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Abstract

Dexterous manipulations is a field of research within robotics. In the develop-
ment of new control algorithms and methods of making such systems, the need
for a physical and electrical platform arises. This master thesis, in coopera-
tion with SINTEF Ocean, presents a suggestion of design of a dexterous grip-
per. This system can prove to be a valuable platform for further research into
robotic dexterity. The system comprises multiple fields of engineering, which
are presented in this thesis. This includes the physical design of the mechanical
system, the design of a printed circuit board, control theory for controlling the
system, as well as the implementation of software for control.

The mechanical system which has been created, uses 3D printing technolo-
gies to reduce cost, together with a tendon system which enables bi-directional
movement with one motor per joint. The system is fully back-drivable, and the
princples used has potential to enable low elasticity actuation of finger joints.

The electronics that make up the system consist of motors, motor drivers,
angle sensors and other electronics. To handle all of these components in a
manageable way, and make the setup of the system more streamlined in a re-
search setting, several printed circuit boards was designed and manufactured.
An angle sensor board ensured for easier angle measurements in the system,
an serial peripheral interface board made the setup of communication between
controllers simpler, and a low level control board ensured for ease of control.

The successful actuation of a two degree of freedom system was made using
two cascaded control loops, consisting of an inner and an outer loop. The inner
loop applies the correct voltage phase in accordance to stator position to drive
the motor, and thus the joints of the finger, clockwise or counterclockwise based
on the commands from the outer loop. The outer loop gives commands based
on angle sensor readings from the joints of the finger.

Application programming interface, graphical user interface, communication
and control of the system has been implemented in software. A system capable
of detecting and responding quickly to external events has been made, thanks
to the use of C++, wired communication between nodes and integration of a
real time operating system.

Through performance tests of the system, the conclusion is that it will be
able to serve as a platform for further research into dexterous manipulations.
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Sammendrag

Finmotorisk manipulasjon av objekter er et forskningsfelt innen robotikk. I den
p̊ag̊aende utviklingen av nye teorier og kontrollalgoritmer oppst̊ar behovet for
en fysisk og elektrisk plattform å teste p̊a. Denne masteroppgaven, i samarbeid
med SINTEF Ocean, presenterer et forslag til design av en finmotorisk griper.
Dette systemet kan vise seg å være en verdifull plattform for videre forskn-
ing i robotiske manipulasjonsoppgaver. Arbeidet som har inng̊att i oppgaven
best̊ar av flere ulike fagomr̊ader. Dette inkluderer den fysiske utformingen av det
mekaniske systemet, designet av et elektrisk styresystem, reguleringsteknikken
bak styringen av systemet, og implementasjonen av programvare for kontroll.

Det mekaniske systemet som har blitt laget, har tatt i bruk 3D printer
teknologi for å redusere kostnader. I tillegg har et menneskeinspirert sene-
system muliggjort to-veis aktuering ved bruk av én motor. Systemets aktuer-
ingsprinsipp tillater reversibel kjøring, og prinsippene som er brukt i designet
legger til rette for lav elastisitet.

Elektronikken som utgjør systemets motorstyresystem best̊ar av motorer,
motordrivere og vinkelsensorer. For å h̊andtere alle disse komponentene, og
gjøre oppsettet av systemet lett å bruke i eksperimenter, ble flere kretskort de-
signet og produsert. Et vinkelsensorkort sørget for enklere vinkelm̊alinger i sys-
temet, et kort ble laget for å legge til rette for master-slave kommunikasjon, og
et kort for lavniv̊akontroll muliggjorde kontroll av børsteløse likestrømsmotorer.

For å styre en finger, som utgjør to frihetsgrader, er kaskaderegulering imple-
mentert. Best̊aende av en indre og en ytre sløyfe. Den indre reguleringssløyfen
sørger for at korrekt fase f̊ar riktig spenning ut ifra motorens statorposisjon,
videre vil leddene i fingeren rotere.

Programmeringsgrensesnitt, brukergrensesnitt, kommunikasjons- og kontroll-
system er implementert i programvare. Til sammen utgjør dette et system som
er i stand til å detektere og reagere hurtig p̊a eksterne innvirkninger. Dette er
mye takket være implementasjon av høyhastighets C++ kode, sanntidsopera-
tivsystem og ledningsbasert kommunikasjon mellom sløyfene.

Gjennom ytelsestester konkluderes det med at systemet vil kunne tjene som
en plattform for videre forskning i temaet finmotorisk manipulasjon.
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Chapter 1

Introduction

Food production often involves some raw materials being lost or destroyed be-
yond commercial consumption during processing. This is a problem which may
be reduced by taking more care during the handling of raw material. Normally
this means training human staff to be more thoughtful towards the material or
using more custom fitted tools. Though, with the advance of robotics in the
food industry, there is a need for tailoring robotic systems to take care for the
destructibility of materials and to maximize the production volume.

Robotics in food production have become more common since the turn of the
century [IQBAL et al., 2017]. They see much use in the processes of handling,
palletizing and packing food items. But they have yet to see the same boom
as that in other industries like the automobile industry. Comparing the food
industry and the automobile industry one could argue this is because of the
materials being handled are much more pliable within the food sector, and
bruised food does not sell well.

Dexterity is an aspect of robotics that engineers and scientists have been
working towards for a long time, and major improvements have been seen in this
field. In [Okamura et al., 2000], dexterity is defined as the ability to perform
grasps and manipulations of objects in an arbitrary way given an arbitrary
task. An example of a manipulation requiring a high degree of dexterity is
the cooperation of several manipulators changing the configuration of an object
while maintaining contact with the object throughout the task.

Robotics have historically utilized trivial control schemes in the food indus-
try. This project, dubbed dexterous gripper, aims to build a robotic gripper
with the ability to sense that it is gripping something and which has the ability
to perform multiple dexterous grasps. Meaning that, given a trajectory or a
point in space, it is be able to move along the planned trajectory or plan its
own if it is not given. Additionally, when the end effector is exerting force on
an object, it is able to sense and adjust the force applied. To facilitate all of
this cybernetic methods have been used to control the system.
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Figure 1.1: Industrial robot arm with Right Hand Robotics REFLEX gripper.

1.1 iProcess

SINTEF are working to bring more dexterous robots into the food sector.
Through their projects that aim to create systems for gentler handling of caught
fish, they are doing research into robots with aim to make them utilize more
of the material from the animal. One of these projects is iProcess, using the
idea that “flexible robotic automation technology will enable an increase in raw
material utilization, reduce food loss and waste, and to cope with biological
variation of raw material from fish to wheat” [Aursand, 2017].

The dexterous gripper is meant to be used within the iProcess system. This
system consists of the same tools humans use for gripping: eyes, brain and
hands, though in an artificial system. The eyes are replaced with cameras
and computer vision technology, the brain is the central processor handling the
algorithm calculating the optimal grip and the hand is an industrial robot arm
with a dexterous end effector with the ability to gently handle pliable objects.
One of the current industrial robot hands is seen in figure 1.1, used with a Right
Hand Robotics gripper.

The dexterous end effector is where the work of this thesis comes in. In one
of the projects performed at SINTEF Ocean the usage of a sensor developed at
Massachusetts Institute of Technology, called GelSight, is researched. It is made
up of a small camera with three-colored light that together measure deformation
on a transparent gel. Through the use of vision software, the topographical map
that the sensor gives out, different textures and measurements of deformation
can be achieved [Li and Adelson, 2013]. Trough the use of this sensor the ca-
pability of sensing both force of deformation and the direction of force can be
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estimated [Li et al., 2014]. This sensor comes in a small enough package that it
can be integrated onto end effectors to measure applied force.

Figure 1.2: SINTEF-made GelSight sensor prototype.

1.2 Contributions

The work that this thesis encompasses has resulted in the creation of new me-
chanical designs, new electronics designs and software. The delivered contribu-
tions are mostly available in the project’s online repository1 and comprises the
following:

• Dexterous finger: includes assembled parts, blueprints and schematics.

• Gearbox : includes assembled parts, blueprints and schematics.

• Kiyona control board: includes assembled PCBs and circuit schematics.

• Angle sensor board: includes assembled PCBs and circuit schematics.

• Raspberry Pi HAT: includes assembled PCB and circuit schematics.

• Low level control software: includes c++ scripts for low level controller.

• High level control software: includes c++ scripts for high level controller.

• Controller manager software: includes c++ scripts for software to tune
and run several controllers at once.

1Project repository available at: https://github.com/Bardie4/Dexterous
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Chapter 2

Specification

The purpose of the dexterous gripper is to provide a platform for further research
into dexterous robotic manipulation. To create a system capable of this it
is important to first specify in which way this should be done and at what
performance the system should perform. Multiple explicit preferences was put
forth in specifying the regarding to the general specifications of the system.

The specified need from SINTEF researchers is a gripper that consists of
multiple separately controlled fingers, with multiple degrees of freedom (DOF),
that is capable of grasping various objects and performing manipulations with
them. Thus the system should be modular, meaning the design of one fin-
ger should allow for the scalability of assembling multiple into a gripper in an
arbitrary configuration.

The system should be capable of different tasks, distancing itself from the
approach of making special tools for every tasks. A gripper should have high
enough level of control in each joint to provide the basis for distinct tasks.
To exemplify, it should be capable of gripping as diverse objects as cabbages,
tomatoes and small fish.

There are available commercial alternatives capable of dexterous manipula-
tions, with some projects having large teams and lots of funding. Thereby some
have made highly dexterous, but often expensive grippers. As a contrary this
project consists of a small team with limited funding. Consequently, a focus in
this project has been to keep the system simple and cost-effective.

Specific desires were expressed concerning the design of the mechanical sys-
tem. There should be two actuated joints. The reasoning being that a third
joint would be added later, containing the GelSight sensor. There was no desire
to actuate this third joint, making it passive. So, for the purpose of performance
tests that are a part of this thesis the design of the second link’s form was left
up to the authors.

As electrical motors generally inhibit high speed but low torque, it was
agreed that some transmission system had to be made. Both to deliver a higher
amount of torque to the joints of each finger link, as well as moving the motors
away from each links, thus allowing for a slender design. Furthermore, this
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means that the transfer of power has to move through some medium. The
wanted medium was a system of human inspired “tendons”, or wires.

Back-driveability is the capability of a drive mechanism to not only transfer
torque from motor to some output, but also to let torque transfer the other
way. It was set as a priority to make the transfer of torque in the system
back-driveable, as this is easily combinable with a tendon based transmission
system.

There were also requests regarding how software should be designed. Most
importantly it should focus on ease of use. More specifically an application pro-
gramming interface was requested, to allow researchers to easily interface with
the gripper from their own custom made software. Furthermore, the expressed
desire for the use of ØMQ, an Ethernet communication protocol, and flatbuffers,
a method of serializing data was made.

Research is being made into the correction of a robotic gripper during a slip
event. If a gripper is fitted with a GelSight sensor, a software system can be
built to detect that the gripper is losing its grasp on an object. Then measures
can be taken to tighten the grasp, or even catch the object after it has slipped
out. This, of course, sets high specifications in the speed of the algorithms. A
supported frequency of 60 Hz, or 17 milliseconds response time, was expressed
as a need for the system to perform under such conditions.

Another expressed is for the ability to mimic the human behavior of tapping
fingers together within a certain time frame. This is simply wanted as a measure
of the systems performance. If a finger could be able to change directions and
drive an arbitrary angle in each direction multiple times a second it would be
considered a success.

Lastly, there has been expressed a desire that the outcome of this project
should be open source. That is, it should be freely available to access the drawing
needed to assemble the physical system, the schematics needed to manufacture
the electronic system and the required software to program the system. Thus
anyone can pick up where this project leaves off.
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Chapter 3

Mechanical design

The mechanical design of a robotic gripper is a large undertaking and can be a
complex process. It requires a wide range of skills, that is in some cases foreign
to cybernetics students. However, the process of designing the system from
scratch opens up a unique opportunity. Normally, an engineer specialized in
control theory is at the mercy of the engineers that designed the system. How
easily the system controls may or may not have been a priority in their design.
In this project, ease of control has taken priority in multiple cases.

3.1 Prior work

Some work on the mechanical part of this assignment had already been carried
out prior to this thesis. [Winsjansen, 2018] investigated the dynamical impact
of gears and tendons, reviewed gear alternatives, and designed a prototype for a
pulley based gear system. [Danielsen, 2018] did research in gripper design, and
designed the first version of a finger for the gripper, with concepts that are still
in use in the final version.

3.2 Mechanical design specifications

The wanted outcome of this project was, in short, a gripper that had two ac-
tuated links per finger, was back-driveable, and easy to repair. The gripper
should be able to pick up small food items like tomatoes, it should be flexible
and suitable for many tasks, and not be specialist to a specific task. Further-
more, objects should be grasped with a pinching grip. Lastly, modularity of the
finger design should be a main focus. So that if there was only time for one
finger, the design would be scalable. With this principle, an arbitrary amount
of fingers can be assembled to make up different gripper configurations.
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3.3 Design choices

The specifications in section 3.2 still left room for some major design choices.
For example, the question of whether to use tendons or not, or what type of
gearbox to use. Many of these questions were at least partially answered in the
pre-project leading up to this thesis, but not entirely set in stone. However, using
tendons was decided already in the project phase because it allowed motors to
be placed outside the finger, which reduces weight and enables a slimmer design.

3.3.1 Cybernetics and mechanical design

When in doubt, knowledge of control theory has been the guiding hand in design
choices through this project. To get a sense of direction, it is helpful to first
establish what an ideal system looks like. In an ideal system, controlling a joint
would be as simple as controlling a motor. In such a system the relationship
between joint and motor is static. Joint angle is proportional to the motor angle,
and joint torque is proportional to motor torque.

In the pre-project leading up to this thesis, [Winsjansen, 2018] concluded
that a gearbox was necessary to achieve reasonable torque capabilities without
large and expensive motors. It was also established that gearboxes inevitably
introduces unwanted properties, namely friction, backlash and elasticity. Choos-
ing what type of gear to use, meant choosing between elasticity and backlash.
Specifically, belt drives and harmonic drives have no backlash but non-negligible
elasticity, while planetary gears and traditional spur gears have non-negligible
backlash.

Tendons

(a) Open ended configuration (b) Endless tendon.

Figure 3.1: Two basic tendon configurations.

Using the human finger as an example, it quickly becomes apparent how
much the tendons themselves complicate a system. Two separate muscles are
needed to enable movement in two directions. Most movements require a certain
degree of cooperation between muscles. The tendons themselves are flexible, and
thus introduce unwanted dynamical effects.

[Uyguroğlu and Demirel, 2006] describe two basic tendon configurations: the
open ended, and the endless tendon configuration. Both concepts are shown in
figure 3.1.
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The endless tendon configuration has the advantage of only needing one
motor for bidirectional movement. It is also inherently back-driveable, and is
therefore an excellent candidate. The endless tendon configuration is in principle
identical to a belt drive. According to [Höfler, 2018], belt drives are either
friction locked, or uses toothed belts. In both cases, tension is required to keep
the belt from slipping. The elasticity of the belt gives the belt drive a shock
dampening quality, which is often advantageous. However, for this application,
it was established that elasticity is a disadvantage. Efforts has been put into
finding out if the belt actually needs to be elastic, but no concrete information
was found. It is in the author’s intuition that an elastic material is simply well
suited to create traction because of its ability to deform and fit the surface of
the pulley.

The open ended tendon configuration allows the wire to be properly fixed in
both ends. Therefore, traction is no longer an issue, and a non elastic material
can be used as a tendon. In this configuration, tension is used to prevent slack.
An open ended configuration does not allow active actuation in both directions
with only one motor.

Figure 3.2: Combination of the open ended and endless tendon configuration.

During the pre-project, the decision was made to use a combination of the
two configurations. An illustration of this concept can be seen in figure 3.2.
Although it looks similar to the endless tendon configuration, the tendon is
fixed to both pulleys, indicated by a red dot in the figure. This gives the system
a limited range of motion. However, the traction problem is eliminated, which
enables the use of a non elastic tendon. Similarly to the open ended system,
tension is used to reduce slack in the tendon rather than to gain traction. The
system is back-driveable, and can perform bidirectional movement with one
motor. This configuration will be referred to as the limited loop configuration.

3.3.2 Pulley based gear system

The promising prospect of a tendon system with low elasticity and backlash
inspired the idea of designing a pulley based gear system with the same principle.
The simplest possible implementation of this is shown in figure 3.3, where the
radius of the driving pulley is reduced to increase torque output to the link.
The side effect if this change is a significantly reduced range of motion. The
range can be increased by winding the string around the pulleys as shown in
figure 3.4.
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Figure 3.3: Tendon system with mechanical advantage.

Figure 3.4: Pully based gear system with extended range.

3.3.3 Choosing a gear system

A prototype of the pulley based gearbox was designed during the pre-project
phase, and plans were sent to the mechanical workshop at Gløshaugen NTNU.
The design of the prototype is seen in figure 3.21. However, the prototype was
not finished before the deadline of that project, so the choice of gear system
was postponed. [Winsjansen, 2018] concluded that making a custom gearbox
would likely be more expensive than buying a commercial one, because of the
need for a mechanical workshop to build it. The system would therefore need
to perform better than commercially available options to be justified, and was
at that stage unlikely to be used.

However, by the start of this thesis, access was given to a 3D printer. It
was discovered that its accuracy and quality of was sufficient to print the pulley
system. This meant that everything except the motors, screws, electronics and
bearings could be manufactured in-house with the push of a button. This was a
major deciding factor. 3D printing makes the project more available, and lowers
the threshold for others in the open source community to adopt the project. It
also fits in to the modular design philosophy, where fingers can be added to the
gripper as needed. It was therefore decided to move forward with the pulley
based gearbox design. Further details on the gearbox system is found in section
3.5.
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3.4 Design of finger

The human anatomy is an obvious place to draw inspiration from when designing
a robotic gripper. Through countless years of evolution the human hands have
proved to be a tool that has given the necessary advantage to become the top
of the food chain. The human hand goes far beyond the specifications for the
Dexterous gripper. It is capable of a large amount of gripping techniques, and
is a proven multipurpose tool.

3.4.1 Finger phalanges

The human finger, with terminology as defined in figure 3.5, is made up of three
links that protrude out of the palm. In order of increasing distance to the palm
they are: the proximal phalanx, the middle phalanx and the distal phalanx.
Which are connected respectively by the proximal interphalangeal (PIP) joint,
the metacarpophalangeal (MCP) joint and the distal interphalangeal (DIP)
joint. Each of the links are connected to tendons that when flexed or extended
allow for movement and gripping. The dexterous gripper only has two joints.
These will be referred to as the proximal and middle phalanx from this point
on.

A focus of this project is facilitating experiments with the GelSight sensor,
which is likely to be mounted on the gripper through a third non-actuated link.
Therefore, the name “distal phalanx” is reserved for this hypothetical third link.
Similarly the name, PIP joint, and MCP joint will be used to refer to the first
and second joint of the gripper.

Distal	phalanx

Middle	phalanx

Proximal	phalanx

DIP	joint
MCP	joint

PIP	joint

Figure 3.5: Anatomy of a human finger.

3.4.2 Evolution of design

Figures 3.6, 3.7 and 3.8 shows how the finger design progressed throughout
the project. These three versions represent major design changes. There were
however, many iterations in between to solve smaller problems.

The first version was an iteration of the finger design documented by [Danielsen, 2018],
where an early version of the tendon system had been integrated. The middle
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phalanx was little more than a copy of the first phalanx at this point. The two
joints added up to a length of 13 cm, with a base area of 3x3 cm, when not
counting the sensors which added to the thickness at the joints. At this stage,
solutions on how to attach the joints, as well as integration of the angle sensors
were in place.

Figure 3.6: 3D render of dexterous finger revision 1.

The 3D render in figure 3.7 shows the second revision of the finger design.
Compared to the previous revision this one features a more human-like design.
Measurements of the authors’ fingers were made to get similar proportions be-
tween joint sizes and link length. The outer diameter of the PIP joint was set
to 3 cm. By comparison, the author’s index finger PIP joint was measured to
be roughly 2.8 cm across the PIP joint. The MCP joint diameter was based on
the measured ratio between the MCP and PIP joint diameter of the authors
hand, which showed that the MCP joint had roughly 2/3 the diameter of the
PIP joint. Here a 20.4 mm in diameter joint was chosen. The proximal phalanx
length was based on the measured ratio between the author’s proximal phalanx
and PIP joint diameter. The length of the middle phalanx on the other hand,
was not based on the human hand. It was concluded that the lack of distal
phalanx would have made it unnecessarily short.

The tip of the middle phalanx was designed to have the shape of a sphere.
The reason for this is that a 2-degrees of freedom (DOF) finger can not control
the orientation of the tip independently of position. With a spherical tip, the
contact surface always has the same shape regardless of orientation. With this
proposed design a pinching grip will have consistent quality, regardless of where
the object is in relation to the fingers.

The final version had major upgrades in terms of tendon routing and tight-
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Figure 3.7: 3D render of dexterous finger revision 2.

ening mechanisms, with minor changes to appearance. The range of motion was
upgraded from 110 to 135◦, and moved to increase the overlapping workspace
of a multi-finger configuration.

In the final version the proximal phalanx is 5.29 cm long from joint to joint.
The middle phalanx is 6.75 cm from joint to tip, and 5.73 cm from joint to the
center of the sphere. The sphere itself is 1.02 cm in diameter.

Figure 3.8: 3D render of dexterous finger revision 3.
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3.4.3 Design solutions

The shape and appearance of the finger has mostly been a secondary concern.
There were three major design problems that needed to be solved to realize the
finger: How to attach joints and sensors, how to fasten and tighten the tendons,
and how to route the tendons.

Joint attachment and angle sensors.

Figure 3.9 illustrates how a joint is attached. On each side of the joint, a plug
with a square shaped tip is inserted into a fitted slot in the link, locking the
plug and link together as the joint rotates. The outwards facing part of the plug
is round and acts like hinges for the joint when the plug is set in place. These
hinges rest on ball bearings, lowering friction between connected parts.

A magnet, illustrated in red in figure 3.9, is inserted into the plug, and is
locked in rotation with the link. A sensor soldered to a small circuit board is
then mounted over the joint. There is minimal amount of leeway between the
circuit board and its mount, so sliding it into the mount will ensure that it is
kept in place. The sensor measures the direction of the magnetic field created
by the magnet to determine the angle of the link.

Figure 3.9: Plug for assembling finger.

Tendon tension

The first methods used to tighten the tendon was several variations of the con-
cept seen in figure 3.10. The string would be tied around a screw with a nut
attached at the end. The screw could then be tightened, which would move the
nut inwards, and thereby tighten the string. This method had several problems.
the string would sometimes be dragged into the nut and be subjected to sharp
edges that would cut the string. However, the most important shortcoming was
that the tendon could only be tightened to a certain extent before reaching the
end of the bolt. This meant that the string would have to be sufficiently tight
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before being tied to the screw to create enough tension. Although the system
worked, it made assembly unnecessarily difficult.

(a) (b)

Figure 3.10: First tendon tightening system.

The final concept is similar to a guitar tuning key. Figure 3.11 shows the
tuning key analog used to tighten the tendon. The tendon is put through the
hole in the axle, and tied in place. The tuning key is then rotated to tighten the
tendon. Just below the hole in the axle, there is a star shaped pattern that locks
into a slot in the finger. This lock prevents the tuning key from unwinding. The
fastening method enables a high accuracy in tightening of the tendon as the
fastener features 12 notches per rotations and a circumference of 15 mm, giving
1.25 mm of displacement of the tendon with each notch. Because of the hex
shaped bottom, the tuning key can be tightened using a wrench. The tendon
will also pull the tuning key towards the slot as it gets tighter, which prevents
it from popping out on its own.

Figure 3.11: Tendon tuning key.

Tendon routing

The tendons are not elastic, and the set goal was to have a completely rigid
link between motor and finger joints. This means that no matter what position
the finger is in, the length of the tendon loop must stay the same. For the PIP
joint, this is trivial, as its position is always the same relative to the gearbox.

The tendons controlling the MCP joint must pass through the PIP joint,
without the movements of the PIP joint changing the total length of the tendon
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(a) (b)

Figure 3.12: Tendon slack.

loop. This would results in tension loss or a full stop as the tendon would be
unable to stretch further.

The tension slack problem is illustrated in figure 3.12. Here a pulley is used
in the PIP joint to route the tendons to the MCP joint. The tendon wraps itself
around the top and bottom of the pulley in the PIP joint. Small rotations of the
PIP joint works perfectly well. Rotation of the PIP joint results in the tendon
unwrapping on one side, and being further wrapped around the opposite side.
For small movements of the PIP joint, the total loop length stays the same,
and therefore the tension is constant. However, if the PIP joint is rotated to a
certain extent, the tendon would unwrap itself entirely at the bottom side, to
the point where it would lose contact with the pulley. The tendon loop length
would effectively have been shortened, and tension would be lost.

For the endless tendon configuration, [Uyguroğlu and Demirel, 2006] uses
two separate tendon loops that are both connected to the pulley in the PIP
joint. However, this simple solution is made more complex when transferred to
the limited loop configuration. Such a solution would require both loops to be
fixed to the PIP pulley and also loop around it to ensure sufficient range.

(a)

(b)

Figure 3.13: Tendon with slack prevention measures.

A solution more suitable to the limited loop configuration is illustrated in
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figure 3.13. Here the tendon is crossed between the pulley at the PIP joint, and
the MCP joint. This increases the area where the tendon wraps itself around
the PIP pulley, and would allow for greater range of movement (ROM) in the
PIP joint without causing problems for the MCP joint. Additional pulleys are
added before the PIP joint to wrap it even further around the pulley.

Range of motion

the range of movement (ROM) of a finger is defined by its link lengths and the
allowed angle of the joints. Physical barriers stop the finger from bending too
far backwards, or reach forward too far. To ensure that the ROM would be
suitable for grasping tasks, some thought went into the mechanical design.

For dexterous manipulation, at least two fingers has to work together. To
work together, it helps to have a lot of overlapping space where both fingers can
operate. The fact that an object is placed between the manipulators, means
that it is not an absolute requirement. Nevertheless, overlapping space offers
greater flexibility.

In the early finger revisions it was noted that the 2D space that the finger
could operate in was shaped as a thin crescent moon. This is illustrated in
figure 3.14. Here, figure 3.14a shows both joints had a ROM of -20 to 90°, and
the lengths of the links are 5.29 cm for the first and 6.75 cm for the second.
0° is defined as both fingers being extended. The resulting 2D space was poorly
suited to overlap with an opposing finger. By increasing the ROM of each joint
by only 15°, and moving the ROM a little, massive improvements were made.
In the final version, the proximal phalanx has a -45 to 90° ROM. The middle
phalanx has 0 to 135° ROM. The results are shown in figure 3.14b. Here the
resulting area is much better suited to overlap with an opposing finger.
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(a) ROM before adjustment.
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(b) ROM after adjustment.

Figure 3.14: Plots of range of movement before and after joint angle adjust-
ments.
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3.5 Design of gear box

A general rule of thumb in using DC motors in practical applications is that they
give a lot of speed, but little torque. For the control of the dexterous gripper
what was wanted was a compromise between speed and torque, therefore it was
found helpful to introduce a mechanical advantage to the transfer of torque from
motor to the actuated joint. A gear box was created to house this mechanism,
with focus on making it non-intrusive in the movement of the finger and while
also compact and lightweight.

3.5.1 Evolution of design

The first gearbox in use was the prototype from the pre-project. Although it
was originally made at the mechanical workshop at NTNU Gløshaugen, it was
further built upon to test the strength of 3D printed parts, and to determine if
the tendon needed grooves to stay in place. The gear box was large, heavy and
could only actuate one link. Its main purpose was to test the principle.

Figure 3.15: Photo of the second gearbox design

The second design was fully 3D printed, and had two separate tendon sys-
tems in order to actuate both links. An image of this gear box is shown in figure
3.15. It was small, long, slim and was used for the majority of this project. The
different colours is a testament to how many parts where changed during the
course of the project. Tightening mechanisms for the tendons was the main
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focus during this phase. From the picture the gearbox is visibly warped due to
tension in the tendons, and the slim shape.

Figure 3.16: 3D render of final gearbox and finger design.

The third and final version is seen in figure 3.16. A shorter and wider design
made it more robust to tension in the tendons. SINTEF requested the final
version of the gearbox to be changed so that the “palm” was not sticking out.
To accommodate, the gearbox was made wider on the opposite side. Sensor slots
were changed as well because of new and smaller circuit boards. A mounting
bracket was added for the gear box itself.

3.5.2 Design solutions

There were four major challenges to overcome when designing the gearbox:
making the gearbox reasonably small while also having a reasonable amount of
mechanical advantage, adding tension to the tendons, finding a good route for
the tendons, and designing spiral grooves to keep the tendons in place.

Size and mechanical advantage

It was an aim to make the gearbox compact, as the modular design means that
fingers can be placed in many different configurations. Therefore a large gearbox
can be an obstacle for certain configurations.

Similarly to a spur gear, the ratio of the diameter of the two pulleys deter-
mines the mechanical advantage. How small the gear can be made is therefore
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limited by the mechanical advantage, and how small the smallest pulley can be
made without breaking. This holds true for spur gears as well. However, the
pulley system also needs to be tall enough to fit the string that is wound around
it.

nd =
rl
rd

· nl (3.1)

Equation 3.1 gives an approximation of the number of turns necessary for
the driving pulley to achieve a certain range of motion for the link. Here, nl, is
the range of motion wanted for the link expressed in turns. rl is the radius of the
link pulley, and rd is the radius of the driving pulley, and nd is the resulting turns
necessary on the driving pulley. From the equation, it is seen that the number
of turns needed on the driving pulley is related to the mechanical advantage.
With the chosen 135° range of motion, and a mechanical advantage of 12, the
result is 4.5 turns on the driving pulley. This holds true even if the gear is
split up into several stages. Also, only half of the space of the driving pulley is
used at any time. The minimum height of the first pulley is therefore given by
equation 3.2 where h is the pulley height, dt is the diameter of the string, and
nd is the number of turns on the driving pulley.

Figure 3.17: Actuation of the proximal phalanx through a two stage gear box.

h = 2 · dt · nd. (3.2)

Through experimentation with 3D printing, it was concluded that a pulley
diameter below 6 mm was problematic in terms of structural integrity, as tension
could bend the pulley. With the outer diameter of the finger joints already
established to be 30 mm and 20.4 mm, the maximum mechanical advantage for
a single stage gear box is 5 and 3.4.

[Winsjansen, 2018] had calculated that, with the chosen motors, a mechani-
cal advantage of 30 would give the system similar torque capabilities to that of
a human finger. However, the resulting size of the gear box would be too large.
It was instead decided to aim for a 2 stage gear box. Figure 3.17 and 3.18 are
illustrations of how the gear box is used in to actuate the proximal and middle
phalanx.

Table 3.1 lists the diameter of each pulley, and table 3.2 lists the resulting
mechanical advantage.
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Figure 3.18: Actuation of the middle phalanx through a two stage gear box.

Pulley diameter
Motor spindle 7.0 mm
Gear spindle large pulley 21.0 mm
Gear spindle small pulley 7.0 mm
Proximal phalanx pulley 28.0 mm
Middle phalanx pulley 18.4 mm
Wheel 23 mm

Table 3.1: Table of diameters.

Mechanical advantage
Stage 1 Stage 2 Total

Proximal phalanx 3 4 12
Middle phalanx 3 2.63 7.88

Table 3.2: Table of mechanical advantages.
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Number of turns
Motor spindle Gear spindle (small pulley)

Proximal phalanx 4.50 1.50
Middle phalanx 6.66 2.22

Table 3.3: Table of turn numbers.

The tendon length lpp moving in and out of the PIP joint pulley is estimated
in equations 3.3a-3.3b. npp is the number of turns required to achieve the wanted
ROM in the joint, and rpp is the radius of the PIP joint pulley. This length
can be used to calculate the number of turns needed on each pulley, which can
be used to extract the required height of the pulley.

lpp = npp · 2πrpp (3.3a)

lpp =
135°
360°

· 2π14mm = 32, 99mm (3.3b)

Similarly, equations 3.4a-3.4b is used to estimate the length lmp of a tendon
moving back and forth in the last stage of the middle phalanx loop. Unlike the
previous equation, the equation for this tendon has to account for movement
of both joints. nmp is the number of turns of the MCP link, rmp is the radius
of the MCP joint pulley, and rw is the radius of the pulley referred to as the
“wheel” in figure 3.17 and 3.18.

lmp = nmp · 2πrmp + npp · 2πrw (3.4a)

lmp =
135°
360°

· 2π · 9.2mm+
135°
360°

· 2π · 11.5mm = 48.77mm (3.4b)

Table 3.3 lists the number of turns on the smallest pulley of each stage. The
smallest pulleys demand the most turns, and are therefore the crucial design
element in deciding the pulley height.

A 0.13mm thick string with a weight capacity of 8 kg was acquired for the
gearbox. To have range to spare, 8 turns was used on the motor spindle. The
formula in equation 3.2, reveals that the pulley height of the first loop must
be at least 2.08 mm. To get some extra room, the pulleys where chosen to be
6mm tall. Instead of using smaller pulleys for the second loop, a thicker 0.8mm
string string was used instead. The smallest pulley on the gear spindle could fit
3 turns of this string, which provided more range than specified in table 3.3.

Tendon tension and fastening

The problem of how to fasten the string to the pulleys, as well as how to add
tension, was a much bigger challenge for the first stage of the gear box than
the second. The second stage could be tightened in the finger, which had more
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available space for tightening mechanisms. This mechanism is covered in section
3.4.3.

Each stage consists of a large pulley and a smaller pulley. The larger pulley
is the natural place for a tightening mechanism because of the extra space. The
string still needs to be fixed in the middle of the small pulley. To achieve this,
the string was routed through a hole in the middle of the small pulley. The hole
was then filled with plastic glue. In the assembly manual, this is referred to as
the locking hole.

The first tightening mechanism used for the finger showed in figure 3.10 was
also tried in the gear box, with the same results. The tightening range was
simply too small.

Figure 3.19: Drawing of the gear spindle.

The final mechanism is shown in figure 3.19. The top of the gear spindle
acts as a tightening mechanism for the string in the first gear stage, while the
bottom serves as the next stage. Both parts are joined together using a bolt
through their center. Then a string is tied to the upper part, which is rotated
using a wrench or similar. This tightens the string. The string is then tied to
the top of the gear spindle. A bolt runs through the whole gear spindle, and
can be tightened with a nut on the bottom side. The surface between the gear
top, and the rest of the gear spindle has a ridged pattern, which stops it from
moving as long as the bolt is sufficiently tightened.

Tendon routing

The general layout of the gearbox, and a simplified version of how the tendons
are routed, is illustrated in figure 3.20. Colours indicate which plane each loop
reside in. Blue tendons are in the upper plane, and red tendons are in the lower
plane. In the illustration, the number of turns is left out to avoid clutter in the
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figure. Thus, it illustrates how it would look in an endless tendon configuration.
In reality, they are wrapped around the pulleys in accordance with table 3.3.

Figure 3.20: Gearbox layout and tendon routing

Spiral grooves

The first prototype design of the gear box, as seen in figure 3.21, had spiral
grooves to keep the wire in place. If the wire were to cross itself, it would
cause increased tension since the radius at the crossing point would increase. If
the string is not configured in a perfect spiral, the exit and entry points of the
pulleys might traverse the height of the pulley at different speeds, which would
also cause changes in tension.

The idea behind the grooves was creating a more reliable system where the
string positions were stable. With an increase in tension, the string would be
pulled towards the shortest path, which would would be inside the grooves.

Vertical traversal of the pulley

Since one pulley “feeds” the other pulley with string, it is important that the
exit/entry sites on each pulley move at the same speed vertically. This ensures
that the string exiting one pulley always falls directly into the grooves of the
other pulley. In equations 3.5a-3.5f, the conditions necessary for both spirals to
traverse vertically at the same speed is calculated.

Equation 3.5a shows height gain in spiral 1 h1, as the first spiral is rotated.
Here p1 is the “pitch”, which is the height gain for one turn. +theta1 is rotations
in radians. Equation 3.5b is identical, but for pulley 2.

The relationship between rotation in pulley 1 and 2 is described in equation
3.5c, and is given by the mechanical advantage. Here r1 and r2 is the radius of
pulley 1 and 2 respectively.
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Figure 3.21: Prototype of pulley based gearbox. [Winsjansen, 2018]
.

Inserting equation 3.5c into 3.5b, yields equation 3.5d which shows the tra-
versed height of pulley 2 in relation to rotation of pulley 1.

Equation 3.5e holds true if the pulleys traverse vertically at the same rate.
The result is shown in equation 3.5f, and shows that the pitch of pulley 1 and
2 must be related through the mechanical advantage.

h1(θ1) =
p1
2π

· θ1 (3.5a)

h2(θ2) =
p2
2π

· θ2 (3.5b)

θ2 =
r1
r2
θ1 (3.5c)

h2(θ1) =
p2r1
2πr2

θ1 (3.5d)

dh1
dθ1

=
dh2
dθ1

(3.5e)

p1 = p2
r1
r2

(3.5f)

Rate of exchange

Equations 3.6a-3.6i investigates if one pulley is able to receive the same length
of string that the other pulley feeds as they rotate. Equation 3.6a is used to
calculate the length l of the string that fits inside one turn of the spiral.

The length of the string for an arbitrary angle of rotation is found by dividing
by 2π and multiplying by the angle. Thus, equation 3.6b gives the string length
of pulley 1 with respect to the angle of pulley 2.

Using the relationship between θ1 and θ2 from equation 3.5c, the relationship
between the string length of pulley 2 and the angle of pulley 1 is found in
equation 3.6c.

24



In equation 3.6d the string lengths are set equal. This must be true for the
pulleys to be able to exchange the string without problems. Simplification of
this equality through equation 3.6e-3.6i reveals the same condition as in equation
3.5f.

l = ·
√

(2πr)2 + p (3.6a)

l1(θ1) = θ1

√
(2πr1)2 + p21

2π
(3.6b)

l2(θ1) = θ1
r1
r2

√
(2πr2)2 + p22

2π
(3.6c)

l1(θ1) = l2(theta1) (3.6d)√
(2πr1)2 + p21 =

r1
r2

√
(2πr2)2 + p22 (3.6e)

(2πr1)2 + p21 =
r21
r22

[(2πr2)2 + p22] (3.6f)

(2π)2 +
p21
r21

= (2π)2 +
p22
r22

(3.6g)

p21 =
r21
r22
p22 (3.6h)

p1 =
r1
r2
p2 (3.6i)

Spiral phase

Although the spirals exchange the cord at a synchronized rate, the issue of
“phase” still remains. Assuming the grooves at the top of both spirals have
been manually aligned, the connection at the bottom of the spiral may be out
of phase. Figure 3.22 illustrates the phase shift. Here there are zero whole
turns.

Suppose the horizontal line at the top is the string connecting the two helices
at the top of the two pulleys. Because of the difference in radius, the other line
representing the bottom connection will be phase shifted by 19.19 °. This phase
shift is an additional amount of rotation that was not accounted for in equation
3.6a-3.6i. In equation 3.7a-3.7f this phase shift is added.

Equation 3.7a is the expression for the string length for pulley 1. Here, angle
is replaced with turns, and whole turns are denoted as n. From figure 3.22 it
is seen that both pulleys has at least half a turn ± the phase shift, and the
number of whole turns. Equation 3.7b is the string length of pulley 2. Here the
condition for pitch found in equation 3.5f is inserted into p2.

Setting the string lengths equal to each other (equation 3.7d-3.7e) leaves
a messy, and less useful expression. As an example, equation 3.7f gives the
solution to p1. However, when inserting the desired radius, turns, and p2, the
resulting pitch for pulley one may not be practical. Tweaking the variables to
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something sufficiently close to the desired values will often produce practical
results. consequently, using this formula becomes an optimization problem.

A simpler solution to the phase shift problem is introducing a separate phase
shifted spiral on each pulley. This configuration is displayed in figure 3.23.

SOLIDWORKS Educational Product. For Instructional Use Only.Figure 3.22: Helix phase shift diagram.

l1 = (n1 + 0.5 + η) ·
√

(2πr1)2 + p21 (3.7a)

l2 = (n2 + 0.5 − η) ·
√

(2πr2)2 + (p1
r2
r1

)2 (3.7b)

l1 = l2 (3.7c)

(n1 + 0.5 + η) ·
√

(2πr1)2 + p21 = (n2 + 0.5 − η) ·
√

(2πr2)2 + (p1
r2
r1

)2 (3.7d)

(n1 + 0.5 + η)2 · ((2πr1)2 + p21) = (n2 + 0.5 − η)2 · ((2πr2)2 + (p1
r2
r1

)2) (3.7e)

p1 =

√√√√√ (2πr2)2(n2 + 0.5 − η)2 − (2πr1)2(n1 + 0.5 − η)2

(n1 + 0.5 + η)2 − r22
r21

(n2 + 0.5 − η)2
(3.7f)

Grooves or not

Figure 3.24 illustrates the existence of a shortest path between the fixed points
used in the gear box. Adding tension should therefore force the strings into a
stable configuration without grooves. Whether it is “stable enough” is a different
question, and will be further discussed in section 7.1.2.

The complexity added by the inclusion of grooves proved to be very time
consuming, and the concept was eventually abandoned. Small changes could
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Figure 3.23: 3D render of helix phase shift solution.

mean that the grooves would need to be redesigned. For example, the thickness
of the string would effectively change the radius of both pulleys. However, in
terms of percentage, the change would be small for the largest pulley, but large
for the smallest pulley. For example, a pulley with 10 mm diameter, with a 2
mm diameter string wrapped around, yields an effective radius of 11 mm, which
is a 10% increase. If the other pulley is 20mm, the radius changes by only
by 5%.The mechanical advantage would therefore be changed, and everything
would need to be redesigned. Another issue that deserves mentioning is that the
string takes a sloped path through the air gap between pulleys. This is apparent
from figure 3.24, where the squares on the right show the cylinders rolled out
on a plane defined by the trajectory of the tendon. Thus, The spiral grooves
on each pulley needs a vertical offset, as well as all the previously discussed
considerations, for it to work.

Figure 3.24: The shortest path for the string in the gear system

3.5.3 Hybrid gearbox

A hybrid solution was proposed, using a planetary gear as the first gear stage,
while keeping the second intact. The principle is illustrated in figure 3.25. This
would have the benefit of reducing complexity and Assembly time. Backlash
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Figure 3.25: Proposed solution using planetary gear as first stage

introduced by the planetary gear would be reduced through the second gear
stage. However, the project ended before such a system could be explored.

3.6 Design of rack

A rack was made to simplify the testing environment of a two finger configura-
tion. It can house one Raspberry Pi model 3 B with a connected SPI HAT and
two Kiyona control boards, meaning it can control a two finger configuration
of the dexterous gripper. The Raspberry Pi and the two ESP32s are intercon-
nected through holes in the rack that make the connection ports on all cards
accessible, there needs to be room for the input of four SPI cable, two coming
from each of the two fingers, to the Raspberry Pi HAT. The ESP32s each need
to output six wires with the PWM signal for the motors, accept the two wire
I2C interface as well as connect to external power supply and ground. The rack
also features slots for all three boards to keep them secured, and mounts for two
fingers.

To mount the fingers in a configuration with the ability to perform dexterous
manipulations side mounts were also designed. They each feature seven cutouts
that meet the dimensions of the mounting plate of the gearbox presented in
section 3.5. Thus, the operator is able to assemble the fingers in a variety of
different configurations, allowing for experiments with differing overlaps of the
ranges of motion of two fingers.
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Figure 3.26: Dexterous gripper rack.

3.7 Construction

An assembly guide has been made to streamline the process of putting the
finger and gearbox together, it is available on GitHub 1, together with original
Solidworks files, as well as print-ready files.

3.7.1 3D-printing

All the plastic parts for a complete finger with gearbox can be printed in one
run using a FlashForge Finder 2.0 printer. Figure 3.27 shows the layout of the
print, which was set up in the FlashPrint software. The estimated print time
is 39.5 hours with the highest resolution, 35mm/s print speed, and 15% infill.
All parts where made using these settings. Using 100% infill on high stress
parts like the tuning pegs and gear spindle top is recommended, but not strictly
necessary.

Experimentation with the 3D-printer showed that printed parts tended to
shrink a little. For the bearings which had an outer diameter of 13 mm and
bore of 8 mm, the axle could be designed with 8 mm diameter and make a
tight fit. The bearing slot would need to be 13.2 5mm in diameter because of
shrinkage. In general, 0.25 mm was the go-to clearing when something needed
to fit tightly together. It should be noted that other 3D-printers may behave
differently, and that sanding the printed parts is always necessary. Orientation
also plays a large part on the result. For example, holes that perforates an
object horizontally will not be perfectly round. The side facing down will also

1The project’s repository is available at: https://github.com/Bardie4/Dexterous
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Figure 3.27: 3D print layout for finger and gearbox parts.

have inferior quality compared to the side facing up.

3.7.2 Parts

In addition to the 3D printed parts, the following items needs to be acquired:

• 2 pcs. 24V 15W EC flat motors

• 6 pcs. M3 x 6mm bolt

• 20 pcs. M2 x 10mm bolt

• 2 pcs. M3 x 30mm bolt

• 2 pcs. M3 hex nut

• 16x 8x12x3.5 bearings

• POWER PRO Microfilament braided line (diameter: 0.13 mm)

• FSE ROBLINE (diameter: 0.8mm)
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Chapter 4

Controller design

The choice of control strategy is crucial in controlling the dexterous gripper and
ensuring stability of the system. Therefore considerable effort has been put into
designing a suitable controller.

4.1 Overview

SINTEF’s vision for the gripping system was for it to be a somewhat self con-
tained control system. This meant that control loops should run on hardware
that is a part of the gripper, while an outside system sends commands for the
gripper to perform.

Outside the gripper itself, cameras and other sensors, like the GelSight,
would be used to locate objects and figure out appropriate control objectives
for the gripper in order to interact with its environment. This system is outside
the scope of this thesis, and only exists in fragments. It will be referred to as
task control. The GelSight sensor would enable the task controller to verify the
quality of grasps performed by the gripper. New control objectives could then
be sent to the gripper in case of detected inadequate grasp quality.

[Winsjansen, 2018] had decided on BLDC motors as the actuator of choice
for the gripper, and done research into control methods for the motor. For
BLDC motors, as opposed to DC motors, the magnetic field has to be controlled
manually. This system will be referred to as “low level control”. The low level
control system acts like an interface that simplifies interactions with the motor.

Between the task loop and low level control is “high level control”. High level
control can be many different things depending on the task at hand. Position
control, trajectory control, and so on. The total structure of the control system
is illustrated in figure 4.1. Where high and low level control are the main areas
covered by this thesis.

From a kinematic perspective the finger of the dexterous gripper is rather
simple, as illustrated in figure 4.2. It consists of two links, l1 and l2, with two
actuated joints θ1 and θ2. Meaning, its workspace is only in two dimensions. As
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Figure 4.1: Overview of total system structure.

the GelSight sensor housing is further built upon and miniaturized by SINTEF,
it will potentially be mounted on the finger in the form of a passive third link
l3.

 

θ1

θ2

θ3

 

l1

l2

l3

Figure 4.2: Kinematic illustration of the finger.

4.2 Low level motor control

The low level control consists, in short, of motor control using the angle sensor
readings. Figure 4.3 shows the feedback control system for the control of one
motor.

Robust and accurate control of each joint is needed to control the finger.
To achieve this it was chosen to utilize a BLDC motor, as presented in section
5.1.2. The chosen motor, Maxon EC 32 flat, is able to operate at a wide range
of speeds given an able controller. For this project it was aimed to make a
controller using an external angle sensor for commutation.

The success in control of a BLDC motor wholly depends on the implemen-
tation of a commutation principle. [Winsjansen, 2018] presents several such
principles, where the conclusion is a recommendation of using trapezoidal com-
mutation in a commercial motor driver sold with the motors, an Escon module
24/2 servo controller. This proved unfeasible as it was simply too slow, which is
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Figure 4.3: Joint control loop.

discussed further in section 5.1.1. Another control strategy was therefore chosen
instead: sinusoidal commutation.

What is common for all DC motors is that they are actuated through ap-
plying current to their windings, causing the induction of a magnetic field. This
magnetic field will, when overlapping with another inversely charged magnetic
field cause an attracting force. Generally these fields are induced by permanent
magnets in the DC motor. For a single pole pair motor the maximum force is
achieved when the permanent magnets and the magnetic field are at a 90◦ angle
of one another.

Put shortly, the control of a brushless direct current motor differs from that
of a brushed DC motor by its stator and rotor’s function being swapped. In a
BLDC motor the rotor is a permanent magnet, while the stator holds the coils
which induce the magnetic fields needed to drive the motor. The motor used
in this project is a three phase motor, meaning three pairs of coils need to be
magnetized to drive the rotor.

The three most widely used ways to control a BLDC motor are: trapezoidal,
sinusoidal and field oriented control (FOC) commutation [Lee et al., 2009]. For
this project sinusoidal commutation was chosen, as it provides better perfor-
mance than trapezoidal, while not being as complex and expensive as FOC.
It would provide the overall best control, but most of the performance gain is
in high speed control, which is not as important in this project as controlling
torque accurately.

If a pure sine wave current is delivered to the motor-windings, the magnetic
field strength will also be sinusoidal. In a three phase motor the sum of the
sinusoids will be a constant value as the motor turns. The optimal combination
of voltages applied to the windings resemble that of three sine waves with 120◦

phase shift, as in figure 4.4a. This commutation principle can be implemented
with widely available microcontrollers with the ability to drive a PWM-signal
at adequate frequencies. As a bonus the motor will run silently given a high
enough frequency.

To achieve optimal torque control the angle of the rotor is measured, as
discussed in section 5.1.4. To give the angle sensor a reference value the motors
are, on startup, driven to their endpoint in a calibration routine. The endpoint
is then set as a zero point in software. Using this as a reference; a combination
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of PWM signals can be calculated that will give optimal torque. Optimal
torque is achieved when the magnetic field of the stator is set 22.5°clockwise
(or counter-clockwise) from the current angle. This way, the torque vector
is pointing tangentially along the periphery of the motor giving the maximal
torque possible.

120∘ 120∘

Phase	1 	 	 	 	 	 	 	Phase	2 	 	 	 	 	 	 Phase	3

(a) Three phase sine wave.
A'

A

S

S

S

S

N

NN

N

B

B'

C'C

(b) Four pole-pair, three-phase BLDC
configuration.

Figure 4.4: BLDC principles.

4.3 High level control/Outer control loop

There are several useful objectives to control in the outer loop, and it depends
on the task the robot is trying to achieve. Some tasks require the robot to follow
a trajectory, other tasks could require it to go to a certain position, or reach a
certain speed. There can be an optimization problem to be solved, and certain
conditions to avoid. For grasping tasks, or dexterous manipulation in general,
the force applied to objects is important because it is through these forces the
object is manipulated.

Principally, there is no controller that does everything. Because of this, con-
siderable efforts were put into making a controller manager system. The system
in question is further detailed in section 6.3. It enables changing controllers,
tuning controllers, calibrating sensors, broadcasting sensor data on the local
network, and running different controllers for different fingers at the same time.

This left little time for implementing the actual controllers themselves. How-
ever, two controllers were made to control the joint angle; one with joint angle
set point as input, and the other with Cartesian coordinates as input.

34



4.3.1 Independent joint control

Independent joint control is the simplest form of control in robotics. As the name
suggests, each joint is controlled independently, and any interaction between
links is treated as a disturbance.

Joint space input

A controller with joint space inputs is used when inverse kinematics is calculated
outside the gripper. If the robot, that the gripper is theoretically mounted on,
also has its inverse kinematics calculated on a separate computer, it might
make sense to do the same with the gripper. Thus, gathering everything in the
same place. In this configuration, robot and gripper movements can be planned
together, which opens up the opportunity to use advanced features like collision
avoidance.

PID Low	level 
motor	control Joints

Torque

Angle

u
-

Angle	set	point

Figure 4.5: Independent joint controller with joint space inputs

Cartesian input

Instead of planning the movement of the robot and gripper together, the robot
can simply move the gripper within reach of an object. Then, fingers can then
be moved using Cartesian coordinates. From figure 4.6 it is seen that the only
difference to the joint space controller is the inverse kinematics calculation per-
formed on the input.

PID Low	level	
motor	control Joints

Torque

Angle

Angle	set	point u
-

Inverse
kinematics

Cartesian	set	point

Figure 4.6: Independent joint controller with Cartesian inputs

The inverse kinematics is calculated using equation 4.1a-4.1e, where the ±
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sign chosen in equation 4.1a determines the elbow direction for the solution.

θ2 = atan2(±

√
1 − (

x2 + y2 − l21 − l22
2l1l2

)2,
x2 + y2 − l21 − l22

2l1l2
) (4.1a)

k1 = l1 + l2cos(θ2) (4.1b)

k2 = l2sin(θ2) (4.1c)

γ = atan2(k2, k1) (4.1d)

θ1 = atan2(y, x) − γ (4.1e)

4.3.2 MCP joint and motor coordinates

Figure 4.7 illustrates how the MCP joint angle is a function of both the motor
angle and the angle of the PIP joint. In this figure, the concept is simplified
by not including any gear stage and pretending that the motor pulley has equal
radius as the MCP joint pulley. Thus, the angle of the motor is not a real angle,
but an illustrative coordinate.

MCP jointMotor 2 Wheel

Proximal phallanx

Figure 4.7: Connection between motor angle, PIP angle and MCP angle

When the proximal phalanx rotates in the direction of the arrow, the tendon
of the MCP joint wraps it self around the upper part of the “wheel” at the PIP
joint. Note that the wheel rotates freely, and is not fixed to the rotation of the
PIP joint. The length of tendon wrapped around the upper part lw is given by
equation 4.2a, where θpip is the angle of the PIP joint and rw is the radius of the
wheel. This length must be taken from either the motor pulley or MCP joint
pulley, causing a them to rotate as illustrated by the arrows in figure 4.7. This
can be represented by the equality in equation 4.2b . Here lmcp is the length of
tendon coming from the bottom side of the MCP joint, and lm2 is the length of
tendon coming from the bottom side of the imaginary motor pulley.

Inserting the same formula used in equation 4.2a, into equation 4.2b, yields
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equation .

lw =
θpip
2π

2πrw = θpiprw (4.2a)

lpip = lmcp + lm2 (4.2b)

θpiprw = θmcprmcp − θm2rmcp (4.2c)

θm2 =
θmcprmcp − θpiprw

rmcp
(4.2d)

The motor coordinate can be a useful coordinate for controlling the MCP
joint. As an example, lets say that the set point of the PIP joint changes, while
the MCP joint should stay where it is. Then, according to equation 4.2c, the
motor of the MCP joint still has to move in order for the MCP joint to stand
still.

When θmcp is controlled directly, the movements in the PIP joint will be
experienced as a disturbance on the MCP joint. However, when controlling
θmcp through the motor coordinate θm2, it is apparent that the motor was
already in the wrong position from the start.
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Chapter 5

Electronic design

To control a gripper driven by electrically actuated motors there is a need for
an electronic sensor and actuation system. The gripper consists of motors and
sensors which need to cooperate for the finger to follow any desired trajectory.
To create such a system an interconnection of hardware is needed. As a re-
quirement for making the system usable by a person without deep knowledge of
how it is programmed, or how it is put together, user friendly electronic design
should be made.

5.1 Hardware

When choosing hardware for the dexterous gripper the emphasis has been put
on choosing integrated circuits that are easy to work with and which provide the
necessary processing power and speed to be able to perform dexterous move-
ments. This project’s specifications put high demands in reaction time for the
gripper to be able to sense and automatically correct its movements.

5.1.1 Escon module 24/2 servo controller

The Escon module 24/2 servo controller was acquired during the project leading
up to this thesis. It was marketed as a velocity controller, but could also be
used for torque control, and was relatively cheap. The module was included in
a cascade control scheme, to control the angular position of the joint of a finger.
Here, it acted as the inner loop, controlling torque. The outer loop was a PID
angle controller running on an Arduino Uno Rev3, which fed the Escon module
inputs based on angle error.

The setup proved to have stability problems, and was simplified in order to
investigate the source of the problem. Eventually, the setup consisted of only a
motor with nothing attached other than the angle sensor. The outer loop was
simplified to a proportional controller. However, the problem persisted. The
motor would either be to weak to move when the proportional gain was low, or
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oscillate when the gain was increased. It was concluded that the controller was
not suited for our application. Most likely, it was not suited to control torque
in while rapidly changing directions, or the commutation method (trapezoidal
commutation) was too inaccurate for torque control at low speeds. The Escon
module was therefore rejected.

5.1.2 Motor

A Maxon EC 32 flat BLDC motor was chosen to drive the joints of the system.
It is a fast and responsiv three phase, four pole pair, brushless direct current
(BLDC) motor, in a small package. Four pole means there are eight permanent
magnets with alternating polarity arranged along the stator of the motor. The
speed and real-time concerns of this project means that a powerful and fast
motor was needed. The fact that the motor comes in a very compact package
(32 mm in diameter by 16 mm in height), coupled with its adequately low
power usage at 24V 15W makes it suitable for integration into a robotic finger.
Furthermore utilizing a BLDC motor enables the implementation of sinusoidal
commutation, a high performance control strategy. The choice of motor was
done in the pre-project stage and is further described by [Winsjansen, 2018].

5.1.3 Motor driver

A Texas Instruments DRV8313 2.5-A triple 1/2-H bridge driver was chosen to
drive the motor. When controlling a 15W BLDC motor using a 3.3V logic
microcontroller there is a need to step up the PWM signal. A voltage of 3.3V
and current in the milliampere range does not induce a large enough magnetic
field to rotate the rotor. Instead, the PWM signal voltage controls a 24V PWM
signal that the motor is rated for through each field-effect transistor in the motor
driver.

The selection of motor was based on the fact that it provides the necessary
speed, accepts PWM input signals and supports the power level of 24 V 0.5
A which matches the power ratings of the chosen motor. The driver comes in
a HTSSOP-28 package with dimensions of 9.70 mm x 4.40 mm, meaning it is
small, and therefore suitable for placement onto a printed circuit board which
can be kept close to, or even integrated ted into, the gripper. Furthermore, this
driver enables motor control with sinusoidal commutation, the chosen motor
control method in this project, further discussed in section 4.2.

5.1.4 Angle sensor

In this project the accurate control of joint and motor angles was critical, there-
fore a substantial amount of time was spent finding an optimal solution for fast
and accurate angle feedback. The choice landed on a MA302 12-bit contactless
angle sensor, a small surface mounted IC. The main reason for this choice was
its compact package of 3 mm x 3 mm and the fact that it employs no mechani-
cal parts which would lead to wear and tear. This sensor works by sensing the
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direction of magnetic fields, meaning angles can be read by placing a magnet in
the center of a moving joint.

5.1.5 Current sensor

To control the motor torque with a feedback controller a torque measurement
is needed. This can be implemented rather easily using accurate current sensor
technology, as current is proportional to torque in most direct current motor
applications [Amin and Rehmani, 2015]. A Texas Instruments INA240A4 cur-
rent sense amplifier was chosen as a consequence of its low interference with the
motor commutation circuit. It measures the voltage drop over a shunt resistor
with a voltage gain of 200 V/V. Thus, a small resistor can be placed in series
with the motor windings with only a small effective loss.

5.1.6 Low level controller

An Espressif DOIT ESP32 DevKit V1 microcontroller, or ESP32 for short,
was chosen as the low level controller, or slave node. Its tasks is to control
the motor through PWM and handle the low level control of the system. It
was chosen mainly because of its 240 MHz clock speed and it possessing 25
general-purpose input/output (GPIO), making it capable of controlling two
finger joints. Furthermore it has two fast cores which allow for multiprocessing
and use of multiple pins simultaneously, and it supports serial peripheral inter-
face (SPI), inter-integrated circuit (I2C) and Bluetooth, thus providing multiple
connection options for the system.

This microcontroller can be used with the Arduino IDE with the option
to run FreeRTOS, a real time operating system. Thus, it allows for the use
of concurrency patterns, and implementation of a scheduler. More on this in
section 6.1.3

5.1.7 High level controller

For the implementation of the high level controller, or master node, the choice
landed on the Raspberry Pi model 3 B. The task of this node is to execute the
calculations needed in planning paths and kinematic tasks, therefore a need for
more processing power than a microcontroller presented itself. The Raspberry
Pi is a single board computer (SBC), meaning it is a fully fledged computer
with a quad core 1.2 GHz processor able to run the linux operating system
raspbian, which makes it capable of performing the real-time demands of this
project. The compilation of C++ code, for example, has a strong community
on this SBC.

The Raspberry Pi also comes with 28 ready to use GPIO pins, which allow
for multiple communication protocols. This is important as one of the tasks of
the master node is to communicate with the slave node. Both SPI and I2C
communication can be implemented using available open-source libraries.
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5.2 Communication

The electronics that go into the dexterous gripper is made up of several com-
ponents with different means of communication. Due to the desired reaction
time of the gripper being very quick, the approach has been to choose compo-
nents that utilize reliable and speedy communication protocols. Some knowledge
about the different protocols is necessary to make all components cooperate ef-
fectively.

5.2.1 Protocols

The protocols used most excessively in this project are: SPI, I2C and ØMQ.

SPI

serial peripheral interface (SPI) is a four wire communication protocol. It re-
quires four pins to communicate back and forth: master output slave input
(MOSI), which outputs data on this pin if it is master and reads data on this
pin if it is slave; master input slave output (MISO), which outputs data on this
pin if it is slave and reads data on this pin if it is master; clock (CLK), the clock
signal which sets the speed of the transfer of data; and chip select (CS), which
gets pulled low by the master to signal a communication to another node. A
request and reception of data is exemplified in figure 5.1.

CS

SCLK

MOSI

MISO

1

1 1 10 0 0 0 0

0 0 01 1 1 1

Instruction Read

0xE5

0x4A

Figure 5.1: SPI transfer example.

Each finger requires two angle sensors in the joints, which each need their
own chip select port on the master node, each addition of a finger means that
two additional CS pins are needed. The rest of the SPI pins are shared with
the other fingers in the system, consequently the time spent communicating will
increase and thus the timeslot for other tasks will decrease. The two motors
integrated into a finger each have a dedicated SPI port on the slave node.
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I2C

I2C is a two wire interface which enables multiple connections through the same
ports. Its ports are named SDA for serial data, and SCL for serial clock. The
SDA port transfers the data, while the SCL port sets the timing of data transfer.
This communication protocol integrates addressing, so all slave nodes in the
system need to be defined with an address. The sequencing of data transfer is
exemplified in figure 5.2. Each slave node reads only the data addressed to it
by the master node, and ignores all others.

Compared to other protocols used in this project, like ØMQ and SPI, this
protocol has a low frequency. As the Raspberry Pi only supports a frequency
up to 400 kHz. The outer loop becomes slower than the inner loop, though in
control theory this is common.

Start Addr
7

R/W
1

ACK
1

Data
8

ACK
1

Stop

DataData

Figure 5.2: Simplified I2C transfer example.

PWM

Pulse-width modulation are signals which are controlled by frequency and duty
cycle, as seen in figure 5.3. The frequency defines the length of a cycle, while the
duty cycle determines for what proportion of a period the signal is high. PWM
is an alternative to analog values in control of electrical motors, as their inertia
is inherently slower than the switching of a pwm signal. In microcontrollers
PWM signals are generated using clock timers and chopping the signal up into
discrete values, causing the average value to be proportional to the duty cycle.

ØMQ

ØMQ, or ZeroMQ, is a library written in C++ which enables high-speed asyn-
chronous communication through several communication protocols (e.g. IPC,
TCP, TIPC). When connecting through an Ethernet connection, extremely low
latency can be achieved. This protocol can be used in between the GUI PC and
master to send position commands and receive info on the state of the system.
Section

5.2.2 Communication overview

In figure 5.4 the required components needed to control one joint is shown. A
one-joint system is made up of an ESP32 microcontroller, a DRV8313 motor
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Figure 5.3: PWM transfer example.

driver, a MA302 angle sensor and an INA240 current sensor. The microcon-
troller sends PWM signals to the motor driver which are converted to a higher
power signal with the same frequency and duty signal. The rotation of the
motor is sensed by the angle sensor which sends the latest angle value to the
microcontroller upon request using the SPI communication protocol. Lastly,
the current sensor measures the current through the motor and reads back an
analog voltage signal to the microcontroller.

Microcontroller
ESP32

Motor	driver
DRV8313

Motor
Maxon	EC

Flat

Angle	sensor
MA302

Current
sensor
INA240

Joint	control

SPI

Voltage
Hall	effect

PW
M
	5
V

PW
M
	2
4V

Current

Figure 5.4: Joint control communication diagram.

To control a finger the same setup as in figure 5.4 is reused twice, as seen
in figure 5.5. Additionally, a master controller is added to sense the angles and
create an outer control loop. Communication between nodes is setup using I2C
as protocol. As with the slave node, the master node also uses SPI to read the
angle sensor values.

The specific I2C connection for a two slave setup, allowing for the control of
two fingers, can be seen in figure 5.6. Normally such a connection would require
pull-up resistors to bring the signal high. However, both the Raspberry Pi and
ESP32 module allow for internal pull-up on the pins used for I2C communica-
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Figure 5.5: Finger control communication diagram.

tion. In this setup the Raspberry Pi has its SDA and SCL pins pulled up with
internal 1.8 kΩ resistors, while the pull-ups in the slave nodes are disabled.

Raspberry	Pi
I2C	master

ESP32
I2C	slave	1

ESP32
I2C	slave	2

SDA
SCL

Figure 5.6: I2C connection method.

5.3 Circuit design

The process of enabling the electronic components to communicate and work
well together has led to the creation of three different printed circuit board s:
one main control board, dubbed Kiyona, with the purpose of integrating a
microcontroller, motor control and communication; a board for the Raspberry
Pi, allowing for easier access to the microcomputer’s SPI and I2C ports; and
a magnet sensor board, allowing for integration of angle measurements in the
dexterous gripper.

5.3.1 PCB design

The ICs MA302, DRV8313, INA240 and MAX6520, as well as resistors and
capacitors, all come in surface-mount device (SMD) packages, which means
they have to be surface soldered on to the circuit board. AUTODESK EAGLE
was used to create the circuit designs, as well as to place the layout of the board.

The reasoning behind creating custom PCBs is that the only commercially
available hardware to be found, able of running two BLDC motors with accurate
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torque and position control were very expensive. Therefore the choice landed
on creating a tailored solution that would not necessarily achieve the same level
of performance, but would certainly be a great deal cheaper. Furthermore, the
creation of a tailored PCB, made the whole system easier to work with, as
before its creation the prototype setup consisted of multiple breadboards and a
complex interconnection of wires.

Some of the ICs did not have available libraries for placing pads on the board
with EAGLE. Therefore, custom libraries had to be created. A quick workflow
for achieving this is to simply capture a screenshot from the particular IC’s
datasheet showing the trace and take note of the spacing between pins. Using
the screenshot and the knowledge of the spacing between pins one can overlay
the image in the board layout and create a matching trace pad following the
outline of the image.

Once a PCB was finished they were all ordered from the manufacturer
SEEED. To ensure that the boards were successfully fabricated, computer-aided
manufacturing (CAM) files had to be generated from the schematic and board
files in software, then uploaded for manufacture. These files include data on
where to place traces, the conducive material on a PCB; the placement of holes
drilled into the board; and the dimension of the board.

For ordered assembly of PCBs, which was purchased for the last revision of
the main control board, the placement of components also have to be defined and
linked to a bill of materials (BOM). A BOM is a table containing the desired
parts, which is needed to relay what specific components should be soldered on
to the board. Using EAGLE, coordinates of the components are specified in
a mount SMD file. Meanwhile, the specification of which component belongs
to which coordinate is specified in a pdf, showing only the relevant layers of
the PCB. A PCB design consists of multiple layers, a way of categorizing the
aspects that go into the full design.

Soldering

Solder is applied to the PCB using a stencil. A stencil is a sheet with holes
cut out for each surface-mount device trace on a PCB. The soldering job is
simplified by aligning the holes of the custom-made stencil and the PCBs pads
(the exposed conductive material). When solder is applied onto a flat edge
and dragged across the stencil, solder will be applied evenly. The stencil was
delivered by the PCB manufacturer SEEED and offered an easier method of
applying solder than the alternative of doing it manually with a solder paste
syringe or the standard tin solder.

Once solder is applied evenly it needs to be heated up. A good alternative
is to use a solder heat gun. By holding the heat gun at a little distance from
the component that is to be soldered overheating of it can be avoided, if the
heat gun outlet is then brought closer the solder will turn metallic as a sign it
has melted. Once the tip is pulled away the solder will quickly cool, leaving the
component soldered to the board.
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5.3.2 Kiyona, low level control board

To ensure that the circuit would be reliable and compact, a suited printed circuit
board was designed. Named Kiyona, the Japanese word for dexterity.

Figure 5.7: Kiyona V1.0.

The design seen in figure 5.7 was the initial design, which upon delivery
was found to have critical design errors. Some oversights had been made: the
through hole connections made for a female socket on the right side of the board
was placed upside down. This would have been no problem if that was the case
for the pads on the left side also, but unfortunately that is not the case. This
error in design meant that the board was unusable.

As the first design was not usable a second revision was made. The second
design also seemed faulty at first. During troubleshooting it was discovered that
a crucial trace had not been drawn; the trace between supply voltage from the
motor and the input to the motor driver IC. The reason for the error had to do
with confusion regarding the naming of the pins in the circuit schematic. Seeing
as the circuit diagram is basically one circuit on the left side and a mirrored
circuit on the right side it was thought a good idea to create only the first circuit
and mirror it. This would have worked well, had it not been for the mislabeling
of some of the pins. The traces that were made from the two power supply
inputs on the motor driver were lead to the same point but not further to the
actual motor supply power on the board. So, hook up wire was soldered onto
the board between the two points, that were accessible on the board via two
SMD and electrolytic capacitors. This quick fix had the board up and running,
without problem.

The third revision adds the traces missing from the previous revision, as well
as adding a ground plane. The addition of a ground plane to the board adds
shorter ground paths for all ground pads and lessen general noise on the board.
Still, the largest change was the addition of current measurement. By utilizing
a current measurement IC on the board a higher accuracy in torque control can
be achieved.

This revision also saw the usage of both the top and bottom side of the
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board. By placement of half of the parts on the bottom, the size of the board
is reduced by about 25% compared to the previous revision.

Previous versions had 11 pin flat flex cable (FFC) connectors meant for
the motors. It was deemed a better option to just use terminal blocks instead,
as only three of the connections are needed for connection to the three phase
motor. Also removed was the 6 pin SPI FFC connector to the master, as it
was instead decided to go with the I2C protocol for communication between the
slave and master node.

This last revision of the board was manufactured and assembled by SEEED,
using components available in their warehouse. Parts which could not be found
in their catalogue were bought and soldered separately. Specifically, SEEED
assembled capacitors, resistors and the motor drivers. The components that
were left were voltage regulators, a voltage reference IC, current sensors and
the external connection components: FFC cables, terminal blocks and female
pin headers.

Microcontroller

The microcontroller integrated onto the Kiyona control board mainly has four
external connections: communicating with the master node, sensing the angle
of the motor, sensing the current through the motor windings and driving the
motor.

On the PCB the microcontroller is incorporated using two row of female
headers matching the spacing of the DOIT ESP32 Devkit board. In doing so
all the features of the board are kept, meaning that one is still able to connect
to the microcontroller and program it. The 3.3V regulator on the board is still
operational and the benefit of the on-board flash memory and read-only memory
(ROM) is also kept. Overall the reason for the microcontroller being integrated
this way, as opposed to using the microcontroller IC that this board is based
upon, is that the outcome of this project is aimed at research into dexterous
manipulation. The idea is that the researcher experimenting with the dexterous
gripper should find no difficulty in flashing the low level controller with new
code.

Motor driver

Two motor drivers are situated on the board, each with pins on one side con-
nected to the MCU and the other side connected to the windings of the BLDC
motor, visible in figure 5.8 as the HTSSOP package with 28 pins. The side con-
nected to the microcontroller receives three PWM signals, one for each phase of
the motor, as seen in figure 5.9 as IN1, IN2 and IN3. It also receives three enable
inputs, EN1, EN2 and EN3, each for enabling their respective PWM outputs to
the motor. Also connected to the microcontroller are NSLEEP, NRESET and
NFAULT, which respectively function to disable the driver, reset the driver and
reading out a fault signal if there is a thermal or voltage error.
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Figure 5.8: Kiyona board, third revision.
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The PWM output from the driver is connected to a three pin terminal
block with the outputs meant for the motor. A wide assortment of capacitors
are also placed close to the driver. The IC needs to be connected to a 0.01
µF capacitor, C7, between its CPH and CPL pin, seen in figure 5.9, acting as a
charge pump. C8, connected between motor voltage also acts as a charge pump.
Charge pumps are needed as this is a H-bridge driver, and when the centre of
a half bridge needs to be brought high the capacitor discharges to bring the
voltage higher than the supply voltage on the high side of the FET. The 100
µF electrolytic capacitor, C16, is connected between motor supply voltage and
ground and acts as a bulk capacitor. meaning it holds a large charge in the case
that the supply voltage drops low and can keep supplying power for a couple
milliseconds of time. This capacitor is connected in parallel with another, C10,
with a value of 0.1 µF, which acts as a decoupling capacitor. Its job is to keep
the voltage up during shorter losses of power. Mixing capacitors with different
values is a common practice to mitigate voltage drops that may lead to brown-
or blackouts. This is all recommended in the driver’s datasheet.1
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Figure 5.9: Motor driver circuit schematic.

Power supply

Feeding the MCU, motor drivers and angle sensors with the adequate power is
important for the operation of the board’s components. Three different voltage
regulators are therefore mounted on the board, one for powering the MCU
and one for powering each of the two motors. The voltage regulator powering
the microcontroller, the 7805, delivers 9V/500mA, while the regulators for the
motors, two 7824s, output 24V/500mA. All of the voltage regulators get their
voltage input from the same power source, meaning one finger and its board only
need one off-board power supply for which a 24V/2A supply is recommended.
The voltage regulators have ceramic SMD capacitors between input and ground,
as well as between output and ground, to reduce transient voltage spikes, as
recommended in their datasheet 2.

1DRV8313 datasheet available at http://www.ti.com/lit/ds/symlink/drv8313.pdf
278xx datasheet available at https://www.st.com/resource/en/datasheet/l78.pdf
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Heat is a big issues when working with electronics in small packages sup-
plying power to components with high power demands. The main generators
of heat on the Kiyona control board are the voltage regulators, as linear volt-
age regulators work by converting power to waste heat. To avoid this problem
the solution has been to simply not run experiments with the gripper for long
periods of time.
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Figure 5.10: Voltage regulator circuit schematic.

Current measurement

Two current measurement ICs is added to the third revision of the PCB, let-
ting the controller sense the current through two of the motor windings. The
DRV8313 motor driver is designed for easy addition of current monitoring, as
each phase has its own ground output pin. By placing a INA240 Bi-directional
current sense amplifier on these pins, the back EMF from the motors can be
measured. Two current sensors are attached to each motor, giving four current
sensors in total. By measuring the back EMF on two of the phases the third
current can be calculated. As Kirchoff’s current law states:

I1 + I2 + I3 = 0 (5.1)

Current is measured by placement of the INA240 IC in parallel with a shunt
resistor which the current passes through. For this a 0.01Ω resistor was used, as
the current passing through it will be in the range of ± 0-0.5A, giving a voltage
range of ± 0-0.005. The INA240 version used is specifically the INA240A4,
which provides a 200 V/V gain. Meaning the output voltage from the IC has a
range of ±0-1V. The ESP32 is not able to read negative voltages on its ADC,
therefore the current sensor IC is given a higher than ground reference, pulling
the voltage signal up from ground. By utilizing a MAX6520 voltage reference IC
from MAXON the current sensor is supplied a 1.2V voltage reference. Meaning
the voltage to be read by the ESP32 is in the range of 0.2 to 2.2V.

The placement of the resistor, IC and traces on the PCB is important
to pay attention to. The resistor and IC is placed in a Kelvin connection
as recommended in the IC’s datasheet3, meaning they are configured so that
current has to pass through the shunt resistor before passing through the current

3INA240 datasheet available at: http://www.ti.com/lit/ds/symlink/ina240.pdf
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sensor. A cutout is made of the PCB’s ground plane to ensure that the current
is measured through only the resistor before reaching ground, thus allowing for
more accurate readings. This is important because of the low value of resistance
of 0.01Ω, meaning every millimetre of measurement area has an effect on the
reading.

The ESP32 microcontroller features multiple analog-to-digital converter (ADC)
pins. Different voltage ranges can be defined in ADC readings, with the stan-
dard implementation being readings between 0 and 1V, for the readings on the
board it was set to a range between 0 and 3.6V. This gives adequate range
for the current sensor output in the range of 0.2-2.2V. The microcontroller can
measure with up to 12-bit accuracy, giving 4096 unique values, where 2275 of
them is in the effective area. This gives about 1mV/bit. Still, the ADC is not
perfectly linear, especially in the area around 0 or 3.6V, which is why these
areas are kept out of the effective area. In other words, the current monitor
system is not very accurate, but its purpose is only to give a feedback reading
to the motor controller.
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Figure 5.11: Current sensor circuit schematic.

External connections

Each microcontroller needs to communicate with five devices that are not mounted
on the board. These are the angle sensors that are situated in the joint of the
fingers, the motors which are mounted on the gearbox and the master node.
The connection with the MA302 contactless angle sensor is added to the board
using a six position 1.00mm pitch FFC connector. The connection from the
motor driver to the motor is not direct as the motors are placed off the board.
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Power to the windings is therefore passed to a terminal block with three con-
nections, allowing for the connection to the finger via any suitable three lead
cable. To communicate with the master node I2C is used. This is integrated
on the Kiyona control board using a terminal block with three connections, one
for SDA, one for SCL and the last for connecting a shared ground reference.

5.3.3 Raspberry Pi HAT

A raspberry Pi PCB HAT was designed and manufactured for the purpose of
easier access to the master node’s SPI port, which is seen in figure 5.12 with
four out of six SPI ports soldered on. HAT is short for hardware attached
on top and denotes a type of board which is placed on top of another piece of
hardware to provide some additional functionality. In this case, as the control of
the system relies on angle sensor readings, it was deemed necessary to streamline
the process of accessing the angle reading from the master node. The design is
based upon the Adafruit 16-Channel PWM/Servo HAT schematics and board
outline.4

The board breaks out the one SPI port to six 6 position FFC connectors,
where each uses an exclusive chip select pin, thus enabling the communication
with six different SPI sources. I2C, on the other hand, is incorporated using
standard headers placed in the holes in the very left of figure 5.12, SDA and
SCL. Seeing as this boards can read six angle readings as well as communicate
with the low level controller, each of these boards can support the control of up
to three fingers.

(a) Board outline. (b) Manufactured board.

Figure 5.12: Raspberry Pi HAT.

5.3.4 Angle sensor board

Seeing as each finger relies on four of these contactless angle sensors, and as
no commercial alternative was available, a custom board for the sensors was
made. As can be seen in figure 5.13 it has a small form factor allowing for easy
mounting onto the finger and gearbox. As is seen in figure 5.13 only 7 of the
pads are connected. They are the four pins needed for SPI, as discussed in

4Adafruit 16-Channel PWM/Servo HAT files available at: https://learn.adafruit.com/

adafruit-16-channel-pwm-servo-hat-for-raspberry-pi/downloads
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(a) Board outline. (b) Physical board.

Figure 5.13: Angle sensor board.

section 5.2.1, as well as power supply and two ground pins. The signals from
the IC lead to a 6 pin FFC connector and uses a capacitor pad for soldering
on a 1 µF capacitor for reducing noise between supply voltage and the ground
reference. The board is made to a dimension of 13.4mm by 13.4mm.

The angle sensor board is placed onto the finger, as discussed in section 3.4.3.
After assembly onto the finger and gearbox it was discovered that the design
could be improved by creating a two layer design. By moving the capacitor and
the connector to the bottom side of the PCB even more space can be saved and
the FFC connector would be more accessible.
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Chapter 6

Software implementation

This chapter contains a description of the implementation of the control the-
ory from chapter 4 as well as the communication protocols discussed from an
electronics perspective in chapter 5. The programming language of choice was
C++, which proved to be fast and reliable both in the low level slave controller
nodes and the higher level master node.

6.1 Real-time computing

The dexterous gripper is a real-time computing (RTC) system, meaning its
is tasked with fulfilling deadlines set by external events. Reacting quickly to
its external environment is one of the key elements in making a robotic system
dexterous. Through the use of real-time software frameworks such as FreeRTOS
and concurrency tools such as mutexes and scheduling a high-performing system
can be constructed.

Each finger relies on the control of two motors, one for each joint. The
accurate control of two motors requires a fast core to periodically check for the
change in reference position or joints as a consequence of external movements.
In addition the processing unit needs to communicate with the other nodes in
the system. All this creates high demands in the structure of the program.
As another option to a fast core taking care of all aspects of controlling two
motors, the program can be split across two cores to ensure more to happen
simultaneously.

Execution of a program is divided into processes, which are further divided
into threads. Processes are the part of a program which own the necessary
resources and data. Threads are the part that follows an execution path. A
multithreading system offers the ability to run multiple threads within a pro-
cess. Threads are generally faster than processes and switching between threads
within a process is fast. Threads within the same process inherently share re-
sources.
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6.1.1 Inter-task communication

The dexterous gripper system, which interacts with the physical world, can be
said to be required to produce certain results within a given deadline, which is
the definition of a real-time system. It explicitly needs to be able to respond
to external interactions within a time-frame for the dexterous gripper project
to be considered a success. This creates a need for an operating structure that
is flexible and can run a scheduler for periodic actions like reading sensor data,
outputting motor drive signals, communicating with other nodes (fingers) in the
system, while also being optimized to respond to external actions. An external
action can be the sudden jerk of a joint exerted by external forces.

6.1.2 Data race

The program relies on mutex synchronization to avoid the potential for data
races. A data race occurs when the output of a task depends on the ordering
of events. In the case of the dexterous gripper it is important that the same
data registers are not attempted manipulated at the same time. The writing
and reading of SPI communication to peripherals are especially exposed to this.
Mutexes help avoid data races by locking access to a resource. It is a special
data type that holds a value of either zero or one, a the thread that requests to
use a data race-exposed resource decrements the related mutex, thus signaling
to other threads that this resource is unavailable. Now, when another thread
tries to access the resource while it is locked by a mutex, it is forced to wait for
the previous thread to finish before the mutex is released and the resource is
made available.

When implementing mutexes extra care is taken to avoid that the different
threads do not end up in a deadlock. A deadlock occurs when multiple threads
are waiting for other threads to release their resource, but they are not releasing
their resource before other threads release theirs.[Coulouris, 2012] Thus, the
threads are locked in a circular state of waiting. This is visualized in figure 6.1,
where the threads, A and B, are waiting for each other to release a resource
needed by each respective thread.

Figure 6.1: Deadlock
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6.1.3 FreeRTOS

In addition to supporting the use of the Arduino IDE for programming, the
ESP32 chip also has the ability to utilize the tools of the free Real Time Oper-
ating System, free RTOS. This operating system is widely used in applications
which require multi-core or multithreading utilization of cores. Something which
is also very useful when creating a system with real time concerns.

The benefit of using FreeRTOS is that the system can run a scheduler with
multiple priorities for different parts of the system, thus allowing for the most
critical parts of the system to interrupt less important parts of the system.

As an alternative to mutex locking of threads accessing the same resource
simultaneously one can opt to use the FreeRTOS implementation of queues.
By using this principle two threads can pass messages between each other to
share resources. In the low-level torque control of the motors on the ESP32 one
thread is tasked with handling motor control, while another polls the I2C buffer
for new messages. To pass new messages to the motor control thread without
interrupting the timing, a queue is set up between these two threads. Messages
are passed to the motor control thread when new data is input from the master.

6.2 Slave node: Low level control

Control	of	a	finger

Core	1

motorTask(joint1)

motorTask(joint2)

Joint1	Queue

Joint2	Queue

Core	2

masterComTask()

Figure 6.2: Dual core program structure for control of a finger.

The control of the system has been implemented on the system architecture
presented in chapter 5. Which, in short, consists of a Raspberry Pi taking com-
mands from a master PC and angle sensor readings from the physical system,
while converting master commands into commands for the slave node which
actuates the joints via BLDC motors.

As figure 6.2 shows, the low level control software is split between two cores.

6.2.1 Angle sensor reading

Implementation started with the reading of the angle sensor, these commands
were inspired by the arduino library written by Monolithic Power1, the man-
ufacturer of the MA302 angle sensors. Software for this had to be built from

1Monolithic Power MagAlpha library available at: https://github.com/monolithicpower/
MagAlpha-Arduino-Library
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scratch seeing as the open library from the manufacturer was not compatible
with the ESP32, as it is not a standard Arduino board. Still, the reading of the
angle sensor was trivial with the open library as inspiration.

To read the angle of the sensor we need to pass it a command of 8 bits
reading 0x00 in hexadecimal or 00000000 in binary over the SPI port. It then
reads back 8 bits representing the angle read by the sensor, where 0 represents
0◦ and 255 is 360◦. An alternative is to send 16 bits of only zeroes, whereupon
the sensor will read back the angle reading in a 12 bit representation, giving
more accuracy.

1 hspi->beginTransaction(SPISettings(spiClk, MSBFIRST, SPI_MODE0));

2 digitalWrite(H_CS, LOW);

3 uiAngle = hspi->transfer(0x00);

4 digitalWrite(H_CS, HIGH);

5 hspi->endTransaction();

Listing 6.1: Implementation of SPI angle reading.

Listing 6.1 shows the implementation of angle reading done in the low level
controller. A transaction is begun with a call to the beginTransaction member
of the SPI class instance, then the chip select pin is pulled low to make the sensor
prepare to output an angle reading. Then by sending 0x00, which is the read
angle command, the angle is sent back to the controller. This function blocks
and waits for the value to be read back. At last the chip select pin is pulled
high and the transaction is ended with a call to the endTransaction function.

6.2.2 Motor control

Control of both motors controlling one finger is implemented entirely in software
on the low level controller. Based on the angle sensor reading a desired torque
is calculated, resulting in a PWM duty cycle output that sets the torque of the
motor.

Each of the two motors connected to each microcontroller is setup with three
PWM pins, one enable pin and one fault reading pin. The microcontroller’s
PWM is initialized with a call to ledcSetup(), passing the wanted channel,
PWM frequency and resolution as arguments. The frequency PWM FRQ is defined
as 300 000 Hz, while the resolution is set to 8-bits. The microcontroller supports
up to 12-bits of resolution but this comes at the expense of the reduction of
maximum frequency. Setup of PWM drivers is defined in the manufacturer’s
documentation.2

1 ledcSetup(joint->CHN1, PWM_FRQ, PWM_RES);

2 ledcSetup(joint->CHN2, PWM_FRQ, PWM_RES);

3 ledcSetup(joint->CHN3, PWM_FRQ, PWM_RES);

4

5 ledcAttachPin(joint->PWMU, joint->CHN1);

6 ledcAttachPin(joint->PWMV, joint->CHN2);

7 ledcAttachPin(joint->PWMW, joint->CHN3);

2ESP-IDF Programming Guide available at https://docs.espressif.com/projects/

esp-idf/en/latest/api-reference/peripherals/ledc.html
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Listing 6.2: Initialization of PWM.

The angle error reading is detailed in section 6.2.1. It is received as a 8 bit
value and further used to calculate the needed PWM signal for optimal control
of the motor.

The communicated I2C reading from the master is read into the motor
control function using queues, to avoid any data race condition. The master
sends torque commands for both motors, as well as a direction for each of the
motors. The read velocity is passed from master to slave as a byte, then scaled
to a value between 0.0 and 1.0 upon receival.

1 // Read master commands

2 xQueuePeek(joint->q_scale, &velocity_raw, 0);

3 xQueuePeek(joint->q_dir, &dir, 0);

4 velocity = (double)((velocity_raw / 255.0) * 1.0);

Listing 6.3: Implementation of PWM output.

As the motor rotates the optimal combination of voltage applied to the
windings resemble that of three sine waves with 120◦ phase shift, as mentioned
in section 4.2. This is integrated into the low level controller using a sine lookup
table. Fetching data from memory leads to greatly reduced processing time. For
fastest possible commutation, implementation of a sine wave was calculated as a
256 byte array in MATLAB. By shifting through this table the microcontroller
is capable of speedily calculating the needed sine value for a given change in
commutation.

1 //Output

2 pwm_U = (uint8_t)((double)pwmSin[current_step_U] * velocity);

3 pwm_V = (uint8_t)((double)pwmSin[current_step_V] * velocity);

4 pwm_W = (uint8_t)((double)pwmSin[current_step_W] * velocity);

5

6 ledcWrite(joint->CHN1, pwm_U);

7 ledcWrite(joint->CHN2, pwm_V);

8 ledcWrite(joint->CHN3, pwm_W);

Listing 6.4: Implementation of master queue reading.

6.3 Master node: Modular controller manager
for high level control

Although the math behind control algorithms can get very complex, the actual
code is typically short and straightforward. The output is simply calculated
based on user and sensor inputs. However, to get to this point, sensors must
be read, and in the case of this project, the system needs to be able to take
commands through a local network connection. Sometimes the gripper will also
need more than one controller to be able to complete a task. For example to grab
an object, a simple position controller could be utilized to extend the fingers
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around the object, and then gently grasp the object with a more advanced
control strategy. Furthermore, different controllers need vastly different inputs.
While a position controller needs a set point for each link, a trajectory controller
needs a whole vector of set points. Implementing all these functionalities takes
a lot more work than the actual control algorithm itself, but it also increases the
re-usability of the end product, and makes the gripper into a platform rather
than a static tool. These functions will be referred to as the controller manager.
The source code for the controller manager is avaiable on Github 3.

Robotic operating system (ROS) is an open source framework that is capable
of all the tasks mentioned above and much more. In fact, the name “controller
manager” is taken from a library in ROS with similar functionality. The pow-
erful tools provided by ROS allows to user to focus on a specific problem rather
then all the details that gets you there. ROS is popular in academia, and the
authors of this thesis has used it before. ROS is however not used as frequently
in industry. The common answer to why it is not, is that it lacks real-time
support, and that companies often want to make their own lean and specialized
software. The prospect of using ROS was discussed with the project’s advisor
at SINTEF. He preferred not to use it because prior experience with ROS had
showed that pure C++ scripts performed far better in applications that required
fast reaction time.

6.3.1 Functionalities

The following functionalities is included in the controller manager:

• Automatic calibration routine at start up that sets the finger extended
position to 0°.

• Modularity: Run up to 7 2-DOF fingers simultaneously, with separate
controllers

• Change controllers at run time.

• User interface over network with two different message types.

– A “simple instruction message” contains up to 10 float variables (5
states per link) that is used as user input to a controller.

– A “Trajectory message” contains 10 floats and 5 float vectors with
100 rows each.

• Network broadcast: States of active fingers are broadcast on the network
and can be monitored.

• Controller engine: Simplifies adding custom controllers

– Gives a custom controller access to network and sensor inputs, and
passes on the outputs.

3Controller manager source code: https://github.com/Bardie4/Dexterous/tree/master/
RaspberryPi
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– Up to 20 variables of a controller can be tuned at run time over
network.

– Lets the user focus on control theory.

6.3.2 Network communication

The controller manager receives user inputs, and broadcasts the states of any
active fingers on the local network. To implement this, a library called ØMQ
was used to send and receive messages, as was recommended by he projects
external advisor. The “Ø” in the name is supposed to represent a zero. It is
therefore often also referred to as ZMQ or ZeroMQ. Listing 6.5 and 6.6 is a
simple example of ØMQ server and client from the official ØMQ website4.

Line 1 in both scripts begins with including the zhelpers library which
contains some helping functions for the ØMQ library. In this case “send()” and
“send more()”. zhelpers.hpp also includes the zmq.hpp library, which is a
C++ wrapper for the original C library zmq.h.

A connection is initialized by making a context and socket on line 5 and
6. The ØMQ API documentation 5 states that a context must be initialized
before using any of the library functions. The argument “1” means that one
thread will be dedicated to handle input output operations. The socket object
is described in the following way by [Sustrik and Lucina, 2017]:

“ØMQ sockets present an abstraction of a asynchronous message
queue, with the exact queuing semantics depending on the socket
type in use.”

The socket needs a context, and a socket type. Here a socket of type “publisher”
is chosen by using “ZMQ PUB” as the argument. The are also a number of
other socket types to choose from. The choice landed on using a publisher
subscriber pattern, which is a “one to many” type of communication. The
reason for this is that it’s a simple pattern since information only flows one
way, and since the publisher does not care if anyone is listening. On line 7 the
socket is connected to an endpoint. The argument of bind() is a string on the
form “transport//:address.”. In this example, TCP is used as the transport
protocol on an ethernet device on port 5563. Note that the name of the Ethernet
device is not “eth0” on every computer. s sendmore() is similar to s send(),
but includes a flag that tells the receiver that the rest of the message is coming
next. Thus, two different messages are sent inside the loop.

1 #include "zhelpers.hpp"

2

3 int main () {

4 // Prepare our context and publisher

5 zmq::context_t context(1);

6 zmq::socket_t publisher(context, ZMQ_PUB);

7 publisher.bind("tcp://eth0:5563");

4ØMQ examples found at: http://zguide.zeromq.org/
5ØMQ Api documentation: http://api.zeromq.org/2-1:zmq
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8

9 while (1) {

10 // Write two messages, each with an envelope and content

11 s_sendmore (publisher, "A");

12 s_send (publisher, "We don’t want to see this");

13 s_sendmore (publisher, "B");

14 s_send (publisher, "We would like to see this");

15 sleep (1);

16 }

17 return 0;

18 \

Listing 6.5: ZMQ Server

In the client script, the socket type is chosen to be ØMQ SUB, which makes it
into a subscriber. This client script uses .connect() instead of .bind(). The
argument is the IP-address of the server, and port number.

The setsockopt() function lets the user set options. A message filter is set
so that only messages that start with B can be received. The filter size is 1
byte, which is the third argument.

Function s recv() takes an incoming message and turns it into a string. It
is a blocking call and will wait until a message arrives. Since B is the filter it will
not return on the messages ‘‘A’’ or ‘‘We don’t want to see this’’ and keep
blocking. The message ‘‘B’’ will arrive, and also ‘‘We would like to see this’’

since it is a part of the same message as ‘‘B’’. They are however captured with
separate calls to s recv().

1 #include "zhelpers.hpp"

2

3 int main () {

4 // Prepare our context and subscriber

5 zmq::context_t context(1);

6 zmq::socket_t subscriber (context, ZMQ_SUB);

7 subscriber.connect("tcp://192.168.1.40:5563");

8 subscriber.setsockopt( ZMQ_SUBSCRIBE, "B", 1);

9

10 while (1) {

11

12 // Read envelope with address

13 std::string address = s_recv (subscriber);

14 // Read message contents

15 std::string contents = s_recv (subscriber);

16

17 std::cout << "[" << address << "] " << contents << std::endl;

18 }

19 return 0;

20 }

Listing 6.6: ZMQ Client

The information sent in this example was a string. Strings are essentially
vectors of characters, and each character represent an 8 bit value, or a byte.
This means that ØMQ helps transmit a series of bytes across the network. The
variables that are needed for this project are not necessarily 8 bit values. A

61



method to turn any variable into a series of bytes, and then translating back
to its original form is therefore required. This process is called serialization [].
The SINTEF project advisor recommended a library called flatbuffers.

6.3.3 Flatbuffer schemas

The first step in utilizing the flatbuffers library, is creating a schema. A schema
acts as a blueprint for a data structure that can be serialized. The schema is
then compiled, which produces a header file that contains functions to build the
data structure, serialize it, and deserialize it. Details on the process of compiling
schemas can be found in the official flatbuffers tutorial6.

The schema for a message is shown in listing 6.7. It is called Simple-

InstructionMsg, because it is the smallest message used in this project. On
line 1, a name space is chosen. All functions generated by compiling the schema
will use this name space. Next, a table is created containing 12 variables. On
line 18, it is specified that SimpleInstructionMsg is the root type. The root
type is the variable that is serialized. The root type must therefore contain
all the data fields specified in the schema. In this example there is only one
table. Thus, it must be the root type. Lastly, a file identifier is included. A file
identifier makes it possible to identify this message type before de-serializing it.

1 namespace my_schemas;

2

3 table SimpleInstructionMsg {

4 finger_select:short;

5 controller_select:short;

6 data1:float;

7 data2:float;

8 data3:float;

9 data4:float;

10 data5:float;

11 data6:float;

12 data7:float;

13 data8:float;

14 data9:float;

15 data10:float;

16 }

17

18 root_type SimpleInstructionMsg;

19 file_identifier "INST";

Listing 6.7: ZMQ Client

6.4 Controller manager code overview

The controller manager is a multithreaded application that is mostly made up
of four different classes. The Finger, ControllerEngine, ZmqSubscriber and

6Flatbuffers C++ tutorial available at: https://google.github.io/flatbuffers/

flatbuffers_guide_tutorial.html
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Figure 6.3: Controller Engine

PeripheralsController class. The diagram in figure 6.3 gives an overview of
the program structure. In this figure, class objects are colored green, memory
space is colored red, and functions are blue. Black arrows represent point-
ers. There can be multiple instances of the Finger class, but only one Zmq-

Subscriber and PeripheralsController. Every controller contains its own
instance of a ControllerEngine, and a Finger object can contain many con-
trollers. The Finger, ZmqSubscriber and PeripheralsController all have a
member function named run(), that runs on a separate thread. Finger::run()
threads can be spawned and stopped based on user input. TheZmqSubscriber-
::run() and PeripheralsController::run() threads operate continuously
while the program is active. Communication between threads happens over
memory shared by the threads. The shared memory is a member of the Finger

class, and is protected with mutex locks. From Figure 6.3 it can be seen that
the ZmqSubscriber, PeripheralsController and ControllerEngine has ac-
cess to this memory through pointers.

The ZmqSubscriber object listens for commands on the local network. Ev-
ery message contains the identity of the Finger object which the message is
meant for, the selected controller, and the controller input, or “payload”. The
ZmqSubscriber directs these messages to the correct finger. It is also responsi-
ble for spawning the Finger::run() threads, and does so if the finger is given
a command while it’s not already running. The PeripheralsController sup-
plies the fingers with sensor information, and relays the controller outputs to the
ESP32 over I2C. It also contains a ØMQ publisher so that sensor data can be
monitored on the local network. Another important task of the Peripherals-

Controller is to set the pace of the controllers. Controllers have to wait for sen-
sors to be read before each iteration, and measurements are done at a reasonably
steady rate. The purpose of the ControllerEngine is to simplify the process
of adding new controllers. From figure 6.3 it can be seen that a controller class
contains a function called iterate(), and an instance of ControllerEngine.
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The iterate() function performs one controller iteration. The Controller-

Engine has access to this function through a pointer, and calls it when it is
appropriate. It also provides the controller with updated copies of information
from the shared memory space that is safe to use in the iterate() function.

6.4.1 The Finger Class

The definitions of the Finger class is shown in listing 6.8. A finger object uses a
number from 0 to 6 as an identity. All fingers must have a unique identity. The
identity enables the ZmqSubscriber to send commands to the correct finger.
The identity is also associated with physical SPI chip select pins, and I2C
addresses. It also helps the user identify sensor data broadcasted on the network.
The reason for having a maximum of 7 fingers was the amount of available GPIO
pins that could be used as chip select for SPI. Communication with the ESP32
was initially planned as an SPI connection, and each finger needed a total of
3 chip select pins. After moving ESP communication to I2C, there were no
hardware limitations to adding a few more. However, it was concluded that
having pins available for other sensors would most likely be more useful than
adding another finger. The identity is set during initiation of a Finger object,
and can be seen on line 12 as the argument of the Finger constructor.

The shared memory that fingers use to communicate with ZmqSubscriber

and PeripheralsController is standardized by using two different structs
called ZmqSubFingerMem, and PeripheralFingerMem. They are initiated as
a class member on line 5 and 6. On line 8-9, controller objects are added.
Controller objects contain member functions that perform the actual calcula-
tions. Controller objects also has their own identities which is given by the
bindController() function. This function is called in the constructor of the
finger, and gives controllers access to the shared memory that provides them
with sensor data and user inputs. Further details on controller classes will be
discussed in section 6.4.4.

1 class Finger{

2 public:

3 short id;

4 short controllerSelect;

5 ZmqSubFingerMem zmqSubSharedMem;

6 PeripheralFingerMem periphSharedMem;

7

8 //Controllers

9 JointSpacePosController jsPosCntrllr;

10 CartesianSpacePosController cPosCntrllr;

11

12 void bindController(ControllerEngine* handle, short controller_id);

13 Finger(short identity);

14 void calibration();

15 void shutdown();

16 void* run();

17 }

Listing 6.8: Finger class definition
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The member function .run() is shown in listing 6.9. Unless it is already
running, this function is initiated on a new thread by the ZmqSubscriber in the
event of a new message directed at this particular Finger object. On start up, the
calibration routine is initiated (line 2). The calibration routine drives the finger
joints to the end position, to relate the sensor readings to the physical position
of the finger. During calibration, the finger communicates directly with sensors
without the help of the PeripheralsController. At the end of the calibration
routine, it sends a flag to the PeripheralController that lets it know that it
can proceed to communicate with the sensor, and relay the information to the
finger via periphSharedMem.

On line 3-5, a private copy of the the controllerSelect variable is made
from the shared memory. As the name suggests, this variable is used to tell the
finger which controller to use. If it is 0, it means that the finger should exit the
main loop and shut down. The .shutdown() function tells the Peripheral-

Controller that it can stop communicating with the sensors associated with
this particular finger. Also, it tells the ZmqSubscriber that this thread is no
longer active, so that it knows that the .run() function needs to be restarted
if a new command arrives.

Inside the loop, the controllers themselves will check if controllerSelect

corresponds to their identity, and if not, they will exit and move on to the next
one. At the end of the loop, a 300µs pause is added. This prevents excessive use
of pthread mutex lock in the event of a non existing controller being selected.

1 Finger::run(){

2 calibration();

3

4 pthread_mutex_lock(&zmqSubLock);

5 controllerSelect = zmqSubSharedMem.controllerSelect;

6 pthread_mutex_unlock(&zmqSubLock);

7

8 while( !(controllerSelect == 0) ){

9 jsPosCntrllr.controllerEngine.run();

10 cPosCntrllr.controllerEngine.run();

11 pthread_mutex_lock(&zmqSubLock);

12 controllerSelect = zmqSubSharedMem.controllerSelect;

13 pthread_mutex_unlock(&zmqSubLock);

14 usleep(200);

15 }

16 shutdown();

17 }

Listing 6.9: Finger class definition

6.4.2 The ZmqSubscriber class

The purpose of the ZmqSubscriber class is to receive commands via network,
and send the information to Finger objects. Figure 6.4 illustrates the inter-
actions between a Finger object and a ZmqSubscriber object, and how the
shared memory space is utilized. In this figure, class objects are colored green,
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memory space is red, functions are blue, and scripts are yellow. Black arrows
represent the ability to read/write to a memory space. Blue arrows represent
the ability to call a function. Stifled arrows represents a network message.

newMessage	=	1
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+	payload
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Figure 6.4: Interactions between the ZmqSubscriber and Finger class object.

The ZmqSubscriber object receives a message from the server containing
a payload of controller inputs addressed to a specific controller (controller-
Select), in a specific Finger (fingerSelect). The ZmqSubscriber will then
read the runFlag variable of the selected Finger, set it to one, set newMessage
to one, and write controllerSelect and payload to the shared memory.

If runFlag was set to zero before it was overwritten, it means that there is
no active thread running the Finger::run() function, and therefore no one to
receive to message. In this case, the ZmqSubscriber will call the Finger::run()
function on a new thread.

The Finger object itself will only read the controllerSelect variable. If it
is 0, no controllers is selected, and the Finger::shutdown() function is called
to terminate the thread and set runFlag to 0. When controllerSelect is not
0, Finger::run() will cycle through controllers one by one. Controllers will
exit on their own if they are not selected.

The newMessage variable is set to zero whenever a controller reads the shared
memory. This is done to stop controllers from reading large trajectory messages
on every iteration. If a controller reads a message and finds out it is intended
for another controller, the newMessage variable is set to one again, to make sure
that other controllers will read it.
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1 class ZmqSubscriber{

2

3 private:

4 ZmqSubFingerMem* fingerMemPtr[7];

5 ZmqSubFingerMem fingerMem;

6 Finger* fingerPtrs[7];

7

8 bool oldRunFlag;

9

10 //ZMQ

11 zmq::context_t context;

12 zmq::socket_t subscriber;

13 char* address[5];

14

15 public:

16 ZmqSubscriber()

17 void bindFinger(Finger* finger)

18 void passOnSimpleInstructions(zmq::message_t* buffer)

19 void passOnTrajectoryMsg(zmq::message_t* buffer)

20 static void *initFinger(void *finger_object)

21 void* run()

22 }

Listing 6.10: ZmqSubscriber class definition

The class definition of the ZmqSubscriber class is shown in listing 6.10. On
line 4, a vector containing 7 pointers to data structures of type ZmqSubFinger-

Mem is defined. These will point to the shared memory of the Finger objects,
that was shown in figure 6.4. The function .bindFinger() on line 15 will set
these pointers. When a Finger is “bound”, the identity of the Finger will
determine the position of the pointer in the vector. For example, a Finger

object with identity 3 will have its pointer placed in fingerMemPtr[3].
The fingerMem variable (line 5) is where the incoming data is stored before

it is sent to a Finger. On line 6, a vector of 7 pointers to class objects of
type Finger is defined. These pointers are needed to gain access to the function
Finger::run(), so that the ZmqSubscriber is able to activate a Finger. These
pointers are also set by .bindFinger(). The .initFinger() function (line 20)
is the function that calls Finger::run().

1 ZmqSubscriber.run(){

2 while(1){

3 zmq::message_t address;

4 zmq::message_t buffer;

5 subscriber.recv(&address);

6 subscriber.recv(&buffer);

7

8 if ( SimpleInstructionMsgBufferHasIdentifier( buffer.data() ) ){

9 passOnSimpleInstructions(&buffer);

10 }else if ( TrajectoryMsgBufferHasIdentifier( buffer.data() )) {

11 passOnTrajectoryMsg(&buffer);

12 }

13 }

Listing 6.11: ZmqSubscriber::run()
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The ZmqSubscriber::run() function shown in listing 6.11 will run contin-
uously on its own thread while the controller manager is active.

The function starts out similar to the ØMQ subscriber example in listing
6.6. However, the s recv() function from the zhelpers.h library is not used.
The zmq.hpp library is used directly instead. This is because the s recv()

function includes the unnecessary step of turning the message into the data
type std::string. Aside from that, line 3-6 in listing 6.11 is identical to calling
s recv() twice.

In section 6.3.3 it was mentioned that a file identifier was included in
the flatbuffer schema to make it possible to identify a message type before de-
serializing it. The function SimpleInstructionMsgBufferHasIdentifier()

does exactly that, and returns 1 if the incoming message is of the type “Simple-
InstructionMsg”. This function is one of many functions that is generated by
compiling a flatbuffer schema. The names of the generated functions always
starts out with the name of the root type. In Line 7-10, the member func-
tion passOnSimpleInstructions() or passOnTrajectoryMsg is called based
on what type of message is received. These functions de-serialize the message
and pass it on to the correct Finger object.

1

2 ZmqSubscriber::passOnSimpleInstructions(zmq::message_t* buffer){

3 auto messageObj = GetSimpleInstructionMsg(buffer->data());

4

5 fingerMem.fingerSelect = messageObj->finger_select();

6 if ( (fingerMem.fingerSelect < 0) (fingerMem.fingerSelect > 6) ){

7 return;

8 }

9 if (fingerMemPtr[fingerMem.fingerSelect] == NULL){

10 return;

11 }

12

13 fingerMem.controllerSelect = messageObj->controller_select();;

14 fingerMem.data1 = messageObj->data1();

...

23 fingerMem.data10 = messageObj->data10();

24

25 pthread_mutex_lock(&zmqSubLock);

26 oldRunFlag = fingerMemPtr[fingerMem.fingerSelect]->runFlag;

27 *fingerMemPtr[fingerMem.fingerSelect] = fingerMem;

28

29 if (oldRunFlag == 0){

30 pthread_create(&(tid[2+fingerSelect]), NULL, &initFinger, fingerPtrs[fingerMem.

fingerSelect]);

31 }

32 pthread_mutex_unlock(&zmqSubLock);

33 }

Listing 6.12: ZmqSubscriber::passOnSimpleInstructions()

The code of passOnSimpleInstructions() is shown in listing 6.12. Note
that the only difference between this function and passOnTrajectoryMsg(), is
the payload that is transferred.

68



The message is first de-serialized using the generated function GetSimple-

InstructionMsg(). Before loading the whole message, the fingerSelect vari-
able is verified (line 4-10). If it is not between 0-6, or it refers to a Finger

object that is not yet bound to the ZmqSubscriber, the message is discarded.
If the Finger identity is valid, the message is loaded into the private variable
fingerMem.

The next part (line 24-31) involves the Finger objects shared memory space,
and a mutex lock is required. The .runFlag is read from the shared memory
before it is overwritten. If it is 1, it means that the finger is active. If it is 0,
it needs to be activated. Regardless of whether it is active or not, the message
is passed to the finger on line 26. Then, if the Finger object was inactive, the
initFinger() function is called on a new thread, with the address of the Finger
object as the argument. This function will then run the member Finger::run()
function to active the Finger object.

6.4.3 The PeripheralsController class

The purpose of the PeripheralsController class is to supply controllers with
sensor information, relay the calculated output of controllers to the ESP32,
and set the pace of controller iterations. Figure 6.5 illustrates the interactions
between a Finger object and a PerpipheralsController object, and how the
shared memory space is utilized. The class objects are colored green, memory
space is red, functions are blue, and scripts are yellow. Black arrows represent
the ability to read/write to a memory space. Yellow arrows represent I2C
communication. Red arrows represent SPI communication. The purple arrow
represents a condition signal from the pthreads library. Condition signals can
be used to create a conditional block on other threads. Here, the Peripherals-

Controller can remove the block. Details on this functionality can be found
online 7.

The first thing to note from figure 6.5, is that the shared memory space
is not the same used to communicate with the ZmqSubscriber. By extension,
the runFlag, is not the same variable either. The PerpipheralsController

will check the runFlag of each Finger, and proceed to communicate with the
sensors of those with runFlag set to 1.

As mentioned earlier, the calibration routine Finger::calibration() is
executed first whenever the Finger::run() function is called by the Zmq-

Subscriber object. It is only after calibration that runFlag is set to 1. The
reason behind this is that the calibration routine communicates directly with
the ESP32, and angle sensors. Any other communication with the sensors dur-
ing calibration will disturb the process. The communication with peripherals,
is also the bottleneck of the controller manager. Unused sensors should there-
fore not be read. The Finger::shutdown() function which is called before
the Finger::run() thread terminates will also set the runFlag to zero to stop
further measurements and communication with the ESP32.

7Documentation of conditional broadcast available at: https://pubs.opengroup.org/

onlinepubs/009695399/functions/pthread_cond_broadcast.html
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Figure 6.5: Interactions between the PeripheralsController and a Finger

class object.

Angular velocity and angular acceleration is calculated simply by differenti-
ating the angle inputs. This method is known amplify noise [Olfa et al., 2016].
Given more time, an observer would have been implemented instead.

The ControllerEngine takes care of the difficult parts of integrating a con-
troller into the controller manager. In relation to the PeripheralsController,
this means accessing the shared memory and performing iterations at the right
pace. Figure 6.6 illustrates the interactions between the PeripheralsController
and ControllerEngine. The ControllerEngine::run() function is blocked
before sensor information is read from the shared memory space. The block is
released by the PeripheralsController after sensors are read, with a call to
pthread cond broadcast(&start cond). The condition variable &start cond

is a global variable used by all controllers. All controllers is therefore released
at the same time.

6.4.4 Adding a controller

To help users implement their own controllers, a template for a controller class
was developed. This enables the user to create a new controller simply by
renaming a few pointers, adding their own variables and writing a controller
function.

The class definition is showed in listing 6.13. The only non optional lines in
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this class definition is the ControllerEngine (line 4), and the member func-
tions (line 25-28). Everything else is pointers that will point to the memory of
the ControllerEngine. The sole purpose of these pointers is only to rename
variables. The variables held by the ControllerEngine can in fact be used di-
rectly without pointers if that is desirable. The reason a name change might be
relevant, is that incoming network data has different meaning for different con-
trollers. For example, the SimpleInstructionMsg shown in listing 6.7 contains
10 float variables named “data1-10”. To one controller the variable data1 can
contain an angle set point. To another controller data1 may contain a Cartesian
coordinate. The ControllerEngine also has 20 member variables that can be
changed during run time. These variables are suitable for controller parameters
like gains, and offsets.

1

2 class ControllerTemplate {

3 public:

4 ControllerEngine controllerEngine;

5

6 //ZmqSubscriber data

7 float *data1, *data2, *data3, *data4, *data5, *data6, *data7, *data8, *data9,

*data10;

8 float *var1, *var2, *var3, *var4, *var5, *var6, *var7, *var8, *var9, *var10,

*var11, *var12, *var13, *var14, *var15, *var16, *var17, *var18, *var19, *

var20;

9 int *trajSize;

10 float* trajTimeStamp;

11 float* trajPosition;

12 float* trajVelocity;

13 float* trajAcceleration;

14

15 //PeripheralsController data

16 float *jointAngle1;

17 float *jointAngle2;

18 float *angularVel1;

19 float *angularVel2;

20 float *angularAcc1;

21 float *angularAcc2;

22 float *commandedTorque1;

23 float *commandedTorque2;

24

25 static void iterateStatic(void *controller_object);

26 ControllerTemplate();

27 ControllerEngine* getHandle();

28 void iterate();

29 };

Listing 6.13: Template for a controller class

The pointers defined from line 9 to 23 in listing 6.13, are less likely to need
a name change. However, they are useful in the template because they reveal
what information is available in the ControllerEngine.

The 4 member functions are shown in listing 6.14. Line 6-59 is the construc-
tor of the template controller class. Here, all the optional pointers are assigned.
But more importantly, the variables available in ControllerEngine is revealed
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for the user without having to look up the class definition of the Controller-

Engine. Line 7-10 is the only non optional part of the constructor. On line 7,
the ControllerEngine is initialized. On line 8-9, the ControllerEngine gains
access to the iterateStatic(), function, and a pointer to this specific instance
of the class. Line 10 specifies that the controller will not be receiving trajectory
messages. For a trajectory controller, it is set to one.

The getHandle() function (line 66-68) simply returns the address of the
ControllerEngine. It is used as an argument to the Finger::bindController()
function, and should remain unchanged.

The iterate() function (line 61-64 ) will contain the actual controller code.
In the template, the output set equal to the input.

It is the ControllerEngine that decides when iterate() is called. However,
The ControllerEngine can’t store a pointer to this function, because it would
need to know the definition of this specific controller class. To solve this problem,
a static function called iterateStatic() (line ) is used instead. Static member
functions are just like any other functions, and doesn’t have access to any class
members. The ControllerEngine is therefore able to store a pointer of this
function and call it when needed. Since the definition of the controller class
is available to the iterateStatic() function, it is able to call the iterate()

function as long as it’s given a pointer to the specific instance of the class.

1 void ControllerTemplate::iterateStatic(void *controller_object){

2 return ((ControllerTemplate*)controller_object)->iterate();

3 }

4

5 ControllerTemplate::ControllerTemplate()

6 :controllerEngine(){

7 controllerEngine.controllerObject = this;

8 controllerEngine.iterate = &JointSpacePosController::iterateStatic;

9 controllerEngine.trajectoryMessage = 0;

10

11 //ZmqSub inputs

12 data1 = &controllerEngine.data1;

...

22 data10 = &controllerEngine.data10;

23 trajSize = &controllerEngine.trajSize;

24 trajTimeStamp = controllerEngine.trajTimeStamp;

25 trajPosition = controllerEngine.trajPosition;

26 trajVelocity = controllerEngine.trajVelocity;

27 trajAcceleration = controllerEngine.trajAcceleration;

28 //Peripheral inputs

29 jointAngle1 = &controllerEngine.jointAngle1;

30 jointAngle2 = &controllerEngine.jointAngle2;

31 angularVel1 = &controllerEngine.angularVel1;

32 angularVel2 = &controllerEngine.angularVel2;

33 angularAcc1 = &controllerEngine.angularAcc1;

34 angularAcc2 = &controllerEngine.angularAcc2;

35 //Controller output

36 commandedTorque1 = &controllerEngine.commandedTorque1;

37 commandedTorque2 = &controllerEngine.commandedTorque2;

38 //Run time adjustable variables (example: Kp, Ki and so on..)

39 var1 = &controllerEngine.var1;

...
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58 var20 = &controllerEngine.var20;

59 }

60

61 void ControllerTemplate::iterate(){

62 *commandedTorque1 = *data1;

63 *commandedTorque2 = *data2;

64 }

65

66 ControllerEngine* ControllerTemplate::getHandle(){

67 return &controllerEngine;

68 }

Listing 6.14: Member functions of template controller

To make the controller available to the Finger class, it must be added as
a class member. An example of this was shown in listing 6.8 line 9-10, where
two controllers were added as members. Listing 6.15 shows the constructor of
the Finger class. Here controller objects are initiated on line 2, before they are
bound on line 4 and 5. The bindController() function assigns an identity to
a controller, and gives it access to the shared memory.

1 Finger(int identity)

2 :jsPosCntrllr(), ctPosCntrllr(){

3 id= identity;

4 bindController(jsPosCntrllr.getHandle(), 2);

5 bindController(ctPosCntrllr.getHandle(), 3);

6 zmqSubSharedMem.runFlag=0;

7 periphSharedMem.runFlag=0;

8 }

Listing 6.15: Member functions of template controller

Finally, the ControllerEngine::run() function is added to loop in Finger-

::run(). How the existing controllers were added to the loop can be seen in
listing 6.9 line 9-10.

6.5 Master-slave I2C communication

Communication had to be set up between the master node (Raspberry Pi) and
the slave node (ESP32). Being able to send commands from master to slave
is crucial in control of the dexterous gripper system. With the Raspberry Pi
and the ESP32 multiple choices were available, among them are I2C, SPI,
serial communication, Bluetooth and WiFi. Of these I2C and Bluetooth are
implemented, with SPI having an available port on the Kiyona PCB.

As presented in section 5.2.1, I2C is a two wire protocol with the ability for
addressing data. On the ESP32 side the built-in esp-idf i2c-driver library is
used with the microcontroller configured as slave as seen in listing 6.16. Using
the I2C protocol requires pull-up resistors on each of the two wires, but luckily
the ESP32 comes with built in pull up resistors which can be toggled in code
using the GPIO PULLUP ENABLE keyword. After all configuration parameters are
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set in the conf slave object, the I2C driver is configured using i2c param -

config, and lastly the driver is installed using i2c driver install.

1 i2c_slave::i2c_slave(){

2 i2c_port_t i2c_slave_port = I2C_EXAMPLE_SLAVE_NUM;

3 i2c_config_t conf_slave;

4 conf_slave.sda_io_num = I2C_EXAMPLE_SLAVE_SDA_IO;

5 conf_slave.sda_pullup_en = GPIO_PULLUP_ENABLE;

6 conf_slave.scl_io_num = I2C_EXAMPLE_SLAVE_SCL_IO;

7 conf_slave.scl_pullup_en = GPIO_PULLUP_ENABLE;

8 conf_slave.mode = I2C_MODE_SLAVE;

9 conf_slave.slave.addr_10bit_en = 0;

10 conf_slave.slave.slave_addr = ESP_SLAVE_ADDR;

11 i2c_param_config(i2c_slave_port, &conf_slave);

12 i2c_driver_install(i2c_slave_port,

13 conf_slave.mode,

14 I2C_EXAMPLE_SLAVE_RX_BUF_LEN,

15 I2C_EXAMPLE_SLAVE_TX_BUF_LEN,

16 I2C_NUM_1);

17 }

Listing 6.16: I2C configuration.

On the Raspberry pi side it is implemented using the C library pigpio8. The
master side of the communication controls the speed of transfer, set at 400kHz.

6.6 ØMQ publisher with GTK GUI

An application with graphical interface were made to test the master node. The
GUI is displayed in figure 6.7. The application has 5 rows of identical fields for
controlling 5 different fingers.

Pressing ‘initialize” sends a SimpleInstructionMsg, telling the master to
run controller 1. This is the calibration routine, where angles are set to the
correct position. The scales on the right side can be used to send a new angle
set point. Messages are only sent when the broadcast check box is active. Thus,
messages can be sent continuously by using the scales, or one at the time by
changing the scales first before activating broadcast. When “Angle” is selected,
the messages with data from the scales is sent with controller 2 selected. This
is the joint space controller.

The row for controlling finger 2 has “Polar coordinates” selected, instead of
“Angle”. This means that controllerSelect is set to 3, which is the controller
with Cartesian coordinates as input. In fact, the application converts the polar
coordinates from the scales to Cartesian coordinates before sending them. The
reason for using polar coordinates in the GUI is that it is easier to stay within
the ROM with polar coordinates given its shape.

The GUI was made using the GTK library. It is an object oriented library,
where buttons and windows are “GtKWidget” objects that can be placed inside
one another to create the layout. Each row for controlling a finger has 22

8pigpio library and documentation available at http://abyz.me.uk/rpi/pigpio/
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Figure 6.7: GUI for sending commands to master
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such widgets. The rows were created as a class to avoid repeating code, and
additional rows can easily be added by creating new instances of the class. Still,
the application consists of around 400 lines of code. The source code is available
on Github 9.

9Source code for ØMQ publisher with GTK GUI: https://github.com/Bardie4/

Dexterous/tree/master/ZMQ_server
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Chapter 7

Results and discussion

Throughout this project multiple theoretical principles have been realized in
physical designs. Efforts have been made to finalize a practical mechanical
design, an electronic design allowing for streamlined control implementation
and a stable control scheme for verification of system controllability. The final
state of the system is presented in this chapter, as well as performance tests to
gauge the capability of the system.

Creating a controllable system from only an idea may be a daunting task.
As a famous astronomer once said:

“If you wish to make an apple pie from scratch, you must first invent
the universe.” - Carl Sagan

7.1 Mechanical

The final state of the produced and assembled mechanical system is a single
finger. This includes two independently controllable joints, and custom-made
gearbox.

7.1.1 Assembly

Building a complete finger with gearbox took roughly ten hours, but can be
done in seven if one has put the system together once or twice before. As part
of assembly, sanding down all the parts took two hours and thirty minutes. The
main focus of the sanding process is smoothing out the bearing slots and the
axles that goes into the bearings, basically any part that requires a tight fit.
Extra tension from a large axle or to tight bearing slot would cause noticeable
increase in friction in the bearing. The bearings needs to be tested once they
are in place. Fine tuning the dimensions of these parts to fit the accuracy of
the 3D printer should reduce the time needed to perform this task by at least
one hour. Figure 7.1 shows a photo of all the 3D printed parts sanded down.
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Figure 7.1: Dexterous finger, assembly set.

For the actual assembly, the main difficulty is working with the first gear
stage. The string is thin, and the number of turns is high. A successful attempt
at assembling the first gear stage took thirty minutes, which makes a total of
one hour for both motors. However, the most important part is keeping it in
place while the second stage is assembled. If the gear spindle pops out of place
and unwinds the string, both stages has to be done all over. Tape can be used
to keep it in place during assembly.

The second stage is relatively easy to work with. The number turns is low on
the gear spindle. On the joint pulleys there is less than one turn, which makes
it a lot easier. The tightening mechanism is practical and large.

The finished finger is seen in figure 7.2.

7.1.2 Tendon stability

Since the tendon configuration should be suited for non elastic tendon materials,
the path taken by the tendon must always be of the same length to not cause
slack, or get the system stuck. Chapter showed that considerable efforts were
made into investigating the use of grooves to make a stable position for the
tendons to rest. The idea was then discarded because of the large amount of
effort it took to realize the concepts. Because of the principle of one path always
being the shortest, it was assumed that the tendon would have a stable position
anyway.

The result of not using grooves was mixed. The first gear stage with the
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Figure 7.2: Dexterous finger, assembled.

most turns and thinnest tendon, was troublesome. The second stage, which
could only physically fit 3 turns because of the string size, behaved nicely.

The shortest path for the tendon, is the path which cause the least tension.
Thus, it is more inclined to move in this position. The challenge was therefore
to get it in the perfect configuration, and tightening it before it moved. This
turned out to be quite hard. The tendon would be stable, but not in the position
of the shortest path. The tendon on the first stage was inclined to cross itself,
which resulted in irregularities in tension, which was felt as irregular friction as
the motor was turned.

Similar issues were not encountered with the second stage. The thickness of
the string meant a significant amount of slack was needed in order for it to cross
itself. The pitch of the spiral was higher. Tightening the second stage was also
easier as it was done in the finger, and the process did not disturb the tendon
configuration as much as it did in the first stage.

7.1.3 Elasticity

The data for the plot in figure 7.3 is gathered through setting the PIP joint to
its end position and letting the motor continue to try and rotate it further in
the direction of the physical stop. The plot shows how the angle of the motor
moves, given an increasing voltage, even as the joint it is driving is standing
still. This elasticity is found to be caused by the tendon that transfers torque
between motor and joint not being perfectly stiff. The system’s linearity highly
relies on wires being fastened tightly. The tendon in the second stage of the
gear transmission is believed to be the cause of the problem, as it is a somewhat
flexible braided wire. Still, the flexibility experienced here is not seen as an
inherent problem to the system as another wire material can be chosen for the
tendon in the future.
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Figure 7.3: Elasticity vs. voltage.

7.1.4 Friction

From the plots that are presented in section 7.3.1, it is apparent that that angle
control results in steady state errors caused by friction. It is likely that the
tension in the system is too much for the bearings. The bearings are cheap, and
marketed towards the radio controlled cars market. No data sheet was available
from the supplier, and maximum load is unknown. The first gear stage is also
known to be a source of friction. For the mechanical system, reducing friction is
the best improvement that can be made at this point, because friction reduces
precision.

7.1.5 Finger

Through several revisions the dexterous gripper has evolved into a sleek design
with a range of movements that enable dexterous manipulations. Through the
gearing of the motor adequate torques are achieved in the distal phalanx, a
tendon system allow the motors to be mounted a distance away from the joints
and for each of the joints to be driven in two directions. The second link has
some friction issues, where it will make a creaking sound and become slow if the
tendon tension is high enough. Higher quality bearings and a more solid joint
would probably improve results.

The finger and gearbox design has been made with back-driveability in mind.
Using the limited loop configuration, presented in 3.3, has allowed the finger
joints to actuate both ways by the motors. It also allows for the motors to be
rotated by rotation of the fingers. The principle was tested by forcibly knocking
the finger back, documented on video.

81



7.1.6 Weight and size

The finger and gearbox are light as they are made out of PLA plastic. The
motors mounted on the gearbox is what adds to the weight of the gearbox, but
it is still light enough to be mounted on an industrial robot arm. Its durability
also seems to prove adequate for gripping tasks.

When it comes to size, the finger, including gearbox, is comparable to the
fingers on Right Hand Robotics’ gripper, REFLEX. As can be drawn from figure
7.4, a three finger configuration would fit in the same volume as this gripper.
Though, some smart adjustments would have to be done to also fit all the needed
electronics inside.

Figure 7.4: Right Hand Robotics’ REFLEX and dexterous finger size compari-
son.

7.1.7 Overall result

The mechanical system is modular in the sense that a finger with gearbox is
self contained. Several fingers can therefore be added to a gripper in arbitrary
configurations. It is a little too time consuming to assemble, which drives up the
price if paid technicians are tasked with assembling it. However, for hobbyists
it is extremely cheap. Friction needs to be reduced, and tendon materials needs
to be explored to reduce elasticity. The tendon configuration itself worked well
for actuation of the finger in general, but grew complicated when applied as a
gearing system. The configuration suggested in chapter 3.5.3, which replaced the
first stage with a planetary gear is likely to help with the greatest shortcomings
of the system, which is assembly time and friction. At the same time, planetary
gear does introduce a backside, namely backlash, which is what the presented
system aimed to eliminate. Lastly, bearings of higher quality would help the
overall performance of the system.
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7.2 Electronics

As an outcome of the work in creating custom electronics, multiple PCBs have
been manufactured. The delivered electronics are: Kiyona control boards, in
three different revisions; angle sensor boards, numbering 8 total; and a Rasp-
berry Pi HAT, of which only one has been assembled.

The whole electronic system has been designed to enable easy use of the
Dexterous gripper. Through using standardized cables and connectors, the elec-
tronics are easily setup, saving time in setups of experiments. Furthermore, this
allows for a modular design, as an arbitrary number of connections can be made
to the I2C bus to control the same number of slave nodes. All that is needed
to facilitate this is to give each Kiyona control board its own I2C slave address
in software. On the master side the limiting factor for the number of connected
fingers is the Raspberry Pi HAT, it serves six SPI connections, enabling the
access to the angle sensors of three fingers.

The electronics all performed as wanted. The Raspberry Pi HAT eased the
use of the system and allowed for a master slave communication pattern, as
well as angle readings. The angle sensor boards allowed for integration into the
mechanical finger and gave accurate, though somewhat noisy, readings. Lastly,
the Kiyona control board allowed for connections of angle sensor readings, driv-
ing motors and accepting commands from the master. A picture of the Kiyona
control board, revision 2, can be seen in figure 7.5, this was used to produce the
results in this chapter. Though the linear voltage regulators could be swapped
out to allow for the higher inrush current needed to drive the motor from a
standstill.

The third, and final, revision of the Kiyona control board, which adds current
sensor measurements for motor control, remains untested. They were ordered,
but time concerns led to this not being assembled nor tested. CAD files are
included in the project’s online repository1. Through the implementation of
current sensing, field oriented control can be utilized in motor control, which is
likely to give more accurate control.

The angle sensors are mounted on the finger, using mechanical sliders. The
same concept could have been employed to also mount the Kiyona control board
onto the physical gripper. To really create an accessible, and easy to use, plat-
form for manipulation tasks this could be done in the future, but it was left out
because of time concerns.

7.3 Control

As mentioned in section 4.3, there was little time left for high level control.
There was instead a higher focus the controller manager, which provided mod-
ularity in the sense that fingers could be added at will, and controllers could
be changed at run time. The controller tested here is simple and not very in-

1Project repository available at: https://github.com/Bardie4/Dexterous
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Figure 7.5: Kiyona control board v.1.1, with ESP32 microcontroller.

teresting in itself, but serves the purpose of gauging the performance of the
mechanical system, and the capabilities of the system as a whole.

Through testing, it was found that a proportional controller yielded best
results. Because of the lack of an estimator, the derivative term in the PID-
controller was noisy and would reduce stability. Besides, the response was al-
ready very fast with a proportional controller, so the derivative gain was set to
zero. The friction in the system meant that integral action resulted in “stick-
slip” cycles as was expected in cases were friction was sufficiently high, covered
by [Winsjansen, 2018]. Thus, integral action was not used either. All plots in
this section is therefore done with a proportional controller.

7.3.1 System dynamics

Different inputs to the system are used to get a sense of the system dynamics. A
step response from changing the set point of the proximal phalanx, or link 1, is
seen in figure 7.6, while another step response in the middle phalanx, or link 2,
is seen in figure 7.7. Changing the setpoint of both links simultaneously yielded
the result in figure 7.8 and 7.9. Common to all plots is the steady state error
caused by friction, and the fact that there is no integral action. The response of
the system is fast, and a stable state can be reached within between a quarter
of and half a second.

Most notably in figures 7.6a and 7.6b, is how much movement of link 1 affects
link 2. This phenomena was expected, as explained in section 4.3.2. The joint
angle θ2 is a function of θ1 and the motor angle θm2. Since θ2 is already in the
wanted position, the motor only compensates when errors arise from movement
in θ1. Even though the θ2 is in the right position from the start, the motor
angle θm2 is not. It is therefore likely that using θm2 as the control objective
would yield a better result.

The response from changing the angle set point of link 2 is seen in figure
7.7a and 7.7b. Here it is seen that movement of the second link barely affects
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Figure 7.6: Step responses from changing angle set point of link 1.
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Figure 7.7: Step responses from changing angle set point of link 2.

link 1, only giving it a minor error offset.
The step response from changing both angles at once and in the opposite

direction is seen in figure 7.9b. Same directions is seen in figure 7.8a. The
response time is less than half a second, and settles in approximately the same
time as when only link 1 is moved. The reason for this is that both motors has
to move regardless if only the set point of link 1 is changed.

The specifications defines two fingers being able to be tapped together mul-
tiple times a second. The final system is capable of accommodating this, as
the finger is able to move in one direction, reach stability, move in the opposite
direction and again reach stability in under

Feed forward

The dynamics of the two joints that make up a finger are interlinked. The rota-
tion of one joint causes movement in the other joint. This makes the precision
of angle control inaccurate for each joint, when the other joint is moving. The

85



0 0.5 1 1.5 2 2.5
Time [Seconds]

-40

-20

0

20

40

60

80

100

120

A
ng

le
 [

D
eg

re
e]

Step joint 1 25 to -25 joint 2 60 to 110

Angle 1
Angle 2

(a)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Time [Seconds]

-20

0

20

40

60

80

A
ng

le
 [

D
eg

re
e]

Step joint 1 25 to 70 joint 2 60 to 15

Angle 1
Angle 2

(b)

Figure 7.8: Step response from changing angle set point of both joints in opposite
direction
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Figure 7.9: Step response from changing angle set point of both joints in the
same direction.

86



0 5 10 15 20 25
Time [Seconds]

-50

0

50

100

150

A
ng

le
 [

D
eg

re
e]

Feed forward deactivated

Angle 1
Angle 2

(a)

0 5 10 15 20 25
Time [Seconds]

-50

0

50

100

150

A
ng

le
 [

D
eg

re
e]

Feed forward activated

Angle 1
Angle 2

(b)

Figure 7.10: No feed forward vs. feed forward.

dynamics were tested, and the results can be seen in figure 7.10. The accuracy
in response of each joint to slopes in the other joint, was noticeably increased.
Through further tuning of the feed forward implementation, it is believed that
the response can be further improved.

7.3.2 Overall result

Further developments of controllers is needed.

7.4 Software

7.4.1 Slave node

Through tests, the response time of two simultaneously running motor control
threads were found. This test included the simultaneous run of angle sensor
readings, byte calculations and commutation of the motors, as detailed in section
6.2. The measured average was found at 2.5 milliseconds, for which the data
can be seen in figure 7.11. The worst times were measured at 2.9 milliseconds.
The average gives a frequency of 400 Hz under normal conditions.

7.4.2 Master node

The controller manager running on the master is designed to be modular, and
can control up to 7 different fingers at the same time. Controllers can be changed
during run time, which enables a gripper to perform complex tasks. A controller
template was development to ease the process of adding new controllers to the
system. Sensor information is broadcasted on the local network, and was used
to make the plots in this chapter.
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Figure 7.11: Slave node code execution time.

Performance

Figure 7.12 shows the iteration time of the peripheralsController when no
fingers are active. No communication is done with the salve node or sensors
when this is the case. The result is 1087µs, which includes a 1000µs sleep
period. The sleeping period serves the purpose of leaving some resources open
to the operating system, so that the iteration time is as stable as possible. It also
prevents the master node from sending more information to the slave nodes than
they can chew. It can be adjusted to much lower levels without any problems.
100The results shows that only 87µs is used by peripheralsController to
perform one iteration. Thus, the master node is mostly sleeping in a state when
no fingers are controlled.

Figure 7.12: PeripheralsController iteration time. No fingers active.

Figure 7.13, shows the the iteration time when one finger is active. The
result is a 291µs increase in iteration time. Note that this is the time needed
to communicate with sensors and slave node of one finger, not the time needed
for controller calculations. The 3 byte message sent to the slave node using I2C
with a baud rate of 400kbit/s, should theoretically take around 100µs. Which
leaves 190µs for SPI communication and broadcasting of sensor data over local
network.

Figure 7.14 shows the iteration time when 5 fingers are active. With an
elapsed time of 2305µs and an increase of 1218µs from the inactive state. This
corresponds to 243.6µs used per finger, and is not much different from what was
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Figure 7.13: PeripheralsController iteration time. One finger active.

used in figure 7.13. Thus, the iteration time grows linearly with the number of
active fingers. The results also show that the master node is able to communicate
with sensors and slave nodes of at least 3 fingers in under one millisecond.

Figure 7.14: PeripheralsController iteration time. Five fingers active.

By reducing the sleeping period, the controllers get less dedicated time to
perform calculations. However, since the application is multithreaded, they can
work along side the peripheralsController. Figure 7.15 shows the result of
reducing the sleeping period to 10µs with 5 fingers active. The peripherals-

Controller used 1298µs on one iteration. The controllers only get 10µs dedi-
cated time alone, but has 1288µs time to work along side the the peripherals-

Controller thread. It is seen from figure 7.15 that they used approximately the
same time as the peripheralsController. This is because they need a con-
dition signal from the peripheralsController to finish one iteration. If they
do not finish in time, they would have used twice the time since they would
have to wait for the next condition signal to complete one whole iteration. This
result shows that the communication with slave nodes, sensors and the process
of broadcasting sensor data on the local network is the bottleneck of the system.
More complex controllers should not cause any issue.

Figure 7.15: PeripheralsController iteration time. Five fingers active.
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Description Qty/Amt. Total
M2 10 mm bolt 23 10.00
M3 6 mm bolt 6 10.00
M3 30 mm bolt 2 10.00
M3 hex nut 2 10.00
Bearing 8x12x3.5 mm 16 239.00
Microfilament braided line 2 m 40.00
Yachting rope 2 m 40.00
Plastic 200 g 50.00

Total 409.00

Table 7.1: Total assembly bill of materials.

API

Pre-made message types in the form of flatbuffers schemas makes up a stan-
dardized method of interfacing with the master node, promoting ease of use. In
addition to this, the GUI application, covered in 6.6, enables quick testing, and
the code used in the application can be used as a guide.

7.5 Cost-effectiveness

In ensuring that the dexterous gripper comes at a low cost, emphasis has been
put on using low cost parts, when compared to other commercially available
grippers. This section presents the cost of components and manufacture. This
is all disregarding the work that is needed to solder the boards, assemble the
gearbox and finger, and set everything up in a configuration suitable for an
experiment.

The Kiyona control board makes up the brain of the low level control, and
also houses the costliest electronics. One board was assembled with the com-
ponents detailed in table 7.2 (all prices in NOK). The total price of the board
was NOK 270.20. Adding the price of manufacture of ten boards (the mini-
mal amount allowed with manufacturer SEEED), NOK 44.3, and the price of a
stencil, NOK 78.50, this adds up to NOK 393.

Creating the physical finger requires some financial investment. Table 7.1
shows a rough estimate of the money spent to create one finger. For a finger
and needed electronics this adds up to

One angle sensor board added up to NOK 65.99 in component costs, detailed
in table 7.3. Ten boards come at a cost of NOK 42.90, bringing the total up to
NOK 108.89.

Each Raspberry Pi HAT is made up of the parts in table 7.4, totaling NOK
57.25. With the price of manufacture, of NOK 42.90, the price comes up to
NOK 100.15.

The total cost of the electronics and boards for control of one finger is NOK
2822.22.
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Description Package Qty Price Total
DRV8313 motor driver HTSSOP-28 2 25.57 51.14
FFC connector 6 pos 1 mm pitch 2 6.73 13.46
FFC cable 5” 6 pos 1 mm pitch 2 13.59 27.18
Linear volt. reg 24V 500mA DPAK 2 10.50 21.00
Linear volt. reg 9V 500mA DPAK 1 5.25 5.25
Terminal block 3 pos 0.1” pitch 3 4.19 12.57
Switch 2 pos DIP 1 7.74 7.74
Female header 15 pos 0.1” pitch 2 16.86 33.72
INA240A4 current sensor 8SOIC 4 23.82 23.82
Max6520 1.2V reference SOT23-3 1 28.12 28.12
100µF capacitor Radial electrolytic 2 1.36 2.72
0.1µF capacitor 0805 7 0.37 2.59
0.01µF capacitor 0805 2 0.37 0.74
0.47µF capacitor 0805 2 0.77 1.54
0.1µF capacitor 1210 2 1.73 3.46
0.33µF capacitor 1210 3 5.35 16.05
10kΩ resistor 2010 2 1.59 3.18
0.01Ω resistor 1206 4 3.98 15.92

Total 270.20

Table 7.2: Kiyona bill of materials.

Description Package Qty Price Total
MA302 angle sensor QFN-16 1 65.62 65.62
0.1µF capacitor 0805 1 0.37 0.37

Total 65.99

Table 7.3: Angle sensor board bill of materials.

Description Package Qty Price Total
FFC connector 6 pos 1 mm pitch 6 6.73 40.38
Female header 15 pos 0.1” pitch 1 16.86 16.86

Total 57.24

Table 7.4: Raspberry Pi HAT bill of materials.
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Description Qty Price Total
Maxon EC 32 Flat BLDC motor 2 704.45 1408.90
11 pole flexprint motor connector 2 139.91 279.82
ESP 32 microcontroller 1 62.90 62.90
Raspberry Pi 3 Model B 1 339.00 339.00
8” FFC cable 2 28.90 57.80
12” FFC cable 2 41.20 82.40
Kiyona board w/components 1 270.20 270.20
Raspberry HAT w/components 1 57.24 57.24
Angle sensor board w/components 4 65.99 263.96

Total 2822.22

Table 7.5: Total electronics bill of materials.

“Now its up to the researchers at SINTEF to create the apple pie.”
- Ruben Winsjansen
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Chapter 8

Conclusion

The “limited loop” tendon configuration proved to be successful, and made the
fingers back-driveable. It also allowed a lightweight and sleek finger design, in
addition to multi-direction actuation with each motor. As a gearing mecha-
nism the configuration grew complicated, which increased assembly time. A
high reliability 3D printer was useful to reduce the overall cost of the system.
Assembly of the system is too difficult and time consuming, though changing
the first gear stage into a planetary gear would probably reduce both assembly
time and friction. Bearings of higher quality are needed to increase precision,
as the friction in the current version is too high. A less elastic tendon material
is needed to reduce elasticity.

The electronic system, consisting of several custom printed circuit boards,
performed to specification. It provides a means of communication, and an inter-
face for control of the broader system. The system architecture supported the
project’s specification for time concerns. Moreover, through sinusoidal commu-
tation motor control has been implemented successfully, which contributes to a
responsive system. Though not tested practically, current sensor based, motor
control was designed. This is likely to improve the motor control further once
implemented in software.

The master node software was able to run controllers at 1000Hz, on up
to three separate fingers at the same time. The high speed calculations and
communication of the Raspberry Pi, together with the modular nature of the
software enables a total of 7 fingers to be controlled simultaneously. Develop-
ment of a template controller has made integration of custom controllers user
friendly.

For high level control, two PID controllers were made. They were used
to verify that the system as a whole, with everything from sensor readings
to network communication, was operating successfully together. For further
development of the system, an estimator is needed to increase the quality of
the velocity measurements. The system is also in need of additional and more
advanced controllers before being set to use in gripping tasks.
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