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Abstract

This thesis investigates the application of a deep learning-based fault prediction
system for offshore wind turbines based on SCADA data. The goal of the system
is to provide early warning of faults, and thus reduce both the maintenance costs,
as well as cost related to downtime.

The complete architecture of a fault prediction system is described and im-
plemented, including the data sources, labelling procedure, data preprocessing,
train/test/validation split procedure, classification component and alarm control
system. The main focus of the thesis has been to evaluate the performance of
different classifier components of the system.

Deep learning has shown great promise for time series classification problems,
and several deep learning architectures are implemented as the classification com-
ponent of the system. These are then compared to a random forest model. Such
models are considered to be the state-of-the-art in this domain.

The deep learning models show better performance than the random forest
model on all experiments. I show that the system is able to detect faults in
advance, but the number of false alarms given in order to do so varies greatly
with different fault categories. Some fault categories are found to be better
suited for modelling than others, and large variations in results are also observed
with regards to how long time in advance we want to be able to predict a fault.
The performance of the investigated deep learning models varies across the fault
categories, and it is not possible to declare a ”winner” across the board.

Whether the amount of faults predicted vs. the false alarm rate justify build-
ing a production version of the system, must be further evaluated from a business
perspective by domain experts.

The primary contribution of this thesis is the design and implementation of
a complete fault prediction system for offshore wind turbines based on SCADA
data. Additionally, different deep learning architectures have been evaluated as
the classifier component of this system, and demonstrated ability to improve upon
the state-of-the-art. Additional problem-specific insights are also presented, in
order to facilitate future work in this area.
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Chapter 1

Introduction

This chapter will provide the reader with an introduction to the thesis. First, I
describe the motivation behind the thesis. Subsequently, the primary goal of the
research, as well as the more specific research questions, will be presented. The
main contributions and an overview of the structure of the thesis will form the
final sections of this chapter.

1.1 Background and Motivation

Wind energy is a renewable energy source, whose installed capacity has drasti-
cally increased in recent years. Conti et al. [2016] argue that the total energy
production from wind energy will increase by 5.7 percent each year on average
until 2040. Wind turbines are commonly exposed to rough weather conditions
and subject to frequent variations of operating conditions. Operations and main-
tenance costs may account for up to 30 per cent of the total cost of energy for
offshore wind turbines [Tavner, 2012].

For offshore wind turbines, transportation of service personnel may be delayed
several days because transportation is only feasible at certain transportation win-
dows. The availability of these windows depend on several factors, such as the
weather and availability of transportation vessel/helicopter. It may also take
some time for spare parts to arrive. For these reasons, the idea of establishing
reliable monitoring systems to assist in early fault detection is appealing. This
may allow operators to take preventive actions, or to plan maintenance/repair
in advance if a fault is unavoidable. The components of wind turbines with
the highest fault rates are the rotor (especially the pitch system), transmission
and power system [Pfaffel et al., 2017]. Several efforts have been made with the
goal of predicting such faults in advance, and a wide range of machine learning
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techniques have been tested in the process, with various degrees of success.

Fault prediction for wind turbines has been applied to mainly two types of
data, data from supervisory control and data acquisition (SCADA) systems, and
data from condition monitoring systems (CMS). CMSes are based on sensors that
are installed for the sole purpose of monitoring the condition of a component or
system. These sensors need to be installed separately. Wind turbine components
have high reliability in general and operate at relatively low speeds, compared to
components in other industries. This may offer an explanation of the low adap-
tion of CMSes for wind turbines. In contrast, most wind turbines are equipped
with a SCADA system by default, providing a great deal of information on the
wind turbines operating conditions, sensors and status.

The SCADA system provides time-stamped measurements from the wind tur-
bine sensors of different resolution. Since these data are already readily available
for most turbines, the use of SCADA data for fault prediction is very appealing,
and will be the basis of this thesis. It should be noted that there is no com-
mon taxonomy or naming convention of the SCADA signal names. This is all
dependent upon the vendor of the system, and poses a potential obstacle towards
generalization of research. For instance, some of the sensors that are emphasized
in a paper may not necessarily be available for another wind turbine, and if they
are available, they may not represent reality in the exact same way.

Traditional machine learning methods require some degree of manual feature
engineering in order to capture inherent relationships between input variables.
Additional feature engineering is required in order to capture relationships be-
tween data points at different timesteps. This introduces a need for domain
knowledge in order to select and craft the most relevant features, without adding
irrelevant ones. A brute force approach will increase the dimensionality of the
samples, and make subsequent modelling more difficult.

Deep learning is a representation learning method that has turned out to
be very good at discovering intricate structures in high-dimensional data, while
circumventing the need for manual feature engineering [LeCun et al., 2015]. Rep-
resentation learning means that it is able to learn multiple levels of represen-
tations, with slightly more complex, non-linear transformations at each level.
With enough such transformations, very complex functions can be learned. Deep
learning has recently achieved state-of-the-art results in in domains such as image
recognition, speech recognition, translation, and other natural language process-
ing applications.
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1.2 Goals and Research Questions

In the previous section I explained the motivation for a fault prediction system
based on SCADA data, and introduced the appeal of investigating the perfor-
mance of deep learning architectures as the classifier component of such a system.
This has led me to formulate the primary goal of the thesis as follows:

Research goal Build a deep learning-based fault prediction system for offshore
wind turbines based on SCADA data.

We want to evaluate different deep learning models for the classifier compo-
nent of the system. It is very interesting to find out how these models compare to
the state-of-the-art in this domain. This leads to the following research questions:

Research question 1 How does deep learning methods perform in comparison
to the state-of-the-art for predicting faults in wind turbines?

Research question 2 Which of the investigated deep learning architectures are
best suited as the classifier component in such a system?

1.3 Research Method

In this project, software to implement the fault prediction system will be created,
and empirical experiments will be designed and conducted to address the research
questions. A generic system will be designed, and the deep learning methods as
well as the state-of-the-art model will be used as the classifier component of the
system and compared to each other. In that way, a fair comparison between
methods may be performed. As a large dataset with known faults are provided,
we are able to hold out a subset of the data (test data) from the models, and
explicitly measure their ability to discriminate between normal operation and
impending faults, and thus overall usefulness.

1.4 Thesis Structure

This first chapter of the report gives an introduction to the problem we are
addressing in this thesis, and a motivation for why this problem needs to be
solved. Chapter 2 provides some background theory needed to follow the rest
of the thesis. Chapter 3 contains a survey of current literature and attempt to
establish a state-of-the-art. Chapter 4 describes the architecture of our proposed
system. Chapter 5 summarizes results of empirical experiments on a dataset
provided by Equinor ASA. Finally, these results are discussed and evaluated in
chapter 6.



4 CHAPTER 1. INTRODUCTION



Chapter 2

Background Theory

This chapter is intended to introduce the reader to the concepts that are nec-
essary to understand the rest of the thesis. Please, note that this is not an
in-depth explanation, as much as a brief foundation. In order to gain a deeper
understanding of concepts introduced in this chapter, the referenced sources are
a good starting point. I will start by presenting concepts related to the data that
is used, as well as fault prediction in general. Next, I will give a brief introduc-
tion to time series classification, and the considerations that must be made when
utilizing time series data for machine learning. The relevant evaluation metrics
are also presented. To conclude the chapter, basic deep learning concepts and
methods are introduced.

2.1 Supervisory control and data acquisition (SCADA)
data

SCADA is a term common to a wide range of industrial processes, used to describe
the system that gathers data collected from sensors related to the system. There
are many different vendors that provide several kinds of SCADA systems. The
data collected from these systems will often contain measurements along with a
timestamp for each measurement, resulting in time series data.

2.2 Fault prediction methods

There exist different methods of predicting faults ahead of time. This section
will group these methods in three categories, which will be referred to in later
sections.

5
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2.2.1 Forecast-based fault prediction

Forecast based fault prediction use one specific sensor of the SCADA data as
target variable. Temperature sensors are commonly used, due to their correlation
with certain types of faults. This sensor is then predicted using other sensors as
input variables. It is critical that data indicating a fault is not included as training
data, as the model is supposed to represent normal operating conditions. After
the model is fitted to historical data, one can then compare the output of the
fitted normal model to the actual values in real time. The residual errors between
the expected output and actual output can then be used to indicate emerging
faults. This may be considered a supervised learning method, since the model
is fitted with a target variable, even though the target variable is not a direct
indicator of a fault. Using this method, the need to train on actual historical
faults are alleviated, as one builds a normal model, and detect deviations from
this, rather than to try to model faults. If one does not have sufficient fault data
readily available to train with, this method becomes especially attractive. An
example of the architecture of a forecast-based fault prediction system can be
seen in figure 2.1.

Figure 2.1: Architecture of forecast based fault prediction system, adapted from
Yang et al. [2018]

2.2.2 Anomaly-based fault prediction

This methodology builds a model of normal behavior based on historical data
as well. In contrast to forecast-based fault prediction, this method models the
whole input signal, and seeks to detect anomalies based on the whole signal,
rather than using specific sensors as a proxy for faults. If historical records of
faults exist, these should be omitted from the training data, so that the normal
behavior model is based on healthy data. The model is then trained to recreate
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its own input as the output. For unseen data, anomalies may then be detected by
computing the error between the expected output (which is the same as the input)
and the actual output. This error may then be compared to the normal errors.
If this error deviates from the normal, an anomaly has occurred. To determine
what a deviation from the normal is, one needs to define a deviation threshold, for
example three standard deviations for a normal distribution, which corresponds
to ∼99.7 percent of the data being normal, and ∼0.3 percent being anomalous. A
common challenge for anomaly-based methods is that most data that is different
than what the model is trained on will represent an anomaly. This makes it
difficult to filter out fault data from ”non-fault, but new condition”-data.

2.2.3 Supervised fault prediction

To do supervised learning where the presence of a fault is the target variable,
one needs explicit examples of faults. The number of faults per turbine per
year is relatively low (from 10 to 50 based on observations on provided dataset).
This number is extremely low compared to the number of samples from normal
operation. This implies that the supervised approach to fault prediction is an
imbalanced class problem, and must be handled with special caution. Several
methods of handling this is described in section 2.6.

Another issue with supervised fault prediction, is the divergence in method-
ology for labelling of faults in the literature. Ideally, there would be a common
way of labelling and storing fault data for all turbine monitoring systems. This is
not the case however. In the dataset used for this project, there are fault records,
called allocations. The fault allocations are a combination of automatically la-
belled faults from the SCADA system and manually labelled faults. There were
also many stops that did not have a corresponding record in the allocation ta-
ble. Additionally, there are many potential pitfalls, and different strategies that
may be used when labelling data. One approach for labelling is to try to predict
remaining useful lifetime (RUL). This would imply labelling a sample with the
time until failure, making the problem a regression problem. This method is well
suited when the failures belong to one common component. With several different
components, the label, and thus also the targets for training a machine learning
algorithm, would need to be the RUL of each of the possible components.

Another approach is to use a binary label, framing the fault prediction prob-
lem as a classification problem. With this approach, an important decision to
make is whether one is trying to predict exactly when a fault occurs, or if the
turbine is in a pre-fault state. The former would imply labelling only the sample
before the fault occurs, while the latter would imply labelling all samples in a
window, m, before the fault occurs as pre-fault samples. The predictions must
be interpreted accordingly. If the samples are labelled as pre-fault data, the pre-
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dictions would indicate the probability of being in a pre-fault state. In contrast,
if the samples are the labelled where the actual fault occurs, we can make a pre-
diction which will be interpreted as ”the probability that a fault will occur at the
next timestep”, and the fault prediction horizon will be very short. The former
will likely be of limited value, as actions to mitigate the fault would need to be
taken before the next timestep.

Generally, one will also have to throw away all training samples where faults
already have occurred, as it is not useful to predict a fault that has already
occurred. All these considerations must be taken into account to ensure that the
evaluation metrics will be fair, and will be useful in a real world system.

2.3 Capturing temporal features

The SCADA dataset consists of timestamped measurements that are temporally
related. Still, out of the surveyed literature that takes a supervised approach to
the fault prediction problem, only one paper makes use of some kind of time-
related features from previous observations, and they just add the lagged value
of one timestep of selected variables as additional features.

A possible reason for this, is that the number of features might grow very fast,
and a problem known as ”the curse of dimensionality” will arise [Domingos, 2012].
This problem will introduce the need for a dimensionality reduction method, for
example Principal Component Analysis (PCA) Jolliffe [2011], in order to make
use of most machine learning algorithms.

When considering the objective of predicting a fault based on this data, it is
fair to assume that not only the sensor values at that specific time will be relevant
in order to determine if a fault is imminent, but also the temporal features1 of
the time series up to that point (see Chapter 3). For illustration, consider an oil
pressure sensor. It is likely that the trend of the readings from this sensor will
be an important factor in order to predict a related fault. At the very least, it
is not unlikely that capturing the trend will enable an earlier prediction of the
fault. There are several ways of capturing such temporal information, as we will
see in the following sections.

2.3.1 Adding manually crafted time-related features

One way to capture temporal information is to consider each observation by itself,
but add manually crafted time-related features. An example would be to add
rolling mean for different time windows, or to add the difference between current
and past observations. In Fulcher and Jones [2014], 25 time-related features are

1In this context, temporal features are used to describe properties such as trend, time deriva-
tives and time integrals over a single feature or combinations of features
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added, and are shown to improve classification performance considerably. In
order to select those features that are most relevant, domain knowledge is an
advantage. The number of features can grow very large if one is not selective
about which features are added.

2.3.2 Adding lagged timesteps as features

Another approach is to simply add previous observations as features, and let the
model try to figure out possible relationships between the observations. However,
this method also suffers from a quickly growing number of features. Consider the
case that we would want to capture the development over the past day for all
variables. With 10-minute-interval samples, this would mean 6·24 = 144 previous
timesteps per feature, which would quickly lead to a large number of features,
and increase the complexity of working with the dataset.

2.4 Domain specific feature engineering

With the incorporation of domain knowledge, several additional features might
be crafted based on combinations and/or transformations of original features.
Examples of potentially useful engineered features for the wind turbine diagnos-
tics domain is the difference in temperature between front and rear bearing or
the ratio between active power and available power. Hu et al. [2016] have done
research on domain specific feature engineering for wind turbine diagnostics, and
show that a prediction accuracy increase of 27% was gained by adding manually
crafted features to the observed SCADA data. Feature engineering introduces the
need for domain knowledge, to be able to craft relevant features. There are also
frameworks for automated feature engineering. This has been described as ”One
of the holy grails of machine learning is to automate more and more of the fea-
ture engineering process” [Domingos, 2012]. One such framework is featuretools,
based on the techniques described in Kanter and Veeramachaneni [2015]. A com-
mon drawback for these approaches is that they are computationally expensive,
especially as the number of samples and original features grow large.

2.5 Time series classification

Time series classification is the process of classifying a sequence of observations as
belonging to a specific category. This can be seen in contrast to the cases above,
where each observation is classified independently. We introduce a parameter n,
denoting the number of observations that together make up one sample. This
parameter will be referred to as window size. For illustration, let us consider
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the following individual observations, where each row is an observation, with the
rightmost column representing the dependent variable that is produced by the
previous n observations:

x01 x02 x03 x04 x05 NaN

x11 x12 x13 x14 x15 NaN

x21 x22 x23 x24 x25 NaN

x31 x32 x33 x34 x35 y0

x41 x42 x43 x44 x45 y1


NaN is used to denote ”Not a number”, and is used to indicate that there are

no corresponding output for the n first observations, as they do not make up a
whole example. Below is an example of how this would look like framed as a time
series with a window size, n, of 3. This means that we will get (number of total
observations-n) training examples, in this case, two. The training examples would
look like this, with x̂ representing the inputs, and ŷ representing the output.

x̂(0) =


x01 x02 x03 x04 x05

x11 x12 x13 x14 x15

x21 x22 x23 x24 x25

 , ŷ(0) = y0

x̂(1) =


x11 x12 x13 x14 x15

x21 x22 x23 x24 x25

x31 x32 x33 x34 x35

 , ŷ(1) = y1

The most common approaches for such time series classification will be dis-
cussed in the next sections.

2.5.1 Instance-based time series classification

In this approach, each time series (which might be multivariate) is classified by
measuring the distance to other samples. One algorithm that uses this approach is
the simple ”lock step”-distance depicted in figure 2.2 A. Another more commonly
used algorithm is Dynamic Time Warping (DTW), which can accommodate un-
aligned patterns in the time series, i.e. if a pattern is recognized at one point in
the sequence, the same pattern can be used for recognizing an unseen sequence
even if the pattern occurs at a different point in the sequence.
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Figure 2.2: Two types of time series classification methods

2.5.2 Feature-based time series classification

In this case, a large number of features of the time series are extracted, and added
as additional features. In order to only use the features with most explanatory
power, some kind of feature selection is normally done before a machine learning
algorithm is applied. There exists a wide variety of feature selection algorithms,
which are typically divided into the following categories:

1. Filter methods. These methods remove the features that are least inter-
esting based on general features, such as correlation with the dependent
variable.

2. Wrapper methods. These evaluate a subset of the variables, and therefore
allow for interactions between variables to be a part of the evaluation. This
increases computation time compared to filter methods.

3. Embedded methods. These are models that incorporate some kind of fea-
ture selection internally, with a decision tree model as an example.

2.6 Class imbalance

Class imbalance is a term used to describe classification cases where the number
of examples of each class are not evenly distributed. Supervised fault predic-
tion represents a problem where we face this issue. This section will provide an
overview of commonly used methods for handling the class imbalance problem.
For a more thorough review, the reader is referred to Branco et al. [2016].
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2.6.1 Undersampling majority class

This method aims to balance class distribution by randomly eliminating samples
from the majority class. A major drawback of this method is that potentially
useful data is thrown away.

2.6.2 Random oversampling of minority class

This method aims to balance class distribution by randomly duplicating samples
from the minority class. A major drawback of this method is that it is very likely
to lead to overfitting.2

2.6.3 Oversampling synthetic examples of minority class

Several methods exist that seek to generate synthetic examples of the minority
class. The most commonly used is SMOTE (Synthetic Minority Oversampling
TEchnique) [Chawla et al., 2002], that generates new samples by interpolating
between samples drawn from the minority class. The method is well illustrated
by figure 2.3.

Several improvements and variations of SMOTE have been proposed in recent
years. These will not be covered in detail here.

2.6.4 Algorithm-based handling of class imbalance

Some ensemble learning algorithms are well suited to handle the imbalance prob-
lem due to their ability to learn from several weak classifiers. An example is the
use of bagging of decision tree classifiers, where the sample used by each decision
tree is balanced, as can be seen in figure 2.4.

2.6.5 Cost-sensitive learning

Another approach for handling the imbalanced class problem is to incorporate
different cost for misclassification of each class. To illustrate, we can use the
example of a dataset with 1% positive samples, and 99% negative samples. The
cost of misclassifying a positive example can then be set to 99 times that of
misclassifying a negative example. In this way, a classifier will be forced to learn
to classify the positive class, in order to avoid a large cost.

2Overfitting is a term used to describe the situation where the noise in the training data
is modelled, rather than the underlying patterns, which leads to poor generalization to unseen
data.



2.7. EVALUATION METRICS 13

Figure 2.3: Steps of SMOTE process, adapted from [Fawcett, 2016]

2.7 Evaluation metrics

This section will provide some insights into commonly used evaluation metrics for
binary classification. We make use of the common abbreviations listed in table
2.1.

Table 2.1: Abbreviations used for evaluation metrics

Abbr. Meaning
TP True Positive
TN True Negative
FP False Positive
FN False Negative



14 CHAPTER 2. BACKGROUND THEORY

Figure 2.4: Bagging with balanced classes, adapted from [Fawcett, 2016]

2.7.1 Confusion matrix

A confusion matrix is a matrix used to visualize the predictions from a classifier
against the actual labels.

Table 2.2: Confusion Matrix

Actual Positives Actual Negatives

Predicted Positives TP FP
Predicted Negatives FN TN

Several other metrics can be derived from the values of the confusion matrix,
as we will see in the next sections.

2.7.2 Accuracy

This is a metric that describes what fraction of the classifications that are correct.

Accuracy = TP+TN
TP+FP+TN+FN
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This metric is not well suited with imbalanced classes. To illustrate, we can
think of the example where we have only 1% of the samples that are positive. A
classifier that classifies everything as negative, will then score a 99% accuracy,
even though it is not particularly useful.

2.7.3 Precision

Precision is a metric that displays how many of the positively classified samples
that actually were positive.

Precision = TP
TP+FP

Also known as sensitivity.

2.7.4 Recall

Recall is a metric that displays how many of the total positive samples that were
classified as positive.
Recall = TP

TP+FN

Also known as specificity.

2.7.5 F score

F score is a metric that combines precision and recall to give a score based on
both. F1 score is the special case of the F score that computes the harmonic
mean of precision and recall, i.e. both are given equal weight. Often, one might
want to give more weight to either precision or recall. To illustrate, we can think
of an example related to the fault prediction domain. If it is more important that
all alarms are detected than reducing the number of false alarms, we want to put
more weight to recall. In the opposite case, if we want to give more weight that
our predicted faults are actual faults, and reducing the number of false alarms
(and also the number of faults detected), we can give more weight to precision.

F1 = 2 ∗ precision∗recall
precision+recall .

The general case has a parameter β, which can be adjusted to give more weight
to either precision (β < 1) or recall (β > 1).

Fβ = (1 + β2) precision∗recall
(β2∗precision)+recall .
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2.7.6 Precision recall curve

This is a plot that illustrates the trade-off between precision and recall, and may
provide insight into the performance of the classifier at different levels. We can see
that as recall increases, i.e. a larger fraction of the true positives are accurately
classified, the precision will gradually decrease. An example of a precision recall
curve can be seen in figure 2.5.

Figure 2.5: Example of Precision recall-curve with Average Precision (AP) 0.88

2.7.7 ROC-curve

The receiver operating characteristic curve (ROC) [Fawcett, 2006] is a plot de-
signed to illustrate the diagnostic ability of a binary classifier. It is created by
plotting the true positive rate (TPR) vs. the false positive rate (FPR) at different
threshold settings.
TPR is given by
TPR = TP

TP+FN , while

FPR is given by
FPR = FP

FP+TN

If the ROC curve has a steep curve at the beginning it means that many of the
predictions with highest probabilities are correct. The performance of random
chance will form a diagonal line in the ROC-curve. An example of a ROC-curve
can be seen in figure 2.6.
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Figure 2.6: Example of Receiver Operating Characteristic-curve

An important point is that the ROC curve may lead to an overly optimistic
picture of the classifier’s skill in the case of very imbalanced classes. The reason
for this is the inclusion of the number of true negative samples in the FPR. [Davis
and Goadrich, 2006].

2.7.8 AUC

Area under curve (AUC) is a metric used in combination with the ROC-curve,
where the area under the ROC-curve is calculated. An AUC of 0.5 corresponds
to the expected performance of a random classifier, and an AUC of 1 describes a
perfect classifier.

2.8 Artificial Neural Networks (ANN)

An artificial neural network (ANN) is a computational model inspired by the
human brain. The key concept is that the hidden units in the network has pa-
rameters called weights and biases. The output of a given node is determined by
its input, bias, weight and the activation function. The activation function is typ-
ically a non-linear mathematical function, with sigmoid, the hyperbolic tangent
(tanh) and rectified linear unit (ReLU) [Nair and Hinton, 2010] being common
examples. The weights and biases are iteratively adjusted to optimize a loss
function. This loss function is calculated based on the predictions given by the
network and the expected output. The derivative of the loss function is calculated
and propagated back through the network, in a process called backpropagation.
The parameters are thus adjusted according to how much they contributed to
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the error. This optimization method is called gradient descent. An illustration
of an ANN can be seen in figure 2.7.

Figure 2.7: Artificial Neural Network

In the figure, xi represent the i’th input variable, ali is the activation for the
i’th unit at layer l, and the circles labeled ”+1” are the bias units. hW,b(x) is the
network’s hypothesis, or output, given the input, weights and biases.

The most common way of training neural networks today is by training the
network iteratively with batches of training samples, where the weights and bi-
ases are updated after each batch. When all the samples in the training set have
been used for training once, we say that the network has been trained for one
epoch. An important hyperparameter to choose before training is the learning
rate. The learning rate controls how much the weights are updated on each iter-
ation. Several optimizer algorithms have been suggested to dynamically adjust
the learning rate during training. One such optimizer, that is commonly used, is
the Adam optimizer introduced by Kingma and Ba [2014]. Adam uses moving
averages of the weights and biases instead of absolute updates on each iteration.
This has been shown to increase performance of neural networks.

2.9 Autoencoder

An autoencoder is a special case of ANN, which is trained to recreate the same
output as it is fed in. In this way, the autoencoder automatically learns fea-
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tures of unlabeled data. This can be useful in a number of ways, for example
as a dimensionality reduction method, which in turn enables a more effective
distance calculation between samples. Distance calculation may be used to pro-
duce clusters with samples in proximity to each other. Autoencoders have been
successfully used for anomaly detection [Sakurada and Yairi, 2014]. This is done
by comparing the output produced by the autoencoder with the expected output
(which also is the input). If the error between the two is higher than previous
errors, we can say that the sample is anomalous as it differs to some the degree
from the samples that the autoencoder previously has been trained on. A basic
example of an autoencoder is shown in figure 2.8.

Figure 2.8: Autoencoder

2.10 Deep Learning

Deep learning is a term used to describe Artificial Neural Networks with several
hidden layers. Multiple layers enable the neural network to learn increasingly
complex representations of the data. Deep learning has dramatically improved
the state-of-the-art of several problem domains in recent years [LeCun et al.,
2015]. A visualization of an ANN with multiple hidden layers can be seen in 2.9.
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Figure 2.9: ANN with multiple hidden layers

2.11 Convolutional Neural Networks (CNN)

Convolutional neural networks are very similar to ordinary neural networks de-
scribed in the previous section. The difference is that convolutional neural net-
works are designed to process data that come in the form of multiple arrays, such
as 1D for signals, sequences and language, 2D for images or audio spectrograms
and 3D for video or volumetric images [LeCun et al., 2015]. Note that images
may also be 3D if they consists of multiple channels, as is the case with a typical
color image, with the pixel value of each of the 3 channels (RGB) represents a 2D
matrix, which become 3D when stacked together. Convolution is a mathematical
operation that is best explained by the visual explanation in figure 2.10, where a
kernel (the 3x3 dark blue matrix) slides over input data (the 5x5 blue matrix),
and a matrix multiplication is done to produce an output (the green 3x3 matrix).
The subscripted numbers are the values of the kernel matrix. The kernel’s pa-
rameters (weights) are shared between all its inputs. This reduces the number
of total parameters, and enable CNNs to learn features independent of location.
This is best illustrated by considering images, where a feature (for example the
face of a cat) can be learned no matter where in the image it occurs.

Dumoulin and Visin [2016] wrote an excellent paper with visual explanations
of different convolutions and their parameters, which is recommended for readers
interested in a deeper understanding of this topic.
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Figure 2.10: A convolution operation

2.11.1 Squeeze-and-excitation networks

Introduced by Hu et al. [2018], squeeze-and-excitation networks are an architec-
tural unit of a CNN that explicitly models the relationship and interdependencies
between channels. They have been shown to increase performance of CNN’s with-
out introducing significant computational cost.

The components of a squeeze-and-excitation block can be seen in 2.11

Figure 2.11: Squeeze-excitation-block, adapted from [Hu et al., 2018]

The squeeze part is performed by squeezing global information into a chan-
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nel descriptor by using global average pooling to generate channel-wise statis-
tics. This information is then exploited by the excite-block, which is capable
of learning a non-linear and non-mutually exclusive interaction between chan-
nels (multiple channels should be emphasized). Two fully connected layers are
wrapped around the non-linear component and act as a dimensionality-reduction
and dimensionality-increasing layer, respectively.

2.12 Recurrent Neural Networks (RNN)

Recurrent neural networks are networks designed especially for sequence mod-
elling, which were introduced in the 1980’s by Hopfield [1982]. They have one or
more feedback connections, which means that parameters can be shared among
different parts of the architecture. This enables the network to extract impor-
tant information from a sequence regardless of which position the information is
located at. This is normally done by storing the output at one part of the se-
quence, and using this output to update weights at an earlier part of the network.
Basic RNN architectures are notoriously difficult to train, as described in detail
in Pascanu et al. [2013]. Several improvements have been suggested to remedy
this, and two of the most prominent ones will be described in the next sections.

2.12.1 Long Short-Term Memory (LSTM) Networks

LSTMs were proposed in Gers et al. [1999] to make RNNs simpler to train. In
addition to the cell/unit itself, an LSTM-unit consists of three gates, the input
gate, the output gate, and the forget gate. The input gate decides which input
are accepted, the output gate controls the output, and the forget gate controls
what should be forgotten by the unit. These small control mechanisms allow the
LSTM to forget irrelevant information, and make use of the information that is
considered most relevant across several timesteps.

2.12.2 Gated Recurrent Unit (GRU)

This is another RNN-variation that is quite similar to the LSTM. GRU uses two
kind of gates, the update gate and the reset gate. The update gates determine
how much of the hidden state should be kept, and perform approximately the
same task as the input and forget gate of the LSTM. In contrast to the LSTM,
which contains both hidden state and cell state, the GRU only keeps the hidden
state.
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2.13 Entity embedding of categorical variables

The concept of using embedding vectors to represent categorical variables is
known from the Natural Language Processing (NLP) domain, where words are
represented with an embedding vector instead of a constant value. The embed-
ding vector is initiated with random weights and learned similar to the weights of
a hidden layer in a neural network. This method enables the network to learn that
some words may yield a similar output most of the time, and their embedding
vector values will be closer to each other in a euclidean space than words that do
not yield similar output. Mikolov et al. [2013] demonstrated the effectiveness of
learning vector representations of words. The same concept may also be applied
to other categorical variables, and will be particularly useful if we expect some
of the possible values that a categorical variable may take to be more similar
than others. Consider using day of week as a categorical variable in the context
of predicting sales. We would probably expect Wednesday and Thursday to be
more similar than Wednesday and Sunday. This would likely be learned by us-
ing an embedding for the categorical variable. In Guo and Berkhahn [2016], the
authors demonstrate the effectiveness of encoding a categorical variable into an
embedding vector by using the method in a Kaggle Competition, with the goal
of predicting future sales for Rossmann Stores3 and achieved an impressive 3rd
place with relatively little feature engineering. One of the categorical variables
for which the method was applied to, was which German state the stores were lo-
cated in. After performing a dimensionality reduction of the learned embeddings
with the t-SNE algorithm [Maaten and Hinton, 2008], the state representations
were plotted in 2D. This plot resembled the German map surprisingly well.

2.14 Regularization techniques

An important problem in machine learning is to make an algorithm that will
generalize to unseen data, and not just perform well on the training data. Reg-
ularization is in Goodfellow et al. [2016] defined as any modification made to a
learning algorithm with the intention of reducing its generalization error but not
its training error. There are many options for regularization in deep learning,
and this section will briefly describe the most common ones related to this thesis.

2.14.1 Early stopping

When training neural networks with a sufficient capacity (number of parameters)
to overfit to the training data, we often observe that performance on training data

3https://www.kaggle.com/c/rossmann-store-sales
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Figure 2.12: Learned embedding representations of German states (reduced to
2D with t-SNE) [Guo and Berkhahn, 2016]

decreases over time, while performance on validation data starts to increase when
overfitting occurs. By employing early stopping, the algorithm keeps track of the
performance on the validation set as well as the learned weights, after each epoch
of training. After training has ended, the weights of the network are restored to
the weights that gave the best performance on the validation data. In Goodfellow
et al. [2016], early stopping is recommended almost universally.

2.14.2 Dropout

Dropout was introduced by Srivastava et al. [2014], and provides a simple and
powerful approach to regularizing neural networks. It works by randomly select-
ing a subset of the hidden units that are blocked from learning at each weight
update. This forces features to be learned across several pathways of the net-
work. Dropout is computationally cheap and has been shown to provide effective
regularization.

2.14.3 Weight regularization

This method adds a penalty to the loss function based on the magnitude of the
weights. This encourages the network to keep the weights small. Commonly used
methods are L1-regularization, which penalizes the absolute magnitude of the
weights, while L2-regularization penalizes the squared magnitude of the weights.



2.15. CHAPTER SUMMARY 25

An alternative is to combine L1 and L2-regularization.

2.14.4 Activity regularization

This technique is similar to weight regularization, except the model is penalized
during training based on the magnitude of the activations. The same regulariza-
tion methods may be used.

2.14.5 Batch normalization

Batch normalization was introduced by Ioffe and Szegedy [2015], and addresses
the problem of coordinating simultaneous weight updates across multiple layers.
This is achieved by standardizing the activation between layers per mini batch
that the network is trained on. This has been shown to reduce training time, and
has potential to act as a regularization method according to Goodfellow et al.
[2016].

2.15 Chapter summary

This chapter has introduced the theoretical concepts necessary for the reader to
follow the rest of the thesis, with concepts from both the wind turbine-specific
domain, time series classification, machine learning in general, as well as deep
learning-specific concepts. It should be noted that several of these domains are
highly active at the present time, and new concepts that could prove relevant to
this thesis might have been introduced by the time the thesis is finalized.
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Chapter 3

Related work and
motivation

This chapter surveys related work in the literature relevant to this project. The
fields of related work are divided in two main categories. The first category
is the domain-specific field of using SCADA data for fault prediction in wind
turbines. The second category is the more general field of deep learning for
multivariate time series classification. I argue that a review of both categories
of work is important in order to gain a high-level overview of all research that is
relevant to this project. The first category of related work will be reviewed by
following a structured literature review (SLR), while the more general domain
will be reviewed by using two recent review papers as starting point, with the
most relevant referenced papers added as needed.

The aim of this chapter is to establish the current state-of the-art of the
specific field of failure prediction in wind turbines based on SCADA data, and
extract relevant insights from the general field of deep learning for time series
classification. Together, these findings will form a motivation for the design of
an improved deep learning-based system for failure prediction in wind turbines
based on SCADA data, which will be presented in the next chapter.

3.1 Structured literature review protocol

In order to extract the most relevant information for the research questions in
this thesis, a Structured Literature Review (SLR) was performed. This involves
following a set of predefined steps to retrieve the most relevant related work, and
extract the most useful information from these studies. The advantages of an

27
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Table 3.1: Search terms used for paper retrieval

Group 1 Group 2 Group 3 Group 4
Failure prediction machine learning wind turbine SCADA
Fault prediction neural network
Predictive maintenance deep learning

SLR include reproducability, avoiding bias, and to gain a broad overview of the
field.

This section will describe the SLR protocol used to review literature for this
thesis. This protocol was developed and used by the author in the process of
extracting information from previous work related to this thesis. The SLR pro-
tocol was developed based on materials and template provided by Anders Kofod-
Petersen, Adjunct Professor at the Department of Computer and Information
Science at the Norwegian University of Science and Technology.

3.1.1 Search engines

The following search engines were used to search for relevant literature. One
search in a domain-specific journal (Renewable Energy) is added along with two
well-known search engines.

• IEEE

• Google Scholar

• Science Direct (with selected Journal: Renewable Energy)

3.1.2 Search process

The search terms used to generate the search queries can be seen in table 3.1.
The queries are generated by combining one term (T) from each group (G).

([G1,T1] OR [G1,T2] OR [G1,T3] OR [G1,T4]) AND ([G2,T1] OR [G2,T2]
OR [G2,T3]) AND [G3,T1] AND [G4,T1].

From these queries, 494 papers were identified.

3.1.3 Research questions (for search)

The following questions are identified and sought to be addressed through our
literature review:
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Table 3.2: Inclusion and evaluation criteria

Criteria identification Criteria

IC1
The study’s main concern is fault prediction
in wind turbines based on SCADA data.

IC2
The study is not a review paper, and presents
empirical results on real-world data.

IC3 The study use SCADA data.

IC4
The study describes a complete solution
for fault prediction

QC1
There is a clear statement of the aim of the
research.

QC2
The study is put into context of other studies
and research.

Research question 1 What are the existing solutions for predicting faults in
wind turbines based on SCADA data?

Research question 2 How do the different methods found by addressing RQ1
compare to each other.

Research question 3 What is the strength of the evidence in support of the
different solutions?

Research question 4 What are the implications of these findings that must be
considered when designing an improved system based on deep learning for
fault predictions in wind turbines based on SCADA data.

3.1.4 Inclusion and evaluation criteria

In the table below, the criteria for selecting papers included for review are pre-
sented. Papers were first filtered by title, then by reading abstracts, and finally
by reading the full text.

A total of 9 papers were included after these criteria was applied.

3.1.5 Data extraction

The following data points were extracted from each of the papers reviewed.

1. Name of author(s)

2. Title
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3. Study identifier

4. Year of publication

5. Number of samples

6. Number of features

7. Approach

8. Method (Best if several)

9. Does the study capture time features?

10. Evaluation and results

11. Are false alarms evaluated?

These categories help form a taxonomy which we can use to compare impor-
tant characteristics of the reviewed papers, and will be helpful to present the
findings of the reviews in a structured manner.

3.2 Fault prediction in wind turbines from SCADA
data

This section will present the results of the SLR for the field of fault prediction for
wind turbines based on SCADA data. The section is divided into one subsection
for each of the papers that were selected for review. A brief summary of the
reviewed papers will be presented at the end of the section.

3.2.1 Wind Turbine Fault Detection Based on SCADA Data
Analysis Using ANN

In this paper, Zhang and Wang [2014] used SCADA data collected from a turbine
at a wind farm located on Hundhammerfjellet, owned by NTE - Nord-Trøndelag
Elektrisitetsverk. The turbine is directly-driven, which means that power is gen-
erated directly from the main shaft, with no gearbox in between. A forecast-based
fault prediction methodology is adopted. The target variable is the turbine rear
bearing temperature. The authors argue that this is a good proxy to predict
faults related to bearing overheating. A straightforward threshold check to flag
temperatures exceeding pre-set levels is already applied, but the goal in this pa-
per is to detect such overheating in advance, so that damage-reducing actions
may be taken. Data was collected from one turbine from April 22, 2009 to July
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Model output Input

Rear bearing temperature Rear bearing temperature (t-1)
Active power output (t)
Nacelle temperature
Turbine speed (t)

Table 3.3: Selected parameters from SCADA data. Table adapted from [Zhang
and Wang, 2014]

21, 2009. This amounts to roughly 13000 data points. The variables used in
this paper can be seen in table 3.3. This is only a small subset of all variables
available in the SCADA data

An ANN was used to model the bearing temperature. The architecture of
the ANN was found by cross-validation, and three hidden layers with 5, 10 and 1
hidden units respectively were used for the final model. They trained the network
for 1000 epochs. Since this is a forecast-based fault prediction method, predicted
output is compared with actual output, and the difference is used as a deviation
metric, which may trigger a fault prediction if pre-set thresholds are exceeded.
The ANN is trained to the point where a RMSE of 0.2 degrees Celsius is achieved.
Testing on one actual fault shows that their method is able to detect a fault in
the main bearing 10 days in advance, but the number of false positives are not
mentioned.

3.2.2 Automatic Fault Prediction of Wind Turbine Main
Bearing Based on SCADA Data and Artificial Neural
Network

In this paper, Zhang [2018] describes the methodology used to automatically
predict incipient faults by Kongsberg Digital AS in their EmPowerR© system. The
methodology is very similar to [Zhang and Wang, 2014], with some differences.
The rear bearing temperature is used as target variable in this work as well, but
the methodology is reusable for modelling other sensors that are known to act
as a proxy for faults. Only the differences between this and the previous work
will be highlighted in this section. First, the t-1 lagged variable is included for
Active power, Nacelle temperature, and Turbine speed. The combined procedure
is illustrated in figure 3.1 below.

A sliding-window approach is proposed to determine whether an alarm should
be generated. In this way, transient deviations from the expected output will not
result in an alarm, and subsequently, the number of false alarms is reduced. The
authors show that they are able to detect faults from ”some days to 2 months
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Figure 3.1: Fault prediction procedure, adapted from [Zhang, 2018]

before fault”, but conclude that it would have been necessary to study more fault
cases to be able to give a more exact statistical evaluation of the system.

3.2.3 A Data-Driven Approach for Condition Monitoring
of Wind Turbine Pitch Systems

In this paper, Yang et al. [2018] also employs a forecast-based fault prediction
methodology, where the pitch motor temperature is used as the proxy for faults.
The input data initially include 15 variables, but this is reduced to five variables
through a feature selection process. The architecture of the proposed system can
be seen in figure 3.2.

The authors make sure that the normal model is trained on healthy data
only, through removal of abnormal data in a preprocessing step. They explored
several machine learning models in this paper, and found Support Vector Re-
gression (SVR) Drucker et al. [1997] to be the best performing algorithm, and
an ANN with three layers resulting in the second best results. No details about
the number of hidden units or architecture of the ANN were provided. Another
contribution of this work is the proposal of an exponentially weighted moving av-
erage (EWMA) control chart that is used to determine whether an alarm should
be generated. This method gives more weight to recent deviations from expected
values than more distant deviations.

The authors demonstrate that their model is able to detect pitch-related faults
38 to 162 hours ahead of time in 8 specific cases, as shown in 3.3.
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Figure 3.2: Framework of data-driven fault prediction, adapted from [Yang et al.,
2018]

Figure 3.3: Monitoring results of pitch related faults [Yang et al., 2018]

3.2.4 Wind Turbine Fault Detection Using Denoising Au-
toencoder with Temporal Information

As the title suggests, Jiang et al. [2018] has in this work adopted the objective
of detecting faults that are already present. Even though the objective differs
somewhat from fault prediction, the main goal is the same: to reduce operations
and maintenance (O&M) costs. This approach aims to do so by detecting smaller,
non-critical faults, that otherwise may have gone undetected. The underlying
assumption is that such faults may result in more critical faults if they are not
detected and not acted upon.

This paper makes no assumption about which specific sensors may be proxies
for faults. Instead, they use an unsupervised learning approach, where they
build a reconstruction model on all sensors available. The reconstruction model
is based on a deep autoencoder, which is trained to be able to reconstruct its own
input. The input data is a sliding window of the SCADA data, so that temporal



34 CHAPTER 3. RELATED WORK AND MOTIVATION

variations both within an individual sensor, as well as between sensors, can be
captured.

Another key aspect of this approach is the technique used to make the au-
toencoder resistant to noise in input data. This is achieved through randomly
dropping out a subset of the input data, with the objective of training the model
to reconstruct the original data, even if the input data is noisy, or have missing
values. The authors introduce the acronym DAE (Denoising Autoencoder)1. The
proposed sliding window-denoising autoencoder (SW-DAE) is compared to both
PCA, AE, DAE and DPCA models. The authors use ROC-curve and AUC as
the metric for comparison with other models. It is shown that the sliding window
approach yields an increase in model performance, and the SW-DAE has the best
performance of the evaluated models on two fault cases.

A diagram of the SW-DAE is shown in figure 3.4

Figure 3.4: Denoising autoencoder with temporal information, reproduced with
permission from [Jiang et al., 2018]

Here, we can see that the time series resulting from a sliding window over the
different sensors are used as input to an autoencoder. Some noise are added to
these time series, and the resulting signal is sent through an autoencoder, which
need to learn a low-dimensional representation of the input signal in order to
recreate its input.

1Not to be confused with Deep Autoencoder, which is also referred to by the same acronym
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3.2.5 Wind Turbine Gearbox Failure Identification With
Deep Neural Networks

In this paper, Wang et al. [2017a] used a forecast-based approach as well. In this
paper the pitch lubricant pressure was used as proxy for gearbox related faults.
Only three input variables are used to model the pitch lubricant pressure: The
gearbox oil temperature, the power output and the shaft temperature. No lagged
variables are included to capture the temporal differences in the signal.

The authors compared six different machine learning algorithms, DNN, k-
Nearest Neighbors (kNN), LASSO-regression, Ridge-regression, SVM and Neural
Networks (NN). The metrics used for comparison were MAPE (mean absolute
percentage error) and SDAPE (standard deviation of average percentage errors).
The Deep Neural Network consisted of three hidden layers, and used dropout
with a dropout probability of 0.5. The hyperbolic tangent (tanh) was used as
activation function. The NN considered consisted of only one hidden layer. The
number of hidden units were selected through cross-validation, with the maximum
number set to 100.

They trained one model for each of six different wind farms in China. Data
from a total of 92 different wind turbines were used. Five actual gearbox faults
occurred in the period of the data that was collected. The DNN method resulted
in the lowest prediction errors of the evaluated methods.

Similar to Yang et al. [2018], an EWMA control chart was employed to de-
termine when an actual alarm should be raised. A window size of one week was
used as input. The authors show that they are able to detect faults up to two
days in advance, without generating false alarms.

3.2.6 The Prediction and Diagnosis of Wind Turbine Faults

In this paper, Kusiak and Li [2011] employ a supervised learning strategy, where
fault/status data are combined with SCADA data. They suggest a three-level
prediction approach, where the first level is to predict whether a fault will occur.
The second level is to predict the category of the fault, and the third level is
to predict a specific fault. The data used in this study is sampled to 5-minute
intervals, and is made up of data collected from four different wind turbines over
a period of three months.

To create a balanced dataset, the authors downsample the number of negative
training examples to match the number of faults. This results in a total training
dataset size of only 1300 for level 1 and 2, and 168 for level 3. Only two input
variables are used, the wind speed and power output. No further explanation was
given as to why only these were used, as they note that many more variables are
available. The authors evaluate the use of different prediction periods, meaning
the number of timesteps before a fault that was used as input to the algorithm.
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The number of timesteps evaluated range from 0 to 12, with 12 timesteps ahead
resulting in 60 minutes of input data. The evaluation metrics include accuracy,
sensitivity and specificity. However, the usefulness of these metrics is not appar-
ent, as the distribution of faults in the downsampled dataset does not match the
original data. The downsampled data was also used for evaluation. The authors
also note that the lack of labelled fault data is a limitation of this study.

3.2.7 Diagnostic Models for Wind Turbine Gearbox Com-
ponents Using SCADA Time Series Data

Orozco et al. [2018] describe an initial dataset of 948GB, but this was subse-
quently resampled to 10-minute intervals. The objective of the study is to model
temperature of turbine components, adopting a forecast-based approach. The
authors chose to use only two input variables, the ambient temperature and the
power output. They also randomly downsample the dataset to 5000 samples
before training their models. No explanation is given as to why this was done.
The algorithms evaluated include linear regression, multivariate polynomial re-
gression, random forest, and neural network. The two linear models resulted in
lowest RMSE. The authors propose a rule-based statistical evaluation to flag a
fault, and show that the proposed algorithm is able to detect faults. The study
does not include any metric or evaluation to take the number of false alarms
given into consideration.

3.2.8 Learning Deep Representation of Imbalanced SCADA
Data for Fault Detection of Wind Turbines

In this paper, Chen et al. [2019], aim to predict blades icing accretion faults based
on SCADA data. They attempt to mitigate the class imbalance issue of training
a deep neural network by reframing the task to learn an embedding of a data
sample, rather than train a discriminative classifier directly on the labels. Their
target is to learn this embedding, and exploit this embedding vector through
performing a k-nearest neighbor model for classification. An important point is
that the samples that are used to train their network are not only one single
SCADA data point, but a triplet of points, consisting of:

1. Xa : An anchor point.

2. Xp : A data point of same class as anchor point.

3. Xn : A data point of opposite class as anchor point.
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The cost function of the neural network is then configured to minimize the
distance between the anchor point and the positive sample, and maximize the
distance between the anchor point and the negative sample, as illustrated in 3.5.

Figure 3.5: Learning embedding vectors [Chen et al., 2019]

The network architecture used is a combination of CNN and fully connected
layers. The dataset is collected from 3 different wind turbines over a two-month-
period, with 7 second resolution. This is substantially higher resolution than
other works in the literature. The authors do not mention either the number of
faults or labelling procedure used, which makes it difficult to draw insights from
the empirical evaluation. Specifically, it would be useful to know if their labels
only denote samples after an icing fault has already occurred.

3.2.9 Comparative Analysis of Neural network and regres-
sion based condition monitoring approaches for wind
turbine fault detection

This study, performed by Schlechtingen and Santos [2011], compares linear re-
gression and neural networks for creating normal models of the following fault
proxy variables: power output, generator bearing temperature, generator stator
temperature, generator slip ring temperature, shaft speed, gearbox oil sump tem-
perature, gearbox bearing temperature and nacelle temperature. The purpose of
these models is to be used in a forecast-based prediction fault scenario.

The study evaluated both what they call an autoregressive neural network,
where one timestep lagged values are included as input variables too, and a neural
network with only the signals at present time as input variables. The performance
varied for different scenarios. Both neural network-based approaches were found
to result in lower prediction errors than linear regression methods. No quantified
evaluation was done with regards to the number of false alarms generated.
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3.2.10 A Robust Prescriptive Framework and Performance
Metric for Diagnosing and Predicting Wind Tur-
bine Faults Based on SCADA and Alarms Data with
Case Study

In this paper, Leahy et al. [2018] adopted a supervised learning approach. Even
more, they propose a novel framework to label faults based on SCADA data and
alarms data. This is an important contribution towards more unified research
efforts in this domain. In their own words, three goals are being targeted in this
paper:

1. Build a system which can automatically identify turbine stop-
pages and identify their high-level root cause, based solely on
alarms and 10-minute SCADA data as inputs, with no man-
ual cross-referencing of maintenance logs or correspondence from
technicians needed, and apply this to an existing dataset.

2. Use this dataset to predict specific types of wind turbine faults,
using classification techniques and evaluate classification perfor-
mance using appropriate metrics.

3. Evaluate the effectiveness of the classifier as a field-deployed sys-
tem using a novel alarms-based system.

The overview of the framework can be seen in figure 3.6. The authors highlight
an important part of the labelling phase, where three different labels are applied
initially, pre-fault (PF), non-fault (NF) and fault (F). The F label is set during
a stoppage. The PF label is set for samples that precede a fault by less than n
timesteps, where n is the number of timesteps before a fault the model is trained
to predict it.

In this paper, several classification algorithms were evaluated. Both SVM
(with linear, polynomial and Gaussian kernel), decision trees, logistic regression,
and a random forest model was evaluated, with the random forest model yielding
the best results. Hence, a random forest classifier was also the final classifier used
generate predictions in their proposed framework.

3.2.11 Summary and state-of-the-art

Related research in the area of fault prediction in wind turbines based on SCADA
data has been presented. This section summarizes the chapter and reviews the
related work in light of our research questions. This provides a motivation for
the architecture of the proposed system.

Several issues make it difficult to establish a clearly defined state-of-the-art
for fault prediction in wind turbines from SCADA data. There has been a lot of
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Figure 3.6: Overview of proposed framework, adapted from [Leahy et al., 2018]

effort in this area, but due to the diversity of the methodologies as well as large
variations in datasets, the knowledge transfer between research efforts is limited.

Other fields, such as image recognition Deng et al. [2009] and language mod-
elling Mikolov et al. [2011], have reaped huge benefits from establishing well-
known benchmark datasets. Such an initiative would likely benefit the researchers
working on fault prediction in wind turbines based on SCADA data as well.
One of the challenges that might present itself in this case is the lack of com-
mon equipment and vendor systems, which makes the standardization of such a
dataset difficult. For the papers that have been reviewed for this project, there
are also large variations in number of samples, number of features and evaluation
methodology. The variations across some of these taxonomies are distilled and
presented in table 3.4.

Only three of the reviewed papers adopt a supervised fault prediction ap-
proach. It is likely that an amount of high quality fault labels have been difficult
to obtain, especially considering the relatively small number of samples for the
majority of the work. Out of the papers that used a supervised learning ap-
proach, the largest dataset used is 6 months’ worth of data collected from 11
wind turbines in the paper by Leahy et al. [2018]. Still, the number of stoppages
per stop category was only in the range of hundreds. The authors of that study
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also emphasize a desire for the verification on a larger dataset. The benefit of
more data is considered to be even more present when considering the use of deep
learning methods, where performance only increases with the amount of data. It
is also interesting to note that the largest number of features used in the reviewed
papers are 22, with the majority using 5 or less features. This seems a bit odd
considering that SCADA data from wind turbines typically provide a wide variety
of sensor measurements. Possible explanations may be that only the most impor-
tant features are chosen based on domain expertise, or that a reduced number of
features are chosen to reduce complexity of training the machine learning algo-
rithms. It is likely to assume that improved performance could be achieved by
including all available features. This is especially true if deep learning methods
are to be used, since they are well suited for modelling high-dimensional data.
Another finding is that only 3 of the reviewed papers capture temporal features.
Those that do, also employ this in quite a limited fashion, by only adding the
lagged timesteps for a few selected features. As discussed in section 2.3, it is
likely that being able to include temporal features will lead to increased fault
prediction performance.

Leahy et al. [2018] is considered to be the most relevant for this project due
to its relatively large dataset, a robust framework for labelling stoppages, as well
as a relatively large subset of features included (8 features plus a few derived
features). This paper also avoids some pitfalls seen in other papers related to
resampling and evaluation metrics. It is important that the evaluation metrics
evaluate the amount of actual faults detected as well as false alarms given. If the
system is trained on samples labelled in the PF-period, it is necessary to include
a way of translating the metrics on these predictions back to the actual faults
and false alarms.

For reasons discussed above, we will consider the system proposed here by
Leahy et al., and their use of a random forest model, to be the state-of-the-art of
fault prediction in wind turbines based on SCADA data, and their method will
be adapted to our dataset and compared to our proposed system.

3.3 Deep learning for Multivariate Time Series
Classification

This section will provide a review of deep learning for multivariate time series
classification. The papers in this section have not been selected through a SLR,
but identified by starting with two recent, relevant review papers. The intention
of this section is primarily for inspiration as to which DL architectures that might
work best for our kind of problem. I acknowledge that empirical experiments will
be necessary to evaluate any hypotheses that might arise from this section.
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3.3.1 Deep learning for time series classification: a review

In Ismail Fawaz et al. [2018], the authors provide a review of the field, along
with an empirical evaluation of several DL architectures on a series of datasets.
The datasets are gathered by Bagnall et al., in an effort to promote research
by enabling comparison of methodologies across a wide range of datasets from
different domains and with different characteristics.

The authors compare 9 DL architectures from the deep learning for time series
literature. Their results show that the ResNet architecture originally proposed
as a computer vision model in [He et al., 2016], and adapted for time series
classification by Wang et al. is the best performing methodology across the 12
datasets, with an average rank of 1.62 out of 9 methodologies on the datasets
with most training samples ( >799). However, the results from this review are
not particularly useful for the specific task of this system, as our dataset is 2-3
orders of magnitude larger. Of the datasets used in the review, only 2 had more
that 1000 training samples, and the largest one had 6600 training samples. Also,
the ResNet architecture is DL architecture designed for image recognition with
elaborate details specific to this task, and has a large number of parameters.

3.3.2 Time series classification from scratch with deep neu-
ral networks: A strong baseline

In Wang et al. [2017b], a simple end-to-end baseline architecture for time series
classification is proposed, based on Fully Convolutional Networks (FCN). The
fully convolutional architecture is an architecture which has previously achieved
state-of-the-art results on semantic segmentation of images [Long et al., 2015].
In Wang et al. [2017b], this architecture is adapted for time series and shown to
perform well on datasets from Chen et al. [2015]. Note that the authors evaluate
the architecture on one-dimensional time series only, and necessary adaptions
will have to be made in order to apply the same architecture to multivariate
time series, especially in order to capture interactions between individual features
(which can be thought of representing one individual time series).

This architecture is shown in figure 3.7. The numbers at the bottom of a
block is the number of filters in the block. For each block, three 1D kernels of
size [3,5,8] are used for the convolution operation. BN is an acronym for batch
normalization as introduced in section 2.14.5. This is shown to act as a regularizer
and improve performance of deep neural networks [Ioffe and Szegedy, 2015].

3.3.3 An Empirical Evaluation of Generic Convolutional
and Recurrent Networks for Sequence Modeling

Bai et al. [2018] popularize the term Temporal Convolutional Network to describe
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Figure 3.7: Fully Convolutional Networks for Time Series Classification, adapted
from [Wang et al., 2017b]

a generic sequence modelling architecture based on convolutional layers, rather
than recurrent ones. In Bai et al. [2018], the authors show through an exten-
sive empirical evaluation that TCNs are able to outperform canonical recurrent
networks, such as LSTMs, on several challenging sequence modelling tasks. In
addition, they discuss some of the pros and cons for TCNs vs. recurrent architec-
tures. TCNs have the advantage of much more efficient training, and a flexible
receptive field size. Recurrent networks have the advantage that they only need
input of a current observation to make a prediction, while a TCN needs input
equal to the length of the receptive field to make a prediction.

The architecture is characterized by two properties: 1) The convolutions are
causal, meaning there is no information leakage from future to the past. 2) The
architecture can take a sequence of any length and map to a sequence of any
length. The basis of this architecture is a FCN, with the added constraint of
causal convolutions. The authors also show how this architecture can be adapted
to sequences of arbitrary length, through the use of dilated convolutions, in order
to enable an exponentially large receptive field. Figure 3.8 illustrates how the
dilated convolutions are applied to every d observations(s) of the input. This
can be seen in contrast to standard convolutional kernels, where the filters are
applied to a contiguous sequence of the inputs.

In addition, a residual connection is proposed, with the purpose of stabilizing
possibly deep networks, by allowing layers to learn the identity mapping2. In
figure 3.9 the identity mapping is illustrated with the green line. This has shown
to benefit very deep networks.

3.3.4 Section summary

This section has reviewed the most recent literature in the field of deep learn-
ing for time series classification. A limitation of the review is the size of the
datasets used for most empirical evaluations. This makes it difficult to draw di-

2The identity mapping is simply the same output as input
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Figure 3.8: Temporal Convolutional Networks [Bai et al., 2018]

Figure 3.9: Residual connection in TCN [Bai et al., 2018]

rect conclusions about which DL architectures that will be most suitable for our
problem. Nevertheless, we see that DL has shown great promise for time series
classification in general. Both recurrent and convolutional neural networks, and
in particular architectures that combine the two have been successful in the field.
These insights will be built upon for our purpose of designing a DL system for
fault prediction in wind turbines based on SCADA data.
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3.4 Chapter Summary

This chapter has reviewed the literature both in the specific field of fault pre-
diction in wind turbines based on SCADA data, as well as deep learning for
multivariate time series classification. The domain-specific field is characterized
by spread efforts, diverging methods for labelling, and a lack of standardized
benchmarks. Additionally, the reviewed works have not utilized the full set of
sensors available from SCADA data, the datasets have been of rather limited size,
and temporal features has not been given particular attention, as most work has
treated one SCADA observation individually, without adding engineered tempo-
ral features.

The deep learning for time series classification field has reaped some benefits
from common benchmark datasets. These are, however, not directly comparable
to the dataset for this project, especially with regards to size. These datasets do
not pose the imbalanced class problem that we face for this project. Some deep
learning architectures that have shown good performance across a broad range
of datasets have been investigated, and are used for inspiration and reference
when designing the prototypes that are presented in chapter 4, and evaluated in
chapter 6.
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Chapter 4

Architecture

This chapter will describe the architecture of the proposed system for predicting
faults on wind turbines. First, an overview of the system will be presented, before
I will elaborate on the details of each component in the following sections. The
aim of this chapter is to provide the reader with an understanding of how the
system is designed in order to produce a prediction for an impending fault. The
proposed system consists of the following main components:

• Labelling algorithm for labelling data points.

• Data cleaning and preprocessing.

• Splitting in training, validation and test set.

• A classifier component. Several deep learning classifiers are evaluated against
a random forest classifier.

• An alarm control system that converts raw probability predictions into the
binary event of an alarm.

• An evaluation component that enables fair comparison of different classifier
component on a metric that is closely related with real-world performance.

A visual overview of the system can be seen in figure 4.1.

47
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4.1 Data Sources

For this research project, the dataset that has been made available is collected
from 67 wind turbines located at one of Equinor’s offshore wind farms outside the
coast of the UK. The collection period is from 1.7.2017-31.12.2018. The size of
the dataset that is made available to this project exceeds those that are used in
all the reviewed papers, both with regards to length, number of turbines, sensors
included and number of faults. As the performance of deep learning methods
improves with more data, this is considered a great advantage.

Figure 4.2: An overview of the wind farm (Screenshot from Bazefield Software
Platform)

In figure 4.2, we can see how the 67 wind turbines that form the wind farm are
organized. The letter next to each turbine indicates to which string the turbine
is attached. The number indicates the turbine’s position on the string starting
from closest. We can see that some strings have 5 turbines attached, and some
have 6.
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4.1.1 SCADA data

The SCADA data from each of the 67 turbines is resampled to 10-minute intervals,
which translates to 5.28M data points over the collection period in total. The
resampling means that some information will be lost, but in order to remedy this,
both the average, maximum, minimum, and standard deviation is included for
each 10-minute interval for each sensor. This enables us to capture some of the
signal lost due to the downsampling. The mean and standard deviation may not
be as useful for sensor measurements that are not normally distributed.

Below, in table 4.1 is an example of the dataset for one turbine, with only a
few selected variables for the sake of illustration. In total, 167 variables are used.

TimeStamp ActivePower avg AmbieTmp avg BladeAngleA avg

2017-07-01 00:00:00 3034.4880 NaN -3.493407
2017-07-01 00:10:00 4033.7280 NaN -3.425983
2017-07-01 00:20:00 4557.7417 12.811111 -2.856430
2017-07-01 00:30:00 5496.5920 13.790909 -1.077675
2017-07-01 00:40:00 2129.2964 NaN 0.499621

Table 4.1: Sample of SCADA data (obfuscated for data protection)

4.1.2 Allocation data

This data source contains records of wind turbine outage along with a manually
labelled fault allocation category. This category represent the subsystem for
which the fault is allocated to. These categories are of particular interest to us,
as these are of a granularity that is considered to be suitable as targets. Using
the fault categories will allow for many more examples of each fault category
compared to using specific alarms as targets. This consideration is based upon
the assumption that the majority of faults belonging to a category will share
some characteristics. The human-in-the-loop allocation of these data may be
seen as both an advantage and a disadvantage. In general, the data is assumed
to be of good quality, although there are also some examples of similar outages
being allocated to different fault categories. To alleviate this possible noise in the
labels, we combine the allocation data with the automatically generated alarm
data described in the next section.

There are several of the allocation categories that represent manual stoppages,
planned maintenance and other stoppages that are part of normal operations.
Fortunately, domain experts from Equinor were helpful in identifying which of
these categories that it would be useful to know about in advance. Stoppages
belonging to these categories will form our fault dataset. The identified categories
were:
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• M076 Blade Adjustment System

• M079 Control And Protection System

• M104 Yaw System

• M005 Out of Electrical Specification

• M099 TS-Converter System

There were in total 3075 faults over the collection period, and the distribution
over categories can be seen in figure 4.3.

Figure 4.3: Distribution of faults per category

For this project, each of the fault categories will be modelled independently.
The reasoning is that different fault categories will have different characteristics,
which make some of them more susceptible for being predicted in advance than
others. Modelling each category will provide the opportunity to test which cate-
gories that benefit from a longer period of PF-labels, and which categories that
don’t.

It is also useful to investigate their contribution to downtime, as different
faults will likely take longer to fix than others. The total downtime duration
caused by each fault category is shown in figure 4.4

It is also useful to examine the development of allocations has been over time.
This can be seen in figure 4.5
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Figure 4.4: Duration of allocations per category

Figure 4.5: Number of allocations per month

4.1.3 Alarm data

This data source, in contrast to the allocation data, is not human-verified, but
is a result of automatic alarm mechanisms in the SCADA system. These are
of a relatively more detailed nature than the allocation data, and operates with
”Alarm Code” as identifier. An allocation will typically consist of a sequence of



4.2. LABELLING ALGORITHM 53

alarms which constitute an ”alarm batch”, and is allocated to a fault category.
The exact nature of this data varies between manufacturers, but the structure is
similar in most cases. Each alarm instance in the data made available for this
project are categorized into in one of the following categories:

1. Status

2. Warning

3. Alarm

Our real interest lies in predicting the unexpected stoppages of the wind
turbine. There are many reasons for a turbine to stop, and many stoppages are
part of normal operation. In addition, a stoppage is generally preceded by a
sequence of multiple alarms. This makes the procedure to label a SCADA point
as an unexpected stoppage or not a bit intricate: In general, the first alarm of
a fault allocation is considered the root cause alarm, and is used to map the
stoppage to a corresponding category deterministically. All faults belonging to
categories that are associated with intended stoppages due to maintenance or
curtailment are excluded.

A sample of the alarm data made available can be seen in table 4.2.

Turbine Description Start End Type Category

DOW-L05 Low lower frequency exceeded 2017-07-11 09:01:59 2017-07-11 10:22:03 Alarm M005 Out of Electrical Specification
DOW-K01 Gridvolt less than lower limit 1 2017-08-27 17:13:53 2017-08-27 17:25:57 Alarm M005 Out of Electrical Specification
DOW-E06 Manual stop - owner 2017-12-07 10:05:22 2017-12-07 16:45:27 Alarm M009 Requested Shutdown
DOW-F02 Profinet SWTCC2 guard signal error 2018-01-15 20:58:52 2018-01-15 21:01:51 Alarm M079 Control And Protection System
DOW-A03 Hub: No feedback MTS-sens B 2017-12-12 15:24:40 2017-12-12 15:46:12 Alarm Unknown

Table 4.2: Sample of available alarm data

4.2 Labelling Algorithm

Considering that I have been given access to a dataset with relatively large num-
ber of faults that have been both allocated by humans and detected by an alarm
system, a supervised approach has been chosen for this thesis. This implies that
we need an algorithm for labelling. The procedure for labelling data points is a
critical step to build a useful fault prediction system. As discussed in chapter 2,
there are many ways of doing this. Based on the literature review, the method
used for this project will be to combine stoppages from the alarm data with
corresponding manual allocations, adapting the labelling algorithm from Leahy
et al. [2018] to the provided dataset.

Our initial goal is to label each 10-minute SCADA point as to whether or not
a fault occurs in the next 10-minute period. The algorithm can be split into the
following steps:
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1. Separating the alarms into batches belonging to one stoppage.

2. Connect each stoppage to a known subsystem, which has an associated stop
category.

3. Label all the 10-minute SCADA points within the duration of each stoppage
with the stop category.

4. Select a pre-fault period, w1, and a minimum prediction-period, w2, for
each stop with a start time, ts, and end time, te. Label according to:

yt =


F, if ts − w2 ≤ t ≤ te
PF, if ts − w1 ≤ t ≤ ts − w2

NF, otherwise

Where F is the label of the samples where the fault has occurred, PF is the
pre-fault observations, and NF is normal, healthy data.

All the samples with F-labels will be removed from our dataset, as we do not
want to train our algorithm to detect faults that already have occurred. The
samples with PF labels will be the target that our machine learning algorithms
will be trained to detect. To illustrate, we can look at 4.3. Here the labels for
two different windows for one fault is shown. The actual fault lasted from 2017-
07-22 16:53:17 to 2017-07-22 17:32:17. We can see that Label 1 M005 indicates
the label with w1 = 10min and w2 = 0min. Label 6 M005 indicates the label
with w1 = 60min and w2 = 0min. Note that the samples in the F period are
removed.

TimeStamp Label 1 M005 Label 6 M005

3132 2017-07-22 16:00:00 0.0 1.0
3133 2017-07-22 16:10:00 0.0 1.0
3134 2017-07-22 16:20:00 0.0 1.0
3135 2017-07-22 16:30:00 0.0 1.0
3136 2017-07-22 16:40:00 0.0 1.0
3137 2017-07-22 16:50:00 1.0 1.0

Table 4.3: Result of labelling procedure

4.3 Training, Validation and Test Split

In order to ensure that that machine learning models will generalize well to
unseen data, we usually split the dataset in to training set, validation set and
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test set. The training data is used to train the model, and the model parameters
that results in best performance on the validation set is used. Several different
validation set may also be used to determine the best parameters. In order to
provide an unbiased evaluation, we need to evaluate on a set that is not used for
either training or (hyper)parameter selection. This is the test set, or holdout set.

The selection of training, validation and test sets is a crucial aspect of the
system and there are several pitfalls that must be avoided in order to produce
results that are not misleading, and will generalize well to unseen data. In order to
determine how we should split our dataset, the following criteria are formulated:

1. The training, validation and test set should be consecutive in time and
non-overlapping

2. We must be able to define the percentage of faults to be used for each set.

3. The sets should be stratified, ie. contain the same fraction of fault samples.

4. The PF-labels generated from the same fault should all be in the same split.

One could argue that the turbine’s behavior is not affected by its behavior in
the distant past, and that it would not introduce leakage to use validation data
from an earlier point in time than the training data. However, consider the case
where a new kind of fault develops over time. If we were to split disregarding
time, we would model these faults a lot better, but this is not something we
would be able to do in a real setting, as the new faults would not be possible to
train/validate on. Splitting of the sets with regards to time will likely not lead
to as good metrics as random split independent of time. However, I feel that it is
better to err on the side of strictly avoiding a potential leakage from future data.
This will ensure that I convey a more realistic expectation of what performance
might be expected by the system on unseen data.

Another option would be to use one or several of the turbines as validation
and test set. This was considered, but it is possible that there are some global
features that are common for all turbines, which would lead to information leakage
in this case as well. This would also make it impossible to take advantage of the
learned embedding vectors for a turbine, which we hope will lead to improved
performance.

The reasoning for criteria no. 3 is to enable a fair comparison of metrics across
the different sets, as well as ensuring that the class weights that are used for the
training set will also be valid for the validation and test sets. In a production
setting, these weights would need to be updated as the fraction of fault samples
would drift. This criteria is achieved by randomly downsampling the negative
class for the sets with the lowest fraction of labelled samples, so that the fraction
of labelled samples are equal.
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Fault category PF window Samples Train Samples Val Samples Test N labels Train N labels Val N labels Test

M005 1h 640612 138020 138020 1411 304 304
M005 6h 639517 138798 138798 6621 1422 1437
M076 1h 2653547 568830 568830 1782 382 382
M076 6h 2557778 548228 548228 10964 2351 2350
M079 1h 2481854 531913 531913 2039 437 437
M079 6h 2627990 563269 563269 11720 2512 2512
M099 1h 3392612 729253 727387 1819 390 391
M099 6h 3390869 726837 726837 9783 2097 2097
M104 1h 2057866 451446 449022 3396 745 741
M104 6h 2078744 451245 446468 19150 4157 4113

Table 4.4: Number of samples and labels in each set for the different fault cate-
gories

We choose to use 70% of the faults for the training set, 15% for the validation
set, and 15% for the test set. The resulting number of samples and labels for
each set can be seen in table 4.4.

4.4 Data Cleaning and Preprocessing

This section describes the transformations that our data need to undergo before
being used as input data to train our classifiers.

4.4.1 Handling Missing Data

Features with more than 99% missing data are excluded. For the remaining
columns, missing values are imputed with -1, and a binary indicator column is
added in order to enable the model to use the presence of a missing value as
a feature of its own. We note that more effort could be put into this step by
analyzing the characteristics of each column, and try more elaborate techniques
for imputing missing data. Some of the possible options include filling with last
known value, filling with mean or median, or filling with values from nearest
neighbors. This requires more domain specific information about the sensors and
how their measurements are collected, and is not implemented in the scope of this
project. Implementing more advanced imputation strategies would also result in
increased complexity of the system. We adopt the premise that deep learning
models are able to learn the representations of missing values by its own through
an indicator feature.

4.4.2 Feature Scaling

Before the input data is fed into the neural network we want to scale the values
to ensure input features are in the same range. We to this by removing the mean
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and scaling to unit variance for all numeric features. For the categorical features,
we want to use an integer representation as input to the embedding layer. It is
important to note that scaling is part of the preprocessing, and that the scaling
parameters should only be derived from the training data to avoid leakage of
information from the validation data. After the scaling parameters are derived
from the training data, they may be applied to the validation and test data. It
should be noted that this scaling is best suitable for features that are normal
distributed, and will yield subpar results for features that are heavily skewed
and/or have extreme values.

4.4.3 Feature Engineering

One of the main advantages with deep learning is that the method is well suited
to learn relevant features on its own, hence reducing the effort needed for explicit
feature engineering. This does not mean that we would not benefit for explicitly
engineering features as they may facilitate better learning. Anecdotally, this has
the potential to improve performance of deep learning models substantially. This
will, however, not be the focus for this project, as feature engineering requires
domain expertise, and that an interesting part of the project is to see if the deep
learning models are able to extract these features on their own.

4.4.4 Categorical Variable Encoding

For the categorical variables ”Turbine” and ”String”, we will encode the cate-
gories as integers. These will be used as input to an embedding layer, as discussed
in section. 4.7.4.

4.4.5 Sample Generation

This section will explain the procedure for generating training samples from the
labelled data. Our labelled data contains 67 data points (one for each turbine)
for each 10-minute intervals (unless the point has been removed according to 4.2).

When we generate training samples we want to generate samples from a sliding
window of data points, while making sure that the elements of the sliding window
all originate from the same turbine. The window length is configurable, and
denoted w. This means that we can generate n − (w · g) samples, where n is
number of original data points, w is the sliding window length, g is the number
of turbine groups 1, given that w is smaller than the number of data points for
all turbine groups. This condition is satisfied for all experiments in this project,

1The term turbine group is used to describe the subset of data points originating from one
common turbine
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as the maximum w that will be explored is 36, corresponding to 6 hours, and all
turbine groups have a lot more samples than this.

The categorical features that we want to feed into an embedding layer need to
be split into its own array. This means that one training sample should consist of a
tuple consisting of (sample, targets), where the sample is a list of arrays, with one
array for each of the categorical columns, and one array for all the continuous
input columns. With two categorical features and 167 continuous features, a
sample will be a list containing three arrays with dimensionality (w, 1), (w, 1),
and (w, 167). The corresponding target will be a binary 0 or 1 depending on
whether the corresponding target has a PF label. This is illustrated in figure 4.6,
where an actual fault occurred at 2018-12-31 23:57:12.

Figure 4.6: Illustration of sample generation with w = 6

In the figure above, note that the PF window is only one timestep (10-
minutes). For a bigger PF window, more samples before the fault occurred would
be labelled.

When generating samples and targets for training the neural network, we want
to be able to generate batches on the fly, rather than to generate all samples
in advance, to avoid memory issues. We could also generate all samples and
save them to disk in advance, but loading from disk during training suffers from
disk read speed limitations. It will also speed up the training process to take
advantage of multiprocessing for the batch generation. A generator conforming
to the requirements in this section was implemented.

4.5 Alarm Control System

Our output from the models represent one predicted probability of the turbine
being in a PF state per turbine per 10-minute sample. These predictions may
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be noisy, and both Yang et al. [2018] and Wang et al. [2017a] have shown that
smoothing predictions before giving an actual alarm might improve performance
of the whole system, by reducing the number of false alarms. This means that
high probabilities of an occurring fault must be sustained for a period before the
predicted probabilities result in an actual alarm. In order to give more weight
to the most recent predictions, we use an exponentially weighted moving average
(EWMA) to calculate the filtered prediction probability. In general a weighted
moving average is calculated as

yt =

∑t
i=0 wixt−i∑t
i=0 wi

(4.1)

where xt is the input, yt is the result and the wi are the weights. We use the
variant where weights are not calculated recursively, and each weight is given by
wi = (1− α)i. This gives

yt =
xt + (1− α)xt−1 + (1− α)2xt−2 + ...+ (1− α)tx0

1 + (1− α) + (1− α)2 + ...+ (1− α)t
(4.2)

where α is the smoothing factor. In our case, we calculate α by providing a
desired span, s. α is then given by α = 2

s+1 .
In figure 4.7, we illustrate this control system by displaying an actual fault,

the pre-fault period with labelled samples, the raw predictions, the filtered pre-
dictions (as calculated by EWMA with s = 6), and whether an alarm is given
or not. The binary event of a generated alarm, A(t) is given according to the
following rule:

A(t) =

{
1, if y(t) ≥ b
0, otherwise

Here, b is a threshold that optimizes the desired F score on the validation set. In
our case, we use the F1 score. This is chosen in absence of knowledge about the
desired weight from a business perspective. Depending on the cost of investigating
a false alarm and the potential savings by preventing a failure, the weight of
precision/recall should be adjusted. If the cost of a false alarm and the savings
of avoiding a certain fault were available, one might even optimize this threshold
directly for monetary value.

In figure 4.7, the threshold b is set to 0.6.

4.6 Evaluation metric

This section will detail how the different algorithms will be evaluated. Note that
this is a different metric than that of which the different algorithms are optimized
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Figure 4.7: Illustration of Alarm Control System

for. The optimization metric differs between algorithms, but we need to establish
a common evaluation metric for the algorithms that most accurately relates to
performance in a real-world setting. What we are really interested in is how many
of the alarms we are able to detect, and how many false alarms we have to accept
to achieve this detection.

Once a binary prediction is made by the alarm control system from the previ-
ous section, we want to use common metrics of a binary classifier to evaluate the
usefulness of the classifier. Before we can do this, it is important to relabel the
true labels back so that only the observations where an actual fault first occurred
are labelled (The F label). This will allow us to get an interpretable metric,
where we can extract the number of faults detected, as well as the total number
of false alarms. We will define a positively identified fault as a case for which
there was given an alarm within a window of 2 · w1 in advance, i.e., twice the
pre-fault period. The reasoning for this is that even though the classifier was
trained on pre-fault states that occurred only in a window w1 before an actual
fault, some pre-fault states may occur even earlier before they manifest into a
fault, but the classifier will still correctly recognize the pre-fault state. Due to the
small number of faults, it is considered less likely that this will reduce the fairness
of the evaluation by detecting faults by chance than the opposite case, where a
positive detection is not counted just because it came too early (which should be
considered good). More elaborate methods for determining this window size is
subject to future work.
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4.7 Deep Learning Models

This section will describe the architecture of the deep learning models that will
be evaluated for this thesis. The architectures are based on the premise that
we want to investigate and compare different generic architectures. Ideally, we
would like to compare models with similar capacity, or number of parameters.
This proved difficult in practice, due to the fact that the number of parameters
changes differently with regards to the input dimensionality, caused by different
PF windows. We note that models with an even larger number of parameters and
more aggressive/intricate regularization techniques might perform even better,
and is suggested for future work. The implementations are kept rather simple
for all the models, as we want to get an impression of the performance of generic
architectures first, and form a starting point which might be improved upon and
specialized further in future work.

4.7.1 Output layer

As our problem deals with binary classification, all deep learning models will have
a final output layer with one unit and a sigmoid activation function, which forces
the output to have a value between 0 and 1.

4.7.2 Loss function

In order to handle the extremely imbalanced classes for this problem, we imple-
ment a cost-sensitive learning approach for the neural networks, where the cost
of misclassifying an example is adjusted to match the class distribution. This is
emphasized as a critical component to enable the use of deep learning on such an
imbalanced dataset.

To describe the weighted binary crossentropy loss function, we first introduce
the unweighted binary crossentropy.

Consider the unweighted binary cross entropy, given by

H(y, p) = −y log(p) + (1− y) log(1− p) (4.3)

With meaning of variables as described below:

• H(y,p): The binary cross-entropy cost of predicting p on a sample with
label y.

• y: Actual label.

• p: predicted probability of sample being in the positive class.



62 CHAPTER 4. ARCHITECTURE

For the weighted case, we simply introduce a weight for each class, W (y),
where the weight is the number of total samples, ntot, divided by the number of
samples with given label, ny:

Wy =
ntot
ny

(4.4)

This factor can subsequently be used to modify the equation 4.3 to:

Hweighted(y, p) = −W0 · (y log(p))−W1 · (1− y) log(1− p)) (4.5)

This will be used as the loss function for all deep learning models. It is im-
portant that the weight will be calculated based on our actual faults for each
fault category, and not the number of PF-labels. This was done initially, but led
to overfitting early in training. As an alternative method for handling class im-
balance, random undersampling of the majority class to achieve balanced classes
was also prototyped. This resulted in a classifier with predictions no better than
simple chance. A possible explanation for this was probably the small amount of
data this method utilized.

It should be noted that a loss function that attempted to optimize F1 score
directly by introducing a differentiable approximation of the F1 score was also
prototyped. The reasoning behind the attempt was that this loss function would
transfer better to our final evaluation metric, as it was observed that neither
this loss function nor the AUC-metric always correlated very well with the final
evaluation metric. This direction was abandoned, as the F1 score that would be
optimized in training was based on the PF labels, rather than the actual faults.
This resulted in the models ”specializing” on detecting a number of samples that
were all related to the same original faults, rather than modelling all of the actual
faults as we would like to. It appeared that optimizing for the approximated F1
score for each batch led to the loss function getting stuck in a local minimum
early in training. This loss function did thus not transfer better to our final
evaluation metric than the weighted binary crossentropy as described above.

4.7.3 Diagram notation

This is a short explanation of the notation used in the diagrams below. The
names of each box (the part before the colon) is just a unique name for each
layer, while the part after the colon denotes the type of layer used for each
box. These types corresponds with the keras class of the layer that is used. For
more in depth explanation of each layer class, the reader is referred to the keras
documentation.2

2https://keras.io
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4.7.4 Common Embedding Module

To enable the network to learn embedding representations of the categorical vari-
ables, we need to initialize an embedding vector that will be learned during
training. This will be implemented for all models. We need to specify the dimen-
sionality, d of this embedding vector for each of the categorical variables. This
is chosen based on heuristic advise from the fast.ai course [Howard, 2018], which
can be seen in equation 4.6.

d = min(bc+ 1

2
c, 50) (4.6)

where c is the cardinality, or number of unique values for for the variable.

The output of the embedding layers are subsequently concatenated with the
numeric features. For our case, we have two categorical features, ”Turbine” and
”String”, for which we apply embedding layers. These two are concatenated with
all the numeric features. This is illustrated in 4.8.

Figure 4.8: Input Module with Embedding

The resulting input module will be used for all deep learning architectures in
this chapter.



64 CHAPTER 4. ARCHITECTURE

4.7.5 MLP Architecture

The MLP implemented in this project is simply 3 layers of fully connected layers,
with dropout applied between the layers. The input is flattened, so that all the
features for all timesteps are fed into a dense layer. We can see that since all
features from all timesteps are flattened, the size of the network will depend
heavily on the number of timesteps.

The architecture is shown in figure 4.9.

4.7.6 CNN Architecture

The CNN architecture that we will use for this project consist of a single 1-
dimensional convolutional layer, which will apply convolutions to the temporal
dimension. We also adopt the squeeze-excite block introduced in section 2.11.1
in an attempt to better model feature interdependencies. A fully connected layer
is also added to every timestep of the input to enable learning independent of
timesteps. The architecture is shown in figure 4.10

4.7.7 LSTM Architecture

This model consists of two stacked LSTM cells. These are configured to return
the output for the whole sequence. A prototype for which only the last state was
returned was also tested, with poor results. A time distributed fully connected
layer is added here as well. The architecture of the LSTM-network is shown in
figure 4.11.

4.7.8 Hybrid Multivariate Time Series Network (HMVTS)
Architecture

This model is a combination of both the MLP, CNN, and LSTM models described
in the previous subsections. The respective vectors of these submodels before the
top layer are concatenated together, with a small dense layer on top, before the
common output layer is applied. The hope is that this architecture will combine
the benefits of each of the submodels and perform even better. This model has a
larger capacity and number of parameters than the submodels, and is thus more
likely to overfit. To mitigate this risk, this model employs a bit more rigorous
regularization than the other networks.

The architecture is shown in figure 4.12



4.7. DEEP LEARNING MODELS 65

Figure 4.9: MLP Block Diagram
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4.7.9 Regularization Methods

With the small number of faults we have, overfitting is a large challenge for this
problem. Several regularization methods are applied to the deep learning models
in order to facilitate generalization. All the regularization methods described in
section 2.14 are employed to address this issue, and listed below.

• Early Stopping

• Dropout

• Weight Regularization

• Activity Regularization

• Batch Normalization

In general, increased performance on the validation data was observed for each
of the techniques added, although no experiments to quantify this was performed.

4.8 Chapter summary

In this chapter, the architecture of the proposed system has been presented.
First, an overview of the main components was provided, before each component
was described in more detail. Several instances of the system described in this
chapter will be empirically evaluated in the next chapter. The main focus will
be to examine the effect of the different classifier components described in this
chapter.
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Figure 4.10: CNN Block Diagram
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Figure 4.11: LSTM Block Diagram
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Figure 4.12: HMVTS Block Diagram
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Chapter 5

Experiments and
Technology

This chapter will describe experiments that have been done on the dataset pro-
vided by Equinor. All experiments have been conducted using the Python pro-
gramming language with additional libraries as described in this chapter.

5.1 Hardware

The experiments were performed on a computer with AMD Ryzen 1700X 8-core
CPU, NVIDIA GeForce GTX 1080 Ti GPU, and 64GB RAM. The OS on the
computer was Ubuntu 18.04.

5.2 Software

This section lists the software tools and libraries used to perform the experiments.
A short introduction to each library is included. For further documentation, the
reader is referred to the reference documentation of each library. The source
code for the whole project is available upon request. The code is considered too
lengthy to include in an appendix, and Equinor ASA does not wish to make the
software publicly available until it has been screened for sensitive information.

5.2.1 Pandas

Pandas [McKinney, 2010] is a versatile open source library for data analysis and
data wrangling. Most of the data analysis and preprocessing for this project have

71
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been accomplished through the use of Pandas, which has been a valuable tool in
this process.

5.2.2 Scikit-learn

Scikit-learn [Pedregosa et al., 2011] is an open-source machine learning library for
the Python programming language. It provides an easy-to-use API for a broad
range of preprocessing algorithms, machine learning algorithms, and evaluation
metrics. In this project, scikit-learn has been used for some preprocessing, the
baseline algorithm (Random Forest), as well as several evaluation metrics.

5.2.3 TensorFlow

TensorFlow [Abadi et al., 2015] is an interface for expressing and executing ma-
chine learning algorithms, with support for execution on distributed, heteroge-
nous systems, including GPUs. Neural network computations are much more
efficient to process on GPUs than on CPUs, due to the GPU’s superior ability to
perform parallel calculations. In this project, TensorFlow is used as the backend
computation library for Keras, with some minor custom TensorFlow functions
used for evaluation.

5.2.4 Keras

Keras [Chollet et al., 2015] is an API for creating and training neural networks.
Keras has support for multiple backends, where TensorFlow is one of the available
backends. Keras provides a simpler API than TensorFlow, with the opportunity
to add specific TensorFlow components seamlessly, if needed. A nice thing about
Keras, is that the neural network models created in Keras support a scikit-learn
API, so that these models can be used in a similar manner as scikit-learn models
in a full pipeline.

5.2.5 MLFlow

MLFlow [2019] is an open source platform for handling the machine learning
lifecycle. It facilitates structured logging of parameters, results and artifacts from
ML experiments, and has been very helpful in organizing the experimentation
part. It should be noted that MLFlow is in a beta release, and may be subject
to breaking changes.
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5.3 Hyperparameters

5.3.1 Baseline model: Random Forest

For the random forest, I did a grid search to find the best combination of the
following hyperparameter options:

• max depth: [1, 3, 5, 7, 10]

• max features: [5, 8, 10, 20]

The model that provided the best results on the validation set was used for
evaluation on the test set.

5.3.2 Neural Networks

The hyperparameters were selected by heuristics supported by initial trial and
error. If severe overfitting was observed during initial trials, the number of param-
eters for the networks were reduced and/or regularization increased. No extensive
hyperparameter search was performed for the deep learning models due to time
and resource constraints. This is something that will be subject to future work.
The following hyperparameters are the same for all models:

• optimizer: Adam [Kingma and Ba, 2014].

• batch size: 256.

• learning rate: 0.0001.

• loss function: binary crossentropy (with modified costs). See equation 4.3.

• early stopping metric: F1 score for actual faults on validation set.

• early stopping patience: 3 epochs.

• epochs: 20. (But stops before if no improvement in F1 score for actual
faults on validation set for 3 epochs).

• dropout fraction: 0.5. (HMVTS: 0.6)

• weight regularizer: L2(0.001). (HMVTS: L2(0.005).)

• activity regularizer: L2(0.001). (HMVTS: L2(0.005).)
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A callback is implemented for the deep learning models to restore the weights
from the epoch that yields the best F1 score on the actual faults in the validation
set after training is finished. The structure of the neural networks should also
be considered hyperparameters, but these were described in the corresponding
section of chapter 4.

5.4 Results

In total, 50 experiments were performed, on 5 different fault categories, with two
PF window lengths for each fault category, for each of the 5 model types (RF,
MLP, CNN, LSTM and HMVTS). This means that a lot of data is collected. The
corresponding ROC curves and training history (for the neural networks) for the
individual models are presented in appendices A and B for brevity.

This section will provide a detailed walk-through of the results. These results
are considered to be the key findings of this thesis, and all results are thus in-
cluded for completeness. It should be noted that these results contain a lot of
information, and that the aggregated results and findings will be summarized in
the next section.

5.4.1 Random Forest

Results can be seen in table 5.1

Fault
category

PF
window

n faults
faults

detected
missed
faults

false
alarms

tn threshold precision recall
val
auc

test
auc

f1
score

M005 1h 55 25 30 7470 130495 0.50 0.003 0.455 0.947 0.842 0.007
M076 1h 75 2 73 238 568517 0.84 0.008 0.027 0.923 0.891 0.013
M079 1h 73 18 55 6114 525726 0.50 0.003 0.247 0.992 0.715 0.006
M099 1h 71 4 67 198 727118 0.85 0.020 0.056 0.932 0.878 0.029
M104 1h 126 5 121 55 448841 0.76 0.083 0.040 0.883 0.737 0.054
M005 6h 64 7 57 4720 134014 0.79 0.001 0.109 0.971 0.638 0.003
M076 6h 83 15 68 15448 532697 0.97 0.001 0.181 0.781 0.702 0.002
M079 6h 71 13 58 35631 527567 0.98 0.000 0.183 0.856 0.592 0.001
M099 6h 69 17 52 96662 630106 0.92 0.000 0.246 0.804 0.585 0.000
M104 6h 127 56 71 101455 344886 0.97 0.001 0.441 0.809 0.672 0.001

Table 5.1: Results RF

Remember that the RF model uses only one data point to make its prediction.
Still, the labels are the same as for the other models. It is obvious that the RF
model performs worse when the PF window is 6h than for 1h. This indicates that
the amount of signal may be less in the samples that are positively labelled in
the 6h PF window, and that we are training on very noisy labels. To elaborate,
it is likely that labeling all data points in a 6h PF window means that we are
introducing a lot of positive examples that do not actually contain information
that has any correlation with the actual fault.
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5.4.2 MLP

Results can be seen in table 5.2.

parameters
Fault
category

PF
window

n faults
faults

detected
missed
faults

false
alarms

tn threshold precision recall
train
auc

val
auc

test
auc

f1
score

42604 M005 1h 54 10 44 617 136545 0.73 0.016 0.185 0.979 0.933 0.723 0.029
42604 M076 1h 75 4 71 279 567966 0.89 0.014 0.053 0.914 0.982 0.815 0.022
42604 M079 1h 73 3 70 765 530618 0.75 0.004 0.041 0.817 0.893 0.560 0.007
42604 M099 1h 71 7 64 74 726383 0.89 0.086 0.099 0.883 0.930 0.837 0.092
42604 M104 1h 126 6 120 96 448290 0.66 0.059 0.048 0.867 0.911 0.682 0.053
240364 M005 6h 63 6 57 1855 134274 0.94 0.003 0.095 0.892 0.612 0.592 0.006
240364 M076 6h 83 10 73 7807 537902 0.98 0.001 0.120 0.742 0.772 0.712 0.003
240364 M079 6h 71 1 70 791 559778 0.96 0.001 0.014 0.699 0.685 0.546 0.002
240364 M099 6h 69 3 66 1040 722859 0.99 0.003 0.043 0.764 0.681 0.684 0.005
240364 M104 6h 127 71 56 96070 347707 0.88 0.001 0.559 0.851 0.728 0.715 0.001

Table 5.2: Results MLP

We note that the MLP model with 6h PF window becomes a rather large
model with respect to number of parameters.

5.4.3 CNN

Results can be seen in table 5.3.

parameters
Fault
category

PF
window

n faults
faults

detected
missed
faults

false
alarms

tn threshold precision recall
train
auc

val
auc

test
auc

f1
score

22644 M005 1h 54 1 53 467 136695 0.55 0.002 0.019 0.536 0.675 0.494 0.004
22644 M076 1h 75 15 60 658 567587 0.54 0.022 0.200 0.654 0.681 0.562 0.040
22644 M079 1h 73 27 46 1794 529589 0.53 0.015 0.370 0.614 0.741 0.553 0.029
22644 M099 1h 71 21 50 378 726079 0.61 0.053 0.296 0.77 0.851 0.775 0.089
22644 M104 1h 126 31 95 489 447897 0.62 0.060 0.246 0.793 0.933 0.715 0.096
22884 M005 6h 63 1 62 907 135222 0.63 0.001 0.016 0.602 0.724 0.474 0.002
22884 M076 6h 83 18 65 8462 537247 0.77 0.002 0.217 0.61 0.669 0.596 0.004
22884 M079 6h 71 1 70 7019 553550 0.94 0.000 0.014 0.553 0.381 0.429 0.000
22884 M099 6h 69 69 0 723783 116 0.62 0.000 1.000 0.519 0.516 0.513 0.000
22884 M104 6h 127 18 109 19801 423976 0.98 0.001 0.142 0.836 0.790 0.753 0.002

Table 5.3: Results CNN

The number of parameters for the CNN model only changes slightly for the
different PF windows. This raises the question that maybe the number of pa-
rameters for this model was too small to capture the signal of the labels with 6h
PF window.

5.4.4 LSTM

Results can be seen in table 5.4.
As can be seen from the table, the LSTM network learned to classify almost

all examples as PF labels for three of the experiments ((M005, 1h), (M076, 1h),
and (M099, 1h)). This naturally is a very poor classifier. A possibly explanation
is that the LSTM is more sensitive to the large weight updates caused by our
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parameters
Fault
category

PF
window

n faults
faults

detected
missed
faults

false
alarms

tn threshold precision recall
train
auc

val
auc

test
auc

f1
score

33844 M005 1h 54 54 0 137151 11 0.00 0.000 1.000 0.5 0.502 0.500 0.001
33844 M076 1h 75 75 0 568234 11 0.00 0.000 1.000 0.5 0.491 0.495 0.000
33844 M079 1h 73 6 67 129 531254 0.65 0.044 0.082 0.753 0.860 0.592 0.058
33844 M099 1h 71 71 0 726446 11 0.00 0.000 1.000 0.5 0.500 0.500 0.000
33844 M104 1h 126 16 110 284 448102 0.65 0.053 0.127 0.87 0.897 0.691 0.075
34084 M005 6h 63 6 57 6920 129209 0.72 0.001 0.095 0.54 0.552 0.570 0.002
34084 M076 6h 83 8 75 13923 531786 0.93 0.001 0.096 0.84 0.664 0.630 0.001
34084 M079 6h 71 1 70 806 559763 0.76 0.001 0.014 0.691 0.625 0.529 0.002
34084 M099 6h 69 16 53 64754 659145 0.73 0.000 0.232 0.829 0.666 0.683 0.000
34084 M104 6h 127 64 63 46058 397719 0.75 0.001 0.504 0.613 0.637 0.529 0.003

Table 5.4: Results LSTM

weighted loss function, and may be exposed to the exploding gradient problem
[Graves, 2013]. One option that might be useful to explore in order to mitigate
this problem, is to clip the gradient. When additional trials were performed
with different random seeds, the results were different, indicating that the weight
initialization and the order the samples are fed to the network matter. An inter-
esting result is the LSTM’s performance for (M079 1h), for which it beats all the
other models with a rather large margin (F1 score of 0.058 vs 0.029 for the 2nd
best model). Still, the number of faults detected in this case was only 6, so it is
not possible to make definitive conclusions from this result.

5.4.5 HMVTS

Results can be seen in table 5.5 .

parameters
Fault
category

PF
window

n faults
faults

detected
missed
faults

false
alarms

tn threshold precision recall
train
auc

val
auc

test
auc

f1
score

94492 M005 1h 54 2 52 457 136705 0.53 0.004 0.037 0.909 0.931 0.705 0.008
94492 M076 1h 75 2 73 1 568244 0.88 0.667 0.027 0.9 0.989 0.809 0.051
94492 M079 1h 73 3 70 319 531064 0.54 0.009 0.041 0.719 0.785 0.559 0.015
94492 M099 1h 71 19 52 559 725898 0.72 0.033 0.268 0.902 0.969 0.840 0.059
94492 M104 1h 126 18 108 483 447903 0.60 0.036 0.143 0.874 0.972 0.805 0.057
294172 M005 6h 63 63 0 136058 71 0.00 0.000 1.000 0.587 0.600 0.493 0.001
294172 M076 6h 83 10 73 3200 542509 0.94 0.003 0.120 0.732 0.730 0.666 0.006
294172 M079 6h 71 1 70 203 560366 0.97 0.005 0.014 0.698 0.731 0.602 0.007
294172 M099 6h 69 2 67 625 723274 0.94 0.003 0.029 0.777 0.692 0.686 0.006
294172 M104 6h 127 1 126 327 443450 0.99 0.003 0.008 0.83 0.721 0.772 0.004

Table 5.5: Results HMVTS

The HMVTS seem to suffer from the same exploding gradient problem as
discussed in the previous section on one of the experiments (M005, 6h).

5.5 Summary of results

This section will aggregate and summarize the most interesting results.



5.5. SUMMARY OF RESULTS 77

5.5.1 PF window comparison

It is immediately obvious that the final evaluation metrics become worse across
the board with a PF window of 6h compared to 1h. The differences are an order
of magnitude lower F1 score. This is to be expected, as we know that we are
introducing more noisy labels. At the same time, if we are able to model this
signal, the predictions might prove more useful anyway, as the available time
window to mitigate the fault is substantially larger.

5.5.2 Fault category comparison

It is interesting to compare the results of different fault categories. This will
provide insight into which of the faults for which the pre-fault SCADA data
contain the most signal, and thus is most suited to be predicted in advance. We
not that two categories, M104 Yaw System and M099 TS-converter system, seem
to be the fault categories best suited for modelling. This is not valid for the 6h
PF window, where the category M076 Blade System is the one that seem to be
best suited for modelling, but the difference between the categories are smaller
for experiments with 6h PF window.

Figure 5.1: F1 score for the fault categories on both PF windows. Note that the
values for PF window = 6h is an order of magnitude smaller.

5.5.3 Model comparison

In table 5.6, we can see the comparison of models for each of the experiments.



78 CHAPTER 5. EXPERIMENTS AND TECHNOLOGY

Figure 5.2: F1 score for the different models on both PF windows. Note that the
values for PF window = 6h is an order of magnitude smaller.

The rather simple CNN is the strongest performing model for the 1h PF
window experiments. This is an interesting result, and supports the conclusions
of [Wang et al., 2017b].

It is interesting to note that the two models with the largest number of pa-
rameters are the best performers on the 6h PF window experiments. This may
indicate that these models with larger capacity are better suited to capture the
noisy signal in these labels.

If we would have been forced to choose only one model to be implemented as
classifier for all categories, we could compare the mean rank of the models for
both PF windows.

In figure 5.3, we can see that the random forest model was the worst perform-
ing model for both PF windows. The best performing models were the CNN,
and HMVTS, for PF windows 1h and 6h respectively. The importance of this is
limited though, as it is more likely that the models will be chosen individually,
and only implemented for the combinations of fault category and PF window
where the F1 score is good enough to support the business case.

5.5.4 Metric comparison

A significant discrepancy between the F1 and AUC metric was observed. This
might be explained by the different model characteristics, as well as the possibly
over-optimistic illusion given by the ROC-AUC metric as discussed in 2.7.7. An
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model

Fault category,
PF window

cnn hmvts lstm mlp rf

M005 1h 0.004 0.008 0.001 0.029 0.007
M005 6h 0.002 0.001 0.002 0.006 0.003
M076 1h 0.040 0.051 0.000 0.022 0.013
M076 6h 0.004 0.006 0.001 0.003 0.002
M079 1h 0.029 0.015 0.058 0.007 0.006
M079 6h 0.000 0.007 0.002 0.002 0.001
M099 1h 0.089 0.059 0.000 0.092 0.029
M099 6h 0.000 0.006 0.000 0.005 0.000
M104 1h 0.096 0.057 0.075 0.053 0.054
M104 6h 0.002 0.004 0.003 0.001 0.001

Table 5.6: F1 score for the different models on each of the fault categories and
PF windows. (Best score in bold)

Figure 5.3: Model F1 rank on both PF windows

additional explanation is that some models might be better suited to model a
broader range of faults, while some are more likely to specialize on a few faults
with more pronounced characteristics, and modelling all labels belonging to these
faults. The latter will yield a poor F1 score on the actual faults, but might still
give a good AUC.

In figure 5.4, we can see the AUC vs F1 for the different models.

If these two metrics were directly correlated, we would observe a diagonal line
to which the points could be fitted. This is not the case. We can see that the RF
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Figure 5.4: AUC vs F1 score on test set

model (red) for three experiments achieves a really good AUC score, but that
this does not translate to a good F1 score on the actual labels. It is likely that
this is because the RF model is able to ”detect” many of the labels belonging to
the same fault(s), while missing others completely. The opposite is observed for
at least two of the experiments for the CNN-model, where the AUC score is not
very high, but the F1 scores are much better.

5.5.5 Practical implications

As we can see, there is no model that performs consistently well across all ex-
periments. The recommended consideration to be made when evaluating the
usefulness of this system in practice, is to find a specific fault category for which
an early warning system can detect a enough errors without too many false alarms
with a sufficiently large pre-warning time (PF window).

Depending on the business case, the percentage of errors detected need not
necessarily be high to be useful. Also, one can tolerate a high false alarm rate if
there exists an efficient and inexpensive procedure to investigate alarms.

The challenge is thus to make a connection from the results presented in this
thesis to what fault categories, and for which PF windows, such a system might
bring the most value. Costs of operating such a fault prediction system should
also be taken into consideration for this evaluation.



Chapter 6

Evaluation and Conclusion

This chapter will begin by providing a summary of the thesis in section 6.1, before
the research goals are evaluated in section 6.2. Section 6.3 discusses the impli-
cations of the results, as well as some of the limitations. Section 6.4 summarizes
the research contributions of this thesis, before section 6.5 concludes the chapter
by describing potential directions that could be subject to future work in this
area of research.

6.1 Thesis Summary

This thesis has investigated the application of a fault prediction system for off-
shore wind turbines based on SCADA data. Some background theory needed
to follow the rest of the thesis was presented in chapter 2. Related work was
surveyed in chapter 3, both for the specific domain of fault prediction in wind
turbines based on SCADA data, as well as the more general domain of uti-
lizing deep learning for multivariate time series classification. Based upon the
findings of chapter 3, the architecture of the system and its components were
presented in chapter 4. After the system was presented, a series of experiments
were performed to evaluate the performance of different deep learning models
as the classifier component of the system, as well as a model representing the
state-of-the-art based on the literature review. Finally, this chapter summarizes
and discusses the findings of the thesis.

81
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6.2 Goal Evaluation

The primary goal of this project was to build a deep learning-based system for
fault prediction in offshore wind turbines based on SCADA data:

Research goal Build a deep learning-based fault prediction system for offshore
wind turbines based on SCADA data.

Such a system has been implemented, providing a system and framework
for effectively and fairly comparing different classifier components of the system.
The system was built making use of best practices from both related work in the
domain, machine learning, time series classification and deep learning in general.

In addition to the system itself, the derived research questions that we wanted
to address was:

Research question 1 How do deep learning methods perform in comparison to
the state-of-the-art for predicting faults in wind turbines?

Research question 2 Which of the investigated deep learning architectures are
best suited as the classifier component in such a system?

As shown in figure 5.3 and table 5.6, we can see that the random forest model
that was implemented to represent the state-of-the-art approach, is the worst
performing model on average in our experiments, and that the deep learning
methods definitely show potential to outperform random forest models as part of
such a system.

When it comes to comparison of the different deep learning architectures,
there are large variations in performance across fault categories and PF windows.
Hence, it is not possible to draw a definite conclusion as to which of the deep
learning architectures are best suited in general. The question of which model
performs best comes down to which type of fault that we want to model and
which PF window is suitable (and valuable from a business perspective) for this
fault category.

6.3 Discussion

It was observed that both the LSTM and HMVTS model failed to fit the data
on some of the experiments. This could likely have been mitigated by employing
gradient clipping to avoid extremely large gradients. Implementing this could
help improve the performance of these models. This explanation did not present
itself until late in the thesis work, and was thus not implemented, but must be
considered as part of future work.
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In the previous section, we observed that the F1 score on the actual faults was
significantly worse with the 6h PF window than the 1h PF window. This raises an
important issue that was not considered very carefully when choosing the strategy
for this work; The PF windows should ideally be based on the characteristics of
each specific fault type. If there is a mismatch between the signal and the labels
in the data, we introduce a lot of noise to our targets, which will affect results
negatively. The challenge, of course, is that the characteristics of the faults
are not known explicitly in advance. It is very likely that the potential noise
introduced by adopting the labelling procedure in this thesis might drastically
reduce performance of the system if the PF window chosen does not correspond
to the actual signal of an impending fault. In order to investigate this, further
experiments on several PF windows could be performed.

An important thing to keep in mind is that the results of the deep learning
models cannot be attributed to the architecture type only, but that the capacity
(number of parameters) and regularization for each of the models also has a
large effect on the performance. If we wanted to be able to draw more general
conclusions about performance of architecture types, these factors would need to
be controlled and accounted for to provide a fair comparison.

Overall, the results presented can be summarized as promising, and there are
some signal that we are able to model. The results differ significantly between
fault categories.

When considering whether the results of this thesis justify a deployment of
the system, several factors need to be considered. Most importantly, an esti-
mate of the cost of an undetected fault, as well as the cost of investigating a
false alarm, should be taken into account. These estimates could be used in an
analysis together with the evaluation metrics in this thesis, to estimate whether
deployment of the system is profitable.

6.4 Research contributions

The main research contribution of this thesis is the design and implementation
of a modular fault prediction system for offshore wind turbines based on SCADA
data. The methodology used for the different components can be used, adapted
and built upon for application to similar problems. Another key research contri-
bution is the results presented that show that deep learning models that take an
input sequence are well suited for time series classification problems, and they
demonstrate improved results compared to a random forest model which only
considers a single data point. The final research contribution is the insight that
the domain of fault prediction is rather complex, and that different faults have
their own characteristics, which makes one algorithm better suited to model them
than others. As a consequence, no algorithm suits all fault characteristics.
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6.5 Future Work

The work in this thesis might serve as a starting point for future work in multiple
directions. Pursuing the same direction as this work, some of the possible options
that could be explored to address the limitations discussed in section 6.3 are to
investigate more fine-grained PF windows. For example 2h and 3h. These are
likely to give better results than 6h, and might make a stronger business case
due to a prolonged warning period compared to 1h. One option is also to try to
facilitate better results by adding manually engineered features to the data. This
is likely to improve the performance, although adding to the complexity of the
system.

A possible option to reduce generalization error of this system could be to
investigate the use of ensemble methods. This would involve using the predictions
from several of the algorithms to make a final prediction that possibly could
generalize better than the individual algorithms. Again, this would add quite a
bit of complexity to the system.

As always in the field of deep learning, there are also endless opportunities
for exploring architectures and hyperparameter search, and an exciting option
would be to try to use evolutionary methods to discover the best deep learning
architectures for the problems in this thesis. It should be noted that this direction
would likely introduce a considerable computational complexity.

An option that is a bit on the side of the work done in this thesis is to inves-
tigate the possible reframing of the problem from a classification to a regression
problem. This would mean labelling the samples with ”time to next fault”, in
order to try to predict remaining useful lifetime (RUL).

Another direction that could be investigated is to take a normal behavior
modelling approach, in order to detect anomalies from normal operations. Work
in this direction would have to emphasize whether such a system is able to detect
faults without introducing too many false alarms for data that is just different
from previous data.
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pirical evaluation and combination of advanced language modeling techniques.
In Twelfth Annual Conference of the International Speech Communication As-
sociation.

Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., and Dean, J. (2013). Dis-
tributed representations of words and phrases and their compositionality. In
Advances in neural information processing systems, pages 3111–3119.

Nair, V. and Hinton, G. E. (2010). Rectified linear units improve restricted
boltzmann machines. In Proceedings of the 27th international conference on
machine learning (ICML-10), pages 807–814.

Orozco, R., Sheng, S., and Phillips, C. (2018). Diagnostic models for wind tur-
bine gearbox components using scada time series data. In 2018 IEEE Inter-
national Conference on Prognostics and Health Management (ICPHM), pages
1–9. IEEE.

Pascanu, R., Mikolov, T., and Bengio, Y. (2013). On the difficulty of training
recurrent neural networks. In International Conference on Machine Learning,
pages 1310–1318.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,
Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos,
A., Cournapeau, D., Brucher, M., Perrot, M., and Duchesnay, E. (2011). Scikit-
learn: Machine learning in Python. Journal of Machine Learning Research,
12:2825–2830.

Pfaffel, S., Faulstich, S., and Rohrig, K. (2017). Performance and reliability of
wind turbines: A review. Energies, 10(11):1904.



BIBLIOGRAPHY 89

Sakurada, M. and Yairi, T. (2014). Anomaly detection using autoencoders with
nonlinear dimensionality reduction. In Proceedings of the MLSDA 2014 2nd
Workshop on Machine Learning for Sensory Data Analysis, page 4. ACM.

Schlechtingen, M. and Santos, I. F. (2011). Comparative analysis of neural net-
work and regression based condition monitoring approaches for wind turbine
fault detection. Mechanical systems and signal processing, 25(5):1849–1875.

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., and Salakhutdinov, R.
(2014). Dropout: a simple way to prevent neural networks from overfitting.
The Journal of Machine Learning Research, 15(1):1929–1958.

Tavner, P. (2012). Offshore wind turbines: reliability. Availability and Mainte-
nance, The Institution of Engineering and Technology, London, UK.

Unknown (2019). Mlflow.org. https:/mlflow.org, Last accessed on 2019-04-12.

Wang, L., Zhang, Z., Long, H., Xu, J., and Liu, R. (2017a). Wind turbine
gearbox failure identification with deep neural networks. IEEE Transactions
on Industrial Informatics, 13(3):1360–1368.

Wang, Z., Yan, W., and Oates, T. (2017b). Time series classification from scratch
with deep neural networks: A strong baseline. In Neural Networks (IJCNN),
2017 International Joint Conference on, pages 1578–1585. IEEE.

Yang, C., Qian, Z., Pei, Y., and Wei, L. (2018). A data-driven approach for
condition monitoring of wind turbine pitch systems. Energies, 11(8):2142.

Zhang, Z. (2018). Automatic fault prediction of wind turbine main bearing based
on scada data and artificial neural network. Open Journal of Applied Sciences,
8(06):211.

Zhang, Z.-Y. and Wang, K.-S. (2014). Wind turbine fault detection based on
scada data analysis using ann. Advances in Manufacturing, 2(1):70–78.
This chapter contains the full results for all the experiments. BLABLA



90 BIBLIOGRAPHY



A Training history

91



92 A TRAINING HISTORY

(a) M005, window=1h (b) M005, window=6h

(c) M076, window=1h (d) M076, window=6h

(e) M079, window=1h (f) M079, window=6h

(g) M099, window=1h (h) M099, window=6h

(i) M104, window=1h (j) M104, window=6h

Figure 1: Training history for MLP models on test set



93

(a) M005, window=1h (b) M005, window=6h

(c) M076, window=1h (d) M076, window=6h

(e) M079, window=1h (f) M079, window=6h

(g) M099, window=1h (h) M099, window=6h

(i) M104, window=1h (j) M104, window=6h

Figure 2: Training history for CNN models on test set
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(a) M005, window=1h (b) M005, window=6h

(c) M076, window=1h (d) M076, window=6h

(e) M079, window=1h (f) M079, window=6h

(g) M099, window=1h (h) M099, window=6h

(i) M104, window=1h (j) M104, window=6h

Figure 3: Training history for LSTM models on test set
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(a) M005, window=1h (b) M005, window=6h

(c) M076, window=1h (d) M076, window=6h

(e) M079, window=1h (f) M079, window=6h

(g) M099, window=1h (h) M099, window=6h

(i) M104, window=1h (j) M104, window=6h

Figure 4: Training history for HMVTS models on test set



96 A TRAINING HISTORY



B ROC curves on test set
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98 B ROC CURVES ON TEST SET

(a) M005, window=1h (b) M005, window=6h

(c) M076, window=1h (d) M076, window=6h

(e) M079, window=1h (f) M079, window=6h

(g) M099, window=1h (h) M099, window=6h

(i) M104, window=1h (j) M104, window=6h

Figure 5: ROC curves for Random Forest models on test set
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(a) M005, window=1h (b) M005, window=6h

(c) M076, window=1h (d) M076, window=6h

(e) M079, window=1h (f) M079, window=6h

(g) M099, window=1h (h) M099, window=6h

(i) M104, window=1h (j) M104, window=6h

Figure 6: ROC curves for MLP models on test set



100 B ROC CURVES ON TEST SET

(a) M005, window=1h (b) M005, window=6h

(c) M076, window=1h (d) M076, window=6h

(e) M079, window=1h (f) M079, window=6h

(g) M099, window=1h (h) M099, window=6h

(i) M104, window=1h (j) M104, window=6h

Figure 7: ROC curves for CNN models on test set
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(a) M005, window=1h (b) M005, window=6h

(c) M076, window=1h (d) M076, window=6h

(e) M079, window=1h (f) M079, window=6h

(g) M099, window=1h (h) M099, window=6h

(i) M104, window=1h (j) M104, window=6h

Figure 8: ROC curves for LSTM models on test set
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(a) M005, window=1h (b) M005, window=6h

(c) M076, window=1h (d) M076, window=6h

(e) M079, window=1h (f) M079, window=6h

(g) M099, window=1h (h) M099, window=6h

(i) M104, window=1h (j) M104, window=6h

Figure 9: ROC curves for HMVTS models on test set


