
A General Framework for
Multiparty Computations

Thesis for the degree of Philosophiae Doctor

Trondheim, May 2012

Norwegian University of Science and Technology
Faculty of Information Technology, Mathematics
and Electrical Engineering
Department of Telematics

Tord Ingolf Reistad

NTNU
Norwegian University of Science and Technology

Thesis for the degree of Philosophiae Doctor

Faculty of Information Technology, Mathematics and Electrical Engineering
Department of Telematics

© Tord Ingolf Reistad

ISBN 978-82-471-3572-3 (printed ver.)
ISBN 978-82-471-3573-0 (electronic ver.)
ISSN 1503-8181

Doctoral theses at NTNU, 2012:143

Printed by NTNU-trykk

Abstract

Multiparty computation is a computation between multiple players which
want to compute a common function based on private input. It was first
proposed over 20 years ago and has since matured into a well established
science. The goal of this thesis has been to develop efficient protocols for
different operations used in multiparty computation and to propose uses for
multiparty computation in real world systems. This thesis therefore gives the
reader an overview of multiparty computation from the simplest primitives
to the current state of software frameworks for multiparty computation, and
provides ideas for future applications.

Included in this thesis is a proposed model of multiparty computation based
on a model of communication complexity. This model provides a good foun-
dation for the included papers and for measuring the efficiency of multiparty
computation protocols. In addition to this model, a more practical approach
is also included, which examines different secret sharing schemes and how
they are used as building blocks for basic multiparty computation operations.
This thesis identifies five basic multiparty computation operations: sharing,
recombining, addition, multiplication and negation, and shows how these five
operations can be used to create more complex operations. In particular two
operations “less-than” and “bitwise decomposition” are examined in detail in
the included papers. “less-than” performs the “<” operator on two secret
shared values with a secret shared result and “bitwise decomposition” takes
a secret shared value and transforms it into a vector of secret shared bitwise
values.

The overall goal of this thesis has been to create efficient methods for mul-
tiparty computation so that it might be used for practical applications in the
future.

Preface

This thesis is submitted in partial fulfillment of the requirements of the
degree of philosophiae doctor (PhD) at the Norwegian University of Science
and Technology (NTNU). The PhD study was conducted from 2004 to 2012.
During this study period, I have been hosted by the the Department of Telem-
atics, NTNU, and I spent one year at the University of Aarhus, Department
of Computer Science. Academically, the PhD study was conducted through
the Department of Telematics, NTNU, and has been supervised by Professor
Stig Frode Mjølsnes.

The document and included papers have been formatted in LATEX using a
modified version of the document class kapproc.cls provided by Kluwer Aca-
demic Publishers.

vi

Acknowledgements

First of all I would like to dedicate this thesis to Karl Steffen Reistad, my
brother who did not live to see this thesis finished. His life was cut short by
a falling rock.

Writing a thesis is not an easy task. First you have to come up with novel
ideas. Then those ideas have to be written down and published. While get-
ting the ideas might be hard for some, it has not been my problem since I got
interested and gained an understanding of multiparty computation. My prob-
lem has been to write those ideas down and get them into a form such that
they can be published. Writing has never been my strong suit and Writer’s
block, procrastination and Internet surfing have stood by me trying to delay
me every time I tried to write something. Thus it has taken me over 8 years
from starting my Ph.D. work to submitting a finished thesis.

The Ph.D. was started on 1st of January 2004 and the papers included in
the second chapter where written in the years 2005 to 2009. The introduction
chapter in this thesis was started some time in 2008, but writing it was going
slowly as I was trying to develop a working multiparty computation program
at the same time. This project has gone through multiple iterations, but is
still not finished. I stopped working on the thesis from the start of 2010 until
the summer of 2011 because I got a job. This therefore proves that for me it
is impossible to finish a Ph.D. and work full time at the same time. The only
reason I could finish is that my employer Difi (Agency for Public Management
and eGovernment) gave me the opportunity to take some time off in 2011 to
finish writing the introduction to this this thesis. For this I would like to thank
Difi and Tor Alvik. The introduction chapter was written in collaboration with
my advisor Stig F. Mjølsnes, who helped me structure the introduction and
gave a very thorough examination of the finished product. I would also like to
thank Karin Holt and Harald for proofreading the introduction. The papers
have not been proofread, therefore they are presented as they where published.

I am grateful for the support of many people and for their tireless encour-
agement in trying to get me to finish this Ph.D. thesis. Without their support
this thesis would not have been written, in particular this includes my parents
Alis and Ole Reistad, my advisor Stig Frode Mjølsnes and my fiancé Anlaug
Landfald. I would also like to thank the great group of people I worked with
in Aarhus, Denmark who gave me the inspiration for much of this thesis, in

viii

particular Tomas Toft who I worked closely with. I would also like to thank
my co-workers at the department of Telematics.

I would like to thank my friends in the gaming group a.k.a. rollespillgjengen
Tord(T̊ard), Stein, Harald, Finn Olav, Pernille, Morten, Rune, Jardar and
Anders. You have been the greatest friends I know, and we have been through
some great adventures together. I would also like to thank Kjetil for his
support.

To all those not mentioned by name, and all other friends and family, you
are not forgotten. It is just that I am not good with names and it is difficult
to start naming all the people you want to thank and not leave anyone out.

Contents

Abstract iii

Preface v

Acknowledgements vii

Part I Thesis Introduction
1 Introduction 3

1.1 Motivation 3
1.2 Technology and Applications 4
1.3 The Problem 5
1.4 The Structure of the Thesis 7

2 The Communication Model 7
2.1 Introduction 7
2.2 Notation 8
2.3 Communication Complexity 8
2.4 Multiple Players 10
2.5 Modeling Information Sharing 13
2.6 Further Refinements 15

3 Secret Sharing Schemes 15
3.1 Introduction 15
3.2 Definitions 16
3.3 Additive Secret Sharing Scheme 18
3.4 Shamir’s Secret Sharing Scheme 19
3.5 Paillier Cryptosystem 20
3.6 Changing Secret Sharing Scheme 22

4 Multiparty Computation 24
4.1 Introduction 24
4.2 Adversaries 25
4.3 Additive and Shamir’s Secret Sharing Schemes 25
4.4 Paillier Cryptosystem 27
4.5 Fully Homomorphic Cryptosystem 29
4.6 Optimizing Multiparty Computation 31

5 A Complete Set of Operations 32
6 Software Frameworks for Multiparty Computations 36

6.1 Frameworks 36
6.2 Simulated Integer Arithmetics 38
6.3 Multiparty Coordination 38
6.4 Basic Operations 39
6.5 Additional Operations 40

7 Summary of Papers 40
7.1 The Starting Point 41
7.2 The Thesis Papers 41
7.3 Paper A 42
7.4 Paper B 42

x

7.5 Paper C 43
7.6 Paper D 43
7.7 Paper E 43
7.8 Paper F 44

Bibliography 45

Part II Included Papers

Paper A: Multi-party Secure Position Determination 53
Tord Ingolf Reistad

1 Introduction 53
1.1 Related work 54

2 Model 54
3 Notation 54
4 Multi-party computation 55
5 Position calculations 56

5.1 One-dimensional calculations 56
5.2 The 2-dimensional case 56

6 Conclusion and future work 57
6.1 Acknowledgments 58

Bibliography 59

Paper B: Secret Sharing Comparison by Transformation and Rotation 63
Tord Ingolf Reistad, Tomas Toft

1 Introduction 63
2 Preliminaries 65
3 Simple Primitives 66
4 A High-level View of Comparison 68
5 The DGK Comparison Protocol 69
6 Creating Random Bitwise Shared Values 69
7 Avoiding Information Leaks 70
8 Shifting Bits 71
9 Shifting the Sums of Xor’s 72
10 Overall Analysis and Optimizations 73

Bibliography 75

Paper C: Multiparty Comparison, An improved multiparty protocol for compari-
son of secret-shared values 79

Tord Ingolf Reistad
1 INTRODUCTION 79
2 RELATED WORK 80
3 MODEL 81
4 SIMPLE PRIMITIVES 83
5 THE COMPARISON PROTOCOL 84

5.1 First Transformation 85
5.2 Computing X 85
5.3 Extracting the Least Significant Bit 86

Contents xi

6 CONCLUSION AND FURTHER WORK 87

Bibliography 89

Paper D: Realizing Distributed RSA Key Generation using VIFF 93
Atle Mauland, Tord Ingolf Reistad, Stig Frode Mjølsnes

1 Introduction 93
2 The Distributed RSA Protocol 95

2.1 The Distributed Protocol 95
3 Improvements 99
4 The Virtual Ideal Functionality Framework 100
5 Performance Testing 101

5.1 Equipment 101
5.2 Key Generation 101

6 Conclusion and Further Work 105
6.1 Acknowledgment 107

Bibliography 109

Paper E: Internet Voting using Multiparty Computations 113
Md. Abdul Based, Tord Ingolf Reistad, Stig Frode Mjølsnes

1 Introduction 113
2 Background and Related Work 115
3 Roles in the System 116
4 Communication Model 117
5 Protocols 117

5.1 Registration 117
5.2 Voting 118
5.3 Sending the Ballot Batch to the MPC Talliers 119
5.4 Counting the Votes 119

6 Security Analysis 120
7 Limitations 123
8 Conclusions and Future Work 124

Bibliography 125

Paper F: Linear Constant-rounds Bit-decomposition 129
Tord Ingolf Reistad, Tomas Toft

1 Introduction 129
2 Secure Arithmetic – Notation and Primitives 131

2.1 The Arithmetic Black-box 131
2.2 Complex Primitives 132

3 The Postfix Comparison Problem 134
4 The New Constant-rounds Solution 134

4.1 The Modified Comparison of [Rei] 135
4.2 Solving the PFCP with the Modified Comparison 136
4.3 Performing Bit-decomposition 137

5 Active Security 138
6 Conclusion 139

xii

Bibliography 141

xiii

Publications Included in the Thesis

PAPER A:
Tord Ingolf Reistad Multi-party Secure Position Determination At Norsk
informatikkonferanse 2006 (NIK 06) Molde, Norway, November 20-22,
2006.

PAPER B:
Tord Ingolf Reistad and Tomas Toft Secret Sharing Comparison by
Transformation and Rotation In ICITS (International Conference
on Information Theoretic Security) 2007, LNCS (Lecture Notes in
Computer Science) 4883. Madrid, Spain, May 25-28, 2007.

PAPER C:
Tord Ingolf Reistad Multiparty comparison, An improved multiparty pro-
tocol for comparison of secret-shared values In Proceedings of SECRYPT
2009, International conference on security and cryptography. Milano,
Italy. July 6-10, 2009.

PAPER D:
Atle Mauland, Tord Ingolf Reistad, Stig Frode Mjølsnes Realizing
Distributed RSA Key Generation using VIFF At NISK (Norsk Infor-
masjonssikkerhetskonferanse) 2009. Trondheim, Norway, November
24-25, 2009.

PAPER E:
Md. Abdul Based, Tord Ingolf Reistad, Stig Frode Mjølsnes Internet
Voting using Multiparty Computations At NISK (Norsk Informasjon-
ssikkerhetskonferanse) 2009. Trondheim, Norway, November 24-25,
2009.

PAPER F:
Tord Ingolf Reistad and Tomas Toft Linear, constant rounds Bit-
decomposition At ICISC (International Conference on Information
Theoretic Security) 2009. Shizuoka, Japan, December 3-6, 2009.

I

THESIS INTRODUCTION

1. Introduction

1.1 Motivation

This thesis covers the topic of secure multiparty computation which is here-
after referred to as multiparty computation. One example of multiparty com-
putation is to imagine a group of millionaires who want to find out which
person among them is the richest, but being millionaires they do not want
to reveal exactly how rich they are. This problem is called the “millionaire
problem” and was suggested by Yao in 1982 [Yao82]. While this problem
might seem unsolvable as it is impossible to compute a function based on
input which is kept secret, this problem can be solved using multiparty com-
putation. Which ensures that the millionaires do not reveal how rich they are
to each other while at the same time allowing them to determine which person
is the richest.

Another example; imagine a group of investors that have ten projects (in-
vestment opportunities) that they can fund. The investors also know that
they only have resources to fund and oversee three projects. Each investor
has his own ideas about how good the project is and how much he wants to
invest in that project, but he does not want to reveal this information to his
fellow investors for various reasons. First the group of investors determine the
objective parameters and the formulas for which the projects are worth fund-
ing. Then each investor can rate each project according to those parameters
which have already been set up. The group can hire a lawyer or other trusted
third-party to do the calculations. The lawyer will then gather confidential
information from all investors about how they have rated each project. Apply
a formula on the information to compute a set of results, then the lawyer will
convey the results to the group of investors. Afterwards the lawyer destroys all
the confidential information so the information cannot be misused. Alterna-
tively, the investors can use multiparty computations achieve the same result.
Thus avoiding the need to hire a lawyer and trusting that lawyer with the
private information. Multiparty computation can in this context be thought
of as a virtual trusted third-party.

Any calculations computed on private input cannot be totally secure, for
example a lawyer can be bribed or coerced into revealing private information
or can modify the calculations. If the lawyer modified the calculations in
the previous example this could change which projects are funded or how the
projects are funded. Also since the calculations were done based on private
information it would be very difficult to detect such modifications. The same
is the case with multiparty computation where some players (investors or
millionaires) in the group could work together to reveal or modify information.
How difficult it is to reveal or modify information depends upon the particulars
surrounding each multiparty computation, for example, which secret sharing
scheme is used, if input is verified, if the channels between players is encrypted,
etc. It can therefore take as little as one player to modify the information, while

4

with other protocols, it might require all players to perform the calculations
flawlessly in order for any of them to get any results. Typically one third or
half of the players would have to collude for them to gain any information
about the other players private information.

In general, the method of multiparty computations can be expressed as the
method whereby a group of players can compute some common agreed upon
function with private information as input. Information is here defined as a set
consisting of data (or values) and something that gives the data meaning. For
example, the number “8” is only data, but when the number “8” refers to the
number of years it took me to write this thesis then that number has a meaning
and is relevant information. Private information is pieces of information that
is usually only known by one player (or to a set of players) but not to all
players. Multiparty computation is accomplished by the players sharing data
that represent the different pieces of information without sharing the actual
data.

For example the number “8” could be shared to two players by giving one
player the number “1” and the other player the number “7”. Then neither
player has the actual data (8), but each player has a representation of the data
(1 and 7), and together the two representations can be added together to find
the actual data (1 + 7 = 8).

1.2 Technology and Applications

Currently, the notion of multiparty computations is moving from a purely
theoretical construct to technology that can be applied to practical problems.
The first large scale practical application of multiparty computation was a
double blind sugar bead auction in Denmark [BCD+08], but the possibilities
for where multiparty computation could be used is almost limitless.

Here are some examples where multiparty computation could be used:

Financial markets are prone to catastrophic collapse. Presently this is
due to a high degree of interconnection in the financial markets, lack of
transparency and agreements that are often structured to fail under the
same conditions. These catastrophic collapses could possibly be avoided
and it would be beneficial for the financial system as a whole if the overall
stability of the system could be calculated and common vulnerabilities
could be identified.

Due to privacy laws, financial institutions in Norway cannot share data
about individuals. Therefore each financial institution must evaluate
individuals based on historical information about income and net worth
for each person. While this information gives some indication about how
creditworthy the individual is, the individual can present the same set
of facts to many financial institutions and get lines of credit that could
put that individual in an unsustainable financial situation. Multiparty
computations could then be used to identify individuals which are in

5

financial distress or at risk of a default, thereby solving the financial
situation before it becomes unsustainable.

The original setting for multiparty computations was the “millionaire
problem” where two or more millionaires wanted to see who was the
richest without revealing how rich they are [Yao82]. In the same genre
of problems is a set of companies that want to optimize some production
parameters, based on internal prices that they do not want to reveal.
[Tof09]

Electronic voting could also benefit from using multiparty computation
for tallying the number of votes that are cast. By distributing the tally-
ing process the voters will not have to trust a single centralized computer
system, but can instead trust a group of computers controlled by differ-
ent political parties which together compute the tally. This is somewhat
analogous to paper voting where the tallying process is distributed, as
each district or polling station tallies the votes locally before sending
the sum of votes to a central system. Therefore polling fraud both at
the local level and at the central system would be easier to detect. The
current state of electronic voting can be compared to a system for paper
voting where all polling stations would pack all the votes into a black
box and ship that box off to a central tallying system. Such a system
would in addition to being slow also be viewed as less secure.

Ad-hoc networks and sensor networks are well suited for multiparty com-
putations. These networks operate without any central controls. Each
node has to cooperate with other nodes to route packets through the
network and ensure that the network works efficiently. There are sev-
eral potential routing algorithms in ad-hoc networks, each with its own
strengths and weaknesses. But most of these routing algorithms work on
the premise that all nodes share information about themselves and the
rest of the network freely and correctly. If such free flow of information
is not possible, then multiparty computation could be used facilitate
computations based on private information without releasing that infor-
mation. Multiparty computation could also add features to an ad-hoc
network that are not present in current protocols, such as sending and
receiving packages without knowing which node it originates from and
where it is going to be transmitted.

1.3 The Problem

1.3.1 Practice

Multiparty computations have many properties which could be beneficial
to real world applications, but thus far there has been little adoption of the
technology in practice. The challenges faced by this technology are technical,
organizational and conceptual in nature.

6

From a technical standpoint, there are two main roadblocks. The first
roadblock is one of efficiency. For example the VIFF framework [Tea09] can
compute about 1800 multiplications per second or about 8 comparisons per
second. (Measurements done by Martin Geisler in 2009.) The Sharemind
framework [oTCa] is more efficient with 100,000-800,000 operations per second
[Cyb], this is comparable to typical computer performance of the 1980s. The
second technical roadblock is to get useful standard software platforms so
that the basic multiparty protocols do not have to be rewritten for each new
implementation. This is discussed further in Section 6.

The conceptual challenge is that it is difficult for people that have not
worked with multiparty computation to understand the concept and trust that
this technology works. Multiparty computation is somewhat counterintuitive,
as it is a system for computing with seemingly random information that gets
useful results. The players which are willing to share private information
using multiparty computation are asked to trust the group as a whole, or a
sufficiently large subgroup, but at the same time, distrust any other player.
It is also very difficult to hold someone accountable if something goes wrong
unless it is built into the protocols from the very beginning.

The third challenge is organizational and is linked with the conceptual chal-
lenge. There has to be a minimum number of players for multiparty computa-
tions to work. Convincing one organization to use multiparty computation is
therefore not enough, there has to be at least two or three organizations that
are willing to use this technology before the multiparty setting can be reached.

1.3.2 Technical

My motivation for working on this topic is that the basic operations in
multiparty computation and the basic models are now well understood, but
the question of finding more efficient protocols for more complicated opera-
tions and building blocks is still an open research question. We are beginning
to find good, efficient protocols for more complicated operations, but there
is still much room for improvement. Therefore it is an interesting field to
work on. The challenges of finding improvements or new applications is part
mathematical, part computer science, and part security awareness.

My research presented in this thesis has focussed on the question of efficient
implementation of multiparty computation. In particular, the research results
are centered around the “greater than” and “bit-decomposition” operation.
The reason for choosing these operations in particular was that efficient algo-
rithms for some of the basic operations already existed when the papers where
written, making further improvements on these operations difficult to achieve.
Other more complex operations, such as “division” were too difficult to make
progress on. Making the two operations “‘less-than” and “bit-decomposition”
was ripe for further development. Progress on these operations can hopefully
in turn be used to achieve results with more complex operations.

7

1.3.3 Context and Scope

The work has been mostly theoretical as the largest improvements will come
from faster algorithms. Although many of the ideas have been formulated
by using Shamir’s secret sharing scheme, it has also been a goal to make
the protocols independent of any particular secret sharing scheme so that
they can be useful for most secret sharing schemes. My research has not
delved into specific secret sharing schemes, but rather has focused on making
improvements that can be applied to many secret sharing schemes.

1.4 The Structure of the Thesis

This section provides an introduction to multiparty computation and the
motivation for working with multiparty computation. Section 2 examines a
model for multiparty computation based on communication complexity. Sec-
tion 3 examines three of the most popular secret sharing schemes. Section
4 shows how multiparty computations can be achieved with secret sharing
schemes. The section also gives an overview of a fully homomorphic encryp-
tion scheme. Section 6 examines currently available software frameworks for
computing multiparty computations. Finally, Section 7 provides an overview
of the papers included in part two of this thesis.

2. The Communication Model

2.1 Introduction

This section presents a communication model for multiparty computations.
The model will be based on the definitions of communication complexity by
Yao [Yao79]. The multiparty communication model will be generalized from
Yao’s two party model to a model for three parties or more, and include secret
sharing computation.

The security properties of the protocols based on this model are derived
from the security properties of the underlying secret sharing schemes and mul-
tiparty operations, without limiting the model to any specific secret sharing
scheme. The weakness of such a model is that although it gives a good un-
derstanding of the communication involved, it provides very little information
about the security properties of secret sharing and multiparty computation.
Other models have been proposed, such as Toft and Thorbek [Tof07, Tho09],
which are based on the universal composability framework [Can01].

The model presented here can be used as a basis to understand the round
and multiplication costs which are used in paper B, C and F. The emphasis
has been put on proving the efficiency of the proposed protocols, rather than
to give rigorous proofs of the security of the protocols. This has been done to
view multiparty computation from a more practical approach as opposed to a
pure mathematical approach.

8

2.2 Notation

The following notation will be used:

There are n players, they are labeled P1, P2, . . . , Pn.

The function f is a function from the domain of inputs X to the range
of outputs Y , f : X → Y also expressed as y = f(x)

Let x be an element in the domain X , and y be an element in the range Y .
The domain X can be considered a Cartesian product of multiple sets,
hence an element x becomes an ordered tuplet of values. The function
f can therefore also be written as y = f(x1, x2, . . . , xn). Likewise, the
range of the function can be considered a Cartesian product from mul-
tiple sets, hence in general we write (y1, y2, . . . , yn) = f(x1, x2, . . . , xn),
where n corresponds to the number of players.

Player Pi, where i ∈ {1, . . . , n}, has inputs from the domain Xi, such
that X1 ×X2 × . . .×Xn = X .

All players P1, P2, . . .Pn may receive the same output Y . However, the
model also allows each player to receive different outputs, so that the
player Pi, where i ∈ {1, . . . , n}, will receive output from the range Yi,
where the constraint is that Y1 × Y2 × . . .× Yn = Y .

The domains and ranges can be represented using bits, thus
Xi ∈ {0, 1}mxi and Yi ∈ {0, 1}myi, where mxi,∈ N, myi,∈ N and
i ∈ {1, . . . , n}.

P denotes the protocol between the players.

The communication complexity for the function f implemented by the
most efficient protocol P is denoted by D(f).

2.3 Communication Complexity

Ref. [KN06] describes the general communication problem as:

A system must perform some task that depends on information distributed
among the different parts of the system (called processors, parties, or players).
The players thus need to communicate with each other in order to perform the
task.

The notion of communication complexity was first introduced by Yao in
1979 [Yao79] as a model with two players with the following assumptions:

Each player in the system gets a fixed part of the input information.

The only resource of interest is communication.

The task performed is the computation of some pre-specified function of
the input.

9

Since the model is only interested in the amount of communication be-
tween the players, it is assumed that unless otherwise stated the players have
unlimited computational power. The communication between the players is
performed according to some fixed pre-defined protocol P which computes the
function f by sending messages between the players until the value y ∈ Y can
be determined uniquely.

The cost of a protocol P is the worst case number of bits communicated
between the players. There are many ways to formalize this notion of cost.
One approach is to formalize it from the players’ point of view. This thesis
will instead formalize it from the protocol designers’ point of view. This leads
us to the following definition from [KN06]:

Definition 1. A protocol P over domain X1 × X2 with range Y is a binary
tree where each internal node v is labeled either by a function av : X1 → {0, 1}
or by a function bv : X2 → {0, 1}, and each leaf is labeled with an element
y ∈ Y .

The value of the protocol P on input (x1, x2) is the label of the leaf reached
by starting from the root, and walking on the tree. At each internal node v
labeled by av walking left if av(x1) = 0 and right if av(x1) = 1, and at each
internal node labeled by bv walking left if bv(x2) = 0 and right if bv(x2) = 1.
The cost of the protocol P on input (x1, x2) is the length of the path taken on
input (x1, x2). The cost of the protocol P is the height of the tree.

The communication complexity of f is then defined as:

Definition 2. For a function f : X1 × X2 → Y the deterministic commu-
nication complexity of f is the minimum cost of P , over all protocols P that
compute f . This is denoted by D(f).

From these definitions we can say that for two players P1 and P2, P1 “knows”
the value x1 ∈ X1 and P2 “knows” x2 ∈ X2. To be more specific, P1 “knows”
the value x1 ∈ X1 means that P1 has absolute knowledge of the bits used to
represent x1 and when information from the domain X1 is communicated to
the other player then only P1 is allowed to supply this information. Player P2

does not “know” the value x1 that means that the player P2 does not have
absolute knowledge of the bits representing x1 and cannot use any probability
functions to estimate the value x1, but most wait for player P1 to communi-
cate information about the value x1 as the function is deterministic and both
players must arrive at the same result.

For two players, the set of bits representing the domains X1 and X2 must
be disjoint sets, because if there was some overlap between the domains X1

and X2 then that information would be common knowledge for both players
and need not be communicated, therefore such overlapping information can
be removed from the input domains.

Using this model we can see that a simple protocol is for player P1 to send
x1 to P2 and for player P2 to send x2 to P1. Both players can then compute

10

y = f(x1, x2). This leads to the following equation:

D(f) ≤ log2|X1|+ log2|X2| (1)

The definition for communication complexity is limited to the number of
bits being sent. In practice, there are multiple reasons to limit the number
of interactions between the players. For example computer protocols incur a
substantial overhead cost for each message sent. The number of interactions
can be modeled by defining rounds of communication.

Definition 3. A k round protocol is a protocol where the players send k mes-
sages to each other before determining the output. This is denoted Dk(f),
which is the best k round protocol for f .

With this definition, the simple protocol where P1 sends x1 to P2 and P2

sends x2 to P1 is a two round protocol. This is also a lower bound for the
number of rounds. (Note that this definition differs from the definition in
[KN06].)

2.4 Multiple Players

The two player model examined so far can be expanded to multiple players.
When the model is expanded to n players P1, P2, . . . , Pn, where n > 2, both
how the input domain X is distributed and the communication model between
players becomes more complex.

For two players the input domain X is split into two domains X1 and X2,
therefore for n players the domain X is split in into n domains X1, X2, . . . , Xn.
But while the sets of bits representing X1 and X2 where disjoint for two
players, this is not generally the case for three or more players. In fact the
only requirement for how the domain X is split for multiple players is that no
single bit of the input domain is “known” to all players and all bits representing
the input domain is “known” to at least one player. Therefore there might be
bits of information “known” to only one player, bits of information “known”
to a subset of players or bits of information “known” to all players except one.

Communication between two players is simple when each player can only
communicate with one other player. For three or more players the commu-
nication becomes more difficult as each player has a range of options when
sending a message. In general there are three modes of communication:

Point-to-point - This corresponds to sending a message to a single player.

Multicast - This corresponds to sending a message to set of players.

Broadcast - This corresponds to sending a message to all players.

Different networks support different modes of communication. For exam-
ple, in a wireless network it is only possible to use broadcasting of messages
to all players within range. In a TCP/IP network the mode of communication

11

is point-to-point communication, with some support for multi-cast commu-
nication. In [KN06] they use a broadcast model for communication between
players and a “number on the forehead” model is used for distributing the
input domain. That means that the player Pi will “know” all bits of the input
domain X except the bits representing input xi. This definition is not very
useful for multiparty computation, because in multiparty communication each
player will try to keep as much information as possible private and will only
share information from the input domain with other players in such a way
that no information about the input is revealed. Therefore it is likely that the
bits representing each player’s input domain is unique.

If two (or more) players “know” some information, then both players should
have to contribute the same information. This enables all players to compare
these two inputs and to verify that both players have communicated the same
value. This comparison keeps both players honest, because if the two inputs
where not equal then one of the players had given an incorrect input value.

In many cases a secret sharing scheme is used to share input in such a way
that no information about the input is revealed. It is then important that
communication among players is private. In practice, multiparty communi-
cation will be performed using TCP/IP networks. Therefore communication
is best modeled using point-to-point communication, as this will correspond
closest to how communication is done in the real world. On the other hand,
it is not important to model other aspects of TCP/IP networks such as delay,
packet size, packet loss, packet ordering, etc. The model assumes that there
are error free private channels between each set of players.

Therefore communication between multiple players in this model can be
summarized using the following definition:

Definition 4. For n players the input domain X will be split into n domains
labeled X1, X2, . . . , Xn. This split is done in such a way that player Pi only
“knows” xi ∈ Xi, where i ∈ {1, . . . , n}. Each player can only communicate
with other players using point-to-point communication over an error free pri-
vate channel.

Using the definition above we see that for example using four players
P1, P2, P3 and P4. If player P1 communicated one bit of information to player
P2 and player P3 communicated one bit of information to player P4, then two
bits of information was communicated. In the real world this communication
could be done in parallel, to represent this in the model, the concept of time
and parallel communication is introduced into the model.

Definition 5. One bit of information can be communicated between one pair
of players using one unit of time. Communication can be done in parallel
between all pairs of players at the same time.

For example if all n players sends r-bits of information to all n − 1 other
players then n(n−1)r-bits of information is communicated, but only r units of

12

time is used. Each player is therefore assumed to have n− 1 private channels
to all other players (and one private channel to and from itself).

To make the definition for multiple players complete, the definition for the
protocol will have to be expanded to n players. Because the model uses point-
to-point communication and not broadcast communication, each player will
have an independent binary tree. Also the cost of the protocol is the height
of the highest tree.

Definition 6. A protocol P over domain X1 × X2 × · · · × Xn with range
Y is a binary tree where each internal node v is labeled by of the functions
a1v : X1 → {0, 1}, a2v : X1 → {0, 1}, . . . or anv : X1 → {0, 1}, and each leaf
is labeled with an element y ∈ Y .

The value of the protocol P on input (x1, x2, . . . , xn) is the label of the leaf
reached by starting from the root, and walking on the tree. At each internal
node v labeled by a1v walking left if a1v(x1) = 0 and right if a1v(x1) = 1, and
at each internal node labeled by a2v walking left if a2v(x2) = 0 and right if
a2v(x2) = 1. The cost of the protocol P on input (x1, x2, . . . , xn) is the length
of the path taken on input (x1, x2, . . . , xn). The cost of the protocol P is the
height of the tree.

The definition for communication complexity is unchanged for n players
when n > 2, except that the input changes from X1×X2 to X1×X2×· · ·×Xn.

The definition of rounds of communication will also changed for n players
when n > 2, because of the introduction of point-to-point communication and
to include the concept of time.

Definition 7. A k round protocol is a protocol where players send k messages
to each other before determining the output. In each round all communication
between pairs of players can be done in parallel, but all internal computations
can only be done between rounds. The k-round protocol is denoted Dk(f),
which is the best k round protocol for f .

The simplest protocol is now for player P1 to send x1 to Pn, P2 to send xn

to Pn and so on. Pn can then compute y = f(x1, x2, . . . , xn) and send y back
to all players. We therefore have that

D(f) ≤ log2|X1|+ log2|X2|+ · · ·+ log2|Xn−1|+ (n− 1)log2|Y | (2)

The time used to for this communication is

T ≤ max(log2|X1|, log2|X2|, . . . , log2|Xn−1|) + log2|Y | (3)

This is a two round protocol, as the first round is used for all players to send
information to Pn and the next round is used for player Pn to send information
to all other players. The current model for multiple players also allows for the
possibility of a one round protocol. This consists of all players sending their
input to all other players in parallel. After all players have received all input

13

then each player individually can compute y = f(x1, x2, . . . , xn). This differs
from the two party model because communication between two players can
now go simultaneous in both directions.

2.5 Modeling Information Sharing

One of the key ideas in secret sharing and homomorphic cryptography is
that each player’s input is kept private from all other players. This idea stands
in stark contrast to communication complexity where all input is shared freely
between the players. In order to model secret sharing, the model will have
to reflect the fact that the input is kept secret. This is done by examining
how secret sharing schemes and homomorphic cryptography keeps the input
private, without going into the details of each individual scheme. Readers
who are not familiar with secret sharing and homomorphic encryption can
read Section 3 for more details.

Informally one could say that the input is kept private by “mixing” it with
random values, until the information that is sent to the other players looks
completely random. A more formal explanation is that each player uses a
function. This function takes the information that is going to be sent to the
other players and some random information as input. The output of the func-
tion is a set of shares where each player gets one share. The output should
be such that each share is either completely random or a value statistically
indistinguishable from a random value, so that each player might not learn
anything about the original input. In secret sharing, each share is a different
value and only certain sets of players can reconstruct the original information,
while in homomorphic cryptography all shares are the same value and only
the player(s) who know the private key can reconstruct the original informa-
tion. When information is shared using functions that are not information
theoretically secure the players do not have unlimited computational power.
For example when information is shared using homomorphic cryptography,
the assumption is that the players cannot decrypt the encrypted information.

The input domains Xi and output range Y have be represented using bits.
The model will now shift from focusing on individual bits and will instead
focus on variables. This leads to the following definition:

Definition 8. Player Pi only “knows” xi ∈ Xi, Xi can be represented as a set
of variables VXi and xi can be represented as vXi ∈ VXi for all i ∈ {1, . . . , n}.

Instead of all players computing a common output Y , each player now
only gets its predefined set of output variables and this leads to the following
definition:

Definition 9. The range of output Y is spilt into n ranges such that Y =
Y1 × Y2,× . . .× Yn. When the protocol is finished player Yi will only “know”
yi ∈ Yi. Yi can be represented as a set of variables VY i and yi can be represented
as vyi ∈ VY i for all i ∈ {1, . . . , n}.

14

The input is kept secret, therefore each variable is converted to a set of
shares and only the shares are sent to other players. The following four as-
sumptions are being made about shares:

All shares are assumed to be of the same length (l-bits long).

One variable is converted to n shares, and each player receives one share
for each variable.

A player that wants to convert a set of shares into an output variable
will need one share from each player (for a total of n shares).

When a player sends a share to himself/herself, this costs l-bits of com-
munication.

Without going into details, the first and second assumptions are true for
many secret sharing schemes. The third assumption that all shares are needed
to convert shares to output variables is true for some secret sharing scheme,
but in general, an output variable can be computed once a threshold number
of shares are received. On the other hand, a player who is going to reveal
an output variable will want to receive shares from all players, so that it can
discover if one of the players is cheating or sending false information. The
fourth assumption challenges breaks one of the original assumptions: The
assumption that only communication between players is counted. The reason
for including this fourth assumption is that it keeps the model more inline with
the included papers. It also eases the calculations when it comes to computing
communication cost.

A function f converts the input domain into the output range. When
information is communicated between the players, the computations involved
in computing the function f are called multiparty computation. Although the
function f can be expressed using all kinds of operations, only a limited set
of basic operations are available in multiparty computations. Therefore the
function f must be expressed using a more limited set of basic operations.
The following assumptions are made about which basic operations exist and
their associated cost:

The basic operations are sharing a variable, revealing a shared variable,
addition, multiplication and negation.

The cost of sharing a variable and revealing a shared variable is nl-bits
and cost one round of communication.

There is no communication cost associated with addition, negation or
scalar multiplication (multiplication with a fixed value). These opera-
tions do not require communication between the players.

The communication cost of multiplying two shared variables is equal to
each player sharing one input variable.

15

Given these definitions and assumptions, we see that the communication
costs of sharing an input variable or revealing an output variable is nl-bits and
cost one round of communication. The communication cost of multiplying two
shared variables is equal to n(nl) = n2l-bits of communication and one round
of communication.

The operations of sharing, revealing or multiplying shares variables can be
done in parallel, within the same round of communication as long as there is
no need to do internal computations on the shares.

2.6 Further Refinements

Thus far the model provides a basic framework for modeling the amount
of communication used for multiparty computations. As multiparty compu-
tation is communication intensive, it is important to find optimizations that
can improve the efficiency of multiparty computations. One refinement that
can be done with the current model is to split the players into three groups
corresponding to the three phases in multiparty computation.

One group of players contribute with input, one group compute the function
f and one group get some part of the output. A player must be part of at
least one group, but might not be part of all groups. As the amount of
communication depends upon the number of players computing the function
f , it is important to make this group of players as small as possible. On the
other hand fewer players in the computation phase might affect the security
negatively. The security of each secret sharing scheme will be examined in the
next section.

3. Secret Sharing Schemes

3.1 Introduction

This section will examine secret sharing schemes in more detail, by first
giving an overview over what secret sharing is and some of the mathematical
definitions proposed. Then three secret sharing schemes will be examined in
more detail. These three secret sharing schemes will then be used again in the
next section to show how they are useful for multiparty computation. This
section will also describe homomorphic encryption.

Imagine a vault containing some secret value. The vault is locked, not with
one key, but with a set of keys in such a way that a certain subset of the
keys are needed to unlock the vault. What complicates this illustration is that
the keys are also part of the original vault, since the keys are made based
on the secret value. Another way to view secret sharing schemes is to think
of a function that takes some input value x and splits it into a set of shares
(values) {x1, x2, . . . , xn}, such that each individual share is (almost) a random
value. In addition to the function that splits the value into shares, there is
also the inverse function, i.e. given some subset of shares the inverse function
can reconstruct the original value.

16

When discussing secret sharing schemes, one often comes across the role of
a dealer. A dealer is someone who has some secret input, but will not take
part in the multiparty computations. When using a dealer, the dealer takes
some secret value and splits that value into a set of shares. The dealer then
gives each player one share. The dealer has a role only when sharing values
and not when recombining shares. The dealer will always be one of the players
in this thesis.

Using secret sharing for multiparty computation works out nicely when
there are three or more players, but when there are only two players there is
the problem that revealing one share of information can lead to leaking all
of the secret information. This comes from the fact that if there are only
two players then the function y = f(x1, x2) consists of only one unknown
value for each player, so the equation can be solved. Therefore, in the case
where there are only two players, we use homomorphic encryption instead of
a secret sharing scheme. The roles of the two players can then be defined so
that one player arranges the calculations and the other player performs as a
multiplication and decryption oracle.

Many secret sharing and homomorphic encryption schemes have been pro-
posed: additive secret sharing, Shamir’s secret sharing scheme [Sha79], hier-
archal secret sharing schemes [FP09], LISS [DT06], the Paillier cryptosystem
[DJ01], replicated secret sharing, DNF-based secret sharing, among others.
This thesis will examine the additive secret sharing, Shamir’s secret sharing
scheme, and the Paillier cryptosystem in more detail. These three are chosen
because they are easy to understand and to implement. This gives the reader
an easy transition from the theoretical ideas behind secret sharing to practical
applications that computers can run.

3.2 Definitions

There are many kinds of security properties of a secret sharing scheme. The
overall goal of a secret sharing scheme is to make it difficult to reconstruct the
original value without authorized involvement.

One way of categorize the security of a secret sharing scheme is to relate it
to the computational power of the adversary. For example, a scheme can be
categorized according to how difficult it would be for an adversary to recon-
struct the original value using only one share. The following three categories
are based on the categories in [KLR06].

Perfect security This category requires that a share cannot be distinguished
from a random value. Therefore even a computationally unbounded
adversary cannot compute the original value.

Statistical security This category requires that a share is statistically in-
distinguishable from a random value. It should be computationally too
costly for the adversary to collect enough different shares of the same
value to compute the original value with some non-negligible probability.

17

Cryptographic security The share is an encryption of the original value.
The security in this category relies on the assumed hardness of the un-
derlying computational problem used for encryption. The adversary is
therefore restricted to running in some probabilistic polynomial-time al-
gorithm.

Another way to categorize the security of secret sharing schemes is to see
which subsets of players can reveal the information and which players cannot
reveal the information contained in the secret sharing scheme. All subsets of
the set of all players are labeled either as a qualified or a forbidden set, with
the following definitions:

Definition 10. An input value s is split into shares using some secret sharing
scheme. A qualified set is a set of players that are allowed to reconstruct the
value s based on their shares. A forbidden set is a set of players that are not
allowed to reconstruct the value s based on their shares.

Assume that a secret sharing scheme exists that protects against any ad-
versarial structure Γ under this definition. This means that the secret sharing
scheme will protect the input from any set of adversaries that is included in the
forbidden set and that the input is not protected from any set of adversaries
that are in the qualified set. For more on adversarial structures see [Tho09].

This thesis will only examine simple secret sharing schemes, where the qual-
ified and forbidden subsets only depend on the number of players in each set.
These are known as (t, n) secret sharing schemes and can be defined as follows:

Definition 11. An input value s is split into n shares using some (t, n) secret
sharing scheme. This implies that any set containing t or more shares can
reconstruct the value s, any set with fewer than t shares cannot reconstruct
the value s.

Finally, the secret sharing can be made verifiable to protect against a ma-
licious dealer. A malicious dealer is a player that is going to share a value,
but does so incorrectly. A malicious dealer might perform the secret sharing
correctly internally, but then modify some of the shares before sending them
out. A verifiable secret sharing scheme is in addition to an ordinary secret
sharing scheme, that includes something which the dealer commits to. All
the players can then verify that they have received the same commitment and
that this commitment proves that the sharing was done correctly. For more on
verifiable secret sharing schemes, see for example Feldman’s scheme [Fel87].

Notation The following notation will be used for secret sharing

A value s is an element (integer) in a finite field Zp, where p is a large
prime number.

There are n players P1, P2, . . . , Pn.

18

si is the share destined for player i, for i ∈ {1, . . . , n}.

[s] is the set of shares that combined reveals the value s.

A value s can be shared in many different sets of shares [s], thereby
making it impossible to go from one share si to the value s.

3.3 Additive Secret Sharing Scheme

3.3.1 Introduction

An additive secret sharing scheme is a very simple secret sharing scheme,
because the secret is shared as the sum of shares. The simplicity of the scheme
makes it easy to explain the concept of secret sharing to people unfamiliar with
secret sharing. It is also good if all players are honest, but the scheme is very
vulnerable to modifications by malicious parties, therefore this scheme is not
very useful in practice.

The additive secret sharing scheme will be shown over Zp, where p is a large
prime, the scheme can also be extended to computations over Z, but this will
not be shown in this thesis.

3.3.2 Sharing

A value s is shared by by giving all the players Pi, except the last player a
random value si over Zp as their share, for i ∈ {1, 2, . . . , (n− 1)}. The share

sn for the last player Pn is computed as follows sn = s−∑n−1
i=1 ri mod p.

3.3.3 Recombining

The shares are recombined by each player revealing their share and com-
puting the sum. This also serves as the definition for additive secret sharing
scheme.

Definition 12. An additive secret sharing scheme is a secret sharing scheme
where each player Pi is given a share si of the secret s such that the following
equation holds:

s =

n
∑

i=1

si mod p (4)

3.3.4 Security

The scheme has perfect security when computed over Zp, and statistical
security when computed over Z. The security comes from the fact that all
players are given random values except for one player, which is computed
based on the secret and the other shares. This can be seen as a form of
one-time pad (OTP).

The scheme is very secure in one sense, because all n shares are needed to
reveal the secret shared value s. On the other hand, all players can modify

19

their share and thereby modify the secret value in a predictable manner. In
other words this scheme is very secure against passive adversaries (adversaries
that are curious but follow the protocol), but the scheme is not secure against
active adversaries (adversaries that might modify their output and not follow
the protocol).

3.4 Shamir’s Secret Sharing Scheme

3.4.1 Introduction

Shamir’s secret sharing scheme was proposed in 1979 [Sha79] and it is still
a very useful scheme. It is simple to understand, because it is a (t, n) secret
sharing scheme, and the bit-length of the shares are equal to the bit-length of
the largest secret shared value making it a very efficient scheme.

3.4.2 Sharing

A value s is shared as [s], each player Pi ∈ {P1, . . . , Pn} is given a share si

over Zp. These shares are computed as points over a polynomial. Each player
Pi is associated with a unique identifier Qi ∈ Zp. It is normal to set Qi = i,
but in general the only restriction on Qi is that Qi 6= Qk, for all i 6= k, where
i, k ∈ {1, . . . , n}.

Definition 13. Shamir’s secret sharing scheme is a (t, n) secret sharing
scheme computed over a field Zp. Each share si computed as the point f(Qi),
where f(x) is a polynomial of degree t.

f(x) = s + r1x + r2x
2 + · · ·+ rt−1x

t−1 mod p

Where the coefficients r1, r2, . . . , rt−1 are random values.

3.4.3 Recombining

When recombining shares, the player that is going to reveal the value re-
ceives all the shares connected to that value. The player does not know the
random values in the original polynomial, therefore the player has to compute
an interpolation polynomial. There are many ways of computing an interpola-
tion polynomial, but an efficient way of computing an interpolation polynomial
is to compute the first row of the inverse Vandermonde matrix based on the
shares si. The following equations for determining the inverse Vandermonde
assumes that all the shares are known. As only t shares are needed to recon-
struct the secret shared, the Vandermonde matrix can be reduced accordingly.
A player should compute the inverse Vandermonde matrix based on many

20

different sets of t players to verify that the other players are honest.

1 Q1 Q2
1 . . . sn−1

1

1 Q2 Q2
2 . . . Pn−1

2
...

...
...

. . .
...

1 Qn Q2
n . . . Pn−1

n

−1

=

λ1 λ2 . . . λn

µ1,1 µ2,1 . . . µn,1
...

...
. . .

...
µ1,n−1 µ2,n−1 . . . µn,n−1

(5)

The value s can then be recombined using the following equation

s =

n
∑

i=1

λisi mod p (6)

3.4.4 Security

The security of Shamir’s secret sharing scheme is based on the fact that a
function of degree t−1 over Zp cannot be reconstructed with less than t points
on the function. The security is information-theoretic as all secret values s are
equally likely given only t− 1 points on the function.

3.5 Paillier Cryptosystem

3.5.1 Introduction

The Paillier cryptosystem is a method for key generation, encryption and
decryption of information (transforming clear text into encrypted information
and vice versa). The Paillier cryptosystem was first proposed by Paillier in
1999 [Pai99]. The version described below describes the original cryptosys-
tem, but it also includes a generalized version by Damg̊ard and Jurik [DJ01],
called the Damg̊ard-Jurik cryptosystem. This cryptosystem is an example of
a homomorphic cryptosystem and these cryptosystems can be used for secret
sharing, especially in the two players setting. This will be examined in the
next section as this section will only focus on the cryptosystem.

The original Paillier cryptosystem is computed over Z
∗
n2 and the generalized

version is expanded to work over Z
∗
ns+1 , where s ≥ 1. The generalized version

includes Paillier’s cryptosystem as a special case for s = 1. The multiplicative
group Z

∗
ns+1 is homomorphic to two groups G×H , where G is a cyclic group

of order ns and H is isomorphic to Z
∗
n. Very loosely, we can say that the secret

message is hidden in the group G and the group H contains a random value,
so that two encryptions of the same secret message do not result in the same
encrypted value.

3.5.2 Key Generation

The key generation protocol proceeds as follows:

1 Two large prime numbers p and q are created. The value n, Euler’s
totient function φ(n) and Carmichael’s function are computed as (lcm

21

is the least common multiplier):

n = pq φ(n) = (p− 1)(q − 1) λ(n) = lcm(p− 1, q − 1)

Before continuing we also need to define a function L as:

L(x mod ns+1) =
x− 1

n
mod ns (7)

This equation is used to easily compute i from (1 + n)i mod ns+1. For
s = 1 this is simple because (1 + n)i mod n2 = 1 + in mod n2. There-
fore:

L((1 + n)i mod n2 =
1 + in− 1

n
mod n = i (8)

For s > 1 the function becomes more complicated, for a full description
see [DJ01].

2 The next step is to select an element g ∈ Z∗
ns+1 . The element g must be

an element of order nsα, where α ∈ 1, . . . , λ. The choice of g does not
affect the security, so choosing g = n + 1 will always result in a valid g.
For ease of computation g = 2 is another good choice (if it is valid).

3 The final step is setting the decryption value of d, the easiest choice is
setting d = λ, but any d = 0 mod λ, d = 1 mod ns will work.

3.5.3 Encryption

Given a plaintext m < ns and a random value r ∈ Z
∗
ns+1 the encryption is

given as:
c = gmrns

mod ns+1 (9)

Depending on the implementation it might be more effective if the value g is
set to a small integer. The computation of c can be sped up by pre-computing
the values g2i

for all i < log(ns+1).

3.5.4 Decryption

Given ciphertext c, the decryption key d = 0 mod λ and g such that g =
(1 + n)jx mod ns+1, where j is relative prime to n and x ∈ H , first compute
cd mod ns+1.

cd = (gmrns
)d = ((1+n)jmxmrns

)d = (1+n)jmd(xmrns
)d = (1+n)jmd (10)

It is important to remember that (1 + n) is a value of order ns, we also have
that xd = 1 and rdns

= 1. Apply the function L, compute jmd mod ns

from (1 + n)jmd. Replacing c with g and applying the same method produces
the value jd mod ns. The cleartext m is then extracted by computing m
mod ns = (jmd)(jd)−1 mod ns.

22

For s = 1 this is simplified to the following equation:

m =
L(cλ mod n2)

L(gλ mod n2)
(11)

The decryption key might be shared among multiple parties. The protocols
for decryption and verifying the decryption is given in [DJ01]. Essentially the
decryption key is shared using Shamir’s secret sharing scheme, and the parties
have to compute a distributed exponentiation.

3.5.5 Security

The security of the Paillier cryptosystem is based on the Decisional Com-
posite Residuosity Assumption (DCRA). The DCRA problem is the problem
of finding n-th residues modulo n2.

Definition 14. A number z is said to be a n-th residue modulo n2 if there
exists a number y ∈ Z

∗
n2 such that

z = yn mod n2 (12)

This definition is taken from [Pai99]. The same paper shows that the de-
cisional composite residuosity problem is as hard as the problem of factoring
n.

3.6 Changing Secret Sharing Scheme

3.6.1 Introduction

Most often secret shared values are shared over the same finite field and
using the same secret sharing scheme. This allows for efficient multiparty
computations and is practical. But in some cases there might be a need to
change the secret sharing scheme or the finite field that the computations
are computed over. For these cases there are methods whereby secret shared
values can be transformed from one secret sharing scheme to another secret
sharing scheme without revealing the value.

This section will only cover transformations between the three secret sharing
already mentioned. In addition we assume that the players are honest and that
there are protocols whereby a [s] > k can be computed without revealing the
result, where [s] is a secret shared value and k is a constant. For a more
general approach see [CDI05].

3.6.2 Transforming SSSS to ASSS and ASSS to SSSS

Transforming from additive secret sharing scheme (ASSS) to Shamir’s secret
sharing scheme (SSSS) and vice versa is simple and requires no interaction
between the players, if the finite field is kept the same. This transformation
can be seen from the following two equations:

23

When recombining a value based on Shamir’s secret sharing scheme, a player
gathers all shares from the other players and computes the equation:

s =

n
∑

i=1

λisi mod p (13)

The equation for recombining a value based on an additive secret sharing
scheme is not very different

s =

n
∑

i=1

si mod p (14)

To transform a secret shared value from Shamir’s secret sharing scheme
to an additive secret sharing scheme each player individually computes their
additive share s∗i = λisi mod p based on their respective share si and lambda
value. Going the other way, the players divide by λi instead of multiplying by
λi.

3.6.3 Transforming ASSS and SSSS to Paillier Cryptosystem

If the transformation begins with a value secret shared using Shamir’s secret
sharing scheme, then the shares are first transformed into shares using an
additive secret sharing scheme.

Transforming between an additive secret sharing scheme and the Paillier
cryptosystem can be accomplished by each player encrypting their share si

using the Paillier cryptosystem. The encrypted values can then be shared
among the players so that all players can compute E(s) =

∑n
i=1 E(si) mod p

where E(s) is an encryption of s.
This works fine except that the Paillier cryptosystem is computed over a

ring m = p∗g∗, where p∗ and q∗ are primes, while the additive secret sharing
scheme is computed over a prime p. Therefore the value E(s) can in fact be
an encryption of E(s+ tp) where 0 ≤ t < n, where n is the number of players.
We know that the initial secret shared value s < p. Therefore the players can
subtract p from the resulting encryption (up to n times), until the result is
less than p.

3.6.4 Transforming Paillier Cryptosystem to ASSS and SSSS

For this transformation the players pick a random value r that is both secret
shared over Shamir’s (or additive) secret sharing scheme and encrypted using
the Paillier cryptosystem. There are many ways of picking such a random
value, ensuring that it is random. Picking such a random value is also further
complicated because the two schemes are computed over different rings. To not
complicate things, we assume that the players have computed such a random
value, for example this can be done by each player choosing a random value ri

in the smallest of the fields and sharing that value using both additive secret

24

sharing and the Paillier cryptosystem. Then a random value can be created
by adding the shared values together r =

∑

ri.
Once such a random value is found the players can add r to the Paillier

encrypted value s that we are trying to transform, and reveal the value r + s.
Revealing r + s does not reveal any information about s if r is either a totally
random value over the whole field or if r is much greater than s (r >> s).
Once r + s is revealed each player can compute (r + s) − r where r is shared
using additive secret sharing.

4. Multiparty Computation

4.1 Introduction

The previous section examined three secret sharing schemes and showed
how to share values, reveal the secret shared values, and the security of each
scheme.

Secret sharing schemes without multiparty computation are just operations
on static values. The value that is secret shared is the same that is revealed
later. One way to visualize a secret sharing scheme is to imagine putting the
information that is to be secret shared into a multilock safe and then handing
over one lock key to each player. The players cannot extract any information
from the key itself. The players have to cooperate, collect the keys, and open
the safe to reveal the secret value inside. Multiparty computations go further
than this, because these methods allow the players to modify the values while
locked in the safe, without opening the safe. The players can also combine
values of many safes to construct a new safe containing a computational result
of the values in the original safes. This can all be done without opening up
any of the safes.

Multiparty computation consists of only two basic operations. The secret
shared values can be added or multiplied with other secret shared values or
values known to all players. Although addition and multiplication do not seem
like much, these two basic operations can be used together with sharing and
revealing to form more complicated operations, as we will see in later sections.

First we examine the concept of adversaries. Then we examine the addi-
tive secret sharing scheme, Shamir’s secret sharing scheme and the Paillier
cryptosystem, and show how addition and multiplication can be accomplished
in these secret sharing schemes. This section also includes an introduction
into a fully homomorphic encryption scheme. Fully homomorphic encryption
schemes are schemes where both addition and multiplication can be done with-
out interaction. It was long thought that this was not possible, but results by
Craig Gentry [Gen09] have shown this is possible. This section concludes with
some optimizations for Shamir’s secret sharing scheme, these optimizations
might be applicable to other secret sharing schemes as well.

25

4.2 Adversaries

To examine the security in multiparty computations the players can be
divided into three types: honest players, passive adversaries and active adver-
saries.

Honest players follow the agreed upon protocol as specified and complete
the protocol with no errors. An honest player does not try to cheat or
find out anything more about the secret shared values than what he or
she is supposed to know.

Passive adversaries will follow the agreed upon protocol as specified,
but will be interested in learning more about the secret shared values
than what he or she is supposed to know. The passive adversaries may
collude with other passive or active adversaries by sharing information
with them.

An active adversary is a passive adversary, but might also deviate from
the agreed upon protocol and send arbitrary information to other play-
ers. An active adversary might also try to falsify or ruin the calculations
for other players.

The model in Section 2 assumes that the communication channels between
the players are error free. Errors arising from problems in the communication
channels might therefore be modeled as adversaries. When there is a loss of
a communication channel between players, can be modeled as an attack by
a passive adversary. Communication errors that are not caught by the com-
munication layer, can be modeled as attacks by active adversaries. In fact,
there is in theory no way to distinguish between an honest party using a com-
munication channel that introduces transmission errors in the messages, and
a perfect channel with an active adversary that sends modified messages. A
message sent on an error-prone communication channel will often be accom-
panied with error detection checksum values, which will enable the receiver to
discard messages with errors. False messages from active adversaries, on the
other hand, can have correct checksum values, but not necessarily so.

4.3 Additive and Shamir’s Secret Sharing Schemes

4.3.1 Introduction

This section will show how addition can be done using the additive scheme
and Shamir’s secret sharing scheme. No multiplication protocol is given for the
additive secret sharing scheme, as this can be accomplished by transforming
the additive shares into Shamir’s shares, and doing the multiplication using
Shamir’s secret sharing scheme, and finally transforming the shares back into
the additive secret sharing scheme.

26

4.3.2 Addition for Additive Secret Sharing

Given two secret shared values [a] and [b], the secret shared sum [c] = [a]+[b]
is computed by each player adding their respective shares ai and bi. This can
be seen from the following equation:

[c] = [a]+[b] =
n
∑

i=1

ai mod p+
n
∑

i=1

bi mod p =
n
∑

i=1

(ai+bi) mod p = [a + b]

(15)

4.3.3 Addition for Shamir’s Secret Sharing Scheme

Theorem 1. Given two secret shared values [a] and [b], the secret shared sum
[a + b] is computed by each party adding the shares together [a] + [b].

Proof. First we have that the secret shared values a and b are shared as poly-
nomials over a finite field.

fa(x) = a + r1,ax + · · ·+ rt−1,ax
t−1 mod p

fb(x) = b + r1,bx + · · ·+ rt−1,bx
t−1 mod p

Each player gets a share corresponding to one point on this polynomial. If
the shares are added together, the players get shares which are points on the
polynomial:

fa+b(x) = a + b + (r1,a + r1,b)x + · · ·+ (rt−1,a + rt−1,b)x
t−1 mod p

This can be simplified to the following equation:

fa+b(x) = a + b + r1,vx + · · ·+ rt−1,vx
t−1 mod p, (16)

where ri,v = ri,s + ri,t for all i. From this we can see that the polynomial
fa+b(x) has constants a + b and is of the correct degree.

4.3.4 Multiplication for Shamir’s Secret Sharing Scheme

In Shamir’s secret sharing scheme the secret values a and b are shared using
two polynomials of degree t, this means that each player Pi has the values
fa(i) and fb(i). The goal of this protocol is for each player to get a share
fab(i) which is also a polynomial of degree t.

fa(x) = a + r1x + r2x
2 + · · ·+ rtx

t

fb(x) = b + s1x + s2x
2 + · · ·+ stx

t

fab(x) = ab + u1x + u2x
2 + · · ·+ utx

t

27

where the coefficients r1, r2, . . . , rt, s1, s2, . . . , st and u1, u2, . . . , ut are ran-
dom values.

The protocol multiplication consists of each player multiplying the two
shares fa(i) and fb(i) together. The resulting polynomial is called h(x) and is
of degree 2t. Each player Pi computes a share hi = h(i) of this polynomial.

h(x) = ab + v1x + v2x
2 + · · ·+ v2tx

2t (17)

where the coefficients v1, v2, . . . v2t depends on the coefficients r1, r2, . . . , rt

and s1, s2, . . . , st.
The next step consists of all players Pi share their hi values with the other

players using the normal method of sharing. Thus a value hi becomes the
constant term in a new polynomial hi(x).

hi(x) = hi + w1x + w2x
2 + · · ·+ wtx

t

So the shares of all hi(x) are distributed. This results in that the player Pj

receives the share hi(j) from player Pi. After receiving at least 2t + 1 shares
the players can recombine the shares. The resulting value is a share of the
polynomial fab of degree t. This protocol only works for honest players. For
a proof of this protocol and for verifiable protocols, that work against active
adversaries see [GRR98].

A summary of the protocol

1 Each player Pi has the shares fa(i) and fb(i) and computes the product
of the two shares fa(i)fb(i) = h(i) = hi.

2 The value hi is then secret shared using a random polynomial of degree
t, and the shares are distributed to the other players. The player Pj

receives the value hi(j).

3 Each player Pj can then locally compute fab(j) which is his share of the
value ab, this is done by computing the polynomial:

fab(j) =

2t+1
∑

i=1

λihi(j) (18)

where λi is the first row of the inverse Vandermonde matrix.

4.4 Paillier Cryptosystem

4.4.1 Introduction

The Paillier cryptosystem was introduced in Section 3.5, but not described
how it can be used for multiparty computation. There is a fundamental dif-
ference between how multiparty computation performed by using a public key
cryptosystem versus those that utilize a secret sharing scheme. In secret shar-

28

ing schemes each player gets a share value that is unique to that player. Using
a cryptosystem, the shares become cipher texts of the secret value. Obviously,
players that have access to the private decryption key can reconstruct the clear
text, that is, the original value. Therefore it is important that only the final
result of the multiparty computation is communicated to a player holding the
private decryption key.

Using a cryptosystem as a basis for multiparty computation makes it pos-
sible to do multiparty computations between only two players. These two
players will have different roles. One role will be called the evaluator, and the
other role will be called the multiplication oracle. The evaluator will receive
the encrypted input values and will perform the addition operation. This role
must not have access to the decryption key. The multiplication oracle will per-
form a multiplication protocol with the evaluator. The multiplication oracle
must also be able to decrypt the output value(s), therefore this role must have
access to the decryption key. The roles are split to ensure that the players
handling the encrypted information has no way of decrypting it, and the player
that has the decryption key does not have access to any of the information.

When this cryptosystem is expanded to more than two players, the roles
will have to be distributed among the players. The only restriction when dis-
tributing the roles is that any player handling encrypted information should
not have full knowledge of the decryption key. The decryption key in a cryp-
tosystem might be shared among multiple parties, as was first proposed by
Yvo Desmedt in 1988 [Des88]. When the decryption key is shared between
a set of players, then they function as a multiplication oracle. Since none of
them have full knowledge of the decryption key, it also implies that the same
players might also function in the evaluator role. The communication between
the players will then have to be structured so that the two roles do not overlap.
Protocols for decryption and verifying the decryption in the Paillier cryptosys-
tem with a distributed key can be found in [DJ01]. Essentially the decryption
key is shared using Shamir’s secret sharing scheme and the parties compute a
distributed exponentiation.

The protocols are given only for Paillier cryptosystem, but in fact any cryp-
tosystem can used for multiparty computation. Homomorphic cryptosystems
are especially useful for multiparty computation. This is because in a ho-
momorphic cryptosystem addition (or multiplication) of two encrypted values
can be computed without decrypting them. In addition the cryptosystem
should have ciphertexts that are indistinguishable under chosen-plaintext at-
tack. That means that given two values a and b and and two encryptions of
the same two values E(a) and E(b), it should not be possible for an attacker
to distinguish which ciphertext corresponds to a given plaintext. (The RSA
cryptosystem is not useful for multiparty computation as the same plaintext
value always results in the same encrypted value.)

29

The protocols for addition and multiplication for the Paillier cryptosystem
will be shown in the next subsections. The notation used is that E(a, r) is an
encryption of the value a and r is a random value.

4.4.2 Addition in the Paillier Cryptosystem

The Paillier cryptosystem is additive homomorphic. This means that if two
ciphertexts are multiplied together, the corresponding clear texts are added.
Given E(a, r1) = garns

1 , E(b, r2) = gbrns

2 and r = r1r2. This can then be easily
seen from the following equation:

E(a, r1)E(b, r2) = garns

1 gbrns

2 = ga+b(r1r2)
ns

= ga+brns
= E(a + b, r) (19)

4.4.3 Multiplication in the Paillier Cryptosystem

To perform multiplication of two encrypted values, the evaluator must trans-
mit some information to the multiplication oracle which can then decrypt the
information, compute a multiplication and encrypt the result before return-
ing the results to the evaluator. E(a, ra) and E(b, rb) are the original en-
crypted values that the evaluator wants the multiplication oracle to multiply.
These cannot be sent directly to the multiplication oracle, therefore the eval-
uator picks random values u, v, ru, rv and r2. The evaluator then computes
E(a+u, raru) and E(b+v, rbrv) locally and sends these values to the multiplica-
tion oracle. The multiplication oracle decrypts E(a+u, raru) and E(b+v, rbrv).
Computes the multiplication (a + u)(b + v) and encrypts the value. The mul-
tiplication oracle then returns the encrypted value E((a+u)(b+v), r1), where
r1 is a random value picked by the multiplication oracle.

The evaluator then uses the following equation can to compute the multi-
plication.

E(ab, rab) = E((a + u)(b + v), r1)− E(a, ra)v −E(b, rb)u− E(uv, r2) (20)

Where E(uv, r2) can be computed by the evaluator.
For a more advanced protocol where the decryption key is split between

multiple players see [DJ01].

4.5 Fully Homomorphic Cryptosystem

4.5.1 General overview

The first result for a fully homomorphic cryptosystem was shown by Craig
Gentry [Gen09] in 2009, his idea was to work over ideal lattices. This the-
sis will present a simplification based on by Dijk et al. [vDGHV09], where
the computations are done over the integers, making the cryptosystem easier
to understand. Any such cryptosystem starts with a somewhat homomorphic
cryptosystem leading up to the fully homomorphic cryptosystem. A somewhat

30

homomorphic cryptosystem is homomorphic both for addition and multiplica-
tion up to some limit. For example the Paillier cryptosystem is homomorphic
for addition of encrypted values and it is also possible to perform multiplica-
tion with a clear text value. The limit for the Paillier cryptosystem is that
the resulting value should not be larger than the modulus n, otherwise it is
impossible to decrypt the value correctly. The same is the case for a some-
what homomorphic cryptosystem because a certain number of additions and
multiplications can be performed. After that limit is reached then either the
noice used to hide the encrypted value becomes too great, making it impos-
sible to decrypt correctly, or the encrypted values become too large, making
the scheme impossible work with.

The idea for a fully homomorphic cryptosystem is then to start with a
somewhat homomorphic cryptosystem and then reveal some more information
about the public key, making it possible to do computations for any number of
additions and multiplications. The presentation in this thesis will be limited
to the somewhat homomorphic case that works on bits m ∈ {0, 1}. For the
fully homomorphic case see Dijk et al. [vDGHV09].

4.5.2 Somewhat Homomorphic Cryptosystem

A somewhat homomorphic scheme that works with individual bits m ∈
{0, 1}, can be written as follows:

A secret key is a random odd η-bit integer p.

To generate the public key, a set of values are chosen randomly from
the set [0, 2γ

p] and these values are called qi for i = 0, 1, 2, . . . , τ . The
values qi are sorted so that q0 is the largest value. Another set of random
values are chosen randomly from the set [−2ρ, 2ρ] and these values are
called ri for i = 0, 1, 2, . . . , τ . A set of values xi for i = 1, 2, . . . , τ are
then computed as xi = qip + 2ri mod q0 and finally x0 is computed as
x0 = q0p + 2r0.

To encrypt a message m ∈ {0, 1} in this cryptosystem, choose a random
subset S ⊂ {1, 2, . . . , τ} and a random integer r ∈ [−2ρ, 2ρ] and set E(m) =
c = m + 2r +

∑

i∈S xi mod x0. Messages can then be also be decrypted as
D(c) = m = (c mod p) mod 2.

4.5.3 Addition and Multiplication

Addition and multiplication of encrypted bits is then the same as addition
and multiplication over the integers.

31

For addition, we can see the following equation.

E(m1) + E(m2) = (m1 + 2r1 +
∑

i∈S1

xi mod x0) + (m2 + 2r2 +
∑

i∈S2

xi mod x0)

= ((m1 + m2 mod 2) + 2(r1 + r2 + m1m2) +
∑

i∈S1∪S2

xi +
∑

i∈S1∩S2

xi) mod x0

= E(m1 + m2 mod 2)

This final equality is not totally correct, because the random value r is now
taken from a larger set of values r ∈ [−2ρ+1, 2ρ+1 + 1] and is not chosen
uniformly over that set. Also the set of elements which are both in S1 and S2

are counted twice in the sum.
For multiplication, we can see that D(E(m)) = (E(m) mod p) mod 2 =

m, this leads to the following equation:

D(E(m1)E(m2)) = ((E(m1)E(m2)) mod p) mod 2

= ((((E(m1) mod p) mod 2)((E(m2) mod p) mod 2)) mod p) mod 2

= ((m1m2) mod p) mod 2 = m1m2 mod 2

This means that a decryption of the product of two messages is equal to
the product modulo 2 of the two messages. This does not hold for multiple
products as the noise r grows quickly and the size of the encryption roughly
doubles with each multiplication. If the noise r becomes greater than p the
decryption will be wrong.

4.5.4 Practicality

This somewhat homomorphic cryptosystem will be impractical to use be-
cause if the security parameter is λ then ρ = λ, η ≈ λ2, γ ≈ λ5 and τ = γ +λ.
Therefore the size of the public key must be approximately λ10. For informa-
tion on how to squash the decryption circuitry to make this somewhat homo-
morphic cryptosystem into a fully homomorphic cryptosystem, see Dijk et al.
[vDGHV09].

4.6 Optimizing Multiparty Computation

4.6.1 Introduction

This section will give an overview of some improvements that can be done
in multiparty computation. These improvements will focus on improvements
using Shamir’s secret sharing scheme, but similar improvements might also
exist for other secret sharing schemes. For these improvements the number of
players is denoted by n and the bit-length of a share is denoted by m.

32

4.6.2 Pseudorandom Secret Sharing

Many functions for multiparty computations, such as those in paper B,

C, F require that the players have access to a source of random numbers.
These random numbers must be secret shared but should be not known to
any player. Creating secret shared random numbers can be done for all secret
sharing schemes, but not all methods of creating random numbers will create
perfectly random numbers. Using a scheme where pseudorandom secret shared
values are created without interaction will greatly improve the efficiency of
such protocols. For pseudorandom secret sharing see [CDI05].

4.6.3 Multiply and Reveal

Two variables [a] and [b] are secret shared and the function states that the
two variables are to be multiplied together [c] = [ab], before the variable c is
revealed to all players. Using the standard model this will take 2n2m bits of
communication and two rounds of communication for the multiplication and
revealing steps. This can be improved by multiplying and revealing in one
step. To ensure that no information about [a] or [b] is revealed it is important
to add a random or pseudorandom sharing of 0 to [c] before revealing.

4.6.4 Lazy Shamir

Two vectors of variables a1, a2, . . . , ak and b1, b2, . . . , bk are secret shared
and the function states that the inner product of the two vectors are to be
computed.

S =
k
∑

i=1

aibi (21)

The model states that this will take kn2m bits of communication for the
multiplication and addition step. The communication cost can be lowered to
only n2m bits of communication. This is done instead of sending shares after
each multiplication. The shares are instead stored locally. The addition step
is then done on the locally stored shares, and only the shares representing
the sum are sent out. This trick can be done because each multiplication is
actually a 2t-threshold secret sharing (when the original secret sharing is a
t-threshold secret sharing), and the shares are only sent out to reduce the sum
from a 2t to a t-threshold secret sharing. Therefore it does not change the
secret sharing scheme if the additions are done before sending or after sending
the shares out.

5. A Complete Set of Operations

The operations sharing and revealing were introduced in Section 3. The op-
erations addition and multiplication were introduced in Section 4. In addition
to these four operations, a multiplication by −1 will result in a negation of

33

the original secret shared value. Together these five basic operations can form
building blocks for constructing more complex operations. Papers B and C

considers the “less-than” operation and F considers “bit-decomposition,” but
these are just two of the possible operations.

This section will explore in more detail how complex operations can be con-
structed from the set of five basic operations. For a comprehensive overview,
the list of operations and statements will be based on lists of operators and
statements used in a programming language. In particular the operations and
statements given in this section are based on the Java programming language
[Fla05]. The choice of programming language is arbitrary in that there are
many programming languages that have the same abilities as Java to trans-
form a function into a computer program that can be executed on a computer.
The lists will be restricted so that for unary operators the operand must be a
secret shared value and for binary operators only the case where both operands
are secret shared values will be included in the lists. Operations where one
operand is a secret shared value and one is a constant value will not be in-
cluded although these operations are often much more efficient than operations
where both operands are secret shared values. This section will not examine
how efficient each operation is but only focus on how each operation can be
implemented.

The list relies heavily on the operation “bit-decomposition”. This operation
was first introduced in [DFK+06], and consists of transforming a secret shared
variable into a list of variables, where each element in the list holds one bit
of the original variable. For example, if the value 19 (expressed as 10011 in
binary) is secret shared, then bit-decomposing this value creates an array of
the secret shared elements {1, 0, 0, 1, 1}.

Operators that are short-hand methods of writing other operators, such as
pre/post-increment/decrement (++, –), assignment with operator (*=, /=,
%=, etc) and not equal (!=) are not included in the list. Less than or equal
(<=), greater than (>), and greater than or equal (>=) can all be reformu-
lated into operations using the less than (<) operator. “Do” loops can be re-
formulated to “while” loops, “for/in” collection iteration can be reformulated
as “for” loops, and assertions can be rewritten as if statements. Computa-
tions involving float or double variables are also not included as these are best
handled as Boolean circuits. (Circuits that only operate on the values 0 or 1.)

The tables follow standard notation for secret shared variables:

[a], [b], [c], etc. are secret shared variables. For Boolean operations it is
assumed that the secret shared variables are Boolean variables.

max([a]) denotes the maximum possible value in [a]. This is used in
operations where the size of [a] is not publicly known. For example in
creating arrays of size max([a]) all players would have to create an array
with the maximum possible number of array elements. Also if the size
of the array is important to remember, then variable [a] will have to be

34

Operator Operation performed Multiparty computation

. object member access internal

instanceof type comparison internal

= assignment internal

(type) cast internal

[[a]] array element access see comments

(args) function (method) invocation internal (args must be a fixed set of variables)

new [a] object creation internal

new [[a]] array creation create new (max[a]), see below

−[a] negation (unary minus) basic operation

[a] + [b] addition basic operation

[a] − [b] subtraction [a]+(-[b])

[a] ∗ [b] multiplication basic operation

[a]/[b] division see comments

[a]%[b] modulo [a] − ([a]/[b])[b]

[a]&&[b] Boolean AND [a][b]

[a]||[b] Boolean OR [a][b] + [a] + [b]

![a] Boolean NOT 1 − [a]

[a]∧[b] Boolean XOR [a] + [b] − 2[a][b]

&[a] bitwise AND bit-decompose([a]) and Boolean AND on the bits

|[a] bitwise OR bit-decompose([a]) and Boolean OR on the bits
[a] bitwise XOR bit-decompose([a]) and Boolean XOR on the bits

[a] bitwise compliment bit-decompose([a]) and Boolean NOT on the bits

[a] << [b] left shift [a]2[b]

[a] >> [b] signed right shift bit-decompose([a]) and shift by [b] places
or bit-decompose both and use Boolean circuit

[a] >>> [b] unsigned right shift [a]/(2[b])

[a] == [b] equal [DFK+06]

[a] < [b] less than see included papers

Table 1. List of operations

remembered. For example this can be handled by creating an additional
array of the same size. The second array contains elements which are
secret shared values which are either 1 or 0 corresponding to elements
within or outside the scope of the original array.

bit-decompose([a]) - the variable a is split into a list of l secret shared
variables, where l is the maximum bit length of a.

The tables contain the following short hand explanations:

Basic operation The operation is one of the five basic operations (sharing,
revealing, addition, multiplication and negation).

Internal Internal operations, such as function calls (method invocation) and
the scope of variables, can be handled internally by each player. They
have an essential function in the programming language as they are
used to structure and simplify the program. On the other hand these

35

Statement (syntax) Purpose Multiparty computation

expression (expr) side effects internal

statements group statements internal

; do nothing internal

label:statement name a statement internal

variable declare a variable internal

if ([a]) [b] else [c] conditional [b](1-[a]); [c][a]; (see below)

switch ([a]) conditional rewrite as if statements

while ([a]) loop perform ordinary loops until [a] is true,
then perform dummy loops until max([a])

for (init; test; update) for statement see comments

break exit block internal

continue restart loop internal

return end method internal

synchronized critical section internal

throw throws exception internal

try handle exception internal

Table 2. List of statements

operations do not affect the multiparty computation being performed or
the messages sent between the players, and the computer program can
in theory be rewritten to avoid these operations.

Dummy statements Using programming language elements such as “if,”
“while”, and “for” can create the need for dummy statements. Dummy
statements are operations that leave the secret shared variables un-
changed. Dummy statements can for example be handled by introducing
a secret shared “dummy flag”, this variable is set to 1 if it is not a dummy
statement and 0 if it is a dummy statement. For example, the statement
“if ([a]) [b]++ else [c]–;” can be rewritten as “[b] = [b] + 1([a]); [c] = [c]
- 1([1-a]);”, where [a] functions as a dummy flag. Rewriting expressions
this way avoids the need to reveal any information about [a].

See comments For those operations and statements that need a longer ex-
planation.

The multiparty operations and variables marked in the tables with see com-

ments are described further here.

Array element access, array element creation Accessing arrays with an
secret shared size can be challenging, but is possible as long as the maxi-
mum number of elements max([a]) is known, where [a] is a secret shared
variable. For example see the description for max([a]).

Division Multiplication of two secret shared values is a basic operation.
The same cannot be said for integer division of secret shared variables
([a]/[b]). One way of computing integer division is to “bit-decompose”

36

[a] and [b] and then compute the integer division as a Boolean circuit. A
recent paper by Dahl, Ning and Toft [MDT12] presents a protocol which
requires a logarithmic number of multiplications in logarithmic number
of rounds.

for statements For statements consists of three parts called init, test, and
update. If the secret shared variable is only in the init or update part
of the “for” statement, then the “for” statement can be executed as
an internal computation. On the other hand, if there are secret shared
variables in the test part of the “for” statement, then it has implications
on the multiparty computation. The “for” statement should then be
run as normal until the test becomes true, thereafter only dummy “for”
loops should be run until the maximum number of iterations is reached.

6. Software Frameworks for Multiparty
Computations

This section will first give an overview of current implementations of mul-
tiparty computation. This section will also examine some of the challenges
that are faced when implementing multiparty computation. The Subsection
6.2 examines the fact that the computations are computed over finite fields
with secret shared information, where it is impossible to detect overflows.
Subsection 6.3 examines the problem of timing. The final two subsections ex-
amine how Shamir’s secret sharing can be implemented in practice and which
operations that are implemented in VIFF.

6.1 Frameworks

In this thesis, these implementations of multiparty computation will be
called frameworks as they provide programmers with the basic building blocks
and an API (application programming interface) for constructing and execut-
ing multiparty computation programs, while at the same time, removing much
of the complexity associated with multiparty computation.

It is interesting to note that although the general theory of multiparty com-
putation was published in 1988 [GMW87, CCD88, BOGW88] no known soft-
ware frameworks were developed until 2005 [BDJ+05], when the Secure Mul-
tiparty Computation Language was created. Although the FairPlay project
[MNPS] was created in 2004, the framework only worked for two-party com-
putation [MNPS04]. It was not until FairPlayMP in 2008 that the system
was extended for more than two players. The field of practical applications
of multiparty computations has been developing rapidly since then and there
are currently six known frameworks. These are:

The FairPlay project which started at Hebrew University of Jerusalem
and the University of Haifa in Israel in 2004. Fairplay [MNPS] is a

37

system for secure two-party computation. This was later expanded into
a multiparty computation setting with FairplayMP [BDNP08] in 2008.

Secure Multiparty Computation Language (SMCL) [MP09] is a domain
specific programming language for secure multiparty computation. It
was developed as part of the SIMAP project (Secure Information Man-
agement and Processing project) in 2005.

Sharemind [oTCa] is another project aiming to be an efficient and easily
programmable platform for developing privacy-preserving computations
[BLW08]. It is currently being developed at the University of Tartu and
AS Cybernetica in Estonia. The first practical version was shown in
2007.

The Virtual Ideal Functionality Framework (VIFF) [Tea09] was created
at the University of Aarhus in Denmark, where Martin Geisler started
the work in 2008 as an improvement to the SMCL.

The SecureSCM project [pro] attempts to realize secure computation
protocols for collaborative supply chain management. It was started
sometime in 2008. The programming language they have created is
called the L1 Language [SKM10].

TASTY [oTCb] is a Tool for Automating (i.e., describing, generating,
executing, benchmarking, and comparing) efficient Secure Two-partY
computation protocols using combinations of garbled circuits and homo-
morphic encryption techniques. The program was developed in 2010 at
the System Security Lab at Ruhr-Univeristy Bochum and a description
of the framework can be found in [HKS+10].

The JavaMPC framework created by the author of this thesis. The
first working version was developed during the Autumn of 2009. This
builds on the ideas from VIFF, while trying to create a more flexible
environment for programmers on the Java platform. Implementation
was stopped after two iterations of the program where developed early
in 2010.

The different frameworks have very different design structures. Some of the
different aspects have been included in Table 3. The table does not give a
comprehensive overview of the different frameworks, but it describes some of
the most important differences. Special compiler refers to the fact that the
multiparty computations are written in a different programming language than
the what the underlying framework is written in. The framework thus complies
the multiparty computations before the computations can be computed.

38

Name Written in Network layer Special complier Players Notes

Fairplay Java Java sockets Yes(SDFL) 2 Circuit based
FairplayMP Java Java sockets Yes(SDFL2.1) 3+ Circuit based
SMCL C++ Unknown Yes(SMCL) 3+ Used for auction
Sharemind C++ RakNet Yes/No 3(only) Shared database
VIFF Python Twisted No 2,3+ Open source
SecureSCM Java Unknown Yes(L1) 2+ [SKM10]
Tasty Pyton Unknown Yes 2 Circuit based
JavaMPC Java Netty/Mina No 3+ Under development

Table 3. Comparison of multiparty computation frameworks

6.2 Simulated Integer Arithmetics

For security reasons most secret sharing schemes are computed over finite
fields. All current software frameworks work with each share representing one
value over a finite field Zp, where p is a large prime. On the other hand, the
problem setting will normally be with computations over the integers Z. This
cognitive gap can be bridged by letting the computations be over simulated
integer arithmetics, where the players simulate computations over the infinite
field Z by using computations over finite fields Zp. This is analogous to the
arithmetic in modern computers, but this cognitive gap might lead to situ-
ations where there is an overflow. An overflow is a situation where a value
becomes larger than the string of bits that represents and stores the value.
For example, a single byte can only store values between 0 and 255. Therefore
if we try to add 254 and 3 the result will be 1 when stored in a single byte.
Overflow was a significant problem in earlier computers as they had short reg-
ister lengths. Modern computers, on the other hand, use larger register sizes
so overflow is no longer such a big problem. Moreover, the arithmetic software
will detect and report overflow situations.

The reason for emphasizing overflow in multiparty computations is that it is
not possible to add overflow warnings in multiparty computation. In addition,
the input values are secret and each operation is usually costly. The prime p
will therefore have to be chosen in such a way that the finite field Zp has to
be larger than all possible inputs, intermediate values, and final values that
might arise from all possible inputs. This could lead to a very large value for p,
which in turn affects efficiency because more bits will have to be transmitted
for each share. It is also important to verify that the inputs are within the
given bounds otherwise some player might supply inputs that will result in
future overflow situations.

6.3 Multiparty Coordination

The five basic operations are not particularly difficult to implement in a
framework once we identify an efficient method to do this, nor is it difficult to

39

set up communication channels between the players (computers). The chal-
lenge comes from the requirement that programmers should be able to pro-
gram essentially any function by using the framework. This means that the
framework has to be able to interpret essentially any algorithm, and turn that
algorithm into a set of basic multiparty computation operations and coordi-
nate the computation of these basic operations among the players as efficient
as possible. Algorithms for ordinary functions may produce programs with
ten to a hundred thousand operations. A programming error may result in a
wrong answer rather than an error report. The communicated messages will
either have to be sent in a well-defined sequence, or each operation will have
to be labeled. The reason for this will be shown in Algorithm 1:

Algorithm 1 Possible timing problem

Share a, b, c, d
x = ab
y = cd
Reveal x

5: Reveal y

If the messages are not labeled, or the messages are not sent and received in
the correct sequence, then the four secret shared variables might be shared in
the wrong order, the multiplications might be done in the wrong order, or the
values might be revealed in the wrong order. If a message or operation labeling
is not done, then all operations have to be carried out in a strict order across
the computer system, and a computer will likely spend a significant amount
of time waiting for input from the other computers.

Labeling, on the other hand, increases the efficiency because the players
can work asynchronously, by continuing the computation as soon as as the
necessary input is available. On the other hand, each message will have to
be labeled uniquely. Creating an algorithm that enforces unique labels on all
messages is a challenge in and of itself, and is a topic that is not discussed in
the multiparty computation literature.

6.4 Basic Operations

This subsection will focus on the details of a multiparty computation frame-
work implementing Shamir’s secret sharing scheme (see Section 3.4). There are
a myriad of ways that such a program can be implemented. So this subsection
will focus on all the common factors that all frameworks possess.

At the basic level a framework has to handle two basic types of variables,
which are “values” and “secret shared values”, also called “shares”. The “val-
ues” are often expressed as integers over some finite field, as most secret sharing
schemes are computed over a finite field. The “shares” are values representing
a secret value shared among the participants. Each participant will at some

40

point have a representation of the secret shared value and this representation
will also take mostly the form of an integer over a finite field.

Section 5 listed five basic types of operations that have to be handled by the
framework, these are sharing, revealing, addition, multiplication and negation.
Tables 4 and 5 summarize these operations, where n is the number of partic-
ipants in the multiparty computations and communication is the amount of
messages that have to be sent.

Operation Input variable Output variable Communication

Sharing value share n
Revealing to one share value n
Revealing to all share value n2

Negating value value local
Negating share share local

Table 4. Unary operations in a secret sharing framework

Operation First input Second input Output Communication

Addition value value value local
Addition share value share local
Addition share share share local

Multiplication value value value local
Multiplication share value share local
Multiplication share share share n2

Table 5. Binary operations in a secret sharing framework

6.5 Additional Operations

The five basic operations are necessary to implement in a framework, but
the framework needs more functionality to be useful in practice. Additional
operations are needed. The following list of operations can be identified in the
VIFF framework.

7. Summary of Papers

This section gives a summary of the papers included in part two of this the-
sis. The summary consists of an introduction to the papers and an overview of
how the papers relate to each other. Then each paper is summarized separately
with a short description, some remarks about the results, and a description of
my contribution to each paper.

41

Operation Type Description

Function calls flow [z] = f([x], [y], . . .)
For loops flow for(0 to n){. . .}

If statements flow [z]?[x] : [y] ≡ [x(1− z) + yz]
While loops flow while(x){. . .}

(Pseudo-)random secret shared value value [z] = Rand()
Broadcast value x = Broadcast(x, player)
Equality operator [x] = [y]

Comparison operator [x] < [y]
Splitting value into bits operator [z]B = Split([z]), [z] =

P

[z]i2
i

Fan-in multiplication operator
Q

[zi]
Boolean logic operators and, or, not, etc.

Table 6. Additional useful operations for a multiparty computation software framework

7.1 The Starting Point

My initial work involved examining security mechanisms for sensor and ad-
hoc networks. This work did not result in any papers except from the work
mentioned in paper A. Over time my focus shifted to multiparty computation
which has been a central component in all of the included papers.

The work on sensor and ad-hoc networks was beneficial and has guided my
later work on multiparty computation, as both multiparty and ad-hoc net-
works are decentralized systems. The advantage of decentralized systems is
that there is no single point of failure nor any single node that all players must
trust. The disadvantage is increased complexity and the use of communica-
tion. The decentralized nature of these systems also make them vulnerable to
malicious players, which can ruin the system for everyone else if any players
collude.

The difference between the two fields of study is that in ad-hoc networks
we normally deal with physical entities that have well-defined positions and
we have physical limitations on how they communicate with each other, but
in multiparty computation these restrictions are not present. In multiparty
computations, however, there are restrictions on how information can be com-
municated between the players.

7.2 The Thesis Papers

This thesis includes six published papers and a short unpublished paper,
ranging from my first publication to NIK (Norsk Informatik Konferanse) in
2006 to my final publication in ICISC (International Conference on Informa-
tion, Security and Cryptography) in 2009. The papers are labeled from A

to F chronologically according to when they were published. All six papers
discuss multiparty computation, and explore several different aspects of the
field. One group of papers focus on improving algorithms for multiparty com-

42

putations, while another group focus on practical applications of multiparty
computations.

Paper B, C and F are concerned with theoretical improvements to
multiparty computation algorithms, in particular the “less-than” and “bit-
decomposition” operation. Although the focus of these papers is narrow,
these operations are among the most useful operations. Therefore any such
improvements in operations could have vast implications for the efficiency of
multiparty computation in practice. Paper B and C focus on the “less-than”
operator. Paper C is a direct improvement of the proposal of paper B. Paper
F focuses on the “bit-decomposition” operation, where one secret shared
value is decomposed into a vector of secret shared values. This operation is
important because there is no simple algorithm yet found which extracts indi-
vidual bits from a secret shared value, except by using a “bit-decomposition”
algorithm.

Paper A and E are oriented toward practical applications and examine pos-
sible uses for multiparty computation. Paper A considers an ad-hoc network,
where some nodes can calculate their position based on the private location
information in other nodes, while maintaining the privacy such that no node
needs to reveal its position to the others. Paper E proposes an e-voting scheme
with distributed trust and multiparty computation for counting votes in an
election.

Paper D investigates how a distributed RSA key generation algorithm can
be carried out by multiparty computation, and implements it using the soft-
ware framework VIFF. The result is a program where three players can gen-
erate a RSA key pair without any of them ever knowing the secret key. The
algorithms were tested for efficiency and further improvements were proposed.

7.3 Paper A

This paper considers a network of nodes, where a majority of nodes know
their current geographical position and want to keep that information private.
The nodes that do not know their geographical position can compute their
position based on the distance between nodes and the geographical position of
other nodes. It is assumed that the distance between nodes can be computed
by using some method such as delay timing or signal strength. The paper
shows how this can be accomplished using multiparty computations for three
nodes in the one-dimensional case and four nodes in the two-dimensional case.
The calculations can also be extended to multiple nodes and to the three-
dimensional case. I was the sole author on this paper and presented it at the
NIK conference in November 2006.

7.4 Paper B

This paper considers the comparison operator a < b, where a and b are secret
shared values. Improving the “less-than” operator could enable a significant

43

increase in the efficiency when evaluating functions using multiparty compu-
tation. This paper improves the “less-than” operator by roughly a factor of
two or three in comparison to previous papers in the literature. The algorithm
can work for any secret sharing scheme because the algorithm only assumes
that there are primitives for addition and multiplication of secret shared val-
ues in addition to some method of generating random secret shared values.
The paper also explores the possibility of moving some of the computations to
a pre-computing step. Pre-computing is where the players can do multiparty
computations, but do not have the available data to compute on. This paper
was a joint effort between Tomas Toft and myself. The idea was based on
discussions between the authors, and both authors contributed equally to the
writing process. The work was presented at the ICITS conference in 2007.

7.5 Paper C

This paper considers the “less-than” operator a < b, where a and b are
secret shared values. This paper improves upon the comparison operation by
roughly a factor of two or three in comparison to paper B. This algorithm
can also work for any secret sharing scheme because it too only assumes that
there are primitives for addition and multiplication of secret shared values
in addition to some method of generating random secret shared values. I
was the sole author of this paper and I came up with the idea and wrote
the paper myself. I received feedback and comments from the people listed
in the acknowledgment section. This paper was presented at the SECRYPT
conference in 2009.

7.6 Paper D

This paper was based on results from a Master’s thesis topic I proposed
and co-supervised. The paper presents a distributed RSA key generation
protocol for three players, and the multiparty computation is implemented
using the VIFF framework. The key generation protocol is based on an algo-
rithm proposed by Boneh and Franklin [BF97]. We compared our results of
efficiency and security with earlier work on the same algorithm. Our paper
proposes further improvements. I contributed the main ideas of the paper, and
co-supervised Atle Mauland in his programming and writing of his Master’s
thesis, and I took an active role in authoring the joint paper. This paper was
presented at the NISK conference in 2009.

7.7 Paper E

This paper proposes an e-voting system which ensures a high degree of
privacy and anonymity of votes in any given election where the system is
used. The tallying process is split between multiple parties computing the final
tally using multiparty computations. The goal of this paper was to propose a
system that ensures a distribution of roles and responsibilities, in such a way

44

that no single role or tally could cheat or corrupt the voting process without
being detected. This paper began as a result of examining the 2011 E-voting
project in Norway. This paper was a joint effort between Md. Abdul Based
and myself, where we both contributed equally with ideas and writing of the
paper.

7.8 Paper F

This paper considers bit-decomposition of a value a, where a is a secret
shared value. The value a should be split into secret shared bits of information
such that [a] =

∑n
i=0 [ai], where ai ∈ {0, 1}. This paper presents an algorithm

which is linear O(`) in the number of multiplications. This is an improvement
upon earlier constant round bit-decomposition algorithms, which are nearly
linear O`log(`) in the number of multiplications. My main contribution to
this collaboration was to come up with the idea which made this algorithm
possible. This idea is similar to the idea for the algorithm proposed in paper
C. I wrote an early draft version of this paper, but most of the writing was
done by Tomas Toft. This paper was presented at the ICISC conference in
2009.

Bibliography

[ACS02] Joy Algesheimer, Jan Camenisch, and Victor Shoup. Efficient computation
modulo a shared secret with application to the generation of shared safe-
prime products. In In Advances in Cryptology - Proceedings of CRYPTO
2002, pages 417–432. Springer-Verlag, 2002.

[BCD+08] Peter Bogetoft, Dan Lund Christensen, Ivan Damgard, Martin Geisler,
Thomas Jakobsen, Mikkel Krøigaard, Janus Dam Nielsen, Jesper Buus
Nielsen, Kurt Nielsen, Jakob Pagter, Michael Schwartzbach, and Tomas
Toft. Multiparty computation goes live. Cryptology ePrint Archive, Report
2008/068, 2008. http://eprint.iacr.org/.

[BDJ+05] Peter Bogetoft, Ivan B. Damg̊ard, Thomas Jakobsen, Kurt Nielsen, Jakob
Pagter, and Tomas Toft. Secure computing, economy, and trust: A generic
solution for secure auctions with real-world applications. Technical Report
RS-05-18, June 2005.

[BDNP08] Assaf Ben-David, Noam Nisan, and Benny Pinkas. Fairplaymp: a system for
secure multi-party computation. In CCS ’08: Proceedings of the 15th ACM
conference on Computer and communications security, pages 257–266, New
York, NY, USA, 2008. ACM.

[BF97] Dan Boneh and Matthew Franklin. Efficient generation of shared RSA keys.
In Advances in Cryptology – CRYPTO 97, pages 425–439. Springer-Verlag,
1997.

[BLW08] Dan Bogdanov, Sven Laur, and Jan Willemson. Sharemind: A framework for
fast privacy-preserving computations. In ESORICS ’08: Proceedings of the
13th European Symposium on Research in Computer Security, pages 192–206,
Berlin, Heidelberg, 2008. Springer-Verlag.

[BOGW88] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness theo-
rems for non-cryptographic fault-tolerant distributed computation. In STOC
’88: Proceedings of the twentieth annual ACM symposium on Theory of com-
puting, pages 1–10, New York, NY, USA, 1988. ACM.

[Can01] R. Canetti. Universally composable security: A new paradigm for crypto-
graphic protocols. In FOCS ’01: Proceedings of the 42nd IEEE symposium
on Foundations of Computer Science, pages 136–147, Washington, DC, USA,
2001. IEEE Computer Society.

[CCD88] David Chaum, Claude Crépeau, and Ivan Damgard. Multiparty uncondition-
ally secure protocols. In STOC ’88: Proceedings of the twentieth annual ACM

46

symposium on Theory of computing, pages 11–19, New York, NY, USA, 1988.
ACM.

[CDI05] Ronald Cramer, Ivan Damg̊ard, and Yuval Ishai. Share conversion, pseudo-
random secret-sharing and applications to secure computation. In Joe Kilian,
editor, TCC, volume 3378 of Lecture Notes in Computer Science, pages 342–
362. Springer, 2005.

[CGH00] Dario Catalano, Rosario Gennaro, and Shai Halevi. Computing inverses over
a shared secret modulus. In In Advances in Cryptology EUROCRYPT 2000,
pages 190–206. Springer-Verlag, 2000.

[Cyb] Cybernetica. Sharemind deployment and performance
whitepaper. http://sharemind.cyber.ee/files/whitepapers/

sharemind-deployment-and-performance-whitepaper.pdf.

[Des88] Yvo Desmedt. Society and group oriented cryptography: A new concept. In
CRYPTO ’87: A Conference on the Theory and Applications of Cryptographic
Techniques on Advances in Cryptology, pages 120–127, London, UK, 1988.
Springer-Verlag.

[DFK+06] Ivan Damg̊ard, Matthias Fitzi, Eike Kiltz, Jesper Buus Nielsen, and Tomas
Toft. Unconditionally secure constant-rounds multi-party computation for
equality, comparison, bits and exponentiation. In Shai Halevi and Tal Rabin,
editors, TCC, volume 3876 of Lecture Notes in Computer Science, pages 285–
304. Springer, 2006.

[DJ01] Ivan Damg̊ard and Mats Jurik. A generalisation, a simplification and some
applications of Paillier’s probabilistic public-key system. In PKC ’01: Pro-
ceedings of the 4th International Workshop on Practice and Theory in Public
Key Cryptography, pages 119–136, London, UK, 2001. Springer-Verlag.

[DT06] Ivan Damgard and Rune Thorbek. Linear integer secret sharing and dis-
tributed exponentiation. Cryptology ePrint Archive, Report 2006/044, 2006.
http://eprint.iacr.org/.

[Fel87] Paul Feldman. A practical scheme for non-interactive verifiable secret shar-
ing. In Proceedings of the 28th Annual Symposium on Foundations of Com-
puter Science, SFCS ’87, pages 427–438, Washington, DC, USA, 1987. IEEE
Computer Society.

[Fla05] David Flanagan. Java In A Nutshell, 5th Edition. O’Reilly Media, Inc., 2005.

[FP09] Oriol Farras and Carles Padro. Ideal hierarchical secret sharing schemes.
Cryptology ePrint Archive, Report 2009/141, 2009. http://eprint.iacr.

org/.

[Gen09] Craig Gentry. Fully homomorphic encryption using ideal lattices. In STOC
’09, pages 169–178. ACM, 2009.

[GMW87] O. Goldreich, S. Micali, and A. Wigderson. How to play any mental game. In
STOC ’87: Proceedings of the nineteenth annual ACM symposium on Theory
of computing, pages 218–229, New York, NY, USA, 1987. ACM.

[GRR98] Rosario Gennaro, Michael O. Rabin, and Tal Rabin. Simplified VSS and fast-
track multiparty computations with applications to threshold cryptography.

BIBLIOGRAPHY 47

In PODC ’98: Proceedings of the seventeenth annual ACM symposium on
Principles of distributed computing, 1998.

[HKS+10] Wilko Henecka, Stefan Kgl, Ahmad-Reza Sadeghi, Thomas Schneider, and
Immo Wehrenberg. Tasty: Tool for automating secure two-party computa-
tions. Cryptology ePrint Archive, Report 2010/365, 2010. http://eprint.

iacr.org/.

[KLR06] Eyal Kushilevitz, Yehuda Lindell, and Tal Rabin. Information-theoretically
secure protocols and security under composition. In STOC ’06: Proceedings
of the thirty-eighth annual ACM symposium on Theory of computing, pages
109–118, New York, NY, USA, 2006. ACM.

[KN06] Eyal Kushilevitz and Noam Nisan. Communication complexity. Cambridge
University Press, 2006.

[MDT12] Chao Ning Morten Dahl and Tomas Toft. On secure two-party integer di-
vision. In Financial Cryptography and Data Security 2012, 2012. To be
published.

[MNPS] Dahlia Malkhi, Noam Nisan, Benny Pinkas, and Yaron Sella. The fairplay
project. http://www.cs.huji.ac.il/project/Fairplay/home.html.

[MNPS04] Dahlia Malkhi, Noam Nisan, Benny Pinkas, and Yaron Sella. Fairplay—
a secure two-party computation system. In SSYM’04: Proceedings of the
13th conference on USENIX Security Symposium, pages 20–20, Berkeley, CA,
USA, 2004. USENIX Association.

[MP09] SIMAP Secure Information Management and Processing. Secure multiparty
computation language, 2009. http://www.brics.dk/SMCL/.

[MWB99] M. Malkin, T. Wu, and D. Boneh. Experimenting with Shared Generation
of RSA keys. In In Proceedings of Symposium on Network and Distributed
System Security (SNDSS, 1999.

[oTCa] University of Tartu and AS Cybernetica. http://sharemind.cs.ut.ee/.

[oTCb] University of Tartu and AS Cybernetica. http://code.google.com/p/

tastyproject/.

[Pai99] Pascal Paillier. Public-key cryptosystems based on composite degree resid-
uosity classes. In In Advances in Cryptology EUROCRYPT 1999, pages
223–238. Springer-Verlag, 1999.

[pro] SecureSCM project. http://www.securescm.org/.

[RSA78] R. L. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital
signatures and public-key cryptosystems. Commun. ACM, 21(2):120–126,
1978.

[Sha79] Adi Shamir. How to share a secret. Commun. ACM, 22(11):612–613, 1979.

[SKM10] Axel Schroepfer, Florian Kerschbaum, and Guenter Mueller. L1 - an inter-
mediate language for mixed-protocol secure computation. Cryptology ePrint
Archive, Report 2010/578, 2010. http://eprint.iacr.org/.

48

[Tea09] VIFF Developement Team. Viff, the virtual ideal functionality framework,
2009. http://viff.dk/.

[Tho09] Rune Thorbek. Linear Integer Secret Sharing. PhD thesis, Department of
Computer Science, University of Aarhus, Denmark, 2009.

[Tof07] Tomas Toft. Primitives and Applications for Multi-party Computation. PhD
thesis, Department of Computer Science, University of Aarhus, Denmark,
2007.

[Tof09] Tomas Toft. Solving linear programs using multiparty computation. In Fi-
nancial Cryptography and Data Security, volume 5628 of Lecture Notes in
Computer Science, pages 90–107. Springer Berlin / Heidelberg, 2009.

[vDGHV09] Marten van Dijk, Craig Gentry, Shai Halevi, and Vinod Vaikuntanathan.
Fully homomorphic encryption over the integers. Cryptology ePrint Archive,
Report 2009/616, 2009. http://eprint.iacr.org/.

[Yao79] Andrew Chi-Chih Yao. Some complexity questions related to distributive
computing(preliminary report). In Proceedings of the eleventh annual ACM
symposium on Theory of computing, pages 209–213, New York, NY, USA,
1979. ACM.

[Yao82] Andrew C. Yao. Protocols for secure computations. In SFCS ’82: Proceedings
of the 23rd Annual Symposium on Foundations of Computer Science, pages
160–164, Washington, DC, USA, 1982. IEEE Computer Society.

II

INCLUDED PAPERS

Paper A

Multi-party Secure Position Determination

Tord Ingolf Reistad

At Norsk informatikkonferanse 2006 (NIK 06)
http://www.himolde.no/nik06/articles/12-Reistad.pdf

Molde, Norway, November 20-22, 2006

MULTI-PARTY SECURE POSITION

DETERMINATION

Tord Ingolf Reistad
Dept. of Telematics, Norwegian University of Science and Technology

O.S. Bragstads plass 2E, N-7491 Trondheim, Norway

tordr@item.ntnu.no

Abstract We consider the problem of calculating the geographical position of nodes in
a wireless network, where the privacy of location data is highly valued. A
solution is presented using a multi-party computation, where the secret inputs
are the position of anchor nodes and distances between nodes.

1. Introduction

Mobile ad-hoc networks (MANET) are wireless mobile devices (nodes) that
cooperatively form a network without central infrastructure. Each node co-
operates by being involved in routing and forwarding information between
neighbors. Thus, an ad-hoc network allows devices to create a network with-
out prior coordination or configuration.

In a non-homogeneous networks some nodes know their geographical posi-
tion, and distance between nodes can be estimated. This information can be
used to calculate the position of additional nodes in the network. The position
data thus generated can in turn be used for a wide variety of applications, such
as route tracking, location based services and many more.

On the other hand privacy of location data might be very important. This
because ad-hoc networks might be implemented in future generations of mobile
phones. Ad-hoc network can also be integrated into other mobile devices such
as PDA’s, digital cameras and laptops that are worn or carried around.

The location data can be kept private with the use of multi-party calcula-
tions. Multi-party calculations are distributed calculations done by multiple
parties. Each value that should be private is split up into shares, such that
an single share does not give any information about the value itself. Calcu-
lations can be performed on these shares, and the answer can be revealed by
recombining shares representing the answer.

Our contribution is to show how multi-party computations can be performed
on location data, to improve privacy in ad-hoc networks. This is part of

54

ongoing research, therefore only the protocols for simple location calculations
in one and two dimensions are given.

1.1 Related work

Multi-party computations were introduced by Yao [1] and fundamental re-
sults obtained by Ben-Or, Goldwasser, and Wigderson [2], as well as Chaum,
Crepau, and Damg̊ard [3]. An integral part of any multi-party computation
are secret sharing schemes. We will use Shamir’s secret sharing scheme which
was introduced in [4]. Damg̊ard et al. [5] has shown novel techniques for
calculating comparison and bit extraction.

The paper is organized as follows. In the following section, we describe the
model, in section 3 we fix the notation for the article. We then recall the basics
of a multi-party computation in section 4, present our solution in section 5,
and discuss conclusion and future work in section 6.

2. Model

Consider an ad-hoc network of communicating nodes some of which know
their geographical position, henceforth called anchor nodes. While others
would like to compute their own geographical position and will be referred
to as floater nodes. Both sets of nodes would like their geographical position
to remain secret.

We present a protocol that uses multi-party computations to provide the
floater nodes with their geographical position, while ensuring the privacy of
location data of all honest participants. We assume that the communicating
parties can determine the distance between them. This can for example be
done by examining the loss of signal strength or by calculating the time the
signal takes to propagate. We also assume there exists private channels to
each node e.g. each node has a public RSA key, this to ensure that shares will
only be known to the correct recipients.

In the protocols we describe, we make the assumption that the positions
of nodes are in a two dimensional plane. This is a good approximation for
long range ad-hoc networks, while greatly simplifying the computations and
reducing the communication complexity.

We also assume that there are sets of k ≥ 3 anchor nodes that are in direct
communication range with at least some floater nodes in the network, and
the anchor nodes are willing to participate in the computation. When these
floater nodes find their geographical position they can in turn act as anchor
nodes to other floater nodes.

3. Notation

All computations on secret shares will be performed over a finite field F.
This finite field is assumed to be chosen large enough such that no over-
flow occurs within the field - i.e. all computation on the inputs is equiv-

Paper A: Multi-party Secure Position Determination 55

alent to computation over integers. The nodes will be denoted by capital
letters A, B, C, and P , their position will be denoted by the coordinates
(xA, yA), (xB, yB), (xC, yC), and (xP , yP), respectively. The distance between
nodes A and B will be denoted by |AB|.

The shares for a secret s will be denoted by [s]i where i identifies the recip-
ient of the share.

4. Multi-party computation

Suppose m players P1, . . . , Pm owning secret inputs x1, . . . , xm ∈ F, respec-
tively, would like to compute a function y = f(x1, . . . , xm) without revealing
more about x1, . . . , xm than what can be inferred from the output y.

They achieve this by first distributing shares of their input values to each
other by using, for instance, Shamir’s secret sharing scheme. Then they per-
form all operations given by the function f on the distributed shares and
finally recombine the shares to obtain the output y.

Let a, b be secrets with shares [a]i, [b]i, 1 ≤ i ≤ m, and let c ∈ F. Since
the function f can be written as a rational function in x1, . . . , xm, only the
following operations need to be carried out.

Linear Combination

Shamir’s secret sharing scheme is linear, that is, shares for linear combi-
nations of secrets are equal to the corresponding linear combination of
shares and can be computed by the participants without any interaction.
Thus, [a + cb]i = [a]i + c[b]i.

Multiplication

The multiplication of two secrets a and b can be done by the following
interactive protocol, described in [6].

Each player i computes the value hi = [a]i[b]i, splits hi into shares [hi]j
and distributes the shares [hi]j.

Each player can then compute a share of the product ab by using the
following equation.

[ab]i =

m
∑

j=1

λj[hj]i (1)

where λj is the first row of the inverse of the Van der Monde matrix
[ij]1≤i≤m,0≤j≤m−1 .

Multiplicative Inverse

We use the protocol given in [7]. To compute 1/b the players first create
a random number R as follows. Each player i distributes shares [ri]j of
a random number ri and adds up all received shares to obtain [R]i =
∑m

k=1[rk]i, so that R =
∑m

i=1[R]i.

56

The shares for the value bR are calculated using the multiplication pro-
tocol and then bR is revealed. The shares for the inverse of b are then
calculated as

[

b−1
]

i
= (bR)−1[R]i. (2)

5. Position calculations

To simplify the exposition, we begin by solving the one dimensional analogue
of our problem.

5.1 One-dimensional calculations

If a node P wants to know its position in a one-dimensional world it only
needs to contact two anchor nodes A and B. In what follows, P needs to
know the distances |AP | and |BP |, while A and B only need to know their
positions xA and xB, respectively. A, B, and P can then carry out the following
protocol which allows P to learn its position xP . All secrets will be shared
using a (2, 3)–threshold linear secret sharing scheme.

A and B distribute shares of their positions xA and xB, P distributes shares
of |AP | and |BP |.

Shares for the following values are then calculated by each party.

xA1 = xA + |AP | xB1 = xB + |BP |
xA2 = xA − |AP | xB2 = xB − |BP |

e.g. the shares [xA1]i are calculated from the sum [xA]i + [|AP |]i, for all
nodes i ∈ A, B, P

Thereafter A, B and P calculate the following function and the resulting
shares are sent to P which will enable P to learn its position.

xP =
xA1xA2 − xB1xB2

(xA1 + xA2)− (xB1 + xB2)
(3)

The division can be done in the field only if xP is known to be an integer
value. Otherwise division in the field will not give the same answer as division
in over integers. A solution to integer division is to use the methods in [5] to
get the bits and do integer division over the bits.

5.2 The 2-dimensional case

The two dimensional case involves at least four parties, namely three anchor
nodes A, B, C, and one floater node P .

Paper A: Multi-party Secure Position Determination 57

The three circles described by the following equations intersect, by con-
struction, in the point (xP , yP).

(x− xA)2 + (y − yA)2 = |AP |2

(x− xB)2 + (y − yB)2 = |BP |2

(x− xC)2 + (y − yC)2 = |CP |2

From each pair of circles we can construct a line passing through their
intersection. The equations for these lines can be written as

2(xA − xB)xP + 2(yA − yB)yP = x2
A − x2

B + y2
A − y2

B + BP 2 − AP 2

2(xA − xC)xP + 2(yA − yC)yP = x2
A − x2

C + y2
A − y2

C + CP 2 −AP 2

2(xB − xC)xP + 2(yB − yC)yP = x2
B − x2

C + y2
B − y2

C + CP 2 − BP 2

If no two nodes are close by each other, it suffices to solve any pair of the
above equations for (xP , yP). Thus the above equations can be simplified to
the following linear system.

a1xP + b1yP = c1

a2xP + b2yP = c2

The solution of the linear system is then obtained by the following functions

xP =
c1b2 − c2b1

a1b2 − b1a2
yP = −c1a2 − c2a1

a1b2 − b1a2

Again the division can generally not be done over the field, so the shares
for the values (c1b2 − c2b1), (c1a2 − c2a1) and (a1b2 − b1a2) are sent to P . P
recombines the shares to get the values and does the divisions over integers to
obtain its position (xP , yP).

In practice finding the geographical position of P in 2 dimensions can be
done with 3 rounds of communication. In the first round all the variables
are distributed. The second round the multiplication is done in parallel. The
third round consists of sending the shares for the answers to P . With 4 nodes
the privacy is preserved as long as 2 nodes do not cooperate.

This idea can easily be generalized to higher dimensions.

6. Conclusion and future work

In this paper we have given an introduction into multi-party computation
over Shamir’s secret sharing scheme. We have also shown how these methods

58

can be used to compute geographical position using simple algorithms for
calculating location in one and two dimensions. The equations are quite simple
and do not perform so well when anchor points are close together or in a line,
but they improve privacy.

To improve the accuracy of the calculations and to compute geographical
position in ad-hoc networks which have fewer anchor nodes, one can use better
algorithms. A great deal of work has been done on localization, e.g. Strang
et al. [8]. Localization in wireless ad-hoc and sensor networks can be found
in e.g. [9] and [10]. But multi-party computations require many rounds of
communication, e.g. calculating if a > b costs 114 rounds of communication
as proposed by Damg̊ard et al. [5]. Therefore further research is needed to get
more round efficient computations, and find algorithms that are well suited to
multi-party computations.

Homomorphic public-key systems and threshold homomorphic public-key
systems could be explored as an alternative to multi-party computations. A
overview of such systems is given in [11].

Also for larger networks a subset of nodes could together be used as a form
of distributed trusted third party. This could reduce the computational burden
for the overall system.

6.1 Acknowledgments

We would like to thank Sasa Radomirovic for many helpful comments
throughout the writing process.

Bibliography

[1] A. Yao. Protocols for secure computation. In IEEE, editor, 23rd annual Symposium on
Foundations of Computer Science, November 3–5, 1982, Chicago, IL, pages 160–164.
IEEE Computer Society Press.

[2] M. Ben-Or, S. Goldwasser, and A. Wigderson. Completeness theorems for noncrypto-
graphic fault-tolerant distributed computations. In Proceedings of the twentieth annual
ACM Symposium on Theory of Computing, 1988 ACM Press., pages 1–10.

[3] D. Chaum, C. Crepeau, and I. Damg̊ard. Multiparty unconditionally secure protocols.
In Proceedings of the twentieth annual ACM Symposium on Theory of Computing, 1988
ACM Press., pages 11–19.

[4] Adi Shamir. How to share a secret. Communications of the Association for Computing
Machinery, 22(11):612–613, November 1979.

[5] Ivan Damg̊ard, Matthias Fitzi, Eike Kiltz, Jesper Buus Nielsen, and Tomas Toft. Un-
conditionally secure constant-rounds multi-party computation for equality, comparison,
bits and exponentiation. Proceedings of the third Theory of Cryptography Conference
TCC 2006, pages 285–304, 2006.

[6] Rosario Gennaro, Michael Rabin, and Tal Rabin. Simplified VSS and fast-track Mul-
tiparty Computations with applications to Threshold Cryptography, 1998.

[7] J. Bar-Ilan and D. Beaver. Non-cryptographic fault-tolerant computing in a constant
number of rounds. In ACM, editor, Proceedings of the Eighth Annual ACM Symposium
on Principles of Distributed Computing: Edmonton, Alberta, Canada, August 14–16,
1989, pages 201–209, ACM Press.

[8] Gilbert Strang and Kai Borre. Linear algebra, geodesy, and GPS. Wellesley-Cambridge
Press, Wellesley, MA, USA, 1997.

[9] Koen Langendoen and Niels Reijers. Distributed localization in wireless sensor net-
works: a quantitative comparison. Computer Networks (Amsterdam, Netherlands:
1999), 43(4):499–518, November 2003.

[10] A. Savvides, H. Park, and M. Srivastava. The n-hop multilateration primitive for node
localization problems. Mobile Networks and Applications, 8(4):443 – 451, aug 2003.

[11] Kristian Gjøsten. Homomorphic public-key systems based on subgroup membership
problems. Proceedings of MyCrypt 05 volume 3715 of LNCS, pages 314–327, 2005.

60

Paper B

Secret Sharing Comparison by Transformation and Ro-
tation

Tord Ingolf Reistad and Tomas Toft

In Preproceedings, International Conference on Information Theoretic Secu-
rity 2007 (ICITS 07)

Madrid, Spain, May 25-28, 2007

SECRET SHARING COMPARISON BY

TRANSFORMATION AND ROTATION

Tord Ingolf Reistad
Dept. of Telematics, Norwegian University of Science and Technology

O.S. Bragstads plass 2E, N-7491 Trondheim, Norway

tordr@item.ntnu.no

Tomas Toft
University of Aarhus, Dept. of Computer Science,

DK-8200 Aarhus N, Denmark.∗

tomas@daimi.au.dk

Abstract Given any linear secret sharing scheme with a multiplication protocol, we show
that a given set of players holding shares of two values a, b ∈ Zp for some prime
p, it is possible to compute a sharing of ρ such that ρ = (a < b) with only eight
rounds and 29` + 36 log2(`) invocations of the multiplication protocol, where
` = log(p). The protocol is unconditionally secure against active/adaptive ad-
versaries when the underlying secret sharing scheme has these properties. The
proposed protocol is an improvement in the sense that it requires fewer rounds
and less invocations of the multiplication protocol than previous solutions.

Further, most of the work required is independent of a and b and may
be performed in advance in a pre-processing phase before the inputs become
available, this is important for practical implementations of multiparty com-
putations, where one can have a set-up phase. Ignoring pre-processing in the
analysis, only two rounds and 4` invocations of the multiplication protocol are
required.

1. Introduction

In multiparty computation (MPC) a number of parties P1, . . . , Pn have pri-
vate inputs for some function that they wish to evaluate. However, they are
mutually mistrusting and do not wish to share their inputs with anyone. A
great deal of work has been done on unconditionally secure constant round
MPC with honest majority including but not limited to [1, 9, 4, 10], indeed
it has been demonstrated that any function can be computed securely using
circuit based protocols.

∗Supported by Simap

64

However, when considering concrete applications, it is often more efficient
to focus on secure arithmetic e.g. in the field Zp for some odd prime p, which
may then be used to simulate integer arithmetic. Unfortunately, many such ap-
plications require non-arithmetic operations as well; this provides motivation
for constructing specialized, efficient, constant-rounds protocols for primitive
tasks.

Access to the binary representation of values allows many operations to
be performed relatively cheaply. Although constant-round bit-decomposition
is possible as demonstrated by Damg̊ard et al. [5], it is less efficient than
desired. Primitives may be used repeatedly and any improvement of these
lead to improvements in the overall applications. This work focuses on one
such primitive, namely comparison (less-than-testing) of secret shared values,
i.e. obtaining a sharing of a bit stating whether one value is less than another
without leaking any information.

Related work and contribution. Much research has focused on secure
comparison in various settings as it is a quite useful primitive, though focus
is often on some concrete application e.g. auctions. Often the setting differs
from the present [2, 7, 13]. Through bit-decomposition, Damg̊ard et al. pro-
vided the first constant rounds comparison in the present setting [5] – this
required O(` log(`)) secure multiplications where ` = log(p). Comparison was
later improved by Nishide and Ohta [11] who reduced the complexity to O(`)
multiplications.

A common streak in all of the above solutions is that the binary representa-
tion of the values is considered. Thus, unless a radically different approach is
taken, improving on the O(`) bound does not seem feasible. The present work
builds on sub-protocols and ideas of [5] and [11], but also uses ideas from [6]
which considers comparison of bitwise stored values based on homomorphic
encryption in a two-party setting.

Based on these papers, we construct a protocol with the aim of reducing
the constants hidden under big-O. In particular, when the protocol is split
into pre-processing (secure computation independent of the inputs) and online
computation, the online round complexity is extremely low; this split has not
been considered in the related literature.

Table 1 compares the present solution to those of Damg̊ard et al. and Nishide
and Ohta. Type A refers to comparison of arbitrary values [a], [b] ∈ Zp, while
R denotes values of restricted size, [a], [b] < bp4c. When using Zp to simulate
integer computation, it is not unreasonable to choose p a few bits larger to
accommodate this assumption.

With regard to the restricted comparison, in contrast to earlier papers (and
the general comparison of Table 1), it is assumed that two rather than four
attempts are needed to generate random bitwise shared values. When gener-
ating such values, the probability of failing may be as high as 1/2 implying
that multiple attempts may be needed. Earlier work used a Chernoff bound

Paper B: Secret Sharing Comparison by Transformation and Rotation 65

Table 1. Complexities of comparison protocols

Presented in Type Rounds Multiplications
overall online overall online

[5] A 44 37 184` log2(`) + 209` 21` + 56` log2(`)
[11] A 15 8 279` + 5 15` + 5

This paper A 10 4 153` + 432 log2(`) + 24 18` + 8

[5] R 44 37 171` + 184` log2(`) 21` + 56` log2(`)
[11] R 13 6 55` + 5 5` + 1

This paper R 11 2 24` + 26 log2(`) + 4 4` + 1
This paper R 8 2 27` + 36log2(`) + 5 4` + 1

to bound the number of required attempts by a factor of four, ensuring that
overall failure was negligible in the number of generated values.

In this paper we assume only a factor of two plus κ attempts, where κ is a
security parameter much smaller than the number of values to be generated.
It can be shown that in this case, the probability of failure (encountering too
many failures) is negligible in κ. An alternative way of viewing the issue is that
the random element generation is rerun. This does not compromise security,
however, we only obtain an expected constant-rounds solution (with double
round complexity), however, this only affects pre-processing. The issue only
occurs when p may be arbitrary; if it is chosen sensibly, e.g. as a Mersenne
prime, the failure probability may be reduced to negligible in the bit-length
of p implying even greater efficiency.

The structure of this article. Sections 3 and 4 introduce the setting as
well as a number of primitives required. Most of these are well-known, and
are included in order to provide detailed analysis of our protocol. Section 5
takes a high-level view of the computation required; it reduces the problem of
comparison to a more manageable form similar to previous work. Section 5
introduces the DGK comparison protocol, while Sect. 4 shows how the DGK
algorithm can be used to create random bitwise shared elements. Sections 7,
8 and 9 modifies DGK to avoid leaking information. Finally Sect. 10 gives an
overall analysis and conclusion.

Acknowledgments. The authors would like to thank Jesper Buus Nielsen
for discussions as well as comments on the article. Further, the anonymous
reviewers are thanked for their helpful comments, and Prof. Ivan Damg̊ard
and Prof. Stig Frode Mjølsnes for their support.

2. Preliminaries

We assume a linear secret sharing scheme with a multiplication protocol al-
lowing values of the prime field Zp, ` = dlog(p)e, to be shared among n parties.

66

As as example, consider Shamir’s scheme along with the protocols of Ben-Or
et al. (or the improved protocols of Gennaro et al.) [12, 3, 8]. The properties
of the scheme are inherited, i.e. if this is unconditionally secure against ac-
tive/adaptive adversaries then so are the protocols proposed. In addition to
sharing values and performing secure arithmetic of Zp, the parties may reveal
(reconstruct) shared values, doing this ensures that the value becomes known
by all parties.

We use [a] to denote a secret sharing of a ∈ Zp. Secure computation is
written using an infix notation. For shared values [a] and [b], and constant
c ∈ Zp, computation of sums will be written as [a] + c and [a] + [b], while
products will be written c[a] and [a][b]. The initial three follow by the linearity
of the scheme, while the fourth represents an invocation of the multiplication
protocol.

Sharings of bits, [b] ∈ {0, 1} ⊂ Zp will also be considered. Boolean arith-
metic is written using infix notation, though it must be realized using field
arithmetic. Notably xor of two bits is constructed as [b1]⊕ [b2] = [b1] + [b2]−
2[b1][b2] which is equivalent.

Values may also be bitwise shared, written [a]B . Rather than having a
sharing of a value itself, sharings of the bits of the binary representation of a
are given, i.e. [a0], . . . , [a`−1] ∈ {0, 1} such that

[a] =

`−1
∑

i=0

2i[ai]

for ` = dlog(p)e, with the sum being viewed as occurring over the integers.
Note that [a] is easily obtained from [a]B by the linearity of the scheme.

When considering complexity, the focus will be on communication. Compu-
tation will be disregarded in the sense that polynomial time suffices. Similar
to other work, focus will be placed on the number of invocations of the mul-
tiplication protocol as this is considered the most costly of the primitives.
Addition and multiplication by constants require no interaction and is con-
sidered costless. The complexity of sharing and revealing is seen as negligible
compared to that of multiplication and is ignored.

It is assumed that invocations of the multiplication protocol parallelize ar-
bitrarily – multiplications are executed in parallel when possible. Round com-
plexity is formally rounds-of-multiplications; rounds for reconstruction are dis-
regarded as in other work.

3. Simple Primitives

This section introduces a number of simple primitives required below. Most
of these sub-protocols are given in [5] but are are repeated here in order to pro-
vide a detailed analysis as well as for completeness. Most of these are related
to the generation of random values unknown to all parties. It is important

Paper B: Secret Sharing Comparison by Transformation and Rotation 67

to note that these may fail, however, this does not compromise the privacy of
the inputs – failure simply refers to the inability to generate a proper random
value (which is detected). Generally the probability of failure will be of the
order 1/p, which for simplicity will be considered negligible, see [5] for further
discussion.

Random element generation. A sharing of a uniformly random, un-
known value [r] may be generated by letting all parties share a uniformly
random value. The sum of these is uniformly random and unknown to all,
even in the face of an active adversary. The complexity of this is assumed to
be equivalent to an invocation of the multiplication protocol.

Random non-zero values. A uniformly random, non-zero value may
be obtained by generating two random values, [r] and [s] and revealing the
product. If rs = 0 the protocol fails, however if not, [r] is guaranteed non-zero
and unknown as it is masked by [s]. The complexity is three multiplications
in two rounds.

Random bits. The parties may create an uniformly random bit [b] ∈
{0, 1}. As described in [5] the parties may generate a random value [r] and
reveal its square, r2. If this is 0 the protocol fails, otherwise they compute
[b] = 2−1((

√
r2)−1)[r] + 1) where

√
r2 is defined such that 0 ≤

√
r2 ≤ p−1

2 .
The complexity is two multiplications in two rounds.

Unbounded Fan-In Multiplications. It is possible to compute prefix-
products of arbitrarily many non-zero values in constant rounds using the
method of Bar-Ilan and Beaver [1]. Given [a1], . . . , [ak] ∈ Z

∗
p, [a1,i] = [

∏i
j=1 aj]

may be computed for i ∈ {1, 2, . . . , k} as follows.
Let r0 = 1 and generate k random non-zero values [r1], . . . , [rk] as described

above, however, in parallel with the multiplication of [rj] and the mask [sj],
compute [rj−1sj] as well. Then [rj−1r

−1
j] may be computed at no cost as

[rj−1sj] · (rjsj)
−1. Each [aj] is then multiplied onto [rj−1r

−1
j] and all these are

revealed. We then have

[a1,i] =
i
∏

j=1

(ajrj−1r
−1
j) · [rj] .

Privacy of the [aj] is ensured as they are masked by the [r−1
j], and complexity is

5k multiplications in three rounds. Regarding the preparation of the masking
values as pre-prossessing, the online complexity is k multiplications in a single
round.

Constructing a unary counter. Given a secret shared number [a] <
m < p−1 for some known m, the goal is to construct a vector of shared values

68

[V] of size m containing all zeros except for the a’th entry which should be
1. This may be constructed similarly to the evaluation of symmetric Boolean
functions of [5].

Let [A] = [a + 1] and for i ∈ {0, 1, . . . , m− 1} consider the set of functions:
fi : {1, 2, . . . , m + 1} → {0, 1} mapping everything to 0 except for i + 1 which
is mapped to 1. The goal is to evaluate these on input A. By Lagrange
interpolation, each may be replaced by a public m-degree polynomial over Zp.
Using a prefix-product, [A], . . . , [Am] may be computed; once this is done, the
computation of the entries of [V] is costless. Thus, complexity is equivalent
to prefix-product of m terms.

4. A High-level View of Comparison

The overall idea behind the proposed protocol is similar to that of other
comparison protocols, including that of [11]. The problem of comparing two
secret shared numbers is first transformed to a comparison between shared
values where sharings of the binary representations are present; this greatly
simplifies the problem. The main difference between here and previous solu-
tions is that we consider inputs of marginally bounded size: [a], [b] < bp−1

4 c.
This assumption reduces complexity but may be dropped; the section con-
cludes with a sketch of the required alterations allowing a general comparison
as in previous works. Once the problem is transformed to comparison of bit-
wise represented values, the novel secure computation of the following sections
may be applied.

The goal is to compute a bit [ρ] = ([a] < [b]). The transformation of the
problem proceeds as follows, first the comparison of [a′] = 2[a] + 1 < p−1

2 and

[b′] = 2[b] < p−1
2 rather than that of [a] and [b] is considered. This does not

alter the result, however, it ensures that the compared values are not equal,
which will be required below.

As [a′], [b′] < p−1
2 , comparing them is equivalent to determining whether

[z] = [a′]−[b′] ∈ {1, 2, . . . , (p− 1)/2}. In turn this is equivalent to determining
the least significant bit of 2[z], written [(2z)0]. If z < (p− 1)/2, then 2z ∈ Zp

is even; if not then a reduction modulo p occurs and it is odd.
The computation of [(2z)0] is done by first computing and revealing [c] =

2[z] + [r]B, where [r]B is uniformly random. Noting that [(2z)0] depends only
on the least significant bits of c and [r]B (c0 and [r0]) and whether an overflow
(a modulo p reduction) has occurred in the computation of c. The final result
is simply the xor of these three Boolean values.

It can be verified that determining overflow is equivalent to computing
c < [r]B; the remainder of the article describes this computation. Privacy
is immediate and follows from the security of the secret sharing scheme. See-
ing c does not leak information, as [r]B is uniformly random then so is c. The
full complexity analysis is postponed until Sect. 10.

Paper B: Secret Sharing Comparison by Transformation and Rotation 69

Unbounded [a] and [b]. If it is not ensured that [a], [b] < bp−1
4 c then

further work must be performed in order to perform a comparison. Similarly to
[11] bits [t=] = [a = b], as well as [ta] = [a < (p− 1)/2], [tb] = [b < (p− 1)/2],
and [tδ] = [a− b < (p− 1)/2] may be computed. Based on these, the final
result may be determined by a small Boolean circuit which translates to a
simple secure computation over Zp. The result is either immediate (if [a] = [b])
or may be determined by the three latter bits.

5. The DGK Comparison Protocol

In [6] Damg̊ard et al. proposed a two-party protocol for comparison based
on a homomorphic encryption scheme. They consider a comparison between
a publicly known and a bitwise encrypted value with the output becoming
known. Though their setting is quite different, ideas may be applied in the
present one. Initially, we consider comparison of two unknown, `-bit, bitwise
shared values [a]B and [b]B, determining [a] < [b] is done by considering a
vector [E] = [e`−1], . . . , [e0] of length ` with

[ei] = [si]

1 + [ai]− [bi] +

`−1
∑

j=i+1

([aj]⊕ [bj])

 (1)

where the [si] are uniformly random non-zero values.

Theorem 2 (DGK). Given two bitwise secret shared values [a]B and [b]B, the
vector [E], given by equation 1 will contain uniformly random non-zero values
and at most one 0. Further, a 0 occurs exactly when [a] < [b].

Proof. The larger of two values is characterized by having a 1 at the most
significant bit where the numbers differ. Letting m denote the most significant
differing bit-position, the intuition behind the [ei] is that [e`−1], . . . , [em+1] will
equal their respective [si], and [em−1], . . . , [e0] will also be uniformly random

and non-zero, as 1 ≤ ∑`−1
j=i+1([aj] ⊕ [bj]) ≤ ` for i < m. Finally, [em] will

then be 0 exactly when [bm] is 1, i.e. when [b] is larger than [a], otherwise it is
random as well.

Though the non-zero elements of vector [E] are random, the location of the
zero leaks information. In [6] this is solved by the two-party nature of the
protocol – the [ei] are encrypted, with one party knowing the decryption key,
while the other permutes them. The multiparty setting here requires this to
be performed using arithmetic.

6. Creating Random Bitwise Shared Values

Based on the comparison of Sect. 5, a random, bitwise shared value [r]B
may be generated such that it is less than some k-bit bound m. This is
accomplished by generating the k bits [rk−1], . . . , [r0] and verifying that this

70

represents a value less than m. Noting that information is only leaked when
a 0 occurs in the [ei], ensuring that this coincides with the discarding of [r]B
if it is too large suffices. Based on the above, the k [ei] are computed as

[ei] = [si]

1 + (m− 1)i − [ri] +
k−1
∑

j=i+1

((m− 1)j ⊕ [rj])

 (2)

where (m− 1)i denotes the i’th bit of m− 1. By Theorem 2 this will contain
a 0 exactly when m− 1 < [r]B ⇔ [r]B ≥ m.

The complexity of generating random bitwise shared values consists of the
generation of the k bits and the k masks, [sk−1], . . . , [s0], plus the k multipli-
cations needed to perform the masking. Overall this amounts to 4k multipli-
cations in three rounds as the [ri] and [si] may be generated in parallel (and
the [si] need not be verified non-zero, this increases the probability of failure
marginally). The probability of success depends heavily on m, though it is at
least 1/2. Note that this may be used to generate uniformly random elements
of Zp.

7. Avoiding Information Leaks

Though Sect. 5 has reduced the problem of general comparison to that of
comparing a public value to a bitwise shared one, c < [r]B , two problems
remain with regard to the DGK-protocol in the present setting. First off, the
result is stored as the existence of a 0 in a vector [E] of otherwise uniformly
random non-zero values, rather than as a single shared bit [ρ] ∈ {0, 1} which
is required to conclude the computation. Second, the position of the 0 in [E]
(if it exists) leaks information.

Hiding the result. The former of the two problems may be solved by
“masking the result” thereby allowing it to be revealed. Rather than attempt-
ing to hide the result, the comparison will be hidden. Formally, a uniformly
random value [s] ∈ {−1, 1} is generated, this is equivalent to generating a
random bit. The [ei] of equation 1 are then replaced by

[ei] = [si]

1 + (ci − [ri])[s] +

`−1
∑

j=i+1

(cj ⊕ [rj])

 .

As [z] is non-zero, we have c 6= [r]B, and thus the desired result is the one
obtained, xor’ed with −2−1([s]− 1); if the comparison was flipped ([s] = −1)
so is the output. Note that the observation made here implies that when
considering comparison, it suffices to consider public results: Shared results
are immediately available by randomly swapping the inputs.

Paper B: Secret Sharing Comparison by Transformation and Rotation 71

Hiding the location of the 0 . In order to hide the location of the 0, the
[ei] must be permuted, however, as the non-zero entries are uniformly random,
it suffices to shift [E] by a unknown, random amount v ∈ {0, 1, . . . , `− 1}. I.e.
constructing a vector [Ẽ] with [ẽi] = [e(i+v) mod `].

Shifting an `-term vector by some unknown amount [v] may be done by
encoding [v] in a shifting-vector [W] of length ` with entries

[wi] =

{

0 i 6= [v]
1 i = [v]

Note that this is exactly the unary counter of Sect. 4. Given this, an entry of
the shifted vector may be computed as:

[ẽi] = [e(i+v) mod `] =
`−1
∑

j=0

[ej] · [w(j+i) mod `] , (3)

however, this implies quadratic complexity overall. Thus, rather than shifting
the [ei], the [ẽi] will be computed based on already shifted values, i.e. we will
consider [r̃i] = [r(i+v) mod `] and [c̃i] = c(i+[v]) mod ` along with shifted sums of
xor’s (the masks [si] need not be shifted). This leaves us with two distinct
problems:

1 Obtain the shifted bits of [r]B and c.

2 Obtain the shifted sums of the xor’ed bits

The solutions to these problems are described in the following sections.

8. Shifting Bits

The first thing to note is that securely shifting known values is costless,
though naturally the result is shared. This is immediate from equation 3, thus
the shifted bits of c, [c̃`−1], . . . , [c̃0], are available at no cost.

Regarding [r], shifting its bits is as difficult as shifting the [ei]. Thus an
alternative strategy must be employed, namely generating “shifted” bits and
constructing the unshifted [r] from these. Let [v] denote the shifting-value and
[W] the shifting vector, and compute an `-entry bit-vector [K] as

[ki] = 1−
i
∑

j=0

[wj] (4)

at no cost. Clearly [ki] = 1 for i < [v] and [ki] = 0 for i ≥ [v]. [r] may then be
computed based on random “shifted” bits as

[r] = [2−v] ·
(

`−1
∑

i=0

2i[r̃i]
(

1 + [ki](2
` − 1)

)

)

,

72

where [2−v] is computed by the costless
∑`−1

i=0 2−i[wi]. It can be verified that
the above is correct, assuming that the bits represent a value in Zp. [2−v]
performs the “unshifting,” while the final parenthesis handles “underflow.”

It remains to verify that the bits represent a shifted value of Zp. This may
be done by performing the exact same computation as needed for the full
comparison, i.e. shifting the bits of p− 1, computing the shifted sums of xors
(as described below) and masking these. The shifting value [v] is “hard-coded”
into [r], but it may be “reused” for this, as no information is leaked when no
0 occurs, i.e. when [r] < p. When information is leaked, the value is discarded
anyway.1

Generating [r] and the shifted bits [r̃i] involves creating a uniformly random
value [v] ∈ {0, 1, . . . , `− 1} as described in Sect. 4. This requires 3 rounds and
8 log2(`) multiplications, as a factor of two attempts are needed when p may
be arbitrary. [W] may be computed from [v] using 5 log2(`) multiplications,
but only one additional round as pre-processing parallelizes. The shifted bits
of [r] and the masks [si] may be generated concurrently using 3` multiplica-
tions; these masks will not be ensured non-zero as this is unlikely to occur, this
results in a slightly larger probability of aborting. Checking [r]B < p adds four
rounds and 4` multiplications, providing a total of 8 rounds, 7` + 13 log2(`)
multiplications. A factor of two attempts of this implies 14` + 26 log2(`) mul-
tiplications in 8 rounds per random value generated.

Computing [r] based on the shifted bits uses an additional round and 1
multiplication as the [r̃iki] are needed for the verification of [r] anyway. Con-
currently, a sharing of the least significant bit of [r] may be obtained using `
multiplications as described by equation 3. This value is needed for the overall
computation.

9. Shifting the Sums of Xor’s

It remains to describe how to “shift” the sums of the xor’s,
∑`−1

j=i+1 [rj]⊕cj .

The shifted xor’s [c̃i ⊕ r̃i] may be computed directly based on the previous
section. The sum, however, consists of the terms from the current index to
the shifted position of the most significant bit, which may or may not “wrap
around.” Focusing on a single [ẽi], we consider two cases: i < [v] and i ≥ [v].
Naturally, [v] is unknown, however, the correct case is determined by [ki] of
above.

When i < [v] the terms have been shifted more than i, thus we must sum
from i + 1 to [v]− 1, this equals:

[σ<
i] =

`−1
∑

j=i+1

[kj] · ([r̃j ⊕ c̃j]) .

Multiplying by the [kj] ensures that only the relevant terms are included. For
i ≥ [v] the terms are shifted less than i, thus the most significant bit does not

Paper B: Secret Sharing Comparison by Transformation and Rotation 73

pass the i’th entry. The sum must therefore be computed from i to `− 1 and
from 0 to [v]− 1. Viewing this as the sum of all terms minus the sum from
[v] to i we get

[σ≥

i] =

`−1
∑

j=0

[r̃j ⊕ c̃j]

−

i
∑

j=0

(1− [kj]) · [r̃j ⊕ c̃j]

 .

Thus, as the computation of the two candidates [σ<
i] and [σ≥

i] for each
position i is linear, computing all sums simply require selecting the correct
one for each entry based on [ki]:

[ki][σ
<
i] + (1− [ki]) [σ≥

i] .

All this requires 3 rounds and 4` multiplications, however, noting that

[kj] · ([r̃j]⊕ [c̃j]) = [kj r̃j] + ([kj]− 2[kjr̃j]) [c̃j] ,

the [kjr̃j] is pre-prossessed. This reduces the online complexity of calculating
the sums to 1 round and 3` multiplications.

10. Overall Analysis and Optimizations

Pre-processing. Initially a uniformly random value [v] ∈ {0, 1, . . . , `− 1}
must be created. This value is used to construct a random shifting vector
[W] of length `. Concurrently the shifted bits of [r] are generated. It must
then be verified that [r] < p. Once this is done the values [r] and [r0] may
be computed. In addition, the non-zero masks [si], the sign bit [s] must be
generated, and [si ·s] and [si ·ki] computed in order to reduce online complexity
as described below.

The overall cost of creating the [v], [W] and shifted bits [r̃i] of [r] is eight
rounds, 14`+ 26 log2(`) multiplications. In addition, creating [r], [r0], [si], [s],
[si · s], and [si · ki] adds another round and 6` + 3 multiplications (as [kir̃]
are already computed). The total pre-processing complexity is therefore nine
rounds 20` + 26 log2(`) + 3 multiplications.

Round complexity may be further reduced as [v] and [W] may be created
in parallel, also [r] and [r0] may be computed before [r] < p is verified. Addi-
tionally, the verification of [r] < p may be reduced by one round at the cost of
` additional multiplications by masking the sums of xor’s and the remainder
of Eq. 2 separately. The complexity of pre-processing is thereby changed to 6
rounds, though 23` + 36 log2(`) + 4 multiplications are required.

74

Online. The computation of c = [r] + 2 ((2[a] + 1)− 2[b]) where [a], [b] <
bp4c is costless. The intuition behind the online computation of the [ẽi] is

[ẽi] = [si]
(

1 + ([c̃i]− [r̃i]) [s] +
(

[ki][σ
≥

i] + (1− [ki]) [σ<
i]
))

,

however, this is rephrased to reduce online round complexity:

[si] + [si · s] ([c̃i]− [r̃i]) +
(

([si · ki])[σ
≥
i] + ([si]− [si · ki]) [σ<

i]
)

. (5)

This implies two rounds and 4` multiplications: First [σ<
i] and [σ≥

i] are de-
termined using ` multiplications, then three parallel multiplications are per-
formed for each of the ` instances of Eq. 5. Letting e denote if a 0 was
encountered in the [ẽi], the final result is

[ρ] = [r0]⊕ c0 ⊕
((

−2−1([s]− 1)
)

⊕ e
)

= [r0 ⊕ (−2−1([s]− 1))]⊕ c0 ⊕ e ,

where the multiplication needed parallelizes with the above. Indeed it is even
possible to perform this in pre-processing, though it adds another round.

The overall complexity is therefore 24`+26 log2(`)+4 multiplications in 11
rounds or 8 rounds 27`+ 36 log2(`)+ 5 if the pre-processing round complexity
is optimized as described above.

Bibliography

[1] Bar-Ilan, J., Beaver, D.: Non-cryptographic fault-tolerant computing in a constant
number of rounds of interaction. In Rudnicki, P., ed.: Proceedings of the eighth annual
ACM Symposium on Principles of distributed computing, New York, ACM Press (1989)
201–209

[2] Bogetoft, P., Damg̊ard, I., Jakobsen, T., Nielsen, K., Pagter, J., Toft, T.: Secure
computing, economy, and trust: A generic solution for secure auctions with real-world
applications. BRICS Report Series RS-05-18, BRICS (2005) http://www.brics.dk/

RS/05/18/.

[3] Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for noncrypto-
graphic fault-tolerant distributed computations. In: 20th Annual ACM Symposium on
Theory of Computing, ACM Press (1988) 1–10

[4] Cramer, R., Damg̊ard, I.: Secure distributed linear algebra in a constant number of
rounds. In Kilian, J., ed.: Advances in Cryptology - Crypto 2001, Berlin, Springer-
Verlag (2001) 119–136 Lecture Notes in Computer Science Volume 2139.

[5] Damg̊ard, I., Fitzi, M., Kiltz, E., Nielsen, J., Toft, T.: Unconditionally secure constant-
rounds multi-party computation for equality, comparison, bits and exponentiation. In
Halevi, S., Rabin, T., eds.: Theory of Cryptography. Volume 3876 of Lecture Notes in
Computer Science (LNCS)., Springer (2006) 285–304

[6] Damg̊ard, I., Geisler, M., Krøigaard, M.: Efficient and secure comparison for on-line
auctions. In: ACISP 07: 12th Australasian Conference on Information Security and
Privacy. Lecture Notes in Computer Science, Springer-Verlag, Berlin, Germany (2007)
Forthcoming.

[7] Fischlin, M.: A cost-effective pay-per-multiplication comparison method for million-
aires. In Naccache, D., ed.: Topics in Cryptology – CT-RSA 2001. Volume 2020 of
Lecture Notes in Computer Science., Springer-Verlag, Berlin, Germany (2001) 457–471

[8] Gennaro, R., Rabin, M., Rabin, T.: Simplified vss and fast-track multiparty compu-
tations with applications to threshold cryptography. In: PODC ’98: Proceedings of
the seventeenth annual ACM symposium on Principles of distributed computing, New
York, NY, USA, ACM Press (1998) 101–111

[9] Ishai, Y., Kushilevitz, E.: Randomizing polynomials: A new representation with appli-
cations to round-efficient secure computation. In: 41st Annual Symposium on Foun-
dations of Computer Science, Las Vegas, Nevada, USA, IEEE Computer Society Press
(November 12–14, 2000) 294–304

76

[10] Ishai, Y., Kushilevitz, E.: Perfect constant-round secure computation via perfect ran-
domizing polynomials. In: Proceedings of ICALP 2002, Berlin, Springer-Verlag (2002)
244–256 Lecture Notes in Computer Science Volume 2380.

[11] Nishide, T., Ohta, K.: Multiparty computation for interval, equality, and comparison
without bit-decomposition protocol. In: PKC 2007: 10th International Workshop on
Theory and Practice in Public Key Cryptography. Lecture Notes in Computer Science,
Springer-Verlag, Berlin, Germany (2007)

[12] Shamir, A.: How to share a secret. Communications of the ACM 22(11) (1979) 612–613

[13] Schoenmakers, B., Tuyls, P.: Practical two-party computation based on the conditional
gate. In Lee, P.J., ed.: Advances in Cryptology – ASIACRYPT 2004. Volume 3329 of
Lecture Notes in Computer Science., Springer-Verlag, Berlin, Germany (2004) 119–136

Paper C

Multiparty Comparison, An improved multiparty proto-
col for comparison of secret-shared values

Tord Ingolf Reistad

In Proceedings of SECRYPT 2009, International conference on security and
cryptography

Milano, Italy. July 6-10, 2009

MULTIPARTY COMPARISON, AN IMPROVED

MULTIPARTY PROTOCOL FOR COMPARISON
OF SECRET-SHARED VALUES

Tord Ingolf Reistad
Dept. of Telematics, Norwegian University of Science and Technology

O.S. Bragstads plass 2E, N-7491 Trondheim, Norway

tordr@item.ntnu.no

Abstract Given any linear secret sharing scheme with a multiplication protocol, we show
that a set of players holding shares of two values a, b ∈ Zp for some prime p
(written [a] and [b]), it is possible to compute a sharing [result] such that
[result] = ([a] < [b]). The protocol maintains the same security against ac-
tive/adaptive adversaries as the underlying secret sharing scheme.

1. INTRODUCTION

In the millionaire problem [Yao, 1982] two or more millionaires want to know
which one of them is richer without revealing each other’s wealth. This was
one of the first protocols for multiparty computation, and illustrates the chal-
lenges in multiparty protocols in practical applications. As the goal of the
protocol between the millionaires should not only keep the input private, but
also compute the result quickly.

In the millionaire problem each player (millionaire) knows his own wealth,
which is the input to that is sent to the protocol. In a more generalized
setting the inputs might not be explicitly known to any single party, but
resulting from a linear combination of secret inputs by several parties, or from
an earlier intermediate result.

In general a multiparty computation (MPC) is a computation between a
number of parties P1, . . . , Pn. These parties have private inputs x1, . . . , xn and
they want to compute some function f on these inputs, where f(x1, . . . , xn) =
(y1, . . . , yn) such that Pi learns yi but nothing else. The players are mutually
mistrusting and do not wish to share their inputs.

When considering concrete applications, the function f is often computed
using Shamir secret sharing scheme over a field Zp for some large odd prime
p. The function is computed using simulated integer arithmetic. This means
that although the values are points in a finite field, they can be used as integer
values in Z. This is analogous to current day computers where each value is

80

stored as a limited set of bits. The difference is that in the multiparty protocol
there is no way to efficiently check for overflow, the prime p will therefore
have to be chosen such that all simulated integer values are less than p for all
possible inputs.

Although there exists efficient protocols for addition and multiplication of
secret shared values, most functions or algorithms f require additional oper-
ators such as comparison and equality checking. This motivates us in con-
structing specialized efficient protocols that realizes such operators. These
operator primitives may be used repeatedly and any improvement in the im-
plementations of the primitive operators will lead to a similar improvement in
an overall application.

Comparison in a multiparty computation setting could be solved by circuit
based computations. All inputs would then be split into bits. Comparison be-
tween inputs would then be easy, but this would make addition and multipli-
cation much more complicated so the overall effect would be slower computer
programs.

This work describes a protocol for one such primitive operator, namely com-
parison (inequality-testing) of secret shared values. That is, given two secret
shared values [a] and [b], a secret shared bit [result] = [a < b] is obtained
stating whether one value is larger than the other without leaking any infor-
mation. This protocol is more efficient than all previously published constant
round protocols for comparison.

Section 2 discusses this work in relation to previously published papers.
Sections 3 and 4 introduce the model as well as a number of primitives required.
Most of these are well-known, and are included in order to provide detailed
analysis of our protocol. Section 5 Gives first a high-level view of the protocol
and then discusses the details. Finally Section 6 gives the conclusion and
further improvements.

2. RELATED WORK

Research on multiparty computation (MPC) has mostly focused on either
primitives for multiparty computations or on some concrete applications such
as actions [Bogetoft et al., 2005, Fischlin, 2001, Schoenmakers and Tuyls,
2004]. This paper considers neither of these cases. It assumes underlying
primitives for multiparty computations with addition and multiplication of
field elements. It also does not consider concrete applications as comparison
of elements are just one piece in a framework for multiparty computations.

Damg̊ard et al. provided the first constant rounds comparison in the present
setting [Damg̊ard et al., 2006], the protocol relied on bit-decomposition of
values this approach required O(` log(`)) secure multiplications where ` =
log(p). Comparison was later improved by Nishide and Ohta [Nishide and
Ohta, 2007] who reduced the complexity to O(`) multiplications.

The most recent solutions have concentrated on a binary representation
of the values being compared. Thus, unless a radically different approach is

Paper C: Multiparty Comparison

taken, improving on the O(`) bound does not seem feasible. The present work
builds on sub-protocols and ideas of [Damg̊ard et al., 2006], [Nishide and Ohta,
2007] and [Reistad and Toft, 2007] and aims at reducing the constants hidden
under big-O. These costs hidden under big-O are becoming more relevant as
multiparty is implemented and used in practical applications [Bogetoft et al.,
2008].

Type Rounds Multiplications
overall online overall online

[Damg̊ard et al., 2006] A 44 37 184` log2(`) + 209` 21` + 56` log2(`)
[Nishide and Ohta, 2007] A 15 8 279` + 5 15` + 5
[Reistad and Toft, 2007] A 12 4 84` + 78 log2(`) + 17 18l + 5

This paper A 8 2 58.5` + 33 4.5`

[Damg̊ard et al., 2006] R 44 37 184` log2(`) + 165` 21` + 56` log2(`)
[Nishide and Ohta, 2007] R 13 6 49` + 5 5` + 1
[Reistad and Toft, 2007] R 10 2 17` + 26 log2(`) + 4 5`
[Reistad and Toft, 2007] R 8 2 20` + 36log2(`) + 6 5`

This paper R 6 0 7, 5` + 11 1, 5`

Table 1. Complexities of comparison protocols

Table 1 compares the solution presented in this paper to those of Damg̊ard
et al., Nishide and Ohta, and Reistad and Toft. Type A refers to comparison of
arbitrary values [a], [b] ∈ Zp, while R is for restricted values [a], [b] < b

p
4c and

a prime p = 2
`
−c where c is a small integer; when using Zp to simulate integer

computation, it is not unreasonable to choose p in such a way to accommodate
these two assumption. Furthermore to give the protocols equal footing we
assume that all protocols use the same underlying protocols see section 4.
E.g. the protocol for creating random bitwise shared values are created using
the same protocol. For comparison of arbitrary values in arbitrary fields it
is assumed that the underlying protocol will have to be run two times for
a total of 8` multiplications. For a well chosen p and restricted values this
complexity can be assumed to be close to 2`. As the test becomes more
efficient and the probability of having to run the underlying protocol twice
becomes insignificant.

A distinction is also made between online complexity and pre-processing
complexity. Pre-processing are all the computations that can be made inde-
pendent of the private inputs. Online computations are all those computations
that can only be made once the private inputs are available.

3. MODEL

We assume a linear secret sharing scheme that allows for multiparty addition
and a multiplication of secret shared values, to be shared among n > 2 parties.
The security properties of the secret sharing scheme are inherited, i.e. if the

81.

82

secret sharing scheme is unconditionally secure against active/adaptive adver-
saries then so is the protocols proposed. As as example, consider Shamir’s
scheme along with the protocols of Ben-Or et al. (or the improved protocols
of Gennaro et al.) [Shamir, 1979, Ben-Or et al., 1988, Gennaro et al., 1998].

The communication model is that there exist authenticated private chan-
nels between each pair of parties. The model assumes that in addition to
sharing values and performing secure arithmetic on Zp, the parties may reveal
(reconstruct) shared values. Revealing a secret shared value ensures that the
value becomes known by all parties.

We use [a] to denote a secret sharing of a ∈ Zp among the n parties, where
p is an `-bit prime (` > 7). The operators are written using an infix notation.
For shared values [a] and [b], and constant c ∈ Zp, computation of sums will
be written as [a] + c and [a] + [b], while products will be written c[a] and
[a][b]. The first three operator are computed locally, while the fourth operator
represents an invocation of the multiplication protocol.

Sharings of bits, [b] ∈ {0, 1} ⊂ Zp will also be considered. Boolean arith-
metic is written using infix notation, though it must be realized using field
arithmetic. Notably xor of two bits is constructed as [b1]⊕ [b2] = [b1] + [b2]−
2[b1][b2] which is equivalent.

Values may also be bitwise shared, written [a]B . Rather than having a
sharing of a value itself, [a], sharings of the bits of the binary representation
of a are given, i.e. [a0], . . . , [a`−1] ∈ {0, 1} such that

[a]B =

`−1
∑

i=0

2i[ai] (1)

for ` = dlog(p)e, with the sum being viewed as occurring over the integers.
Note that [a] is easily obtained from [a]B as it is a linear combination.

Similarly a publicly known value c can be split into bits, where ci represents
the i’th bit of c. c0 is the least significant bit of c.

Complexity. When considering complexity, the focus of the analysis will
be on communication. Similar to other work, focus will be placed on the num-
ber of invocations of the multiplication protocol as this is considered the most
costly of the primitives. It is assumed that invocations of the multiplication
protocol parallelize and multiplications are executed in parallel when possible.
When we say ”one round” we mean one round of arbitrary many invocations
of the multiplication protocol, all performed in parallel among the parties.

Multiplication by constants and addition require no interaction and is there-
fore considered cost-less. The complexity of sharing and revealing is seen as
negligible compared to that of multiplication. Rounds for reconstruction are
disregarded as in other work.

Paper C: Multiparty Comparison

4. SIMPLE PRIMITIVES

This section introduces a number of simple primitives required below. Most of
these sub-protocols are given in [Damg̊ard et al., 2006] but are repeated here
in order to provide a detailed analysis as well as for completeness. Most of
these are related to the generation of random values unknown to all parties.
It is important to note that these may fail, however, this does not compromise
the privacy of the inputs – failure simply refers to the inability to generate a
proper random value (which is detected). Generally the probability of failure
will be of the order 1/p, which for simplicity will be considered negligible, see
[Damg̊ard et al., 2006] for further discussion.

Random element generation. A sharing of a uniformly random, un-
known value [r] may be generated by letting each party share a uniformly ran-
dom value ri ∈ Zp. The sum [r] =

∑

ri mod p of these is uniformly random
and unknown to all, even in the face of an active adversary. The complexity
of this is assumed to be equivalent to one invocation of the multiplication
protocol.

Random bits. The parties may create a uniformly random bit [b] ∈ {0, 1}.
The parties may generate a random value [r] and reveal its square, r2. If this is

0 the protocol fails, otherwise they compute [b] = 2−1((
√

r2 is defined such that 0 ≤
√

r2 ≤ p−1
2 . The complexity is two multiplications

in two rounds.

Creating Random Bitwise Shared Values. The parties may create a
uniformly random bitwise shared value [r]B less than some m, k = dlog2(m)e,
as described in [Reistad and Toft, 2007]. This is accomplished by generating k
bits [rk−1], . . . , [r0] and verifying that this represents a value less than m. The
verification is done by creating a vector with elements [ei] and revealing them.
Note that this protocol will be used to generate uniformly random bitwise
shared elements of Zp (done by setting m = p).

[ei] = [si]
(

1 + (m− 1)i − [ri] +
k−1
∑

j=i+1

((m− 1)j ⊕ [rj])
)

(2)

The notation (m − 1)i denotes the i’th bit of m − 1 and [si] are random
shares in Zp. Revealing the shares [ei] gives a vector that will contain a 0
element only when m − 1 < [r]B ⇔ [r]B ≥ m for proof see [Reistad and Toft,
2007]. Note that this protocol will leak information about the individual bits
[ri] if there is a 0 element, but this coincides with discarding the bits [ri].

The complexity of generating random bitwise shared values consists of the
generation of the k bits and k masks, in addition there are needed k multipli-
cations to perform the masking. Overall this amounts to 4k multiplications
in three rounds as the [ri] and [si] may be generated in parallel. For added

83.

84

efficiency the [ei] where (m−1)i = 1 do not need to be calculated or revealed,
as they are guaranteed to be non-zero. For m = 2k − c, where c is a small
integer the complexity can be reduced to 2k + 2 log(c).

Additional Improvement. The probability that the protocol above fails
to return a bitwise secret shared value, depends upon m. The worst case
scenario is m = 2k +1, which makes the probability of failing equal to 1/2. For
5 additional multiplications and no extra rounds the probability of restarting
can be lowered to an upper bound of 1/4 for all m. This is done by noting that
if the two highest order bits of m are 10, then the protocol fails if the products
of the two highest bits of [r]B is 1. The solution is therefore to create 2 or sets
of candidates for highest order bits. The two bits in each of the candidates can
be multiplied together and revealed, and the candidate only used if the product
is 0. This introduces no additional rounds of communication as [tk−1tk−2] can
be computed in parallel with computing the bits.

[rk−1rk−2] = 4−1(
[tk−1tk−2]
√

t2k−1

√

t2k−2

+
[tk−1]
√

t2k−1

+
[tk−2]
√

t2k−2

+ 1) (3)

Unbounded Fan-In Multiplications. It is possible to compute
prefix-products of arbitrarily many non-zero values in constant rounds using
the method of Bar-Ilan and Beaver [Bar-Ilan and Beaver, 1989]. Given

[a1], . . . , [ak] ∈ Z
∗
p, [a1,i] = [

∏i
j=1 aj] may be computed for i ∈ {1, 2, . . . , k} as

follows.
Let u0 = 1 and generate k random non-zero values [u1], . . . , [uk], however,

in parallel with the multiplication of [uj] and its mask [vj], compute [uj−1vj]
as well. Then [uj−1u

−1
j] may be computed at no cost as [uj−1vj] · (ujvj)

−1.

Each [aj] is then multiplied onto [uj−1u
−1
j] and all these are revealed. We then

have:

[a1,i] =

i
∏

j=1

(ajuj−1u
−1
j) · [ui] (4)

Privacy of the [aj] is ensured as they are masked by the [u−1
j], and complexity is

5k multiplications in three rounds. Regarding the preparation of the masking
values as pre-processing, the online complexity is k multiplications in a single
round.

5. THE COMPARISON PROTOCOL

The comparison protocol consists of 3 sub protocols, the first sub-protocol
transforms the comparison [a] < [b] into a comparison [r]B > c, where [r]B
is a random secret shared value and c is a value known to all parties. This
transformation is done so the other two protocols can work on individual bits.

Paper C: Multiparty Comparison

The second sub-protocol transforms the comparison [r]B > c into a single
[x] this share [x] is made in such a way that [x] <

√

4p effi-
ciently. Once the least significant bit of [x] is extracted then the bit represent-
ing the answer to the original comparison between [a] < [b] is computed with
two xor’s.

5.1 First Transformation

When [a], [b] < p−1
2 and [z] = [a]− [b], then [a] < [b] is equivalent to deter-

mining the least significant bit of 2[z], written [(2z)0]. The least significant
bit of [(2z)0] is found by computing and revealing c, where

[c] = 2[z] + [r]B = 2([a]− [b]) + [r]B (5)

c0 is the least significant bit of c, [r0] is the least significant bit of [r]B and
[r]B is a random bitwise shared value. We then have the following equation:

(

[a] < [b]
)

= [(2z)0] = c0 ⊕ [r0]⊕
(

[r]B > c
)

(6)

With this first transformation the comparison between [a] and [b] has then
been transformed to the problem of comparing [r]B > c. For more detail on
the transformation see [Reistad and Toft, 2007], and for unbounded values of
[a] and [b] see [Nishide and Ohta, 2007].

The cost of this transformation is the creation of one secret shared value
and one secret shared xor. The calculation of the secret shared value can be
done in 3 rounds in parallel with other pre-processing and the xor adds one
online multiplication in one round.

Privacy follows from the security of the secret sharing scheme. Revealing c
does not leak information, because [r]B is a uniformly random secret shared
value. Therefore the distribution of c is also uniformly random.

5.2 Computing X

Theorem 1:. Given a random secret shared value [r]B and a publicly
known value c. Let the secret shared value [x] be constructed as:

[x] =

l−1
∑

i=0

[ri](1− ci)2
Pl−1

j=i+1 cj⊕[rj] (7)

The least significant bit of [x], written [x0] is equal to the value [ri], where
i is the most significant bit where [ri] 6= ci. Or in other words [x0] is equal to
the boolean statement ([r]B > c).

85.

86

Proof:. Starting from the most significant bits we see that [ri](1− ci) and

the sum
∑l−1

j=i+1 cj⊕ [rj] are 0, as long as [ri] = ci. Beginning with the highest

order bit where [ri] 6= ci, the expression [ri](1− ci) is equal to [ri]. For lower

order bits after the first one where [ri] 6= ci, the sum
∑l−1

j=i+1 cj ⊕ [rj] becomes

non-zero. Therefore all lower terms except the first one where [ri] 6= ci become
either. 0 or some value 2k, where k < 1. �

For the greatest efficiency an even more complex form for the function for
[x] will be used. The function [x] is essentially the same only that for each
summation not one but two bits of [ri] and ci are considered at the same time.
Therefore [ri](1 − ci) will be expressed as ri > ci for 2 bits at a time, and
cj ⊕ [rj] will only return 1 if both pair of bits are equal. This ensures that

[x] < 2
l+1
2 .

This functions which compares two bits at a time is more efficient. In
addition it also avoids a problem in the next protocol. As that the function
[x] as stated above has a worst case bit length of `.

In the 2-bit version each pair of secret shared bits have to be multiplied
together at a cost of 0, 5` multiplications. This also computes the two bit

version of [ri](1−ci) and cj⊕ [rj]. Computing 2
Pl−1

j=i+1 cj⊕[rj] can be done with
fan-in multiplications in 2, 5` multiplications and the final multiplication costs
0, 5`. The protocol therefore takes a total of 3, 5` multiplications and 3 rounds
(as the random values for fan-in multiplications can be done in pre-processing).
Privacy of computing [x] is immediate as no value is revealed.

5.3 Extracting the Least Significant Bit

Extracting the last bit of a secret shared value [x], where [x] <
√

4p, can be
done efficiently. First a bitwise secret shared random variable [s]B is created.
The the value d is calculated and revealed, where

[d] = [s]B + [x] (8)

From this we can easily see that the least significant bit of [x], written as
[x0] is equal to [s0]⊕ d0, when d >

√
4p.

To create a generalized version for finding [x0], [s]B will have to be split into
3 parts [s]B = 2l−1[sl−1] + 2l−2[sl−2] + [ŝ]B. Note that two bits of information
are needed from [s]B as in a worst case scenario p might be 2l−1 + 1 and [s]B
might be 2l−1 − 1.

We then have that [ŝ]B + [x] < 2l−2 +
√

4p < p, for all p. As [d̂] = [ŝ]B + [x]
never will need a modulo p reduction.

[x0] = [ŝ0]B ⊕ [d̂0] (9)

The value [d̂0] cannot be revealed, as this would leak information about [x],

on the other hand there are only 4 possible values for [d̂] based upon the value

Paper C: Multiparty Comparison. 87

d, and the shares [sl−1] and [sl−2]. Therefore following equation need only

one secret shared multiplication to compute [d̂0]: (Note (d < 2l−1) returns 1
if d < 2l−1).

[d̂0] =(1− [sl−1]− [sl−2] + [sl−1sl−2])d0

+ ([sl−2]− [sl−1sl−2])(d0 ⊕ (d < 2l−2))

+ ([sl−1]− [sl−1sl−2])(d0 ⊕ (d < 2l−1))

+ ([sl−1sl−2])(d0⊕ (d < (2l−1 + 2l−2))

Going from [d̂0] to [x0] adds one multiplication, and going from [x0] to
[[a] < [b]] also add one more multiplication. Therefore once d is known it
takes 3 multiplications in 2 rounds to compute the original comparison. To
save rounds all combinations of the secret shared values [sl−1], [sl−2], [s0] and
[r0] can be pre-computed once [r]B and [s]B are known. This is done with 11
multiplications and 2 rounds that run in parallel with previous computations.
The privacy argument is the same as for the first transformation.

6. CONCLUSION AND FURTHER WORK

We have presented a protocol for comparison in constant rounds that is sig-
nificantly faster than previous versions. As the most time consuming part of
a MPC program is in many cases the comparison protocol, the efficiency of
the comparison protocol will directly affect the speed of the program.

The comparison protocol in [Reistad and Toft, 2007] has be implemented
in the VIFF framework (http://viff.dk/) therefore the implementation of the
protocol in this paper will show in practice how efficient the two protocols are
compared to each other.

Further improvements in the online computation can also be done as the

computation of 2
Pl−1

j=i+1 cj⊕[rj] when computing [x] in equation 7 can be split
into three multiplications.

∏

l−1
j=i+1(1 + cj) can be computed online without multiparty multiplica-

tions.

The last that product
∏

l−1
j=i+1(1−3 ·4

−1
(cj[rj])) can be pre-computed in

such two shares are created and only one of them is opened depending
upon cj.

This will result in the same amount of pre-computations, but will not require
any online computations only revealing values.

88

ACKNOWLEDGEMENTS

The author would like to thank the anonymous reviewers for their com-
ments, Stig Frode Mjølsnes and Harald Øverby for useful discussions on the
article and Tomas Toft for comments and fruitful discussions about MPC
comparison.

Bibliography

[Bar-Ilan and Beaver, 1989] Bar-Ilan, J. and Beaver, D. (1989). Non-cryptographic fault-
tolerant computing in a constant number of rounds of interaction. In Rudnicki, P., editor,
Proceedings of the eighth annual ACM Symposium on Principles of distributed computing,
pages 201–209, New York. ACM Press.

[Ben-Or et al., 1988] Ben-Or, M., Goldwasser, S., and Wigderson, A. (1988). Completeness
theorems for noncryptographic fault-tolerant distributed computations. In 20th Annual
ACM Symposium on Theory of Computing, pages 1–10. ACM Press.

[Bogetoft et al., 2008] Bogetoft, P., Christensen, D., D̊amgard, I., Geisler, M., Jakobsen, T.,
Krøigaard, M., Nielsen, J., Nielsen, J., Nielsen, K., Pagter, J., Schwartzbach, M., and
Toft, T. (2008). Multi-party computation goes live. Cryptology ePrint Archive, Report
2008/068.

[Bogetoft et al., 2005] Bogetoft, P., Damg̊ard, I., Jakobsen, T., Nielsen, K., Pagter, J., and
Toft, T. (2005). Secure computing, economy, and trust: A generic solution for secure
auctions with real-world applications. BRICS Report Series RS-05-18, BRICS. http:

//www.brics.dk/RS/05/18/.

[Damg̊ard et al., 2006] Damg̊ard, I., Fitzi, M., Kiltz, E., Nielsen, J., and Toft, T. (2006).
Unconditionally secure constant-rounds multi-party computation for equality, comparison,
bits and exponentiation. In Halevi, S. and Rabin, T., editors, Theory of Cryptography,
volume 3876 of Lecture Notes in Computer Science (LNCS), pages 285–304. Springer.

[Fischlin, 2001] Fischlin, M. (2001). A cost-effective pay-per-multiplication comparison
method for millionaires. In Naccache, D., editor, Topics in Cryptology – CT-RSA 2001,
volume 2020 of Lecture Notes in Computer Science, pages 457–471. Springer-Verlag,
Berlin, Germany.

[Gennaro et al., 1998] Gennaro, R., Rabin, M., and Rabin, T. (1998). Simplified vss and
fast-track multiparty computations with applications to threshold cryptography. In PODC
’98: Proceedings of the seventeenth annual ACM symposium on Principles of distributed
computing, pages 101–111, New York, NY, USA. ACM Press.

[Nishide and Ohta, 2007] Nishide, T. and Ohta, K. (2007). Multiparty computation for
interval, equality, and comparison without bit-decomposition protocol. In PKC 2007
International Workshop on Theory and Practice in Public Key Cryptography, Lecture
Notes in Computer Science. Springer-Verlag, Berlin, Germany.

[Reistad and Toft, 2007] Reistad, T. and Toft, T. (2007). Secret sharing comparison by
transformation and rotation. In Preproceedings ICITS, International Conference on In-
formation Theoretic Security 2007

90

[Schoenmakers and Tuyls, 2004] Schoenmakers, B. and Tuyls, P. (2004). Practical two-party
computation based on the conditional gate. In Lee, P. J., editor, Advances in Cryptology
– ASIACRYPT 2004, volume 3329 of Lecture Notes in Computer Science, pages 119–136.
Springer-Verlag, Berlin, Germany.

[Shamir, 1979] Shamir, A. (1979). How to share a secret. Communications of the ACM,
22(11):612–613.

[Yao, 1982] Yao, A. (1982). Protocols for secure computation. In Proceedings of the twenty-
third annual IEEE Symposium on Foundations of Computer Science, pages 160–164. IEEE
Computer Society.

Paper D

Realizing Distributed RSA Key Generation using VIFF

Atle Mauland, Tord Ingolf Reistad, Stig Frode Mjølsnes

At Norsk informasjonsikkerhetskonferanse 2009 (NISK 09)

Trondheim, Norway, November 24-25, 2009

REALIZING DISTRIBUTED RSA KEY

GENERATION USING VIFF

Atle Mauland
Dept. of Telematics, Norwegian University of Science and Technology

O.S. Bragstads plass 2E, N-7491 Trondheim, Norway

atle.mauland@gmail.com

Tord Ingolf Reistad
Dept. of Telematics, Norwegian University of Science and Technology

O.S. Bragstads plass 2E, N-7491 Trondheim, Norway

tordr@item.ntnu.no

Stig Frode Mjølsnes
Dept. of Telematics, Norwegian University of Science and Technology

O.S. Bragstads plass 2E, N-7491 Trondheim, Norway

sfm@item.ntnu.no

Abstract In this experimental work, we have implemented and analyzed the performance
of a protocol for multiparty RSA key generation. All players that take part in
the key generation protocol get a share of the resulting private key, while no
player gets any information about the prime numbers used.

We have implemented a distributed program based on an algorithm pro-
posed by Boneh and Franklin in 1997. The implementation is based on VIFF,
a new software framework for realizing multiparty computations. The program
is analyzed for key lengths up to 4096 bits. We demonstrate the efficiency of
shared RSA key generation employing VIFF and real network communication.
We are also able to propose improvements with respect to security and perfor-
mance compared to the previous published protocol.

1. Introduction

Consider the situation where an encrypted text should be decrypted only if
all players agree. An example of this is the voting application, where all talliers
have to agree that the voting is finished before the counting of the ballots can
begin. This implies that if the voting was done by encrypted ballots then the
talliers must first decrypt the ballots.

94

The ballots can either be encrypted using a symmetric or an asymmetric
key system. The advantage of using a symmetric key system is that key is
just a random string. The key can then easily be split into shares using any
secret sharing scheme. The problem is that the secret key must be used in the
encryption process. Therefore, th symmetric key system must find a solution
so that no single party gets hold of the secret key.

Clear Encryption

Public key

Cipher text

C1

C2

C3

S2S1 S3

Private key

Combine Clear
CM M

Figure 1. Encryption and decryption using a shared private key

This is not a problem for asymmetric cryptography because the encryption
key can be public. This is shown in Figure 1, but for an asymmetrical key
scheme such as RSA, one has to be generate a private/public key pair. This is
nontrivial if no single party should get hold of the private key, but the private
key should be split into shares. The public/private key pair can be computed
by using a trusted third party. The trusted third party then shares the private
key and publishes the public key. Again there has to be a solution so that
the trusted third party really is trusted and nobody gets hold of the private
key or any other information that can be used to break the public key crypto
system.

Our contribution. In this experimental work we use multiparty com-
putation to compute a function without the need for a trusted third party.
Multiparty computation is a system whereby multiple parties can compute a
common function based on private input. More specifically multiparty com-
putation is here used to compute a public/private key pair for RSA, without
any single party ever knowing the primes or the private key.

The algorithm used is based on the algorithm proposed by Boneh and
Franklin [BF97], and a more detailed version by Malkin, et al. [MWB99].
Based on our experimental insights, we propose 2 security improvements to
the algorithms, and some improvements related to the runtime. The algo-
rithm by Algesheimer, et al. [ACS02] has not been considered, because that

Paper D: Realizing Distributed RSA Key Generation using VIFF 95

algorithm switches between different integer sharing and sharing over finite
fields. This switching is not easily computed in our system.

Multiparty computation was introduced by Yao in 1982 [Yao82]. The VIFF
framework uses Shamir’s secret sharing scheme [Sha79] and the multiplication
protocol given in [BOGW88]. The VIFF framework provides a platform for
computing with secret shared values.

The structure of this article. Section 2 gives an outline of the algo-
rithm used and our improvements are discussed in Section 3. We then give
an overview of the VIFF framework in Section 4, before examining the per-
formance of the distributed protocol in Section 5. Finally Section 6 gives the
conclusion and further work.

2. The Distributed RSA Protocol

Although the RSA algorithm [RSA78] is well known, a short summary will
be given for completeness.

RSA key generation. Two primes p and q are chosen. The public ex-
ponent N is calculated as N = pq. In addition we need to compute φ(N) =
(p−1)(q−1) and select an integer e, such that gcd(φ(N), e) = 1, 1 < e < φ(N).
The private exponent d is computed as d = e−1 mod φ(N). The public key
is the pair of values e and N and the private key is the pair of values d and
N . φ(N) and the primes p and q are discarded.

Encryption and decryption. Given a plain text M such that M < N
the cipher text C is given as C ≡Me mod N and the decryption is M ≡ Cd

mod N .

2.1 The Distributed Protocol

The number of players contributing to the computation of the distributed
algorithm is k, where k ≥ 3. The distributed RSA protocol is taken from
[BF97] and given here for completeness. The protocol can be split into five
parts: First a candidate prime is generated, then this prime is tested if it
divisible by a small prime, this is called trial division. This first trial division
is performed on secret shared values. When 2 candidate primes have been
found, the value N is revealed and trial division is performed on N . After
that a biprimality test is performed on N . The biprimality test is a test to
verify that N is a product of only 2 primes. Finally if all the previous tests
are successful the private key is computed.

As seen from the description the value N is revealed early. This is before it
is known if it is a product of two primes or not, because it is faster to compute
on a publicly known value N than it is to compute on secret shared values.
An overview of the distributed algorithm is shown in Figure 2.1.

96

Start

Generate p

Trial division on p

Generate q

Trial division on q

Trial division on N

Reveal N

Dist. biprimality

Calculate d

Ok

Fail

Fail

Fail

Fail

Figure 2. Distributed RSA

Generating Candidate Primes. The generating of candidate primes and
first trial division is the same both primes the algorithm will only be explained
for one prime called q. The distributed biprimality test only works on Blum1

integers. Therefore player 1 chooses a random value q1 ≡ 3 mod 4 and all
other players choose a random value qi ≡ 0 mod 4. These values are secret
shared and the value q is computed as q =

∑k
i=1 qi.

Distributed Trial Division. The parties perform distributed trial di-
vision to determine if q is divisible by a small primes less than a boundary
B1 using multiparty computations. In Boneh and Franklin [BF97] this test
is done by each party picking a random value ri in addition to qi. Then the
following products are revealed:

qr = (

k
∑

i=1

qi)(

k
∑

i=1

ri) mod l (1)

where l are all small primes less than some bound B1. To avoid rejecting a
good candidate for q because r is divisible by l the product is computed twice
with two different sets of ri’s. An improvement for this test will be shown in
Section 3.

Trial Division on N . When both candidate primes p and q have passed
the distributed trial division step, then the value N = (p1 +p2 + . . .+pk)(q1 +
q2 + . . . + qk) is computed and revealed to all players. As N is the product
of two large candidate primes p and q, it should not be divisible by any other

Paper D: Realizing Distributed RSA Key Generation using VIFF 97

primes. The players therefore do a more comprehensive trial division on the
revealed N locally to check that N is not divisible by any small prime in the
domain [B1, B2] for some fixed B2 (typically much larger than B1). If N is
divisible by a small prime up to B2, this test is declared a failure and the
whole key generation protocol restarts by the players picking new values for
the candidate primes.

Distributed Biprimality Test. After the two initial division tests, N is
not divisible by any small prime number up to the boundary B2. The next
test is a distributed probabilistic biprimality test which consists of 4 steps (for
proof of correctness see [BF97]).

Step 1:. The players agree on a random g ∈ Z
∗
N . This is done by one of

the players picking a random g and revealing it to the other players.

Step 2:. The players compute the Jacobi symbol for g over N . If (g
N) 6= 1

then the distributed biprimality test is restarted with a new g.

Step 3:. The players computes v = gφ(N)/4 mod N . This is done by player
1 computing v1 = g(N−p1−q1+1)/4 mod N . The rest of the players compute
vi = g−(pi+qi)/4 mod N . Next, all players secret share their values of vi. The
value v is then computed and revealed. The equation for computing v is:

v =

k
∏

i=1

vi mod N (2)

Once v is revealed, the players check if:

v = ±1 mod N (3)

If v = ±1 mod N then the test fails the parties declare that N is not a product
of two distinct primes, the protocol is then restarted from the beginning by
picking new values for p and q.

Step 4:. There are two ways of implementing step 4, we have used the
alternative step of [BF97], this is shown below. This alternative step requires
very little calculations, but there is a bit more communication between the
players. This step tests if gcd(N, p + q − 1) > 1. The players cannot reveal
their private pi and qi, therefore each player also picks a random number
ri ∈ Z

∗
N . They then compute z such that

z = (

k
∑

i=1

ri)(−1 +

k
∑

i=1

(pi + qi)) mod N (4)

98

Next z is revealed, and the players check if gcd(z, N) > 1. If so, N is
rejected, and the protocol is restarted from the beginning. If N is actually
a product of two distinct prime numbers, it will pass this test with a high
probability.

If N passes this test, then N is declared to be the product of two distinct
primes and can be used, all that is left is then to compute the public and
private exponent.

Calculate Exponents. Once N is found, the next step is to find e and d
that form the public key and private key respectively. There are two options
regarding the public exponent e, it can either be set to a standard (small)
RSA exponent such that no calculations are required, or it can be calculated,
and therefore vary from key to key. We have chosen to use a static e = 216+1,
simplifying the computations somewhat. The calculation of d =

∑k
i=1 di needs

to be performed in a distributed manner, where each player will only learn its
own di. Traditionally, the gcd algorithm is used to find an inverse of e mod φ,
where φ = φ(N), but as modular arithmetic is very expensive in multiparty
computation, this would slow down the computations excessively. On the
other hand setting φ1 = N − p1 − q1 + 1 and φi = −pi − qi we have the
following equation:

φ =

k
∑

i=1

φi = N −
k
∑

i=1

(pi + qi) + 1 = N − p− q + 1 (5)

We can then compute e using the following 3 steps:

1 Compute ς = φ−1 mod e

2 Set T = −ς + 1. Observe that T ≡ 0 mod e.

3 Set d = T/e. d = e−1 mod φ since de = T and T ≡ 1 mod φ.

Since each player knows li = φi mod e the players can together compute
and reveal the value l =

∑k
i=1 li. The value ς = l−1 mod e is then known.

Therefore each player now can calculate:

di = b−ςφi

e
c (6)

The private key d can then be calculated as d = (
∑k

i=1 di)+r, where 0 ≤ r < k.
The value r is obtained by player 1 by doing one trial decryption. This is done
by player 1 first picking a message m and computing c = me mod N . Player 1
distributes the value c to all players who return to player 1 the value mi = cdi

mod N . Now all player 1 does is to compute the following for all possible
values of r:

m = (
k
∏

i=1

mi)c
r mod N (7)

Paper D: Realizing Distributed RSA Key Generation using VIFF 99

At last player 1 updates his value d1 by setting d1,new = d1,old + r, for the
value r that decrypted the message correctly.

The distributed RSA protocol is now complete, the values N and e are
known to all players and each player has a share of the value d. Note that
using a static e makes the protocol very efficient, but some bits of the key is
leaked to all the players. The leakage happens when calculating l = φ mod e
and the trial decryption process where r is determined. This leaks a total of
log2 e + log2 k bits. This step can however be conducted such that no bits
are leaked by using an arbitrary public exponent (see [BF97]) or doing the
computations of di secret shared, so no information is revealed before after
player 1 has updated his value d1. These modifications make the protocol
somewhat slower, but eliminates the leakage of information.

3. Improvements

Our first improvement is in the trial division of the primes. Instead of secret
shared computing the modulus of a small prime l, we compute with shares over
Zπ, where π is a large prime (π >> N). If the value that we are performing
trial division on is q, then each player computes and secret shares the value
ti = qi mod l. Adding the shares together results in

t =
k
∑

i=1

ti = sl + (q mod l), where 0 ≤ s < k (8)

The value u that is revealed is then:

u = t(t− l)(t− 2l) · · · (t− (k − 1)l)r (9)

Where r is a random value. If q is divisible by l then the revealed value u
becomes 0, otherwise it will be a random value in the field Zπ. This improves
the run time, by ensuring that the probability of discarding a good candidate
is minimal. In addition, it also improves the security in that the revealed value
u does not leak any information about q.

The second weakness is found in step 4 of the biprimality test. The step
checks the integers that fall into case 4 in the proof in [BF97], testing whether
gcd(N, p + q − 1) > 1, see Equation 4. For efficiency the reduction mod N
must be done after z is revealed. But this leaks information about (−1+p+q)
if z can be factored.

To avoid this possible information leakage, we propose the following equa-
tion, which is more efficient and more secure than Equation 4.

z = (

k
∑

i=1

ri)(−1 +

k
∑

i=1

(pi + qi)) + r2N (10)

100

Here r2 is a shared random value 0 ≤ r2 < Zπ/N − 2kN
3
2 . The factor r2N

does not modify the value z mod N , but hides the prime factors of z.

4. The Virtual Ideal Functionality Framework

VIFF [18] was started by Martin Geisler in March 2007. VIFF was started
with the aim of creating a software framework for doing multiparty computa-
tions in an easy, efficient and secure manner, programmed using Python and
Twisted for high flexibility. Python is a very flexible, high level programming
language with support for object-oriented programming. Twisted is an event-
driven network programming framework written in Python that abstracts the
low-level socket communication away for the programmer, which allows the
programmer to implement efficient asynchronous network applications in an
easy way.

VIFF follows the modularity principle, it has a very small, well-defined
core, which contains only the absolute necessary functionality for doing simple
multiparty computations. On top of this core, several modules are available,
which broaden the functionality of the framework, and thus making it more
useful in several different scenarios.

Basically, the core in VIFF consists of 3 principles (or classes): Share, Run-
time and Fields. Shares are objects that will contain share values sometime
in the future. The Runtime includes logic and mathematical methods for per-
forming arithmetic and other mathematical expressions using only shared val-
ues. The field classes ensures that values calculated in the Runtime are correct
according to the actual values by doing modular arithmetics and maintaining
the mapping between shared values and the real integer values.

The choice to use Python as programming language for VIFF has a good
reason. Python has very good support for what is called lambda (anonymous)
functions. These functions are created at runtime, and does not need to be
defined elsewhere in the code. Lambda functions can schedule operations for
share values before the share values actually are evaluated. When the share
values used in a lambda function are ready, the lambda function is calculated.
By using this method, a very efficient scheduling tree can be created, which
will complete in bottom-up manner, as soon as the leaf nodes contains values,
the parent node can be calculated. By using such a tree structure, VIFF can
schedule many operations in parallel, which is a crucial point to be able to
make secure multiparty computations efficient.

VIFF is released under the GNU LGPL license making it free to download
and modify. Applications that use VIFF can also be built applications without
having to license them under the GPL.

Paper D: Realizing Distributed RSA Key Generation using VIFF 101

bits Rounds Avg.time Ratio Min(s) Max(s)

32 100 1.75 s 0.03 min N/A 0.30 6.54

64 100 3.08 s 0.05 min 1.76 0.48 9.67

128 100 15.20 s 0.25 min 4.94 0.77 87.17

256 100 58.28 s 0.97 min 3.83 0.67 294.77

512 100 226.55 s 3.78 min 3.89 1.04 1326.16

1024 100 1956.69 s 32.61 min 8.64 7.04 8861.80

2048 10 7252.28 s 120.87 min 3.71 9.51 20713.43

4096 1 132603.92 s 36.83 h 18.28 - -

Table 1. The time used to generate a distributed RSA key over LAN.

5. Performance Testing

5.1 Equipment

The equipment used is three computers which are connected via a 10 Mbit/s
wired LAN. The specifications on the three computers are as follows:

HP Compaq DC7900, Intel Core 2 Duo processor clocked at 3 GHz, 3.5
GB memory, Windows XP SP3.

Dell Optiplex GX270, Intel Pentium 4 processor clocked at 2.6 GHz, 1
GB memory, Windows XP SP3.

Dell Optiplex GX270, Intel Pentium 4 processor clocked at 2.6 GHz, 1
GB memory, Windows XP SP3.

All three computers have been used when testing over LAN, while the HP
Compaq DC7900 computer has been used to test locally with all player on the
same computer.

5.2 Key Generation

The key generation part measures the average time needed to generate a
valid key. In this paper the average is found by performing the key generation
protocol 100 times (rounds) for the smaller keys and take the average of all
rounds. A smaller number of key generations have been done for for the largest
keys as they are very time consuming to generate. The testing is conducted
for key sizes from 32-bit to 4096-bit, using SSL on all tests. Key sizes less
than 1024 bits are generally considered insecure, and testing these are purely
to get an overview of the increase in time needed to generate valid keys as the
keys get larger.

The results from the LAN test are presented in Table 1. The ration in
column 5 is the average time divided by the average time for the previous row.

The first thing to notice from Table 1 is that the average time for generating
a 1024-bit distributed RSA key over LAN is 32.6 minutes, ranging from 7

102

bits Rounds Avg.time Ratio Min(s) Max(s)

32 100 0.66 s 0.01 min N/A 0.07 3.23

64 100 1.54 s 0.03 min 2.33 0.09 10.47

128 100 7.90 s 0.13 min 5.13 0.61 47.75

256 100 26.72 s 0.45 min 3.38 1.10 139.88

512 100 124.89 s 2.08 min 4.67 3.07 703.02

1024 100 835.48 s 13.92 min 6.69 4.94 3753.72

2048 10 6165.49 s 102.76 min 7.38 19.46 13128.69

4096 1 10431.07 s 173.85 min 1.69 - -

Table 2. The time used to generate a distributed RSA key on one computer.

seconds as the fastest to 8861 seconds (148 minutes) as the slowest. This is
quite a lot of time, and it excludes several scenarios for use of a distributed
RSA key. This also implies that the time required to create a 2048-bit and a
4096-bit distributed RSA key, become impractical for some applications.

Also notice that a steady ratio of approximately 4 applies to the low length
keys (up to 512 bits), this is an expected ratio when generating a distributed
RSA key. The probability of a randomly picked number near N being prime
is approximately 1/ ln(N). Doubling the number of bits in N means squaring
the maximum value of both p and q. Which in turn decreases the probability
of picking a prime to about half. Consequently the probability of picking 2
primes at the same time is given as:

1

ln(p)

1

ln(q)
≈ 1

(ln(p))2
(11)

The total ratio is therefore expected to approximately decrease by a factor of
4.

The larger ratios for the larger key sizes (1024-bit and up) indicate that
there are several significant reasons for the increased ratio. The calculations
must be performed on larger numbers, requiring more memory, more network
traffic is generated (potentially exceeding the limit of maximum packet size)
and a larger Zπ must be used to be able to represent all the shared values.

The results from testing on a single computer are presented in Table 2. This
test was performed on HP Compaq DC7900. While performing computations
on a single computer invalidates the security of a distributed RSA key algo-
rithm. This tests are performed to evaluate the impact of network traffic on
the algorithms. These local results are much faster than the LAN tests as the
communication is done locally on different ports instead of via the wired LAN.

Compared to the LAN tests, all key sizes takes approximately half the time
to conduct locally instead of over the LAN. The 1024-bit key size is actually
even better, performed in approximately 43% of the time needed over LAN.
The ratio are reasonable close to 4 also in this test, up to key size of 1024 bits.

Paper D: Realizing Distributed RSA Key Generation using VIFF 103

Function name LAN Local

Trial division p 39997 37152

Trial division q 39999 37137

Trial division N 6256 5812

Generating g 934 861

Checking v 467 431

Generating z 1 1

Generating d 1 1

Table 3. The average number of times each function is run

An interesting thing is the one 4096-bit key generated, was done in less than
3 hours compared to 37 hours to generate the 4096-bit key over LAN, but this
only illustrates that the time consumption for such large keys can vary a lot.

The range between minimum time and maximum time in the key generation
tests is quite big for all key sizes and for both LAN and locally. This is because
of the time used to find both p and q as primes can vary greatly and this
variance increases with key size.

Table 3 gives more details on which parts of the distributed RSA key gener-
ation protocol that are time consuming. The table gives the average number
of times each of the functions in the implementation is run while generating a
valid 1024-bit key.

The important thing to notice here is that the steps for key generation, up to
the step for generating d, is very time consuming, and is conducted numerous
times. On the other hand, once some candidates p and q have passed all the
test up to the step for checking v, the rest of the steps are only conducted 1
time. This means that improvements on the run-time of the protocol should
focus on the key generation step, and not so much on the step for calculating
the exponents and doing decryption and signature.

The test results for decryption are shown in Table 4. Note that these results
will also be valid as tests for distributed signature generation, because basically
the same code is executed. The number of rounds for all key sizes is 20, which
is enough to give a very good estimate for this test because the variance in
each set of results is very small.

As can be seen, the times are measured in milliseconds, which means that
once the key is generated, both decryption and signature can be used to more
or less all possible scenarios because of the quick execution, even for large keys.

The ratio is increasing very slowly up to 1024 bits, using almost the same
amount of time for 32-bit keys as for 512-bit keys. Again, the first leap is
from 512 bits to 1024 bits, however this leap is not as big for decryption as for
key generation. One reason for the lesser leap is that doing decryption and
signature code is conducted one time only in any case, while for key generation
the leap is affected by the accumulated value of many failed tries. The ratio
leaps further to 2048 bits and 4096 bits increase even a bit more, but the

104

LAN Local

bits Rounds Avg.time Ratio Avg.time Ratio

32 20 6.4 ms N/A 3.3 ms N/A

64 20 6.6 ms 1.0 3.4 ms 1.0

128 20 6.7 ms 1.0 3.4 ms 1.0

256 20 7.6 ms 1.2 4.1 ms 1.2

512 20 9.7 ms 1.3 5.0 ms 1.2

1024 20 20.2 ms 2.1 12.8 ms 2.6

2048 20 69.1 ms 3.4 53.2 ms 4.2

4096 20 560.7 ms 8.1 263.6 ms 5.0

Table 4. Decryption times

overall time needed is fairly low for all key sizes. It can also be seen that
the time needed to locally compute decryption and signature is about half
the time needed over LAN, which is essentially the same as was found for key
generation.

Other Timing Measurements. Both [BF97] and [MWB99] state that
1024-bit keys are generated in approximately 90 seconds, this was done on
much slower computers (clocked at 300 MHz) than what is used today . We
will compare our results to those proposed by Malkin et al. [MWB99], as they
give more data on their solution.

Their solution based on two independent components. One component ab-
stract low level communications, and provides encrypted links between servers.
This communication component was a COM package for Malkin et al. The
same functionality is performed by a library called Twisted in VIFF. The sec-
ond component is the high lever code. This was written in C Malkin et al.,
while in our program this was split between primitives given by the VIFF
framework and aditional code written on top of VIFF.

The most significant difference was that Malkin et al. did not do trial
division on p and q, instead they implemented a distributed sieving protocol.
They reported that this single optimization resulted in a 10-fold improvement
in running time and is probably most of the reason for our slower results.

This distributed sieving protocol works by first fixing the values p and q
modulo 30 to ensure that the primes are not divisible by 2,3 and 5. They then
computed a distributed sieving modulo M = 7 · 11 · 13 · · ·pl, where pl is the
sieving bound.

The distributed sieving algorithm works by each player i picking a random
integer r in the range [1, . . . , M]. Then computing r, r + 1, r + 2, . . . , r + 30
and setting ai to the first element that is not divisible by all the primes in M .
If no element was found then a new r is chosen. The product a =

∏k
i=1 ai

mod M is then a random integer relatively prime to M . This multiplicative
share is converted into an additive share so that each party obtains a value bi

Paper D: Realizing Distributed RSA Key Generation using VIFF 105

bits Total time MWB Avg.time this paper Ratio

512 0.15 min 3.78 min 25,2

1024 1.51 min 32.61 min 21,6

2048 18.13 min 120.87 min 6,67

Table 5. Comparison between MWB and our paper.

mod M . For details see [MWB99]. Finally each server picks another ri in the
range [0, 2n

M] and sets pi = riM + bi.
One possible problem with their implementation of the distributed sieving

algorithm is that it seems from their paper that they just calculated this sieving
algorithm once for p and once for q. Then used that sieve for all candidates for
p and q. This might create an attack by a player taking part in the distributed
RSA key generation protocol. The attack is done on candidates for N that are
not a product of 2 primes. Some of these candidates for N can be split into
its prime factors. This gives information about possible values for bi mod M .
Given enough candidates for N , it would be possible to get unique values for
bi mod M for the candidate N values, if the sieving algorithm was run only
once. Therefore the eventual value N that would be used as a key would also
have primes with known factors bi mod M .

For a comparison of the differences in timing see Table 5. The ratio is
the difference between the two solutions. There was a constant factor of 20-
25 between the two programs for both the 512 and 1024-bit solutions, but
the factor falls to 6,67 for the 2048-bit solution. This is because the sieving
time for 1024-bit solution and 2048-bits was almost the same. Therefore the
sieving algorithm lost its ability to improve the solution for the 2048-bit, but
our algorithm had a more constant ratio of 3.71 between the 1024-bit and
2048-bit solution. On the other hand if the sieving algorithm would have to
run more times to avoid a security problem as mentioned above, the timing
difference would not be so great.

6. Conclusion and Further Work

The main goal of this experimental work was to implement a fully functional
distributed RSA protocol using secure multiparty computations in VIFF, and
to measure its time efficiency. The distributed RSA protocol has been suc-
cessfully implemented for three players in VIFF. This includes distributed key
generation, decryption and signature. All of which are important features of a
distributed RSA protocol. The implemented protocol allows three players to
generate and use a distributed RSA key of arbitrary size in a secure manner.

Our solution is significantly slower than the solution in [MWB99], while
the CPU processing speed has increased almost a 10-fold in the 10 years be-
tween the 2 implementations. The addition of a general multiparty computa-

106

tion library written in Python and no sieving algorithm, as opposed to special
computer programs written in C and a sieving algorithm, makes the old imple-
mentation 20 times faster. On the other hand the sieving algorithm introduces
a weakness in the distributed protocol if it is run only once for each prime.
Therefore the 10-fold increase in speed from the sieving algorithm might not
be possible with the same level of security.

Another supplementary goal of this experimental work, was to analyze the
security of the original protocol. Two security weaknesses were found, both of
which relate to the way a random number is used to secure a revealed answer.
Both weaknesses could possibly reveal the private key to any of the play-
ers. The first weakness relates to the distributed trial division step, whereas
the second weakness is regarding the alternative step in the biprimality test.
Methods for avoiding both of the weaknesses have been described.

Future improvements are inspired by [MWB99]. Implementing some or all
of these changes will definitely make the key generation process a lot faster,
and therefore making it more useful. These have not been implemented as the
implementation was completed as part of a master thesis which has constraints
on the time that can be used for implementation.

The most important improvement would be to implement the distributed
sieving algorithm as in [MWB99] to improve the distributed trial division
step. As they reported a 10-fold improvement in running time for this
step alone when generating a 1024-bit key. It is however unclear if the
same 10-fold improvements would be possible if the distributed sieving
algorithm would have to be run once for each revealed value N .

GMPY should be used to represent all the values in the VIFF program.
Using GMPY instead of standard Python integers on all values in the
program will greatly increase the efficiency of the protocol. This is esti-
mated to result in a 10-20% speed up in key generation with this rather
simple fix alone.

Test several candidates in parallel by testing several values for p and
q simultaneously. The nature of multiparty is not very efficient, given
that the players are waiting at several synchronization points to receive
shares from each other. By testing several candidates in parallel, each
player normally has some calculations that can be done for at least one
of the candidates, which decreases the idle time for each player, and thus
improving the efficiency of the protocol.

Implement a solution to perform parallel trial division on N . This is the
idea of trying to compare N to many primes at the same time. This can
be accomplished by computing a = p1p2 · · ·pb for some bound b, then
checking that gcd(a, N) = 1.

Apply load balancing, which is the idea of balancing the calculations
done for each player. The current protocol lets a specific player do some

Paper D: Realizing Distributed RSA Key Generation using VIFF 107

calculation at some points, such as the calculation of the Jacobi symbol
in the distributed biprimality test, which is always conducted by player
1, or the trial decryption process which is always calculated by player
3 in the implementation. The responsibility should rotate between all
players, such that player i does the calculations every k time, where k
is the total number of players. Applied together with testing several
candidates in parallel, makes the workload for each player very uniform.

The step for calculating the private exponent d should be implemented
for arbitrary values of e, either using the method described in [BF97]
or the method described in [CGH00]. This step will hardly affect the
runtime for generating a valid key, but will increase the security of the
protocol.

6.1 Acknowledgment

This paper is based on research done as part of the master thesis for Atle
Mauland, with professor Stig Frode Mjølsnes as supervisor and PhD candidate
Tord Ingolf Reistad as co-supervisor and researcher in the field of multiparty
computations. The complete master thesis [Mau09] with source code will be
available at http://daim.idi.ntnu.no/. We would also like to thank the Martin
Geisler and the VIFF mailing list for help with the VIFF framework.

Bibliography

[ACS02] Joy Algesheimer, Jan Camenisch, and Victor Shoup. Efficient computation
modulo a shared secret with application to the generation of shared safe-prime
products. In In Advances in Cryptology - Proceedings of CRYPTO 2002, pages
417–432. Springer-Verlag, 2002.

[BF97] Dan Boneh and Matthew Franklin. Efficient generation of shared RSA keys.
In Advances in Cryptology – CRYPTO 97, pages 425–439. Springer-Verlag,
1997.

[BOGW88] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness theo-
rems for non-cryptographic fault-tolerant distributed computation. In STOC
’88: Proceedings of the twentieth annual ACM symposium on Theory of com-
puting, pages 1–10, New York, NY, USA, 1988. ACM.

[CGH00] Dario Catalano, Rosario Gennaro, and Shai Halevi. Computing inverses over
a shared secret modulus. In In Advances in Cryptology EUROCRYPT 2000,
pages 190–206. Springer-Verlag, 2000.

[Mau09] Atle Mauland. Realizing Distributed RSA using Secure Multiparty Compu-
tations, 2009.

[MWB99] M. Malkin, T. Wu, and D. Boneh. Experimenting with Shared Generation
of RSA keys. In In Proceedings of Symposium on Network and Distributed
System Security (SNDSS, 1999.

[RSA78] R. L. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital sig-
natures and public-key cryptosystems. Commun. ACM, 21(2):120–126, 1978.

[Sha79] Adi Shamir. How to share a secret. Commun. ACM, 22(11):612–613, 1979.

[Tea09] VIFF Developement Team. Viff, the virtual ideal functionality framework.
http://viff.dk/, 2009.

[Yao82] Andrew C. Yao. Protocols for secure computations. In SFCS ’82: Proceedings
of the 23rd Annual Symposium on Foundations of Computer Science, pages
160–164, Washington, DC, USA, 1982. IEEE Computer Society.

110

Paper E

Internet Voting using Multiparty Computations

Md. Abdul Based, Tord Ingolf Reistad, Stig Frode Mjølsnes

At Norsk informasjonsikkerhetskonferanse 2009 (NISK 09)

Trondheim, Norway, November 24-25, 2009

INTERNET VOTING USING MULTIPARTY

COMPUTATIONS

Md. Abdul Based
Dept. of Telematics, Norwegian University of Science and Technology

O.S. Bragstads plass 2E, N-7491 Trondheim, Norway

based@item.ntnu.no

Tord Ingolf Reistad
Dept. of Telematics, Norwegian University of Science and Technology

O.S. Bragstads plass 2E, N-7491 Trondheim, Norway

tordr@item.ntnu.no

Stig Frode Mjølsnes
Dept. of Telematics, Norwegian University of Science and Technology

O.S. Bragstads plass 2E, N-7491 Trondheim, Norway

sfm@item.ntnu.no

Abstract We propose an electronic voting system where multiple independent parties
cooperate to register the voter, acquire the ballots, and count the election
result using multiparty computations. The aim of this system is to guarantee
privacy of the voter and the ballot, public verifiability, and robustness against
malicious authorities. The system is flexible in the sense that it is not bound
to a single set of election rules, or public key cryptosystem.

Keywords: Internet voting, multiparty computations, voting system.

1. Introduction

Deploying an electronic voting system for general elections is becoming pop-
ular. Electronic voting systems have been used on a large scale in Brazil, India,
the Netherlands, Venezuela, and the United States. Internet voting systems
have also gained popularity and have been used for national elections in the
United Kingdom, Estonia and Switzerland. Norway plans to test an Internet
voting scheme in 2011.

This trend of electronic voting is coupled with the trend of deploying some
sort of electronic identification scheme in many countries. The idea being
that all interactions with the government can be handled over an Internet

114

connection: e-government. The idea of extending an electronic identification
scheme to electronic voting use is often proposed without much thought to the
security requirements of the new system.

The general concern for trusting voting systems is fundamental to accep-
tance. With a paper based system it can be open and intuitive for everyone.
An Internet voting system is new and as such will be viewed with less confi-
dence than a well established paper-based system.

We distinguish here between two kinds of Internet voting: polling station
based voting and remote voting, say from home. The polling station based
voting schemes are run like normal paper based elections except that the
voting and subsequent counting are done electronically. Unless some paper
based auditing trail is added to these schemes the counting process will be
subject to suspicion [1]. In this paper we will focus more on voting from
home.

By separating the different roles in the voting system the system can be
more open to audit so that independent verifiers can ensure that no ballot was
deleted or modified or added erroneously, and thereby increasing trust in the
electronic voting system.

Our Contribution.. We present the design of an Internet voting scheme,
where the voter will be equipped with a smartcard containing some private
information. The proposed voting system splits the system into different roles
in order to audit and verify that the election was performed correctly, without
revealing anything about the individual voters or their choice.

The system enforces that only authorized voters can vote, and no single role
can successfully cheat by removing, modifying or adding votes without it being
detected. Only all the roles working together can compute the election result.
The auditing system can log every message. The messages and the ballots
are encrypted, so, there is no inherent security problem showing anyone the
encrypted data.

The system uses multiparty computations for tallying ballots. Multiparty
computations (MPC) is a computation where a number of parties P1, . . . , Pn

have private inputs x1, . . . , xn by which they compute some function f on
these inputs, where f(x1, . . . , xn) = (y1, . . . , yn) such that Pi learns yi but
nothing else. They are mutually mistrusting so no input is shared between
the parties.

A multiparty computation based on a Shamir secret sharing scheme using
a multiplication protocol [2] gives a versatile system where the counting algo-
rithm can be tailored to different election rules [18]. The multiparty tallying
will return the correct answer as long as 2/3 of the parties are honest (for
active adversaries) [2].

The Structure of this Article.. Section 2 discusses this work in relation
to previously published papers. The different roles of the voting system are

Paper E: Internet Voting using Multiparty Computations 115

presented in Section 3. Section 4 describes the communication model between
the parties. The protocols for ballot signing and encryption by different roles
are described in Section 5, and the security analysis is done in Section 6. The
limitations of the proposed system are discussed in section 7. Finally, Section
8 includes the summary of the work and future directions.

2. Background and Related Work

When it comes to actual system development, there are some systems that
are developed by non-profit organizations [3, 4]. The United Kingdom [5],
France, Netherlands have already partially introduced electronic voting in
their areas. Estonia is the first country that introduced Internet voting for
elections in March 2007 [6, 7]. A comprehensive report on the challenges
and opportunities of electronic voting was issued by the Norwegian Ministry
of Local Government and Regional Development in 2006 [8]. On the other
hand, there is not much software freely available that can be purchased or
downloaded to run a voting system electronically.

Iversen presented [10] how Zero-Knowledge Techniques could be used in
computerized secret ballot election schemes. Tjøstheim worked on security
analysis of electronic voting [9] in 2007. In [9], he presented a model for system-
based analysis of voting systems. A voting system is presented by Chaum et
al. in [11]. This system allows voters to become sure that whatever they see
in the booth will be included correctly in the outcome. Mainly a rigorous
and understandable model of requirements for election systems is presented in
their work. They first formally state the properties of the system, and then
prove them. A new verifiable and coercion-free voting scheme, namely Bingo
Voting, is presented by Bohli et al. [12]. Their work is based on a trusted
number generator to prevent electoral fraud, and to avoid coercion and vote
buying. A variation of the Pret-a-Voter voting protocol that keeps the same
ballot layout but borrows and slightly modifies the underlying cryptographic
primitives from Punchscan is presented by Graaf [13]. This work is based on
bit commitments. The author uses unconditionally hiding bit commitments
to obtain unconditional privacy. Homomorphic elections, mixnet-based voting
scheme, and electronic voting to support decision-making in local government
are published in [14, 15, 16, 17].

In almost all of the above mentioned papers, the main focus was on ballot
verification and tallying. Very few takes on the complete system with all roles.
In this paper, we start our work with the registration of voter by a registrar,
and ballot acquirer by already registered voter. We then show how the ballot
is verified by the ballot acquirer, and becomes part of the counting process by
the MPC talliers. Thus this work presents a voting scheme all the way from
voter registration to ballot counting.

116

Figure 1. Internet Voting using MPC.

3. Roles in the System

The election system is organized as shown in Figure 1. The roles are as
follows:

Voter - A voter is one who is eligible to vote in the election. The voter
holds a smartcard containing some private information that identifies
the eligibility of the voter to the registrar. Each voter creates a pri-
vate/public key pair and a pseudorandom identifier (pid). The public
key of this pair and the pid are signed by the registrar so that the voter
can use these in the voting system. When the voter has chosen the
candidate to vote for, the choice is encoded, and the ballot is split into
shares and sent to the ballot acquirer.

Registrar - A registrar validates that the voters are eligible to vote and
signs the public key supplied by the voter. It also checks that the pid
given by the voter is unique.

Ballot Acquirer - A Ballot Acquirer has the role of acquiring the ballots
from the voters and checking their signature. When the ballot acquisition
stage is over the ballot acquirer mixes all the votes and sends all the
ballots to the MPC talliers.

The communication could have been directly between the voter and the
talliers, but adding a role that verifies that the vote is signed and acts as
an anonymizing mix-net [15] makes for more distinct roles and makes the
message transmission easier. It also eliminates the need for the talliers
to coordinate to see that they have received the same information from
each voter. Otherwise, if the voter sent the ballots directly to the talliers,
the voter might send the ballots to some talliers and not to other talliers.

Paper E: Internet Voting using Multiparty Computations 117

Auditor - An auditor is an independent role that creates a public au-
ditable record of the election system. The main role of the auditor in
the proposed voting system is to keep the registrar and ballot acquirer
honest so that it does not remove any ballot. That is, the auditor checks
the behaviour of the ballot acquirer by monitoring all network traffic
to/from the ballot acquirer.

MPC Talliers - A group of talliers (MPC1, MPC2, . . .) verifies that
each individual ballot is correctly constructed and computes the result
of the election using multiparty computations. In this voting system, no
single tallier gets complete information about the individual votes, but
together they reach a result that all talliers can agree upon.

4. Communication Model

The communication model is that of open unsecure channels between the
different roles. The MPC talliers are the same role, but different parties, the
communication between the them is done over authenticated and encrypted
channels.

The following notation will be used: a is a message. K, K−1 are the public
and private keys of K. [a]K is the message a encrypted with the key K. |a|K−1

is the message a and a signature of the hash of a using the private key K.
Each role is assumed to have a public key for encrypting messages to that

role, the public keys are known by all roles. Each role is also assumed to have
a private key to sign messages with. Although it might look like the same key
is used for encryption and signing, the two keys should be different. They are
just written as the same key for readability purposes.

There are many voters, but as there is no interaction between different
voters. Therefore, the protocol is shown for only one voter. This voter has
the public key V . The public key of the registrar is R, the public key of the
ballot acquirer is A, the public key of the auditor is C, and the MPC talliers
have different public keys M1, M2, . . . , Mn, and one common key M .

5. Protocols

The following subsections will present the protocols between the roles:

5.1 Registration

Each voter will have to be registered before he or she can create a ballot in
the election. The voter generates a new key public/private key pair K, K−1

and sends the public key K and a signed pseudorandom identifier |pid|V −1 to
the registrar. (The voter first checks that the pid he wants to use is unique
before signing it). The registrar returns [|K, pid|R−1]V . That is, the registrar
signs the key and the pid. This pid is later used in the verification of the votes.
The protocol between the voter and registrar is shown in Figure 2.

118

Figure 2. The Protocol between Voter and Registrar.

The registrar also sends a signed version of signed pid to the auditor
||pid|V −1|R−1. This pid is striped of the signatures and signed by the auditor
|pid|C−1 before being sent to the ballot acquirer. The reason for this is to
keep the registrar from generating fake voters.

5.2 Voting

Any voting system can be implemented, but for the illustrating purpose, we
will show the system where each voter first chooses his vote. In our election
system, the voter is presented with a choice of candidates and gives a ”one
vote” to the candidate he or she chooses while giving a ”zero vote” to all
the other candidates. For example, if there are 4 candidates and the voter
chooses candidate 3 then the vote would consist of the vector [0, 0, 1, 0]. To
split this vector using Shamir secret sharing scheme, each element is seen as
points on a polynomial. An element s would be shared using a polynomial of
sufficient degree f(x) = s + r1x + r2x

2 + · · · mod p, where p is a large prime.
The element s = 1 could with 5 talliers, be converted into the polynomial
f(x) = 1+2x+(−1)x2, where the coefficients 2 and −1 are chosen at random
by the voter. MPC1 should receive the share f(1) = 2, MPC2 should receive
the share f(2) = 1, and so on.

The voter encrypts the share by the public key of the tallier and signs it
with the key K−1. The pid is included in the vote. Thus if sh1 is the share
for MPC1, sh2 is the share for MPC2, and so on, the ballot b should have the
following form.

b = [pid]M , [sh1]M1, [sh2]M2, · · ·
The ballot should be signed with the key K−1 and the key K should in turn

be signed by the registrar. Therefore, the complete ballot should be on the
form:

d = |b|K−1, |K, pid|R−1

Before the complete ballot is sent to the ballot acquirer it is signed by the
voter and encrypted with the public key of the ballot acquirer. The message

Paper E: Internet Voting using Multiparty Computations 119

Figure 3. The Protocol between Voter, Ballot Acquirer, and Auditor.

sent from the voter to the ballot acquirer will be [|d|K−1]A. The ballot acquirer
verifies the pid against the list of pids received from the auditor.

To verify that the ballot acquirer actually has received this ballot and does
not silently drop it, the ballot acquirer sends a signed hash value of the vote to
the auditor [|hash|A−1]C . The auditor signs this hash and sends the value to
the voter. The voter can therefore verify that the correct ballot was recorded
by the ballot acquirer. The auditor notes how many votes were cast in the
election. The auditor can also keep a correct score of how many voters have
voted. The protocol between the voter, ballot acquirer, and auditor is shown in
Figure 3. The auditor sends the hash to the voter through the ballot acquirer.

5.3 Sending the Ballot Batch to the MPC Talliers

The ballot acquirer waits until the election is over before mixing the ballots
and sending the ballots onwards to the MPC talliers using the public key of
the talliers. The ballots are signed by the ballot acquirer to verify their origin.
The ballot acquirer also sends a copy of the hash values of the mixed ballots
to the auditor so that the auditor can verify the hash values. This list of hash
values is also verified by the talliers.

For the MPC talliers to verify that it was eligible voters, the registrar also
sends some information to the MPC talliers. The information sent is the pair
[|K, pid|R−1]M . This ensures that the MPC talliers can verify that the correct
pid was used in each ballot. This double sending will detect if the registrar
or the ballot acquirer modifies the keys. The protocol between the ballot
acquirer, registrar, and MPC talliers is shown in Figure 4.

5.4 Counting the Votes

The MPC talliers count the votes. First each tallier verifies the signature
and sees that the key K matches the pid. The shares are then decrypted using
the private keys M−1

1 , M−1
2 , and so on. The MPC talliers then have to see

that the ballots were constructed correctly or not. As each tallier can only see
one share of each ballot the talliers must work together to check the ballot.

For example, the MPC talliers should receive an array from each voter,
where each element in the array is either 0 or 1, and the sum of the elements in

120

the array should be 1. It can be verified that this is the case without revealing
anything about the vote, if the array is expressed as b = [b1, b2, b3, . . .], and if
the MPC talliers use the following equations:

αi = b2
i − bi (1)

β =
∑

bi (2)

There is no loss of information about the ballot if αi for all i and β are
revealed. Here, αi = 0 for all i and β = 1, as long as the ballot is correctly
constructed. The only loss of information about the ballot will occur for
ballots that are not correctly constructed, but as such ballots have to be
eliminated from the count there is no harm in revealing that the ballot is
wrongly constructed and removing it form the tally.

6. Security Analysis

We want to achieve the following security properties of our proposed voting
system:

Unlinkability. This property refers to the unlinkability between the voter
identity and ballots by all parties except by the voter himself or herself. The
only authorities that know the identity of the voter are the registrar and the
auditor. The registrar receives public key and pid from the voter, but never
sees the ballot sent by the voter (as shown in Figure 1 and Figure 2). So
the registrar has no opportunity to link the voter identity to any ballot. The
registrar only sees the pid and the hash of the ballots, so it has no way to
combine this information.

The MPC talliers and ballot acquirer receive the ballot as [|d|A−1]M and
[|d|K−1]A respectively (shown in Figure 3 and 4). This ballot is signed with the
private key K. So, the MPC talliers and the ballot aquirer can not recognize
the specific voter.

Figure 4. The Protocol between Ballot Acquirer, Registrar, and MPC Tallier.

Paper E: Internet Voting using Multiparty Computations 121

Untraceability. Untraceabilty refers that neither the voter nor the bal-
lot acquirer can add identifiable information to the ballot. In our proposed
voting system, both of these parties sign the ballot and forward the signed
ballots to the next party. This property supports the unlinkability property.
Untraceability also holds for other parties in this voting system.

Only registered voters can vote. Our proposed voting system ensures
that only the listed or registered voters can vote. Unless a voter receives a
signed key from the registrar as shown in Figure 2, there is no way for the
voter to send a ballot to the ballot acquirer that will be accepted. Thus, only
the registered voters will have the opportunity to vote for a candidate.

The voter authenticates himself or herself to the registrar by generating a
pair of private/public key (K, K−1) and sending the public key K and a pid
to the registrar, as shown in Figure 2. The registrar has the list of eligible
voters, and it checks against its census list whether the voter is eligible or not.
There is no way for a non eligible voter to vote, even the same voter cannot
vote again. Because, the registrar will easily verify the signature of the voter
and will detect the duplicate signature if any.

The voter signs the ballot using his/her private key value K−1 of the pair
(K, K−1), encrypts the ballot using the public key of the ballot acquirer, again
signs it with private key, and sends this signed and encrypted [|d|K−1]A ballot
to the ballot acquirer. So, the ballot acquirer can also verify the signature of
the voter.

On the other hand, since the key K and pid are not connected to any voter,
the registrar could generate keys K and pids itself. This would be detected by
the ballot acquirer because the pid would not match the list of pids it received
from the auditor. This is because the registrar would not be able to fake the
signed pid value ||pid|V −1|R−1 sent to the auditor.

The registrar could also create keys K and sign it with already registered
pids, but this would also be detected by the ballot acquirer if the voter voted,
because there would exist two key pairs |K, pid|R−1 and |K ′, pid|R−1 with the
same pid. This is something that should be stopped by the registrar, as the
pid should be unique.

Voters can be uniquely distinguished. The registrar and the auditor
maintain a list of the valid voters. The voters can either be uniquely distin-
guished by the key V or the signature V −1. This information must not be
connected to the ballots. When it comes to the ballots, the voters are also
uniquely identified by the key K and the pid.

Only one ballot is part of the tallying process. The registered voters
receive signed key with pid value from the registrar (shown in Figure 2). The
key k and pid value are unique and part of the complete ballot sent to the
MPC talliers by the ballot acquirer. One voter will receive only one signed key

122

with pid value. As shown in Figure 4, the registrar sends signed and encrypted
K with pid to the MPC talliers. So, the MPC talliers can easily check this pid
value such that only one ballot from each voter becomes part of the tallying
process.

The ballot acquirer also verifies the signature of the key K and maintains
a list of already verified signatures and pids so that it can check the double
voting by a voter.

Tallying starts after all acquired ballots have been received by the
talliers. In our proposed voting system, the ballot acquirer mixes all the
votes and sends all the ballots to the MPC talliers only when election is over.
This ensures that tallying starts after all acquired ballots have been received
by the talliers. The auditor also monitors the activities of the ballot acquirer,
so the ballot acquirer has no way to drop any ballot.

No intermediate tallying result is revealed to any party. The MPC
talliers verify each ballot and computes the result using multiparty computa-
tions. In this way no single tallier gets any information about the individual
votes, but together they reach a result that all talliers can agree upon.

A casted ballot cannot be modified or deleted without detection.
As described earlier, the auditor is monitoring the activities of the ballot

acquirer. So if the ballot acquirer modifies or deletes any ballot, it will be
easily detected by the auditor. Only the voter knows the key K, so only the
voter can sign ballots with the key K−1.

Confidentiality of the ballot. As we described earlier, the ballot acquirer
receives the ballot [|d|K−1]A from the voter. Since the ballot is encrypted with
the public key of the ballot acquirer, no one else will be able to decrypt this
ballot. Moreover, as each individual share is encrypted with the MPC talliers′

public key, no one except the MPC talliers can decrypt these shares. Thus
confidentiality of the ballot is achieved.

Validity of the ballot. The MPC talliers can verify the validity of the
ballot. As mentioned earlier, the voter splits the ballot in some elements of
a vector such that each element is either 0 or 1, and the summation of all
elements of that vector is 1. Thus, in this example, MPC talliers receive a
vector element bi, the talliers check b2

i - bi = 0. This condition holds only
when bi is either 0 or 1. The MPC talliers also check that

∑

bi = 1 for a
valid ballot. Thus, the MPC talliers can verify the validity of a ballot without
revealing any information about it.

Confirmation of vote to the voter. The ballot acquirer receives the
ballot from the voter as [|d|K−1]A. After receiving this ballot, the acquirer
sends hash of this value (encrypted with the public key of the auditor) to the

Paper E: Internet Voting using Multiparty Computations 123

auditor. The auditor signs and broadcasts it so that it can be received by the
voter anonymously.

Robustness. The system presented in this paper provides no opportunity
to a single role to modify or cheat a ballot. In other words, the system is 2-
resilient to malicious ballot casting and t-resilient for tallying, where t < n/3,
and n is the number of MPC talliers. The robustness of this voting system
can be seen by the following:

The voter has no chance to vote twice or a non eligible voter is not
allowed to vote as described before, the voter also has no way to get
two pairs of key K and pid signed by the registrar. (See only registered
voters can vote).

The registrar cannot send fake votes to the MPC talliers, as only the
ballot acquirer sends ballots to the talliers, and the ballot acquirer signs
the messages with its own private key. The registrar cannot imitate the
voter (See only registered voters can vote).

The ballot acquirer cannot send in fake votes as it is monitored by the
auditor, it also does not have the private keys K−1 and R−1 needed to
imitate the ballot acquirer or the voter.

The auditor cannot silently drop pids received from the registrar as this
would be detected by the ballot acquirer when the voter voted. The
auditor cannot fake the hash values as this would be detected by the
voter.

The MPC calculations are secure against passive security for up to 1/2
of the computations and 1/3 for active security.

Therefore there is no way for any single role or any individual tallier to
cheat without being detected.

7. Limitations

The system has certain limitations as it cannot be secured against all kinds
of attacks. Although the system is robust against any single role or tallier, it
is not robust against 2 or more roles if they collude. For example, the registrar
could issue credentials to fake voters; the pid is then accepted by the auditor
without it being signed by a voter. This would enable the registrar to create
an unlimited number of fake voters and vote for them.

Since the system focuses on voting from home, we are not considering the
problem of voter coercion. The voter is identified by the smartcard, so there
is no way for the system to link the smartcard to the actual voter. But, there
is another problem of verifying that each voter only gets one smartcard and
one key V , though this is outside the scope of this paper. We only assume
that this key V comes from some sort of national identification cards.

124

The system is not receipt free as the voter gets a receipt from the auditor
on the hash of the vote. This is because we found it more important to verify
that the vote was actually received by the ballot acquirer and counted, than
to provide a receipt free voting system.

We have also focused on detecting cheating by any role. We have not de-
termined how such cheating should be handled, and how to restore confidence
in the voting system if such cheating is found.

8. Conclusions and Future Work

This paper has shown a system for casting and counting votes, which pro-
vides authenticated voters to vote, provides ballot confidentiality, provides
ballot integrity, ensures validity of ballot, and counts anonymous ballots with-
out trusting any single role or tallier.

The system is versatile in that it accommodate different election rules. It
also does not need expensive hardware and trusting a single server with doing
the counting correctly. Thus most transactions can be logged and the logs
made public, as there is no inherent security problem showing anyone the
encrypted data.

The security of this system will be further analyzed. A working pilot test of
this system can be constructed. The communication between voter, registrar,
ballot acquirer and auditor can be realized using publicly available public key
cryptosystems. The MPC Talliers can be implemented in the future using the
Virtual Ideal Functionality Framework (VIFF) [18] or any other framework
for multiparty computations.

Bibliography

[1] D. Sandler and D. Wallach: Casting Votes in the Auditorium. EVT’07: Proceedings of
the USENIX Workshop on Accurate Electronic Voting Technology, USENIX Association,
(2007)

[2] M. Ben-Or, S. Goldwasser, and A. Wigderson: Completeness Theorems for Non-
Cryptographic Fault-Tolerant Distributed Computation. Proceedings of the eighth annual
ACM Symposium on Principles of distributed computing. Pages: 201 - 209, ISBN:0-
89791-326-4, (1989)

[3] Web: http://www.gnu.org/software/free/. Access Date: September, (2009)

[4] Web: http://www.adderpit.com/˜sjaveed/coding/votebot.html. Access Date: September,
(2009)

[5] Web: http://www.electoralcommission.org.uk/elections/pilots. Access Date: September,
(2009)

[6] Web: http://www.foruminternet.org/telechargement/documents/reco-evote-en-
20030926.pdf. Access Date: September, (2009)

[7] European University Institute, Robert Schuman center for Advanced Studies, Report
for the Council of Europe: Internet Voting in the March 2007 Parliamentary Elections
in Estonia. July 31, (2007)

[8] Norwegian Ministry of Local Government and regional Development: Report: Electronic
voting- challenges and opportunities. February, (2006)

[9] T. Tjøstheim, T. Peacock, and P.Y. A. Ryan: A model for system-based analysis of voting
systems. Fifteenth International Workshop on Security Protocols, (2007)

[10] K. R. Iversen: The Application of Cryptographic Zero-Knowledge Techniques in Comput-
erized Secret Ballot Election Schemes. Ph.D. dissertation, IDT-report, 1991:3, Norweigan
Institute of Technology, February, (1991)

[11] D. Chaum, J. Graaf, P. Ryan, P. Vora: High Integrity Elections. Cryptology ePrint
Archive, Report 2007/270. http://eprint.iacr.org/, (2007)

[12] J. Bohli, J. Muller-Quade, and S. Rohrich: Bingo Voting: Secure and coercion-free voting
using a trusted random number generator, Cryptology ePrint Archive, Report 2007/162.
http://eprint.iacr.org/, (2007)

[13] J. Graaf, Universidade Federal de Minas Gerais: Merging Pret-a-Voter and PunchScan,
Cryptology ePrint Archive, Report 2007/269. http://eprint.iacr.org/, (2007)

126

[14] A. Acquisti: Receipt-free homomorphic elections and write-in ballots. Cryptology ePrint
Archive, Report 2004/105. http://eprint.iacr.org/, (2004)

[15] R. Aditya, B. Lee, C. Boyd, and E. Dawson: An efficient mixnet-based voting scheme
providing receipt-freeness. In Sokratis K. Katsikas, Javier Lopez, and Gunther Pernul,
editors, TrustBus, volume 3184 of Lecture Notes in Computer Science, Pages 152-161.
Springer, (2004)

[16] C. Bouras, N. Katris, V. Triantafillou: An electronic voting service to support decision-
making in local government, Telematics and Informatics 20 (2003) 255-274, February 12,
(2003)

[17] O. Baudron, P.-A. Fouque, D. Pointcheval, G. Poupard and J. Stern Practical Multi-
Candidate Election System Proceeding of the 20th ACM Symposium on Principles of
Distributed Computing (PODC ’01) Pages: 274-283, ACM Press, (2001)

[18] The Virtual Ideal Functionality Framework (VIFF) Web: http://viff.dk/.

Paper F

Linear, constant rounds Bit-decomposition

Tord Ingolf Reistad and Tomas Toft

ICITS 2009

2009

PAPER F: LINEAR CONSTANT-ROUNDS

BIT-DECOMPOSITION

Tord Ingolf Reistad
Dept. of Telematics, Norwegian University of Science and Technology

O.S. Bragstads plass 2E, N-7491 Trondheim, Norway

tordr@item.ntnu.no

Tomas Toft
University of Aarhus, Dept. of Computer Science,

DK-8200 Aarhus N, Denmark.∗

tomas@daimi.au.dk

Abstract When performing secure multiparty computation, tasks may often be simple or
difficult depending on the representation chosen. Hence, being able to switch
representation efficiently, may allow more efficient protocols.

We present a new protocol for bit-decomposition: converting a ring element
x ∈ ZM to its binary representation, x(log M)−1, . . . , x0. The protocol can be
based on arbitrary secure arithmetic in ZM ; this is achievable for Shamir shared
values as well as (threshold) Paillier encrypted ones, implying solutions for both
these popular MPC primitives. For additively homomorphic primitives (which
is typical, and the case for both examples) the solution is constant-rounds and
requires only O(log M) secure ring multiplications.

The solution is only passively secure, however, active security can be
achieved assuming the existence of additional primitives. These exist for both
the above examples.

1. Introduction

Since Yao introduced the concept of secure multiparty computation (MPC)
[Yao82] – evaluate a function on distributed, private inputs without reveal-
ing additional information on those inputs – it has been rigorously studied.
Different approaches have been suggested, including garbled circuits [Yao86],
secret sharing based approaches [BGW88, CCD88], and techniques relying on
homomorphic, public-key cryptography, e.g. [CDN01].

∗Supported by Simap

130

It has been demonstrated that any function can be evaluated by describing
it as a Boolean circuit and providing the inputs in binary, e.g. stored as 0 and
1 in some field or ring over which the secure computation occurs. However,
alternative representations may provide greater efficiency. If, for example,
the the function consists entirely of integer addition and multiplication, this
can be simulated with arithmetic over ZM , where M is chosen larger than the
maximal result possible. With primitives providing secure computation in ZM

– e.g. based on Shamir sharing if M is chosen prime [Sha79, BGW88] – this is
much simpler than using ring arithmetic to emulate the Boolean gates needed
to “simulate” the integer computation.

Unfortunately, other operations become difficult when integers are stored
as ring elements, e.g. division, modulo reduction, and exponentiation. To get
the best of both worlds, a way of changing representation is needed. To go
from binary to ring element is easy: it is a linear combination in the ring. The
other direction is more difficult, in particular when adding the requirement
that the solution must be constant-rounds.

Related work. The problem of constant-rounds bit-decomposition was
first solved by Damg̊ard et al. in the context of secret shared inputs, [DFK+06];
this was later improved by a constant factor by Nishide and Ohta [NO07].
Both solutions require O(` log `) secure multiplications, where ` is the bit-
length of the modulus defining the field. These solutions provided the same
security guarantees as the inputs, i.e. to ensure active or adaptive security, it
was sufficient to utilize secure arithmetic providing this.

Independently, Schoenmakers and Tuyls considered practical bit-decomposi-
tion of Paillier encrypted values, i.e. the cryptographic setting, where they
obtained linear – but non-constant-rounds – solutions [ST06, Pai99]. (They
also noted the applicability of [DFK+06] for teh Paillier based setting.) The
solution of [ST06] was also secure against active adversaries, however, this
needed additional “proofs of correctness” added to the basic protocol – in
difference to the above solutions, secure arithmetic was not sufficient by itself.

A constant-rounds, almost linear solution was proposed by Toft [Tof09].
The problem of bit-decomposition was first reduced to that of postfix compar-
ison (PFC) (using O(`) secure multiplications), which was then solved using

O(` · log∗(c)`) multiplications. Similarly to [DFK+06] and [NO07], security
was inherited from the primitives implying security against both active and
adaptive adversaries immediately, both based on secret sharing as well on
(threshold) Paillier encryption.

Contribution. We present a novel, constant-rounds, linear solution to the
PFC problem, and hence also to that of bit-decomposition. The solution is
applicable for arbitrary secure arithmetic in ZM ,1 i.e. it is applicable for both
secret sharing as well as Paillier based primitives. However, in difference to
[DFK+06, NO07, Tof09], perfect security cannot be provided, even if this is

Paper F: Linear Constant-rounds Bit-decomposition 131

guaranteed by the primitives; only statistical security is guaranteed. Further,
we require M > 22(κ+logn) where κ is the security parameter and n the number
of parties.

Similarly to [ST06], active security is not directly obtained from active
security of the primitives. Active security is achievable when the parties
can demonstrate that a provided input is less than some public bound. For
both the Shamir based setting and the Paillier based setting, a constant-
complexity protocol exists implying actively secure, constant-rounds, O(`)
bit-decomposition protocols in these settings, where ` = logM .

An overview of this paper. Section 2 presents the model of secure com-
putation used along with additional high-level constructs. Then in Sect. 3 the
postfix comparison problem is introduced. The basic solution is presented in
Sect. 4. Finally, the steps needed to achieve security against active adversaries
are then discussed in Sect. 5, while Section 6 contains concluding remarks.

2. Secure Arithmetic – Notation and Primitives

We present our result based on abstract protocols. The model of secure com-
putation is simply the arithmetic black-box (ABB) of Damg̊ard and Nielsen
[DN03]. It is described as an ideal functionality in the UC framework, and the
present work can be used together with any realizing protocols. Naturally, the
Paillier based protocols of [DN03] realize this functionality, but it can equally
well be realized with perfect, active, and adaptive security with Shamir sharing
over primes field FM [Sha79] and the protocols of Ben-Or et al. [BGW88].

2.1 The Arithmetic Black-box

The arithmetic black-box allows a number of parties to securely store and
reveal secret values of a ring, ZM , as well as perform arithmetic operations.
Borrowing notation from secret sharing, a value, v, stored within the function-
ality will be written in square brackets, [v]. The notation, [v]B will be used to
refer to a bit-decomposed value, i.e. it is shorthand for [vˆ̀−1], . . . , [v0] of some

bit-length ˆ̀. The ABB provides the following operations; we assume that it is
realized using additively homomorphic primitives.

Input: Party P may input a value v ∈ ZM . Depending on the primi-
tives, this can mean secret share, encrypt and broadcast, etc.

Output: The parties may output a stored [v]; following this, all parties
know the now public v. This refers to reconstruction, decryption, etc.

Linear combination: The parties may decide to compute a linear
combination of stored values, [

∑

i αivi]←
∑

i αi[vi]. This follows imme-
diately from the homomorphic property assumed above.

132

Multiplication: The parties may compute products, [v · u]← [v] · [u] –
this requires interaction, at least for the examples considered.

Note that secure computation is written using infix notation. Moreover,
linear combinations and multiplications may be written together in larger
expressions. Though further from the primitives, it improves readability as
it emphasizes the intuition behind the secure computations performed.

Regarding complexity, we will only consider rounds and communication
size. Note that this implies that linear combinations are considered costless.
For rounds, it is assumed that the other primitives all require O(1) rounds,
and that an arbitrary amount may be performed in parallel. Note that with
abstract primitives, we can only count the number of sequential executions,
not the actual number of rounds of a concrete realization. Under big-O, the
two are equivalent, though.

For communication complexity, the number of invocations of the primitives
are simply counted. Moreover, rather than counting them individually, sim-
ilarly to previous work they will simply be referred to collectively as secure
multiplications. (An input from every party will be considered equivalent to
a single multiplication – multiplication protocols typically require each party
to provide at least one input.)

2.2 Complex Primitives

The protocols proposed will not be presented directly in the ABB model.
A number of high-level primitives are simply listed – these are obtained from
previous work.

Element inversion, constant-rounds multiplication, and prefix-
products. Element inversion is possible using O(1) secure multiplications.
This may be further used to obtain constant-rounds, unbounded fan-in
multiplication of invertible elements. Both are due to Bar-Ilan and Beaver
[BB89]. This may then be used to compute prefix-products: given an
array of invertible values, ([v0], . . . , [vm]), compute ([p0], . . . , [pm]), where

[pi] =
∏i

j=0 [vj]. See e.g. [DFK+06].

Random bit generation.. We require a protocol for generating a uni-
formly random bit which is unknown to all parties. If M is prime, this is
achievable with O(1) secure multiplications, [DFK+06]. For non-prime M
it can be achieved by letting each party share a uniformly random value in
{1,−1}, computing the product of these, and mapping the result (which is
still ±1) to {0, 1}.

Note that when M is not prime, complexity is O(n) multiplications, where
n is the number of parties. For simplicity, we disregard this factor in all
complexity analyzes below. This can be viewed as assuming only a constant

Paper F: Linear Constant-rounds Bit-decomposition 133

number of parties. This problem is not exclusive to our work; the factor n
occurs in all comparable solutions known to the authors.

Comparison. A protocol for comparing bit-decomposed values is required,
i.e. we allow expressions of the form

[a > b]← [a]B
?
> [b]B.

A constant-rounds solution can be found in [DFK+06], complexity is O(ˆ̀)

multiplications in a constant number of rounds, where ˆ̀ is the bit-length of
the inputs.

Non-bit-decomposed values must also be compared,

[a > b]← [a]
?
> [b].

This can be achieved with O(`) multiplications in O(1) rounds using e.g.
[NO07].

Random, bit-decomposed element generation. Another requirement
is the ability to generate a uniformly random, unknown element along with
its bit-decomposition. This can be achieved by generating ` random bits and
viewing these as the binary representation. Computing the value itself is a
simple linear combination, while a comparison is used to verify that the value
is indeed less than M . As the bits needed may be generated in parallel, this
requires O(`) work in O(1) rounds.

Least significant bit (LSB) gate. Finally, the ability to extract the least

significant bit of an ˆ̀-bit value, [x], of bounded size will be needed. [ST06]
describes a way to do this for Paillier encrypted values when there is sufficient

“headroom” in the ring, 2
ˆ̀+κ+log n < M , where κ is a security parameter and

n is the number of parties. The result is not limited to the case of Paillier
encryption, but can be utilized with arbitrary realizing protocols.

The idea is that the parties initially generate a random, unknown bit m0,
and that each party Pk inputs a uniformly random (κ+ ˆ̀−1)-bit value, [m(k)]
from which a random mask is computed,

[m]← 2(

n
∑

k=1

m(k)) + [m0].

Then d = [x] + [m] is computed and output. By the assumption on the size of
M , we have d0 = x0 ⊕m0, where d0 and x0 are the least significant bits of d
and x respectively. Thus, [x0] is easily obtained, [x0]← d0 + [m0]− d0[m0].

As the ABB is secure by definition, only one potential leak exists: d. How-
ever, m0 is unknown and uniformly random, so for any honest party, Pk,

134

2 · [m(k)]+ [m0] statistically hides any information, and no adversary can learn
anything, even when all but one parties are corrupt.

3. The Postfix Comparison Problem

The postfix comparison problem was introduced by Toft in [Tof09].

Problem 1 (Postfix Comparison [Tof09]). Given two secret, ˆ̀-bit values

[a]B =
(

[aˆ̀−1], [aˆ̀−2], . . . , [a0]
)

and [b]B =
(

[bˆ̀−1], [bˆ̀−2], . . . , [b0]
)

, compute

[ci] = [a mod 2i]B
?
> [b mod 2i]B

for all i ∈ {1, 2, . . . , `}.
From that paper, we get the following lemma, which states that a protocol

for solving the problem of bit-decomposition can be obtained from any protocol
solving the PFC problem.

Lemma 1 ([Tof09]). Given a constant-rounds solution to Problem 1 us-
ing O(f(`)) secure multiplications, constant-rounds bit-decomposition may be
achieved in complexity O(` + f(`)).

The proof is by construction, which we sketch, see [Tof09] for the full ex-
planation.

To bit-decompose [x], first compute [x mod 2i] for all i. Now, a bit, [xi], of
[x] can be computed using only arithmetic, 2−i([x mod 2i+1]− [x mod 2i]). To
reduce [x] modulo all powers of 2, first add a random, bit-decomposed mask,
[r]B , over the integers :

[c]B = [x] + [r]B .

Then reduce both c and r modulo 2i (easy, as they are already decomposed)
and simulate computation modulo 2i using secure ZM arithmetic:

[x mod 2i]← [c mod 2i]− [r mod 2i] + 2i ·
(

[r mod 2i]B
?
> [c mod 2i]B

)

.

The integer addition of [x] and [r]B is achieved by computing and revealing
c̃ = [x] + [r] mod M using ring arithmetic. We now have c ∈ {c̃, c̃ + M}; both
values are known, so it is merely a matter of securely choosing the bits of the
relevant candidate. The comparisons of r mod 2i and c mod 2i for all i is a
postfix comparison problem.

4. The New Constant-rounds Solution

The proposed solution is based on a a variation of a comparison protocol
due to Reistad, [Rei]. The parts relevant for this paper along with the needed
alterations are presented in Sect. 4.1. The improved postfix comparison proto-
col is then presented and analyzed in Sect. 4.2. The solution has a restriction,

Paper F: Linear Constant-rounds Bit-decomposition 135

which must be eliminated in order to obtain the final bit-decomposition pro-
tocol, this is described in Sect. 4.3. For the purpose of this section, assume
that the parties are honest-but-curious.

4.1 The Modified Comparison of [Rei]

Let [r]B and [c]B be two ˆ̀-bit, bit-decomposed numbers to be compared.
Further, let κ be a security parameter, let n be the number of parties, and

assume that 2
ˆ̀+κ+log n < M . The overall idea for computing [r > c] is to first

compute a value, [ei], for each bit-position, i. The expression is written with
intuition in mind; details on how to perform the actual computation follow
below.

[ei]← [ri](1− [ci])2
Pˆ̀−1

j=i+1 [rj]⊕[cj]. (1)

Note that [ei] is either 0 (when [ri] is not set, or when both [ri] and [ci] are
set) or a distinct power of two strictly less than M – the computation can be
viewed as occuring over the integers. Note also that [ei] = 1 can only occur
when i is the most significant differing bit-position. Thus, all values except at
most one are even. And an odd value, 1, occurs only if ri is set at the most
significant differing bit-position, i.e. if [r]B is bigger than [c]B.

Since at most one value is odd and this exists exactly when [r]B > [c]B,
computing the least significant bit, [E0], of

[E]←
ˆ̀−1
∑

i=0

[ei]

provides the desired result. In difference to [Rei], here this bit is determined
with a LSB gate.

Security of this protocol is trivial: the arithmetic black-box can only leak
information when something is deliberately output, and this only occurs in
sub-protocols, which have already been considered.

For the computation of the [ei] above, 2
Pˆ̀

j=i+1 [rj]⊕[cj] must be computed for
every bit-position, i. This is done by first computing [rj ⊕ cj]← [rj] + [cj]−
[rj][cj] for each bit-position, j. Rewriting the exponentiation of Eq. (1) as

ˆ̀−1
∏

j=i+1

(1 + [rj ⊕ cj]) ,

illustrates not only how to compute it for a single bit-position, it also allows
it to be computed efficiently for every such position: it is simply a prefix-
product with terms 1 + [rj ⊕ cj] and the most significant bit-position first.
This is computable in O(1) rounds since all terms are invertible – they are
either 1 or 2, and M is odd.

136

4.2 Solving the PFCP with the Modified Comparison

Recall the PFC problem: we are given two ˆ̀-bit values, [r]B and [c]B , and
must compare all postfixes, i.e. all reduction modulo 2-powers. The above
comparison cannot be applied naively at every bit-position, that would be too
costly. Our goal is therefore to compute a value, [E(k)], for every bit-length,

k ∈ {1, . . . , ˆ̀}, equivalent to [E] above. This suffices as the goal are the least
significant bits of these values, and the LSB-gate requires only constant work.

Values similar to the [ei] above cannot be computed; there is a quadratic
number of them. Instead the [ei] are computed as before. These are equivalent

to the desired [e
(ˆ̀−1)
i], and will be used in all the ensuing computation,

[Ẽ(k)]←
k−1
∑

i=0

[ei].

The computed values quite likely differ from the desired [E(k)]. However,

[ei] is only off from [e
(k)
i] – which should have been used – by a factor of some

two-power, 2
Pˆ̀−1

j=k [rj]⊕[cj]. For any fixed k, this value is also fixed. Therefore
[Ẽ(k)] is also simply “wrong” by a factor of this.

To “correct” [Ẽ(k)], first note that [2
Pˆ̀−1

j=k rj⊕cj] has already been computed
by the prefix-product. Further, the factor can be eliminated as it is invertible
and element inversion is possible due to the protocol of [BB89]. I.e. the desired
[E(k)] is securely computable.

[E(k)]← [Ẽ(k)] · [2
Pˆ̀−1

j=k rj⊕cj]
−1

At this point, invoking an LSB-gate on every [E(k)] provides the final result.
Correctness follows from the above discussion along with that of Sect. 4.1.

Regarding security, the protocol clearly does not leak information. More values
are output from the ABB, but this still occurs only in sub-protocols. Thus,
no information is leaked.

We conclude with a complexity analysis of the protocol. Securely computing

both the factors, [2
Pˆ̀−1

j=k [rj]⊕[cj]], and the [ei] for all bit-positions, i, and bit-

lengts, k, requires only O(ˆ̀) secure multiplications in O(1) rounds. All that
was required was the computation of [rj⊕cj] for every bit-position, the prefix-
product, and the concluding computation for each [ei].

Computing the [Ẽ(k)] is costless at this point, while correcting them – com-

puting the [E(k)] – requires O(ˆ̀) work. One element inversion and one mul-
tiplication is needed per bit-length, and these may be processed in parallel.
Similarly, the concluding LSB-gates are also O(1) work each and may also be
executed concurrently.

Paper F: Linear Constant-rounds Bit-decomposition 137

Combining the above, it is clear that only O(1) rounds are needed in which

O(ˆ̀) secure multiplications must be performed. Thus, the following theorem
is obtained.

Theorem 1. There exists a protocol which solves postfix comparison problems
of size ˆ̀ in O(1) rounds using O(ˆ̀) secure multiplications of elements of ZM ,

for M > 2
ˆ̀+κ+log n.

4.3 Performing Bit-decomposition

It remains to apply Lemma 1 and Theorem 1 to obtain the main result
of this paper. There is, however, still one problem to be solved. The PFC
problem to solve is of size ` = logM , but to apply Theorem 1 we must have
M > 2`+κ+log n; this is of course contradictory.

Assuming that M > 22(κ+logn), then the following variation of the above
solution fixes the problem. The trick, taken from [Rei], consists of considering
pairs of bit-positions rather than single bit-positions when computing the [ei].
This results in half as many [ei], thereby halving the bit-length needed. I.e. the
resulting modified [E(k)] have at least κ+log n bits of headroom in ZM , allow-
ing the LSB-gate to be applied. This was the sole reason for the restriction on
M . For simplicity it is assumed that ` is even in the following, where Eq. (1)
is replaced by Eq. (2) which is computed only for the odd bit-positions, i.

First values, [ui], are computed,

[ui]← [ri] ∧ (¬[ci]) ∨ (¬([ri]⊕ [ci])) ∧ [ri−1] ∧ (¬[ci−1]).

Note that this is simply a comparison circuit for 2-bit numbers. Though
somewhat complex, the expression translates readily to arithmetic.

[ri](1− [ci]) + (1 + [ri] · [ci]− [ri]− [ci])[ri−1](1− [ci−1])

The [ui] are then used in the computation replacing Eq. (1). [e′i] is set to a
2-power exactly when the 2-bit position of [r]B is greater than that position of
[c]B , and the powers are smaller, as only the number of differing 2-bit blocks
are “counted.”

[e′i]← [ui] · 2
P`/2−1

j=((i−1)/2)+1
([r2j]⊕[c2j])∨([r2j+1]⊕[c2j+1])

(2)

Again, the expression is slightly more involved than before, but it can also be
translated to a prefix-product.

The smaller [Ẽ(k)] can now be computed, however, there are two cases. To
compute the odd ones, values [e′i] are also needed for the even bit-positions.

[e′i]← [ri](1− [ci]) · 2
P`/2−1

j=(i/2)+1
([r2j]⊕[c2j])∨([r2j+1]⊕[c2j+1])

138

At this point we may compute

[Ẽ(k)]←
{

∑k/2−1
i=0 [e′2i+1] when k is even

[e′k−1] +
∑(k−1)/2−1

i=0 [e′2i+1] when k is odd

after which the incorrect powers of 2 can be eliminated and the LSB-gates ap-
plied as above. This solves the PFC problem such that [x]B can be determined.
The result is summarized in the following theorem.

Theorem 2. There exists a protocol which bit-decomposes a secret value, [x] of
ZM , to [x]B using O(`) secure multiplications in O(1) rounds. The protocol is
statistically secure against passive adversaries when the arithmetic primitives
are this. When they only provide computational security, then so does the
present protocol.

5. Active Security

As noted in the introduction, active security is not immediate. Even when
actively secure protocols are used for the computation, problems occur when
the parties are asked to share a random value from a domain different from
ZM . For example, when M is not a prime, the parties must verify that inputs
are really ±1 during the bit-generation protocol. This is easily achieved with
a zero-knowledge proof in the case of Paillier values, [DJ01]. The problem
does not affect the solution based on Shamir sharing. There ZM must be a
field which implies that M is a prime. A second problem occurs in the LSB
gates. It must be verified that the masks, [m(k)], are indeed of the specified
bit-length. But these are the only problems.

By the definition of the arithmetic black-box, no adversary can do other
harm. Thus, given a constant-work means of proving that a value is of bounded
size (an interval proof), the solution can be made secure against active adver-
saries. There exists such proofs for both our examples.

As noted in [ST06], it is possible to demonstrate that a Paillier encryption
contains a value within a specified range using the results of [Bou00, Lip03,
DJ02]. The solution reveals no other information than the fact that indeed
the value was from the desired range. Hence, active security is quite easily
obtained in a Paillier based setting.

Regarding protocols based on Shamir sharing, such a proof is not immediate.
It is, however, possible to obtain efficient range proofs by taking a detour
through linear integer secret sharing (LISS). The solution follows directly from
LISS, hence we only sketch it; see [Tho09] for a full explanation.

First off, LISS not only provides secret sharing of integer values, it can also
form the basis for unconditionally and actively secure MPC. Further, it is
possible convert a linear integer secret sharing to a Shamir sharing over ZM

simply by reducing the individual share modulo M . The solution is therefore
to first share the m(k) using LISS, and for each of them demonstrate that it

Paper F: Linear Constant-rounds Bit-decomposition 139

Table 1. Complexity of constant-rounds bit-decomposition.

Rounds Multiplications

[DFK+06] 38 94` log ` + 63` + 30
√

`

[NO07] 25 47` log ` + 63` + 30
√

`

[Tof09] 23 + c (31 + 26c)` · log∗(c)` + 71` + 14c
√

`log∗(c)(`) + 30
√

`

This paper 18 74` + 30
√

`

is in the desired range using constant work, [Tho09]. Secondly, those secret
sharings are then converted to Shamir sharings over ZM . This ensures that
the Shamir shared value is of bounded size as required.

6. Conclusion

We have proposed a novel protocol for constant-rounds bit-decomposition
based on secure arithmetic with improved theoretic complexity compared to
previous solutions. The complexity reached – O(`) – appears optimal, as this
is also the number of outputs, however, that this is the case is not immediately
clear. Proving that Ω(`) secure multiplications is indeed a lower bound is left
as an open problem.

Unfortunately, the present solution also has some “defects” compared to
the previous ones. Firstly, “only” (at most) statistical security is guaranteed,
rather than perfect. This still allows linear, constant-rounds, unconditionally
secure bit-decomposition, though. That security cannot be perfect also im-
plies that the underlying ring must be sufficiently large to accommodate the
large, random elements needed for statistical security. I.e. the protocol is only
applicable for large moduli.

A second, worse “defect” is that the basic solution does not provide out-of-
the-box active security. This must be obtained through additional protocols,
which of course increases complexity of the operations where these are needed.
However as demonstrated, efficient, active security can be achieved quite read-
ily for both Paillier based and Shamir sharing based settings.

We conclude by comparing the explicit complexity of our solution to that of
previous ones, Table 1. Counting the exact number of secure multiplications
provides a direct comparison for the case of passive security. It is noted that
the proposed protocol not only improves theoretic complexity, it is also highly
competitive with regard to the constants involved.

With regard to active security, however, the present solution must also take
into account the proofs that the masks shared by parties are well-formed –
these depend on the realizing primitives and are therefore not included in the
overview.

Bibliography

[BB89] J. Bar-Ilan and D. Beaver. Non-cryptographic fault-tolerant computing in a
constant number of rounds of interaction. In Piotr Rudnicki, editor, Proceedings
of the eighth annual ACM Symposium on Principles of distributed computing,
pages 201–209, New York, 1989. ACM Press.

[BGW88] M. Ben-Or, S. Goldwasser, and A. Wigderson. Completeness theorems for
noncryptographic fault-tolerant dist ributed computations. In 20th Annual
ACM Symposium on Theory of Computing, pages 1–10. ACM Press, 1988.

[Bou00] F. Boudot. Efficient proofs that a committed number lies in an interval. In
Bart Preneel, editor, Advances in Cryptology – EUROCRYPT 2000, volume
1807, pages 431–444, 2000.

[CCD88] D. Chaum, C. Crépeau, and I. Damg̊ard. Multiparty unconditionally secure
protocols. In 20th Annual ACM Symposium on Theory of Computing, pages
11–19. ACM Press, 1988.

[CDN01] R. Cramer, I. Damg̊ard, and J. Nielsen. Multiparty computation from threshold
homomorphic encryption. In Birgit Pfitzmann, editor, Advances in Cryptology
– EUROCRYPT 2001, volume 2045, pages 280–300, 2001.

[DFK+06] I. Damg̊ard, M. Fitzi, E. Kiltz, J. Nielsen, and T. Toft. Unconditionally secure
constant-rounds multi-party computation for equality, comparison, bits and ex-
ponentiation. In Shai Halevi and Tal Rabin, editors, Theory of Cryoptography,
volume 3876 of mylncs, pages 285–304. Springer, 2006.

[DJ01] I. Damg̊ard and M. Jurik. A generalisation, a simplification and some appli-
cations of paillier’s probabilistic public-key system. In Kwangjo Kim, editor,
PKC 2001: 4th International Workshop on Theory and Practice in Public Key
Cryptography, volume 1992, pages 119–136, 2001.

[DJ02] I. Damg̊ard and M. Jurik. Client/server tradeoffs for online elections. In David
Naccache and Pascal Paillier, editors, PKC 2002: 5th International Workshop
on Theory and Practice in Public Key Cryptography, volume 2274, pages 125–
140, 2002.

[DN03] I. Damg̊ard and J. Nielsen. Universally composable efficient multiparty com-
putation from threshold homomorphic encryption. In Dan Boneh, editor, Ad-
vances in Cryptology - CRYPTO 2003, volume 2729 of Lecture Notes in Com-
puter Science, pages 247–264. Springer Berlin / Heidelberg, 2003.

[Lip03] H. Lipmaa. On diophantine complexity and statistical zero-knowledge argu-
ments. In Chi-Sung Laih, editor, Advances in Cryptology – ASIACRYPT 2003,
volume 2894, pages 398–415, 2003.

142

[NO07] T. Nishide and K. Ohta. Multiparty computation for interval, equality, and
comparison without bit-decomposition protocol. In PKC 2007: 10th Interna-
tional Workshop on Theory and Practice in Public Key Cryptography, volume
4450 of Lecture Notes in Computer Science. Springer-Verlag, Berlin, Germany,
2007.

[Pai99] P. Paillier. Public-key cryptosystems based on composite degree residuosity
classes. In Jacques Stern, editor, Advances in Cryptology – EUROCRYPT’99,
volume 1592 of Lecture Notes in Computer Science, pages 223–238. Springer-
Verlag, Berlin, Germany, 1999.

[Rei] T. Reistad. Multiparty comparison – an improved multiparty protocol for
comparison of secret-shared values. To appear at SECRYPT 2009.

[Sha79] A. Shamir. How to share a secret. Communications of the ACM, 22(11):612–
613, 1979.

[ST06] B. Schoenmakers and P. Tuyls. Efficient binary conversion for paillier encrypted
values. In Advances in Cryptology – EUROCRYPT 2006, Lecture Notes in
Computer Science, pages 522–537. Springer-Verlag, Berlin, Germany, 2006.

[Tho09] R. Thorbek. Linear Integer Secret Sharing. PhD thesis, Aarhus University,
2009.

[Tof09] T. Toft. Constant-rounds, almost-linear bit-decomposition of secret shared
values. In Marc Fischlin, editor, Topics in Cryptology – CT-RSA 2009, volume
5473, pages 357–371, 2009.

[Yao82] A. Yao. Protocols for secure computations (extended abstract). In 23th Annual
Symposium on Foundations of Computer Science (FOCS ’82), pages 160–164.
IEEE Computer Society Press, 1982.

[Yao86] A. Yao. How to generate and exchange secrets (extended abstract). In 27th
Annual Symposium on Foundations of Computer Science, pages 162–167. IEEE
Computer Society Press, 1986.

