
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lt

y
of

 In
fo

rm
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ri
ca

l
En

gi
ne

er
in

g
D

ep
ar

tm
en

t o
f E

ng
in

ee
ri

ng
 C

yb
er

ne
tic

s

M
as

te
r’

s
th

es
is

Petter Diderik Breedveld

Concept for Landing Unmanned
Aerial Vehicles using a Ground Based
Augmentation System

Master’s thesis in Cybernetics and Robotics
Supervisor: Vendela Paxal and Nadezda Sokolova

June 2019

Petter Diderik Breedveld

Concept for Landing Unmanned Aerial
Vehicles using a Ground Based
Augmentation System

Master’s thesis in Cybernetics and Robotics
Supervisor: Vendela Paxal and Nadezda Sokolova
June 2019

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Engineering Cybernetics

v

Abstract
This thesis, Concept for Landing Unmanned Aerial Vehicles using a Ground Based

Augmentation System, focuses on the possibilities of autonomous landing of commercial

Unmanned Aerial Vehicles (UAVs) by integrating the existing Ground Based

Augmentation System (GBAS) with UAV avionics.

Potential ways of integrating GBAS and avionics signals were developed and resulted in a

concept which was used to design the neccesary hardware and software for a prototype

application. The system was test fitted in an existing UAV system at Andøya Space

Center (ASC).

The study resulted in a system that could be integrated neatly with existing avionics,

without significant modification of the existing UAV hardware and requiring only minimal

modification of the airframe.

Opensource software was succesfully modified for the reception of GBAS signals. The

contained data in the broadcast are made available for correcting the GPS pseudoranges.

GPS pseudoranges are smoothed using the carrier phase, so that corrections can be

applied. This results in augmented position data. The consequences of pseudrange jumps

were assessed, and mitigation methods were proposed.

Two different hardware prototypes were developed based on single-board computers and

tested. Only the Raspberry Pi based system was able to handle the radio samples and

communicate with the UAV avionics at ASC.

GBAS implementation will improve autonomous landing capabilities of UAVs, independent

of airfield and weather conditions. This will extend the capabilities of unmanned

operations in the future.

vi

Sammendrag
Denne oppgaven, Concept for Landing Unmanned Aerial Vehicles using a Ground Based

Augmentation System, fokuserer på mulighetene for autonom landing av kommersielle

ubemannede luftfartøy (UAV) ved å integrere det eksisterende Ground Based

Augmentation Systemet (GBAS) med UAV avionikk.

Ulike måter å integrere GBAS og avionikk signaler ble utviklet, og resulterte i et konsept

som ble brukt til å designe den nødvendig maskin- og programvaren for en prototype.

Systemet ble test-montert i en eksisterende UAV ved Andøya Space Center (ASC).

Studien resulterte i et system som enkelt kunne integreres med eksisterende avionikk,

uten signifikant modifikasjon av eksisterende UAV-maskinvare, og som bare krever

minimal modifikasjon av flyet.

Et program med åpen kildekode ble modifisert for mottak av GBAS-signaler.

Datainnholdet i kringkastingen blir gjort tilgjengelig for å korrigere GPS-pseudorange

målingene.

GPS-pseudorangene blir utjevnet ved hjelp av bærebølgen, slik at GBAS korreksjonene

kan brukes. Dette resulterer i forbedret posisjonsberegning. Konsekvensene av hopp i

pseudorange målingen ble vurdert, og metoder ble foreslått for å minimere effekten.

To forskjellige maskinvare prototyper ble utviklet basert på ettkortsdatamaskiner og

testet. Bare det Raspberry Pi baserte systemet klarte å håndtere radiodekodingen og

kommunisere med UAV-avionikken ved ASC.

GBAS-implementering vil forbedre autonome landingsegenskaper for UAV, uavhengig av

flyplass og værforhold. Dette vil utvide mulighetene for ubemannede operasjoner i

fremtiden.

vii

Preface
This thesis work forms the final part of my Master of Technology studies in Cybernetics

and Robotics at the Department of Engineering Cybernetics at the Norwegian University

of Science and Technology (NTNU).

This study has been performed as a collaboration between Indra Navia, Andøya Space

Center (ASC) and NTNU.

I would like to specially thank my supervisors, Vendela Paxal (Indra Navia) and Nadia

Sokolova (NTNU) for taking interest in my work and providing good advice and

continuous support along the way.

Jostein Sveen at ASC took time out of his busy schedule to host me during my visit at

ASC, and was always willing to answer any of my questions regarding their UAV systems.

This work is based on my previous project assignment [1] as well as a number of GBAS

related standards [2] [3] [4] supplied by Indra Navia. The UAV documentation [5] [6] [7]

[8] [9] [10] and UAV hardware for testing have been supplied by ASC. The GBAS

demodulation software developed as part of this project is strongly based on open source

code by Lemiech [11].

Indra Navia was so kind to offer me office space at their facilities at Asker, which allowed

me to be part of Vendela’s team. This made for a great learning environment and I would

like to thank Morten Topland, Thomas Jøndal and Asgaut Eng for their technical insight

and interesting discussions.

Being introduced to the world of aviation standards was quite a discovery, and made me

aware of the many requirements that have to be fulfilled before a system can be

approved for full-scale operation.

The last 6 months have been an intensive learning period, within a field that has been

one of my great interests for a long time. I have thoroughly enjoyed the opportunity

given to me by Indra and NTNU to experience this adventure.

Petter D. Breedveld

Asker, May 2019

viii

ix

Table of Contents
List of Figures .. xi

List of Tables ... xii

List of Abbreviations .. xiii

1 Introduction .. 1

1.1 Motivation .. 1

1.2 Objectives .. 2

2 Background ... 3

2.1 GPS ... 3

2.2 Differential Processing ... 5

2.3 UAV ... 5

2.4 Landing procedures at ASC ... 6

2.5 Limitations of the existing system ... 8

3 GBAS ... 9

3.1 Signal Broadcast ..10

3.1.1 D8PSK modulation ...11

3.1.2 The data burst ...12

3.1.3 The GBAS message ..13

3.2 UAV application ..14

3.3 System design ...15

4 Avionics Software ...16

4.1 The AP–GPS interface ...16

4.1.1 Error detection ...16

4.1.2 Autopilot initialisation ...17

4.1.3 GBAS-required data ..18

4.2 Demodulating the GBAS broadcast ...19

4.2.1 VHF Data Link Mode 2...20

4.2.2 DumpVDL2 ..22

4.3 Decoding the GBAS broadcast ..24

4.3.1 CRC32 redundancy check ..24

4.3.2 Processing datafields ..25

4.4 GPS calculations ...25

4.4.1 Pseudorange correction ...25

4.4.2 Smoothing filter ...26

4.4.3 Position solution calculation ...29

5 Avionics Hardware ..31

x

5.1 Hardware interfaces..31

5.1.1 Serial port ...31

5.1.2 UART ..33

5.1.3 USB ..33

5.1.4 CAN bus ..33

5.2 BeagleBone based system ...34

5.2.1 BeagleBone design ...34

5.2.2 BeagleBone evaluation ..36

5.3 Raspberry Pi based system ..36

5.3.1 Raspberry Pi design ..37

5.3.2 Raspberry Pi evaluation ..38

6 UAV Implementation ...40

6.1 Avionics bay ..40

6.2 Payload bay ...42

6.3 Antenna Placement ...42

6.3.1 Current antennae ...43

6.3.2 GBAS VHF antenna mounting...43

6.4 Interface verification ...44

7 Results and Discussion ..46

7.1 GBAS demodulation and decoding software ...46

7.2 Correcting raw GPS data ...46

7.3 Reception of GBAS using off-the-shelf components47

7.4 Installation of GBAS module in existing UAV systems47

7.5 Selection of hardware ...48

7.6 “DumpGBAS” ...48

7.7 Potential implications of GBAS navigation in UAVs ..49

8 Conclusion ...50

References ..51

Appendices ..54

Appendix A: GBAS message content by type number ...55

Appendix B: DumpVDL2 source code modifications ..58

Appendix C: Python modules for GBAS decoding and use ..67

Appendix D: Schematics and design files for BeagleBone RS232 cape73

xi

List of Figures
Figure 2.1: Modular system overview of a GBAS equipped UAV near a GBAS ground

station [1] .. 3

Figure 2.2: Illustration of the GPS satellite orbits [12] .. 4

Figure 2.3: ASCs Cruiser 2 UAV in flight (photo by ASC) ... 6

Figure 2.4: Steps of a UAV landing operation at ASC and the decision window where the

autopilot will have to take the final landing decision. .. 7

Figure 3.1: Illustration showing the vertical and lateral alarm limits, and an aircraft that

is exceeding the vertical protection level as indicated by the white rectangle (from

presentation by Indra Navia) .. 9

Figure 3.2: 3D view of the GBAS service volume for an airfield supporting auto-land and

guided take-off [2]. The grey rectangle represents the runway10

Figure 3.3: Oslo airport’s (OSL) GBAS broadcast at 113.050MHz, showing the 2Hz frame

frequency. The signal is observed from the author’s kitchen, approximately 23km from

the OSL runway. The broadcast is captured using an RTL-SDR with a dipole antenna and

visualized in SDRsharp ..10

Figure 3.4: Visualization of how GBAS frames, slots and data bursts relate to each other.

The three main parts of the data burst are also shown [2] ...11

Figure 3.5: D8PSK phase shift mapping on a unit circle relative to (1,0)12

Figure 3.6: The pseudo-noise scrambler/descrambler shift register, showing its initial

state. Descrambling can be done the same way due to the symmetry of the XOR function

[2]..13

Figure 3.7: UAV avionics data flow for GBAS corrections during normal operation

(modified from [1]) ..14

Figure 3.8: Detailed block module of the internal and external interfaces of the GBAS

module (modified from [1]) ...15

Figure 4.1: GPS response on the command “log loglist once”. Every line is a log, on the

form [port] [name] [trigger] [period] [offset]. “Nohold” means the log will be removed

by an “unlogall” command. ..18

Figure 4.2: Possible failsafe mechanism for the GPS to autopilot interface19

Figure 4.3: Block diagram of a D8PSK receiver based on an SDR (modified from [4]) ...20

Figure 4.4: Down conversion and analog-digital conversion of an RF signal into discrete

in-phase and quadrature values (modified from [1]) ...20

Figure 4.5: VHF Data Link Mode 2 data burst [17] ..21

Figure 4.6: The corrections that are applied to the pseudoranges, visualized as flowchart

(modified from [4]) ..26

Figure 4.7: Difference between the received pseudorange and the 100 second smoothed

pseudorange for a single satellite. Y-axis in meters, X-axis in samples at 4Hz28

Figure 4.8: Log of pseudorange and filtered pseudorange, showing a 1ms clock jump ...28

Figure 4.9: Error between the received pseudorange and the 30 and 100 second filtered

pseudorange after a 1ms clock jump. Y-axis in meters, X-axis in samples at 4Hz29

Figure 5.1: The RTL-SDR V.3, an inexpensive, easily available and much used SDR that is

well suited for GBAS reception (photo rtl-sdr.com) ...31

Figure 5.2: Oscilloscope trace of a binary message sent from the GPS receiver over the

serial port. The signal switches between ±5V, and the live decoding of the data is shown.

 ..32

Figure 5.3: The BeagleBone Black rev. C single board computer, with the custom circuit

board for serial ports and CAN bus attached. ...34

xii

Figure 5.4: Top down view of the serial and CAN circuit board35

Figure 5.5: The Raspberry Pi 3 Model B+ single board computer, with the serial port

modules as well as the SDR. ..36

Figure 5.6: Top-down view of the assembled RPi system ...38

Figure 5.7: The RPi based system powered up and communicating with the GPS and

autopilot in the UAV ..39

Figure 6.1: Illustration of the different compartments in the Cruiser 2 UAV40

Figure 6.2: View of the Cruiser 2 avionics bay, as seen from the front with the fuel tank

removed, clearly showing the GPS receiver (A), autopilot (B), battery compartment (C)

and vibration dampeners (D) ...41

Figure 6.3: The Cruiser 2 payload bay. Raspberry Pi GBAS module on the workbench

demonstrates the amount of space available ..42

Figure 6.4: The GPS antenna (A) and Iridium antenna (B) that are mounted on the

center part of the main wing ..43

Figure 6.5: VHF antenna mounted on top of the main wing ..44

Figure 6.6: VHF antenna mounted on top of the tail wing ..44

Figure 6.7: Avionics compartment with center-part of wing placed outside in the parking

lot at ASC, collecting GPS data. ..45

List of Tables
Table 2.1: RPAS Operator categories summarized ... 5

Table 3.1: The GBAS data burst fields. The double line marks the start of scrambled data

 ..12

Table 3.2: The main GBAS message types. Additional special messages have not been

considered here..14

Table 3.3: Data fields in a GBAS message ...14

Table 4.1: Comparison of the GBAS and VDLM2 data burst header fields21

Table 4.2: VDLM2 data length and the resulting number of FEC bytes appended22

Table 5.1: Pins of interest for serial communication on the GPS male D-sub 9 connector

 ..33

Table 5.2: Voltage levels for RS232 and UART communication33

xiii

List of Abbreviations
ADC Analog-Digital Converter

AP Autopilot

ASC Andøya Space Center

BBB BeagleBone Black

BLOS Beyond Line of Sight

BRLOS Beyond Radio Line of Sight

BVLOS Beyond Visual Line of Sight

CAN Control Area Network

CPU Central Processing Unit

CRC Cyclic Redundancy Check

D8PSK Differential 8-Phase Shift Keying

DGPS Differential GPS

DPSK Differential Phase Shift Keying

eMMC Embedded MultiMediaCard

ESD Electro-static Discharge

EVLOS Extended Visual Line of Sight

FAS Final Approach Segment

FEC Forward Error Correction

FIFO First In, First Out

GBAS Ground Based Augmentation System

GNSS Global Navigation Satellite System

GPIO General Purpose Input / Output

GPS Global Positioning System

IA5 International Alphabet nr.5

ILS Instrument Landing System

IPC Inter Process Communication

LAAS Local Area Augmentation System

LAL Lateral Alarm Limit

LPL Lateral Protection Level

LSB Least Significant Bit

MSB Most Significant Bit

MT# Message Type

MTOM Max Take Off Mass

NTNU The Norwegian University of Science and Technology

PRC Pseudo Range Correction

PRN Pseudo Random Number

PSK Phase Shift Keying

PVT Position, Velocity, Time

RF Radio Frequency

RO RPAS Operator

RPAS Remotely Piloted Aircraft Systems

RPi Raspberry Pi

RRC Range Rate Correction

RS Reed-Solomon

RS-FEC Reed-Solomon Forward Error Correction

RTK Real-time Kinematic

RX Receiver

xiv

SBC Single Board Computer

SCAT Special Category

SD Secure Digital

SDR Software Defined Radio

SSH Secure Shell

SSID Service Set Identifier

TDMA Time Divided Multiple Access

TX Transmitter

UART Universal Asynchronous Receiver-Transmitter

UAS Unmanned Aerial Systems

UAV Unmanned Aerial Vehicle

UHF Ultra High Frequency

USB Universal Serial Bus

VAL Vertical Alarm Limit

VDL VHF Data Link

VDLM2 VHF Data Link Mode 2

VHF Very High Frequency

VLOS Visual Line of Sight

VPL Vertical Protection Level

1

This thesis focuses on the possibilities of autonomous landing of commercial Unmanned

Aerial Vehicles (UAVs) by integrating the existing Ground Based Augmentation System

(GBAS) with UAV avionics.

This was the topic of a preliminary project assignment [1] that studied potential ways of

integrating GBAS and avionics signals and the neccesary system design.

This thesis has further developed the concept and attempted to design the neccesary

hardware and software for a prototype application.

1.1 Motivation

Multiple companies have and are currently developing GBAS aircraft hardware (avionics).

At present, these systems are only intended for use in manned aircraft and require a

pilot to operate. The goal here is therefore to develop a prototype of a GBAS capable

navigation platform that would be suitable for use on board a UAV. This introduces

multiple technical challenges, as a UAV imposes significant constraints on both cost,

weight and size of such a platform. Furthermore, the safety requirements for UAV

operations are entirely different from those for manned aircraft. While the safety is a

natural aspect to be considered, the focus here will be on the technical challenges in such

a prototype.

Andøya Space Centre

Andøya Space Centre (ASC) is focusing heavily on the development and operation of

drones and unmanned aircraft for a variety of applications. They have already run

operations for customers like the Andøya Test Centre and power delivery companies. One

of the bases for their UAVs is Andøya Air Station (Andøya Flystasjon), and ASC is looking

to expand its activities there to allow an even wider selection of UAV test and mission

services.

As Andøya Air Station is in close proximity to inhabited areas and does suffer from

weather related challenges, one of which is the aurora that can interfere with Global

Navigation Satellite Systems (GNSS). It would be an advantage to improve the

positioning accuracy and provide integrity support during landing operations. ASC would

benefit from both safety and greater availability of their services independent of weather

conditions. This is especially critical for operations involving larger UAVs.

GBAS would also provide other features of interest, such as allowing remote landing of

UAVs on other GBAS-enabled airfields. This could for instance allow long range flights

such as from Andøya to Svalbard.

Indra Navia

Indra Navia is a global supplier of communication, navigation and tower solutions for the

aviation industry. Landing systems form one of their key areas of expertise, both through

the well-established Instrument Landing System (ILS) and the more recently developed

GPS based Special Category-I (SCAT-I).

1 Introduction

2

The last few years Indra Navia has been developing the ground infrastructure for the

Ground Based Augmentation System (GBAS), which will secure the safe landing of

aircraft even in no-sight conditions. The development and testing of this system is now

completed and after validation, it will become Indra Navias latest product for civil airport

operations.

Indra Navia is looking for ways to expand the use of the GBAS product to UAVs as well,

which represents a new market for the system.

1.2 Objectives

The main objective of this thesis is to develop a system to integrate GBAS and avionics

signals for autonomous landing of UAVs. This has resulted in the following subobjectives:

 Study the system requirments to develop the integration concept

 Inspect the technical details of an existing UAV system at ASC

 Develop the necessary software for GBAS signal reception and decoding based on

an existing demodulator of a similar signal

 Design a prototype of the required avionics hardware using easy to aquire off-the-

shelf components

3

This section provides the main background that is relevant for the discussion and design

of GBAS avionics hardware for UAVs. Figure 2.1 gives an overview of the GBAS system,

the interfaces between the UAV and the surrounding world, as well as the GBAS module

as part of the UAV avionics.

Figure 2.1: Modular system overview of a GBAS equipped UAV near a GBAS ground

station [1]

The GBAS ground station broadcasts information over VHF to the receiver in the UAV,

which samples and demodulates the GBAS VHF broadcast. The contents of broadcast is

used together with pseudorange information from the GPS receiver in order to improve

the calculated position solution used by the UAV autopilot for navigation. In addition,

integrity information is obtained. These data are transferred over the two-way radio link

to the pilot on the ground for his consideration.

An introduction to the concepts of GPS positioning used in this system is provided in

chapter 2.1 and 2.2. The requirements for UAV operations in general and ASCs current

UAV landing procedures are discussed in chapter 2.3 and 2.4. Limitations of this system

are discussed in 2.5.

2.1 GPS

The Global Positioning System (GPS) is one of an increasing number of available Global

Navigation Satellite Systems (GNSS). The constellation consists of 24 satellites, with an

additional three spares for full global coverage (Figure 2.2).

2 Background

4

Figure 2.2: Illustration of the GPS satellite orbits [12]

A satellite’s position can be described by its ephemeris, a number of orbital elements that

allow the satellite’s position to be accurately computed at any time. Each satellite

broadcasts their ephemeris and current time. By measuring the transmission time of the

signal, a receiver can calculate the distance (pseudorange) to each satellite in view.

The satellites have high accuracy atomic clocks on board for timekeeping, but the GPS

receiver does not. The receiver’s clock will drift, influencing all the measured

pseudorange. This is solved by introducing the clock error as a fourth unknown to the

positioning problem. Using the ephemeris and pseudorange measurements of four or

more satellites, an accurate position and time can be determined by trilateration.

The functionality of the GPS satellites, their signals and the receiver algorithms for

tracking and ranging are well documented in both standards [13] and literature [14].

Several error sources interfere with the pseudorange measurement, such that the

observed pseudorange 𝑝 can be more accurately modelled as:

𝑝 = 𝜌 + 𝑑𝜌 + 𝑐(𝑑𝑡 − 𝑑𝑇) + 𝑑𝑖𝑜𝑛 + 𝑑𝑡𝑟𝑜𝑝 + 𝜖𝑚𝑝 + 𝜖𝑝 (2. 1)

That is, the measurement 𝑝 is a function of the true range 𝜌, with added effects from:

 Satellite orbital errors (𝑑𝜌)

 The difference in clock offset for satellite (𝑑𝑡) and receiver (𝑑𝑇) multiplied by the

speed of light constant (𝑐)

 Ionospheric delay (𝑑𝑖𝑜𝑛) and tropospheric delay (𝑑𝑡𝑟𝑜𝑝)

 Multipath delay (𝜖𝑚𝑝)

 Receiver noise (𝜖𝑝)

5

The most significant error source is atmospheric disturbance, but orbital inaccuracy and

clock deviations in the satellite and the receiver can be significant contributing factors as

well [14]. Since the calculation of the pseudorange (𝑝) is based on the speed of light (𝑐),

even small inaccuracies in the measured time (Δ𝑡) will result in large errors according to:

Δ𝑝 = 𝑐 ∗ Δ𝑡 (2. 2)

2.2 Differential Processing

Many of the GPS error sources are slowly varying and spatially correlated over short

baselines [15]. The assumption is made that two receivers in the same area will

experience approximately the same errors. Using differential processing, these errors can

be estimated and corrected.

Differential processing typically takes the form of a stationary reference station, “the

base”, which has an accurately known position. Information from measurements made at

the base are sent to “the rover”, a moving GPS receiver with uncertain position. The

rover combines this information with its own measurements so that the errors common

to both base and rover cancel out.

Both phase-based Real-Time Kinematic GPS, currently in use at ASC (chapter 2.4) and

pseudorange-based GBAS (chapter 3) are examples of such differential GPS processing.

2.3 UAV

Unmanned Aerial Vehicles (UAV) are increasingly becoming a part of airspace activities,

both at a hobby level as well as on a professional scale. Data collection by UAV is more

common than ever before. Applications range from simple photography to research,

surveillance and monitoring both for civil and defence purposes.

The increase in UAV use has required the introduction of regulation to prevent conflicts

and accidents in the airspace. In Norway, UAV operations are sorted into three

categories, depending on the potential for damage in case of failure. The categories and

associated rules for remotely piloted aircraft systems (RPAS) as well as required

permissions are described in [16]. Table 2.1 summarises the basic metrics that can be

used to determine RPAS operator (RO) category for an airframe.

Table 2.1: RPAS Operator categories summarized

Category Max take-off mass Max velocity Max altitude

RO1 2,5 kg 60 knots 120 m

RO2 25 kg 80 knots 120 m

RO3 > 25kg >80 knots or turbine engine >120 m

In addition, the contact between operator and UAV can be classified based on the degree

of visual communication:

 VLOS (Visual Line of Sight): Pilot can observe the UAV with the naked eye.

 EVLOS (Extended Visual Line of Sight): Pilot is in touch with external observers

that have VLOS to the UAV.

 BLOS (Beyond Line of Sight): Neither pilot nor observers have VLOS on the UAV.

6

 BRLOS (Beyond Radio Line of Sight): No direct radio link between pilot and UAV

(Satellite communication, cellular network, radio relays, etc.). Commonly

considered a subcategory of BLOS.

If there is no direct radio link between pilot and UAV, the operation is considered BRLOS

by definition, even if the UAV is physically located in VLOS. As the later categories

introduce additional sources of potential error, each category adds additional

requirements and regulations that have to be adhered to for legal UAV operation [16].

ASCs Cruiser 2 UAV

ASC has a large selection of UAVs, both multi rotor and fixed wing. The work presented

in this thesis uses ASCs Cruiser 2 UAV as a representation of the typical UAV for which

GBAS support could be beneficial. The software and hardware are developed with this

UAV in mind. Figure 2.3 shows a picture of the UAV in flight. With a wingspan of 5.2

meters and a minimum take-off weight of 53 kg [7], this sizeable fixed wing aircraft will

always require RO3 permissions to fly.

This aircraft is controlled with Cloud Cap Technology’s Piccolo 2 autopilot, which is

connected to an external NovAtel OEMV2 GPS receiver. These two avionics modules form

the basis for the GBAS avionics design in this thesis.

Figure 2.3: ASCs Cruiser 2 UAV in flight (photo by ASC)

2.4 Landing procedures at ASC

ASC can land their UAVs both manually and autonomously. To limit the potential of pilot

error, autonomous landing is preferred, using a landing system based around Real Time

Kinematic GPS. This is presently the most widely used UAV landing solution for

commercial UAVs of this size. RTK GPS uses the difference in measured GPS carrier

phase at the UAV and a fixed reference station at a known position to determine the

7

difference in distance to satellites, giving a very accurate relative position. The system in

use at ASC typically achieves an accuracy of ±5cm [5].

The RTK reference station is in ASCs case contained in the UAV ground station, and the

RTK observations are transmitted over the same data link as general pilot commands.

Because the ground station can be moved around between operations, it must first

determine its own location before it can act as a precise reference for an RTK UAV.

This can primarily be done in two ways. The base stations GPS antenna can be placed on

a precisely surveyed location, such that the coordinates can be supplied by the pilot to

the ground station. Alternatively, having the antenna in a fixed position, the location can

be found by averaging the GPS solution found over a period of time. In general, 15 to 30

minutes of GPS data is deemed to provide a satisfactory position fix by ASC, but as much

data as time allows is collected, since it will only improve the fix. A benefit of the second

method is that it works anywhere, and the averaging can be done while other preparative

tasks for UAV launch are being carried out. The drawback is that the UAV navigation

solution can only ever be as accurate as the base station coordinates.

A landing operation with a fixed wing UAV of this size is very similar to the landing of a

conventional manned aircraft. The autopilot uses an entirely model based approach to

control, taking into consideration lift coefficients, weight and remaining fuel when

steering the aircraft. The landing steps described below are visualised in Figure 2.4.

 While approaching to the landing location, the autopilot will reduce speed and

extend the flaps, following an approach path defined by its mission waypoints.

 8 seconds before estimated touchdown, the AP has to decide if it will commit to

the landing attempt and bring the aircraft down. In order to determine if the

conditions are acceptable, the aircraft has to hit a virtual 2x2 meter window in

space. The AP will not attempt to abort the landing beyond this point. Failing to

hit the window causes the AP to abort and go around for a new try.

 4 seconds before estimated touchdown the motor is stopped. This is the point of

no return; the pilot can no longer trigger an abort manually.

 The aircraft will flare to lose even more speed, before finally touching down on its

main landing gear.

Figure 2.4: Steps of a UAV landing operation at ASC and the decision window where the
autopilot will have to take the final landing decision.

8

2.5 Limitations of the existing system

The present RTK solution is primarily designed to facilitate operations near the reference

base station. For most practical use, this means landing in the same general area where

the UAV took off.

The accuracy generally only holds for a range of approximately 20km from the reference

station, where after the accuracy drops. This limits the use of the system in its present

configuration.

UAVs that depart from one base station will not easily be able to use the RTK information

of a different station to land there. On the other hand, GBAS will allow for a standardised

communication and correction method independent of airfield and UAV type.

GBAS will in addition to increased accuracy in position estimates, also supply detailed

error and integrity information. This allows the calculation of protection levels required

for safe landing in civil aviation. Operation of large UAVs will benefit in a similar way from

the reliability and integrity of the GBAS system.

9

The Ground Based Augmentation System is a GNSS augmentation service for aircraft

typically employed on and surrounding airfields. Using the principles of differential GPS, it

provides aircraft in the vicinity with information on the local GNSS conditions. This results

in high precision positioning information during approach and landing operations. What

sets the GBAS system apart from other systems that give similar or even better

positional accuracy is the way it deals with uncertainty and integrity. Due to the reduced

uncertainty in position and high system integrity using GBAS, the aircraft can continue its

flight trajectory even under very low visibility conditions. This makes the system valuable

for safe landing of aircraft under bad weather conditions.

The system consists of two parts, the ground station and the aircraft receiver, as shown

in Figure 2.1. The ground station is a stationary structure at the airport. Using multiple

GNSS receivers, the station tracks the satellite ranging sources in view. As the receiver

antennas positions and each satellite’s ephemeris are known, a comparison can be made

between the measured pseudo-range and the calculated geometric range. The difference

between the two form the basis for the so-called “pseudorange correction” for each

satellite. The exact steps for the pseudorange correction calculation can be found in the

GBAS EUROCAE standard [2].

This data, along with system integrity information as well as general information about

satellites health and the airport configuration are broadcast over VHF for any GBAS

equipped aircraft in the area to receive. This makes GBAS a cost effective solution, as a

single ground station can service an entire airport and all aircraft in the vicinity.

The aircraft avionics uses the GBAS ground stations estimate of the current errors as well

as integrity parameters based on its own satellite signals to calculate the Vertical and

Lateral Protection Levels (VPL/LPL). If the calculated protection levels exceed the runway

alarm limits, as shown in Figure 3.1, the approach and landing conditions are not

considered safe.

Figure 3.1: Illustration showing the vertical and lateral alarm limits, and an aircraft that
is exceeding the vertical protection level as indicated by the white rectangle (from
presentation by Indra Navia)

3 GBAS

10

3.1 Signal Broadcast

The GBAS data is transmitted as a differential 8-phase shift key modulated broadcast in

the aeronautical navigation band from 108.025MHz to 117.975MHz, using channels

spaced by 0.025MHz. The broadcast is such that aircraft up to 43 kilometre (23 nautical

miles) away are able to receive it. This is called the GBAS’s service volume, shown in

Figure 3.2, and it covers the entire approach and landing such that aircraft can receive

GBAS corrections all the way down to the runway.

Figure 3.2: 3D view of the GBAS service volume for an airfield supporting auto-land and
guided take-off [2]. The grey rectangle represents the runway

Any aircraft in the service volume, having tuned their GBAS receiver to the appropriate

frequency for the airport they are approaching, can start to receive the broadcast. Figure

3.3 shows the signal from Oslo airport (OSL) on the air. The signal is weak as it is

received from the ground without line of sight to the airport. The activity observed occurs

on half-second intervals. Each mark a GBAS frame.

Figure 3.3: Oslo airport’s (OSL) GBAS broadcast at 113.050MHz, showing the 2Hz frame
frequency. The signal is observed from the author’s kitchen, approximately 23km from
the OSL runway. The broadcast is captured using an RTL-SDR with a dipole antenna and

visualized in SDRsharp

11

GBAS frames occur with a frequency of 2 Hz, synchronised with the GPS second. Every

frame is divided into 8 slots, and a GBAS data burst (covered in section 3.1.2) can occur

in each of them. This structure is shown in Figure 3.4. Having slots allows multiple GBAS

stations to coexist on the same frequency using Time Divided Multiple Access (TDMA)

techniques if required.

Figure 3.4: Visualization of how GBAS frames, slots and data bursts relate to each other.
The three main parts of the data burst are also shown [2]

3.1.1 D8PSK modulation

Phase shift keying (PSK) is a digital modulation method where the data is encoded as the

phase of a carrier frequency. PSK demodulation is complicated, as a reference of the

carrier is required in the demodulator in order to compare the phase. In differential PSK

(DPSK), the data is encoded as a change in phase rather than absolute phase. The

change in phase can easily be determined by using the preceding sample as reference.

The number of symbols determines the size of the available 2𝜋 phase shift that each can

be allocated. More symbols increase the data throughput, but the tighter spacing causes

demodulation errors to be more prevalent. D8PSK can be thought of as having 8 distinct

states, where the symbols are represented as phase shifts between the states. Figure

3.5 shows the relative phase shifts on a unit circle.

12

Symbol bits Phase shift

0 0 0 0𝜋/4

0 0 1 1𝜋/4

0 1 1 2𝜋/4

0 1 0 3𝜋/4

1 1 0 4𝜋/4

1 1 1 5𝜋/4

1 0 1 6𝜋/4

1 0 0 7𝜋/4

Figure 3.5: D8PSK phase shift mapping on a unit circle relative to (1,0)

The symbols are assigned to phase shifts according to grey code, where they are placed

such that adjacent values are only 1 bit different. This property is cyclic, so that it also

holds when rolling over from the largest to the smallest value. The result is that getting a

symbol wrong by one phase step only causes a single bit error. Provided there are not

too many, these can be easily corrected using forward error correction (FEC) algorithms.

3.1.2 The data burst

In each GBAS slot, a data burst can occur. Such a data burst follows a well-defined

structure, of which the data fields are shown in Table 3.1.

Table 3.1: The GBAS data burst fields. The double line marks the start of scrambled data

Field Contains Bits

Power stabilization - 15

Synchronisation &

Ambiguity resolution

A fixed sequence of bits:

010 001 111 101 111 110 001 100

011 101 100 000 011 110 010 000

48

Station Slot Identifier The GBAS station’s first assigned slot as a

value 0-7

3

Transmission Length Number of bits in application data and FEC 17

Trainings Sequence FEC Parity bits computer over SSID and length

field

5

Application Data One or more messages, see 3.1.3 Up to 1776

Application FEC Reed-Solomon FEC bytes 48

Fill bits Ensures any length message can be sent

by 3 bit symbols

0 to 2

Scrambling

After the fixed sequence of bits that is used for synchronisation and ambiguity resolution

of the signal, the data is scrambled. This is done to cause variation in the signal in order

to avoid transmitting long sequences of the same-bit values.

In practice, this is achieved by an XOR operation between the data and the output from a

pseudo-noise generator (shown in Figure 3.6). Due to the nature of the XOR function,

scrambling an already scrambled sequence with the same pseudo-noise as was used to

13

generate it, brings back the original data: [𝐴 𝑥𝑜𝑟 𝑁] 𝑥𝑜𝑟 𝑁 = 𝐴 𝑥𝑜𝑟 [𝑁 𝑥𝑜𝑟 𝑁] = 𝐴 𝑥𝑜𝑟 0 = 𝐴.

Therefore, the descrambler on the receiver side of the broadcast can be the same as the

scrambler on the transmitter.

Figure 3.6: The pseudo-noise scrambler/descrambler shift register, showing its initial
state. Descrambling can be done the same way due to the symmetry of the XOR function
[2]

Training Sequence FEC

The training sequence code can, according to [3], correct any single bit errors and detect

75 double bit errors of 300 possible. The 5-bit parity FEC 𝑃 is generated by parity matrix

multiplication of the SSID and transmission length field with the 20x5 matrix 𝐻:

𝑃 = [𝑆𝑆𝐼𝐷1, 𝑆𝑆𝐼𝐷2, 𝑆𝑆𝐼𝐷3, 𝑇𝐿1, … , 𝑇𝐿17] 𝐻
𝑇 (3. 1)

𝐻 =

[

0
0
1
1
0

0
0

 1
1
1

0
1
0
0
1

0
1
0
1
0

0
1
0
1
1

0
1
1
0
0

0
1
1
1
0

0
1
1
1
1

1
0
0
0
1

1
0
0
1
1

1
0
1
0
1

1
0
1
1
0

1
1
0
0
0

1
1
0
0
1

1
1
0
1
0

1
1
0
1
1

1
1
1
0
0

1
1
1
0
1

1
1
1
1
0

1
1
1
1
1]

Application Data FEC

The FEC for the application data is a Reed-Solomon block correcting code with block

length of 255 bytes and message length of 249. For messages shorter than 249 bytes,

zero padding up to a full message length is required. Those padding bytes are only used

for the FEC calculation and not transmitted in the GBAS broadcast. With 6 RS-FEC bytes,

6 byte errors can be detected, or 6/2 can be corrected.

3.1.3 The GBAS message

The application data of a GBAS burst will contain one or more messages, up to the max

length allowed of 222 bytes (1776 bits). Table 3.2 sums up the main message types and

what they pertain. The exact contents of the messages can be found in their respective

tables in appendix A.

14

Table 3.2: The main GBAS message types. Additional special messages have not been

considered here.

Message Type (MT) Contents of message

1 Pseudorange corrections for 100 second smoothed data

2 Information on the GBAS ground station

3 Message of fill bits

4 Data for the landing paths supported by the station

11 Pseudorange corrections for 30 second smoothed data

A message is built up as per Table 3.3, where the message type (MT) is one of those

indicated in Table 3.2 above. Received messages starting with hexadecimal 0xFF should

not be used, as they indicate the GBAS station is not in operative mode. The GBAS ID

field consists of four 6-bit characters, either capital letters or number. The bit encoding

corresponds to the International Alphabet nr.5 (IA5) with bit 7 not used.

Table 3.3: Data fields in a GBAS message

Message Block Fields Value Bits

Message Block

Header

Message Block ID 0xAA – operational

0xFF – test

8

GBAS ID 4 character name of

the GBAS station

24

Message Type Number as by Table

3.2

8

Message Length Length of entire

message in bytes

8

Message Depends on

message type

Depends on

message type

Up to 1696

Message Block CRC Message Block CRC 32

3.2 UAV application

The GBAS equipped UAV system was introduced in Figure 2.1. For pseudorange

corrections, the data flow between the modules is shown in Figure 3.7. Combining GPS

data and the GBAS corrections in the GBAS module allows full, unlimited control of the

algorithm implementations. It also evades the potential dangers that could result from,

for instance, interrupting the regular tasks of the autopilot with GBAS calculations.

Figure 3.7: UAV avionics data flow for GBAS corrections during normal operation
(modified from [1])

15

The messages that do not concern the positioning directly, (MT4 and parts of MT2)

contain information that the UAV cannot easily use without pilot input. The contents of

these messages can be forwarded for consideration by the pilot on the ground.

3.3 System design

The functionality of the GBAS module can be further divided into parts with specific

functions. Figure 3.8 shows the GBAS module with both external and internal interfaces

between the module’s parts. The software for the GBAS module has been designed with a

similar partitioning in mind.

Figure 3.8: Detailed block module of the internal and external interfaces of the GBAS
module (modified from [1])

In Figure 3.8, the SDR generates in-phase and quadrature (I/Q) samples. The

demodulator uses these to determine phase shifts and in turn symbols, combining them

into a complete GBAS data burst. The messages contained in the burst are passed along

to the decoder, which will decode them and sort them on type.

MT3 can be simply discarded. MT4 and parts of MT2 are passed along the GBAS control

interface into the autopilot for forwarding over the UHF link. MT1 and MT11 contain

corrections while MT2 contains general GBAS conditions. These are sent into the “+”

module, where they are combined with the raw data from the GPS receiver.

The resulting corrected pseudoranges can then be used to generate a more accurate

position solution than would be possible with the raw pseudoranges alone, which the

autopilot can use for navigation.

16

This section details the work done pertaining to the development and verification of

software aspects to the GBAS module. The chapter covers a variety of code topics, which

have been grouped by area of application from the parts shown in Figure 3.8.

4.1 The AP–GPS interface

The interface between the Piccolo 2 autopilot and the NovAtel OEMV2 GPS receiver is

pre-existing, and needs to be understood in order to wedge a custom GBAS module in

between the two units.

The autopilot uses the GPS’s interface as described in the GPS’s documentation [8] in

order to gather the data it needs for navigation. The interface functions using the concept

of “commands” and “logs”, which can be issued and received in three different formats:

 ASCII is an all-round format for any use. Easily understood by humans and

machines alike.

 Abbreviated ASCII is a shorter form that strips away unnecessary sync characters

and error checking abilities for a simpler user experience.

 Binary is an effective and compact messaging method. Not human-readable.

Commands are issued to the GPS receiver from the autopilot. They are used to configure

every aspect of the GPS receiver, from satellite reception to port settings and data rates.

The main command that is interesting for the GBAS software is the log command. This

command can be used to request single logs, or schedule logs to be transmitted at

chosen rates.

Logs are data packets generated by the GPS receiver. A large variety of possible logs can

be generated, depending on the application requirements. Typically, position and velocity

are of interest in GPS applications. Raw information on ephemeris and pseudorange

measurements, which are required for the GBAS module, are also supported by the GPS

and have their own logs. By default, the logs are in abbreviated ASCII, but ASCII or

binary can be selected with a trailing “a” or “b” on the log name.

4.1.1 Error detection

Binary and ASCII messages sent from the Novatel GPS are protected by a 32-bit CRC.

This allows the receiver of the messages to discern if bits of the message have been

corrupted. A GBAS module will be required to both check incoming messages and create

new CRC bits for outgoing messages.

Along with the source code for a CRC32 calculation written in C, the Novatel firmware

reference manual [8] specifies the generator polynomial as 0xedb88320 in. In this value,

bit 𝑛 represents whether summand 𝑥𝑛 is part of the polynomial. The value is least

significant bit (LSB) first, such that 0xe = 1110 translates as 1 + 𝑥 + 𝑥2. The summand

𝑥32 is always implicitly part of the equation, such that the entire polynomial is:

𝐺(𝑥) = 𝑥32 + 𝑥26 + 𝑥23 + 𝑥22 + 𝑥16 + 𝑥12 + 𝑥11 + 𝑥10 + 𝑥8 + 𝑥7 + 𝑥5 + 𝑥4 + 𝑥2 + 𝑥 + 1

4 Avionics Software

17

4.1.2 Autopilot initialisation

In order to determine how the autopilot configures the GPS receiver, a splitter cable was

made such that a PC could listen in on the communication. By learning how the GPS was

configured, it has been determined what information the GBAS module needes to supply

to the autopilot once the module is mounted in between the two units.

With the cable connected during power-up, the following start-up sequence was

observed:

1) The autopilot issues a full reset to the GPS. This defaults all the ports to bit rate of

9600.

2) The autopilot configures the GPS port to a bit rate of 57600 (the highest

supported by the autopilot) by sending the “com” command first at 9600b/s and

then repeating the same command at 57600b/s. This functions as a simple form

of handshaking for the GPS.

3) The autopilot clears the GPS’s list of requested logs and removes any position fix

that was previously made. It then requests a log of GPS receiver version in ASCII

format, and waits. It was observed that, should the autopilot not get any reply in

5-10 seconds, the entire procedure would be repeated from step 1

4) The GPS’s response indicates the type of receiver that is connected, its

capabilities, its serial number, hardware and software revision as well as software

compilation date.

5) The autopilot then finishes the setup by issuing log commands for a number of

binary logs, where after the configuration is saved on the GPS.

6) The GPS starts generating the requested logs. No further communication from the

autopilot is observed.

The final configuration of the receiver can be verified by connecting to the autopilot

directly via an unused port (USB cable in this case), and request the log list, which shows

all active scheduled logs. The response (Figure 4.1) shows that logs are being generated

on 3 ports.

 USB2 is where the PCs terminal is connected and where the loglist command was

issued.

 COM2 is generating Align® corrections. This is Novatels system for relative

positioning or determining heading from multiple receivers. This feature is not in

use and the port is not connected to anything in the UAVs current configuration.

 COM1 is connected to the autopilot. These are the logs that are of most interest

as the GBAS module will have to generate them.

18

<LOGLIST USB2 0 85.5 UNKNOWN 0 26.382 004c0000 c00c 7009

< 9

< COM1 PSRPOSB ONTIME 0.250000 0.000000 NOHOLD

< COM1 PSRVELB ONTIME 0.250000 0.000000 NOHOLD

< COM2 RTCAOBS3 ONTIME 0.100000 0.000000 NOHOLD

< COM2 RTCAREFEXT ONTIME 0.100000 0.000000 NOHOLD

< COM1 HEADING2B ONNEW 0.000000 0.000000 NOHOLD

< COM1 PSRDOPB ONTIME 3.000000 0.000000 NOHOLD

< COM1 SATVISB ONTIME 20.000000 0.000000 NOHOLD

< COM1 TRACKSTATB ONTIME 5.000000 1.500000 NOHOLD

< USB2 LOGLIST ONCE 0.000000 0.000000 NOHOLD

Figure 4.1: GPS response on the command “log loglist once”. Every line is a log, on the

form [port] [name] [trigger] [period] [offset]. “Nohold” means the log will be removed

by an “unlogall” command.

The logs that are transmitted to the Autopilot over COM1 as shown in Figure 4.1 are:

 GPS Position (PSRPOSB) at 4Hz, contains coordinates and height above sea level

 GPS Velocity (PSRVELB) at 4Hz, contains horizontal and vertical speed as well as

track over ground

 Heading (HEADING2B), an Align® feature for finding the direction of the line

between base and rover relative to north.

 GPS dilution of precision (PSRDOPB) every 3 seconds, a measure of how well

geometrically spaced the satellites in the solution are

 Visible satellites (SATVISB) every 20 seconds, gives a quick overview of visible

satellites and their apparent elevation and azimuth

 Tracking status (TRACKSTATB) of all GPS receiver channels

For the integration of the GBAS module, some additional logs from the GPS will be

required. Some logs are not influenced by GBAS at all, and can simply be passed along to

the autopilot. The computed position solution by the GPS is no longer needed.

4.1.3 GBAS-required data

The GBAS corrections have to be applied before a position solution is calculated. This

requires the raw pseudorange and phase measurements, as well as ephemeris

information for position calculation to be available to the GBAS module.

By setting pseudorange output by the GPS to the same frequency as the autopilot’s

required position solution, no timing complexity is added. Every pseudorange message

received leads to a position solution output. Should the delay through the module be

determined to be significant for the accuracy of the solution provided, a position

prediction can be calculated instead, by extrapolating from position and velocity at time

of measurement with an estimate of the input-output delay time:

𝑃𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 = 𝑃 + 𝑉 ∗ 𝑡𝑑𝑒𝑙𝑎𝑦 (4. 1)

The required logs for the GBAS calculations are rangecmp (at 4Hz) for raw GPS ranges,

and rawephem (whenever it changes) for ephemeris data. Binary logs are preferred as

they are compact and easy to decode as the content follows standard bit patterns for the

19

variable type. After the autopilot has configured the GPS, these additional logs are added

via the commands:

log com1 rangecmpb ontime 0.25

log com1 rawephemb onnew

saveconfig

A few logs no longer serve a purpose with the GBAS module in place. In particular, since

new position and velocity logs are synthesised by the GBAS module, the ones output by

the GPS have become obsolete.

These logs could potentially be given a new purpose in the form of a fail-safe. A problem

introduced with the system configuration as in Figure 3.7, is that the autopilot no longer

has direct access to the GPS. Should the GBAS module fail, the UAV would be left to

navigate by dead reckoning, relying only on internal sensor data. This could be solved

using the failsafe mechanism shown in Figure 4.2.

Figure 4.2: Possible failsafe mechanism for the GPS to autopilot interface

With all logs still output by the GPS, a short circuit between the GBAS input and output

ports would cause the autopilot to have a position solution available, regardless of the

functioning of the GBAS module. The short circuit can be made either in software or

physically in hardware in the form of a relay. In addition to triggering by a lack of “OK”

signal from the GBAS module, it could conceivably also be triggered via an override

signal from the autopilot.

During normal GBAS operation, the GBAS module can simply discard the unneeded logs

received. When simulating a watchdog trigger by sending in additional raw logs to the

autopilot, no adverse effects were observed, and the autopilot did not attempt to unlog

the raw data.

4.2 Demodulating the GBAS broadcast

This section details the work done on making a receiver and demodulator for a GBAS

broadcast based on software-defined radio (SDR). The GBAS signal was discussed in

chapter 3.1, and a block diagram of the demodulation steps are shown in Figure 4.3,

highlighting the tasks typically performed in the SDR hardware. The required hardware

will be discussed in chapter 5.

20

Figure 4.3: Block diagram of a D8PSK receiver based on an SDR (modified from [4])

An SDR supplies discrete samples of the signals in-phase (I) and quadrature (Q)

components. Software must then further process these values into symbols and

associated bit values. Figure 4.4 shows how a local oscillator is used to remove the

carrier frequency from the received signal (Down conversion) and the resulting values

sampled (ADC conversion).

Figure 4.4: Down conversion and analog-digital conversion of an RF signal into discrete
in-phase and quadrature values (modified from [1])

4.2.1 VHF Data Link Mode 2

VHF Data Link Mode 2 (VDLM2) is a way of communication between aircraft and ground

stations. It consists of three layers, from the high-level application layer, through the link

layer to the low-level physical layer.

Mode 2 is of interest to GBAS demodulation because a packet at the physical layer

closely resembles the structure of a GBAS data burst. As can be seen when comparing

Figure 4.5 and Figure 3.4, the main notable difference is that VDLM2 allows for longer

messages by dividing them into data blocks and interleaving FECs.

21

Figure 4.5: VHF Data Link Mode 2 data burst [17]

Mode 2 is also D8PSK modulated at 10500 symbols a second with a channel spacing of

25 kHz. Since it is transmitted in the communication band (117.975–137 MHz) with

vertical polarization (versus horizontal in the navigation band for GBAS) this does not

offer a problem for the GBAS reception.

Furthermore, VDLM2 has:

 Identical phase to character mapping as described in chapter 3.1.1

 Very similar burst headers as seen in Table 4.1

o Identical sync sequence

o Identical trainings sequence FEC algorithm and matrix

 Identical initial state in the bit scrambling algorithm

 Identical data block size

 Each data block is followed by a RS-FEC with the same polynomial.

That leaves only a few differences that must be accounted for.

Table 4.1: Comparison of the GBAS and VDLM2 data burst header fields

Data burst header fields

GBAS Bits VDLM2 Bits

Power stabilization 15 Power ramp up 12

Synchronisation and ambiguity

resolution

48 Synchronisation and ambiguity

resolution

48

Station Slot Identifier (SSID) 3 Reserved symbol 3

Transmission length 17 Transmission length 17

Training sequence FEC 5 Header FEC 5

Reserved bits

The GBAS broadcast header contains the SSID field where Mode 2 has a reserved

symbol. Since this symbol is used in the training sequence FEC calculations, it should not

be removed or changed by the receiver.

Transmission length

This field can appear deceptive. While the field description is the same for GBAS and

VDLM2, their respective definitions of what constitutes part of the “transmission” are not

identical.

22

In a GBAS burst, this number represents the total number of bits of application data and

FEC (up to 1776 bits and always 48 bits, respectively). A VDLM2 burst can be much

longer, up to 131 071 bits. This is transmitted in blocks of up to 1992 bits, where each

block is followed by the FEC for that block. Contrary to GBAS, the bits used for FECs are

not counted in the transmission length field.

For a GBAS and VDLM2 burst of the same length, it thus follows that the GBAS

transmission length field will indicate 48 bits more than that of the VDLM2 transmission.

If unaccounted for, a VDLM2 decoder that receives a GBAS message will then read too

many bites and include the actual FEC bytes with the perceived data block.

Reed-Solomon FEC

In a VDLM2 burst, while six FEC bytes are always generated, the number of appended

FEC bytes is dependent on the length of the contained data in the block. A GBAS

broadcast always has a fixed FEC length of 6 bytes. In addition, compared to a VDLM2

burst, the FEC in a GBAS burst is appended in the exact opposite bit order.

Table 4.2: VDLM2 data length and the resulting number of FEC bytes appended

Length of data FEC bytes transmitted / generated

Less than 3 bytes 0 / 6

3 to 30 bytes 2 / 6

31 to 67 bytes 4 / 6

More than 67 bytes 6 / 6

4.2.2 DumpVDL2

DumpVDL2 is a standalone VDL Mode 2 message decoder and protocol analyser

developed by Tomasz Lemiech, available on github under the GNU General Public

License. All work done here is based on version 1.6.0 of the software, released 19th of

January 2019 [11]. Features that make it a particularly useful choice:

 Standalone: It is not dependent on other programs or software frameworks

 Well maintained: Bugs are being fixed and new features are added repeatedly

 SDR support: Build in support for a number of the most common SDRs

 I/Q file support: A log of I/Q samples can be decoded if there is no real time data

Compilation and installation instructions are well documented in the repository’s

README.md. During the work with this software, enabling DumpVDL2s Debug mode

helped a considerably in observing what the software was decoding and allowing

comparison to what a GBAS transmission should look like. In particular, the issue with

transmission length was discovered by viewing the raw hexadecimal message and

counting byte offsets.

Reserved bits

DumpVDL2 asserts that the reserved symbol is always transmitted as zero. For GBAS this

is only the case for message blocks transmitted in slot 0. It does this in two stages, both

that require some modification.

First, DumpVDL2 sets the reserved bits to zero and the FEC is performed. Since the FEC

covers the reserved symbol as well, it will attempt to correct this symbol if the GBAS

station has an SSID other than 0. As the FEC is only capable of correcting a single bit

23

error, it will fail for 4/8 SSIDs and use up all error correcting capabilities for an additional

3/8 SSIDs. It is sufficient to comment out the line that sets the reserved bits to zero for

the FEC to perform normally, as shown in appendix B line 194.

Second, a sanity check of the reserved symbol is performed by comparing the header to

a bitmask with reserved bits set to zero. This comparison will fail for 7/8 SSIDs, causing

the message to be discarded. Since the symbol is not reserved in a GBAS burst, this

check serves no purpose and is thus commented out in its entirety in line 200-205 of

appendix B.

Transmission length

The problem with the difference in transmission length is observed in the following

transmission that ends on a message of type 3, an empty message filled with the value

0x55:

[…]

aa cd e1 14 03 8a 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55
[…]

55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 ea de 17 d5

d9 b3 2e e1 28 b3 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 ff 8d ba c1 6b 61

The message starts with a header (purple) and ends with the CRC32 bytes (green) for a

total of 0x8a bytes, matching the value indicated by the header. The data block should

have ended here, but 6 additional bytes are collected (orange) before interleaving zeroes

and collecting the FEC (blue).

The “6 additional bytes” are in fact the actual FEC that is being grouped in with the data,

while the receiver goes on to sample the transmitter ramp-down and noise as the FEC,

inevitably causing the FEC algorithm to fail.

Correcting for the difference in data length is straightforward. The value found in the

burst header is used to determine when enough bytes have been collected to make up

the entire message. Subtracting the FEC length of 48 bits from this value, as shown in

appendix B line 207, causes the data burst to be correctly interpreted as:

[…]

aa cd e1 14 03 8a 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55
[…]

55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 ea de 17 d5

00

00 00 00 00 d9 b3 2e e1 28 b3

Reed-Solomon FEC

While the FEC bytes are now correctly found and placed at the end of the burst, some

additional changes are required for the implemented FEC algorithm to function correctly

with GBAS data.

In order to determine how many bytes of FEC are included in the received transmission,

DumpVDL2 has its own function in decode.c, get_fec_octetcount, which interprets the

message according to Table 4.2. Modifying this function to always return an octet count

of 6 is simply done by commenting out the main function body (Appendix B line 121 to

127).

24

In order to reuse RS-FEC the way it is implemented in DumpVDL2, it is required to swap

the bit order. This is done in two stages. First, the order of the bytes are swapped around

in the buffer (appendix B line 294to 307). Then, the bit order in each byte is swapped

(appendix B line 309 to 317) using a bit-shifting method by Anderson [18].

Getting data out

After the FEC is performed, the similarities between VDLm2 and GBAS end. We now want

to transfer the received messages from DumpVDL2 to a program of our own choice for

decoding. A form of inter-process communication (IPC) must be added in the appropriate

location of the code. While this can be done in any number of ways, a method commonly

known as a named pipe has been chosen for its simplicity in implementation. In practice,

a named pipe is a file that works as a first in, first out (FIFO) buffer.

Setting up a named pipe only requires a few lines to be added in the main dumpvdl2.c

file. These changes are shown in appendix B. After the pipe has been set up, data can be

written to it. The required logic for outputting the GBAS messages over the pipe is added

to decode_vdl_frame in decode.c after the FEC correction has been performed. The

implementation shown in appendix B (line 334 to 345) writes the separate messages to

the FIFO one at a time, instead of the entire data burst contents.

It uses the fact that every message should start on 0xAA to determine when all

messaged have been read from a burst. The end of each message is found by reading

the message length byte, found in position 5 from the start of message. An added benefit

of this method is that messages received from GBAS stations that are in test mode

(0xFF) will not be passed along for further decoding.

4.3 Decoding the GBAS broadcast

The messages can be read from the FIFO named pipe in a different process. A FIFO

reader and partial GBAS message decoder module are written in python. This is a

threaded module, such that it will run concurrently with the other tasks of the GBAS

module discussed in chapter 4.4. Refer to appendix C for the Python code of this module.

4.3.1 CRC32 redundancy check

Every GBAS message ends with a 4 byte (32 bit) Cyclical Redundancy Check (CRC) with

the polynomial:

𝐺(𝑥) = 𝑥32 + 𝑥31 + 𝑥24 + 𝑥22 + 𝑥16 + 𝑥14 + 𝑥8 + 𝑥7 + 𝑥5 + 𝑥3 + 𝑥 + 1

This can be represented as a LSB first binary number where bit 𝑛 represents whether 𝑥𝑛

is part of the polynomial, e.g. 1 + 𝑥 + 𝑥3 as 1101 = 0xd. The 𝑥32 term is implicit in the

definition of the CRC polynomial, resulting in the hexadecimal representation of 𝐺(𝑥) as

0xd5828281.

The same CRC32 implementation that was used for Novatel GPS data (chapter 4.1.1) can

be used with the new polynomial for GBAS message checking.

Since CRC32 is a method for error detection but not correction, an incoming GBAS

message that fails the check must be considered corrupted and is discarded.

25

4.3.2 Processing datafields

The message, having passed both the FEC in the receiver and the CRC32 check in the

python decoder, is now assumed not to contain undetected errors and the binary

contents can be split into variables for use in navigation solutions.

At this point, additional sanity checks and filtering can be performed. Data fields that are

good candidates for this are the GBAS ID and Message type fields in the message

header, as the name of the desired GBAS station and message types are typically known.

Messages originating from other GBAS stations or messages that are not desired can be

discarded, requiring no further processing power.

For the contained data in the message body, a distinction is made on the rate of data,

concerning how it should be handled in the receiver. This distinction originates from the

description of MT1, but is here generalized and applied across all messages.

Full rate data

Full rate data for a message type is data that is contained in every single message of that

type, and carries no value after a new message of the same kind is received. An example

of this are the PRC and RRC values in MT1, where the values for all satellites in view are

contained in every message.

Low rate data

Low rate data is split over multiple messages. For the entire dataset, it is required to

collect and keep multiple messages of the same type. The low rate data in MT1, from

which this class of data borrows its name, is an example of this. Each MT1 message

contains the low rate data pertaining to a single satellite, and a number of messages

have to be collected to complete the data for all satellites in view.

4.4 GPS calculations

The raw GPS data can be augmented with the decoded GBAS messages. This is done in

the block marked “+” in Figure 3.8, which represents the combination of information

from the two sources. The required calculations to achieve this will be introduced in

chapter 4.4.1. As a part of this operation, smoothing of the GPS pseudoranges is

required, which is presented in chapter 4.4.2. The main aspects of the position solution

calculation, the last step in the GPS data chain from Figure 3.8, aspects of which will be

shown in chapter 0.

4.4.1 Pseudorange correction

The corrections that are applied to the pseudoranges can come from either GBAS

messages MT1 (for 100 second smoothed pseudoranges), or MT11 (for 30 second

smoothed pseudoranges), the difference is mainly how fast the values are varying.

Having pseudoranges smoothed over a longer period will mean less noise, but will also

mean that erroneous measurements in the filter will influence the filter output for a

longer period of time.

Preferably, both 100 and 30 seconds corrected pseudorange data is computed in parallel

such that the position solution calculator can switch between the two. Figure 4.6 shows a

flowchart over how the corrections are applied in the aircraft, using equation 4.2 derived

from the GBAS avionics standard [4].

26

Figure 4.6: The corrections that are applied to the pseudoranges, visualized as flowchart
(modified from [4])

𝑃𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 = �̅�𝑛 + 𝑃𝑅𝐶 + 𝑅𝑅𝐶 ∗ (𝑡 − 𝑡𝑧𝑐𝑜𝑢𝑛𝑡) + 𝑇𝐶 + 𝑐 ∗ (Δ𝑡𝑠𝑣)𝐿1 (4.2) 𝑃𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 = �̅�𝑛 + 𝑃𝑅𝐶 + 𝑅𝑅𝐶 ∗ (𝑡 − 𝑡𝑧𝑐𝑜𝑢𝑛𝑡) + 𝑇𝐶 + 𝑐 ∗ (Δ𝑡𝑠𝑣)𝐿1 (4. 2)

Equation 4.2 has to be applied to each ranging source. In this equation, 𝑃𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 is the

pseudorange that is output to the position calculation, while �̅�𝑛 is the filtered

pseudorange as explained in chapter 4.4.2.

(Δ𝑡𝑠𝑣)𝐿1 is the clock correction broadcast by the satellite. Its influence on the range is

found by multiplication with the speed of light (𝑐), using equation 2.2.

𝑃𝑅𝐶 and 𝑅𝑅𝐶 are the pseudorange and range-rate corrections from either MT1 or MT11.

The range rate is projected ahead using the difference between current GPS time (𝑡) and

time of correction applicability (𝑡𝑧𝑐𝑜𝑢𝑛𝑡). The z-count is reset every 20 minutes, while the

time from the GPS receiver is typically given since the start of the week. The time

formats can be related using modulo, as shown in equation 4.3 (with both time formats

in seconds).

𝑡𝑧 = 𝑡𝑤𝑒𝑒𝑘 % 1200 (4. 3)

In equation 4.2, 𝑇𝐶 is the tropospheric correction, which compensates for the

troposphere delay error. It is calculated based on the local conditions, and is influenced

by the relative positioning of the aircraft, ground station and satellite. This is shown in

equation 4.4, where both the aircraft altitude over GBAS station (Δℎ) and the satellite’s

elevation over the horizon (𝜃) are included. The refractivity index (𝑁𝑅) and tropospheric

scale height (ℎ0), are both received in MT2.

𝑇𝐶 = 𝑁𝑅ℎ0

10−6

√0.002 + sin2(𝜃)
(1 − 𝑒−∆ℎ ℎ0⁄) (4. 4)

Some of the variables in equation 4.4 are dependent on an already calculated aircraft

position. In order to avoid a feedback loop, these variables should be taken from the

uncorrected GPS position supplied by the GPS receiver. For instance, the perceived

satellite elevation (𝜃) will not change significantly since the scale of corrections is small

compared to the distance to the satellites.

4.4.2 Smoothing filter

The received pseudoranges from the GPS receiver are noisy. This receiver noise is

smoothed using the measured phase in similar fashion to how it is done by the GBAS

27

ground station. This is contained in the “Pseudorange Smoothing” block in figure Figure

4.6.

The standard for GBAS avionics [4] shows the carrier smoothing as a two-step process

shown in equation 4.5 and 4.6.

𝑃𝑝𝑟𝑜𝑗 = �̅�𝑛−1 +
𝜆

2π
(𝜙𝑛 − 𝜙𝑛−1) (4. 5)

�̅�𝑛 = 𝛼𝑝𝑛 + (1 − 𝛼)𝑃𝑝𝑟𝑜𝑗 (4. 6)

Initially, the smoothed range is the received pseudorange (�̅�1 = 𝑝1). For each

measurement n, the two steps are performed. Equation 4.5 calculates the projected

pseudorange (𝑃𝑝𝑟𝑜𝑗) based on the previous smoothed pseudorange (�̅�𝑛−1) and the change

in phase since last sample (𝜙𝑛 − 𝜙𝑛−1), where 𝜆 is the GPS L1 carrier frequency of

1575.42 MHz.

Equation 4.6 is used to determine the new smoothed pseudorange (�̅�𝑛) based on a

weighted sum of the new raw pseudorange sample (𝑝𝑛) and the projected pseudorange

(𝑃𝑝𝑟𝑜𝑗) from equation 4.5. The filter weighting (𝛼) is determined based on the filter length

and the frequency at which the samples are gathered:

𝛼 =
1

𝑡𝑙𝑒𝑛𝑔ℎ𝑡 ∗ 𝑓𝑠𝑎𝑚𝑝𝑙𝑒

(4. 7)

For a 100 second filter as used for MT1 corrections, at a 4Hz rate matching the UAVs GPS

configuration (chapter 4.1.2), this leads to a weighting of 1/400 raw pseurorange and

399/400 projected pseudorange based on phase (equation 4.6) for each iteration.

An implementation of the filter was made in python, and can be found in appendix C.

Using a u-blox GPS evaluation module (based the LEA-6T chip), raw pseudorange

samples were collected and filtered. Figure 4.7 shows the difference between the

pseudorange and the filtered pseudorange for the same satellite. As can be seen, the

high frequency noise is not passed on to the smoothed pseudorange.

While capturing data over a longer period of time, the jump shown in Figure 4.8 was

observed. From sample 4439 to 4440, a 300-kilometre pseudorange jump occurred. This

is exactly coherent with a 1ms clock correction.

As discussed in an article in Inside GNSS [19], clock corrections are something that can

be observed with raw pseudoranges, but depends on the receiver used. For this

particular receiver (u-blox LEA-6T), the error is thus observed to be limited to 1ms.

It is not known how the NovAtel receiver installed in the UAV handles this, though table 4

in the NovAtel firmware reference [8] mentions the time to be correct to the millisecond

level. Being a high-end receiver it might very well use clock steering (clock is

continuously adjusted to keep error to a minimum), though single millisecond clock

corrections could also fit the description.

28

Figure 4.7: Difference between the received pseudorange and the 100 second smoothed
pseudorange for a single satellite. Y-axis in meters, X-axis in samples at 4Hz

Figure 4.8: Log of pseudorange and filtered pseudorange, showing a 1ms clock jump

29

Since the clock corrections affect all pseudoranges the same way simultaneously, the

change will cancel out in the position calculation and not cause any problem. This

requires that these calculations do not involve previous pseudorange values.

The smoothing filter is dependent on previous values, by definition. In particular, it has

problems with the discrepancy between a large jump in raw pseudorange and a lack of

matching jump in phase. The error between the filtered value and raw pseudorange after

a pseudorange jump is presented in Figure 4.9. Satellites tracked when the jump

occurred will have filter errors in excess of 50 kilometers more than 100 seconds after

the jump (sample 5000). A hypothetical new satellite being tracked from sample 4500,

after the jump occurred, will have its 100 second filter in steady state by sample 5000

with errors similar to Figure 4.7 at less than 5 meters. This difference in satellite history

cannot be detected by the positioning algorithm.

Figure 4.9: Error between the received pseudorange and the 30 and 100 second filtered
pseudorange after a 1ms clock jump. Y-axis in meters, X-axis in samples at 4Hz

The airborne equipment standard [4] mentions, (as a note to measurement quality

monitoring), that smoothed pseudorange should not be used if a pseudorange step has

occurred. Seeing as the pseudorange jump in this case is an exact integer number of

milliseconds, the jump can be added to the smoothed pseudorange before new samples

are added, such that the abrupt step occurs the same across all pseudoranges and

filtered pseudoranges. The smoothed pseudoranges can then be used continuously, and

the position calculation will cancel out the jump without delay.

The occurrence of a jump is easily tested by comparing a new pseudorange to current

filtered pseudorange. The smallest jump possible of 1ms is observed as about 300km

change of distance, which is easy to detect.

While such jumps are generally not desired, the plot (Figure 4.9) shows how the 30-

second and 100-second filters differ in response time.

4.4.3 Position solution calculation

In order to find the receiver position, four unknowns have to be determined; the location

in three dimensions and the clock offset. With the corrected pseudoranges from at least

Psr - Psr100
Psr - Psr30

30

four satellites and the collected satellite ephemeris, the position of the receiver can then

be calculated. Methods are extensively documented in books [14] and standards [4].

As the methods are standard, and multiple available implementations exist, it can be

beneficial for the development time to base the software on a ready-made solution.

RTKLIB [20] is such an open source program package written in C, that contains a

number of algorithm implementations for the calculation of position-velocity-time (PVT)

solutions. It is split in parts that can be included in other projects, and the licence allows

its use in both commercial and non-commercial products. This is very suitable for the

development of a GBAS module.

Two GPS receivers were used during the work with this thesis, the NovAtel OEMV2 in the

UAV and a u-blox LEA-6T. For each receiver, a simple serial message receiver and

decoder was written. RTKLIB includes message-decoding capabilities for a number of

commonly used formats, including the two receivers used here. As such, RTKLIB will

allow for a variety of GPS receivers to be used with the GBAS module.

31

Two prototypes for the required UAV hardware for GBAS demodulation and decoding

were designed, based on different single-board computers (SBCs).

The choice of software defined radio (SDR) was the first variable of hardware design that

had to be solved. The choice fell on the RTL-SDR V.3, shown in Figure 5.1, as it fulfilled

the key requirements of being supported by DumpVDL2, inexpensive and easily

available. All further hardware design was made with this SDR in mind.

Figure 5.1: The RTL-SDR V.3, an inexpensive, easily available and much used SDR that is
well suited for GBAS reception (photo rtl-sdr.com)

5.1 Hardware interfaces

The hardware interfaces required were determined based on existing hardware in the

UAV and the requirements of the SDR receiver. These requirements for then informed

the choice of single board computer (SBC) to be used.

5.1.1 Serial port

The serial port is a variant of the RS232 standard for serial communication. This port is

generally considered obsolete in consumer products, but it is still commonly used in

scientific, industrial and specialist equipment.

The Piccolo autopilot, being very much a specialist device, offers serial ports as the main

method of interface with payloads and avionics. All communication between the autopilot

and the Novatel GPS receiver occurs over a single serial connection.

5 Avionics Hardware

32

Figure 5.2: Oscilloscope trace of a binary message sent from the GPS receiver over the
serial port. The signal switches between ±5V, and the live decoding of the data is shown.

The connection consists of two lines, transmit (TX) and receive (RX). The voltage on the

line signals the bit value, a negative voltage represents a 1 while a positive voltage

represents 0 (see Table 5.2). The Data bits are sent over their respective wire at a

selected rate, known as the Baud-rate.

The two lines operate independently from each other, such that sending and receiving

can occur at the same time. However, RX from one device must go to TX of the other,

and vice versa. Depending on the pinout of the connectors on the devices to be

connected, this might mean a crossover cable can be required.

The GPS side of the connection uses a classic 9-pin D-sub connector typically used for

serial ports. Of the 9 pins, only 3 are of interest, shown in Table 5.1. The remaining pins

can be used for flow control signals, but these are not used by the autopilot.

33

Table 5.1: Pins of interest for serial communication on the GPS male D-sub 9 connector

Pin on GPS serial

port

Function

2 Receive, RX

3 Transmit, TX

5 Ground, GND

As the connector is large and bulky and serial ports are no longer commonly used, no

single board computers that offer a serial connection out of the box could be found.

Converters from both UART and USB exist, so these have been used instead.

5.1.2 UART

Universal Asynchronous Receiver-transmitter (UART) is a protocol for data transport,

very similar to the RS232 communication of the serial port, down to the RX/TX naming

convention and baud-rate determined timing. The main differences are the voltage

levels, which operate at the digital signal voltage level of the system. Being so similar,

there are a large number of UART-signal translation chips available. These chips typically

contain charge pumps so that they can generate the required positive and negative

voltage themselves with only a few external capacitors.

Table 5.2: Voltage levels for RS232 and UART communication

Data bit Serial (RS232) voltage UART voltage

0 +3V to +15V Low (0V)

1 -3V to -15V High (3.3V or 5V)

5.1.3 USB

Universal Serial Bus (USB) is a modern interface for communication. It has replaced the

serial port in most applications. In USB, data is sent in packets, over a differential pair of

lines. Either the host PC or the device can send, one at a time, making this a half-duplex

port. In order to use a USB device, the host computer needs to install the device’s driver

software.

USB also carries power in the form of a 5V line that can provide up to 500mA. This is

what powers the RTL-SDR when it is connected, and allows active converters to be

attached. Converters from USB to most of the common data ports are easily available,

making USB a very flexible solution.

5.1.4 CAN bus

Control Area Network (CAN) is a message based differential bus where any node can

send to any other node. With automatic message collision and error detection it is a

robust data bus with a high level of security, commonly used in cars and vehicles in

general.

34

It is therefore not a surprise that such features are supported in UAVs as well. The

piccolo has a CAN bus that can be used to interface with avionics and payloads. Sending

to a specific address allows data transfer to the ground station, which makes it a

candidate for communication between pilot on the ground and the GBAS module.

Complete details of the CAN bus can be found in the official CAN Specification [21].

5.2 BeagleBone based system

Figure 5.3: The BeagleBone Black rev. C single board computer, with the custom circuit
board for serial ports and CAN bus attached.

Figure 5.3 shows the first hardware prototype, which is based on the BeagleBone Black

rev. C. This is a single board computer based around Texas Instrument’s AM3358

processor, a single core 1GHz ARM cortex-A8. It has a host USB port available for the

RTL-SDR to connect, and two 46-pin headers with a number of external interfaces.

Among these interfaces are four UARTs and two CAN ports. A circuit board was

developed with the required transceivers that allow the BeagleBone to connect to two

serial devices as well as a CAN bus.

The unit is powered by a 5V supply, via either a mini-USB connector or a barrel plug.

When connecting it to a PC’s USB port it emulates a USB modem, which allows

connecting to it over secure shell (SSH) at the fixed IP address 192.168.7.2 for

configuration and programming.

5.2.1 BeagleBone design

The system is built up of the BeagleBone Black rev. C, running Debian 9, with a custom

circuit board (known as a “cape” in the BeagleBone community) connected to the pin

headers. A close-up of the cape is seen in Figure 5.4, and the design schematics are

provided in appendix D. It offers two separate functions:

Serial ports

Two serial ports are required, in order to communicate with the Novatel GPS receiver and

the Piccolo autopilot. This is achieved by using an ST3222 dual UART – RS232 bridge

chip, which is able to generate RS232 voltages from the system 3.3V with its own built-in

charge pump and only requires a number of external capacitors.

35

On the UART side, it is connected to the BeagleBone’s UART1 and UART4. On the RS232

side, the RX/TX line pairs go to 2x2 headers with jumpers (see yellow jumpers on Figure

5.4). The signals are connected in such a way that rotating the jumpers 90 degrees

swaps the RX and TX lines, which could be required in some connector configurations.

From the 2x2 headers, the signals lead into connection blocks for ribbon cables leading to

D-sub 9 connectors. The connection is straight through, such that pin 1 on the

connection block leads to pin 1 of the D-sub 9 plug.

CAN bus

The cape also provides an MCP2562 CAN transceiver. This is required in order to connect

the pins of the BeagleBone to the physical CAN bus. It provides the differential transmit

ability and gives protection of the BeagleBone hardware. This particular chip was chosen

for its compatibility with 3.3V logic signals. A jumper allows the inclusion of a 120Ω bus-

termination resistor. The CAN differential pair can be connected to the physical bus via a

screw terminal block.

Figure 5.4: Top down view of the serial and CAN circuit board

The general-purpose input/output (GPIO) pins on the BeagleBone headers can have

multiple possible functions. In the circuit board design, the two serial ports are connected

to UART 1 and UART 4. In order to enable the UARTs, the pins have to be configured to

UART mode for their respective RX and TX lines. Furthermore, the serial ports by default

have “echo” mode enabled. Echo makes the serial port reply back any message it

receives, which is an unwanted feature in this application. This is configured using the

commands:

config-pin p9.11 uart

config-pin p9.13 uart

config-pin p9.24 uart

config-pin p9.26 uart

stty -F /dev/ttyO4 sane -echo
stty -F /dev/ttyO1 sane -echo

36

5.2.2 BeagleBone evaluation

The final system, as shown in Figure 5.3, weights 82 grams. This does not include the

SDR receiver nor a protective case, so the weight cannot be directly compared to the

Raspberry Pi system in chapter 5.3.

The operating system can be run either from a micro SecureDigital (microSD) card, or

from the embedded MultiMediaCard (eMMC). The weaknesses of such storage devices, in

particular their response to sudden power loss, is discussed in chapter 7.5.

The serial ports were tested by connecting them to serial-USB adapters plugged into a

computer. Using serial terminal software, data could be sent to and received from the

BeagleBone system.

In order to test the BeagleBone with the RTL-SDR, DumpVDL2 was run in its unmodified

form (chapter 4.2.2). The BeagleBone was not able to keep up with the simultaneous

collection of samples and decoding of data. This lead to that not a single VDLM2 packet

could be received. It was verified that there was in fact VDLM2 activity in the area by

running the same RTL-SDR setup on a laptop both before and after the test.

Htop, a process viewer for Linux, showed a CPU usage of 100% continuously while the

radio was on. It was thus concluded that the single 1GHz core had insufficient processing

power for the application. This motivated the design of a new hardware prototype based

on a more powerful computer.

5.3 Raspberry Pi based system

Figure 5.5: The Raspberry Pi 3 Model B+ single board computer, with the serial port
modules as well as the SDR.

The second hardware prototype, based on the Raspberry Pi 3 Model B+ is shown in

Figure 5.5. This single board computer is far more powerful than the BeagleBone from

the first system, as it features a Broadcom BCM2837B0 processor, a quad core 1.4GHz

ARM cortex-A53. It has four USB ports available for the RTL-SDR and other hardware to

connect. A 40-pin header allows a few external interfaces; however, it does not have two

UARTs available. The serial ports were therefore realised using USB converters.

The unit is powered by a 5V supply via a micro-USB connector. Having a far more

powerful CPU also means additional power demand. Unlike the BeagleBone, the 500mA

37

from a computer is not enough to power it. A 2.5A phone charger or similar power supply

is recommended.

Not having a USB modem interface to the device also makes configuring and

programming somewhat more complex, as SSH is not enabled by default. This can be

done using the raspi-config utility, which requires the connection of a screen and

keyboard. The RPi can then be connected directly with an Ethernet cable to a laptop’s

own Ethernet port. This is desired as it allows connection to the RPi also in areas without

a common Wi-Fi connection or Ethernet switch.

Unlike the BeagleBone, the RPi does not have a static IP address where the computer

knows how to find it. This can be achieved by configuring static IPs manually on the RPi

and laptop Ethernet adapter. An easier method is installing Apple’s Bonjour Print

Services. It will detect the RPi, such that SSH connections can be made to

raspberrypi.local instead of a fixed IP address.

5.3.1 Raspberry Pi design

The system is built up of the Raspberry Pi 3 Model B+, running Debian 9. The required

interfaces were realised using USB port converter modules, and the entire module was

mounted in a custom enclosure, making for a single compact unit. A top-down view of

the assembled module is seen in Figure 5.6.

Serial ports

The serial ports were made using two separate converter stages. First, UART ports are

made using CP2102 USB-UART bridges. The devices are automatically detected by

Debian, and no additional drivers have to be installed.

The UART signals are then passed to UART – serial bridges based on the SP3232 chip.

These chips function the same way as the chip used on the BeagleBone cape. The

modules are mounted to the RPi using plastic standoffs. By connecting this assembly to

the RPi using short USB cables, the entire construction can be folded into a compact unit.

SDR

The SDR that was chosen for GBAS reception was the RTL-SDR V.3. As the casing of this

SDR is quite bulky, it must be mounted with a USB extension cable in order to not block

the other USB ports. The SDR is mounted to the baseplate alongside the RPi, and the

shortest available extension cable was chosen. The large USB connectors themselves

mean that even a 10cm cable takes a lot of space compared to the module size as a

whole, as can be seen in Figure 5.6.

38

Figure 5.6: Top-down view of the assembled RPi system

5.3.2 Raspberry Pi evaluation

The final system, as shown in Figure 5.5, weights 210 grams. Since this includes

mounting hardware, a simple case and the SDR receiver, this weight cannot be directly

compared to the same measurement as made for the BeagleBone system in chapter 5.2.

The operating system of the RPi is stored on a micro SecureDigital (microSD) card. This

device can become corrupted, in particular when the RPi is not properly shut down and

power is suddenly lost. These problems as well as approaches for risk mitigation are

discussed in chapter 7.5.

In order to test the SDR with the RPi, similar tests as for the BeagleBone were

performed. DumpVDL2 (chapter 4.2.2) was run in its unmodified form to see if the RPi

was able to receive and decode data in real-time. The VDLM2 activity in the area was

checked both before and after the test, by running the same RTL-SDR setup on a laptop.

The RPi caught and decoded a message every couple of minutes, which was consistent

with the activity observed with a laptop.

During this test, htop (a process viewer for Linux) showed CPU usage of approximately

50% for two of the four cores. The other two were idling. This is consistent with the way

DumpVDL2 is built up, using separate threads for receiving and decoding the SDR

samples. It shows that a multi-core processor is a great benefit for this particular

application.

The serial ports do not need additional configuration, since they are connected via USB

and not using any hardware pins. Data transmission was tested via a similar USB-serial

adapter plugged into a computer, and the module was later connected to the UAV

following the setup given in Figure 3.7. The powered module can be seen in Figure 5.7,

where it is passing GPS data along from the GPS to the autopilot in the Cruiser 2 UAV at

ASC. More details on the UAV mounting can be found in chapter 6.

39

Figure 5.7: The RPi based system powered up and communicating with the GPS and
autopilot in the UAV

40

The available room inside the UAV is divided into multiple compartments. The largest of

these is by far the front of the aircraft, where mission payloads up to 20kg can be

installed. The fuel tank takes a good part of space as well, supplying fuel for long

missions of up to 8 hours. The remainder is left for the avionics hardware, its power

system and batteries. The UAV’s motor is mounted to the outside of the UAV behind the

main wing, allowing the UAV to fly at nominal speeds of 60 to 70 knots. The motor also

contains a generator, which will keep the batteries charged and vehicle powered during

normal operation. The total UAV is approximately 3.3 meters long. The various

compartments and their approximate relative size are visualised in Figure 6.1.

Figure 6.1: Illustration of the different compartments in the Cruiser 2 UAV

6.1 Avionics bay

The avionics bay can be accessed from the front by removing the payload bay and the

fuel tank. Limited access from the top is also possible by removing the wing. The UAV is

built in such a way that all parts are securely attached yet easily disassembled for

transport and service.

Figure 6.2 shows the view of the avionics bay from the front, after the fuel tank is

removed. The yellow fuel tubes can be seen hanging loose from the top right and left

corners of the figure. The large metal box in the centre (C) is a protective, fireproof

container for the battery packs. The NovAtel OEMV2 GPS receiver (A) is mounted on its

side such that it fits next to the battery box. It is connected to the Cloud Cap Piccolo 2

autopilot (B) that is placed at the bottom of the assembly. On top of the autopilot is an

Iridium satellite modem, which is used for low rate communication when UAV is

operating outside of radio range of the ground station.

The autopilot (B) is placed square and centre as it also contains the gyros and

accelerometers of the contained inertial measurement unit (IMU). The entire assembly is

mounted on rubber vibration dampers (D) such that the IMU is not adversely influenced

by vibrations and shocks of the airframe [6].

6 UAV Implementation

41

Figure 6.2: View of the Cruiser 2 avionics bay, as seen from the front with the fuel tank
removed, clearly showing the GPS receiver (A), autopilot (B), battery compartment (C)
and vibration dampeners (D)

There is not much space left in the avionics bay, and only two possible locations for the

placement of the GBAS avionics module are available:

1) Upside-down underneath the autopilot holder

2) On its side, next to the autopilot and below the GPS receiver

The current prototype is not suitable for either position, as the connectors of the module

point in multiple directions, making it hard to access. Ideally, all the GBAS module

interfaces should be located next to each other, such that they are easily accessible from

a single front plate in similar fashion to how it is done on the GPS.

Mounting option 2 is deemed the better of the two, as the module would be easier to

access and be in close vicinity to the GPS module to which it must be connected.

42

6.2 Payload bay

The payload bay of the Cruiser 2 UAV is large and open, allowing for a variety of payload

implementations to be mounted. During testing of GBAS in UAVs, the GBAS module can

easily be placed here alongside other payloads.

Figure 6.3 shows the payload bay with the cover off, with a camera gimbal payload

mounted. The Raspberry Pi based GBAS module prototype is placed on the workbench

next to the UAV, showing the relative size of the available space.

Figure 6.3: The Cruiser 2 payload bay. Raspberry Pi GBAS module on the workbench
demonstrates the amount of space available

Right in front of the main wing, where the payload area begins, there is a plate with

connectors mounted. These are pass-through interfaces, where payloads can send data

to the autopilot, which will forward them to the pilot on the ground. One of these

connectors can be used to send GBAS information for the pilot to consider.

However, the GPS-autopilot interface is not available here. In order to place the GBAS

module in the payload bay, two additional serial cables have to be drawn from the

avionics bay.

6.3 Antenna Placement

In order to receive the GBAS broadcast, a VHF antenna is required on board the UAV.

The GBAS broadcast is horizontally polarised, so an antenna has to be mounted

horizontally as well. This makes the wings good locations for antenna mounting.

Placing antenna along the tail boom has also been considered, but this would give the

antenna low reception when flying directly at the station, which typically would happen

during landing.

43

6.3.1 Current antennae

There are already antennae mounted on the wings. The additional GBAS antenna must

not interfere with their functionality. The antennae mounted on the centre part of the

main wing are shown in Figure 6.4, and can be seen in Figure 6.5.

(A) GPS antenna (B) Iridium antenna

Figure 6.4: The GPS antenna (A) and Iridium antenna (B) that are mounted on the center
part of the main wing

6.3.2 GBAS VHF antenna mounting

The wings as placement for the GBAS VHF antenna have been explored at ASC. The

examples shown here are using a dipole antenna of 128cm, which is approximately half

the wavelength of an average GBAS carrier wave frequency, and a suitable length for

GBAS VHF reception.

Figure 6.5 shows the antenna mounted on top of the main wing. The GPS antenna and

Iridium antenna can be clearly seen. It is a benefit to have the antenna mounted towards

the front of the wing, as it reduces the possibility for the UAVs airframe to get in the line

of radio reception during landing. At the same time, the main wing contains a carbon

fibre beam for wing reinforcement. The carbon fibre will absorb the signal and negatively

affect the signal strength.

Figure 6.6 shows the same antenna mounted on top of the tail wing. Being far back, a lot

of the UAV can get in the way of the antenna during landing. This wing is not used for

other antennae, and it does not contain any carbon fibre.

Since the broadcast that is to be received originates from the ground, the signal will be

received from below for the main part of the flight. The antenna can therefore also be

mounted on the underside of either wing, which could improve reception significantly,

though blockage by the airframe as well as absorption by carbon fibre beams would

remain influential.

In order to determine which antenna type and location is actually best suited for the UAV

GBAS implementation, a more in-depth test would have to be performed where

performance data for each location is collected and analysed.

44

Figure 6.5: VHF antenna mounted on top of the main wing

Figure 6.6: VHF antenna mounted on top of the tail wing

6.4 Interface verification

In order to test if the interface between the GPS and autopilot was understood by the

GBAS software, the laptop was connected in between the autopilot and the GPS.

Messages on each port were collected, message contents checked with the CRC32, and

output on the other port with a new generated checksum.

45

The test was successful, and demonstrated that the GBAS module software, running on

the laptop, was able to identify messages and logs correctly on the serial port, and both

collect and transmit them. Decoding and encoding of the CRC32 error detection bytes

was also confirmed to be operational.

The same code was also tested on the Raspberry Pi GBAS module prototype, shown in

Figure 5.7, with identical results, indicating that the serial interfaces added to the RPi

were correctly working, and that both decoding and encoding of messages according to

the NovAtel GPS format was possible.

After the indoor tests on the workbench were found to be successful, the avionics bay

was moved outside so that the same test could be done while the GPS could receive

actual satellite data.

Figure 6.7 shows the avionics bay of the UAV, with the center part of the main wing

mounted, placed in the parking lot of ASC for the collection of GPS data. The red

container is placed as a warning for cars driving around the corner not to crush the UAV.

Figure 6.7: Avionics compartment with center-part of wing placed outside in the parking
lot at ASC, collecting GPS data.

46

The main results of the study of the system requirements and the techincal details for

the concept of GBAS integration in UAV systems are discussed in this chapter. The main

focus is on the nececcary software adaptation and the options for using off-the-shelf

hardware. Ways to improve the current system and potential for future applications are

also presented.

7.1 GBAS demodulation and decoding software

In chapter 4.2 it was demonstrated that the similarities between GBAS and VDLM2

signals in space allowed a software based VDLM2 receiver to be modified for GBAS

broadcast demodulation. The GBAS messages contained in the data burst were put in a

FIFO buffer, such that any program could read them out and process them further.

Using python, the messages were read from the buffer and selected datafields decoded.

CRC32 checking is done to get the highest possible certainty no corrupt messages are

accepted by the GBAS module.

7.2 Correcting raw GPS data

When GBAS messages are received, these can be used to augment the UAVs GPS data.

Chapter 4.4 explored how the contents of MT1, MT2 and MT11 can be used to generate

improved pseudoranges, which will provide a higher positional accuracy than can be

achieved using regular GPS.

In order to minimize receiver noise, the pseudoranges observed by the UAV have to be

smoothed in a similar fashion to how it is done by the GBAS ground station. This is done

using the carrier phase. The smoothing was implemented in python, and a test was

performed. This lead to the identification of millisecond jumps in the pseudorange data.

Such a jump is detrimental to the filtered values if not caught and handled properly, as it

presents a large discrepancy between the pseudorange and carrier phase. Furthermore,

depending on which receiver is used, the jump can be of different size. Since it always is

an integer number of milliseconds [19], the shortest jump is just under 300 kilometre,

which is easy to detect.

The time jump can cause issues for the application of GPS corrections. The range-rate

corrections (RRCs) are applied based on the difference between the time they were

generated (supplied in the message) and the “current” time of application. The simplest

way of acquiring the current time would be gathering the time from the GPS receiver

directly, so that no feedback from the PVT solution calculation is required. The max value

for the RRC is 32.767m/s (appendix A) such that a clock error limited to 1ms can at

worst cause pseudorange errors of 3.3cm. Some receivers can have clock errors up to

100ms [19], which would cause unacceptable errors of up to 3.3m. As such, either the

GPS receiver should be of a kind that is limited to small clock errors, or the

implementation must use the time from the PVT solution.

7 Results and Discussion

47

Using RTKLIB is recommended for the PVT solution generation, as it has a large number

of GNSS algorithms implemented. In addition, it supplies decoders for a large number of

message types for GPS receivers from known brands.

7.3 Reception of GBAS using off-the-shelf components

As seen in chapter 5, the hardware required for GBAS demodulation and decoding is in

practice limited to a computer and an SDR dongle. As multiple software tasks have to be

performed in parallel (chapter 4), the system benefits greatly from a multi-core

processor. This was evident when the BeagleBone’s single CPU was overloaded by SDR

sampling and demodulation alone.

The prototype based on the Raspberry Pi is in many ways quite similar to the

BeagleBone, but the Pi features a far more powerful processor. This was noticeable, as

GBAS reception and decoding used only about ¼ of available processing time.

The single board computers used are easy to get hold of, both from supplies of electronic

components and certain computer chain stores. In the RPi module, both USB to UART

and UART to serial converter boards were used. This made for a neat, compact design.

However, direct USB to serial cable could also be used with the same result. Such cables

are commonly found in computer hardware stores.

Due to the high volume production of the computers, converters and other components

used, the total price of the assembled system is small when compared to the cost of a

high-end GPS receiver or autopilot.

7.4 Installation of GBAS module in existing UAV systems

An abundance of available interface translation boards makes a general-purpose

computer a flexible platform for controlling hardware interfaces of any kind. Equipping a

single board computer with the required hardware for communicating with the existing

UAV components can be as simple as plugging in a USB dongle.

With the evolution of complex autonomous systems and payloads in UAVs, it is

reasonable to assume that modern, high-bandwidth interfaces will also become more

prevalent. A development platform based on a single board computer is well suited for

such a future, with gigabit Ethernet and high-speed USB available in the more recent

models.

The resulting module is both light and small. While the avionics bay of the Cruiser 2 did

not have room for the prototype module, it could easily be placed in the payload area of

the Cruiser 2 without being a great hindrance to actual mission payloads.

However, there does exist a significant limitation to the general applicability of the UAV

implementation as it is used throughout this thesis (Figure 3.7), specifically with regard

to UAV integration. A core requirement is that the GPS and the autopilot of the UAV are

separate modules, with a connection in between which the GBAS module can intercept.

While a new GPS module can be added alongside the GBAS module in a UAV system, the

autopilot must support GPS positioning by an external module in one way or another.

48

7.5 Selection of hardware

Hardware was partially selected based on availability. Commonly used single board

computers are easily available, but are not designed for or originally intended for critical

applications, such as an avionics module would be.

A challenge with single board computers such as the Raspberry Pi and the BeagleBone,

which the prototypes in chapter 5 are based on, is that their storage is based on SD

cards or eMMC chips. If power is abruptly lost, these can become corrupted. A complete

formatting may be required.

Corruption typically happens when power is lost during a writing operation. In order to

avoid this, there should either be enough power backup (e.g. from a chargeable battery)

to finish the writing, or no writing should be done to minimize the risk.

The FIFO that is used for inter-process communication in the application presented in this

thesis is a file on the drive, but no actual writing is done to the file. All data is passed

between applications by memory alone. As such, the current system does not have a

significant risk of corruption in its current state, but the risk is something that should be

considered if new functionality is to be added. Writing log files would for instance pose a

significant risk, due to the frequent write operations associated.

7.6 “DumpGBAS”

DumpVDL2 features far more functionality than is being used in the GBAS modification. It

allows for collecting stats and logging multiple frequencies simultaneously, as well as

decoding a number of different packaged data formats typically send over VDLM2. These

functions are not relevant to the GBAS receiver and demodulator, but are still present.

This is not desired for a few reasons:

 It can waste processing power that would be better used elsewhere, in turn

leading to additional power drawn by the overall system

 It increases the overall size of the software with functions and modules that are

never called on. It also increases compilation time though that is mostly a

nuisance during software development

 It introduces unnecessary dependencies to other software. Change in the software

dependencies might entirely change how DumpVDL2 works, potentially

introducing bugs or breaking the GBAS implementation in unexpected ways

This motivates the need for a variation, a GBAS-only build, which has here been given

the nickname “DumpGBAS”. Generally, there are two possible approaches by which this

can be achieved:

 Subtractive method, by trimming down DumpVDL2 and removing all parts that

are not relevant to the GBAS demodulation. This requires good insight into the

internal structure of the software so that desired functionality is not affected.

 Additive method, by creating an entirely new project and reusing GBAS-relevant

functions, algorithms and code from DumpVDL2.

Of the two methods, the second is preferable as it allows for a transparent software

design, which allows easier integration of new functionality. For instance, the currently

ignored GBAS SSID could be used to filter out signals from unwanted stations. It is also

desirable to eliminate the FIFO buffer as it adds delay. Currently it is needed for inter-

49

process communication, but by combining demodulation and decoding in the same

program, it could be made obsolete.

RTKLIB, mentioned in chapter 0, could also be added along with the correction

algorithms such that all functionality is contained in a single program. This will make for

a more robust GBAS module.

7.7 Potential implications of GBAS navigation in UAVs

A GBAS navigation platform for UAVs has the advantage of increasing positioning

accuracy over regular GPS. The GBAS system is based on international standards that

assure high system integrity regardless of environmental factors.

Weather related challenges have been limiting UAV operations, not the least in the

proximity of inhabited areas. GBAS allows safe landing of aircraft under low- to no-sight

conditions. Aurora interference on airfields in the northern regions can also cause

problems for the of GNSS signals. GBAS can detect these critical situations, provide

integrity support and thereby improve operational safety.

In terms of pure position accuracy, pseudorange-based GBAS system is not able to

outcompete phased-based RTK position solutions. However, being standardised, GBAS

can enable remote UAV landing at any GBAS enabled airfield. This will allow for long-

range unmanned flights, without requiring a pilot on location for landing, refuelling or

maintenance.

The tested GBAS system poses limited constraints with regard to cost, weight and size.

Future avionics developers might therefore be interested in adding this capability to their

new avionics products.

The benefit of increased safety and greater reliability is especially of interest for

operators of larger UAVs. This will allow for extended capabilities for unmanned

operations in the future.

50

The study of the system requirements for integrating GBAS in UAV avionics showed that

it was possible to design a system that could be integrated neatly with existing avionics.

No significant modification of the existing UAV hardware was required.

The system was test fitted in an existing UAV system at ASC. This reduced the available

payload capacity minimaly. Possible locations for the required additional VHF antenna on

the UAV were explored. Mounting the antenna was found to be possible with only

minimal modification of the airframe.

In order to demodulate the GBAS broadcast, open-source software for the reception of

VDLM2 signals was succesfully modified. The program is able to collect GBAS data bursts,

perform error correction and output the contained messages for further processing. The

content of the broadcast is decoded and the contained data are made available for

correcting the GPS pseudoranges.

Raw pseudoranges from a GPS receiver were smoothed using the carrier phase. The

implications of pseudorange jumps in the data were discussed, both in the context of the

smoothing filter and the pseudorange corrections. The method by which information from

the messages in the GBAS broadcast can be combined with the smoothed pseudoranges

for generating corrected pseudoranges was presented.

Two different hardware prototypes have been developed, each system based on different

off-the-shelf single-board computers. Testing showed that the GBAS software was quite

CPU intensive, such that one of the systems was not able to keep up with data flow. The

Raspberry Pi based system was able to handle the radio samples and communicate with

the UAV avionics at ASC.

GBAS will allow for extended UAV capabilities, since it can detect critical GNSS situations

and provide integrity support. This makes it possible to operate UAVs under low- to no-

sight conditions. In addition, it enables remote UAV landing at any GBAS enabled airfield.

This will extend the capabilities of unmanned operations in the future.

In conclusion, it has been possible to develop a low cost system that allows the

integration of GBAS corrections with UAV avionics, which will improve its autonomous

landing capabilities of UAVs, independent of airfield and weather conditions.

8 Conclusion

51

[1] P. D. Breedveld, Landing Unmanned Aerial Vehicles using a Ground Based

Augmentation System, Trondheim: NTNU, 2018.

[2] EUROCAE, ED-114B MOPS For Global Navigation Satellite Ground Based

Augmentation System Ground Equipment To Support Category I Operations,

EUROCAE WG-28, 2018.

[3] SC-159 RTCA, Inc., RTCA DO-246E GNSS-Based Precision Approach Local Area

Augmentation System (LAAS) Signal-in-Space Interface Control Documant (ICD),

Washington: RTCA, Inc., 2017.

[4] SC-159 RTCA, Inc., RTCA DO-253D Minimum Operational Performance Standards

for GPS Local Area Augmentation System Airborne Equipment, Washington: RTCA,

Inc., 2017.

[5] B. Alex, B. Dan, M. Van and V. Bill, PCC User's Guide v.2.2.1, Cloud Cap

Technology, 2013.

[6] J. Hammitt and D. Miley, Piccolo Vehicle Integration Guide, Cloud Cap Technology,

2011.

[7] Magline, Cruiser 2 Pilot's operating handbook, Spain: Magline Composites y

Sistemas, 2018.

[8] NovAtel Inc., OM-20000094 Rev 8, OEMV® Family Firmware Reference Manual,

Calgary: NovAtel Inc., 2010.

[9] B. Vaglienti, Piccolo Communications v2.1.4.f, Cloud Cap Technology, 2012.

[10] M. Zanmiller and D. Miley, Piccolo Setup Guide, Cloud Cap Technology, 2011.

[11] T. Lemiech, “dumpvdl2 v1.6.0,” 19 January 2019. [Online]. Available:

https://github.com/szpajder/dumpvdl2. [Accessed 20 February 2019].

[12] The National Coordination Office for Space-Based Positioning, Navigation, and

Timing, “Official U.S. government information about the Global Positioning System

(GPS) and related topics,” National Coordination Office for Space-Based Positioning,

Navigation, and Timing, 5 November 2018. [Online]. Available: gps.gov/.

[Accessed 20 March 2019].

[13] Global Positioning System DIrectorate, IS-GPS-200 Navstar GPS Space

Segment/Navigation User Interfaces, Global Positioning System DIrectorate, 2018.

[14] P. Misra and P. Enge, Global Positioning System, Signals, Measurements, and

Performance, Massachusetts: Ganga-Jamuna Press, 2012.

References

52

[15] T. Murphy and T. Imrich, “Implementation and Operations Use of Ground-Based

Augmentation Systems (GBASs) - A component of the Future Air Traffic

Management System,” Proceedings of the IEEE, vol. 96, no. 12, pp. 1939-1957,

2008.

[16] Samferdselsdepartementet, "Forskrift om luftfartøy som ikke har fører om bord,"

30 11 2015. [Online]. Available: https://lovdata.no/dokument/SF/forskrift/2015-

11-30-1404. [Accessed 10 5 2019].

[17] WAVECOM, VDL-M2 Aeronautical data link - advanced protocols, Switzerland:

Wavecom elektronik AG, 2018.

[18] S. E. Anderson, “Bit Twiddling Hacks,” 4 February 2011. [Online]. Available:

https://graphics.stanford.edu/~seander/bithacks.html. [Accessed 1 April 2019].

[19] M. Petovello, “Inside GNSS - Are there special considerations for dealing with raw

GNSS data,” May 2015. [Online]. Available: https://insidegnss.com/are-there-

special-considerations-for-dealing-with-raw-gnss-data/. [Accessed 1 May 2019].

[20] T. Takasu, “RTKLIB: An Open Source Program Package for GNSS Positioning,” 13

May 2019. [Online]. Available: http://www.rtklib.com/. [Accessed 1 June 2019].

[21] Robert Bosch GmbH, CAN Specification Version 2.0, Stuttgart: Robert Bosch GmbH,

1991.

53

54

Appendix A: GBAS message content by type number

Appendix B: DumpVDL2 source code modifications

Appendix C: Python modules for GBAS decoding and use

Appendix D: Schematics and design files for BeagleBone RS232 cape

Appendices

Appendix A: GBAS message content by type number

This appendix contains listings of the data fields contained in each GBAS message type.

The tables for each are close-to-exact copies of similar tables found in the GBAS

standards [1] [2], and are provided here for reference when the messages and their data

fields are discussed.

 MT1:

Message type 1 contains pseudorange corrections for 100-second smoothed pseudorange

data. Table A.1 shows all the contained data fields. The table can be found as 3.7-2 in

[1] and 2-12 in [2]. Reference these sources for full details on all data fields.

Table A.1: Data content of message type 1 [1][2]

Data Content Bits Range of Values Resolution

Modified Z-count 14 0 to 1199.9 sec 0.1 sec

Additional Message Flag 2 0 to 3 1

Number of measurements (N) 5 0 to 18 1

Measurement Type 3 0 to 7 1

Ephemeris Decorrelation Parameter 8 0 to 1.275 ∗ 10−3 m/m 5 ∗ 10−6 m/m

Ephemeris CRC 16 - -

Source Availability Duration 8 0 to 2540 s 10 s

For N measurement blocks:

Range Source ID 8 1 to 255 1

Issue of Data 8 0 to 255 1

Pseudo-range Correction (PRC) 16 ±327.67 m 0.01 m

Range Rate Correction (RRC) 16 ±32.767 m/s 0.001 m/s

𝜎𝑝𝑟_𝑔𝑛𝑑 8 0 to 5.08 m 0.02 m

𝐵1 8 ±6.35 m 0.05 m

𝐵2 8 ±6.35 m 0.05 m

𝐵3 8 ±6.35 m 0.05 m

𝐵4 8 ±6.35 m 0.05 m

 MT2:

Message type 2 contains information on the GBAS ground station, both its location and

configuration. Table A.2 shows all the contained data fields. The table can be found as

3.7-4 in [1] and 2-14 in [2]. Reference these sources for full details on all data fields, as

well as the additional data blocks.

Table A.2: Data content of message type 2 [1][2]

Data Content Bits Range of Values Resolution

GBAS Reference Receivers 2 2 to 4 -

Ground Accuracy Designator 2 - -

 Spare 1 - -

GBAS Continuity/Integrity

Designator

3 - -

Local Magnetic Variation 11 ±180° 0.25°

 Spare 5 - -

𝜎𝑣𝑒𝑟𝑡_𝑖𝑛𝑜_𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡 8 0 to 25.5 ∗ 10−6 m/m 0.1 ∗ 10−6 m/m

Refractivity Index (𝑁𝑅) 8 16 to 781 3

Scale Height (ℎ0) 8 0 to 25500 m 100 m

Refractivity Uncertainty 8 0 to 255 1

GBAS Reference Point Latitude 32 ±90° 0.0005 arcsec

GBAS Reference Point Longitude 32 ±180° 0.0005 arcsec

GBAS Reference Point Height 24 ±83886.07 m 0.01 m

 Additional data blocks may be provided

 MT3:

Message type 3 contains only filler data. Table A.3 shows the contained data field, filler,

which contains a sequence of bits alternating between 0 and 1 [2]. The table can be

found as 3.7-7 in [1] and 2-17 in [2].

Table A.3: Data content of message type 3 [1][2]

Data Content Bits Range of Values Resolution

Filler Variable - -

 MT4:

Message type 4 contains sets of approach data and associated alarm limits. Table A.4

shows all the contained data fields. The table can be found as 3.7-5 in [1] and 2-18 in

[2]. Reference these sources for full details on all data fields.

Table A.4: Data content of message type 4 [1][2]

Data Content Bits Range of Values Resolution

For N data sets:

Data set length 8 2 to 212 bytes 1 byte

FAS data block 304 - -

FAS vertical alert limit/approach

status

8 0 to 25.4 m 0.1 m

FAS horizontal alert limit/approach

status

3 0 to 50.8 m 0.2 m

 MT11:

Message type 11 contains pseudorange corrections for 30-second smoothed pseudorange

data. Table A.5 shows all the contained data fields. The table can be found as 3.7-9 in

[1] and 2-27 in [2]. Reference these sources for full details on all data fields.

Table A.5: Data content of message type 11 [1][2]

Data Content Bits Range of Values Resolution

Modified Z-count 14 0 to 1199.9 sec 0.1 sec

Additional Message Flag 2 0 to 3 1

Number of measurements (N) 5 0 to 18 1

Measurement Type 3 0 to 7 1

Ephemeris Decorrelation Parameter 8 0 to 1.275 ∗ 10−3 m/m 5 ∗ 10−6 m/m

For N measurement blocks:

Range Source ID 8 1 to 255 1

Pseudo-range Correction (𝑃𝑅𝐶30) 16 ±327.67 m 0.01 m

Range Rate Correction (𝑅𝑅𝐶30) 16 ±32.767 m/s 0.001 m/s

𝜎𝑝𝑟_𝑔𝑛𝑑_𝐷 8 0 to 5.08 m 0.02 m

𝜎𝑝𝑟_𝑔𝑛𝑑_30 8 0 to 5.08 m 0.02 m

 References:

[1] EUROCAE, ED-114B MOPS For Global Navigation Satellite Ground Based

Augmentation System Ground Equipment To Support Category I Operations,

EUROCAE WG-28, 2018.

[2] SC-159 RTCA, Inc., RTCA DO-246E GNSS-Based Precision Approach Local Area

Augmentation System (LAAS) Signal-in-Space Interface Control Documant (ICD),

Washington: RTCA, Inc., 2017.

Appendix B: DumpVDL2 source code modifications

This appendix summarises all changes added to the source code of DumpVDL2. The

changes are sorted by the file in which they apply.

 dumpvdl2.h

The definition of the GBAS FIFO location and name of this file has been placed in

dumpvdl2.h, since it is included in all source files. This allows all files have access to its

definition:

#define FIFO "/tmp/gbasfifo"

 dumpvdl.c

The FIFO has to be enabled at the start of the program. This requires two system library

files to be included in dumpvdl2.c:

//For named pipes

#include <sys/stat.h>

#include <sys/types.h>

Where after the FIFO is enabled at the start of the main function by the following line,

where the number 0666 represents the required file permissions to use the FIFO:

mkfifo(FIFO, 0666);

 decode.c

The changes made to the decode.c have been tracked in the following table, and full

source code for the modified file is provided.

Line Change Effect

36 - 38 Added Library imports for data export over named pipe (FIFO)

121 - 127 Commented Function should always return 6

194 Commented Bits should not be forced to 0

200 - 205 Commented Sanity check not applicable to GBAS

207 Modified Subtracted 48 from value

294 - 307 Added Swap RS-FEC byte order in buffer

309 - 317 Added Changed bit order in RS-FEC bytes

334 - 343 Added Pipe out messages over FIFO

344 Added Bypass further processing

1. /* decode.c

2. * dumpvdl2 - a VDL Mode 2 message decoder and protocol analyzer

3. * Copyright (c) 2017-2019 Tomasz Lemiech <szpajder@gmail.com>

4. *

5. * Modified for GBAS broadcast demodulation

6. * Changed 2019 Petter Breedveld <petter.breedveld@gmail.com>

7. *

8. * This program is free software: you can redistribute it and/or modify

9. * it under the terms of the GNU General Public License as published by

10. * the Free Software Foundation, either version 3 of the License, or

11. * (at your option) any later version.

12. *

13. * This program is distributed in the hope that it will be useful,

14. * but WITHOUT ANY WARRANTY; without even the implied warranty of

15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

16. * GNU General Public License for more details.

17. *

18. * You should have received a copy of the GNU General Public License

19. * along with this program. If not, see <http://www.gnu.org/licenses/>.

20. */

21. #define _GNU_SOURCE

22. #include <stdio.h>

23. #include <stdint.h>

24. #include <stdlib.h>

25. #include <string.h>

26. #include <limits.h>

27. #include <unistd.h>

28. #include <glib.h>

29. #include "config.h"

30. #ifdef WITH_STATSD

31. #include <sys/time.h>

32. #endif

33. #include "dumpvdl2.h"

34. #include "avlc.h" // avlc_frame_qentry_t, frame_queue

35.

36. #include <fcntl.h>

37. #include <sys/stat.h>

38. #include <sys/types.h>

39.

40. // Reasonable limits for transmission lengths in bits

41. // This is to avoid blocking the decoder in DEC_DATA for a long time

42. // in case when the transmission length field in the header gets

43. // decoded wrongly.

44. // This applies when header decoded OK without error corrections

45. #define MAX_FRAME_LENGTH 0x3FFF

46. // This applies when there were some bits corrected

47. #define MAX_FRAME_LENGTH_CORRECTED 0x1FFF

48.

49. #define LFSR_IV 0x6959u

50.

51. static uint32_t const H[HDRFECLEN] = {

52. 0b0000000011111111111110000,

53. 0b0011111100001111111101000,

54. 0b1100011100110000111100100,

55. 0b1101101101010011001100010,

56. 0b0110100111100101010100001

57. };

58.

59. static uint32_t const syndtable[1<<HDRFECLEN] = {

60. 0b0000000000000000000000000,

61. 0b0000000000000000000000001,

62. 0b0000000000000000000000010,

63. 0b0100000000000000000000100,

64. 0b0000000000000000000000100,

65. 0b0100000000000000000000010,

66. 0b1000000000000000000000000,

67. 0b0100000000000000000000000,

68. 0b0000000000000000000001000,

69. 0b0010000000000000000000000,

70. 0b0001000000000000000000000,

71. 0b0000100000000000000000000,

72. 0b0000010000000000000000000,

73. 0b1000100000000000000000000,

74. 0b0000001000000000000000000,

75. 0b0000000100000000000000000,

76. 0b0000000000000000000010000,

77. 0b0000000010000000000000000,

78. 0b0100000000100000000000000,

79. 0b0000000001000000000000000,

80. 0b0100000001000000000000000,

81. 0b0000000000100000000000000,

82. 0b0000000000010000000000000,

83. 0b1000000010000000000000000,

84. 0b0000000000001000000000000,

85. 0b0000000000000100000000000,

86. 0b0000000000000010000000000,

87. 0b0000000000000001000000000,

88. 0b0000000000000000100000000,

89. 0b0000000000000000010000000,

90. 0b0000000000000000001000000,

91. 0b0000000000000000000100000,

92. };

93.

94. static uint32_t const synd_weight[1<<HDRFECLEN] = {

95. 0, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 2, 1, 1, 2, 1, 1

, 1, 1, 1, 1, 1, 1

96. };

97.

98. uint32_t parity(uint32_t v) {

99. uint32_t parity = 0;

100. while (v) {

101. parity = !parity;

102. v = v & (v - 1);

103. }

104. return parity;

105. }

106.

107. uint32_t decode_header(uint32_t * const r) {

108. uint32_t syndrome = 0u, row = 0u;

109. int i;

110. for(i = 0; i < HDRFECLEN; i++) {

111. row = *r & H[i];

112. syndrome |= (parity(row)) << (HDRFECLEN - 1 - i);

113. }

114. debug_print("received: 0x%x syndrome: 0x%x error: 0x%x, decoded: 0x%x\n",

115. *r, syndrome, syndtable[syndrome], *r ^ syndtable[syndrome]);

116. *r ^= syndtable[syndrome];

117. return syndrome;

118. }

119.

120. int get_fec_octetcount(uint32_t len) {

121. /*if(len < 3)

122. return 0;

123. else if(len < 31)

124. return 2;

125. else if(len < 68)

126. return 4;

127. else*/

128. return 6;

129. }

130.

131. static int deinterleave(uint8_t *in, uint32_t len, uint32_t rows, uint32_t co

ls, uint8_t out[][cols], uint32_t fillwidth, uint32_t offset) {

132. if(rows == 0 || cols == 0 || fillwidth == 0)

133. return -1;

134. uint32_t last_row_len = len % fillwidth;

135. if(last_row_len == 0) last_row_len = fillwidth;

136. if(fillwidth + offset > cols) // fillwidth or offset too large

137. return -2;

138. if(len > rows * fillwidth) // result won't fit

139. return -3;

140. if(rows > 1 && len - last_row_len < (rows - 1) * fillwidth) // not enou

gh data to fill requested width

141. return -4;

142. if(last_row_len == 0 && len / fillwidth < rows) // not enough da

ta to fill requested number of rows

143. return -5;

144. uint32_t row = 0, col = offset;

145. last_row_len += offset;

146. for(uint32_t i = 0; i < len; i++) {

147. if(row == rows - 1 && col >= last_row_len) {

148. out[row][col] = 0x00;

149. row = 0;

150. col++;

151. }

152. out[row++][col] = in[i];

153. if(row == rows) {

154. row = 0;

155. col++;

156. }

157. }

158. return 0;

159. }

160.

161. static void enqueue_frame(vdl2_channel_t const * const v, int const frame_num

, uint8_t *buf, size_t const len) {

162. avlc_frame_qentry_t *qentry = XCALLOC(1, sizeof(avlc_frame_qentry_t));

163. qentry->buf = XCALLOC(len, sizeof(uint8_t));

164. memcpy(qentry->buf, buf, len);

165. qentry->len = len;

166. qentry->freq = v->freq;

167. qentry->frame_pwr = v->frame_pwr;

168. qentry->mag_nf = v->mag_nf;

169. qentry->ppm_error = v->ppm_error;

170. qentry->burst_timestamp.tv_sec = v->burst_timestamp.tv_sec;

171. qentry->burst_timestamp.tv_usec = v->burst_timestamp.tv_usec;

172. if(extended_header) {

173. qentry->datalen_octets = v->datalen_octets;

174. qentry->synd_weight = synd_weight[v->syndrome];

175. qentry->num_fec_corrections = v->num_fec_corrections;

176. qentry->idx = frame_num;

177. }

178. g_async_queue_push(frame_queue, qentry);

179. }

180.

181. void decode_vdl_frame(vdl2_channel_t *v) {

182. switch(v->decoder_state) {

183. case DEC_HEADER:

184. v->lfsr = LFSR_IV;

185. bitstream_descramble(v->bs, &v->lfsr);

186. uint32_t header;

187. if(bitstream_read_word_msbfirst(v->bs, &header, HEADER_LEN) < 0) {

188. debug_print("%s", "Could not read header from bitstream\n");

189. statsd_increment(v->freq, "decoder.errors.no_header");

190. v->decoder_state = DEC_IDLE;

191. return;

192. }

193. // force bits of reserved symbol to 0 to improve chances of successful decode

194. //header &= ONES(TRLEN+HDRFECLEN);

195. v->syndrome = decode_header(&header);

196. if(v->syndrome == 0) {

197. statsd_increment(v->freq, "decoder.crc.good");

198. }

199. // sanity check - reserved symbol bits shall still be set to 0

200. /* if((header & ONES(TRLEN+HDRFECLEN)) != header) {

201. debug_print("%s", "Rejecting decoded header with non-

zero reserved bits\n");

202. statsd_increment(v->freq, "decoder.crc.bad");

203. v->decoder_state = DEC_IDLE;

204. return;

205. }*/

206. header >>= HDRFECLEN;

207. v->datalen = reverse(header & ONES(TRLEN), TRLEN) -48;

208. // Reject payloads with unreasonably large length (in theory longer frames ar

e allowed but in practice

209. // it does not happen - usually it means we've locked on something which is n

ot a preamble. It's safer

210. // to reject it rather than to block the decoder in DEC_DATA state and readin

g garbage for a long time,

211. // possibly overlooking valid frames.

212. if((v->syndrome != 0 && v-

>datalen > MAX_FRAME_LENGTH_CORRECTED) || v->datalen > MAX_FRAME_LENGTH) {

213. debug_print("v->datalen=%u v->syndrome=%u - frame rejected\n", v-

>datalen, v->syndrome);

214. statsd_increment(v->freq, "decoder.errors.too_long");

215. v->decoder_state = DEC_IDLE;

216. return;

217. }

218. v->datalen_octets = v->datalen / 8;

219. if(v->datalen % 8 != 0)

220. v->datalen_octets++;

221. v->num_blocks = v->datalen_octets / RS_K;

222. v->fec_octets = v->num_blocks * (RS_N - RS_K);

223. v->last_block_len_octets = v->datalen_octets % RS_K;

224. if(v->last_block_len_octets != 0)

225. v->num_blocks++;

226.

227. v->fec_octets += get_fec_octetcount(v->last_block_len_octets);

228.

229. debug_print("Data length: %u (0x%x) bits (%u octets), num_blocks=%u,

last_block_len_octets=%u fec_octets=%u\n",

230. v->datalen, v->datalen, v->datalen_octets, v->num_blocks, v-

>last_block_len_octets, v->fec_octets);

231.

232. if(v->fec_octets == 0) {

233. debug_print("%s", "fec_octets is 0 which means the frame is unrea

sonably short\n");

234. statsd_increment(v->freq, "decoder.errors.no_fec");

235. v->decoder_state = DEC_IDLE;

236. return;

237. }

238. v->requested_bits = 8 * (v->datalen_octets + v->fec_octets);

239. v->decoder_state = DEC_DATA;

240. return;

241. case DEC_DATA:

242. #ifdef WITH_STATSD

243. gettimeofday(&v->tstart, NULL);

244. #endif

245. bitstream_descramble(v->bs, &v->lfsr);

246. uint8_t *data = XCALLOC(v->datalen_octets, sizeof(uint8_t));

247. uint8_t *fec = XCALLOC(v->fec_octets, sizeof(uint8_t));

248. if(bitstream_read_lsbfirst(v->bs, data, v-

>datalen_octets, 8) < 0) {

249. debug_print("%s", "Frame data truncated\n");

250. statsd_increment(v->freq, "decoder.errors.data_truncated");

251. goto cleanup;

252. }

253. if(bitstream_read_lsbfirst(v->bs, fec, v->fec_octets, 8) < 0) {

254. debug_print("%s", "FEC data truncated\n");

255. statsd_increment(v->freq, "decoder.errors.fec_truncated");

256. goto cleanup;

257. }

258. debug_print_buf_hex(data, v->datalen_octets, "%s", "Data:\n");

259. debug_print_buf_hex(fec, v->fec_octets, "%s", "FEC:\n") ;

260. {

261. uint8_t rs_tab[v->num_blocks][RS_N];

262. memset(rs_tab, 0, sizeof(uint8_t[v->num_blocks][RS_N]));

263. int ret;

264. if((ret = deinterleave(data, v->datalen_octets, v-

>num_blocks, RS_N, rs_tab, RS_K, 0)) < 0) {

265. debug_print("Deinterleaver failed with error %d\n", ret);

266. statsd_increment(v-

>freq, "decoder.errors.deinterleave_data");

267. goto cleanup;

268. }

269.

270. // if last block is < 3 bytes long, no FEC is done on it, so we should not wr

ite FEC bytes into the last row

271. uint32_t fec_rows = v->num_blocks;

272. if(get_fec_octetcount(v->last_block_len_octets) == 0)

273. fec_rows--;

274.

275. if((ret = deinterleave(fec, v-

>fec_octets, fec_rows, RS_N, rs_tab, RS_N - RS_K, RS_K)) < 0) {

276. debug_print("Deinterleaver failed with error %d\n", ret);

277. statsd_increment(v-

>freq, "decoder.errors.deinterleave_fec");

278. goto cleanup;

279. }

280. #ifdef DEBUG

281. debug_print("%s", "Deinterleaved blocks:\n");

282. for(uint32_t r = 0; r < v->num_blocks; r++) {

283. debug_print_buf_hex(rs_tab[r], RS_N, "Block %d:\n", r);

284. }

285. #endif

286. bitstream_reset(v->bs);

287. for(uint32_t r = 0; r < v->num_blocks; r++) {

288. statsd_increment(v->freq, "decoder.blocks.processed");

289. int num_fec_octets = RS_N - RS_K; // full block

290. if(r == v->num_blocks - 1) { // final, partial block

291. num_fec_octets = get_fec_octetcount(v-

>last_block_len_octets);

292. }

293.

294. //--------------Swap byte endiannes

295. uint8_t tmp;

296. tmp = rs_tab[r][RS_N-6];

297. rs_tab[r][RS_N-6] = rs_tab[r][RS_N-1];

298. rs_tab[r][RS_N-1] = tmp;

299.

300. tmp = rs_tab[r][RS_N-5];

301. rs_tab[r][RS_N-5] = rs_tab[r][RS_N-2];

302. rs_tab[r][RS_N-2] = tmp;

303.

304. tmp = rs_tab[r][RS_N-4];

305. rs_tab[r][RS_N-4] = rs_tab[r][RS_N-3];

306. rs_tab[r][RS_N-3] = tmp;

307. //--------------

308.

309. //--------------Swap bit endianess

310. for(int i = RS_N-6; i<RS_N; i++){

311. tmp = rs_tab[r][i];

312. tmp = (tmp >> 4) & 0x0F | (tmp & 0x0F) << 4;

313. tmp = (tmp >> 2) & 0x33 | (tmp & 0x33) << 2;

314. tmp = (tmp >> 1) & 0x55 | (tmp & 0x55) << 1;

315. rs_tab[r][i] = tmp;

316. }

317. //--------------

318.

319. ret = rs_verify((uint8_t *)&rs_tab[r], num_fec_octets);

320. debug_print("Block %d FEC: %d\n", r, ret);

321. if(ret < 0) {

322. debug_print("%s", "FEC check failed\n");

323. statsd_increment(v->freq, "decoder.errors.fec_bad");

324. goto cleanup;

325. } else {

326. statsd_increment(v->freq, "decoder.blocks.fec_ok");

327. if(ret > 0) {

328. debug_print_buf_hex(rs_tab[r], RS_N, "Corrected block

 %d:\n", r);

329. // count corrected octets, excluding intended erasures

330. v-

>num_fec_corrections += ret - (RS_N - RS_K - num_fec_octets);

331. }

332. }

333.

334. //--------------GBAS data pipe out

335. int gbaspipe;

336. //write(gbaspipe, rs_tab[r], rs_tab[r][5]);

337. int offset = 0;

338. while(rs_tab[r][offset] == 0xaa){

339. gbaspipe = open(FIFO, O_WRONLY);

340. write(gbaspipe, &rs_tab[r][offset], rs_tab[r][offset+5]);

341. offset = rs_tab[r][offset+5];

342. close(gbaspipe);

343. }

344. goto cleanup; //Short-circuit

345. //--------------

346.

347. if(r != v->num_blocks - 1)

348. ret = bitstream_append_lsbfirst(v-

>bs, (uint8_t *)&rs_tab[r], RS_K, 8);

349. else

350. ret = bitstream_append_lsbfirst(v-

>bs, (uint8_t *)&rs_tab[r], v->last_block_len_octets, 8);

351. if(ret < 0) {

352. debug_print("%s", "bitstream_append_lsbfirst failed\n");

353. statsd_increment(v->freq, "decoder.errors.bitstream");

354. goto cleanup;

355. }

356. }

357. }

358. // bitstream_append_lsbfirst() reads whole bytes, but datalen usually isn't a

 multiple of 8 due to bit stuffing.

359. // So we need to truncate the padding bits from the end of the bit stream.

360. if(v->datalen < v->bs->end - v->bs->start) {

361. debug_print("Cut last %u bits from bitstream, bs-

>end was %u now is %u\n",

362. v->bs->end - v->bs->start - v->datalen, v->bs->end, v-

>datalen);

363. v->bs->end = v->datalen;

364. }

365. int ret;

366. int frame_cnt = 0;

367. while((ret = bitstream_copy_next_frame(v->bs, v->frame_bs)) >= 0) {

368. if((v->frame_bs->end - v->frame_bs->start) % 8 != 0) {

369. debug_print("Frame %d: Bit stream error: does not end on a by

te boundary\n", frame_cnt);

370. statsd_increment(v-

>freq, "decoder.errors.truncated_octets");

371. goto cleanup;

372. }

373. debug_print("Frame %d: Stream OK after unstuffing, length is %u o

ctets\n",

374. frame_cnt, (v->frame_bs->end - v->frame_bs->start) / 8);

375. uint32_t frame_len_octets = (v->frame_bs->end - v->frame_bs-

>start) / 8;

376. memset(data, 0, frame_len_octets * sizeof(uint8_t));

377. if(bitstream_read_lsbfirst(v-

>frame_bs, data, frame_len_octets, 8) < 0) {

378. debug_print("Frame %d: bitstream_read_lsbfirst failed\n", fra

me_cnt);

379. statsd_increment(v->freq, "decoder.errors.bitstream");

380. goto cleanup;

381. }

382. statsd_increment(v->freq, "decoder.msg.good");

383. enqueue_frame(v, frame_cnt, data, frame_len_octets);

384. frame_cnt++;

385. if(ret == 0) break; // this was the last frame in this burst

386. }

387. if(ret < 0) {

388. statsd_increment(v->freq, "decoder.errors.unstuff");

389. goto cleanup;

390. }

391. statsd_timing_delta(v->freq, "decoder.msg.processing_time", &v-

>tstart);

392. cleanup:

393. XFREE(data);

394. XFREE(fec);

395. v->decoder_state = DEC_IDLE;

396. debug_print("%s", "DEC_IDLE\n");

397. return;

398. case DEC_IDLE:

399. return;

400. }

401. }

Appendix C: Python modules for GBAS decoding and use

 GBAS FIFO reading

This python module handles the collection of GBAS messages from the FIFO buffer, as

well as some initial decoding. CRC32 is verified and the GBAS station name is checked

against a whitelist. The module is based on the threading class, so that the fetching and

decoding of data is performed in a separate thread. The most recent values received of

each kind are stored in the module, so that they may be used for corrections.

from crc32 import checkcrcGBAS as checkcrc

import InternationalAlphabet as ia

import os

import errno

import threading

import numpy as np

class gbas(threading.Thread):

 def __init__(self, fifoname):

 super().__init__()

 self.dorun = True

 self.FIFO = fifoname #self.FIFO = '/tmp/gbasfifo'

 try:

 os.mkfifo(self.FIFO)

 except OSError as oe:

 if oe.errno != errno.EEXIST:

 raise

 self.gbas_stations = ["ENGM"]

 self.gbas_messages = [1,2,4,11]

 #Message 1

 self.prc_100 = np.full(256,np.NaN)

 self.rrc_100 = np.full(256,np.NaN)

 self.zcount_100 = np.NaN

 #Message 2

 self.N_R = np.NaN

 self.h_0 = np.NaN

 self.station_height = np.NaN

 #Message 4

 #Message 11

 self.prc_30 = np.full(256,np.NaN)

 self.rrc_30 = np.full(256,np.NaN)

 self.zcount_30 = np.NaN

 def __enter__(self):

 self.start()

 return self

 def __exit__(self, *args):

 self.dorun = False

 def run(self):

 while self.dorun:

 #Open FIFO

 with open(self.FIFO, "rb") as fifo:

 while True:

 data = fifo.read()

 if len(data) == 0:

 #EOF

 break

 self.parse(data)

 def parse(self, rawmsg):

 if not checkcrc(rawmsg):

 return -1, "CRC failed"

 station_name = ia.gbasid(message[1:4])

 if self.gbas_stations and station_name not in

self.gbas_stations:

 return -1, "Unknown station", station_name

 msg_type = message[4]

 if msg_type not in self.gbas_messages:

 return -1, "Unknown message", msg_type

 if msg_type == 1:

 #self.zcount_100 =

 N = rawmsg[8] & 0x1F

 for i in range(N):

 #Collect PRC and RRC from each message block

 pass

 if msg_type == 2:

 self.N_R = (rawmsg[10] * 3) + 16

 self.h_0 = rawmsg[11] * 100

 self.station_height = (rawmsg[23]<<16 + rawmsg[22]<<8 +

rawmsg[21])*0.01

 if msg_type == 4:

 pass

 if msg_type == 11:

 #self.zcount_30 =

 N = rawmsg[8] & 0x1F

 for i in range(N):

 #Collect PRC_30 and RRC_30 from each message block

 pass

 International Alphabet 5

The GBAS station name is encoded as four 6-bit characters from the international

alphabet nr.5, placed in 3 bytes. The function gbasid takes in the 3-byte array and

returns the decoded station name as a string.

Waypoint names from the MT4 use 5-bit characters. Via the function waypointname,

these can also be decoded.

IA5 = {

 0x00: '', #empty, not used for GBAS message field

 0x01: 'A',

 0x02: 'B',

 0x03: 'C',

 0x04: 'D',

 0x05: 'E',

 0x06: 'F',

 0x07: 'G',

 0x08: 'H',

 0x09: 'I', #not used for Route Indicatior field

 0x0a: 'J',

 0x0b: 'K',

 0x0c: 'L',

 0x0d: 'M',

 0x0e: 'N',

 0x0f: 'O', #not used for Route Indicatior field

 0x10: 'P',

 0x11: 'Q',

 0x12: 'R',

 0x13: 'S',

 0x14: 'T',

 0x15: 'U',

 0x16: 'V',

 0x17: 'W',

 0x18: 'X',

 0x19: 'Y',

 0x1a: 'Z',

 #not used for GBAS message field

 0x20: ' ', #space

 #not used for GBAS message field

 0x30: '0', #not used for Route Indicatior field

 0x31: '1', #not used for Route Indicatior field

 0x32: '2', #not used for Route Indicatior field

 0x33: '3', #not used for Route Indicatior field

 0x34: '4', #not used for Route Indicatior field

 0x35: '5', #not used for Route Indicatior field

 0x36: '6', #not used for Route Indicatior field

 0x37: '7', #not used for Route Indicatior field

 0x38: '8', #not used for Route Indicatior field

 0x39: '9', #not used for Route Indicatior field

 #not used for GBAS message field

 }

def gbasid(barr):

 b = 0

 gid = '' #GBAS ID

 for i in range(3):

 b = b | (barr[i]<<i*8)

 for i in range(4):

 try:

 gid = IA5[(b >> i*6)& 0x3f] + gid

 except KeyError:

 pass

 return gid

def waypointname(barr):

 b = 0

 wpn = '' #waypoint name

 for i in range(4):

 b = (b << 8) | barr[i]

 b = (b >> 2) & 0x3fffffff #Tim to 30 bit

 for i in range(6):

 try:

 wpn = IA5[(b >> i*5)& 0x1f] + wpn

 except KeyError:

 pass

 return wpn

 Smoothing filter

The carrier phase smoothing filter is created by supplying filter length in seconds, and

sample frequency in hertz:

filter100 = npSmoothingFilter(100, 4)

filter30 = npSmoothingFilter(30, 4)

filteredpsr100 = filter100.propagateFilter(psr, phi, rst)

filteredpsr30 = filter30.propagateFilter(psr, phi, rst)

The filters are propagated each sample by supplying Numpy arrays for pseudorange,

phase and whether the filter must be reset (this allows the filters to be reset externally if

an error is detected). The function call returns the current filtered values and whether

the filters have reached steady state.

import numpy as np

class npSmoothingFilter:

 def __init__(self, filterlenght, samplefreq):

 self.alpha = 1/(filterlenght * samplefreq)

 self.wavelen = 299792458 / 1575420000 #c / F_L1 =~ 0.190m

 self.p = np.full(32,np.NaN)

 self.prev_phi = np.full(32,np.NaN)

 self.samplecount = np.full(32,0)

 def propagateFilter(self, psr, phi, rst):

 self.p[rst>0] = np.NaN #Reset filter if rst is set

 self.samplecount[rst>0] = 0

 p_proj = self.p + self.wavelen * (phi - self.prev_phi)

 np.nan_to_num(p_proj,False) #Replace NaN with 0

 alpha_weight = np.isnan(self.p).astype(float) #New sats

weighted 1

 alpha_weight[alpha_weight == 0] = self.alpha #Existing sats

weighted alpha

 self.p = alpha_weight * psr + (1-alpha_weight) * p_proj

 self.prev_phi = phi

 sample_mask = np.isfinite(psr).astype(int)

 self.samplecount = (self.samplecount * sample_mask) +

sample_mask

 #Returns filtered pseudoranged and if filter is in steady

state

 return self.p, self.samplecount > 1/self.alpha

 UBlox driver

In order to test the smoothing filter, a simple serial driver for the u-blox GPS was

needed. The implementation shown here is based on the threading class, such that the

serial port is read by its own dedicated thread. A queue object is used to output received

raw messages to a decoder application. The module can be used with the with keyword:

with ublox.ublox(gpsqueue,"COM25",57600) as gps:

This is the recommended use of the module, as it makes sure the serial port is correctly

closed before the program ends.

import serial

import threading

import struct

import time

class ublox(threading.Thread):

 def __init__(self, queue, portname, baud):

 super().__init__()

 self.sync = b'\xb5\x62'

 self.queue = queue #the received data is put in a queue

 self.buffer = bytearray()

 self.state = 0 #0=search for sync, 1=collect header, 2=

collect data+crc

 self.lenght = 0

 self.dorun = True

 self.ser = serial.Serial(port = portname, baudrate=baud)

 #time.sleep(0.1) #Serial returns before port is fully started

 def __enter__(self):

 self.start()

 return self

 def __exit__(self, *args):

 self.stop()

 def run(self):

 while self.dorun:

 self.buffer += self.ser.read(self.ser.inWaiting() or 1)

#read all char in buffer

 if self.state == 0 and self.sync in self.buffer:

 self.state = 1

 self.buffer =

self.buffer[self.buffer.find(self.sync):] #Discard up to sync

 if self.state == 1 and len(self.buffer)>=6: #Entire

header collected

 self.state = 2

 payloadlenght = struct.unpack_from('<H', self.buffer,

4)[0]

 self.lenght = payloadlenght + 6 + 2 #header +

checkdum

 if self.state == 2 and len(self.buffer)>=self.lenght:

#Entire message collected

 self.state = 0

 msg, self.buffer = self.buffer[:self.lenght],

self.buffer[self.lenght:]

 if(self.checksum(msg[2:-2]) == msg[-2:]): #Checksum

OK

 self.queue.put(msg[2:-2])

 else:

 pass #Message discarded

 def stop(self):

 self.dorun = False

 time.sleep(0.1)

 self.ser.close()

 super().join()

 def checksum(self, buffer): #buffer containing all bytes over

which checksum is calculated

 ck_a = 0

 ck_b = 0

 for b in buffer:

 ck_a = (ck_a + b) & 0xff

 ck_b = (ck_b + ck_a) & 0xff

 return bytearray([ck_a, ck_b])

 def send(self, data):

 self.ser.write(self.sync + data + self.checksum(data))

Appendix D: Schematics and design files for BeagleBone RS232

cape

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lt

y
of

 In
fo

rm
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ri
ca

l
En

gi
ne

er
in

g
D

ep
ar

tm
en

t o
f E

ng
in

ee
ri

ng
 C

yb
er

ne
tic

s

M
as

te
r’

s
th

es
is

Petter Diderik Breedveld

Concept for Landing Unmanned
Aerial Vehicles using a Ground Based
Augmentation System

Master’s thesis in Cybernetics and Robotics
Supervisor: Vendela Paxal and Nadezda Sokolova

June 2019

	List of Figures
	List of Tables
	List of Abbreviations
	1 Introduction
	1.1 Motivation
	1.2 Objectives

	2 Background
	2.1 GPS
	2.2 Differential Processing
	2.3 UAV
	2.4 Landing procedures at ASC
	2.5 Limitations of the existing system

	3 GBAS
	3.1 Signal Broadcast
	3.1.1 D8PSK modulation
	3.1.2 The data burst
	3.1.3 The GBAS message

	3.2 UAV application
	3.3 System design

	4 Avionics Software
	4.1 The AP–GPS interface
	4.1.1 Error detection
	4.1.2 Autopilot initialisation
	4.1.3 GBAS-required data

	4.2 Demodulating the GBAS broadcast
	4.2.1 VHF Data Link Mode 2
	4.2.2 DumpVDL2

	4.3 Decoding the GBAS broadcast
	4.3.1 CRC32 redundancy check
	4.3.2 Processing datafields

	4.4 GPS calculations
	4.4.1 Pseudorange correction
	4.4.2 Smoothing filter
	4.4.3 Position solution calculation

	5 Avionics Hardware
	5.1 Hardware interfaces
	5.1.1 Serial port
	5.1.2 UART
	5.1.3 USB
	5.1.4 CAN bus

	5.2 BeagleBone based system
	5.2.1 BeagleBone design
	5.2.2 BeagleBone evaluation

	5.3 Raspberry Pi based system
	5.3.1 Raspberry Pi design
	5.3.2 Raspberry Pi evaluation

	6 UAV Implementation
	6.1 Avionics bay
	6.2 Payload bay
	6.3 Antenna Placement
	6.3.1 Current antennae
	6.3.2 GBAS VHF antenna mounting

	6.4 Interface verification

	7 Results and Discussion
	7.1 GBAS demodulation and decoding software
	7.2 Correcting raw GPS data
	7.3 Reception of GBAS using off-the-shelf components
	7.4 Installation of GBAS module in existing UAV systems
	7.5 Selection of hardware
	7.6 “DumpGBAS”
	7.7 Potential implications of GBAS navigation in UAVs

	8 Conclusion
	References
	Appendices
	Appendix A: GBAS message content by type number
	Appendix B: DumpVDL2 source code modifications
	Appendix C: Python modules for GBAS decoding and use
	Appendix D: Schematics and design files for BeagleBone RS232 cape

