as the data source. The main
reason for using this rather than the norwegian national road data bank (NVDB) is that accessing
OpenStreetMap information is simpler, and it represents the data in a way that maintains road
network topology information in contrast to NVDB.

3.2 Map generation

The goal of the map generation process is to generate a map of the Gløshaugen-area for testing
the Apollo software with our vehicle. Using OpenStreetMap as a basis for the map generation,
we were able to download a map of the area. As described earlier, these maps are stored in an
XML-format, and feature topology information as well as varying amounts of metadata about the
different nodes and roads. This section will describe the approach that was taken to develop the
proposed solution, the osm2od.py tool. The code for this solution can be found in appendix A.1 and
A.2, or on GitHub[31].

3.2.1 Information parsing

Reading the information from the stored file is a simple matter of XML-parsing which is made easy
by several available libraries. Using the python library lxml.etree, reading nodes from an XML-file is
as simple as this:

Listing 3.1: Example code for reading data from an OSM XML file.

e = etree.parse(filename).getroot ()

for node in e.findall('node'):

print("Node {}, lat = {}, lon = {}".format(node.get("id"), node.

get("lat"), node.get("lon")))

Listing 3.2: An example of a node from an OSM XML file.

<node id="78272" visible="true" version="4" changeset="686984"

timestamp="2008 -01 -23 T23:15:19Z" user="steinarh" uid="17110" lat=

"63.4215227" lon="10.3989347">

The above XML-code will produce the following output by running the example code:

Node 78272, lat = 63.4215227 , lon = 10.3989347

The findall-function makes a list of all the matching elements in the XML-file. By using the
get-function that each element implements, attribute values can easily be read for every element.

20

HD-Maps in Autonomous Driving

3.2.2 Road generation

The Apollo OpenDRIVE specification requires several point sets per road. These points are to rep-
resent different boundaries and parts of the roads. Examples include the point sets to describe the
borders of the lanes, and the center of the road. In OpenStreetMap, each map is represented with
a single point set. It is necessary to assume that this set of points represents the middle of the road.
For OSM to be a viable data source, we are required to be able to generate new lines based on the
coordinates from the OSM nodes.

Generation using vectors

The new lines would be required to be parallel with the original line, and maintain the same
distance between the two lines at any two corresponding points. If this is done wrong, the roads
can for instance seem really narrow when they turn. As a solution for this, a method of generation
using vectors were implemented. This method would make vectors of every point and the next
point. The point data extracted from the OSM XML-files is stored in a ordered list, making it easy
to get the next and previous point of every point. Making new orthogonal vectors from each vector
is very simple, and would ensure the same distance at every point.

The new points are generated by simply taking the vector between two points, turning them 90
degrees, and scaling their length according to the desired road width. A third party library is used
to make sure the conversion between meters and two points in latitude and longitude coordinates
is correct.

One issue with generating new points is the geographic goordinate system, where latitude and
longitude values would represent a different value in meters, potentially rendering this approach
useless. To avoid this, all points are converted to UTM coordinates before the calculations are done,
and then converted back to latitude and longitude before they are stored in the map.

A fundamental issue with this approach is its behaviour in steep turns. Consider a turn of 90
degrees as shown in figure 6. This figure shows the corner of a road consisting of three points,
represented with the two black vectors. The red vectors show the new, orthogonal vectors created
as described in the previous paragraph. The new parallel line, shown in green, will completly ignore
the corner.

21

HD-Maps in Autonomous Driving

Figure 6: An illustration of the issue with the first vector based approach.

Angle based generation method

To avoid this problem, this method of point generation is only used for the first and last point.
For the rest of the points, we take an additional point into consideration when generating the new
point. Previously we would make a vector between the current and the next point, but the new
solution also uses the previous point. From these points it constructs two vectors instead of just
one, and calculates the angle between them. The angle is then halved to find the position for the
new point. This removes the issue described in figure 6.

This solution does not maintain a consistent lane width, however. To combat this, simple trigonom-
etry is used to adjust the distance of the new point to the old instead of using a static width.

width = | width

sin(angle)
| (3.1)

Figure 7 shows an example of generating a new point for a point in a 90 degree corner. The red
arrow is the vector that is scaled with equation 3.1. The two green vectors show the desired lane
width. The large arc is the angle between the two vectors, and the small arc is half of that angle.

22

HD-Maps in Autonomous Driving

Figure 7: An illustration of the scaled vector length to preserve lane width.

In order to make the actual XML for the roads, the list of points from OSM is used as a basis for
the road. The method for generating parallel lines as described above is used several times on these
points to obtain all the new points required by Apollo. For each lane this method has to be ran two
times, once for the center line, and once for the border line. In addition to this, the road requires
coordinate points for the overall boundary lines of the road. These points will be the same as the
border for the outer lanes in each direction.

An issue with pre-existing information in general is that different roads might be plotted in
"different directions", resulting in issues when they meet. An example of this is when two single
lane roads meet. If they are plotted in different directions we might get a situation where the roads
generated with the method as described above will be skewed relative to each other as described
in figure 8.

23

HD-Maps in Autonomous Driving

Figure 8: An illustration of the issue with meeting single lane roads that are plotted in different
directions. The dotted lines are those generated, the solid lines are the data from OSM.

This was solved by adding single lane roads as a special case where the original points would
be used as the middle of the lane instead of the center of the road. The difference is that the center
of the road is supposed to be the line that separates lanes that goes in different directions. For a
single lane road this would be one of the border lines. As the single lanes are always assumed to be
bidirectional, this solution should be sufficient, and is visualised in figure 9.

Figure 9: How the roads appear when the data from OSM is used as the center line.

24

HD-Maps in Autonomous Driving

3.2.3 Road connections and junctions

There are several possible ways to connect roads in Apollo’s OpenDRIVE. Each road has fields for
preceeding and succeding roads and lanes, where connections can be done directly. There is also
a junction-tag made to describe intersections. This tag is relatively advanced, and can describe
intersections involving several meeting roads. This naturally means it is challenging to generate
junctions correctly.

In OpenStreetMap, intersections are represented as a single node that all intersecting roads
share. Detecting intersections is a simple task, look for nodes that are present in two or more road’s
node sets. When generating the roads as described earlier, all the nodes for the current road is
matched with the nodes of all the other roads. If there is a match, that node is registered as a
junction, and the relevant roads are added to the junction.

Once all the roads are generated, we have a complete list of all the intersections in the area to be
mapped. This list is then iterated to generate the necessary XML for each junction. For each junction
we have a number of incoming roads. The specification requires the junction’s area to be specified,
and also uses so-called connecting roads to connect incoming roads to eachother. The connecting
roads are regular roads, but as opposed to other roads they belong to a certain junction. In the
proposed solution, we assume that all incoming roads are to be connected to eachother.

Figure 10: An illustration of connecting roads within junctions. The image is taken from the Open-
DRIVE specification [3]

For each pair of incoming roads, a Bézier curve[32] of new points is generated to represent
the curve a car could drive to connect from one road to the other. Both of the incoming roads
and the connecting road is then tagged with the appropriate succeeding and preceeding roads.
Connections are also established between the lanes of the incoming roads and the connecting roads.
In the current solution, the connection roads always only have one lane. This is the simplest way

25

HD-Maps in Autonomous Driving

of establishing the connections, but will not represent fully realistic paths a car can actually follow.
This means that if an incoming road has more lanes, they will all be connected to the same lane on
the connecting road.

3.3 Apollo OpenDRIVE

While working with the Apollo OpenDRIVE specification, it is apparent that it contains numerous
errors and inconsistensies. In this section these discovered issues will be described to aid future
work with the specification.

3.3.1 Lanes and center lines

The specification gives the impression that the records defining the right, left and center lanes
should follow the same structure. This is however not the case. The right and left lanes do follow
the same structure, but the center lane is completly different, and this format is not explained in
the specification. In Apollo OpenDRIVE the center lanes only defines the reference line, and not an
actual lane. The actual format to be used is explained in section 2.4.

3.3.2 Border types

In the specification, the structure of a lane’s type is supposed to consist of one or more borderType
tags within a borderTypes record. This is however not the case. Apollo’s XML parser expects the
border type to be specified within one or several borderType tags directly within the border record.
These tags should have sOffset, type and color attributes. The sOffset attribute defines at which
section of the road the border type should be valid for.

3.3.3 Sample Associations

According to the specification, this is an optional tag that is not required. When trying to use the
proto_map_generator-tool to generate .bin and .txt-maps, however, it will crash if it cannot find the
sample association tags. It will generate maps successfully if the script is modified to ignore the
sample associations, but it is unknown whether the tag is required by Apollo or not.

When generating these tags, it also comes clear that the specification uses the wrong names on
the tags. The list below to the left describes how the specification claims the format should be, and
the list to the right shows how it should be in reality.

sampleAssociations

x sampleAssociation

roadSampleAssociations

x sampleAssociation

sampleAssociates

x sampleAssociate

roadSampleAssociations

x sampleAssociation

3.4 Pipe-line for map generation

The code produced in this project results in a stack that makes it easy to generate new Apollo
OpenDRIVE maps from OSM data. By following a few simple steps, the generation can easily be

26

HD-Maps in Autonomous Driving

done to get maps of new areas. The process consists of data gathering, map generation and finally
some converter scripts made by Apollo is required to be run to generate all the necessary files before
it can be used with Apollo.

3.4.1 Data gathering

The program only needs OpenStreetMap data to function, and it requires this as an XML-file con-
taining all available data of the selected area. Such a file can easily be downloaded through OSM’s
website. In order to do this through the OSM website, simply pan and zoom the map to show the
desired area. Then click the export-button on the top of the website. Finally click the new export-
button to the left to download the map. If this fails, the website should list some available mirrors
as alternative download options.

Figure 11: A screenshot of the OSM website showing how to download XML files.

3.4.2 Map generation

Once a map has been downloaded, map generation is as simple as inputting the downloaded file
as a parameter to the python script. The script also needs to know which UTM zone the map is
within. It assumes zone 32V unless an other zone is specified. Given a map simply called map, the
following command can be used to generate an OpenDRIVE map using the osm2od tool:

python3 osm2od.py map -z 32V

27

HD-Maps in Autonomous Driving

Custom road configuration

If necessary, it is possible to specify custom lane widths and the number of lanes for specific roads
given by their road names, and input this to the program as a CSV-file. An example of a line in such
a file is:

Sem Sælands Vei ,1,5

This would apply a lane width 5 meters and specify the amount of lanes to be 1 for the road Sem
Sælands Vei. Every road-section the program encounters that has a name-parameter with this name,
will use these properties instead of those specified in the OSM file. The specified lane width will be
applied to every lane within the relevant roads. This feature can be useful whenever the OSM data
is incomplete or outdated. The program also assumes that all roads have equally wide lanes, but
this might not be the case. Being able to specify this information can help improve the accuracy of
an otherwise relatively inaccurate map.

Applying such a config-file is simple:

python3 osm2od.py map -z 32V -c config.csv

3.4.3 Map conversion

The osm2od-program generates an Apollo OpenDRIVE XML file, but Apollo actually don’t use this
file specifically much. Instead it uses modified versions of the map in other file formats. In order to
use the map with Apollo, it is necessary to generate these files, and place them in the appropriate
folder. Luckily, Apollo provides the necessary scripts for these conversions.

Generating .bin and .txt

The .bin and .txt files are simply representations of the map in different formats than XML. To
generate these files, it is necessary to use the script proto_map_generator.cc from the /apollo/mod-
ules/map/tools-folder. Inside the docker, once Apollo is appropriately built, the compiled file is
placed within /apollo/bazel-bin/modules/map/tools.

The simplest way of using this script is specifying an input and output location of the same folder,
this wil ensure that the generated files are placed correctly. The appropriate folder to store maps is
/apollo/modules/map/data. Create a new subfolder within that directory and place the generated
XML file within the new folder. The command to be ran to generate the new files is:

./bazel -bin/modules/map/proto_map_generator --map_dir =[map -path]

--output_dir =[map -path]

Here [map-path] should be replaced with the path to the new map folder. If no output directory
is specified, the files will be placed in a temporary folder.

Generating routing map

Apollo’s routing module requires a routing map. This can be generated by using another script
provided by Apollo, this time located in the /apollo/scripts-folder. The name of this script is gen-

28

HD-Maps in Autonomous Driving

erate_routing_topo_graph.sh, and in contrast to the other scripts, it only needs one parameter, the
map directory. It will automatically place the output files in the same directory.

./ scripts/generate_routing_topo_graph.sh --map_dir =[map -path]

Generating simple map

The Dreamview frontend can display a simple version of the map. To generate this simple map,
use the provided script called sim_map_generator.cc. Similarly to the script for generating .bin and
.txt-files this script is located in the bazel-bin directory, specifically inside the map-tools folder. In
the docker, this can be run similarly to the other scripts:

./bazel -bin/modules/map/tools/sim_map_generator --map_dir =[map -

path] --output_dir =[map -path]

29

HD-Maps in Autonomous Driving

4 Results

4.1 Map results

The main goal of this project was generating Apollo OpenDRIVE maps, and more specifically the
main focus was successfully importing roads and intersections from OpenStreetMap. In this section
the final version of the generated maps will be presented. The plots are obtained through scripts
made by Apollo.

4.1.1 Road lanes and width

Figure 12, 13 and 14 shows a part of a map of campus Gløshaugen in Trondheim, Norway. This part
of the map has a junction where two roads meet. Figure 12 simply visualises the data read directly
from OpenStreetMap. In figure 13 and 14 a configuration file has been applied to change the lane
width and number of lanes respectively.

(a) A plot of a road at Gløshaugen (b) A plot on top of a satellite image from Google Maps.

Figure 12: Two plots of the same map

30

HD-Maps in Autonomous Driving

(a) A plot of a road at Gløshaugen (b) a plot on top of a satellite image from Google Maps.

Figure 13: The same roads, but the map is using a config-file telling one of the roads to be wider.

(a) A plot of a road at Gløshaugen (b) a plot on top of a satellite image from Google Maps.

Figure 14: The same roads, but this time, one of the roads have been configured to have two lanes.

In figure 14 it is shown a junction between a two-lane road and a one-lane road. This illus-
trates how every connecting road currently will only be one lane, no matter what kinds of roads it

31

HD-Maps in Autonomous Driving

connects. This may look wrong in a plot, but it does follow the intended behaviour. All lanes are
connected appropriately from the incoming roads to the connecting roads in the map file, but as
the connecting roads are actual roads defined by coordinates the visualization does not show these
connections.

Figure 15: A plot of a junction where two of the roads meet at a very sharp angle.

In figure 15 it is shown how sharp turns currently produces an erroneous inner border line. This
is not a bug, but rather a consequence of how the border lines are generated. Each point in the
border represents a point in the center line, but moved a set length in a certain direction. To fix
this, a new method for parallel line generation would be required, and as this is only a problem in
some junctions, it has not been an area of focus in this project.

Apollo’s graphical user interface, Dreamview, display a simple version of the map as a back-
ground when the car is driving. The next two figures shows how the map looks in Dreamview.
Figure 16 shows the view of the car when it is driving. As recorded sensor data from a trip is re-
quired to make the car actually move, this image is the default starting location in the map. Figure
17 shows an overview of the entire map through the Route Editing interface. In these figures the
line colors and types are represented as defined in the map, yellow and white in this instance. As
the map is a simplified version of the full map, some coordinate points are missing. Figure 18 shows
the same junction as figure 12, 13 and 14, but it is apparent that the connecting roads have fewer
points in this version of the map.

32

HD-Maps in Autonomous Driving

Figure 16: A screenshot from the Dreamview interface showing the simple version of the map.

Figure 17: A screenshot showing an overview of a generated map in the Dreamviewer GUI.

33

HD-Maps in Autonomous Driving

Figure 18: A closer look at the simplified map.

34

HD-Maps in Autonomous Driving

5 Discussion

This chapter will discuss the results presented in the previous section.

5.1 Generated maps

It was discovered in chapter 2.1.1 that there are no available open source solutions for generating
HD-maps, answering RQ1.1. The maps generated with the osm2od tool developed in this thesis
are successfully parsed by the different scrips provided by Apollo for map conversion as explained
in section 3.4.3. The figures shown in chapter 4 are made by other Apollo provided scripts. This
makes it clear that the generated maps follow the specification well enough to be accepted by
Apollo. Whether this means that they will work with the car is still unknown, and would require
testing with the vehicle before anything can be concluded.

5.2 Lanes

The lanes are one of the most important parts of the map, and it is important that they function
correctly. In the plots shown in figure 12, 13, 14 and 15, the lane borders and center can be seen,
so the point sets describing the different parts of the lanes are structured correctly. However, these
figures also show that compared to a satellite image from Google Maps, the roads are not plotted
particularly accurately. This can come down to several factors, but the main problem is the quality
of the input data. There is no accuracy guarantees on the data from OpenStreetMap[33]. Other
potential factors can include an erroneous number of lanes or lane width. For each road there is
also only one set of points, which will normally represent the center of the road. The points for the
centers of the lanes and all the borders will be estimated based on how wide the road is, and this
estimation may be incorrect. Alternative ways of solving or improving this issue would require a
different approach of data gathering altogether. Two potential ways could be:

1. Lane detection on satellite images to detect lane borders.
2. Lane detection on sensor data from a data collection vehicle.

The first option would require satellite data of the area that is to be mapped. Further it would
require researching algorithms for extracting information about lanes from these images. This ap-
proach could potentially be utilised to get more accurate data for lane widths.

The second option is an advanced approach that could utilise several sensors, including a GNSS
reciever, LiDAR and cameras. Combining output from these sensors can make it possible to get
accurate coordinates for lane borders and centers, possibly by using simultaneous localization and
mapping (SLAM) algorithms.

Another inaccuracy is that the script currently only allows either one lane, or an even number
of lanes. This is not realistic as many roads have a different amount of lanes for each direction.

35

HD-Maps in Autonomous Driving

OSM actually provides some information about the number of lanes in each direction, but the script
currently does not take this into account. Incorporating this into the script, would require a large
structural change of the code. This is because the approach taken assumed we would only deal with
an even number of lanes, and the scope of this thesis mainly span roads with one lane. An HD-map
would require the actual number of lanes to be represented.

5.3 Junctions

Connecting meeting roads correctly is important for an accurate representation of the topology of
the road network. As shown in figure 12, 13, 14 and 15 the map presented in this thesis does
implement connections between roads, but currently limited to one connection for each road. An
accurate map would likely require connecting roads that represent the path a car can follow from
each of the lanes in one incoming road to all the lanes of another, potentially in the form of a
multi-laned connecting road. The visualisation scripts provided by Apollo have no way of showing
road connections other than the actual connecting roads. The connections are represented with
predecessor and successor records, and with data from a third party it can sometimes be a challenge
to understand which road would be which. Not being able to see what Apollo interpret visually
means that this part of the program would require testing with the Apollo software. This has not
been possible during this time period, and this part of the program is poorly tested and may contain
errors.

If the connecting roads were to be implemented in a way where there is one connecting road
for each possible path a car can take in a junction, it would be necessary to use the lane’s driving
direction into consideration to figure out which paths are possible. Currently all single lane roads
are bidirectional, so in junctions featuring only such roads, all lanes of a road would connect to all
lanes of the other roads. For multilane roads, the current solution only supports an equal amount
of lanes on each side of the center line, meaning there will always be at least one entering lane and
one exiting lane. Should the implementation of lanes be extended to include roads with a different
amount of lanes on each side of the center line, and one-way roads with only one lane, these two
guarantees no longer hold. This could potentially be an issue, specially when dealing with data from
a third party. It is easy to imagine a situation with three incoming roads all entering the junction
with no possible connecting paths. This problem would need to be considered when implementing
a more advanced junction solution.

5.4 Objects and Signals

Objects and signals make up an imporant part of HD-maps. The main priority in this thesis was
representing the road structure of a given area, not including objects and signals. One of the main
challenges concerning objects and signals in the Apollo OpenDRIVE specification is that the object
and signal records are to be registered under a road record. When using third party data as a
basis for the map generation, this would require detecting which of the map’s roads is closest to
the object or sign. This road is not necessary identifyable by it’s name as long roads may be split
into several OpenDRIVE roads. The road name parameter is also not guaranteed to be present in

36

HD-Maps in Autonomous Driving

OpenStreetMap. Signs in OpenStreetMap are marked using nodes. These nodes can either be a part
of a way or not. If they are part of a way their exact location is not necessarily given. If they are
not part of a way, it is not necessarily given which road they belong to and which direction they
face. Apollo also uses three dimensional coordinates to describe the position of a sign, where the
z-coordinate is given in meters and represents the height above ground, while the other two are
defined using the WGS84 standard. The data from OpenStreetMap could likely be used to estimate
the location of a sign, but it is unknown whether this would be sufficiently accurate to satisfy the
requirements of Apollo.

5.5 Performance

The performance of the script has not been an area of focus during this project, and generating
large maps is very slow. If this code is to be developed further, this is something that should be
looked into. The main focus this period has simply been generating a map, and some assumptions
and shortcuts limits the maintainability. Extending it with a parallel approach to road and junction
generation would likely improve performance, and while this is a simple task in Python, it would
require a major overhaul of the code. The best approach is possibly to make entirely new code with
a greater focus on maintainability, using this project’s code as inspiration.

5.6 Base data

Using already existing open map data was convenient to allow exploration of the Apollo OpenDRIVE
specification. The data is easily accessible both to gather and process, and makes it possible to focus
mainly on the generation of the XML-code. For a real use, however, the map data likely cannot
be used, as it is too inaccurate and not detailed enough to satisfy HD-map requirements. In the
visualisations presented in chapter 4, it becomes clear that the OSM data contains to few points
and that they are not accurate enough. Information about the lane width is also required to obtain
an accurate estimation of lane borders. As explained roughly in section 5.2 this would require a
different approach to solving the data gathering problem. RQ1.2 asks whether it is possible to
use open data for HD-map generation. While RQ1.3 is satisfied using open data, the accuracy
requirement of an HD-map is unlikely to be satisfied using open data, making the answer of RQ1.2
no.

5.7 Reflection

If this project were to be redone knowing the information learned in this project, the approach
would likely be different. In regards to the data collection, an approach based on sensors would
probably achieve better accuracy, and better HD-maps if done correctly. On the other hand, the
car was not ready for data collection during this semester, so it was not really an option. And one
of the main goals for this thesis is, as presented in RQ1.3, exploring the Apollo specification of
OpenDRIVE. This could maybe have been done more efficiently by working more with the tools
provided by Apollo too. The output from the code should maybe have been tested more frequently
with the Apollo software stack to make sure the maps were going in the right direction.

37

HD-Maps in Autonomous Driving

In terms of the code for generating the maps, it would likely have been wise to make the code
a bit more scaleable. Firstly the code makes assumptions from the start that have shown to limit
how much it can be improved with further features. Secondly, generating large maps takes an
unnecessarily large amount of time. Restructuring the code could reduce its complexity and also
the amount of code. Currently the connection roads are generated seperately from the regular
roads, but their implementation is very similar and could likely be combined to one. The current
assumptions that every road has an equal amount of lanes on each side of the center line would
also require a large restructuring of the code to change. Future projects should consider having
better structured code with maintainability more in mind, to make sure it is easy to extend it with
features.

38

HD-Maps in Autonomous Driving

6 Conclusion

Obtaining a HD-map is a matter of gathering the right information, process it appropriately and
output it in the right format. There are some HD-map services available, but the research done in
this thesis found that they are generally not open source, and rarely explain in detail how they
make their maps. This led to the best way of obtaining a map for the NAP lab being generating
one by making a script for map generation. In order to generate a map it was necessary to collect
enough appropriate information about the relevant area. This can be done in several ways, but in
this thesis the approach is based on open data from OpenStreetMap. The result was compatible
with the Apollo framework, at least as far as it has been tested currently. Some inconsistencies and
errors were found in the Apollo OpenDRIVE specification, but analysis of the code that reads the
map made it possible to make a compatible map. The accuracy of the map is questionable, however,
and it is likely not accurate enough to satisfy the requirements for an HD-map.

6.1 Future work

This thesis provides insight into how the Apollo OpenDRIVE specification works, and how maps
can be generated to fit the standard. Future maps, however, will have higher requirements in terms
of accuracy and details than the results from this thesis currently provides. Future projects should
investigate how maps can be generated using data collected with data collection vehicles. Such data
includes coordinates, images and point clouds. This kind of approach likely have a higher potential
in terms of accuracy and details, but it is a far more advanced method, and might require substantial
amounts of manual work. An alternative to this, could also be using some kind of image detection
on satellite images to increase the accuracy of map data, specifically lane widths, the amount of
lanes and junctions.

In addition to the roads themselves, an important aspect of the maps are the junctions. These
need to be properly setup for the map to function optimally, and for the map to properly represent
the road network topology. This includes connecting intersecting roads with eathother properly, as
well as making sure the lanes within the connected roads are linked to represent the possible paths
a car can follow.

It should also be a priority to include road objects and signals to future maps, as they provide
useful information to the application. This will require detecting roadside objects, including signs,
traffic lights, and road markings. Some of these may be available in online databases like the nor-
wegian national road data bank, but then again the accuracy of the data may not meet the required
level.

39

HD-Maps in Autonomous Driving

Bibliography

[1] Baidu. 2018. Apollo 3.0 software architecture. https://github.com/ApolloAuto/apollo/

blob/master/docs/demo_guide/images/Apollo_3.0_diagram.png. Accessed: 2019-06-26.

[2] Universal transverse mercator coordinate system. https://en.wikipedia.org/wiki/

Universal_Transverse_Mercator_coordinate_system. Accessed: 2019-06-24.

[3] Dupuis, M. OpenDRIVE Format Specification, Rev 1.5. VIRES Simulationstechnologie GmbH,
February 2019.

[4] 2019. Ntnu autonomous perception. https://www.ntnu.edu/web/

ntnu-autonomous-perception/naplab. Accessed: 2019-06-26.

[5] Apollo. 2018. Map open service. http://data.apollo.auto/hd_map_intro?locale=en-us&
lang=en. Accessed: 2019-06-24.

[6] Apollo. 2018. Lesson 2: Hd map. http://apollo.auto/devcenter/courselist.html?

target=2. Accessed: 2019-06-24.

[7] comma.ai. https://comma.ai/. Accessed: 2019-06-25.

[8] Hd maps for the masses. https://medium.com/@comma_ai/

hd-maps-for-the-masses-9a0d582dd274. Accessed: 2019-06-25.

[9] Mapillary. https://www.mapillary.com/. Accessed: 2019-06-25.

[10] Deepmap. https://www.deepmap.ai/. Accessed: 2019-06-25.

[11] Tomtom hd map with roaddna. https://www.tomtom.com/automotive/

automotive-solutions/automated-driving/hd-map-roaddna/. Accessed: 2019-06-25.

[12] lvl5. https://lvl5.ai/. Accessed: 2019-06-25.

[13] Here hd live map. https://www.here.com/products/automotive/hd-maps. Accessed:
2019-06-25.

[14] Civil maps. https://civilmaps.com/. Accessed: 2019-06-25.

[15] Carmera. https://www.carmera.com/. Accessed: 2019-06-25.

40

https://github.com/ApolloAuto/apollo/blob/master/docs/demo_guide/images/Apollo_3.0_diagram.png
https://github.com/ApolloAuto/apollo/blob/master/docs/demo_guide/images/Apollo_3.0_diagram.png
https://en.wikipedia.org/wiki/Universal_Transverse_Mercator_coordinate_system
https://en.wikipedia.org/wiki/Universal_Transverse_Mercator_coordinate_system
https://www.ntnu.edu/web/ntnu-autonomous-perception/naplab
https://www.ntnu.edu/web/ntnu-autonomous-perception/naplab
http://data.apollo.auto/hd_map_intro?locale=en-us&lang=en
http://data.apollo.auto/hd_map_intro?locale=en-us&lang=en
http://apollo.auto/devcenter/courselist.html?target=2
http://apollo.auto/devcenter/courselist.html?target=2
https://comma.ai/
https://medium.com/@comma_ai/hd-maps-for-the-masses-9a0d582dd274
https://medium.com/@comma_ai/hd-maps-for-the-masses-9a0d582dd274
https://www.mapillary.com/
https://www.deepmap.ai/
https://www.tomtom.com/automotive/automotive-solutions/automated-driving/hd-map-roaddna/
https://www.tomtom.com/automotive/automotive-solutions/automated-driving/hd-map-roaddna/
https://lvl5.ai/
https://www.here.com/products/automotive/hd-maps
https://civilmaps.com/
https://www.carmera.com/

HD-Maps in Autonomous Driving

[16] Tri-ad and carmera team up to build high definition maps for automated vehicles using camera
data. https://global.toyota/en/newsroom/corporate/26879165.html. Accessed: 2019-
06-25.

[17] Apollo. 2019. Map creation tool. https://github.com/ApolloAuto/apollo/tree/master/
modules/tools/create_map. Accessed: 2019-06-24.

[18] LG Electronics Inc. 2019. About lgsvl. https://www.lgsvlsimulator.com/about/. Accessed:
2019-06-24.

[19] LG Electronics Inc. 2019. Lgsvl simulator: Map annotation. https://www.lgsvlsimulator.
com/docs/map-annotation/. Accessed: 2019-06-24.

[20] OpenStreetMap. 2019. About openstreetmap. https://www.openstreetmap.org/about.
Accessed: 2019-06-24.

[21] 2019. openstreetmap wiki. https://wiki.openstreetmap.org/wiki/Main_Page. Accessed:
2019-06-24.

[22] Statens vegvesen. 2018. The national road database. https://www.vegvesen.no/en/

professional/roads/national-road-database/. Accessed: 2019-06-24.

[23] Difi. Norwegian licence for open government data (nlod) 2.0. https://data.norge.no/

nlod/en/2.0. Accessed: 2019-06-24.

[24] Baidu. 2019. Apollo. http://apollo.auto/. Accessed: 2019-06-26.

[25] Baidu. 2019. Apollo. https://github.com/ApolloAuto/apollo. Accessed: 2019-06-26.

[26] Florent Revest, H. H. 2019. Software platform - introduction to apollo. https://nap-lab.

gitbook.io/nap-lab/software-platform#introduction-to-baidu-apollo. Accessed:
2019-06-26.

[27] Apollo. Apollo 3.0 HDMAP OpenDRIVE Format. Baidu, July 2018.

[28] 2019. How to generate opendrive formate file like base_map.xml. https://github.com/

ApolloAuto/apollo/issues/3005. Accessed: 2019-06-26.

[29] Øystein B. Dick. 2018. Wgs84 - store norske leksikon. https://snl.no/WGS84. Accessed:
2019-06-26.

[30] Kartverket. Jordas rutenett. https://www.kartverket.no/kunnskap/

Kart-og-kartlegging/Jordas-rutenett/. Accessed: 2019-06-24.

[31] Gran, C. W. 2019. osm2opendrive. https://github.com/CWGran/osm2opendrive. Accessed:
2019-06-26.

41

https://global.toyota/en/newsroom/corporate/26879165.html
https://github.com/ApolloAuto/apollo/tree/master/modules/tools/create_map
https://github.com/ApolloAuto/apollo/tree/master/modules/tools/create_map
https://www.lgsvlsimulator.com/about/
https://www.lgsvlsimulator.com/docs/map-annotation/
https://www.lgsvlsimulator.com/docs/map-annotation/
https://www.openstreetmap.org/about
https://wiki.openstreetmap.org/wiki/Main_Page
https://www.vegvesen.no/en/professional/roads/national-road-database/
https://www.vegvesen.no/en/professional/roads/national-road-database/
https://data.norge.no/nlod/en/2.0
https://data.norge.no/nlod/en/2.0
http://apollo.auto/
https://github.com/ApolloAuto/apollo
https://nap-lab.gitbook.io/nap-lab/software-platform#introduction-to-baidu-apollo
https://nap-lab.gitbook.io/nap-lab/software-platform#introduction-to-baidu-apollo
https://github.com/ApolloAuto/apollo/issues/3005
https://github.com/ApolloAuto/apollo/issues/3005
https://snl.no/WGS84
https://www.kartverket.no/kunnskap/Kart-og-kartlegging/Jordas-rutenett/
https://www.kartverket.no/kunnskap/Kart-og-kartlegging/Jordas-rutenett/
https://github.com/CWGran/osm2opendrive

HD-Maps in Autonomous Driving

[32] Nicholas M. Patrikalakis, Takashi Maekawa, W. C. 2009. Shape interrogation for computer
aided design and manufacturing (hyperbook edition). http://web.mit.edu/hyperbook/

Patrikalakis-Maekawa-Cho/node12.html. Accessed: 2019-06-26.

[33] Accuracy - openstreetmap wiki. https://wiki.openstreetmap.org/wiki/Accuracy. Ac-
cessed: 2019-06-24.

42

http://web.mit.edu/hyperbook/Patrikalakis-Maekawa-Cho/node12.html
http://web.mit.edu/hyperbook/Patrikalakis-Maekawa-Cho/node12.html
https://wiki.openstreetmap.org/wiki/Accuracy

HD-Maps in Autonomous Driving

A Appendices

A.1 road.py

Listing A.1: road.py

1 class Road:

2
3 def __init__(self , id):

4 self.id = id

5 self.nodes = []

6
7 class Node:

8
9 def __init__(self , id, lat , lng):

10 self.id = id

11 self.lat = float(lat)

12 self.lng = float(lng)

43

HD-Maps in Autonomous Driving

A.2 osm2od.py

Listing A.2: osm2od.py

1 import numpy as np

2 import math

3 import datetime

4 import argparse

5 import utm

6
7 from geopy import distance

8 from lxml import etree

9 from tqdm import tqdm

10
11 from road import Node , Road

12
13 utmz = {"zone":32, "letter":"V", "full":"32V"}

14
15 def readNodes(e):

16 nodes = {}

17
18 # Read all nodes and their coordinates into an array

19 for node in e.findall('node'):

20 n = Node(node.get("id"), node.get("lat"), node.get("lon"))

21 nodes[node.get("id")] = n

22 return nodes

23
24
25 def readRoads(e, nodes):

26 roads = []

27
28 # Desired road types

29 driveable = ["motorway", "trunk", "primary", "secondary", "

tertiary", "residential", "service", "living_street", "track"

, "road", "unclassified"]

30 for r in driveable.copy():

31 driveable.append(r + "_link")

32
33 # Read all roads/ways into an array

34 for road in e.findall('way'):

35 r = Road(road.get("id"))

36
37 supported = False

38
39 # Read all information about each road

40 for tag in road.findall('tag'):

41 setattr(r, tag.get("k").replace(":", "_"), tag.get("v"))

44

HD-Maps in Autonomous Driving

42
43 # Filter out unwanted roads

44 if tag.get('k') == "highway":

45 if tag.get('v') in driveable:

46 supported = True

47 if not supported:

48 continue

49
50 # Connect to the nodes

51 for nd in road.findall('nd'):

52 r.nodes.append(nodes[nd.get("ref")])

53
54 roads.append(r)

55
56 return roads

57
58 def readOSM(filename):

59 e = etree.parse(filename).getroot ()

60
61 print("Reading file {}".format(filename))

62
63 nodes = readNodes(e)

64 roads = readRoads(e, nodes)

65
66 print("Finished reading file , found {} nodes and {} roads.".

format(len(nodes), len(roads)))

67
68 return nodes , roads

69
70 def read_config(filename):

71 f = open(filename)

72 conf = {}

73 for l in f:

74 s = l.strip().split(",")

75 s[0] = s[0]. lower ().replace(" ", "")

76 if s[1] != "":

77 s[1] = int(s[1])

78 else:

79 s[1] = None

80 if s[2] != "":

81 s[2] = float(s[2])

82 else:

83 s[2] = None

84 conf[s[0]] = s[1:3]

85 f.close ()

86 return conf

45

HD-Maps in Autonomous Driving

87
88 def format_coord(n):

89 return "{:.9e}".format(n)

90
91 def buildXML(filename , roads , pretty , conf):

92
93 name = filename.split(".")[0]. split("/")[-1]

94 #filename = name + ".xml"

95 filename = "base_map.xml"

96
97 print("Building XML output ...")

98
99 root = etree.Element('OpenDRIVE ')

100 root.set("xmlns", "http ://www.opendrive.org")

101 tree = etree.ElementTree(root)

102
103 # Setup header record

104 header = etree.SubElement(root , "header")

105 header.set("revMajor", "1")

106 header.set("revMinor", "0")

107 header.set("vendor", "Baidu")

108 header.set("name", name)

109 header.set("version", "1.0")

110 header.set("date", datetime.datetime.now().strftime("%Y-%m-%dT%H

:%M:%S"))

111
112 # Maximum and minimum coordinate values

113 # North , south , east , west

114 max_coord = [None ,None ,None ,None]

115
116 # Setup Geo Reference

117 georef = etree.SubElement(header , "geoReference")

118 georef.text = etree.CDATA("+proj=longlat +ellps=WGS84 +datum=

WGS84 +no_defs")

119
120 junctions = {}

121 for r in tqdm(roads , "Generating roads"):

122 road = etree.SubElement(root , "road")

123
124 lane_width = 3.0

125
126 road.set("id", r.id)

127
128 road.set("junction", "-1")

129
130 # Lanes

46

HD-Maps in Autonomous Driving

131 lanes = etree.SubElement(road , "lanes")

132
133 num_lanes = 0

134 lane_nums = [0,0]

135 if hasattr(r, "lanes_forward"):

136 lane_nums [0] = int(r.lanes_forward)

137 if hasattr(r, "lanes_backward"):

138 lane_nums [1] = int(r.lanes_backward)

139
140 if hasattr(r, "lanes"):

141 lane_nums [0] = int(r.lanes)//2 + int(r.lanes)%2

142 lane_nums [1] = int(r.lanes)//2

143
144 num_lanes = lane_nums [0] + lane_nums [1]

145 if num_lanes == 0:

146 lane_nums [0] = 1

147 num_lanes = 1

148
149 if hasattr(r, "name"):

150 road.set("name", r.name)

151
152 name = r.name.lower().replace(" ", "")

153 if conf != None:

154 if name in conf.keys():

155 if conf[name][0] != None:

156 num_lanes = conf[name][0]

157 print(num_lanes)

158 if conf[name][1] != None:

159 lane_width = conf[name][1]

160 else:

161 road.set("name", "")

162
163 laneSec = etree.SubElement(lanes , "laneSection")

164 laneSec.set("singleSide", "true") # True if both

directions share the same laneSection

165
166 boundaries = etree.SubElement(laneSec , "boundaries")

167
168 # If the lane number is odd and greater than 1, only care

about num_lanes -1 lanes

169 if num_lanes > 1 and num_lanes % 2 != 0:

170 num_lanes -= 1

171 elif num_lanes == 0:

172 num_lanes = 1

173
174 setattr(r, "lanes", num_lanes)

47

HD-Maps in Autonomous Driving

175
176 # Lane boundaries

177 left_boundary = etree.SubElement(boundaries , "boundary")

178 left_boundary.set("type", "leftBoundary")

179
180 right_boundary = etree.SubElement(boundaries , "boundary")

181 right_boundary.set("type", "rightBoundary")

182
183 # Lane boundary geometries

184 leftb_geo = etree.SubElement(left_boundary , "geometry")

185 leftb_geo_ps = etree.SubElement(leftb_geo , "pointSet")

186
187 rightb_geo = etree.SubElement(right_boundary , "geometry")

188 rightb_geo_ps = etree.SubElement(rightb_geo , "pointSet")

189
190 nodes = []

191 for n in r.nodes:

192 nodes.append ([n.lat , n.lng])

193
194 if num_lanes == 1:

195 left_boundary_points = find_parallel(r.nodes , True ,

lane_width /2, lane_width /2)

196 right_boundary_points = find_parallel(r.nodes , False ,

lane_width /2, lane_width /2)

197 else:

198 boundary_width = num_lanes /2.0 *lane_width

199 left_boundary_points = find_parallel(r.nodes , True ,

boundary_width , boundary_width)

200 right_boundary_points = find_parallel(r.nodes , False ,

boundary_width , boundary_width)

201
202 for i in range(len(r.nodes)):

203 # Left

204 lp = etree.SubElement(leftb_geo_ps , "point")

205 lp.set("x", format_coord(left_boundary_points[i][1]))

206 lp.set("y", format_coord(left_boundary_points[i][0]))

207 lp.set("z", format_coord (0.0))

208
209 # Right

210 rp = etree.SubElement(rightb_geo_ps , "point")

211 rp.set("x", format_coord(right_boundary_points[i][1]))

212 rp.set("y", format_coord(right_boundary_points[i][0]))

213 rp.set("z", format_coord (0.0))

214
215 # Center is supposed to store the reference line

216 # Left/right stores the borders of left/right lanes

48

HD-Maps in Autonomous Driving

217
218 center = etree.SubElement(laneSec , "center")

219 center_lane = etree.SubElement(center , "lane")

220
221 center_lane.set("id", "0")

222 center_lane.set("uid", "{}_0".format(r.id))

223 center_lane.set("type", "none")

224 #center_lane.set(" direction", "bidirection ")

225 #center_lane.set(" turnType", "noTurn ") # Not sure what

this means

226
227 center_border = etree.SubElement(center_lane , "border")

228 center_border.set("virtual", "FALSE")

229 cl_geo = etree.SubElement(center_border , "geometry")

230 cl_geo.set("sOffset", "0")

231 cl_geo.set("x", format_coord(r.nodes [0]. lng))

232 cl_geo.set("y", format_coord(r.nodes [0]. lat))

233 cl_geo.set("z", format_coord (0.0))

234 cl_geo.set("length", str(road_length(r.nodes)))

235
236 cborder_type = etree.SubElement(center_border , "borderType")

237 cborder_type.set("sOffset", "0")

238 cborder_type.set("type", "solid" if num_lanes == 1 else "

broken")

239 cborder_type.set("color", "white" if num_lanes == 1 else "

yellow")

240
241 cl_geo_ps = etree.SubElement(cl_geo , "pointSet")

242
243 center_nodes = nodes if num_lanes > 1 else find_parallel(r.

nodes , True , lane_width /2.0, lane_width /2.0)

244 for n in center_nodes:

245 p = etree.SubElement(cl_geo_ps , "point")

246 p.set("x", format_coord(n[1]))

247 p.set("y", format_coord(n[0]))

248 p.set("z", format_coord (0.0))

249
250 # Check for min/max values:

251 # North

252 if max_coord [0] == None or max_coord [0] < n[0]:

253 max_coord [0] = n[0]

254
255 # South

256 if max_coord [1] == None or max_coord [1] > n[0]:

257 max_coord [1] = n[0]

258

49

HD-Maps in Autonomous Driving

259 # East

260 if max_coord [2] == None or max_coord [2] < n[1]:

261 max_coord [2] = n[1]

262
263 # West

264 if max_coord [3] == None or max_coord [3] > n[1]:

265 max_coord [3] = n[1]

266
267 right = etree.SubElement(laneSec , "right")

268
269 if num_lanes > 1:

270 left = etree.SubElement(laneSec , "left")

271
272 num_side_lanes = math.ceil(num_lanes /2)

273 for i in range(num_side_lanes):

274 # Right , only add this if num_lanes == 1

275 right_lane = etree.SubElement(right , "lane")

276 right_lane.set("id", " -{}".format(i+1))

277 right_lane.set("uid", "{}_1{}".format(r.id, i+1))

278 right_lane.set("type", "driving")

279 right_lane.set("direction", "bidirection" if num_lanes

== 1 else "forward")

280 right_lane.set("turnType", "noTurn") # Not sure what

this means

281
282 # Lane center

283 right_center = etree.SubElement(right_lane , "centerLine"

)

284
285 center_pos = i*lane_width +(lane_width /2)

286 if num_lanes == 1:

287 right_center_points = nodes

288 else:

289 right_center_points = find_parallel(r.nodes , False ,

center_pos , center_pos)

290
291 rc_geo = etree.SubElement(right_center , "geometry")

292 rc_geo.set("sOffset", "0")

293 rc_geo.set("x", format_coord(right_center_points [0][1]))

294 rc_geo.set("y", format_coord(right_center_points [0][0]))

295 rc_geo.set("z", format_coord (0.0))

296 rc_geo.set("length", str(road_length(right_center_points

)))

297
298 rc_geo_ps = etree.SubElement(rc_geo , "pointSet")

299

50

HD-Maps in Autonomous Driving

300 for n in right_center_points:

301 p = etree.SubElement(rc_geo_ps , "point")

302 p.set("x", format_coord(n[1]))

303 p.set("y", format_coord(n[0]))

304 p.set("z", format_coord (0.0))

305
306 # Lane border

307 right_border = etree.SubElement(right_lane , "border")

308 right_border.set("virtual", "FALSE") # "Identify

whether the lane boundary exists in real world"

309
310 rborder_type = etree.SubElement(right_border , "

borderType")

311 rborder_type.set("sOffset", "0")

312 rborder_type.set("type", "solid" if i == num_side_lanes

-1 else "broken")

313 rborder_type.set("color", "white")

314
315 if num_lanes == 1:

316 right_border_points = find_parallel(r.nodes , False ,

lane_width /2.0, lane_width /2.0)

317 else:

318 right_border_points = find_parallel(r.nodes , False ,

(i+1)*lane_width , (i+1)*lane_width)

319
320 rb_geo = etree.SubElement(right_border , "geometry")

321 rb_geo.set("sOffset", "0")

322 rb_geo.set("x", format_coord(right_border_points [0][1]))

323 rb_geo.set("y", format_coord(right_border_points [0][0]))

324 rb_geo.set("z", format_coord (0.0))

325 rb_geo.set("length", str(road_length(right_border_points

)))

326
327 rb_geo_ps = etree.SubElement(rb_geo , "pointSet")

328
329 for n in right_border_points:

330 p = etree.SubElement(rb_geo_ps , "point")

331 p.set("x", format_coord(n[1]))

332 p.set("y", format_coord(n[0]))

333 p.set("z", format_coord (0.0))

334
335 if num_lanes > 1:

336 left_lane = etree.SubElement(left , "lane")

337 left_lane.set("id", "{}".format(i+1))

338 left_lane.set("uid", "{}_0{}".format(r.id, i+1))

339 left_lane.set("type", "driving")

51

HD-Maps in Autonomous Driving

340 left_lane.set("direction", "backward")

341 left_lane.set("turnType", "noTurn") # Not sure

what this means

342
343 # Lane center

344 left_center = etree.SubElement(left_lane , "

centerLine")

345
346 left_center_points = find_parallel(r.nodes , True ,

center_pos , center_pos)

347
348 lc_geo = etree.SubElement(left_center , "geometry")

349 lc_geo.set("sOffset", "0")

350 lc_geo.set("x", format_coord(left_center_points

[0][1]))

351 lc_geo.set("y", format_coord(left_center_points

[0][0]))

352 lc_geo.set("z", format_coord (0.0))

353 lc_geo.set("length", str(road_length(

left_center_points)))

354
355 lc_geo_ps = etree.SubElement(lc_geo , "pointSet")

356
357 for n in left_center_points:

358 p = etree.SubElement(lc_geo_ps , "point")

359 p.set("x", format_coord(n[1]))

360 p.set("y", format_coord(n[0]))

361 p.set("z", format_coord (0.0))

362
363 # Lane border

364 left_border = etree.SubElement(left_lane , "border")

365 left_border.set("virtual", "FALSE") # "Identify

whether the lane boundary exists in real world"

366
367 lborder_type = etree.SubElement(left_border , "

borderType")

368 lborder_type.set("sOffset", "0")

369 lborder_type.set("type", "solid" if i ==

num_side_lanes -1 else "broken")

370 lborder_type.set("color", "white")

371
372 left_border_points = find_parallel(r.nodes , True , (i

+1)*lane_width , (i+1)*lane_width)

373
374 lb_geo = etree.SubElement(left_border , "geometry")

375 lb_geo.set("sOffset", "0")

52

HD-Maps in Autonomous Driving

376 lb_geo.set("x", format_coord(left_border_points

[0][1]))

377 lb_geo.set("y", format_coord(left_border_points

[0][0]))

378 lb_geo.set("z", format_coord (0.0))

379 lb_geo.set("length", str(road_length(

left_border_points)))

380
381 lb_geo_ps = etree.SubElement(lb_geo , "pointSet")

382
383 for n in left_border_points:

384 p = etree.SubElement(lb_geo_ps , "point")

385 p.set("x", format_coord(n[1]))

386 p.set("y", format_coord(n[0]))

387 p.set("z", format_coord (0.0))

388
389 # Sample Associations

390 # Distance from the center to the edges

391 right_sample = etree.SubElement(right_lane , "

sampleAssociates")

392 right_road_sample = etree.SubElement(right_lane , "

roadSampleAssociations")

393
394 if num_lanes > 1:

395 left_sample = etree.SubElement(left_lane , "

sampleAssociates")

396 left_road_sample = etree.SubElement(left_lane , "

roadSampleAssociations")

397
398 road_len = road_length(r.nodes)

399 for s in range(len(r.nodes)):

400 s_pos = road_len/len(r.nodes) * s

401 right_samp = etree.SubElement(right_sample , "

sampleAssociate")

402 right_samp.set("sOffset", str(int(s_pos)))

403 right_samp.set("leftWidth", str(lane_width /2))

404 right_samp.set("rightWidth", str(lane_width /2))

405
406 far_boundary = (num_lanes //2 + i + 0.5) * lane_width

407 close_boundary = (math.ceil(num_lanes /2) - (i + 1) +

0.5) * lane_width

408 right_road_samp = etree.SubElement(right_road_sample

, "sampleAssociation")

409 right_road_samp.set("sOffset", str(int(s_pos)))

410 right_road_samp.set("leftWidth", str(far_boundary))

53

HD-Maps in Autonomous Driving

411 right_road_samp.set("rightWidth", str(close_boundary

))

412
413 if num_lanes > 1:

414 left_samp = etree.SubElement(left_sample , "

sampleAssociate")

415 left_samp.set("sOffset", str(int(s_pos)))

416 left_samp.set("leftWidth", str(lane_width /2))

417 left_samp.set("rightWidth", str(lane_width /2))

418
419 left_road_samp = etree.SubElement(

left_road_sample , "sampleAssociation")

420 left_road_samp.set("sOffset", str(int(s_pos)))

421 left_road_samp.set("leftWidth", str(

close_boundary))

422 left_road_samp.set("rightWidth", str(

far_boundary))

423
424 # Junctions

425 # OSM draws junctions as a shared node between ways

426
427 for road in roads:

428 if r == road:

429 continue

430
431 for n in r.nodes:

432 if n in road.nodes:

433 if n not in junctions.keys():

434 junctions[n] = set ([])

435 junctions[n]. update ([r, road])

436
437 for i, j in tqdm(enumerate(junctions.keys()), "Generating

junctions", len(junctions)):

438 junc = etree.SubElement(root , "junction")

439 junc.set("id", str(i))

440
441 junc_outline = etree.SubElement(junc , "outline")

442 point = np.array(utm.from_latlon(j.lat , j.lng)[0:2])

443 v = np.array ([2* lane_width , 0])

444 # This is probably a bit unnecessary as its the same in

every iteration

445 outline = list(map(lambda x: rotate_vector(x[1], x[0]* math.

pi/2), enumerate ([v]*4))) + point

446 for c in outline:

447 p = utm.to_latlon(c[0], c[1], utmz["zone"], utmz["letter

"])

54

HD-Maps in Autonomous Driving

448 cb = etree.SubElement(junc_outline , "cornerGlobal")

449 cb.set("x", format_coord(p[1]))

450 cb.set("y", format_coord(p[0]))

451 cb.set("z", format_coord (0.0))

452
453 # Generate connecting roads

454 vecs = []

455 for r in junctions[j]:

456 n_i = r.nodes.index(j)

457 p = utm.from_latlon(j.lat , j.lng)

458 if n_i == 0:

459 p2 = utm.from_latlon(r.nodes [1].lat , r.nodes [1]. lng)

460 vecs.append ({"vec" : np.array([p2[0]-p[0], p2[1]-p

[1]]) , "road" : r , "pos" : -2})

461 elif n_i == len(r.nodes) -1:

462 p2 = utm.from_latlon(r.nodes [-2].lat , r.nodes [-2].

lng)

463 vecs.append ({"vec" : np.array([p2[0]-p[0], p2[1]-p

[1]]) , "road" : r , "pos" : 2})

464 else:

465 p0 = utm.from_latlon(r.nodes[n_i -1].lat , r.nodes[n_i

-1]. lng)

466 p1 = utm.from_latlon(r.nodes[n_i +1].lat , r.nodes[n_i

+1]. lng)

467
468 vecs.append ({"vec" : np.array([p1[0]-p[0], p1[1]-p

[1]]) , "road" : r , "pos" : 1})

469 vecs.append ({"vec" : np.array([p0[0]-p[0], p0[1]-p

[1]]) , "road" : r , "pos" : -1})

470
471 for v in vecs:

472 v["vec"] = v["vec"]* lane_width/np.linalg.norm(v["vec"])

473
474 conn_roads = []

475 v = 0

476 while v < len(vecs) -1:

477 v2 = v+1

478 while v2 < len(vecs):

479 v3 = vecs[v2]["vec"]-vecs[v]["vec"]

480 if v3[0] != 0 and v3[1] != 0:

481 conn_roads.append ({"vecs" : [vecs[v]["vec"], v3

], "start" : {"road" : vecs[v]["road"], "pos"

: vecs[v]["pos"]}, "end" : {"road" : vecs[v2

]["road"], "pos" : vecs[v2]["pos"]}})

482 v2 += 1

483 v += 1

55

HD-Maps in Autonomous Driving

484
485 conns = 0

486 for r_id , r in enumerate(conn_roads):

487 if r["start"]["road"] == r["end"]["road"]:

488 continue

489 road = etree.SubElement(root , "road")

490 road.set("name", "connroad")

491 road_id = "conn_{}_{}".format(i, str(r_id))

492 road.set("id", road_id)

493 road.set("junction", str(i))

494
495 points = [point+r["vecs"][0], point+r["vecs"][0]+r["vecs

"][1]]

496
497 # Make curve

498 center = np.array(utm.from_latlon(j.lat , j.lng)[:2])

499 points = list(map(lambda x: points [0] + x, np.array(

make_curve(np.array([0, 0]), center - points [0],

points [1] - points [0]))))

500 points = list(map(lambda x: utm.to_latlon(x[0], x[1],

utmz["zone"], utmz["letter"]), points))

501
502 road_geo_link = etree.SubElement(road , "link")

503 rgl_pre = etree.SubElement(road_geo_link , "predecessor")

504 rgl_pre.set("elementType", "road")

505 rgl_pre.set("elementId", r["start"]["road"].id)

506 rgl_pre.set("contactPoint", "start" if r["start"]["pos"]

< 0 else "end")

507
508 rgl_succ = etree.SubElement(road_geo_link , "successor")

509 rgl_succ.set("elementType", "road")

510 rgl_succ.set("elementId", r["end"]["road"].id)

511 rgl_succ.set("contactPoint", "end" if r["start"]["pos"]

> 0 else "start")

512
513 conn_link = etree.Element("link")

514 start_road = root.xpath("//road[@id = '{}']".format(r["

start"]["road"].id))[0]

515 if abs(r["start"]["pos"]) > 1:

516 start_link = start_road.findall("link")

517 if len(start_road.findall("link")) == 0:

518 start_link = etree.SubElement(start_road , "link"

)

519 else:

520 start_link = start_link [0]

521 if abs(r["start"]["pos"]) > 0:

56

HD-Maps in Autonomous Driving

522 succ = etree.SubElement(start_link , "successor"

if r["start"]["pos"] < 0 else "predecessor")

523 succ.set("elementType", "road")

524 succ.set("elementId", road_id)

525 succ.set("contactPoint", "start")

526
527 sr_lanes = start_road.xpath(".// left/lane | .// right

/lane")

528 for lane in sr_lanes:

529 sr_lane_link = lane.findall("link")

530 if len(sr_lane_link) == 0:

531 sr_lane_link = etree.SubElement(lane , "link"

)

532 else:

533 sr_lane_link = sr_lane_link [0]

534 sr_link = etree.SubElement(sr_lane_link , "

successor" if r["start"]["pos"] < 0 else "

predecessor")

535 sr_link.set("id", "{}_11".format(road_id))

536
537 sr_lanes = start_road.xpath(".// left/lane | .// right/

lane")

538 for lane in sr_lanes:

539 conn_sr_link = etree.SubElement(conn_link , "

predecessor")

540 conn_sr_link.set("id", lane.get("uid"))

541
542 end_road = root.xpath("//road[@id = '{}']".format(r["end

"]["road"].id))[0]

543 if abs(r["end"]["pos"]) > 1:

544 end_link = end_road.findall("link")

545 if len(end_road.findall("link")) == 0:

546 end_link = etree.SubElement(end_road , "link")

547 else:

548 end_link = end_link [0]

549 if abs(r["end"]["pos"]) > 0:

550 succ = etree.SubElement(end_link , "predecessor"

if r["end"]["pos"] > 0 else "successor")

551 succ.set("elementType", "road")

552 succ.set("elementId", road_id)

553 succ.set("contactPoint", "end")

554
555 er_lanes = end_road.xpath(".// left/lane | .// right/

lane")

556 for lane in er_lanes:

557 er_lane_link = lane.findall("link")

57

HD-Maps in Autonomous Driving

558 if len(er_lane_link) == 0:

559 er_lane_link = etree.SubElement(lane , "link"

)

560 else:

561 er_lane_link = er_lane_link [0]

562 er_link = etree.SubElement(er_lane_link , "

predecessor" if r["end"]["pos"] > 0 else "

successor")

563 er_link.set("id", "{}_11".format(road_id))

564
565 er_lanes = end_road.xpath(".// left/lane | .// right/lane"

)

566 for lane in er_lanes:

567 conn_er_link = etree.SubElement(conn_link , "

successor")

568 conn_er_link.set("id", lane.get("uid"))

569
570 lanes = etree.SubElement(road , "lanes")

571 lane_sec = etree.SubElement(lanes , "laneSection")

572 lane_sec.set("singleSide", "true")

573
574 start_width = lane_width

575 end_width = lane_width

576 if hasattr(r["start"]["road"], "name"):

577 start_name = r["start"]["road"].name.lower().replace

(" ", "")

578 if conf != None:

579 if start_name in conf.keys():

580 if conf[start_name][1] != None:

581 start_width = conf[start_name][1]

582
583 if hasattr(r["end"]["road"], "name") :

584 end_name = r["end"]["road"].name.lower ().replace(" "

, "")

585 if conf != None:

586 if end_name in conf.keys():

587 if conf[end_name][1] != None:

588 end_width = conf[end_name][1]

589
590 left_boundary_points = find_parallel(points , True ,

start_width /2, end_width /2)

591 right_boundary_points = find_parallel(points , False ,

start_width /2, end_width /2)

592
593 ls_right_boundary = etree.SubElement(lane_sec , "

boundaries")

58

HD-Maps in Autonomous Driving

594 ls_right_boundary.set("type", "rightBoundary")

595
596 ls_right_boundary_geo = etree.SubElement(

ls_right_boundary , "geometry")

597 lslb_geo_ps = etree.SubElement(ls_right_boundary_geo , "

pointSet")

598
599 for p in right_boundary_points:

600 ps_point = etree.SubElement(lslb_geo_ps , "point")

601 ps_point.set("x", format_coord(p[1]))

602 ps_point.set("y", format_coord(p[0]))

603 ps_point.set("z", format_coord (0.0))

604
605 ls_left_boundary = etree.SubElement(lane_sec , "

boundaries")

606 ls_left_boundary.set("type", "leftBoundary")

607
608 ls_left_boundary_geo = etree.SubElement(ls_left_boundary

, "geometry")

609 lslb_geo_ps = etree.SubElement(ls_left_boundary_geo , "

pointSet")

610
611 for p in left_boundary_points:

612 ps_point = etree.SubElement(lslb_geo_ps , "point")

613 ps_point.set("x", format_coord(p[1]))

614 ps_point.set("y", format_coord(p[0]))

615 ps_point.set("z", format_coord (0.0))

616
617 center = etree.SubElement(lane_sec , "center")

618 center_lane = etree.SubElement(center , "lane")

619 center_lane.set("id", str(0))

620 center_lane.set("uid", "{}_0".format(road_id))

621 center_lane.set("type", "none")

622
623 center_lane_border = etree.SubElement(center_lane , "

border")

624 center_lane_border.set("virtual", "TRUE")

625
626 cborder_type = etree.SubElement(center_lane_border , "

borderType")

627 cborder_type.set("sOffset", "0")

628 cborder_type.set("type", "none")

629 cborder_type.set("color", "none")

630
631 center_geo = etree.SubElement(center_lane_border , "

geometry")

59

HD-Maps in Autonomous Driving

632 center_geo.set("sOffset", str (0))

633 center_geo.set("x", format_coord(left_boundary_points

[0][1]))

634 center_geo.set("y", format_coord(left_boundary_points

[0][0]))

635 center_geo.set("z", format_coord (0.0))

636 center_geo.set("length", str(road_length(

left_boundary_points)))

637
638 center_geo_ps = etree.SubElement(center_geo , "pointSet")

639
640 for p in left_boundary_points:

641 cg_point = etree.SubElement(center_geo_ps , "point")

642 cg_point.set("x", format_coord(p[1]))

643 cg_point.set("y", format_coord(p[0]))

644 cg_point.set("z", format_coord (0.0))

645
646 right = etree.SubElement(lane_sec , "right")

647 right_lane = etree.SubElement(right , "lane")

648 right_lane.set("id", str(-1))

649 right_lane.set("uid", "{}_11".format(road_id))

650 right_lane.set("type", "driving")

651 right_lane.set("direction", "bidirection")

652 right_lane.set("turnType", "noTurn")

653
654 right_lane.insert(1, conn_link)

655
656 right_lane_cl = etree.SubElement(right_lane , "centerLine

")

657
658 right_geo = etree.SubElement(right_lane_cl , "geometry")

659 right_geo.set("sOffset", str (0))

660 right_geo.set("x", format_coord(points [0][1]))

661 right_geo.set("y", format_coord(points [0][0]))

662 right_geo.set("z", format_coord (0.0))

663 right_geo.set("length", str(road_length(points)))

664
665 right_geo_ps = etree.SubElement(right_geo , "pointSet")

666
667 for p in points:

668 rg_point = etree.SubElement(right_geo_ps , "point")

669 rg_point.set("x", format_coord(p[1]))

670 rg_point.set("y", format_coord(p[0]))

671 rg_point.set("z", format_coord (0.0))

672

60

HD-Maps in Autonomous Driving

673 right_lane_border = etree.SubElement(right_lane , "border

")

674 right_lane_border.set("virtual", "TRUE")

675
676 rborder_type = etree.SubElement(right_lane_border , "

borderType")

677 rborder_type.set("sOffset", "0")

678 rborder_type.set("type", "none")

679 rborder_type.set("color", "none")

680
681 right_border_geo = etree.SubElement(right_lane_border , "

geometry")

682 right_border_geo.set("sOffset", str (0))

683 right_border_geo.set("x", format_coord(

right_boundary_points [0][1]))

684 right_border_geo.set("y", format_coord(

right_boundary_points [0][0]))

685 right_border_geo.set("z", format_coord (0.0))

686 right_border_geo.set("length", str(road_length(

right_boundary_points)))

687
688 right_border_geo_ps = etree.SubElement(right_border_geo ,

"pointSet")

689
690 for p in right_boundary_points:

691 rg_point = etree.SubElement(right_border_geo_ps , "

point")

692 rg_point.set("x", format_coord(p[1]))

693 rg_point.set("y", format_coord(p[0]))

694 rg_point.set("z", format_coord (0.0))

695
696 right_sample = etree.SubElement(right_lane , "

sampleAssociates")

697 right_road_sample = etree.SubElement(right_lane , "

roadSampleAssociations")

698
699 road_len = road_length(points)

700 for s in range(len(points)):

701 s_pos = road_len/len(points) * s

702 right_samp = etree.SubElement(right_sample , "

sampleAssociate")

703 right_samp.set("sOffset", str(int(s_pos)))

704 right_samp.set("leftWidth", str(lane_width /2))

705 right_samp.set("rightWidth", str(lane_width /2))

706

61

HD-Maps in Autonomous Driving

707 right_road_samp = etree.SubElement(right_road_sample

, "sampleAssociation")

708 right_road_samp.set("sOffset", str(int(s_pos)))

709 right_road_samp.set("leftWidth", str(lane_width /2))

710 right_road_samp.set("rightWidth", str(lane_width /2))

711
712 conn = etree.SubElement(junc , "connection")

713 conn.set("id", str(conns))

714 conn.set("incomingRoad", str(r["start"]["road"].id))

715 conn.set("connectingRoad", str(road_id))

716 conn.set("contactPoint", "start")

717
718 for l in range(math.ceil(r["start"]["road"]. lanes /2)):

719 conn_s_link = etree.SubElement(conn , "laneLink")

720 conn_s_link.set("from", str(-(l+1)))

721 conn_s_link.set("to", str(-1))

722
723 if r["start"]["road"]. lanes > 1:

724 conn_sl_link = etree.SubElement(conn , "laneLink"

)

725 conn_sl_link.set("from", str(l+1))

726 conn_sl_link.set("to", str(-1))

727
728 conns += 1

729
730 conn = etree.SubElement(junc , "connection")

731 conn.set("id", str(conns))

732 conn.set("incomingRoad", str(r["end"]["road"].id))

733 conn.set("connectingRoad", str(road_id))

734 conn.set("contactPoint", "end")

735
736 for l in range(math.ceil(r["end"]["road"]. lanes /2)):

737 conn_s_link = etree.SubElement(conn , "laneLink")

738 conn_s_link.set("from", str(-(l+1)))

739 conn_s_link.set("to", str(-1))

740
741 if r["end"]["road"]. lanes > 1:

742 conn_sl_link = etree.SubElement(conn , "laneLink"

)

743 conn_sl_link.set("from", str(l+1))

744 conn_sl_link.set("to", str(-1))

745
746 conns += 1

747
748 header.set("north", format_coord(max_coord [0]))

749 header.set("south", format_coord(max_coord [1]))

62

HD-Maps in Autonomous Driving

750 header.set("east", format_coord(max_coord [2]))

751 header.set("west", format_coord(max_coord [3]))

752
753 print("XML successfully generated , writing to '{}'".format(

filename))

754
755 tree.write(filename , xml_declaration=True , pretty_print=pretty ,

encoding='UTF -8')

756
757 # Calculate road length

758 def road_length(road):

759 length = 0

760 for i in range(len(road) -1):

761 p1 = road[i]

762 p2 = road[i+1]

763
764 if isinstance(p1 , Node):

765 length += distance.distance ((p1.lat , p1.lng), (p2.lat ,

p2.lng)).m

766 else:

767 length += distance.distance(p1, p2).m

768
769 return length

770
771 def vector_angle(v1, v2):

772 v1_u = v1 / np.linalg.norm(v1)

773 v2_u = v2 / np.linalg.norm(v2)

774
775 dot = np.dot(v1_u , v2_u)

776 det = v1_u [0]* v2_u [1] - v1_u [1]* v2_u [0]

777
778 return np.arctan2(det , dot)

779
780 def rotate_vector(vector , angle):

781 v_x = math.cos(angle) * vector [0] - math.sin(angle) * vector [1]

782 v_y = math.sin(angle) * vector [0] + math.cos(angle) * vector [1]

783 return [v_x , v_y]

784
785 def curve (A, B, C, t):

786 P0 = A * t + (1 - t) * B

787 P1 = B * t + (1 - t) * C

788 return P0 * t + (1 - t) * P1

789
790 def make_curve(p1, p2, p3):

791 crv_line = []

792 for x in np.linspace (0,1,10):

63

HD-Maps in Autonomous Driving

793 crv_line.append(curve(p1 , p2 , p3 , x))

794 return crv_line

795
796
797 def find_parallel(road , left , start_width , end_width):

798 points = []

799
800 for n in road:

801 if isinstance(n, Node):

802 points.append ((n.lat , n.lng))

803 else:

804 points.append(n)

805
806 points = np.array(points)

807 vectors = []

808
809 parallel = []

810 for i in range(len(points) -1):

811 # Convert the points to UTM coordinates

812 p1 = utm.from_latlon (* points[i])

813 p2 = utm.from_latlon (* points[i+1])

814
815 # Vector between the current and the next point

816 v = np.array([p2[0]-p1[0], p2[1]-p1 [1]])

817
818 widths = np.linspace (0,1,len(points))[0: -1]

819 if i != 0:

820 # If the point is not the first or last point , use both

the previous and the next

821 # points to calculate the new point

822 p0 = utm.from_latlon (* points[i-1])

823 v0 = np.array([p1[0]-p0[0], p1[1]-p0[1]])

824
825 # Find angle between vectors

826 angle = vector_angle(v0, v)

827 angle = math.pi + angle

828 angle = -angle /2.0

829
830 # Make a new point based on the second vector and the

calculated angle

831 lv = np.array(rotate_vector(v, angle))

832
833 width = start_width*widths [(i)] + end_width*widths[-(i)]

834
835 # Scale width to maintain the lane width at sharp angles

836 scaled_width = abs(width/np.sin(angle))

64

HD-Maps in Autonomous Driving

837 else:

838 # If the point is the first point , only use the next

point to calculate

839 lv = np.array([v[1], -v[0]])

840 scaled_width = end_width

841
842 # Move the new point correctly represent the road's width

843 l = scaled_width*lv/np.linalg.norm(lv)

844 if left:

845 lp = (p1[0] - l[0], p1[1] - l[1])

846 else:

847 lp = (p1[0] + l[0], p1[1] + l[1])

848
849 # Convert back to lat/long and append to the line

850 lp = utm.to_latlon(lp[0], lp[1], utmz["zone"], utmz["letter"

])

851 parallel.append(lp)

852
853 # If this is the last iteration , add a point for the final

point by using the two last points

854 if i == len(points) -2:

855 lv = np.array([-v[1], v[0]]) if left else np.array([v

[1], -v[0]])

856 lv = lv/np.linalg.norm(v)

857 l = start_width*lv/np.linalg.norm(lv)

858 lp = (p2[0] + l[0], p2[1] + l[1])

859
860 lp = utm.to_latlon(lp[0], lp[1], utmz["zone"], utmz["

letter"])

861 parallel.append(lp)

862
863 return parallel

864
865 def main():

866 global utmz

867
868 parser = argparse.ArgumentParser ()

869
870 parser.add_argument('file', help="Input filename")

871 parser.add_argument('-c', '--config ', help="Manually set lane

numbers and widths based on road names")

872 parser.add_argument('-z', '--zone', action="store", type=str ,

help="UTM zone , example: -z 32V")

873 parser.add_argument('-p', '--pretty ', action='store_true ', help=

"Prettify output")

874 parser.set_defaults(pretty=False)

65

HD-Maps in Autonomous Driving

875
876 args = parser.parse_args ()

877
878 if args.file:

879 filename = args.file

880
881 if args.zone:

882 try:

883 gz = args.zone

884 utmz["zone"] = int(gz[0: -1])

885 utmz["letter"] = str(gz[-1]).upper ()

886 utmz["full"] = gz

887
888 if utmz["zone"] > 60 or utmz["zone"] < 1:

889 raise ValueError("Zone number out of range , must be

between 1 and 60")

890
891 if not utmz["letter"]. isalpha () or utmz["letter"] in ["A

", "B", "Y", "Z"]:

892 raise ValueError("Zone letter out of range , must be

between C and X")

893
894 except (TypeError , ValueError) as e:

895 print("Erroneous UTM zone \"{}\" , using default \"{}\"."

.format(args.zone , utmz["full"]))

896
897 if args.config:

898 conf = read_config(args.config)

899 else:

900 conf = None

901 nodes , roads = readOSM(filename)

902 buildXML(filename , roads , args.pretty , conf)

903
904 if __name__ == "__main__":

905 main()

66

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lt

y
of

 In
fo

rm
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ri
ca

l
En

gi
ne

er
in

g
D

ep
ar

tm
en

t o
f C

om
pu

te
r

Sc
ie

nc
e

M
as

te
r’

s
th

es
is

Christoffer Wilhelm Gran

HD-Maps in Autonomous Driving

Master’s thesis in Computer Science
Supervisor: Frank Lindseth

June 2019

	Abstract
	Sammendrag
	Preface
	Contents
	List of Figures
	List of Tables
	Listings
	Introduction
	Background and motivation
	Research questions
	Contributions
	Theses outline

	Background
	HD-maps
	Existing HD-map solutions
	Techniques for HD-map generation
	HD-maps from sensor data
	HD-maps from available map data

	Apollo
	OpenDRIVE
	Roads
	Lanes
	Objects and signals

	Apollo OpenDRIVE
	Geometry
	Roads
	Road-record
	Lanes
	Road Objects and Signals
	Junctions
	Differences from OpenDRIVE

	Global Navigation Satellite System
	World Geodetic System
	Universal Transverse Mercator coordinate system

	Methodology
	Data source
	Data for road generation
	Available existing map data
	Recording sensor data
	Data source conclusion

	Map generation
	Information parsing
	Road generation
	Road connections and junctions

	Apollo OpenDRIVE
	Lanes and center lines
	Border types
	Sample Associations

	Pipe-line for map generation
	Data gathering
	Map generation
	Map conversion

	Results
	Map results
	Road lanes and width

	Discussion
	Generated maps
	Lanes
	Junctions
	Objects and Signals
	Performance
	Base data
	Reflection

	Conclusion
	Future work

	Bibliography
	Appendices
	road.py
	osm2od.py

