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Abstract 
This thesis, Concept for Landing Unmanned Aerial Vehicles using a Ground Based 

Augmentation System, focuses on the possibilities of autonomous landing of commercial 

Unmanned Aerial Vehicles (UAVs) by integrating the existing Ground Based 

Augmentation System (GBAS) with UAV avionics. 

Potential ways of integrating GBAS and avionics signals were developed and resulted in a 

concept which was used to design the neccesary hardware and software for a prototype 

application. The system was test fitted in an existing UAV system at Andøya Space 

Center (ASC). 

The study resulted in a system that could be integrated neatly with existing avionics, 

without significant modification of the existing UAV hardware and requiring only minimal 

modification of the airframe.  

Opensource software was succesfully modified for the reception of GBAS signals. The 

contained data in the broadcast are made available for correcting the GPS pseudoranges.  

GPS pseudoranges are smoothed using the carrier phase, so that corrections can be 

applied. This results in augmented position data. The consequences of pseudrange jumps 

were assessed, and mitigation methods were proposed. 

Two different hardware prototypes were developed based on single-board computers and 

tested. Only the Raspberry Pi based system was able to handle the radio samples and 

communicate with the UAV avionics at ASC. 

GBAS implementation will improve autonomous landing capabilities of UAVs, independent 

of airfield and weather conditions. This will extend the capabilities of unmanned 

operations in the future. 
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Sammendrag 
Denne oppgaven, Concept for Landing Unmanned Aerial Vehicles using a Ground Based 

Augmentation System, fokuserer på mulighetene for autonom landing av kommersielle 

ubemannede luftfartøy (UAV) ved å integrere det eksisterende Ground Based 

Augmentation Systemet (GBAS) med UAV avionikk. 

Ulike måter å integrere GBAS og avionikk signaler ble utviklet, og resulterte i et konsept 

som ble brukt til å designe den nødvendig maskin- og programvaren for en prototype. 

Systemet ble test-montert i en eksisterende UAV ved Andøya Space Center (ASC). 

Studien resulterte i et system som enkelt kunne integreres med eksisterende avionikk, 

uten signifikant modifikasjon av eksisterende UAV-maskinvare, og som bare krever 

minimal modifikasjon av flyet. 

Et program med åpen kildekode ble modifisert for mottak av GBAS-signaler. 

Datainnholdet i kringkastingen blir gjort tilgjengelig for å korrigere GPS-pseudorange 

målingene. 

GPS-pseudorangene blir utjevnet ved hjelp av bærebølgen, slik at GBAS korreksjonene 

kan brukes. Dette resulterer i forbedret posisjonsberegning. Konsekvensene av hopp i 

pseudorange målingen ble vurdert, og metoder ble foreslått for å minimere effekten. 

To forskjellige maskinvare prototyper ble utviklet basert på ettkortsdatamaskiner og 

testet. Bare det Raspberry Pi baserte systemet klarte å håndtere radiodekodingen og 

kommunisere med UAV-avionikken ved ASC. 

GBAS-implementering vil forbedre autonome landingsegenskaper for UAV, uavhengig av 

flyplass og værforhold. Dette vil utvide mulighetene for ubemannede operasjoner i 

fremtiden. 
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This thesis focuses on the possibilities of autonomous landing of commercial Unmanned 

Aerial Vehicles (UAVs) by integrating the existing Ground Based Augmentation System 

(GBAS) with UAV avionics. 

This was the topic of a preliminary project assignment [1] that studied potential ways of 

integrating GBAS and avionics signals and the neccesary system design. 

This thesis has further developed the concept and attempted to design the neccesary 

hardware and software for a prototype application. 

1.1 Motivation 

Multiple companies have and are currently developing GBAS aircraft hardware (avionics). 

At present, these systems are only intended for use in manned aircraft and require a 

pilot to operate. The goal here is therefore to develop a prototype of a GBAS capable 

navigation platform that would be suitable for use on board a UAV. This introduces 

multiple technical challenges, as a UAV imposes significant constraints on both cost, 

weight and size of such a platform. Furthermore, the safety requirements for UAV 

operations are entirely different from those for manned aircraft. While the safety is a 

natural aspect to be considered, the focus here will be on the technical challenges in such 

a prototype. 

Andøya Space Centre 

Andøya Space Centre (ASC) is focusing heavily on the development and operation of 

drones and unmanned aircraft for a variety of applications. They have already run 

operations for customers like the Andøya Test Centre and power delivery companies. One 

of the bases for their UAVs is Andøya Air Station (Andøya Flystasjon), and ASC is looking 

to expand its activities there to allow an even wider selection of UAV test and mission 

services. 

As Andøya Air Station is in close proximity to inhabited areas and does suffer from 

weather related challenges, one of which is the aurora that can interfere with Global 

Navigation Satellite Systems (GNSS). It would be an advantage to improve the 

positioning accuracy and provide integrity support during landing operations. ASC would 

benefit from both safety and greater availability of their services independent of weather 

conditions. This is especially critical for operations involving larger UAVs. 

GBAS would also provide other features of interest, such as allowing remote landing of 

UAVs on other GBAS-enabled airfields. This could for instance allow long range flights 

such as from Andøya to Svalbard. 

Indra Navia 

Indra Navia is a global supplier of communication, navigation and tower solutions for the 

aviation industry. Landing systems form one of their key areas of expertise, both through 

the well-established Instrument Landing System (ILS) and the more recently developed 

GPS based Special Category-I (SCAT-I). 

1 Introduction 
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The last few years Indra Navia has been developing the ground infrastructure for the 

Ground Based Augmentation System (GBAS), which will secure the safe landing of 

aircraft even in no-sight conditions. The development and testing of this system is now 

completed and after validation, it will become Indra Navias latest product for civil airport 

operations. 

Indra Navia is looking for ways to expand the use of the GBAS product to UAVs as well, 

which represents a new market for the system. 

1.2 Objectives 

The main objective of this thesis is to develop a system to integrate GBAS and avionics 

signals for autonomous landing of UAVs. This has resulted in the following subobjectives: 

 Study the system requirments to develop the integration concept 

 Inspect the technical details of an existing UAV system at ASC 

 Develop the necessary software for GBAS signal reception and decoding based on 

an existing demodulator of a similar signal 

 Design a prototype of the required avionics hardware using easy to aquire off-the-

shelf components 
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This section provides the main background that is relevant for the discussion and design 

of GBAS avionics hardware for UAVs. Figure 2.1 gives an overview of the GBAS system, 

the interfaces between the UAV and the surrounding world, as well as the GBAS module 

as part of the UAV avionics. 

 

Figure 2.1: Modular system overview of a GBAS equipped UAV near a GBAS ground 

station [1] 

The GBAS ground station broadcasts information over VHF to the receiver in the UAV, 

which samples and demodulates the GBAS VHF broadcast. The contents of broadcast is 

used together with pseudorange information from the GPS receiver in order to improve 

the calculated position solution used by the UAV autopilot for navigation. In addition, 

integrity information is obtained. These data are transferred over the two-way radio link 

to the pilot on the ground for his consideration. 

An introduction to the concepts of GPS positioning used in this system is provided in 

chapter 2.1 and 2.2. The requirements for UAV operations in general and ASCs current 

UAV landing procedures are discussed in chapter 2.3 and 2.4. Limitations of this system 

are discussed in 2.5. 

2.1 GPS 

The Global Positioning System (GPS) is one of an increasing number of available Global 

Navigation Satellite Systems (GNSS). The constellation consists of 24 satellites, with an 

additional three spares for full global coverage (Figure 2.2). 

2 Background 
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Figure 2.2: Illustration of the GPS satellite orbits [12] 

A satellite’s position can be described by its ephemeris, a number of orbital elements that 

allow the satellite’s position to be accurately computed at any time. Each satellite 

broadcasts their ephemeris and current time. By measuring the transmission time of the 

signal, a receiver can calculate the distance (pseudorange) to each satellite in view. 

The satellites have high accuracy atomic clocks on board for timekeeping, but the GPS 

receiver does not. The receiver’s clock will drift, influencing all the measured 

pseudorange. This is solved by introducing the clock error as a fourth unknown to the 

positioning problem. Using the ephemeris and pseudorange measurements of four or 

more satellites, an accurate position and time can be determined by trilateration. 

The functionality of the GPS satellites, their signals and the receiver algorithms for 

tracking and ranging are well documented in both standards [13] and literature [14]. 

Several error sources interfere with the pseudorange measurement, such that the 

observed pseudorange 𝑝 can be more accurately modelled as: 

𝑝 = 𝜌 + 𝑑𝜌 + 𝑐(𝑑𝑡 − 𝑑𝑇) + 𝑑𝑖𝑜𝑛 + 𝑑𝑡𝑟𝑜𝑝 + 𝜖𝑚𝑝 + 𝜖𝑝 (2. 1) 

That is, the measurement 𝑝 is a function of the true range 𝜌, with added effects from: 

 Satellite orbital errors (𝑑𝜌) 

 The difference in clock offset for satellite (𝑑𝑡) and receiver (𝑑𝑇) multiplied by the 

speed of light constant (𝑐) 

 Ionospheric delay (𝑑𝑖𝑜𝑛) and tropospheric delay (𝑑𝑡𝑟𝑜𝑝) 

 Multipath delay (𝜖𝑚𝑝) 

 Receiver noise (𝜖𝑝) 
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The most significant error source is atmospheric disturbance, but orbital inaccuracy and 

clock deviations in the satellite and the receiver can be significant contributing factors as 

well [14]. Since the calculation of the pseudorange (𝑝) is based on the speed of light (𝑐), 

even small inaccuracies in the measured time (Δ𝑡) will result in large errors according to: 

Δ𝑝 = 𝑐 ∗ Δ𝑡 (2. 2) 

2.2 Differential Processing 

Many of the GPS error sources are slowly varying and spatially correlated over short 

baselines [15]. The assumption is made that two receivers in the same area will 

experience approximately the same errors. Using differential processing, these errors can 

be estimated and corrected. 

Differential processing typically takes the form of a stationary reference station, “the 

base”, which has an accurately known position. Information from measurements made at 

the base are sent to “the rover”, a moving GPS receiver with uncertain position. The 

rover combines this information with its own measurements so that the errors common 

to both base and rover cancel out. 

Both phase-based Real-Time Kinematic GPS, currently in use at ASC (chapter 2.4) and 

pseudorange-based GBAS (chapter 3) are examples of such differential GPS processing. 

2.3 UAV 

Unmanned Aerial Vehicles (UAV) are increasingly becoming a part of airspace activities, 

both at a hobby level as well as on a professional scale. Data collection by UAV is more 

common than ever before. Applications range from simple photography to research, 

surveillance and monitoring both for civil and defence purposes. 

The increase in UAV use has required the introduction of regulation to prevent conflicts 

and accidents in the airspace. In Norway, UAV operations are sorted into three 

categories, depending on the potential for damage in case of failure. The categories and 

associated rules for remotely piloted aircraft systems (RPAS) as well as required 

permissions are described in [16]. Table 2.1 summarises the basic metrics that can be 

used to determine RPAS operator (RO) category for an airframe. 

Table 2.1: RPAS Operator categories summarized 

Category Max take-off mass Max velocity Max altitude 

RO1 2,5 kg 60 knots 120 m 

RO2 25 kg 80 knots 120 m 

RO3 > 25kg >80 knots or turbine engine >120 m 

 

In addition, the contact between operator and UAV can be classified based on the degree 

of visual communication: 

 VLOS (Visual Line of Sight): Pilot can observe the UAV with the naked eye. 

 EVLOS (Extended Visual Line of Sight): Pilot is in touch with external observers 

that have VLOS to the UAV. 

 BLOS (Beyond Line of Sight): Neither pilot nor observers have VLOS on the UAV. 
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 BRLOS (Beyond Radio Line of Sight): No direct radio link between pilot and UAV 

(Satellite communication, cellular network, radio relays, etc.). Commonly 

considered a subcategory of BLOS. 

If there is no direct radio link between pilot and UAV, the operation is considered BRLOS 

by definition, even if the UAV is physically located in VLOS. As the later categories 

introduce additional sources of potential error, each category adds additional 

requirements and regulations that have to be adhered to for legal UAV operation [16]. 

ASCs Cruiser 2 UAV 

ASC has a large selection of UAVs, both multi rotor and fixed wing. The work presented 

in this thesis uses ASCs Cruiser 2 UAV as a representation of the typical UAV for which 

GBAS support could be beneficial. The software and hardware are developed with this 

UAV in mind. Figure 2.3 shows a picture of the UAV in flight. With a wingspan of 5.2 

meters and a minimum take-off weight of 53 kg [7], this sizeable fixed wing aircraft will 

always require RO3 permissions to fly.  

This aircraft is controlled with Cloud Cap Technology’s Piccolo 2 autopilot, which is 

connected to an external NovAtel OEMV2 GPS receiver. These two avionics modules form 

the basis for the GBAS avionics design in this thesis. 

 

Figure 2.3: ASCs Cruiser 2 UAV in flight (photo by ASC) 

 

2.4 Landing procedures at ASC 

ASC can land their UAVs both manually and autonomously. To limit the potential of pilot 

error, autonomous landing is preferred, using a landing system based around Real Time 

Kinematic GPS. This is presently the most widely used UAV landing solution for 

commercial UAVs of this size. RTK GPS uses the difference in measured GPS carrier 

phase at the UAV and a fixed reference station at a known position to determine the 
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difference in distance to satellites, giving a very accurate relative position. The system in 

use at ASC typically achieves an accuracy of ±5cm [5]. 

The RTK reference station is in ASCs case contained in the UAV ground station, and the 

RTK observations are transmitted over the same data link as general pilot commands. 

Because the ground station can be moved around between operations, it must first 

determine its own location before it can act as a precise reference for an RTK UAV. 

This can primarily be done in two ways. The base stations GPS antenna can be placed on 

a precisely surveyed location, such that the coordinates can be supplied by the pilot to 

the ground station. Alternatively, having the antenna in a fixed position, the location can 

be found by averaging the GPS solution found over a period of time. In general, 15 to 30 

minutes of GPS data is deemed to provide a satisfactory position fix by ASC, but as much 

data as time allows is collected, since it will only improve the fix. A benefit of the second 

method is that it works anywhere, and the averaging can be done while other preparative 

tasks for UAV launch are being carried out. The drawback is that the UAV navigation 

solution can only ever be as accurate as the base station coordinates. 

A landing operation with a fixed wing UAV of this size is very similar to the landing of a 

conventional manned aircraft. The autopilot uses an entirely model based approach to 

control, taking into consideration lift coefficients, weight and remaining fuel when 

steering the aircraft. The landing steps described below are visualised in Figure 2.4. 

 While approaching to the landing location, the autopilot will reduce speed and 

extend the flaps, following an approach path defined by its mission waypoints. 

 8 seconds before estimated touchdown, the AP has to decide if it will commit to 

the landing attempt and bring the aircraft down. In order to determine if the 

conditions are acceptable, the aircraft has to hit a virtual 2x2 meter window in 

space. The AP will not attempt to abort the landing beyond this point. Failing to 

hit the window causes the AP to abort and go around for a new try. 

 4 seconds before estimated touchdown the motor is stopped. This is the point of 

no return; the pilot can no longer trigger an abort manually. 

 The aircraft will flare to lose even more speed, before finally touching down on its 

main landing gear. 

 

Figure 2.4: Steps of a UAV landing operation at ASC and the decision window where the 
autopilot will have to take the final landing decision. 
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2.5 Limitations of the existing system 

The present RTK solution is primarily designed to facilitate operations near the reference 

base station. For most practical use, this means landing in the same general area where 

the UAV took off. 

The accuracy generally only holds for a range of approximately 20km from the reference 

station, where after the accuracy drops. This limits the use of the system in its present 

configuration. 

UAVs that depart from one base station will not easily be able to use the RTK information 

of a different station to land there. On the other hand, GBAS will allow for a standardised 

communication and correction method independent of airfield and UAV type. 

GBAS will in addition to increased accuracy in position estimates, also supply detailed 

error and integrity information. This allows the calculation of protection levels required 

for safe landing in civil aviation. Operation of large UAVs will benefit in a similar way from 

the reliability and integrity of the GBAS system. 
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The Ground Based Augmentation System is a GNSS augmentation service for aircraft 

typically employed on and surrounding airfields. Using the principles of differential GPS, it 

provides aircraft in the vicinity with information on the local GNSS conditions. This results 

in high precision positioning information during approach and landing operations. What 

sets the GBAS system apart from other systems that give similar or even better 

positional accuracy is the way it deals with uncertainty and integrity. Due to the reduced 

uncertainty in position and high system integrity using GBAS, the aircraft can continue its 

flight trajectory even under very low visibility conditions. This makes the system valuable 

for safe landing of aircraft under bad weather conditions. 

The system consists of two parts, the ground station and the aircraft receiver, as shown 

in Figure 2.1. The ground station is a stationary structure at the airport. Using multiple 

GNSS receivers, the station tracks the satellite ranging sources in view. As the receiver 

antennas positions and each satellite’s ephemeris are known, a comparison can be made 

between the measured pseudo-range and the calculated geometric range. The difference 

between the two form the basis for the so-called “pseudorange correction” for each 

satellite. The exact steps for the pseudorange correction calculation can be found in the 

GBAS EUROCAE standard [2]. 

This data, along with system integrity information as well as general information about 

satellites health and the airport configuration are broadcast over VHF for any GBAS 

equipped aircraft in the area to receive. This makes GBAS a cost effective solution, as a 

single ground station can service an entire airport and all aircraft in the vicinity. 

The aircraft avionics uses the GBAS ground stations estimate of the current errors as well 

as integrity parameters based on its own satellite signals to calculate the Vertical and 

Lateral Protection Levels (VPL/LPL). If the calculated protection levels exceed the runway 

alarm limits, as shown in Figure 3.1, the approach and landing conditions are not 

considered safe. 

 

Figure 3.1: Illustration showing the vertical and lateral alarm limits, and an aircraft that 
is exceeding the vertical protection level as indicated by the white rectangle (from 
presentation by Indra Navia) 

3 GBAS 
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3.1 Signal Broadcast 

The GBAS data is transmitted as a differential 8-phase shift key modulated broadcast in 

the aeronautical navigation band from 108.025MHz to 117.975MHz, using channels 

spaced by 0.025MHz. The broadcast is such that aircraft up to 43 kilometre (23 nautical 

miles) away are able to receive it. This is called the GBAS’s service volume, shown in 

Figure 3.2, and it covers the entire approach and landing such that aircraft can receive 

GBAS corrections all the way down to the runway. 

 

Figure 3.2: 3D view of the GBAS service volume for an airfield supporting auto-land and 
guided take-off [2]. The grey rectangle represents the runway 

Any aircraft in the service volume, having tuned their GBAS receiver to the appropriate 

frequency for the airport they are approaching, can start to receive the broadcast. Figure 

3.3 shows the signal from Oslo airport (OSL) on the air. The signal is weak as it is 

received from the ground without line of sight to the airport. The activity observed occurs 

on half-second intervals. Each mark a GBAS frame. 

 

Figure 3.3: Oslo airport’s (OSL) GBAS broadcast at 113.050MHz, showing the 2Hz frame 
frequency. The signal is observed from the author’s kitchen, approximately 23km from 
the OSL runway. The broadcast is captured using an RTL-SDR with a dipole antenna and 

visualized in SDRsharp 
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GBAS frames occur with a frequency of 2 Hz, synchronised with the GPS second. Every 

frame is divided into 8 slots, and a GBAS data burst (covered in section 3.1.2) can occur 

in each of them. This structure is shown in Figure 3.4. Having slots allows multiple GBAS 

stations to coexist on the same frequency using Time Divided Multiple Access (TDMA) 

techniques if required. 

 

Figure 3.4: Visualization of how GBAS frames, slots and data bursts relate to each other. 
The three main parts of the data burst are also shown [2] 

3.1.1 D8PSK modulation 

Phase shift keying (PSK) is a digital modulation method where the data is encoded as the 

phase of a carrier frequency. PSK demodulation is complicated, as a reference of the 

carrier is required in the demodulator in order to compare the phase. In differential PSK 

(DPSK), the data is encoded as a change in phase rather than absolute phase. The 

change in phase can easily be determined by using the preceding sample as reference. 

The number of symbols determines the size of the available 2𝜋 phase shift that each can 

be allocated. More symbols increase the data throughput, but the tighter spacing causes 

demodulation errors to be more prevalent. D8PSK can be thought of as having 8 distinct 

states, where the symbols are represented as phase shifts between the states.  Figure 

3.5 shows the relative phase shifts on a unit circle. 
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Symbol bits Phase shift 

0 0 0 0𝜋/4 

0 0 1 1𝜋/4 

0 1 1 2𝜋/4 

0 1 0 3𝜋/4 

1 1 0 4𝜋/4 

1 1 1 5𝜋/4 

1 0 1 6𝜋/4 

1 0 0 7𝜋/4 

Figure 3.5: D8PSK phase shift mapping on a unit circle relative to (1,0) 

The symbols are assigned to phase shifts according to grey code, where they are placed 

such that adjacent values are only 1 bit different. This property is cyclic, so that it also 

holds when rolling over from the largest to the smallest value. The result is that getting a 

symbol wrong by one phase step only causes a single bit error. Provided there are not 

too many, these can be easily corrected using forward error correction (FEC) algorithms. 

3.1.2 The data burst 

In each GBAS slot, a data burst can occur. Such a data burst follows a well-defined 

structure, of which the data fields are shown in Table 3.1.  

Table 3.1: The GBAS data burst fields. The double line marks the start of scrambled data 

Field Contains Bits 

Power stabilization - 15 

Synchronisation & 

Ambiguity resolution 

A fixed sequence of bits: 

010 001 111 101 111 110 001 100  

011 101 100 000 011 110 010 000 

48 

Station Slot Identifier The GBAS station’s first assigned slot as a 

value 0-7 

3 

Transmission Length Number of bits in application data and FEC 17 

Trainings Sequence FEC Parity bits computer over SSID and length 

field 

5 

Application Data One or more messages, see 3.1.3 Up to 1776 

Application FEC Reed-Solomon FEC bytes 48 

Fill bits Ensures any length message can be sent 

by 3 bit symbols 

0 to 2 

 

Scrambling 

After the fixed sequence of bits that is used for synchronisation and ambiguity resolution 

of the signal, the data is scrambled. This is done to cause variation in the signal in order 

to avoid transmitting long sequences of the same-bit values. 

In practice, this is achieved by an XOR operation between the data and the output from a 

pseudo-noise generator (shown in Figure 3.6). Due to the nature of the XOR function, 

scrambling an already scrambled sequence with the same pseudo-noise as was used to 



13 

 

generate it, brings back the original data: [𝐴 𝑥𝑜𝑟 𝑁] 𝑥𝑜𝑟 𝑁 = 𝐴 𝑥𝑜𝑟 [𝑁 𝑥𝑜𝑟 𝑁] =  𝐴 𝑥𝑜𝑟 0 = 𝐴. 

Therefore, the descrambler on the receiver side of the broadcast can be the same as the 

scrambler on the transmitter. 

 

Figure 3.6: The pseudo-noise scrambler/descrambler shift register, showing its initial 
state. Descrambling can be done the same way due to the symmetry of the XOR function 
[2] 

 

Training Sequence FEC 

The training sequence code can, according to [3], correct any single bit errors and detect 

75 double bit errors of 300 possible. The 5-bit parity FEC 𝑃 is generated by parity matrix 

multiplication of the SSID and transmission length field with the 20x5 matrix 𝐻: 

𝑃 = [𝑆𝑆𝐼𝐷1, 𝑆𝑆𝐼𝐷2, 𝑆𝑆𝐼𝐷3, 𝑇𝐿1, … , 𝑇𝐿17 ] 𝐻
𝑇 (3. 1) 
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Application Data FEC 

The FEC for the application data is a Reed-Solomon block correcting code with block 

length of 255 bytes and message length of 249. For messages shorter than 249 bytes, 

zero padding up to a full message length is required. Those padding bytes are only used 

for the FEC calculation and not transmitted in the GBAS broadcast. With 6 RS-FEC bytes, 

6 byte errors can be detected, or 6/2  can be corrected. 

3.1.3 The GBAS message 

The application data of a GBAS burst will contain one or more messages, up to the max 

length allowed of 222 bytes (1776 bits). Table 3.2 sums up the main message types and 

what they pertain. The exact contents of the messages can be found in their respective 

tables in appendix A.  
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Table 3.2: The main GBAS message types. Additional special messages have not been 

considered here. 

Message Type (MT) Contents of message 

1 Pseudorange corrections for 100 second smoothed data 

2 Information on the GBAS ground station 

3 Message of fill bits 

4 Data for the landing paths supported by the station 

11 Pseudorange corrections for 30 second smoothed data 

 

A message is built up as per Table 3.3, where the message type (MT) is one of those 

indicated in Table 3.2 above. Received messages starting with hexadecimal 0xFF should 

not be used, as they indicate the GBAS station is not in operative mode. The GBAS ID 

field consists of four 6-bit characters, either capital letters or number. The bit encoding 

corresponds to the International Alphabet nr.5 (IA5) with bit 7 not used.  

Table 3.3: Data fields in a GBAS message 

Message Block Fields Value Bits 

Message Block 

Header 

Message Block ID 0xAA – operational 

0xFF – test 

8 

GBAS ID 4 character name of 

the GBAS station  

24 

Message Type Number as by Table 

3.2 

8 

Message Length Length of entire 

message in bytes 

8 

Message Depends on 

message type 

Depends on 

message type 

Up to 1696 

Message Block CRC Message Block CRC  32 

 

3.2 UAV application 

The GBAS equipped UAV system was introduced in Figure 2.1. For pseudorange 

corrections, the data flow between the modules is shown in Figure 3.7. Combining GPS 

data and the GBAS corrections in the GBAS module allows full, unlimited control of the 

algorithm implementations. It also evades the potential dangers that could result from, 

for instance, interrupting the regular tasks of the autopilot with GBAS calculations. 

 

Figure 3.7: UAV avionics data flow for GBAS corrections during normal operation 
(modified from [1]) 
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The messages that do not concern the positioning directly, (MT4 and parts of MT2) 

contain information that the UAV cannot easily use without pilot input. The contents of 

these messages can be forwarded for consideration by the pilot on the ground. 

3.3 System design 

The functionality of the GBAS module can be further divided into parts with specific 

functions. Figure 3.8 shows the GBAS module with both external and internal interfaces 

between the module’s parts. The software for the GBAS module has been designed with a 

similar partitioning in mind. 

 

Figure 3.8: Detailed block module of the internal and external interfaces of the GBAS 
module (modified from [1]) 

In Figure 3.8, the SDR generates in-phase and quadrature (I/Q) samples. The 

demodulator uses these to determine phase shifts and in turn symbols, combining them 

into a complete GBAS data burst. The messages contained in the burst are passed along 

to the decoder, which will decode them and sort them on type. 

MT3 can be simply discarded. MT4 and parts of MT2 are passed along the GBAS control 

interface into the autopilot for forwarding over the UHF link. MT1 and MT11 contain 

corrections while MT2 contains general GBAS conditions. These are sent into the “+” 

module, where they are combined with the raw data from the GPS receiver.  

The resulting corrected pseudoranges can then be used to generate a more accurate 

position solution than would be possible with the raw pseudoranges alone, which the 

autopilot can use for navigation.  
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This section details the work done pertaining to the development and verification of 

software aspects to the GBAS module. The chapter covers a variety of code topics, which 

have been grouped by area of application from the parts shown in Figure 3.8.  

4.1 The AP–GPS interface 

The interface between the Piccolo 2 autopilot and the NovAtel OEMV2 GPS receiver is 

pre-existing, and needs to be understood in order to wedge a custom GBAS module in 

between the two units.  

The autopilot uses the GPS’s interface as described in the GPS’s documentation [8] in 

order to gather the data it needs for navigation. The interface functions using the concept 

of “commands” and “logs”, which can be issued and received in three different formats: 

 ASCII is an all-round format for any use. Easily understood by humans and 

machines alike. 

 Abbreviated ASCII is a shorter form that strips away unnecessary sync characters 

and error checking abilities for a simpler user experience. 

 Binary is an effective and compact messaging method. Not human-readable. 

Commands are issued to the GPS receiver from the autopilot. They are used to configure 

every aspect of the GPS receiver, from satellite reception to port settings and data rates. 

The main command that is interesting for the GBAS software is the log command. This 

command can be used to request single logs, or schedule logs to be transmitted at 

chosen rates. 

Logs are data packets generated by the GPS receiver. A large variety of possible logs can 

be generated, depending on the application requirements. Typically, position and velocity 

are of interest in GPS applications. Raw information on ephemeris and pseudorange 

measurements, which are required for the GBAS module, are also supported by the GPS 

and have their own logs. By default, the logs are in abbreviated ASCII, but ASCII or 

binary can be selected with a trailing “a” or “b” on the log name.  

4.1.1 Error detection 

Binary and ASCII messages sent from the Novatel GPS are protected by a 32-bit CRC. 

This allows the receiver of the messages to discern if bits of the message have been 

corrupted. A GBAS module will be required to both check incoming messages and create 

new CRC bits for outgoing messages. 

Along with the source code for a CRC32 calculation written in C, the Novatel firmware 

reference manual [8] specifies the generator polynomial as 0xedb88320 in. In this value, 

bit 𝑛 represents whether summand 𝑥𝑛 is part of the polynomial. The value is least 

significant bit (LSB) first, such that 0xe = 1110 translates as 1 +  𝑥 + 𝑥2. The summand 

𝑥32 is always implicitly part of the equation, such that the entire polynomial is: 

𝐺(𝑥) = 𝑥32 + 𝑥26 + 𝑥23 + 𝑥22 + 𝑥16 + 𝑥12 + 𝑥11 + 𝑥10 + 𝑥8 + 𝑥7 + 𝑥5 + 𝑥4 + 𝑥2 + 𝑥 + 1 

4 Avionics Software 
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4.1.2 Autopilot initialisation 

In order to determine how the autopilot configures the GPS receiver, a splitter cable was 

made such that a PC could listen in on the communication. By learning how the GPS was 

configured, it has been determined what information the GBAS module needes to supply 

to the autopilot once the module is mounted in between the two units. 

With the cable connected during power-up, the following start-up sequence was 

observed:  

1) The autopilot issues a full reset to the GPS. This defaults all the ports to bit rate of 

9600. 

 

2) The autopilot configures the GPS port to a bit rate of 57600 (the highest 

supported by the autopilot) by sending the “com” command first at 9600b/s and 

then repeating the same command at 57600b/s. This functions as a simple form 

of handshaking for the GPS. 

 

3) The autopilot clears the GPS’s list of requested logs and removes any position fix 

that was previously made. It then requests a log of GPS receiver version in ASCII 

format, and waits. It was observed that, should the autopilot not get any reply in 

5-10 seconds, the entire procedure would be repeated from step 1 

 

4) The GPS’s response indicates the type of receiver that is connected, its 

capabilities, its serial number, hardware and software revision as well as software 

compilation date. 

 

5) The autopilot then finishes the setup by issuing log commands for a number of 

binary logs, where after the configuration is saved on the GPS. 

 

6) The GPS starts generating the requested logs. No further communication from the 

autopilot is observed. 

The final configuration of the receiver can be verified by connecting to the autopilot 

directly via an unused port (USB cable in this case), and request the log list, which shows 

all active scheduled logs. The response (Figure 4.1) shows that logs are being generated 

on 3 ports.  

 USB2 is where the PCs terminal is connected and where the loglist command was 

issued.  

 COM2 is generating Align® corrections. This is Novatels system for relative 

positioning or determining heading from multiple receivers. This feature is not in 

use and the port is not connected to anything in the UAVs current configuration.  

 COM1 is connected to the autopilot. These are the logs that are of most interest 

as the GBAS module will have to generate them. 
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<LOGLIST USB2 0 85.5 UNKNOWN 0 26.382 004c0000 c00c 7009 

<     9  

<          COM1 PSRPOSB ONTIME 0.250000 0.000000 NOHOLD  

<          COM1 PSRVELB ONTIME 0.250000 0.000000 NOHOLD  

<          COM2 RTCAOBS3 ONTIME 0.100000 0.000000 NOHOLD  

<          COM2 RTCAREFEXT ONTIME 0.100000 0.000000 NOHOLD  

<          COM1 HEADING2B ONNEW 0.000000 0.000000 NOHOLD  

<          COM1 PSRDOPB ONTIME 3.000000 0.000000 NOHOLD  

<          COM1 SATVISB ONTIME 20.000000 0.000000 NOHOLD  

<          COM1 TRACKSTATB ONTIME 5.000000 1.500000 NOHOLD  

<          USB2 LOGLIST ONCE 0.000000 0.000000 NOHOLD 
 

Figure 4.1: GPS response on the command “log loglist once”. Every line is a log, on the 

form [port] [name] [trigger] [period] [offset]. “Nohold” means the log will be removed 

by an “unlogall” command. 

The logs that are transmitted to the Autopilot over COM1 as shown in Figure 4.1 are: 

 GPS Position (PSRPOSB) at 4Hz, contains coordinates and height above sea level 

 GPS Velocity (PSRVELB) at 4Hz, contains horizontal and vertical speed as well as 

track over ground 

 Heading (HEADING2B), an Align® feature for finding the direction of the line 

between base and rover relative to north. 

 GPS dilution of precision (PSRDOPB) every 3 seconds, a measure of how well 

geometrically spaced the satellites in the solution are 

 Visible satellites (SATVISB) every 20 seconds, gives a quick overview of visible 

satellites and their apparent elevation and azimuth 

 Tracking status (TRACKSTATB) of all GPS receiver channels 

For the integration of the GBAS module, some additional logs from the GPS will be 

required. Some logs are not influenced by GBAS at all, and can simply be passed along to 

the autopilot. The computed position solution by the GPS is no longer needed. 

4.1.3 GBAS-required data 

The GBAS corrections have to be applied before a position solution is calculated. This 

requires the raw pseudorange and phase measurements, as well as ephemeris 

information for position calculation to be available to the GBAS module.  

By setting pseudorange output by the GPS to the same frequency as the autopilot’s 

required position solution, no timing complexity is added. Every pseudorange message 

received leads to a position solution output. Should the delay through the module be 

determined to be significant for the accuracy of the solution provided, a position 

prediction can be calculated instead, by extrapolating from position and velocity at time 

of measurement with an estimate of the input-output delay time: 

𝑃𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 = 𝑃 + 𝑉 ∗ 𝑡𝑑𝑒𝑙𝑎𝑦 (4. 1) 

The required logs for the GBAS calculations are rangecmp (at 4Hz) for raw GPS ranges, 

and rawephem (whenever it changes) for ephemeris data. Binary logs are preferred as 

they are compact and easy to decode as the content follows standard bit patterns for the 
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variable type. After the autopilot has configured the GPS, these additional logs are added 

via the commands: 

log com1 rangecmpb ontime 0.25 

log com1 rawephemb onnew 

saveconfig 

 

A few logs no longer serve a purpose with the GBAS module in place. In particular, since 

new position and velocity logs are synthesised by the GBAS module, the ones output by 

the GPS have become obsolete.  

These logs could potentially be given a new purpose in the form of a fail-safe. A problem 

introduced with the system configuration as in Figure 3.7, is that the autopilot no longer 

has direct access to the GPS. Should the GBAS module fail, the UAV would be left to 

navigate by dead reckoning, relying only on internal sensor data. This could be solved 

using the failsafe mechanism shown in Figure 4.2. 

 

Figure 4.2: Possible failsafe mechanism for the GPS to autopilot interface 

With all logs still output by the GPS, a short circuit between the GBAS input and output 

ports would cause the autopilot to have a position solution available, regardless of the 

functioning of the GBAS module. The short circuit can be made either in software or 

physically in hardware in the form of a relay. In addition to triggering by a lack of “OK” 

signal from the GBAS module, it could conceivably also be triggered via an override 

signal from the autopilot.  

During normal GBAS operation, the GBAS module can simply discard the unneeded logs 

received. When simulating a watchdog trigger by sending in additional raw logs to the 

autopilot, no adverse effects were observed, and the autopilot did not attempt to unlog 

the raw data.  

4.2 Demodulating the GBAS broadcast 

This section details the work done on making a receiver and demodulator for a GBAS 

broadcast based on software-defined radio (SDR). The GBAS signal was discussed in 

chapter 3.1, and a block diagram of the demodulation steps are shown in Figure 4.3, 

highlighting the tasks typically performed in the SDR hardware. The required hardware 

will be discussed in chapter 5. 
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Figure 4.3: Block diagram of a D8PSK receiver based on an SDR (modified from [4]) 

An SDR supplies discrete samples of the signals in-phase (I) and quadrature (Q) 

components. Software must then further process these values into symbols and 

associated bit values. Figure 4.4 shows how a local oscillator is used to remove the 

carrier frequency from the received signal (Down conversion) and the resulting values 

sampled (ADC conversion). 

 

Figure 4.4: Down conversion and analog-digital conversion of an RF signal into discrete 
in-phase and quadrature values (modified from [1]) 

 

4.2.1 VHF Data Link Mode 2 

VHF Data Link Mode 2 (VDLM2) is a way of communication between aircraft and ground 

stations. It consists of three layers, from the high-level application layer, through the link 

layer to the low-level physical layer. 

Mode 2 is of interest to GBAS demodulation because a packet at the physical layer 

closely resembles the structure of a GBAS data burst. As can be seen when comparing 

Figure 4.5 and Figure 3.4, the main notable difference is that VDLM2 allows for longer 

messages by dividing them into data blocks and interleaving FECs.  
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Figure 4.5: VHF Data Link Mode 2 data burst [17] 

Mode 2 is also D8PSK modulated at 10500 symbols a second with a channel spacing of 

25 kHz. Since it is transmitted in the communication band (117.975–137 MHz) with 

vertical polarization (versus horizontal in the navigation band for GBAS) this does not 

offer a problem for the GBAS reception.  

Furthermore, VDLM2 has: 

 Identical phase to character mapping as described in chapter 3.1.1 

 Very similar burst headers as seen in Table 4.1 

o Identical sync sequence  

o Identical trainings sequence FEC algorithm and matrix 

 Identical initial state in the bit scrambling algorithm 

 Identical data block size 

 Each data block is followed by a RS-FEC with the same polynomial. 

That leaves only a few differences that must be accounted for. 

Table 4.1: Comparison of the GBAS and VDLM2 data burst header fields 

Data burst header fields 

GBAS Bits VDLM2 Bits 

Power stabilization 15 Power ramp up 12 

Synchronisation and ambiguity 

resolution 

48 Synchronisation and ambiguity 

resolution 

48 

Station Slot Identifier (SSID) 3 Reserved symbol 3 

Transmission length 17 Transmission length 17 

Training sequence FEC 5 Header FEC 5 

 

Reserved bits 

The GBAS broadcast header contains the SSID field where Mode 2 has a reserved 

symbol. Since this symbol is used in the training sequence FEC calculations, it should not 

be removed or changed by the receiver. 

Transmission length 

This field can appear deceptive. While the field description is the same for GBAS and 

VDLM2, their respective definitions of what constitutes part of the “transmission” are not 

identical.  
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In a GBAS burst, this number represents the total number of bits of application data and 

FEC (up to 1776 bits and always 48 bits, respectively). A VDLM2 burst can be much 

longer, up to 131 071 bits. This is transmitted in blocks of up to 1992 bits, where each 

block is followed by the FEC for that block. Contrary to GBAS, the bits used for FECs are 

not counted in the transmission length field. 

For a GBAS and VDLM2 burst of the same length, it thus follows that the GBAS 

transmission length field will indicate 48 bits more than that of the VDLM2 transmission. 

If unaccounted for, a VDLM2 decoder that receives a GBAS message will then read too 

many bites and include the actual FEC bytes with the perceived data block. 

Reed-Solomon FEC 

In a VDLM2 burst, while six FEC bytes are always generated, the number of appended 

FEC bytes is dependent on the length of the contained data in the block. A GBAS 

broadcast always has a fixed FEC length of 6 bytes. In addition, compared to a VDLM2 

burst, the FEC in a GBAS burst is appended in the exact opposite bit order.  

Table 4.2: VDLM2 data length and the resulting number of FEC bytes appended 

Length of data FEC bytes transmitted / generated 

Less than 3 bytes 0 / 6 

3 to 30 bytes 2 / 6 

31 to 67 bytes 4 / 6 

More than 67 bytes 6 / 6 

 

4.2.2 DumpVDL2 

DumpVDL2 is a standalone VDL Mode 2 message decoder and protocol analyser 

developed by Tomasz Lemiech, available on github under the GNU General Public 

License. All work done here is based on version 1.6.0 of the software, released 19th of 

January 2019 [11]. Features that make it a particularly useful choice: 

 Standalone: It is not dependent on other programs or software frameworks 

 Well maintained: Bugs are being fixed and new features are added repeatedly 

 SDR support: Build in support for a number of the most common SDRs 

 I/Q file support: A log of I/Q samples can be decoded if there is no real time data 

Compilation and installation instructions are well documented in the repository’s 

README.md. During the work with this software, enabling DumpVDL2s Debug mode 

helped a considerably in observing what the software was decoding and allowing 

comparison to what a GBAS transmission should look like. In particular, the issue with 

transmission length was discovered by viewing the raw hexadecimal message and 

counting byte offsets. 

Reserved bits 

DumpVDL2 asserts that the reserved symbol is always transmitted as zero. For GBAS this 

is only the case for message blocks transmitted in slot 0. It does this in two stages, both 

that require some modification. 

First, DumpVDL2 sets the reserved bits to zero and the FEC is performed. Since the FEC 

covers the reserved symbol as well, it will attempt to correct this symbol if the GBAS 

station has an SSID other than 0. As the FEC is only capable of correcting a single bit 
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error, it will fail for 4/8 SSIDs and use up all error correcting capabilities for an additional 

3/8 SSIDs. It is sufficient to comment out the line that sets the reserved bits to zero for 

the FEC to perform normally, as shown in appendix B line 194.  

Second, a sanity check of the reserved symbol is performed by comparing the header to 

a bitmask with reserved bits set to zero. This comparison will fail for 7/8 SSIDs, causing 

the message to be discarded. Since the symbol is not reserved in a GBAS burst, this 

check serves no purpose and is thus commented out in its entirety in line 200-205 of 

appendix B. 

Transmission length 

The problem with the difference in transmission length is observed in the following 

transmission that ends on a message of type 3, an empty message filled with the value 

0x55: 

[…] 

aa cd e1 14 03 8a 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 
[…] 

55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 ea de 17 d5 

d9 b3 2e e1 28 b3 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 

00 00 00 00 ff 8d ba c1 6b 61  

The message starts with a header (purple) and ends with the CRC32 bytes (green) for a 

total of 0x8a bytes, matching the value indicated by the header. The data block should 

have ended here, but 6 additional bytes are collected (orange) before interleaving zeroes 

and collecting the FEC (blue).  

The “6 additional bytes” are in fact the actual FEC that is being grouped in with the data, 

while the receiver goes on to sample the transmitter ramp-down and noise as the FEC, 

inevitably causing the FEC algorithm to fail. 

Correcting for the difference in data length is straightforward. The value found in the 

burst header is used to determine when enough bytes have been collected to make up 

the entire message. Subtracting the FEC length of 48 bits from this value, as shown in 

appendix B line 207, causes the data burst to be correctly interpreted as: 

[…] 

aa cd e1 14 03 8a 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 
[…] 

55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 ea de 17 d5 

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 

00 00 00 00 d9 b3 2e e1 28 b3  

Reed-Solomon FEC 

While the FEC bytes are now correctly found and placed at the end of the burst, some 

additional changes are required for the implemented FEC algorithm to function correctly 

with GBAS data. 

In order to determine how many bytes of FEC are included in the received transmission, 

DumpVDL2 has its own function in decode.c, get_fec_octetcount, which interprets the 

message according to Table 4.2. Modifying this function to always return an octet count 

of 6 is simply done by commenting out the main function body (Appendix B line 121 to 

127). 
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In order to reuse RS-FEC the way it is implemented in DumpVDL2, it is required to swap 

the bit order. This is done in two stages. First, the order of the bytes are swapped around 

in the buffer (appendix B line 294to 307). Then, the bit order in each byte is swapped 

(appendix B line 309 to 317) using a bit-shifting method by Anderson [18].  

Getting data out 

After the FEC is performed, the similarities between VDLm2 and GBAS end. We now want 

to transfer the received messages from DumpVDL2 to a program of our own choice for 

decoding. A form of inter-process communication (IPC) must be added in the appropriate 

location of the code. While this can be done in any number of ways, a method commonly 

known as a named pipe has been chosen for its simplicity in implementation. In practice, 

a named pipe is a file that works as a first in, first out (FIFO) buffer.  

Setting up a named pipe only requires a few lines to be added in the main dumpvdl2.c 

file. These changes are shown in appendix B. After the pipe has been set up, data can be 

written to it. The required logic for outputting the GBAS messages over the pipe is added 

to decode_vdl_frame in decode.c after the FEC correction has been performed. The 

implementation shown in appendix B (line 334 to 345) writes the separate messages to 

the FIFO one at a time, instead of the entire data burst contents. 

It uses the fact that every message should start on 0xAA to determine when all 

messaged have been read from a burst. The end of each message is found by reading 

the message length byte, found in position 5 from the start of message. An added benefit 

of this method is that messages received from GBAS stations that are in test mode 

(0xFF) will not be passed along for further decoding. 

4.3 Decoding the GBAS broadcast 

The messages can be read from the FIFO named pipe in a different process. A FIFO 

reader and partial GBAS message decoder module are written in python. This is a 

threaded module, such that it will run concurrently with the other tasks of the GBAS 

module discussed in chapter 4.4. Refer to appendix C for the Python code of this module. 

4.3.1 CRC32 redundancy check 

Every GBAS message ends with a 4 byte (32 bit) Cyclical Redundancy Check (CRC) with 

the polynomial: 

𝐺(𝑥) = 𝑥32 + 𝑥31 + 𝑥24 + 𝑥22 + 𝑥16 + 𝑥14 + 𝑥8 + 𝑥7 + 𝑥5 + 𝑥3 + 𝑥 + 1 

This can be represented as a LSB first binary number where bit 𝑛 represents whether 𝑥𝑛 

is part of the polynomial, e.g. 1 + 𝑥 + 𝑥3 as 1101 = 0xd. The 𝑥32 term is implicit in the 

definition of the CRC polynomial, resulting in the hexadecimal representation of 𝐺(𝑥) as 

0xd5828281. 

The same CRC32 implementation that was used for Novatel GPS data (chapter 4.1.1) can 

be used with the new polynomial for GBAS message checking. 

Since CRC32 is a method for error detection but not correction, an incoming GBAS 

message that fails the check must be considered corrupted and is discarded. 
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4.3.2 Processing datafields 

The message, having passed both the FEC in the receiver and the CRC32 check in the 

python decoder, is now assumed not to contain undetected errors and the binary 

contents can be split into variables for use in navigation solutions.  

At this point, additional sanity checks and filtering can be performed. Data fields that are 

good candidates for this are the GBAS ID and Message type fields in the message 

header, as the name of the desired GBAS station and message types are typically known. 

Messages originating from other GBAS stations or messages that are not desired can be 

discarded, requiring no further processing power.  

For the contained data in the message body, a distinction is made on the rate of data, 

concerning how it should be handled in the receiver. This distinction originates from the 

description of MT1, but is here generalized and applied across all messages. 

Full rate data 

Full rate data for a message type is data that is contained in every single message of that 

type, and carries no value after a new message of the same kind is received. An example 

of this are the PRC and RRC values in MT1, where the values for all satellites in view are 

contained in every message. 

Low rate data 

Low rate data is split over multiple messages. For the entire dataset, it is required to 

collect and keep multiple messages of the same type. The low rate data in MT1, from 

which this class of data borrows its name, is an example of this. Each MT1 message 

contains the low rate data pertaining to a single satellite, and a number of messages 

have to be collected to complete the data for all satellites in view. 

4.4 GPS calculations 

The raw GPS data can be augmented with the decoded GBAS messages. This is done in 

the block marked “+” in Figure 3.8, which represents the combination of information 

from the two sources. The required calculations to achieve this will be introduced in 

chapter 4.4.1. As a part of this operation, smoothing of the GPS pseudoranges is 

required, which is presented in chapter 4.4.2. The main aspects of the position solution 

calculation, the last step in the GPS data chain from Figure 3.8, aspects of which will be 

shown in chapter 0. 

4.4.1 Pseudorange correction 

The corrections that are applied to the pseudoranges can come from either GBAS 

messages MT1 (for 100 second smoothed pseudoranges), or MT11 (for 30 second 

smoothed pseudoranges), the difference is mainly how fast the values are varying.  

Having pseudoranges smoothed over a longer period will mean less noise, but will also 

mean that erroneous measurements in the filter will influence the filter output for a 

longer period of time. 

Preferably, both 100 and 30 seconds corrected pseudorange data is computed in parallel 

such that the position solution calculator can switch between the two. Figure 4.6 shows a 

flowchart over how the corrections are applied in the aircraft, using equation 4.2 derived 

from the GBAS avionics standard [4].  
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Figure 4.6: The corrections that are applied to the pseudoranges, visualized as flowchart 
(modified from [4]) 

 

𝑃𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 = �̅�𝑛 + 𝑃𝑅𝐶 + 𝑅𝑅𝐶 ∗ (𝑡 − 𝑡𝑧𝑐𝑜𝑢𝑛𝑡) + 𝑇𝐶 + 𝑐 ∗ (Δ𝑡𝑠𝑣)𝐿1 (4.2) 𝑃𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 = �̅�𝑛 + 𝑃𝑅𝐶 + 𝑅𝑅𝐶 ∗ (𝑡 − 𝑡𝑧𝑐𝑜𝑢𝑛𝑡) + 𝑇𝐶 + 𝑐 ∗ (Δ𝑡𝑠𝑣)𝐿1 (4. 2) 

Equation 4.2 has to be applied to each ranging source. In this equation, 𝑃𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 is the 

pseudorange that is output to the position calculation, while �̅�𝑛 is the filtered 

pseudorange as explained in chapter 4.4.2.  

(Δ𝑡𝑠𝑣)𝐿1 is the clock correction broadcast by the satellite. Its influence on the range is 

found by multiplication with the speed of light (𝑐), using equation 2.2. 

𝑃𝑅𝐶 and 𝑅𝑅𝐶 are the pseudorange and range-rate corrections from either MT1 or MT11. 

The range rate is projected ahead using the difference between current GPS time (𝑡) and 

time of correction applicability (𝑡𝑧𝑐𝑜𝑢𝑛𝑡). The z-count is reset every 20 minutes, while the 

time from the GPS receiver is typically given since the start of the week. The time 

formats can be related using modulo, as shown in equation 4.3 (with both time formats 

in seconds). 

𝑡𝑧 = 𝑡𝑤𝑒𝑒𝑘 % 1200 (4. 3) 

In equation 4.2, 𝑇𝐶 is the tropospheric correction, which compensates for the 

troposphere delay error. It is calculated based on the local conditions, and is influenced 

by the relative positioning of the aircraft, ground station and satellite. This is shown in 

equation 4.4, where both the aircraft altitude over GBAS station (Δℎ) and the satellite’s 

elevation over the horizon (𝜃) are included. The refractivity index (𝑁𝑅) and tropospheric 

scale height (ℎ0), are both received in MT2.  

𝑇𝐶 = 𝑁𝑅ℎ0

10−6

√0.002 + sin2(𝜃)
(1 − 𝑒−∆ℎ ℎ0⁄ ) (4. 4) 

Some of the variables in equation 4.4 are dependent on an already calculated aircraft 

position. In order to avoid a feedback loop, these variables should be taken from the 

uncorrected GPS position supplied by the GPS receiver. For instance, the perceived 

satellite elevation (𝜃) will not change significantly since the scale of corrections is small 

compared to the distance to the satellites. 

4.4.2 Smoothing filter 

The received pseudoranges from the GPS receiver are noisy. This receiver noise is 

smoothed using the measured phase in similar fashion to how it is done by the GBAS 
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ground station. This is contained in the “Pseudorange Smoothing” block in figure Figure 

4.6.  

The standard for GBAS avionics [4] shows the carrier smoothing as a two-step process 

shown in equation 4.5 and 4.6.  

𝑃𝑝𝑟𝑜𝑗 = �̅�𝑛−1 +
𝜆

2π
(𝜙𝑛 − 𝜙𝑛−1) (4. 5) 

�̅�𝑛 = 𝛼𝑝𝑛 + (1 − 𝛼)𝑃𝑝𝑟𝑜𝑗 (4. 6) 

Initially, the smoothed range is the received pseudorange (�̅�1 = 𝑝1). For each 

measurement n, the two steps are performed. Equation 4.5 calculates the projected 

pseudorange (𝑃𝑝𝑟𝑜𝑗) based on the previous smoothed pseudorange (�̅�𝑛−1) and the change 

in phase since last sample (𝜙𝑛 − 𝜙𝑛−1), where 𝜆 is the GPS L1 carrier frequency of 

1575.42 MHz. 

Equation 4.6 is used to determine the new smoothed pseudorange (�̅�𝑛) based on a 

weighted sum of the new raw pseudorange sample (𝑝𝑛) and the projected pseudorange 

(𝑃𝑝𝑟𝑜𝑗) from equation 4.5. The filter weighting (𝛼) is determined based on the filter length 

and the frequency at which the samples are gathered: 

𝛼 =
1

𝑡𝑙𝑒𝑛𝑔ℎ𝑡 ∗ 𝑓𝑠𝑎𝑚𝑝𝑙𝑒

(4. 7) 

For a 100 second filter as used for MT1 corrections, at a 4Hz rate matching the UAVs GPS 

configuration (chapter 4.1.2), this leads to a weighting of 1/400 raw pseurorange and 

399/400 projected pseudorange based on phase (equation 4.6) for each iteration. 

An implementation of the filter was made in python, and can be found in appendix C. 

Using a u-blox GPS evaluation module (based the LEA-6T chip), raw pseudorange 

samples were collected and filtered. Figure 4.7 shows the difference between the 

pseudorange and the filtered pseudorange for the same satellite. As can be seen, the 

high frequency noise is not passed on to the smoothed pseudorange. 

While capturing data over a longer period of time, the jump shown in Figure 4.8 was 

observed. From sample 4439 to 4440, a 300-kilometre pseudorange jump occurred. This 

is exactly coherent with a 1ms clock correction.  

As discussed in an article in Inside GNSS [19], clock corrections are something that can 

be observed with raw pseudoranges, but depends on the receiver used. For this 

particular receiver (u-blox LEA-6T), the error is thus observed to be limited to 1ms.  

It is not known how the NovAtel receiver installed in the UAV handles this, though table 4 

in the NovAtel firmware reference [8] mentions the time to be correct to the millisecond 

level. Being a high-end receiver it might very well use clock steering (clock is 

continuously adjusted to keep error to a minimum), though single millisecond clock 

corrections could also fit the description. 
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Figure 4.7: Difference between the received pseudorange and the 100 second smoothed 
pseudorange for a single satellite. Y-axis in meters, X-axis in samples at 4Hz 

 

Figure 4.8: Log of pseudorange and filtered pseudorange, showing a 1ms clock jump 
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Since the clock corrections affect all pseudoranges the same way simultaneously, the 

change will cancel out in the position calculation and not cause any problem. This 

requires that these calculations do not involve previous pseudorange values. 

The smoothing filter is dependent on previous values, by definition. In particular, it has 

problems with the discrepancy between a large jump in raw pseudorange and a lack of 

matching jump in phase. The error between the filtered value and raw pseudorange after 

a pseudorange jump is presented in Figure 4.9. Satellites tracked when the jump 

occurred will have filter errors in excess of 50 kilometers more than 100 seconds after 

the jump (sample 5000). A hypothetical new satellite being tracked from sample 4500, 

after the jump occurred, will have its 100 second filter in steady state by sample 5000 

with errors similar to Figure 4.7 at less than 5 meters. This difference in satellite history 

cannot be detected by the positioning algorithm. 

 

Figure 4.9: Error between the received pseudorange and the 30 and 100 second filtered 
pseudorange after a 1ms clock jump. Y-axis in meters, X-axis in samples at 4Hz 

The airborne equipment standard [4] mentions, (as a note to measurement quality 

monitoring), that smoothed pseudorange should not be used if a pseudorange step has 

occurred. Seeing as the pseudorange jump in this case is an exact integer number of 

milliseconds, the jump can be added to the smoothed pseudorange before new samples 

are added, such that the abrupt step occurs the same across all pseudoranges and 

filtered pseudoranges. The smoothed pseudoranges can then be used continuously, and 

the position calculation will cancel out the jump without delay.  

The occurrence of a jump is easily tested by comparing a new pseudorange to current 

filtered pseudorange. The smallest jump possible of 1ms is observed as about 300km 

change of distance, which is easy to detect. 

While such jumps are generally not desired, the plot (Figure 4.9) shows how the 30-

second and 100-second filters differ in response time. 

4.4.3 Position solution calculation 

In order to find the receiver position, four unknowns have to be determined; the location 

in three dimensions and the clock offset. With the corrected pseudoranges from at least 

Psr - Psr100 
Psr - Psr30 
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four satellites and the collected satellite ephemeris, the position of the receiver can then 

be calculated. Methods are extensively documented in books [14] and standards [4]. 

As the methods are standard, and multiple available implementations exist, it can be 

beneficial for the development time to base the software on a ready-made solution. 

RTKLIB [20] is such an open source program package written in C, that contains a 

number of algorithm implementations for the calculation of position-velocity-time (PVT) 

solutions. It is split in parts that can be included in other projects, and the licence allows 

its use in both commercial and non-commercial products. This is very suitable for the 

development of a GBAS module. 

Two GPS receivers were used during the work with this thesis, the NovAtel OEMV2 in the 

UAV and a u-blox LEA-6T. For each receiver, a simple serial message receiver and 

decoder was written. RTKLIB includes message-decoding capabilities for a number of 

commonly used formats, including the two receivers used here. As such, RTKLIB will 

allow for a variety of GPS receivers to be used with the GBAS module. 
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Two prototypes for the required UAV hardware for GBAS demodulation and decoding 

were designed, based on different single-board computers (SBCs). 

The choice of software defined radio (SDR) was the first variable of hardware design that 

had to be solved. The choice fell on the RTL-SDR V.3, shown in Figure 5.1, as it fulfilled 

the key requirements of being supported by DumpVDL2, inexpensive and easily 

available. All further hardware design was made with this SDR in mind. 

 

Figure 5.1: The RTL-SDR V.3, an inexpensive, easily available and much used SDR that is 
well suited for GBAS reception (photo rtl-sdr.com) 

 

5.1 Hardware interfaces 

The hardware interfaces required were determined based on existing hardware in the 

UAV and the requirements of the SDR receiver. These requirements for then informed 

the choice of single board computer (SBC) to be used. 

5.1.1 Serial port 

The serial port is a variant of the RS232 standard for serial communication. This port is 

generally considered obsolete in consumer products, but it is still commonly used in 

scientific, industrial and specialist equipment.  

The Piccolo autopilot, being very much a specialist device, offers serial ports as the main 

method of interface with payloads and avionics. All communication between the autopilot 

and the Novatel GPS receiver occurs over a single serial connection. 

5 Avionics Hardware 
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Figure 5.2: Oscilloscope trace of a binary message sent from the GPS receiver over the 
serial port. The signal switches between ±5V, and the live decoding of the data is shown. 

The connection consists of two lines, transmit (TX) and receive (RX). The voltage on the 

line signals the bit value, a negative voltage represents a 1 while a positive voltage 

represents 0 (see Table 5.2). The Data bits are sent over their respective wire at a 

selected rate, known as the Baud-rate.  

The two lines operate independently from each other, such that sending and receiving 

can occur at the same time. However, RX from one device must go to TX of the other, 

and vice versa. Depending on the pinout of the connectors on the devices to be 

connected, this might mean a crossover cable can be required. 

The GPS side of the connection uses a classic 9-pin D-sub connector typically used for 

serial ports. Of the 9 pins, only 3 are of interest, shown in Table 5.1. The remaining pins 

can be used for flow control signals, but these are not used by the autopilot. 
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Table 5.1: Pins of interest for serial communication on the GPS male D-sub 9 connector 

Pin on GPS serial 

port 

Function 

 

2 Receive, RX 

3 Transmit, TX 

5 Ground, GND 

 

As the connector is large and bulky and serial ports are no longer commonly used, no 

single board computers that offer a serial connection out of the box could be found. 

Converters from both UART and USB exist, so these have been used instead. 

5.1.2 UART 

Universal Asynchronous Receiver-transmitter (UART) is a protocol for data transport, 

very similar to the RS232 communication of the serial port, down to the RX/TX naming 

convention and baud-rate determined timing. The main differences are the voltage 

levels, which operate at the digital signal voltage level of the system. Being so similar, 

there are a large number of UART-signal translation chips available. These chips typically 

contain charge pumps so that they can generate the required positive and negative 

voltage themselves with only a few external capacitors. 

Table 5.2: Voltage levels for RS232 and UART communication 

Data bit Serial (RS232) voltage UART voltage 

0 +3V to +15V Low (0V) 

1 -3V to -15V High (3.3V or 5V) 

 

5.1.3 USB 

Universal Serial Bus (USB) is a modern interface for communication. It has replaced the 

serial port in most applications. In USB, data is sent in packets, over a differential pair of 

lines. Either the host PC or the device can send, one at a time, making this a half-duplex 

port. In order to use a USB device, the host computer needs to install the device’s driver 

software.  

USB also carries power in the form of a 5V line that can provide up to 500mA. This is 

what powers the RTL-SDR when it is connected, and allows active converters to be 

attached. Converters from USB to most of the common data ports are easily available, 

making USB a very flexible solution. 

5.1.4 CAN bus 

Control Area Network (CAN) is a message based differential bus where any node can 

send to any other node. With automatic message collision and error detection it is a 

robust data bus with a high level of security, commonly used in cars and vehicles in 

general.  
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It is therefore not a surprise that such features are supported in UAVs as well. The 

piccolo has a CAN bus that can be used to interface with avionics and payloads. Sending 

to a specific address allows data transfer to the ground station, which makes it a 

candidate for communication between pilot on the ground and the GBAS module. 

Complete details of the CAN bus can be found in the official CAN Specification [21]. 

5.2 BeagleBone based system 

 

Figure 5.3: The BeagleBone Black rev. C single board computer, with the custom circuit 
board for serial ports and CAN bus attached. 

Figure 5.3 shows the first hardware prototype, which is based on the BeagleBone Black 

rev. C. This is a single board computer based around Texas Instrument’s AM3358 

processor, a single core 1GHz ARM cortex-A8. It has a host USB port available for the 

RTL-SDR to connect, and two 46-pin headers with a number of external interfaces. 

Among these interfaces are four UARTs and two CAN ports. A circuit board was 

developed with the required transceivers that allow the BeagleBone to connect to two 

serial devices as well as a CAN bus. 

The unit is powered by a 5V supply, via either a mini-USB connector or a barrel plug. 

When connecting it to a PC’s USB port it emulates a USB modem, which allows 

connecting to it over secure shell (SSH) at the fixed IP address 192.168.7.2 for 

configuration and programming.  

5.2.1 BeagleBone design 

The system is built up of the BeagleBone Black rev. C, running Debian 9, with a custom 

circuit board (known as a “cape” in the BeagleBone community) connected to the pin 

headers. A close-up of the cape is seen in Figure 5.4, and the design schematics are 

provided in appendix D. It offers two separate functions: 

Serial ports 

Two serial ports are required, in order to communicate with the Novatel GPS receiver and 

the Piccolo autopilot. This is achieved by using an ST3222 dual UART – RS232 bridge 

chip, which is able to generate RS232 voltages from the system 3.3V with its own built-in 

charge pump and only requires a number of external capacitors.  
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On the UART side, it is connected to the BeagleBone’s UART1 and UART4. On the RS232 

side, the RX/TX line pairs go to 2x2 headers with jumpers (see yellow jumpers on Figure 

5.4). The signals are connected in such a way that rotating the jumpers 90 degrees 

swaps the RX and TX lines, which could be required in some connector configurations. 

From the 2x2 headers, the signals lead into connection blocks for ribbon cables leading to 

D-sub 9 connectors. The connection is straight through, such that pin 1 on the 

connection block leads to pin 1 of the D-sub 9 plug.  

CAN bus 

The cape also provides an MCP2562 CAN transceiver. This is required in order to connect 

the pins of the BeagleBone to the physical CAN bus. It provides the differential transmit 

ability and gives protection of the BeagleBone hardware. This particular chip was chosen 

for its compatibility with 3.3V logic signals. A jumper allows the inclusion of a 120Ω bus-

termination resistor. The CAN differential pair can be connected to the physical bus via a 

screw terminal block.  

 

Figure 5.4: Top down view of the serial and CAN circuit board 

The general-purpose input/output (GPIO) pins on the BeagleBone headers can have 

multiple possible functions. In the circuit board design, the two serial ports are connected 

to UART 1 and UART 4. In order to enable the UARTs, the pins have to be configured to 

UART mode for their respective RX and TX lines. Furthermore, the serial ports by default 

have “echo” mode enabled. Echo makes the serial port reply back any message it 

receives, which is an unwanted feature in this application. This is configured using the 

commands:  

config-pin p9.11 uart 

config-pin p9.13 uart 

config-pin p9.24 uart 

config-pin p9.26 uart 

 

stty -F /dev/ttyO4 sane -echo 
stty -F /dev/ttyO1 sane -echo  
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5.2.2 BeagleBone evaluation 

The final system, as shown in Figure 5.3, weights 82 grams. This does not include the 

SDR receiver nor a protective case, so the weight cannot be directly compared to the 

Raspberry Pi system in chapter 5.3. 

The operating system can be run either from a micro SecureDigital (microSD) card, or 

from the embedded MultiMediaCard (eMMC). The weaknesses of such storage devices, in 

particular their response to sudden power loss, is discussed in chapter 7.5.  

The serial ports were tested by connecting them to serial-USB adapters plugged into a 

computer. Using serial terminal software, data could be sent to and received from the 

BeagleBone system.  

In order to test the BeagleBone with the RTL-SDR, DumpVDL2 was run in its unmodified 

form (chapter 4.2.2). The BeagleBone was not able to keep up with the simultaneous 

collection of samples and decoding of data. This lead to that not a single VDLM2 packet 

could be received. It was verified that there was in fact VDLM2 activity in the area by 

running the same RTL-SDR setup on a laptop both before and after the test. 

Htop, a process viewer for Linux, showed a CPU usage of 100% continuously while the 

radio was on. It was thus concluded that the single 1GHz core had insufficient processing 

power for the application. This motivated the design of a new hardware prototype based 

on a more powerful computer. 

5.3 Raspberry Pi based system 

 

Figure 5.5: The Raspberry Pi 3 Model B+ single board computer, with the serial port 
modules as well as the SDR. 

The second hardware prototype, based on the Raspberry Pi 3 Model B+ is shown in 

Figure 5.5. This single board computer is far more powerful than the BeagleBone from 

the first system, as it features a Broadcom BCM2837B0 processor, a quad core 1.4GHz 

ARM cortex-A53. It has four USB ports available for the RTL-SDR and other hardware to 

connect. A 40-pin header allows a few external interfaces; however, it does not have two 

UARTs available. The serial ports were therefore realised using USB converters. 

The unit is powered by a 5V supply via a micro-USB connector. Having a far more 

powerful CPU also means additional power demand. Unlike the BeagleBone, the 500mA 
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from a computer is not enough to power it. A 2.5A phone charger or similar power supply 

is recommended.  

Not having a USB modem interface to the device also makes configuring and 

programming somewhat more complex, as SSH is not enabled by default. This can be 

done using the raspi-config utility, which requires the connection of a screen and 

keyboard. The RPi can then be connected directly with an Ethernet cable to a laptop’s 

own Ethernet port. This is desired as it allows connection to the RPi also in areas without 

a common Wi-Fi connection or Ethernet switch. 

Unlike the BeagleBone, the RPi does not have a static IP address where the computer 

knows how to find it. This can be achieved by configuring static IPs manually on the RPi 

and laptop Ethernet adapter. An easier method is installing Apple’s Bonjour Print 

Services. It will detect the RPi, such that SSH connections can be made to 

raspberrypi.local instead of a fixed IP address. 

5.3.1 Raspberry Pi design 

The system is built up of the Raspberry Pi 3 Model B+, running Debian 9. The required 

interfaces were realised using USB port converter modules, and the entire module was 

mounted in a custom enclosure, making for a single compact unit. A top-down view of 

the assembled module is seen in Figure 5.6. 

Serial ports 

The serial ports were made using two separate converter stages. First, UART ports are 

made using CP2102 USB-UART bridges. The devices are automatically detected by 

Debian, and no additional drivers have to be installed.  

The UART signals are then passed to UART – serial bridges based on the SP3232 chip. 

These chips function the same way as the chip used on the BeagleBone cape. The 

modules are mounted to the RPi using plastic standoffs. By connecting this assembly to 

the RPi using short USB cables, the entire construction can be folded into a compact unit. 

SDR 

The SDR that was chosen for GBAS reception was the RTL-SDR V.3. As the casing of this 

SDR is quite bulky, it must be mounted with a USB extension cable in order to not block 

the other USB ports. The SDR is mounted to the baseplate alongside the RPi, and the 

shortest available extension cable was chosen. The large USB connectors themselves 

mean that even a 10cm cable takes a lot of space compared to the module size as a 

whole, as can be seen in Figure 5.6. 
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Figure 5.6: Top-down view of the assembled RPi system 

 

5.3.2 Raspberry Pi evaluation 

The final system, as shown in Figure 5.5, weights 210 grams. Since this includes 

mounting hardware, a simple case and the SDR receiver, this weight cannot be directly 

compared to the same measurement as made for the BeagleBone system in chapter 5.2. 

The operating system of the RPi is stored on a micro SecureDigital (microSD) card. This 

device can become corrupted, in particular when the RPi is not properly shut down and 

power is suddenly lost. These problems as well as approaches for risk mitigation are 

discussed in chapter 7.5.  

In order to test the SDR with the RPi, similar tests as for the BeagleBone were 

performed. DumpVDL2 (chapter 4.2.2) was run in its unmodified form to see if the RPi 

was able to receive and decode data in real-time. The VDLM2 activity in the area was 

checked both before and after the test, by running the same RTL-SDR setup on a laptop. 

The RPi caught and decoded a message every couple of minutes, which was consistent 

with the activity observed with a laptop.  

During this test, htop (a process viewer for Linux) showed CPU usage of approximately 

50% for two of the four cores. The other two were idling. This is consistent with the way 

DumpVDL2 is built up, using separate threads for receiving and decoding the SDR 

samples. It shows that a multi-core processor is a great benefit for this particular 

application. 

The serial ports do not need additional configuration, since they are connected via USB 

and not using any hardware pins. Data transmission was tested via a similar USB-serial 

adapter plugged into a computer, and the module was later connected to the UAV 

following the setup given in Figure 3.7. The powered module can be seen in Figure 5.7, 

where it is passing GPS data along from the GPS to the autopilot in the Cruiser 2 UAV at 

ASC. More details on the UAV mounting can be found in chapter 6. 
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Figure 5.7: The RPi based system powered up and communicating with the GPS and 
autopilot in the UAV 
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The available room inside the UAV is divided into multiple compartments. The largest of 

these is by far the front of the aircraft, where mission payloads up to 20kg can be 

installed. The fuel tank takes a good part of space as well, supplying fuel for long 

missions of up to 8 hours. The remainder is left for the avionics hardware, its power 

system and batteries. The UAV’s motor is mounted to the outside of the UAV behind the 

main wing, allowing the UAV to fly at nominal speeds of 60 to 70 knots. The motor also 

contains a generator, which will keep the batteries charged and vehicle powered during 

normal operation. The total UAV is approximately 3.3 meters long. The various 

compartments and their approximate relative size are visualised in Figure 6.1. 

 

Figure 6.1: Illustration of the different compartments in the Cruiser 2 UAV 

 

6.1 Avionics bay 

The avionics bay can be accessed from the front by removing the payload bay and the 

fuel tank. Limited access from the top is also possible by removing the wing. The UAV is 

built in such a way that all parts are securely attached yet easily disassembled for 

transport and service. 

Figure 6.2 shows the view of the avionics bay from the front, after the fuel tank is 

removed. The yellow fuel tubes can be seen hanging loose from the top right and left 

corners of the figure. The large metal box in the centre (C) is a protective, fireproof 

container for the battery packs. The NovAtel OEMV2 GPS receiver (A) is mounted on its 

side such that it fits next to the battery box. It is connected to the Cloud Cap Piccolo 2 

autopilot (B) that is placed at the bottom of the assembly. On top of the autopilot is an 

Iridium satellite modem, which is used for low rate communication when UAV is 

operating outside of radio range of the ground station. 

The autopilot (B) is placed square and centre as it also contains the gyros and 

accelerometers of the contained inertial measurement unit (IMU). The entire assembly is 

mounted on rubber vibration dampers (D) such that the IMU is not adversely influenced 

by vibrations and shocks of the airframe [6]. 

6 UAV Implementation 
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Figure 6.2: View of the Cruiser 2 avionics bay, as seen from the front with the fuel tank 
removed, clearly showing the GPS receiver (A), autopilot (B), battery compartment (C) 
and vibration dampeners (D) 

There is not much space left in the avionics bay, and only two possible locations for the 

placement of the GBAS avionics module are available: 

1) Upside-down underneath the autopilot holder 

2) On its side, next to the autopilot and below the GPS receiver 

The current prototype is not suitable for either position, as the connectors of the module 

point in multiple directions, making it hard to access. Ideally, all the GBAS module 

interfaces should be located next to each other, such that they are easily accessible from 

a single front plate in similar fashion to how it is done on the GPS.  

Mounting option 2 is deemed the better of the two, as the module would be easier to 

access and be in close vicinity to the GPS module to which it must be connected.  



42 

 

6.2 Payload bay 

The payload bay of the Cruiser 2 UAV is large and open, allowing for a variety of payload 

implementations to be mounted. During testing of GBAS in UAVs, the GBAS module can 

easily be placed here alongside other payloads.  

Figure 6.3 shows the payload bay with the cover off, with a camera gimbal payload 

mounted. The Raspberry Pi based GBAS module prototype is placed on the workbench 

next to the UAV, showing the relative size of the available space.  

 

Figure 6.3: The Cruiser 2 payload bay. Raspberry Pi GBAS module on the workbench 
demonstrates the amount of space available 

Right in front of the main wing, where the payload area begins, there is a plate with 

connectors mounted. These are pass-through interfaces, where payloads can send data 

to the autopilot, which will forward them to the pilot on the ground. One of these 

connectors can be used to send GBAS information for the pilot to consider.  

However, the GPS-autopilot interface is not available here. In order to place the GBAS 

module in the payload bay, two additional serial cables have to be drawn from the 

avionics bay. 

6.3 Antenna Placement 

In order to receive the GBAS broadcast, a VHF antenna is required on board the UAV. 

The GBAS broadcast is horizontally polarised, so an antenna has to be mounted 

horizontally as well. This makes the wings good locations for antenna mounting.  

Placing antenna along the tail boom has also been considered, but this would give the 

antenna low reception when flying directly at the station, which typically would happen 

during landing. 
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6.3.1 Current antennae 

There are already antennae mounted on the wings. The additional GBAS antenna must 

not interfere with their functionality. The antennae mounted on the centre part of the 

main wing are shown in Figure 6.4, and can be seen in Figure 6.5. 

  
(A) GPS antenna (B) Iridium antenna 

Figure 6.4: The GPS antenna (A) and Iridium antenna (B) that are mounted on the center 
part of the main wing 

 

6.3.2 GBAS VHF antenna mounting 

The wings as placement for the GBAS VHF antenna have been explored at ASC. The 

examples shown here are using a dipole antenna of 128cm, which is approximately half 

the wavelength of an average GBAS carrier wave frequency, and a suitable length for 

GBAS VHF reception.  

Figure 6.5 shows the antenna mounted on top of the main wing. The GPS antenna and 

Iridium antenna can be clearly seen. It is a benefit to have the antenna mounted towards 

the front of the wing, as it reduces the possibility for the UAVs airframe to get in the line 

of radio reception during landing. At the same time, the main wing contains a carbon 

fibre beam for wing reinforcement. The carbon fibre will absorb the signal and negatively 

affect the signal strength. 

Figure 6.6 shows the same antenna mounted on top of the tail wing. Being far back, a lot 

of the UAV can get in the way of the antenna during landing. This wing is not used for 

other antennae, and it does not contain any carbon fibre. 

Since the broadcast that is to be received originates from the ground, the signal will be 

received from below for the main part of the flight. The antenna can therefore also be 

mounted on the underside of either wing, which could improve reception significantly, 

though blockage by the airframe as well as absorption by carbon fibre beams would 

remain influential. 

In order to determine which antenna type and location is actually best suited for the UAV 

GBAS implementation, a more in-depth test would have to be performed where 

performance data for each location is collected and analysed.  
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Figure 6.5: VHF antenna mounted on top of the main wing 

 

 

Figure 6.6: VHF antenna mounted on top of the tail wing 

 

6.4 Interface verification 

In order to test if the interface between the GPS and autopilot was understood by the 

GBAS software, the laptop was connected in between the autopilot and the GPS. 

Messages on each port were collected, message contents checked with the CRC32, and 

output on the other port with a new generated checksum.  
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The test was successful, and demonstrated that the GBAS module software, running on 

the laptop, was able to identify messages and logs correctly on the serial port, and both 

collect and transmit them. Decoding and encoding of the CRC32 error detection bytes 

was also confirmed to be operational. 

The same code was also tested on the Raspberry Pi GBAS module prototype, shown in 

Figure 5.7, with identical results, indicating that the serial interfaces added to the RPi 

were correctly working, and that both decoding and encoding of messages according to 

the NovAtel GPS format was possible.  

After the indoor tests on the workbench were found to be successful, the avionics bay 

was moved outside so that the same test could be done while the GPS could receive 

actual satellite data. 

Figure 6.7 shows the avionics bay of the UAV, with the center part of the main wing 

mounted, placed in the parking lot of ASC for the collection of GPS data. The red 

container is placed as a warning for cars driving around the corner not to crush the UAV. 

 

Figure 6.7: Avionics compartment with center-part of wing placed outside in the parking 
lot at ASC, collecting GPS data.  
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The main results of the study of the system requirements and the techincal details for 

the concept of GBAS integration in UAV systems are discussed in this chapter. The main 

focus is on the nececcary software adaptation and the options for using off-the-shelf 

hardware. Ways to improve the current system and potential for future applications are 

also presented. 

7.1 GBAS demodulation and decoding software 

In chapter 4.2 it was demonstrated that the similarities between GBAS and VDLM2 

signals in space allowed a software based VDLM2 receiver to be modified for GBAS 

broadcast demodulation. The GBAS messages contained in the data burst were put in a 

FIFO buffer, such that any program could read them out and process them further. 

Using python, the messages were read from the buffer and selected datafields decoded. 

CRC32 checking is done to get the highest possible certainty no corrupt messages are 

accepted by the GBAS module.  

7.2 Correcting raw GPS data 

When GBAS messages are received, these can be used to augment the UAVs GPS data. 

Chapter 4.4 explored how the contents of MT1, MT2 and MT11 can be used to generate 

improved pseudoranges, which will provide a higher positional accuracy than can be 

achieved using regular GPS.  

In order to minimize receiver noise, the pseudoranges observed by the UAV have to be 

smoothed in a similar fashion to how it is done by the GBAS ground station. This is done 

using the carrier phase. The smoothing was implemented in python, and a test was 

performed. This lead to the identification of millisecond jumps in the pseudorange data.  

Such a jump is detrimental to the filtered values if not caught and handled properly, as it 

presents a large discrepancy between the pseudorange and carrier phase. Furthermore, 

depending on which receiver is used, the jump can be of different size.  Since it always is 

an integer number of milliseconds [19], the shortest jump is just under 300 kilometre, 

which is easy to detect.  

The time jump can cause issues for the application of GPS corrections. The range-rate 

corrections (RRCs) are applied based on the difference between the time they were 

generated (supplied in the message) and the “current” time of application. The simplest 

way of acquiring the current time would be gathering the time from the GPS receiver 

directly, so that no feedback from the PVT solution calculation is required. The max value 

for the RRC is 32.767m/s (appendix A) such that a clock error limited to 1ms can at 

worst cause pseudorange errors of 3.3cm. Some receivers can have clock errors up to 

100ms [19], which would cause unacceptable errors of up to 3.3m. As such, either the 

GPS receiver should be of a kind that is limited to small clock errors, or the 

implementation must use the time from the PVT solution. 

7 Results and Discussion 
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Using RTKLIB is recommended for the PVT solution generation, as it has a large number 

of GNSS algorithms implemented. In addition, it supplies decoders for a large number of 

message types for GPS receivers from known brands. 

7.3 Reception of GBAS using off-the-shelf components 

As seen in chapter 5, the hardware required for GBAS demodulation and decoding is in 

practice limited to a computer and an SDR dongle. As multiple software tasks have to be 

performed in parallel (chapter 4), the system benefits greatly from a multi-core 

processor. This was evident when the BeagleBone’s single CPU was overloaded by SDR 

sampling and demodulation alone. 

The prototype based on the Raspberry Pi is in many ways quite similar to the 

BeagleBone, but the Pi features a far more powerful processor. This was noticeable, as 

GBAS reception and decoding used only about ¼ of available processing time.  

The single board computers used are easy to get hold of, both from supplies of electronic 

components and certain computer chain stores. In the RPi module, both USB to UART 

and UART to serial converter boards were used. This made for a neat, compact design. 

However, direct USB to serial cable could also be used with the same result. Such cables 

are commonly found in computer hardware stores. 

Due to the high volume production of the computers, converters and other components 

used, the total price of the assembled system is small when compared to the cost of a 

high-end GPS receiver or autopilot. 

7.4 Installation of GBAS module in existing UAV systems 

An abundance of available interface translation boards makes a general-purpose 

computer a flexible platform for controlling hardware interfaces of any kind. Equipping a 

single board computer with the required hardware for communicating with the existing 

UAV components can be as simple as plugging in a USB dongle. 

With the evolution of complex autonomous systems and payloads in UAVs, it is 

reasonable to assume that modern, high-bandwidth interfaces will also become more 

prevalent. A development platform based on a single board computer is well suited for 

such a future, with gigabit Ethernet and high-speed USB available in the more recent 

models.  

The resulting module is both light and small. While the avionics bay of the Cruiser 2 did 

not have room for the prototype module, it could easily be placed in the payload area of 

the Cruiser 2 without being a great hindrance to actual mission payloads. 

However, there does exist a significant limitation to the general applicability of the UAV 

implementation as it is used throughout this thesis (Figure 3.7), specifically with regard 

to UAV integration. A core requirement is that the GPS and the autopilot of the UAV are 

separate modules, with a connection in between which the GBAS module can intercept. 

While a new GPS module can be added alongside the GBAS module in a UAV system, the 

autopilot must support GPS positioning by an external module in one way or another. 
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7.5 Selection of hardware 

Hardware was partially selected based on availability. Commonly used single board 

computers are easily available, but are not designed for or originally intended for critical 

applications, such as an avionics module would be. 

A challenge with single board computers such as the Raspberry Pi and the BeagleBone, 

which the prototypes in chapter 5 are based on, is that their storage is based on SD 

cards or eMMC chips. If power is abruptly lost, these can become corrupted. A complete 

formatting may be required.  

Corruption typically happens when power is lost during a writing operation. In order to 

avoid this, there should either be enough power backup (e.g. from a chargeable battery) 

to finish the writing, or no writing should be done to minimize the risk. 

The FIFO that is used for inter-process communication in the application presented in this 

thesis is a file on the drive, but no actual writing is done to the file. All data is passed 

between applications by memory alone. As such, the current system does not have a 

significant risk of corruption in its current state, but the risk is something that should be 

considered if new functionality is to be added. Writing log files would for instance pose a 

significant risk, due to the frequent write operations associated. 

7.6 “DumpGBAS” 

DumpVDL2 features far more functionality than is being used in the GBAS modification. It 

allows for collecting stats and logging multiple frequencies simultaneously, as well as 

decoding a number of different packaged data formats typically send over VDLM2. These 

functions are not relevant to the GBAS receiver and demodulator, but are still present. 

This is not desired for a few reasons: 

 It can waste processing power that would be better used elsewhere, in turn 

leading to additional power drawn by the overall system 

 It increases the overall size of the software with functions and modules that are 

never called on. It also increases compilation time though that is mostly a 

nuisance during software development 

 It introduces unnecessary dependencies to other software. Change in the software 

dependencies might entirely change how DumpVDL2 works, potentially 

introducing bugs or breaking the GBAS implementation in unexpected ways 

This motivates the need for a variation, a GBAS-only build, which has here been given 

the nickname “DumpGBAS”. Generally, there are two possible approaches by which this 

can be achieved: 

 Subtractive method, by trimming down DumpVDL2 and removing all parts that 

are not relevant to the GBAS demodulation. This requires good insight into the 

internal structure of the software so that desired functionality is not affected. 

 Additive method, by creating an entirely new project and reusing GBAS-relevant 

functions, algorithms and code from DumpVDL2. 

Of the two methods, the second is preferable as it allows for a transparent software 

design, which allows easier integration of new functionality. For instance, the currently 

ignored GBAS SSID could be used to filter out signals from unwanted stations. It is also 

desirable to eliminate the FIFO buffer as it adds delay. Currently it is needed for inter-
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process communication, but by combining demodulation and decoding in the same 

program, it could be made obsolete. 

RTKLIB, mentioned in chapter 0, could also be added along with the correction 

algorithms such that all functionality is contained in a single program. This will make for 

a more robust GBAS module. 

7.7 Potential implications of GBAS navigation in UAVs 

A GBAS navigation platform for UAVs has the advantage of increasing positioning 

accuracy over regular GPS. The GBAS system is based on international standards that 

assure high system integrity regardless of environmental factors.  

Weather related challenges have been limiting UAV operations, not the least in the 

proximity of inhabited areas. GBAS allows safe landing of aircraft under low- to no-sight 

conditions. Aurora interference on airfields in the northern regions can also cause 

problems for the of GNSS signals. GBAS can detect these critical situations, provide 

integrity support and thereby improve operational safety. 

In terms of pure position accuracy, pseudorange-based GBAS system is not able to 

outcompete phased-based RTK position solutions. However, being standardised, GBAS 

can enable remote UAV landing at any GBAS enabled airfield. This will allow for long-

range unmanned flights, without requiring a pilot on location for landing, refuelling or 

maintenance.  

The tested GBAS system poses limited constraints with regard to cost, weight and size. 

Future avionics developers might therefore be interested in adding this capability to their 

new avionics products. 

The benefit of increased safety and greater reliability is especially of interest for 

operators of larger UAVs. This will allow for extended capabilities for unmanned 

operations in the future. 
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The study of the system requirements for integrating GBAS in UAV avionics showed that 

it was possible to design a system that could be integrated neatly with existing avionics. 

No significant modification of the existing UAV hardware was required.   

The system was test fitted in an existing UAV system at ASC. This reduced the available 

payload capacity minimaly. Possible locations for the required additional VHF antenna on 

the UAV were explored. Mounting the antenna was found to be possible with only 

minimal modification of the airframe.  

In order to demodulate the GBAS broadcast, open-source software for the reception of 

VDLM2 signals was succesfully modified. The program is able to collect GBAS data bursts, 

perform error correction and output the contained messages for further processing. The 

content of the broadcast is decoded and the contained data are made available for 

correcting the GPS pseudoranges.  

Raw pseudoranges from a GPS receiver were smoothed using the carrier phase. The 

implications of pseudorange jumps in the data were discussed, both in the context of the 

smoothing filter and the pseudorange corrections. The method by which information from 

the messages in the GBAS broadcast can be combined with the smoothed pseudoranges 

for generating corrected pseudoranges was presented. 

Two different hardware prototypes have been developed, each system based on different 

off-the-shelf single-board computers. Testing showed that the GBAS software was quite 

CPU intensive, such that one of the systems was not able to keep up with data flow. The 

Raspberry Pi based system was able to handle the radio samples and communicate with 

the UAV avionics at ASC. 

GBAS will allow for extended UAV capabilities, since it can detect critical GNSS situations 

and provide integrity support. This makes it possible to operate UAVs under low- to no-

sight conditions. In addition, it enables remote UAV landing at any GBAS enabled airfield. 

This will extend the capabilities of unmanned operations in the future. 

In conclusion, it has been possible to develop a low cost system that allows the 

integration of GBAS corrections with UAV avionics, which will improve its autonomous 

landing capabilities of UAVs, independent of airfield and weather conditions. 

8 Conclusion 
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Appendix A: GBAS message content by type number 

This appendix contains listings of the data fields contained in each GBAS message type. 

The tables for each are close-to-exact copies of similar tables found in the GBAS 

standards [1] [2], and are provided here for reference when the messages and their data 

fields are discussed. 

 

     MT1: 

Message type 1 contains pseudorange corrections for 100-second smoothed pseudorange 

data. Table A.1 shows all the contained data fields. The table can be found as 3.7-2 in 

[1] and 2-12 in [2]. Reference these sources for full details on all data fields. 

Table A.1: Data content of message type 1 [1][2] 

Data Content Bits Range of Values Resolution 

Modified Z-count 14 0 to 1199.9 sec 0.1 sec 

Additional Message Flag 2 0 to 3 1 

Number of measurements (N) 5 0 to 18 1 

Measurement Type 3 0 to 7 1 

Ephemeris Decorrelation Parameter 8 0 to 1.275 ∗ 10−3 m/m 5 ∗ 10−6 m/m 

Ephemeris CRC 16 - - 

Source Availability Duration 8 0 to 2540 s 10 s 

For N measurement blocks: 

Range Source ID 8 1 to 255 1 

Issue of Data 8 0 to 255 1 

Pseudo-range Correction (PRC) 16 ±327.67 m 0.01 m 

Range Rate Correction (RRC) 16 ±32.767 m/s 0.001 m/s 

𝜎𝑝𝑟_𝑔𝑛𝑑  8 0 to 5.08 m 0.02 m 

𝐵1  8 ±6.35 m 0.05 m 

𝐵2  8 ±6.35 m 0.05 m 

𝐵3  8 ±6.35 m 0.05 m 

𝐵4  8 ±6.35 m 0.05 m 

 

  



 

     MT2: 

Message type 2 contains information on the GBAS ground station, both its location and 

configuration. Table A.2 shows all the contained data fields. The table can be found as 

3.7-4 in [1] and 2-14 in [2]. Reference these sources for full details on all data fields, as 

well as the additional data blocks. 

Table A.2: Data content of message type 2 [1][2] 

Data Content Bits Range of Values Resolution 

GBAS Reference Receivers 2 2 to 4 - 

Ground Accuracy Designator 2 - - 

     Spare 1 - - 

GBAS Continuity/Integrity 

Designator 

3 - - 

Local Magnetic Variation 11 ±180° 0.25° 

     Spare 5 - - 

𝜎𝑣𝑒𝑟𝑡_𝑖𝑛𝑜_𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡  8 0 to 25.5 ∗ 10−6 m/m 0.1 ∗ 10−6 m/m 

Refractivity Index (𝑁𝑅) 8 16 to 781 3 

Scale Height (ℎ0) 8 0 to 25500 m 100 m 

Refractivity Uncertainty 8 0 to 255 1 

GBAS Reference Point Latitude 32 ±90° 0.0005 arcsec 

GBAS Reference Point Longitude 32 ±180° 0.0005 arcsec 

GBAS Reference Point Height 24 ±83886.07 m 0.01 m 

     Additional data blocks may be provided 

 

     MT3: 

Message type 3 contains only filler data. Table A.3 shows the contained data field, filler, 

which contains a sequence of bits alternating between 0 and 1 [2]. The table can be 

found as 3.7-7 in [1] and 2-17 in [2].  

Table A.3: Data content of message type 3 [1][2] 

Data Content Bits Range of Values Resolution 

Filler Variable - - 

 

     MT4: 

Message type 4 contains sets of approach data and associated alarm limits. Table A.4 

shows all the contained data fields. The table can be found as 3.7-5 in [1] and 2-18 in 

[2]. Reference these sources for full details on all data fields. 

Table A.4: Data content of message type 4 [1][2] 

Data Content Bits Range of Values Resolution 

For N data sets: 

Data set length 8 2 to 212 bytes 1 byte 

FAS data block 304 - - 

FAS vertical alert limit/approach 

status 

8 0 to 25.4 m 0.1 m 

FAS horizontal alert limit/approach 

status 

3 0 to 50.8 m 0.2 m 

 



 

     MT11: 

Message type 11 contains pseudorange corrections for 30-second smoothed pseudorange 

data. Table A.5 shows all the contained data fields. The table can be found as 3.7-9 in 

[1] and 2-27 in [2]. Reference these sources for full details on all data fields. 

Table A.5: Data content of message type 11 [1][2] 

Data Content Bits Range of Values Resolution 

Modified Z-count 14 0 to 1199.9 sec 0.1 sec 

Additional Message Flag 2 0 to 3 1 

Number of measurements (N) 5 0 to 18 1 

Measurement Type 3 0 to 7 1 

Ephemeris Decorrelation Parameter 8 0 to 1.275 ∗ 10−3 m/m 5 ∗ 10−6 m/m 

For N measurement blocks: 

Range Source ID 8 1 to 255 1 

Pseudo-range Correction (𝑃𝑅𝐶30) 16 ±327.67 m 0.01 m 

Range Rate Correction (𝑅𝑅𝐶30) 16 ±32.767 m/s 0.001 m/s 

𝜎𝑝𝑟_𝑔𝑛𝑑_𝐷  8 0 to 5.08 m 0.02 m 

𝜎𝑝𝑟_𝑔𝑛𝑑_30  8 0 to 5.08 m 0.02 m 

 

     References: 

[1]  EUROCAE, ED-114B MOPS For Global Navigation Satellite Ground Based 

Augmentation System Ground Equipment To Support Category I Operations, 

EUROCAE WG-28, 2018. 

[2]  SC-159 RTCA, Inc., RTCA DO-246E GNSS-Based Precision Approach Local Area 

Augmentation System (LAAS) Signal-in-Space Interface Control Documant (ICD), 

Washington: RTCA, Inc., 2017. 

  



 

Appendix B: DumpVDL2 source code modifications 

This appendix summarises all changes added to the source code of DumpVDL2. The 

changes are sorted by the file in which they apply. 

     dumpvdl2.h 

The definition of the GBAS FIFO location and name of this file has been placed in 

dumpvdl2.h, since it is included in all source files. This allows all files have access to its 

definition: 

#define FIFO "/tmp/gbasfifo" 

  

     dumpvdl.c 

The FIFO has to be enabled at the start of the program. This requires two system library 

files to be included in dumpvdl2.c: 

//For named pipes 

#include <sys/stat.h>  

#include <sys/types.h> 

  

Where after the FIFO is enabled at the start of the main function by the following line, 

where the number 0666 represents the required file permissions to use the FIFO: 

mkfifo(FIFO, 0666); 

  

     decode.c 

The changes made to the decode.c have been tracked in the following table, and full 

source code for the modified file is provided. 

Line Change Effect 

36 - 38 Added Library imports for data export over named pipe (FIFO) 

121 - 127 Commented Function should always return 6 

194 Commented Bits should not be forced to 0 

200 - 205 Commented Sanity check not applicable to GBAS 

207 Modified Subtracted 48 from value 

294 - 307 Added Swap RS-FEC byte order in buffer 

309 - 317 Added Changed bit order in RS-FEC bytes 

334 - 343 Added Pipe out messages over FIFO 

344 Added Bypass further processing 

1. /*  decode.c 

2.  *  dumpvdl2 - a VDL Mode 2 message decoder and protocol analyzer  

3.  *  Copyright (c) 2017-2019 Tomasz Lemiech <szpajder@gmail.com>  

4.  *  

5.  *  Modified for GBAS broadcast demodulation 

6.  *  Changed 2019 Petter Breedveld <petter.breedveld@gmail.com>  

7.  *  

8.  *  This program is free software: you can redistribute it and/or modify  

9.  *  it under the terms of the GNU General Public License as published by  

10.  *  the Free Software Foundation, either version 3 of the License, or  

11.  *  (at your option) any later version.  



 

12.  *  

13.  *  This program is distributed in the hope that it will be useful,  

14.  *  but WITHOUT ANY WARRANTY; without even the implied warranty of  

15.  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the  

16.  *  GNU General Public License for more details.  

17.  *  

18.  *  You should have received a copy of the GNU General Public License  

19.  *  along with this program.  If not, see <http://www.gnu.org/licenses/>.  

20.  */   

21. #define _GNU_SOURCE   

22. #include <stdio.h>   

23. #include <stdint.h>   

24. #include <stdlib.h>   

25. #include <string.h>   

26. #include <limits.h>   

27. #include <unistd.h>   

28. #include <glib.h>   

29. #include "config.h"   

30. #ifdef WITH_STATSD   

31. #include <sys/time.h>   

32. #endif   

33. #include "dumpvdl2.h"   

34. #include "avlc.h"       // avlc_frame_qentry_t, frame_queue   

35.    

36. #include <fcntl.h>   

37. #include <sys/stat.h>    

38. #include <sys/types.h>   

39.    

40. // Reasonable limits for transmission lengths in bits   

41. // This is to avoid blocking the decoder in DEC_DATA for a long time   

42. // in case when the transmission length field in the header gets   

43. // decoded wrongly.   

44. // This applies when header decoded OK without error corrections   

45. #define MAX_FRAME_LENGTH 0x3FFF   

46. // This applies when there were some bits corrected   

47. #define MAX_FRAME_LENGTH_CORRECTED 0x1FFF   

48.    

49. #define LFSR_IV 0x6959u   

50.    

51. static uint32_t const H[HDRFECLEN] = {   

52.     0b0000000011111111111110000,   

53.     0b0011111100001111111101000,   

54.     0b1100011100110000111100100,   

55.     0b1101101101010011001100010,   

56.     0b0110100111100101010100001   

57. };   

58.    

59. static uint32_t const syndtable[1<<HDRFECLEN] = {   

60.     0b0000000000000000000000000,   

61.     0b0000000000000000000000001,   

62.     0b0000000000000000000000010,   

63.     0b0100000000000000000000100,   

64.     0b0000000000000000000000100,   

65.     0b0100000000000000000000010,   

66.     0b1000000000000000000000000,   

67.     0b0100000000000000000000000,   

68.     0b0000000000000000000001000,   

69.     0b0010000000000000000000000,   

70.     0b0001000000000000000000000,   



 

71.     0b0000100000000000000000000,   

72.     0b0000010000000000000000000,   

73.     0b1000100000000000000000000,   

74.     0b0000001000000000000000000,   

75.     0b0000000100000000000000000,   

76.     0b0000000000000000000010000,   

77.     0b0000000010000000000000000,   

78.     0b0100000000100000000000000,   

79.     0b0000000001000000000000000,   

80.     0b0100000001000000000000000,   

81.     0b0000000000100000000000000,   

82.     0b0000000000010000000000000,   

83.     0b1000000010000000000000000,   

84.     0b0000000000001000000000000,   

85.     0b0000000000000100000000000,   

86.     0b0000000000000010000000000,   

87.     0b0000000000000001000000000,   

88.     0b0000000000000000100000000,   

89.     0b0000000000000000010000000,   

90.     0b0000000000000000001000000,   

91.     0b0000000000000000000100000,   

92. };   

93.    

94. static uint32_t const synd_weight[1<<HDRFECLEN] = {   

95.     0, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 2, 1, 1, 2, 1, 1

, 1, 1, 1, 1, 1, 1   

96. };   

97.    

98. uint32_t parity(uint32_t v) {   

99.     uint32_t parity = 0;   

100.     while (v) {   

101.       parity = !parity;   

102.       v = v & (v - 1);   

103.     }   

104.     return parity;   

105. }   

106.    

107. uint32_t decode_header(uint32_t * const r) {   

108.     uint32_t syndrome = 0u, row = 0u;   

109.     int i;   

110.     for(i = 0; i < HDRFECLEN; i++) {   

111.         row = *r & H[i];   

112.         syndrome |= (parity(row)) << (HDRFECLEN - 1 - i);   

113.     }   

114.     debug_print("received: 0x%x syndrome: 0x%x error: 0x%x, decoded: 0x%x\n", 

115.         *r, syndrome, syndtable[syndrome], *r ^ syndtable[syndrome]);   

116.     *r ^= syndtable[syndrome];   

117.     return syndrome;   

118. }   

119.    

120. int get_fec_octetcount(uint32_t len) {   

121.     /*if(len < 3)  

122.         return 0;  

123.     else if(len < 31)  

124.         return 2;  

125.     else if(len < 68)  

126.         return 4;  

127.     else*/   

128.         return 6;   



 

129. }   

130.    

131. static int deinterleave(uint8_t *in, uint32_t len, uint32_t rows, uint32_t co

ls, uint8_t out[][cols], uint32_t fillwidth, uint32_t offset) {   

132.     if(rows == 0 || cols == 0 || fillwidth == 0)   

133.         return -1;   

134.     uint32_t last_row_len = len % fillwidth;   

135.     if(last_row_len == 0) last_row_len = fillwidth;   

136.     if(fillwidth + offset > cols)         // fillwidth or offset too large   

137.         return -2;   

138.     if(len > rows * fillwidth)                   // result won't fit   

139.         return -3;   

140.     if(rows > 1 && len - last_row_len < (rows - 1) * fillwidth)   // not enou

gh data to fill requested width   

141.         return -4;   

142.     if(last_row_len == 0 && len / fillwidth < rows)          // not enough da

ta to fill requested number of rows   

143.         return -5;   

144.     uint32_t row = 0, col = offset;   

145.     last_row_len += offset;   

146.     for(uint32_t i = 0; i < len; i++) {   

147.         if(row == rows - 1 && col >= last_row_len) {   

148.             out[row][col] = 0x00;   

149.             row = 0;   

150.             col++;   

151.         }   

152.         out[row++][col] = in[i];   

153.         if(row == rows) {   

154.             row = 0;   

155.             col++;   

156.         }   

157.     }   

158.     return 0;   

159. }   

160.    

161. static void enqueue_frame(vdl2_channel_t const * const v, int const frame_num

, uint8_t *buf, size_t const len) {   

162.     avlc_frame_qentry_t *qentry = XCALLOC(1, sizeof(avlc_frame_qentry_t));   

163.     qentry->buf = XCALLOC(len, sizeof(uint8_t));   

164.     memcpy(qentry->buf, buf, len);   

165.     qentry->len = len;   

166.     qentry->freq = v->freq;   

167.     qentry->frame_pwr = v->frame_pwr;   

168.     qentry->mag_nf = v->mag_nf;   

169.     qentry->ppm_error = v->ppm_error;   

170.     qentry->burst_timestamp.tv_sec =  v->burst_timestamp.tv_sec;   

171.     qentry->burst_timestamp.tv_usec =  v->burst_timestamp.tv_usec;   

172.     if(extended_header) {   

173.         qentry->datalen_octets = v->datalen_octets;   

174.         qentry->synd_weight = synd_weight[v->syndrome];   

175.         qentry->num_fec_corrections = v->num_fec_corrections;   

176.         qentry->idx = frame_num;   

177.     }   

178.     g_async_queue_push(frame_queue, qentry);   

179. }   

180.    

181. void decode_vdl_frame(vdl2_channel_t *v) {   

182.     switch(v->decoder_state) {   

183.     case DEC_HEADER:   



 

184.         v->lfsr = LFSR_IV;   

185.         bitstream_descramble(v->bs, &v->lfsr);   

186.         uint32_t header;   

187.         if(bitstream_read_word_msbfirst(v->bs, &header, HEADER_LEN) < 0) {   

188.             debug_print("%s", "Could not read header from bitstream\n");   

189.             statsd_increment(v->freq, "decoder.errors.no_header");   

190.             v->decoder_state = DEC_IDLE;   

191.             return;   

192.         }   

193. // force bits of reserved symbol to 0 to improve chances of successful decode

   

194.         //header &= ONES(TRLEN+HDRFECLEN);   

195.         v->syndrome = decode_header(&header);   

196.         if(v->syndrome == 0) {   

197.             statsd_increment(v->freq, "decoder.crc.good");   

198.         }   

199. // sanity check - reserved symbol bits shall still be set to 0   

200. /*      if((header & ONES(TRLEN+HDRFECLEN)) != header) {  

201.             debug_print("%s", "Rejecting decoded header with non-

zero reserved bits\n");  

202.             statsd_increment(v->freq, "decoder.crc.bad");  

203.             v->decoder_state = DEC_IDLE;  

204.             return;  

205.         }*/   

206.         header >>= HDRFECLEN;   

207.         v->datalen = reverse(header & ONES(TRLEN), TRLEN) -48;   

208. // Reject payloads with unreasonably large length (in theory longer frames ar

e allowed but in practice   

209. // it does not happen - usually it means we've locked on something which is n

ot a preamble. It's safer   

210. // to reject it rather than to block the decoder in DEC_DATA state and readin

g garbage for a long time,   

211. // possibly overlooking valid frames.   

212.         if((v->syndrome != 0 && v-

>datalen > MAX_FRAME_LENGTH_CORRECTED) || v->datalen > MAX_FRAME_LENGTH) {   

213.             debug_print("v->datalen=%u v->syndrome=%u - frame rejected\n", v-

>datalen, v->syndrome);   

214.             statsd_increment(v->freq, "decoder.errors.too_long");   

215.             v->decoder_state = DEC_IDLE;   

216.             return;   

217.         }   

218.         v->datalen_octets = v->datalen / 8;   

219.         if(v->datalen % 8 != 0)   

220.             v->datalen_octets++;   

221.         v->num_blocks = v->datalen_octets / RS_K;   

222.         v->fec_octets = v->num_blocks * (RS_N - RS_K);   

223.         v->last_block_len_octets = v->datalen_octets % RS_K;   

224.         if(v->last_block_len_octets != 0)   

225.             v->num_blocks++;   

226.    

227.         v->fec_octets += get_fec_octetcount(v->last_block_len_octets);   

228.    

229.         debug_print("Data length: %u (0x%x) bits (%u octets), num_blocks=%u, 

last_block_len_octets=%u fec_octets=%u\n",   

230.             v->datalen, v->datalen, v->datalen_octets, v->num_blocks, v-

>last_block_len_octets, v->fec_octets);   

231.    

232.         if(v->fec_octets == 0) {   



 

233.             debug_print("%s", "fec_octets is 0 which means the frame is unrea

sonably short\n");   

234.             statsd_increment(v->freq, "decoder.errors.no_fec");   

235.             v->decoder_state = DEC_IDLE;   

236.             return;   

237.         }   

238.         v->requested_bits = 8 * (v->datalen_octets + v->fec_octets);   

239.         v->decoder_state = DEC_DATA;   

240.         return;   

241.     case DEC_DATA:   

242. #ifdef WITH_STATSD   

243.         gettimeofday(&v->tstart, NULL);   

244. #endif   

245.         bitstream_descramble(v->bs, &v->lfsr);   

246.         uint8_t *data = XCALLOC(v->datalen_octets, sizeof(uint8_t));   

247.         uint8_t *fec = XCALLOC(v->fec_octets, sizeof(uint8_t));   

248.         if(bitstream_read_lsbfirst(v->bs, data, v-

>datalen_octets, 8) < 0) {   

249.             debug_print("%s", "Frame data truncated\n");   

250.             statsd_increment(v->freq, "decoder.errors.data_truncated");   

251.             goto cleanup;   

252.         }   

253.         if(bitstream_read_lsbfirst(v->bs, fec, v->fec_octets, 8) < 0) {   

254.             debug_print("%s", "FEC data truncated\n");   

255.             statsd_increment(v->freq, "decoder.errors.fec_truncated");   

256.             goto cleanup;   

257.         }   

258.         debug_print_buf_hex(data, v->datalen_octets, "%s", "Data:\n");   

259.         debug_print_buf_hex(fec, v->fec_octets, "%s", "FEC:\n") ;   

260.         {   

261.             uint8_t rs_tab[v->num_blocks][RS_N];   

262.             memset(rs_tab, 0, sizeof(uint8_t[v->num_blocks][RS_N]));   

263.             int ret;   

264.             if((ret = deinterleave(data, v->datalen_octets, v-

>num_blocks, RS_N, rs_tab, RS_K, 0)) < 0) {   

265.                 debug_print("Deinterleaver failed with error %d\n", ret);   

266.                 statsd_increment(v-

>freq, "decoder.errors.deinterleave_data");   

267.                 goto cleanup;   

268.             }   

269.    

270. // if last block is < 3 bytes long, no FEC is done on it, so we should not wr

ite FEC bytes into the last row   

271.             uint32_t fec_rows = v->num_blocks;   

272.             if(get_fec_octetcount(v->last_block_len_octets) == 0)   

273.                 fec_rows--;   

274.    

275.             if((ret = deinterleave(fec, v-

>fec_octets, fec_rows, RS_N, rs_tab, RS_N - RS_K, RS_K)) < 0) {   

276.                 debug_print("Deinterleaver failed with error %d\n", ret);   

277.                 statsd_increment(v-

>freq, "decoder.errors.deinterleave_fec");   

278.                 goto cleanup;   

279.             }   

280. #ifdef DEBUG   

281.             debug_print("%s", "Deinterleaved blocks:\n");   

282.             for(uint32_t r = 0; r < v->num_blocks; r++) {   

283.                 debug_print_buf_hex(rs_tab[r], RS_N, "Block %d:\n", r);   

284.             }   



 

285. #endif   

286.             bitstream_reset(v->bs);   

287.             for(uint32_t r = 0; r < v->num_blocks; r++) {   

288.                 statsd_increment(v->freq, "decoder.blocks.processed");   

289.                 int num_fec_octets = RS_N - RS_K;   // full block   

290.                 if(r == v->num_blocks - 1) {     // final, partial block   

291.                     num_fec_octets = get_fec_octetcount(v-

>last_block_len_octets);   

292.                 }   

293.    

294. //--------------Swap byte endiannes    

295.                 uint8_t tmp;   

296.                 tmp = rs_tab[r][RS_N-6];   

297.                 rs_tab[r][RS_N-6] = rs_tab[r][RS_N-1];   

298.                 rs_tab[r][RS_N-1] = tmp;   

299.    

300.                 tmp = rs_tab[r][RS_N-5];   

301.                 rs_tab[r][RS_N-5] = rs_tab[r][RS_N-2];   

302.                 rs_tab[r][RS_N-2] = tmp;   

303.    

304.                 tmp = rs_tab[r][RS_N-4];   

305.                 rs_tab[r][RS_N-4] = rs_tab[r][RS_N-3];   

306.                 rs_tab[r][RS_N-3] = tmp;   

307. //--------------   

308.    

309. //--------------Swap bit endianess   

310.                 for(int i = RS_N-6; i<RS_N; i++){   

311.                     tmp = rs_tab[r][i];   

312.                     tmp = (tmp >> 4) & 0x0F | (tmp & 0x0F) << 4;   

313.                     tmp = (tmp >> 2) & 0x33 | (tmp & 0x33) << 2;   

314.                     tmp = (tmp >> 1) & 0x55 | (tmp & 0x55) << 1;   

315.                     rs_tab[r][i] = tmp;   

316.                 }   

317. //--------------   

318.                    

319.                 ret = rs_verify((uint8_t *)&rs_tab[r], num_fec_octets);   

320.                 debug_print("Block %d FEC: %d\n", r, ret);   

321.                 if(ret < 0) {   

322.                     debug_print("%s", "FEC check failed\n");   

323.                     statsd_increment(v->freq, "decoder.errors.fec_bad");   

324.                     goto cleanup;   

325.                 } else {   

326.                     statsd_increment(v->freq, "decoder.blocks.fec_ok");   

327.                     if(ret > 0) {   

328.                         debug_print_buf_hex(rs_tab[r], RS_N, "Corrected block

 %d:\n", r);   

329. // count corrected octets, excluding intended erasures   

330.                         v-

>num_fec_corrections += ret - (RS_N - RS_K - num_fec_octets);   

331.                     }   

332.                 }   

333.                    

334. //--------------GBAS data pipe out   

335.                 int gbaspipe;   

336.                 //write(gbaspipe, rs_tab[r], rs_tab[r][5]);   

337.                 int offset = 0;   

338.                 while(rs_tab[r][offset] == 0xaa){   

339.                     gbaspipe = open(FIFO, O_WRONLY);   



 

340.                     write(gbaspipe, &rs_tab[r][offset], rs_tab[r][offset+5]);

   

341.                     offset = rs_tab[r][offset+5];   

342.                     close(gbaspipe);   

343.                 }   

344.                 goto cleanup; //Short-circuit   

345. //--------------   

346.                    

347.                 if(r != v->num_blocks - 1)   

348.                     ret = bitstream_append_lsbfirst(v-

>bs, (uint8_t *)&rs_tab[r], RS_K, 8);   

349.                 else   

350.                     ret = bitstream_append_lsbfirst(v-

>bs, (uint8_t *)&rs_tab[r], v->last_block_len_octets, 8);   

351.                 if(ret < 0) {   

352.                     debug_print("%s", "bitstream_append_lsbfirst failed\n"); 

  

353.                     statsd_increment(v->freq, "decoder.errors.bitstream");   

354.                     goto cleanup;   

355.                 }   

356.             }   

357.         }   

358. // bitstream_append_lsbfirst() reads whole bytes, but datalen usually isn't a

 multiple of 8 due to bit stuffing.   

359. // So we need to truncate the padding bits from the end of the bit stream.   

360.         if(v->datalen < v->bs->end - v->bs->start) {   

361.             debug_print("Cut last %u bits from bitstream, bs-

>end was %u now is %u\n",   

362.                 v->bs->end - v->bs->start - v->datalen, v->bs->end, v-

>datalen);   

363.             v->bs->end = v->datalen;   

364.         }   

365.         int ret;   

366.         int frame_cnt = 0;   

367.         while((ret = bitstream_copy_next_frame(v->bs, v->frame_bs)) >= 0) {   

368.             if((v->frame_bs->end - v->frame_bs->start) % 8 != 0) {   

369.                 debug_print("Frame %d: Bit stream error: does not end on a by

te boundary\n", frame_cnt);   

370.                 statsd_increment(v-

>freq, "decoder.errors.truncated_octets");   

371.                 goto cleanup;   

372.             }   

373.             debug_print("Frame %d: Stream OK after unstuffing, length is %u o

ctets\n",   

374.                 frame_cnt, (v->frame_bs->end - v->frame_bs->start) / 8);   

375.             uint32_t frame_len_octets = (v->frame_bs->end - v->frame_bs-

>start) / 8;   

376.             memset(data, 0, frame_len_octets * sizeof(uint8_t));   

377.             if(bitstream_read_lsbfirst(v-

>frame_bs, data, frame_len_octets, 8) < 0) {   

378.                 debug_print("Frame %d: bitstream_read_lsbfirst failed\n", fra

me_cnt);   

379.                 statsd_increment(v->freq, "decoder.errors.bitstream");   

380.                 goto cleanup;   

381.             }   

382.             statsd_increment(v->freq, "decoder.msg.good");   

383.             enqueue_frame(v, frame_cnt, data, frame_len_octets);   

384.             frame_cnt++;   

385.             if(ret == 0) break; // this was the last frame in this burst   



 

386.         }   

387.         if(ret < 0) {   

388.             statsd_increment(v->freq, "decoder.errors.unstuff");   

389.             goto cleanup;   

390.         }   

391.         statsd_timing_delta(v->freq, "decoder.msg.processing_time", &v-

>tstart);   

392. cleanup:   

393.         XFREE(data);   

394.         XFREE(fec);   

395.         v->decoder_state = DEC_IDLE;   

396.         debug_print("%s", "DEC_IDLE\n");   

397.         return;   

398.     case DEC_IDLE:   

399.         return;   

400.     }   

401. }   

  



 

Appendix C: Python modules for GBAS decoding and use 

 

     GBAS FIFO reading 

This python module handles the collection of GBAS messages from the FIFO buffer, as 

well as some initial decoding. CRC32 is verified and the GBAS station name is checked 

against a whitelist. The module is based on the threading class, so that the fetching and 

decoding of data is performed in a separate thread. The most recent values received of 

each kind are stored in the module, so that they may be used for corrections. 

from crc32 import checkcrcGBAS as checkcrc 

import InternationalAlphabet as ia 

import os 

import errno 

import threading 

import numpy as np 

 

class gbas(threading.Thread): 

    def __init__(self, fifoname): 

        super().__init__() 

        self.dorun = True 

        self.FIFO = fifoname #self.FIFO = '/tmp/gbasfifo' 

        try: 

            os.mkfifo(self.FIFO) 

        except OSError as oe: 

            if oe.errno != errno.EEXIST: 

                raise 

         

        self.gbas_stations = ["ENGM"] 

        self.gbas_messages = [1,2,4,11] 

         

        #Message 1 

        self.prc_100 = np.full(256,np.NaN) 

        self.rrc_100 = np.full(256,np.NaN) 

        self.zcount_100 = np.NaN 

         

        #Message 2 

        self.N_R = np.NaN 

        self.h_0 = np.NaN 

        self.station_height = np.NaN 

         

        #Message 4 

         

         

        #Message 11 

        self.prc_30 = np.full(256,np.NaN) 

        self.rrc_30 = np.full(256,np.NaN) 

        self.zcount_30 = np.NaN 

 

           

    def __enter__(self): 

        self.start() 

        return self 

     

    def __exit__(self, *args): 

        self.dorun = False 

     

    def run(self):               

        while self.dorun: 



 

             

            #Open FIFO 

            with open(self.FIFO, "rb") as fifo: 

                while True: 

                    data = fifo.read() 

                    if len(data) == 0: 

                        #EOF 

                        break 

                    self.parse(data) 

                     

 

    def parse(self, rawmsg): 

         

        if not checkcrc(rawmsg): 

            return -1, "CRC failed" 

        station_name = ia.gbasid(message[1:4]) 

        if self.gbas_stations and station_name not in 

self.gbas_stations: 

            return -1, "Unknown station", station_name 

        msg_type = message[4] 

        if msg_type not in self.gbas_messages: 

            return -1, "Unknown message", msg_type 

         

        if msg_type == 1: 

            #self.zcount_100 =  

            N = rawmsg[8] & 0x1F 

            for i in range(N): 

                #Collect PRC and RRC from each message block 

                pass 

         

         

        if msg_type == 2: 

            self.N_R = (rawmsg[10] * 3) + 16 

            self.h_0 = rawmsg[11] * 100 

            self.station_height = (rawmsg[23]<<16 + rawmsg[22]<<8 + 

rawmsg[21])*0.01 

 

        if msg_type == 4: 

            pass 

 

        if msg_type == 11: 

            #self.zcount_30 =  

            N = rawmsg[8] & 0x1F 

            for i in range(N): 

                #Collect PRC_30 and RRC_30 from each message block 

                pass 

 

  



 

     International Alphabet 5 

The GBAS station name is encoded as four 6-bit characters from the international 

alphabet nr.5, placed in 3 bytes. The function gbasid takes in the 3-byte array and 

returns the decoded station name as a string. 

Waypoint names from the MT4 use 5-bit characters. Via the function waypointname, 

these can also be decoded. 

IA5 = { 

       0x00: '', #empty, not used for GBAS message field 

       0x01: 'A', 

       0x02: 'B', 

       0x03: 'C', 

       0x04: 'D', 

       0x05: 'E', 

       0x06: 'F', 

       0x07: 'G', 

       0x08: 'H', 

       0x09: 'I', #not used for Route Indicatior field 

       0x0a: 'J', 

       0x0b: 'K', 

       0x0c: 'L', 

       0x0d: 'M', 

       0x0e: 'N', 

       0x0f: 'O', #not used for Route Indicatior field 

       0x10: 'P', 

       0x11: 'Q', 

       0x12: 'R', 

       0x13: 'S', 

       0x14: 'T', 

       0x15: 'U', 

       0x16: 'V', 

       0x17: 'W', 

       0x18: 'X', 

       0x19: 'Y', 

       0x1a: 'Z', 

       #not used for GBAS message field 

       0x20: ' ', #space 

       #not used for GBAS message field 

       0x30: '0', #not used for Route Indicatior field 

       0x31: '1', #not used for Route Indicatior field 

       0x32: '2', #not used for Route Indicatior field 

       0x33: '3', #not used for Route Indicatior field 

       0x34: '4', #not used for Route Indicatior field 

       0x35: '5', #not used for Route Indicatior field 

       0x36: '6', #not used for Route Indicatior field 

       0x37: '7', #not used for Route Indicatior field 

       0x38: '8', #not used for Route Indicatior field 

       0x39: '9', #not used for Route Indicatior field 

       #not used for GBAS message field 

       } 

 

 

def gbasid(barr): 

    b = 0 

    gid = '' #GBAS ID 

    for i in range(3): 

        b = b | (barr[i]<<i*8) 

    for i in range(4): 

        try: 



 

            gid = IA5[(b >> i*6)& 0x3f] + gid 

        except KeyError: 

            pass 

    return gid 

         

       

def waypointname(barr): 

    b = 0 

    wpn = '' #waypoint name 

    for i in range(4): 

        b = (b << 8) | barr[i]  

    b = (b >> 2) & 0x3fffffff #Tim to 30 bit  

    for i in range(6): 

        try: 

            wpn = IA5[(b >> i*5)& 0x1f] + wpn 

        except KeyError: 

            pass 

    return wpn 
 

 

     Smoothing filter 

The carrier phase smoothing filter is created by supplying filter length in seconds, and 

sample frequency in hertz: 

filter100 = npSmoothingFilter(100, 4) 

filter30  = npSmoothingFilter(30,  4) 

 
filteredpsr100 = filter100.propagateFilter(psr, phi, rst) 

filteredpsr30  = filter30.propagateFilter(psr, phi, rst) 

The filters are propagated each sample by supplying Numpy arrays for pseudorange, 

phase and whether the filter must be reset (this allows the filters to be reset externally if 

an error is detected). The function call returns the current filtered values and whether 

the filters have reached steady state. 

import numpy as np 

 

class npSmoothingFilter: 

    def __init__(self, filterlenght, samplefreq): 

         

        self.alpha = 1/(filterlenght * samplefreq) 

        self.wavelen = 299792458 / 1575420000 #c / F_L1 =~ 0.190m 

         

        self.p = np.full(32,np.NaN) 

        self.prev_phi = np.full(32,np.NaN) 

        self.samplecount = np.full(32,0) 

 

    def propagateFilter(self, psr, phi, rst): 

         

        self.p[rst>0] = np.NaN #Reset filter if rst is set 

        self.samplecount[rst>0] = 0 

         

        p_proj = self.p + self.wavelen * (phi - self.prev_phi)  

        np.nan_to_num(p_proj,False) #Replace NaN with 0 

         



 

        alpha_weight = np.isnan(self.p).astype(float) #New sats 

weighted 1 

        alpha_weight[alpha_weight == 0] = self.alpha #Existing sats 

weighted alpha 

         

        self.p = alpha_weight * psr + (1-alpha_weight) * p_proj 

        self.prev_phi = phi 

         

        sample_mask = np.isfinite(psr).astype(int) 

        self.samplecount = (self.samplecount * sample_mask) + 

sample_mask 

         

        #Returns filtered pseudoranged and if filter is in steady 

state 

        return self.p, self.samplecount > 1/self.alpha 

 

 

     UBlox driver 

In order to test the smoothing filter, a simple serial driver for the u-blox GPS was 

needed. The implementation shown here is based on the threading class, such that the 

serial port is read by its own dedicated thread. A queue object is used to output received 

raw messages to a decoder application. The module can be used with the with keyword: 

with ublox.ublox(gpsqueue,"COM25",57600) as gps: 

 

This is the recommended use of the module, as it makes sure the serial port is correctly 

closed before the program ends. 

import serial 

import threading 

import struct 

import time 

 

class ublox(threading.Thread): 

    def __init__(self, queue, portname, baud): 

        super().__init__() 

         

        self.sync = b'\xb5\x62' 

        self.queue = queue #the received data is put in a queue 

        self.buffer = bytearray() 

        self.state = 0 #0=search for sync, 1=collect header, 2= 

collect data+crc 

        self.lenght = 0 

         

         

        self.dorun = True 

        self.ser = serial.Serial(port = portname, baudrate=baud) 

        #time.sleep(0.1) #Serial returns before port is fully started 

     

    def __enter__(self): 

        self.start() 

        return self 

     

    def __exit__(self, *args): 

        self.stop() 

     



 

    def run(self):               

        while self.dorun: 

            self.buffer += self.ser.read(self.ser.inWaiting() or 1) 

#read all char in buffer 

             

            if self.state == 0 and self.sync in self.buffer:  

                self.state = 1 

                self.buffer = 

self.buffer[self.buffer.find(self.sync):] #Discard up to sync 

                 

            if self.state == 1 and len(self.buffer)>=6: #Entire 

header collected 

                self.state = 2 

                payloadlenght = struct.unpack_from('<H', self.buffer, 

4)[0] 

                self.lenght = payloadlenght + 6 + 2 #header + 

checkdum 

                 

            if self.state == 2 and len(self.buffer)>=self.lenght: 

#Entire message collected 

                self.state = 0 

                msg, self.buffer = self.buffer[:self.lenght], 

self.buffer[self.lenght:] 

 

                if(self.checksum(msg[2:-2]) == msg[-2:]): #Checksum 

OK 

                    self.queue.put(msg[2:-2]) 

                else: 

                    pass #Message discarded 

     

    def stop(self): 

        self.dorun = False 

        time.sleep(0.1) 

        self.ser.close() 

        super().join()     

     

    def checksum(self, buffer): #buffer containing all bytes over 

which checksum is calculated 

        ck_a = 0 

        ck_b = 0 

        for b in buffer: 

            ck_a = (ck_a + b) & 0xff 

            ck_b = (ck_b + ck_a) & 0xff     

        return bytearray([ck_a, ck_b]) 

    

     

    def send(self, data): 

        self.ser.write(self.sync + data + self.checksum(data)) 
 

  



 

Appendix D: Schematics and design files for BeagleBone RS232 
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