
Norwegian University of Science and
Technology

Project Thesis

TTK4550

Camera-Based Position Estimation
for Autonomous Ships in Elevation

Mapped Areas

Author
Fredrik Opeide

Supervisor
Dr. Edmund Førland

Brekke

June 3, 2019

Abstract

In this paper I present a direct visual model-based tracking approach, using edges,
to track the position of a ship. A 3D triangle mesh model of a geographical area
is created from heightmaps, and is rendered with OpenGL. The OpenGL renderer
mimics the real camera’s pose in the world, as well as the camera intrinsic parameters.
Some small errors are found in the camera calibration data, varying in severity from
camera to camera aboard the ship. An image is rendered at the estimated position,
and by registering the rendered edges with the real image edges, the estimated pose is
improved. The real image edges are found with Canny edge detection, which suffers
from clutter. The edge alignment is done using projective ICP where the nearest
neighbour distance is minimized, with gauss-newton as the optimization scheme. The
tracking is generally successful, but it is discovered that the tracking may fail when the
contours of the surrounding terrain aren’t distinct enough, as there will be multiple
positions at which the contours of the terrain look identical.

ii

Contents

Abstract ii

1 Introduction 1
1.1 Motivation . 1
1.2 Literature review . 2
1.3 Assumptions . 2
1.4 Background and Contributions . 3
1.5 Outline . 4

2 Theoretical Background 5
2.1 Coordinate systems . 5

2.1.1 Rotation and translation . 5
2.1.2 North East Down . 6
2.1.3 Body frame . 6
2.1.4 Euler Angles . 6

2.2 Sensor systems . 6
2.2.1 INS . 6
2.2.2 Cameras . 7

2.3 3D models . 7
2.3.1 heigthmap . 7
2.3.2 triangle mesh . 8

iii

2.3.3 the .obj file format . 9
2.4 Rendering . 9

2.4.1 OpenGL . 9
2.4.2 Shaders . 9
2.4.3 VBO indexing . 10

2.5 Edge detection . 10
2.5.1 Sobel . 10
2.5.2 Canny . 11

2.6 Optimization . 11
2.6.1 Nearest neighbours, KD-trees 11
2.6.2 ICP . 11
2.6.3 Gauss-newton . 12

3 System Implementation 13
3.1 World Model Generation . 14

3.1.1 Acquiring Terrain Data . 14
3.1.2 Generating an .Obj Model . 15

3.2 World Model Rendering . 20
3.2.1 Loading and Combining .Obj Models 20
3.2.2 Rendering with OpenGL . 21
3.2.3 Retrieving True Depth Map 25

3.3 World Model Tracking . 26
3.3.1 Contours in 2D and 3D . 26
3.3.2 Analytical Gauss Newton for Projective Registration 30
3.3.3 Pose Estimation with Iterative Closest Points 32
3.3.4 Tracking Position Over Consecutive Frames 33

4 Experiments and Results 35
4.1 Model and Rendering . 36

4.1.1 model . 36
4.1.2 rendering . 37

4.2 Tracking . 39

iv

4.2.1 Tracking Synthetic Images . 39
4.2.2 Tracking Real Images . 46

5 Conclusions and future work 51
5.1 Report Summary . 51
5.2 Future Work . 52

A Appendix 55

References 63

v

List of Tables

vi

List of Figures

2.1 Pinhole camera model. Image from the OpenCV documentation . . . 8

3.1 DTM heightmaps of Trondheim created at different scales, where (b)
is made to fit into (a)’s cut center . 15

3.2 vertex indices for a square turned triangle mesh 17
3.3 Mesh created from DTM heightmap with scale 10, visualized in Meshlab 17
3.4 Mesh created from DTM heightmap with scale 50 and cut center, visu-

alized in Meshlab . 18
3.5 Zoomed Meshlab visualization of the combined meshes with scale 50

and 10 . 18
3.6 Meshlab visualization of mesh model of DTM with scale 10. Zoomed

in on Munkholmen . 19
3.7 The terrain mask rendering (a) subjected to Sobel edge detection (b)

and then sampling (c). (b) and (c) are zoomed in on the top left corner 27
3.8 An image from one of the ships’s cameras 28
3.9 An image from one of the ships’s cameras, after canny edge detection 29
3.10 Simplified system overview, showing how the tracking process works.

Edge detection is included in the ICP block 34

4.1 A real image (a) compared to normal-map rendering using surface
model (b) and terrain model (c) . 37

4.2 Real image from camera 1 from cluster 0 with rendering overlay . . . 39

vii

4.3 Real image from camera 0 from cluster 1 with rendering overlay . . . 40
4.4 Plot of position convergence when tracking stationary target with

synthetic view . 41
4.5 Zoomed plot of position convergence when tracking stationary target

with synthetic view . 42
4.6 Absolute positional error of stationary target image tracking 42
4.7 View during convergence at different times when tracking stationary

target. Green is view at true position, red is view at estimated position,
yellow is overlap . 43

4.8 Plot of position tracking of synthetic images, movement from east to
west . 45

4.9 Zoomed plot of position tracking of synthetic images, movement from
east to west . 45

4.10 Absolute positional error of image tracking 46
4.11 Plot of position tracking of real images 48
4.12 Zoomed plot of position tracking of real images 48
4.13 Absolute positional error of real image tracking 49
4.14 Cropped view during convergence at different times when tracking

moving target with real images . 50

viii

Chapter 1

Introduction

1.1 Motivation

Most maritime navigational system use a GNSS system, such as GPS, as their primary
means of navigation, with no other systems measuring the position. GPS signals
are weak, and subject to interference either intentional or otherwise, meaning the
service can be denied over a large area [4]. The measurements could fail completely,
or even worse be given hazardous misleading data. A solution to this is to introduce a
secondary position estimation system. Since humans manage to navigate based on
vision and a prior knowledge about their surroundings, a digital system should be able
to complete the same task. The field of computer vision is growing very quickly lately,
and systems have already been developed that track a camera’s movement relative
to an object, based on the camera images combined with a 3D model of that object
[16] [12]. Accurate 3D models are available for the terrain in many large geographical
areas, and an accurate 3D model of the entirety of Norway’s geography is even publicly
available [8]. Computer generated imagery for virtual worlds have been studied and
developed intently, due to the video gaming industry [18]. A visual positioning system
could utilize this data to be able to navigate all along the Norwegian coast, completely
based on comparing camera images to the rendered 3D model. By creating such a visual

1

2 CHAPTER 1. INTRODUCTION

position estimation system, the navigation becomes more robust, and can navigate
despite GNNS failure and jamming. This is especially important for autonomous ships,
on which no humans are involved in the navigation who can detect and correct failures.

1.2 Literature review

There has been much work related to model based visual tracking, and many different
approaches have been proposed and tested. The tasks is finding the camera pose
that best aligns the model with the image. One influential paper on the subject is
the RAPID edge tracking algorithm, developed by Chris Harris in 1990 [5]. This is
an edge tracker, and has been the basis for many later edge tracking systems, which
have aimed to achieve more robustness. Some methods fuses the algorithm with
other sources of measurements, such as image features [10], or sensor systems such
as an IMU [9]. Some methods use low lever roust features in the pose optimization
[13], which is further developed by tracking multiple pose hypotheses, reducing the
change of a wrong tracked frame to cause complete tracking loss [17]. The point
registration can be done without even cleverly creating point correspondences, but
simply minimizing the nearest neighbour distance, know as Iterative Closest Points
(ICP) [6]. Other tracking systems are based on region matching, rather than edges. One
method renders a textured model in OpenGL, and analytically maximizes the mutual
information of the view and the render to find the camera pose [1]. Another region
based approach attempts to segment the model from the background, and maximizes
the discrimination between statistical foreground and background appearance models,
via optimization on the pose parameters [15].

1.3 Assumptions

The ship will only move within a confined known area, for which the terrain is
modelled with heightmaps. The project will use an imperfect world model, which does
not model buildings and vegetation, and assume that it is perfect. Only the terrain
outline contours will be used for the tracking. The tracking assumes that there are no

1.4. BACKGROUND AND CONTRIBUTIONS 3

errors in the data from the ship dataset, such as in the camera’s intrinsic parameters,
and its pose relative to the ship. Furthermore camera distortion effects are ignored.
The ship attitude is known to the tracking system, assuming the INS is perfect, and
only the position will be estimated. Also, the ship’s true position will be used for the
first timestep in the tracking, assuming that the starting position is known. Other than
that, no positional data from the dataset can be used in the tracking.

1.4 Background and Contributions

Through Kongsberg Seatex I had access to a ship dataset, with pose and and velocity
of the ship, created from fused GNSS and INS data. The data was collected with a
system created and placed by Seatex employees aboard the ship Hurtigruten Polarlys.
Furthermore images from several cameras aboard the ship are available, with cam-
era calibration matrix and camera pose relative to the ship. The data was accessible
through a data loading interface made by Seatex employees, who had also collected the
data and calibrated the camera systems. The data is requested with a time argument as
all the data is time synchronized. The terrain data is accessed through a WMS server.
Seatex already had some code for accessing the terrain data as part of the ship data
loader, which I modified to better suit my application. At the Seatex office I also had
access to powerful computers to run simulations quickly. Arild Nøkland, and and Tor-
bjørn Barheim from Kongsberg Seatex have been helpful with how to use the datasets
and computer systems at Seatex, and for giving feedback to implementation ideas.
They have had the main supervisor roles during the project. Edmund Førland Brekke
is my supervisor from NTNU and was helpful during the start of the project until i
was situated at Seatex, although the ideas from the beginning phase were somewhat
departed from in favor of the current implementation.
A particularly helpful tutorial on rendering with OpenGL was available online [2],
which taught me everything I needed to know about OpenGL and rendering.

Although similar algorithms, methods and systems as those developed in this
project project have been previously implemented by others [16], they are intended

4 CHAPTER 1. INTRODUCTION

to form the basis of a more complex and robust position estimation system that will
be developed in my master thesis during the spring semester of 2019. The system
manages to track the position of a ship using only images taken from aboard the ship,
and a custom generated 3D model of the environment, for which a rendering system
is implemented. The rendering attempts to mimic the real camera pose and intrinsic
parameters. Using ICP with gauss-newton for optimization of edge-image similarity
between a real image and an image rendered at an estimated position the system
manages to improve the position estimate, and thus track a moving target. A critical
weakness of the system is proven, namely that there exists points in the world for
which moving in two different directions result in the same view-change, making it
impossible to track the true position with absolute certainty.

1.5 Outline

The report is organized as follows. In chapter 2 the essential theory related to the
project implementation is covered. Chapter 3 describes the implementation of the
system, from how models are generated and rendered, to how the image tracking
algorithm works. In chapter 4 the tracking system is tested on both real and synthetic
data, and the results of these experiments are elaborated. In chapter 5 the report is
summarized, and possible improvements as well as future development of the project
is discussed. The Appendix A and references are found at the end of the report.

Chapter 2

Theoretical Background

2.1 Coordinate systems

2.1.1 Rotation and translation

Conversion of points from one coordinate frame to another can be done using a rotation
and a translation. The rotation can be represented as a multiplication with a rotation
matrix, R3x3, and the translation as a summation with a translation matrix/vector, t3x1.
To perform both the rotation an the translation as a single matrix multiplication, the
matrices from the special euclidean group SE(3), 4x4, is used (shown below). To do this,
the points must be converted to homogeneous coordinates by adding an additional
element, increasing the dimension, which has the value 1. To convert back from
homogeneous coordinates all elements are divided by the last element, and the last
element is removed, reducing the dimension. A conversion of point p expressed in
frame a to frame b is shown below, using a transformation matrix SE(3), where ~
represents homogeneous coordinates.

p̃b =

Rba tba

0 1

 p̃a
5

6 CHAPTER 2. THEORETICAL BACKGROUND

2.1.2 North East Down

North East Down (NED) is a geographical coordinate system in which the world
geometry is approximated by a plane intersecting the world at a given point. The
farther away from this point, the less accurate the NED coordinates become due to the
curvature to the earth. In need coordinates the north direction is the first axis, the east
direction is the second axis, and the vector pointing straight down is the third axis.

2.1.3 Body frame

The body frame is a reference frame fixed to an object moving a world frame, such as
NED. Conventionally the body frame for a vessel has the x axis pointing forward, y
axis pointing right, or starboard, and z axis pointing down. This way a rotation from
NED to body is a simple rotation about the z axis. This angle is called the heading.
The pose of a body in a world frame is both the position and orientation of the body
frame relative to the world frame. The orientation is commonly called the attitude.

2.1.4 Euler Angles

Euler angles are a parametrization of the rotation matrix. The rotation matrix uses 9
parameters, meaning that the 3D pose is overdetermined. The orientation of a frame is
therefore represented as 3 rotations in sequence about the axes of one frame required
to be transformed to the second frame. The euler angles use a zyx convention, in
which the frame is rotated about the x axis, the about the y axis of the resulting rotated
frame, and finally about the z axis of the resulting frame from the last step.

2.2 Sensor systems

2.2.1 INS

An inertial navigation system that can consist of motion sensors (accelerometers),
rotation sensors (gyroscopes) and sometimes magnetic sensors (magnometers). When
the measurements are integrated and added to a previous state estimate this is called

2.3. 3D MODELS 7

dead reckoning. Since the accelerometer and gyroscopes don’t measure position or
attitude, but rather changes, the system will drift over time. Inertial measurement unit
(IMU) is another name for INS.

2.2.2 Cameras

Cameras can often be modelled using a pinhole camera model, shown in 2.1. The
intrinsic matrix K is used to project a point from the camera frame into the image
plane. The matrix K is constructed from the camera’s intrinsic parameters, focal length,
principal point, and pixel density of the image. The principal point is used to move the
image origin to the top left corner, while the focal length represents the distance from
the lens to the image plane. Often the pixel density is included in the focal length and
principal point values. Also there may be different focal lengths corresponding to the
x and y directions. Where fx and fy are focal lengths, and cx , cy is the principal point,
the intrinsic matrix K is

K =

fx 0 cx

0 fy cy

0 0 1

(2.1)

Pixels in the image may also be back projected into the camera frame, but the
depth is then unknown, and must be provided from another source.

2.3 3D models

2.3.1 heigthmap

A heightmap is a discrete representation of the elevation of a geographical area. A
heightmap is a 2D array in which the position represents a geographical location,
while the value in the array represents a height. A heightmap must have an origin
point, as well as a scale, to tie it to the correct geographical location. A model of an
area’s elevation is called a digital elevation model (DEM), which can model the area
including buildings and vegetation as a digital surface model (DOM in Norwegian),

8 CHAPTER 2. THEORETICAL BACKGROUND

Figure 2.1: Pinhole camera model. Image from the OpenCV documentation

or a digital terrain model (DTM) which only models the underlying terrain, the earth
itself.

2.3.2 triangle mesh

A triangle mesh is a common way to represent object surfaces used in computer
graphics. It is comprised of vertices, which are positions in a space, and triangle
faces which are constructed from three vertex points. Conventionally the vertices
forming a triangle face is listed such that going from vertex to vertex forms a clockwise
movement when viewed from the outside of the surface. Following this convention, it
is known in which order to do vector cross products to calculate the surface normal
pointing outwards.

2.4. RENDERING 9

2.3.3 the .obj file format

The Wavefront .obj file format is a file format used to specify a 3D model. It was first
developed by Wavefront Technologies, and has since been adopted by many graphic
application developers. The format specifies a list of vertices, as well as list of any
data that can be associated with the vertices, such as vertex normal vectors. Then
a list of faces, specifying which vertices constitute the triangle face, and what data
is associated with each vertex. An entry into the vertex list is specified as "v x y z",
where v is just the letter v, and x, y and z are the coordinates of the vertex. An entry
in the normal vector list is specified as "n x y z", where n is just the letter n and x,y,z is
the normal vector. A triangle face is then specified by "f v1/n1 v2/n2 v3/n3", where f is
just the letter f, while v1,v2 and v3 are indices corresponding to positions in the vertex
list, indicating which vertices make up the triangle. While n1,n2,n3 are indices in the
list of normals.

2.4 Rendering

2.4.1 OpenGL

OpenGL is an API for rendering 2D and 3D graphics using a computer’s graphical
processing unit (GPU). It is cross platform (Ubuntu, Windows, etc.) and cross language
(python, c++, etc.). GLFW is a window context handler, which can be used to handle
some of the low level OpenGL tasks. An OpenGL program will typically load a
polygonal mesh into buffers, and bind a compiled shader to the rendering process,
and then draw the buffer contents into a buffer, and finally switches buffers with the
screen context to display the view.

2.4.2 Shaders

A shader is comprised of a vertex shader, and a fragment shader. The vertex shader
transforms each vertex to their correct position within the OpenGL camera view, and
the fragment shader specifies how the view is drawn. When rendering a triangle

10 CHAPTER 2. THEORETICAL BACKGROUND

mesh a the inside of triangle face is split into smaller fragments in a process called
rasterization. The normal vector and other values of the fragment is interpolated from
the triangle vertices according to the fragment position within the triangle.

2.4.3 VBO indexing

VBO indexing is a rendering method in OpenGL in which a tringle mesh is represented
by a list of vertices, and a list of triangle face indices, where the indices correspond to
which vertices make up each face. These arrays can be loaded directly into a vertex
buffer object (VBO) and an index array, and rendered with a glDrawElements call
with GL_TRIANGLES and the index array as arguments. This can save on memory, as
vertices can be indexed multiple time, and that way be reused.

2.5 Edge detection

2.5.1 Sobel

Sobel edge detection is done by convolving an image withe sobel operators, which
will approximate the x and y gradients of an image. The absolute value of the gradient
is then used to determine if there is an edge present in the image or not by comparing
it with threshold. The Sobel operators for the x and y directions are

Gx =

−1 0 +1

−2 0 +2

−1 0 +1

Gy =

+1 +2 +1

0 0 0

−1 −2 −1

2.6. OPTIMIZATION 11

2.5.2 Canny

Canny edge detection is a multi stage detection algorithm. First it smooths the image
with a gaussian filter. Then it finds the intensity gradients. Then it does non-maximal
suppression to remove pixels which most likely are not edges. Then hysteresis thresh-
olding is performed to decide which edges to keep and which to discard. This final
step uses two thresholds, max and min. Those above max are definitely strong edges
and kept, and those below min are discarded. The remaining edges, between min and
max, are kept if they are connected to a strong edge, the rest discarded.

2.6 Optimization

2.6.1 Nearest neighbours, KD-trees

If you have two sets of points, a and b, and you want for each point in a to find
the closest point in b, this is called a nearest neighbour search. This is typically
computationally expensive, but can be sped up using a data structure known as a
KD-tree. It is a type of binary partitioning in K dimensional space. In the case where a
and b contain 3-dimensional points, a KD-tree can be constructed for b, which will
then be a 3 dimentional tree. For each point in a search in the KD-tree is much quicker
than what an exhaustive search would have been.

2.6.2 ICP

ICP stands for Iterative Closest points, and is an algorithm used to register two point
clouds. That means finding the rotation and translation that gives the best overlap
between the point clouds. Typically the overlap match is measured by the root mean
square nearest neighbour distance between the points of the clouds. It is an iterative
method, and for each iteration the nearest neighbour distance is minimized through
some optimization scheme on the rotation and translation, and then new nearest
neighbours are calculated with the rotated and translated cloud. One cloud is static
and is represented by a KD-tree for efficiency.

12 CHAPTER 2. THEORETICAL BACKGROUND

2.6.3 Gauss-newton

Gauss newton is an optimization algorithm used to solve non-linear least squares
problems. The error function is presented as a sum of squared residual errors, R, that
are functions of some parameters β to be optimized. The jacobians, J of the residuals
with respect to their parameters are calculated, and a step in the parameters that
further minimizes the error for a step k is calculated as such

βk+1 = βk − (J
T
k Jk)

−1 JTk R(βk) (2.2)

Chapter 3

System Implementation

13

14 CHAPTER 3. SYSTEM IMPLEMENTATION

3.1 World Model Generation

3.1.1 Acquiring Terrain Data

When modeling a huge world the entire model cannot be at the highest resolution,
due to memory limitations. Rendering a large area, all with 1m resolution, would
quickly become unmanageable, as the memory requirements would grow exponentially.
Therefore, some kind of level of detail (LOD) must be implemented. While close objects
remain at high resolution, objects that are far away can be lower resolution without
impacting their appearance. There exists many methods to exploit this. One widely
used method, chunked LOD, splits the map into chunks, and creates different resolution
versions of these chunks. When moving around the world the chunks closer to the
camera will have their higher resolution versions loaded.[19] We assume in this project
that the system will only operate within an area confined to the Trondheim Fjord,
and only near Trondheim city will it be close to the shore. Therefore height data
for Trondheim city is downloaded at higher resolution, while the rest of the fjord is
downloaded at lower resolution. Since we want to combine the models made from these
heightmaps, the overlapping area must be removed from the larger model. The terrain
data is downloaded in the form of heightmaps from a wms server, wms.geonorge.no,
with specified dimensions, scale and elevation model type. The heightmap data can be
requested at three different scales, 50m, 10m and 1m, signifying the distance between
the height measurements, i.e. meters/pixel. Furthermore there are two different types
of elevation data available. There is a digital surface model (DSM) and a digital terrain
model (DTM). Since we want a rendering similar to reality, DSM is more suited, as
it models buildings and vegetation. However this is only available in 1m scale, and
it would take an unreasonable amount of time to download and process, so for this
project DTM is used to model the world. 1000x1000 pixels is used, as it’s a good trade-
off between file size (processing time) and world size. At 1m scale the heigthmap only
spans 1km, too small to cover the Trondheim area, and so 10m and 50m heightmaps
are used, and it can be seen from fig 3.1 that they cover the areas we want to model.

3.1. WORLD MODEL GENERATION 15

(a) Scale 50, center cut (b) Scale 10, center uncut

Figure 3.1: DTM heightmaps of Trondheim created at different scales, where (b) is
made to fit into (a)’s cut center

3.1.2 Generating an .Obj Model

From the heighmaps acquired in 3.1.1, we want to create 3D-models in a file format that
can be loaded and rendered. The Alias/WaveFront Object (.obj) format is chosen, as it
is popular, simple and fairly flexible. The format defines a polygonal mesh comprised
of vertices, polygonal faces, and normal vectors for the vertices. vertices are positions
in whatever dimension the model is, usually 3D or 2D. Furthermore texture data or
in fact any sort of data can be associated with the vertices, which it what makes it a
flexible format [3].
A triangle mesh will be created from the heightmap, as a triangle is the simplest polygon.
A lot of algorithms exists to create efficient triangle mesh representations of terrain
models using triangulated irregular networks (TINs), removing redundant information
and reducing the number of polygons. These methods are however computationally
expensive and have complex implementations [11]. The alternative is a triangulated
regular network (TRN), where every pixel in the heightmap is represented by a vertex,

16 CHAPTER 3. SYSTEM IMPLEMENTATION

and all triangle faces have the same size and shape. The easier construction comes at
the cost of producing more polygons.

In the rendering we would like flat triangle faces to have the possibility to model
sharp edges. Since the rendering will interpolate the surface normal within a face that
means that the vertices comprising a triangle face must have identical normal vectors.
The only way of doing this in the obj-format is duplicating indices when they are part
of multiple faces, so that each has a unique normal vector. A face is comprised of three
vertices and three associated normal vectors. A triangle face in .obj is defined as the
indices pointing to a position in a list of vertices and a list of normals. The vertices and
normals that are pointed to make up the triangle face. To create this we loop over the
pixels in the depthmap, creating two triangles from the square defined by the pixel and
the pixel a row and column over, illustrated in 3.2. The metric vertex xy coordinates
are calculated by scaling the pixel coordinates with the heightmap scale (m/pixel), and
adding an offset so that the center of the heightmap is the origin. The matrix vertex
z-coordinate is simply set as heightmap value. Since the pixels coordinates are row-col,
and the depthmap is aligned north-up east-right, the x-axis will point south, and the y
axis will point east. The vertices are added to the vertex list, and faces created from
referencing the vertex list such that the sequence is clockwise, shown in 3.2. Normal
vectors are created from the cross product of the vectors between the vertices, and are
stored and referenced the same way as the vertices themselves. We want to remove
water, as it adds nothing useful to the model. If all the vertices of a triangle face have
height 0, it is in the open ocean, and is not added to the model. The implementation
becomes slightly too convoluted to write pseudo code, and so the code is added in the
appendix.
Since .obj was chosen we can use popular tools to visualize the generated mesh. We
load the models into Meshlab. The 10m model is shown in figure 3.3 and the 50m model
in figure 3.4. Verifying that the metric vertex positions are correct, the models are
simultaneously loaded in Meshlab, shown in figure 3.5, where it can be seen that the
models fit each other. We see that the ocean is removed from the model, as intended.
An illustration of the triangle mesh itself is shown in figure 3.6, where the view is
zoomed and the triangle borders are visible.

3.1. WORLD MODEL GENERATION 17

Figure 3.2: vertex indices for a square turned triangle mesh

Figure 3.3: Mesh created from DTM heightmap with scale 10, visualized in Meshlab

18 CHAPTER 3. SYSTEM IMPLEMENTATION

Figure 3.4: Mesh created from DTM heightmap with scale 50 and cut center, visualized
in Meshlab

Figure 3.5: Zoomed Meshlab visualization of the combined meshes with scale 50 and
10

3.1. WORLD MODEL GENERATION 19

Figure 3.6: Meshlab visualization of mesh model of DTM with scale 10. Zoomed in on
Munkholmen

20 CHAPTER 3. SYSTEM IMPLEMENTATION

3.2 World Model Rendering

3.2.1 Loading and Combining .Obj Models

In section 3.1 it was shown how multiple terrain models at various scales are generated,
and how they are made to fit together. Now we want to combine these models, and
render them. All the model files are parsed, and their data loaded into arrays. Since
the models were created individually, the vertex and normal indexes start at 0 in each
file. This means the files cannot be combined by simply adding together all the data, as
the indexing would conflict. Therefore an index offset is added to each file as they are
parsed. The index offset is the cumulative number of indexes in the previously parsed
files. The vertex, normal and index arrays from each file can now be concatenated in
the sequence they were parsed. Since it takes a lot of time to parse a model file, after
they are parsed they are cached as binary .npy files, so they can be almost instantly
loaded the next time. The pseudo code for this is written in 16. The file parsing itself
is straight forward as it just reads each line in the file and adds the data to either the
vertex- normal- or index-array. The code for the file parsing and model combining is
added in the appendix A.2. The vertices, normals and indices are simple numpy arrays,
that will later be loaded into attribute buffers and an index buffer respectively, detailed
in the next section 3.2.2.

3.2. WORLD MODEL RENDERING 21

Algorithm 1 Loading .obj files
Require: objFiles
indexO f f set ← 0
verticesAll ← EMPTY
normalsAll ← EMPTY
indicesAll ← EMPTY
for all f ile ← objFiles do
if hasCache(f ile) then
vertices,normals, indices ← дetCache(f ile)

else
vertices,normals, indices ← parseFile(f ile)
createCache(f ile,vertices,normals, indices)

end if
verticesAll ← append(verticesAll ,vertices)
normalsAll ← append(normalsAll ,normals)
indicesAll ← append(indicesAll , indices + indexO f f set)
indexO f f set ← indexO f f set + size(vertices)

end for
return verticesAll ,normalsAll , indicesAll

3.2.2 Rendering with OpenGL

3.2.2.1 Initialization

In the previous section 3.2.1 it was shown how .obj files are parsed and combined
into a single model, with a vertex-, normal- and index-array. Now this data will be
rendered with a custom OpenGL renderer. The GLFW library is used for handling a
lot of low-level tasks related to the rendering, such as specifying the window-context.
Upon initialization the renderer is given the model files, the window size, and the
camera intrinsics. First the model files are loaded. This project uses VBO indexing,
and so two attribute buffers are created and filled with the vertex- and normal-arrays.
An index buffer is created and filled with the index-array. Then a window context is
created with GLFW, setting background color to black, and setting the window size.
The window size is set to the same size as the real camera images. Depth tests are
enabled by calling glEnable(GL_DEPTH_TEST). This is necessary to later extract a

22 CHAPTER 3. SYSTEM IMPLEMENTATION

depth map for the rendering, shown in section 3.2.3. Then the fragment and vertex
shader files are compiled into a shader program, which is then linked to the OpenGL
context. Finally uniforms, used to send variables to the shader, are initialized. The
uniforms will hold the matrices needed to specify the camera view. The shader is
described in the next section, 3.2.2.2.

3.2.2.2 Rendering

Since we want to be able to track a real image by analyzing differences to an image
rendered at an initial guess position, the images must have some mutual information.
Though the real and rendered images are of different modalities, they must be struc-
turally similar in terms of image gradients, as this project implements edge tracking.
This challenge consists of two parts.
The first is rendering at the location in the virtual world that corresponds to the exact
pose of the ship-camera. When rendering is called, it is given four matrices, each an
SE(3) transformation matrix. The model matrix Mmodel defines the transformation
from model coordinates to NED coordinates. As mentioned in section 3.1.2, in the
model x points south, y east, and z up, and so a rotation of π around the y-axis will
align the frames the model to NED. The body matrix Mbody defines the ship body
frame’s position and attitude in NED coordinates with the model center as origin. The
camera matrix Mcam defines the position and attitude of the camera-mount relative to
the ship body frame, with x forward and z down. The fourth input is the view matrix
Mview , which defines the transformation from the camera mount to the camera frame,
in which x points down and z into the view. These matrices, when multiplied, define
the pose of the camera frame in the world.

The second challenge of ’realistic’ rendering is accurately mimicking the real camera
intrinsics in the rendering process, e.g. the field of view. Camera distortion effects
are ignored, even though they can have a visible effect, especially on the edges of an
image. The cameras are modelled with a pinhole camera model, which is a perspec-
tive projection. The intrinsic matrices for the cameras have already been estimated
by employees at Kongsberg Seatex, and is given to the renderer in the initialization

3.2. WORLD MODEL RENDERING 23

process. A perspective projection matrix, P for openGL rendering is defined as in eq
3.1, with near and f ar clip planes, f ovY vertical field of view angle and the aspect

ratio, width/height, of the image [14].

P =

1
aspect∗tan(f ovY2)

0 0 0

0 1
tan(f ovY2)

0 0

0 0 f ar+near
near−f ar

2∗f ar∗near
near−f ar

0 0 −1 0

(3.1)

The near clip field is set to 1, and the large clip field to the size of the world, so that
nothing is clipped for being too far away. f ovy and aspect can be defined in terms of
the camera intrinsics, assuming the principal point is at the image center.

f ovy = 2tan−1(cy
f y
) (3.2)

aspect =
cx

cy
(3.3)

Where the camera intrinsic matrix is

K =

fx 0 cx

0 fy cy

0 0 1

(3.4)

Finally, OpenGL does not follow the camera frame convention of x down z into the
frame, and must be told to view the world in this way. A library called pyrr is used
to create a matrix converting the opengl view frame to the conventional camera
frame, Mдl . Combining the transformation from world frame to camera frame, and the
projection from camera frame to image plane, the matrix MVP is defined as in eq 3.5

MVP = P ∗Mдl ∗Mview ∗Mcam ∗Mbody ∗Mmodel (3.5)

24 CHAPTER 3. SYSTEM IMPLEMENTATION

This MVP matrix is then passed to the shader as a uniform, telling it how to render
an image from the model at the desired pose, with the desired camera parameters.
Specifically it will be used in the vertex shader, where it will simply be multiplied with
all vertices that the shader is given. The vertices are first transformed to homogeneous
coordinates. Since we will do edge tracking, and vegetation and buildings are not part
of the model, the only reliable edges are the mountain and shore contours. Therefore
the rendering can set the color of all vertices to anything but the background color,
which is black. In the fragment shader, the color of all fragments is set to red, an
arbitrary choice. This will render the model red with black background, making
the mountain and shore contours easily extractable, as shown in section 3.3.1. An
example of a mask rendering is shown in fig 3.7. To render the model the normal
and vertex data is loaded into GL_ARRAY_BUFFERs, and the index data is loaded
into the GL_ELEMENT_ARRAY_BUFFER. glDrawElements is then called with the
GL_TRIANGLES argument as well as the size of the index array. The rendered image
is then accessed trough a glReadPixels call to GL_RGB with the window size.

3.2. WORLD MODEL RENDERING 25

3.2.3 Retrieving True Depth Map

In the coming chapter 3.3.1 pixels are back projected into the 3D camera frame. To do
this depth information about the pixels are needed. OpenGL uses a z-buffer during
rendering, which contains depth-data of each rendered pixel, but these depth values
are not metric. Using knowledge of the OpenGL projection matrix, the depth-buffer
is converted to a map of each pixels true depth in meters using eq 3.6, where DGL is
the z-buffer data, Dmetr ic is the metric depth map, with near and f ar clip planes. [14]
The final depth value is the distance from the projective plane to the point, i.e. the
z-coordinate in the camera frame. The z-buffer is accessed though a glReadPixels call
to the GL_DEPTH_COMPONENT, after the rendering with glDrawElements. Before
applying the transform the buffer data is loaded into a numpy array using numpy’s
frombuffer function.

Dmetr ic =
(
near∗f ar
near−f ar)

(
DGL−f ar
f ar−near)

(3.6)

26 CHAPTER 3. SYSTEM IMPLEMENTATION

3.3 World Model Tracking

3.3.1 Contours in 2D and 3D

To do edge matching, first the terrain-contours of the synthetic and real views must
be calculated. The tracking will be sensitive to outliers, so we want only the strongest
contours, which are likely to be found at the transition between the terran and the sea
and sky. We could have used a normal map rendering as in 4.1 to get contours from
the terrain itself, but this would have given many contours that would not be found
in the real image, outliers. Furthermore since the model is DTM and not DOM the
model might be too differnt from reality to have accurate edges within the terrain. The
rendering gives a semantic mask, where terrain is red, and everything else is black.
The only edges present in the rendering are the terrain contours themselves, therefore
a simple method such as Sobel edge detection is sufficient. The Sobel operators are
convolved with the red image channel to approximate the image derivatives, and for
all pixels with gradient magnitude greater than 0, the image-frame coordinates are
stored. The result is shown in figure 3.7. These edge pixels, when expressed in image
frame coordinates, are called edgels. The implementation uses the python imaging
library (PIL), where images are accessed with the a row-column convention. In the
image frame the origin is still top left corner as with row-column, but the axes are
flipped, meaning that x goes right and y goes down. A conversion from row-col to x-y
image frame coordinates is done when receiving an image.

3.3. WORLD MODEL TRACKING 27

(a) mask

(b) edges (zoomed in)

(c) sampled edges (zoomed in)

Figure 3.7: The terrain mask rendering (a) subjected to Sobel edge detection (b) and
then sampling (c). (b) and (c) are zoomed in on the top left corner

In order to later re-project the rendered contour with some world-movement, the
edgels must first be back-projected from the image plane into the 3D camera frame.
For this the camera intrinsic matrix and the calculated true depth map from 3.2.3
is used. In the depth-map, the pixel locations of the depth-values do not perfectly
correspond to the view. The reason for this in unclear, but it results in some pixels
erroneously being assigned the depth value of a nearby pixel. Some of the pixels at
edges of objects may then be assigned the background depth, which is the maximum
depth. To remedy this the depth-value of each pixel is set to the minimal depth-value
in the neighbouring pixels. This is only done for the edgels, as they are the only pixels
that will be back-projected.
An edgel, pi , is transformed to homogenous coordinates, p̃i , and then multiplied with
the inverse of the camera intrinsic matrix, K−1, to produce a 3D ray with depth 1 in
the camera frame. The edgel-ray is multiplied with it’s depth-value, Di , to give the 3D
position of the edgel in the camera frame, xi . This operation is expressed in equation

28 CHAPTER 3. SYSTEM IMPLEMENTATION

3.7.
xi = DiK

−1p̃i (3.7)

The real image, due to textures and lighting, have many edges that are not part
of the terrain contours. A more involved edge detector, the canny edge detector, is
selected for the real images. Values of 100, 200 were found to be a good tradeoff
between suppressing undesired edges, while still detecting the terrain contours. It
is most important that there is little noise near the real contours. The Canny values
suppress edges due to clouds, which would otherwise severely clutter the real contour
lines, and there is little clutter in the water near the shore, although buildings cause
clutter above the shoreline.

Figure 3.8: An image from one of the ships’s cameras

3.3. WORLD MODEL TRACKING 29

Figure 3.9: An image from one of the ships’s cameras, after canny edge detection

30 CHAPTER 3. SYSTEM IMPLEMENTATION

3.3.2 Analytical Gauss Newton for Projective Registration

The projective registration algorithm is given a set of 3D edgels, and their correspond-
ing desired positions in the image plane. Their desired positions are the nearest points
on the real image contours. We want to find the camera-translation that minimizes
the square of the re-projection error. This minimization problem is formulated as

t∗ = argmin
t

S(t) (3.8)

S(t) = r (t)T r (t) =
∑
i

ri (t)
T ri (t) (3.9)

Where t is a translation in the camera-frame, and the residual errors, ri (t), are

ri (t) = pnn,i − Proj(xi − t) (3.10)

xi is the 3D positions of the i’th edgel in the camera-frame, and pnn,i is the correspond-
ing desired image-plane position, the nearest neighbouring point on the true-image
contours. The projection function Proj(·), represents a perspective projection with
the camera intrinsic matrix K , and a conversion from homogeneous to Cartesian
coordinates. The residual error for one point correspondence, i , becomes

ri (t) =

pnn,i,0

pnn,i,1

 −

(K (xi−t))0
(K (xi−t))2
(K (xi−t))1
(K (xi−t))2

 =

pnn,i,0

pnn,i,1

 −

fx (xi,0−t0)
xi,2−t2

+ cx
fy (xi,1−t1)
xi,2−t2

+ cy

 (3.11)

Where the focal length values fx and fy , and the principal point, cx and cy come from
the camera intrinsic matrix

K =

fx 0 cx

0 fy cy

0 0 1

(3.12)

The problem is formulated as a non-linear least squares minimization problem, and so a
non-linear iterative least squares solver is implemented, Gauss-Newton [7]. Using the
Gauss-Newton algorithm, an update to t at iteration number k that further minimizes

3.3. WORLD MODEL TRACKING 31

3.9 is calculated by
t (k+1) = t (k) + (J (k)T J (k))−1 J (k)T r (tk) (3.13)

Where the elements of the jacobian J (k) are the partial derivative of the i’th residual
with respect to the j’th element of t

J (k)i, j =
∂ri (t)

∂tj

����
t (k)
=

∂(

pnn,i,0

pnn,i,1

 −

fx (xi,0−t0)
xi,2−t2

+ cx
fy (xi,1−t1)
xi,2−t2

+ cy

)
∂tj

����
t (k)

(3.14)

Meaning the jacobian J (k)i related to each 3D-2D correspondence i is

J (k)i =

fx

xi,2−t
(k)
2

0 −fx (xi,0−t
(k)
0)

(xi,2−t
(k)
2)

2

0 fy
xi,2−t

(k)
2

−fy (xi,1−t
(k)
1)

(xi,2−t
(k)
2)

2

 (3.15)

The algorithm:

Algorithm 2 Gauss-Newton for position estimation
Require: GNIterations
Require: edдels3D
Require: edдels2D
Require: intrinsics
position ← [0, 0, 0]
for i := 0 to GNIterationss do
residuals ← edдels2D − project(edдels3D − position, intrinsics)
jacobians ← calc Jacobians(edдels3D,position, intrinsics)
positionstep ← (jacobians

T jacobians)−1jacobiansT residuals
position ← position + positionstep

end for
return position

32 CHAPTER 3. SYSTEM IMPLEMENTATION

3.3.3 Pose Estimation with Iterative Closest Points

We will estimate the position of the ship by matching the contours of a real image
from the true position, and an image rendered at a guessed position. This is achieved
by minimizing reprojection error with an approach like Gauss-newton, as presented
in 3.3.2. The reprojection error calculated for a set of correspondences between the
contour points in the rendered and real image. There are multiple ways of finding
these correspondences. An edge image has few distinct features, and the sensitivity
to clutter makes a feature based matching approach unsuited. The corresponding
real-edgels for each edgel are therefore simply selected using nearest neighbours,
implemented with KD-trees for fast performance. These matches will most likely
be incorrect, but iteratively minimizing the nearest neighbour distances while for
each iteration calculating new nearest neighbours, is shown to be suitable for pose
estimation under many circumstances [12]. This is a basic iterative closest points (ICP)
method, and the pseudocode is written in alg 3. While the nearest neighbours are
recalculated at each iteration, the guessed 3D edgels are not. Going one step further
and iteratively doing ICP while recalculating the 3D edgels between runs is covered in
the next section, 3.3.4. There are potentially many local minima when doing ICP. It
is important to remember that the algorithm optimizes the view similarity, and that
there may be multiple poses resulting in very similar looking views, especially when
all that is seen by the algorithm is contour points.

3.3. WORLD MODEL TRACKING 33

Algorithm 3 Pose estimation with ICP
Require: ICPIterations
Require: GNIterations
Require: edдelsInit
Require: edдelsTrue
Require: intrinsics
Require: depthMap
position ← [0, 0, 0]
edдels3DInit ← backproject(edдelsInit , intrinsics,depthMap)
for i := 0 to ICPIterations do
edдels3D ← edдels3DInit − position
edдels ← project(edдels3D, intrinsics)
edдelsNN ← nearestNeiдhbours(edдels, edдelsTrue)
positionstep ← дaussNewtonPosition(edдels3D, edдelsNN ,GNIterations)
position ← position + positionstep

end for
return position

3.3.4 Tracking Position Over Consecutive Frames

This section describes how the algorithms and methods of the previous sections are
put together to track the position of a ship using images taken from aboard that ship.
First the world model files are created for the operating area as described in section
3.1. One of the cameras is chosen to be used in the tracking, and it’s intrinsic matrix is
loaded from the dataset. The renderer described in 3.2 is initialized using the intrinsic
matrix. The position in the dataset is in lat long format, but the optimization is based
on meters. The NED offset from the origin, whose lat long coordinates are known,
is calculated using a utility function associated with the data set. Together with the
true ship position the ship attitude is also loaded. Next a true view image is acquired,
either loaded as a real image from the dataset, or as an artificial image rendered using
the true ship pose, as well as the camera pose. Then the initial guess position for the
time step is used, with the known camera pose, to render a guessed view. The real
image edges are calculated using canny edge detection, and the edges for the guessed
view are created using Sobel, as described in 3.3.1. The edge images of the real and

34 CHAPTER 3. SYSTEM IMPLEMENTATION

guessed view are then passed to the ICP algorithm, described in 3.3.3, which refines
the position estimate by finding a position for which the real and guessed view are
more similar. The system has no relocalization capabilities, so the estimated position
is initialized to the true position for the first time step, assuming that the ship knows
where it starts. The initial position guess for subsequent steps is the refined position
from the last step. The systems assumes that the attitude i perfectly estimated from the
INS, and uses the true ship attitude at the initial guess pose. Furthermore no filtering
techniques of any kind have been implemented. This process of improving the position
estimate by comparing real images to a render at the guessed position is run at each
time step, making the estimated position follow the path of whatever is taking the
images. A figure representing the process is shown in figure 3.10.

Figure 3.10: Simplified system overview, showing how the tracking process works.
Edge detection is included in the ICP block

Chapter 4

Experiments and Results

35

36 CHAPTER 4. EXPERIMENTS AND RESULTS

4.1 Model and Rendering

4.1.1 model

By setting the color of a rendered vertex equal to the vertex normal, the surface
color becomes dependent on the direction the surface is facing. This reveals more
information than the mask rendering, and is used to inspect the rendered models. In
figure 4.1 two renders are compared to a real image at the same location. One render
uses the surface model, DOM, while the other render uses the terrain model, DTM.
Due to the problems with getting large DOM models, detailed in 3.1.1, only a small
area is renderable, an if the ship were to move further away from the center, it would
quickly be moving into a completely unmodeled area. It is still apparent, even though
background mountains are not modelled, that the DOM model rendering gives a view
that is much more similar to the real image. The DTM rendering, while it captures
the shore line and mountain contours gives a very undetailed view, with few features
tying it to the real image. The meshing algorithm seems to have kept the sharp edges
of where the buildings’ roofs meet their walls. However we can see that the water is
still represented in the model. This is because the DOM heightmap is created using
different measurement techniques, and the sea is not exactly at height 0 in the model.
This causes the DOM model to be much larger than the DTM version, as there is no
decimation on the sea-polygons, even though it is approximately a flat surface.

4.1. MODEL AND RENDERING 37

(a) real image

(b) DOM render

(c) DTM render

Figure 4.1: A real image (a) compared to normal-map rendering using surface model
(b) and terrain model (c)

4.1.2 rendering

The rendering is designed to be as similar to the real view as possible. This means
accurately modeling the camera pose, as well as modelling the camera itself. There
are multiple cameras on the ship, for which the dataset specifiy the poses relative to
the ship, as well as the camera intrinsic parameters. The result of using these values,
and a pinhole camera model is shown in figures 4.2 and 4.3, where the rendering
using different camera specifications is overlain the real image locations. In fig 4.2, the
camera is at the fron of the ship, and it can be seen that the rendering matches the

38 CHAPTER 4. EXPERIMENTS AND RESULTS

real view quite well. The center matches particularly well, and it can be inferred that
the extrinsics, pose in the world, is quite good. It is also seen that the match becomes
poorer at the edges of the image, meaning that the intrinsic camera values are not
quite right. It appears that a the field of view for the real image is wider than for the
rendering. Furthermore the rendering has ignored distortion effects, whose effect may
be significant. For fig 4.3 the same may be said for the intrinsics as for the from camera,
but here the camera attitude is obviously wrong. A slight rotation would result in a
much better match. The ship attitude is ruled out as the causing effect, as the offset is
different for each camera, and also by inspecting a sequence of overlay images, for
the offset is constant. Distortion effects are also ruled out as the offset is the same
over the entire image. This means that there is a slight error in the mounting angles
of the cameras. The camera position aboard the ship, as well as the ship attitude and
position seem to be captured accurately by the model and the rendering system, as it
can be seen in the right side of the image in fig 4.3 that the islet, Munkholmen, which
is relatively close to the camera, is rendered correcly, beside the discussed camera
rotaion error.

4.2. TRACKING 39

Figure 4.2: Real image from camera 1 from cluster 0 with rendering overlay

4.2 Tracking

4.2.1 Tracking Synthetic Images

4.2.1.1 Stationary Target

We want to inspect the convergence properties of the position estimation system
presented in 3.3.4. In stead of using real images for the tracking we test the system
on synthetic data. The image used at the view for the true position is a rendering
at the true position. To track a stationary target the true position and true view
image is simply held constant for every time step. The system is doing 1 ICP cycle
per second, each doing 100 iterations of calculating nearest neighbours and doing 1

40 CHAPTER 4. EXPERIMENTS AND RESULTS

Figure 4.3: Real image from camera 0 from cluster 1 with rendering overlay

iteration of projective registration for each correspondendce set. The true position is
set approximately 5km off the coast, the the initial guess position is a bit over 1km
away from the true position. The tracked position in the fjord is shown in 4.4, as well
as a zoomed in version in 4.5. A visualization of the tracked view is shown in 4.7, where
it can be seen that the guessed view and true view become more and more similar.
After 50 iterations the projective registration is pixel perfect, and the positional error
about 7m, which is seen in the error graph in fig 4.6.
Looking zoomed in on the estimated positon, is is clear that the ICP algorithm manges to
move towards the correct position for most of the steps. This indicates that the tracking
system might have a lot to gain from implementing a line search, first calculating a
direction and then testing view correspondence along that direction. This assumes

4.2. TRACKING 41

that the world points at which the contours originitate do not change too drastically
between different positons. A line search culd be implemented in the Gauss Newton
optimization, but the potential here is limited, as the algorithm operates using the same
edge correspondence set, which won’t give a good match unless really close to the true
position. Therefore the line search could be implemented in the ICP itself, calculating
new nearest neighbours for each match evaluation along the search direction.

−6000 −4000 −2000 0 2000 4000 6000
EAST [m]

−4000

−2000

0

2000

4000

NO
RT

H
[m

]

true pos
estimated pos

Figure 4.4: Plot of position convergence when tracking stationary target with synthetic
view

42 CHAPTER 4. EXPERIMENTS AND RESULTS

Figure 4.5: Zoomed plot of position convergence when tracking stationary target with
synthetic view

0 10 20 30 40 50
time [s]

0

200

400

600

800

1000

tra
ck
in
g
er
ro
r [
m
]

Figure 4.6: Absolute positional error of stationary target image tracking

4.2. TRACKING 43

(a) time 0

(b) time 5

(c) time 10

(d) time 49

Figure 4.7: View during convergence at different times when tracking stationary target.
Green is view at true position, red is view at estimated position, yellow is overlap

44 CHAPTER 4. EXPERIMENTS AND RESULTS

4.2.1.2 Moving Target

Instead of a constant position, now the true position and ship attitude is sampled
from the real ship’s path at one sample per second. This is the setup from 3.3.4. The
real camera extrinsics and intrinsics are loaded and used in the rendering of both
the true position image and the guess position image. The real view is simulated by
rendering at the true ship pose. The front camera’s parameters are used. At each step
the ICP algorithm is run for 100 iterations. As seen in figures 4.8 and 4.9 the system
manages to track the true position of the ship. The accuracy is shown in 4.10. More
iterations would result in higher accuracy at the cost of being more computationally
demanding. This is seen in the last section, 4.2.1.1, where the system used 50 steps to
reduce the position error to under 10m, far away from the shore. The positional error
is somewhat higher towards the end of the tracking sequence. This may be due to the
way the contour correspondences are found. When the ship turns, the contours get a
larger sideways displacement. With a sideways displacement the nearest neighbour
matches will also have more sideways displacement compared to the true match. Since
the terrain contours are mostly vertical, large parts of the contours still have a close
neighbour, although erroneously matched, and the ICP will have slower convergence,
since the distance between the nearest neighbours is already small. When moving
straight towards the terrain however, the closer distance will mostly cause a vertical
displacement in the contours. Since the contours are mostly horizontal, the nearest
neighbour matches will be closer to the true match, resulting in faster convergence,
thus more accurate tracking. Since the initial guess position is the last refined position
and no filter methods are used, the estimated position will lag behind the true position,
since it doesn’t manage to reduce the error enough in one iteration of ICP, as discussed
in the last section. This can be seen by looking at the end of the tracked path in fig 4.9.

4.2. TRACKING 45

−6000 −4000 −2000 0 2000 4000 6000
EAST [m]

−4000

−2000

0

2000

4000

NO
RT

H
[m

]

true pos
estimated pos

Figure 4.8: Plot of position tracking of synthetic images, movement from east to west

Figure 4.9: Zoomed plot of position tracking of synthetic images, movement from east
to west

46 CHAPTER 4. EXPERIMENTS AND RESULTS

0 50 100 150 200 250 300 350 400
time [s]

0

10

20

30

40

50

60

70
tra

ck
in
g
er
ro
r [
m
]

Figure 4.10: Absolute positional error of image tracking

4.2.2 Tracking Real Images

Now instead of rendering an image using the camera parameters at the true position
to simulate the real view, real camera images are loaded from the dataset. The tracking
test were carried out on camera cluster 0, with camera 1, as out of all the cameras it
seemed to have the most accurate extrinsic and intrinsic data. Camera and rendering
comparison for this camera is seen in fig 4.2. Furthermore, as can be seen from the
path overlaid the area map in fig 4.8, the ship is heading towards the highest terrain
in the area, and so it makes sense to track using the front facing camera, as the seen
contours will be closer to the ship. As for the previous tracking sections the pose
estimation is as described in section 3.3.4. The resulting true and estimated paths are
compared in fig 4.11, and a zoomed in version in fig 4.12. For the first 150 seconds
the system manages to track the position purely based on the images taken from the
ship. While the accuracy is not as high as for the artificial view tracking in 4.2.1, the
error is still below 100m, while travelling over 2km from the closest shore point. The
tracking accuracy is shown in 4.13. One must also remember that there exists a pixel

4.2. TRACKING 47

perfect match for the artificial tracking, while for the real images all the edges are not
detected, and there is also other edges than just from the contours, such as textures
and unmodelled elements such as buildings and clouds. Furthermore there is also
the inaccurate camera modelling, where the field of view is incorrect, in addition to
ignoring distortion effects, and not correcting the error in the camera mounting angle.
Between 150 and 175 seconds the tracking is lost and not recovered. the estimated ship
path suddenly changes direction, heading almost straight east. The system has found a
local minima for the contour match, but unfortunately not the minima corresponding
to the correct position. What has happendes is that there is an ambiguity in the view.
There are multiple positions resulting in views that are similar to the true view. This is
seen in figure 4.14, where the estimated and the real views match well, but the position
is wrong nonetheless. Moving east is results in similar views as moving north-west
since the only terrain contours visible that are close to the ship are just two straight
lines forming a trinangle . As long as the point of the tringle ramains at the same place
in the image, moving towards and away from it or standing still does not change the
angle between the lines, thus not changing the terrain contours. The cause for the
tracking loss is that the ship moves along a path for which the terrain contours do
not change, even the terrain is relatively close. The reason such a path exists is due
to the relatively smooth and flat terrain, which results in long straight contour lines,
which are difficult to track. This would not be as big a problem in an area with more
distinct mountains and hill tops, but it is nonetheless the biggest weakness of this
camera based position tracking system.

48 CHAPTER 4. EXPERIMENTS AND RESULTS

−6000 −4000 −2000 0 2000 4000 6000
EAST [m]

−4000

−2000

0

2000

4000
NO

RT
H
[m

]
true pos
estimated pos

Figure 4.11: Plot of position tracking of real images

Figure 4.12: Zoomed plot of position tracking of real images

4.2. TRACKING 49

0 25 50 75 100 125 150 175 200
time [s]

0

100

200

300

400

500

600

700

tra
ck
in
g
er
ro
r [
m
]

Figure 4.13: Absolute positional error of real image tracking

50 CHAPTER 4. EXPERIMENTS AND RESULTS

(a) time 150

(b) time 175

(c) time 199

Figure 4.14: Cropped view during convergence at different times when tracking moving
target with real images

Chapter 5

Conclusions and future work

5.1 Report Summary

The report has detailed the implementation of a camera based position tracking system
for ships, and investigated the effectiveness and the weaknesses of the system. The
system uses a model of the terrain, which is created from a heightmap that is converted
to a triangle mesh and stored as an .obj file. The heigmap is a digital terrain model
(DTM) which is not as realistic as a Digital Surface Model (Digital Overflate Modell,
DOM). The DOM data was not fully available. A rendering system is created in
OpenGL to render the model intending to mimic a real camera, both in pose and
intrinsic camera parameters. This was mostly successful apart from some small errors
in the ship relative camera attitude, as well as the field of view. The effect of camera
distortion effects remains untested. An image is rendered at an initial guess position.
The position tracking is done using an iterative closest points algorithm (ICP), using
Gauss newton for the optimization, to find a change in the guessed position for which
the rendered image’s contours become more similar to to the real image’s contours.
There are no filtering methods used to guide the initial guess, it simply guesses it’s
last refined position. This causes the system to lag behind the real path. The tracking
system is tested on data that Kongsberg Seatex has generated from placing cameras

51

52 CHAPTER 5. CONCLUSIONS AND FUTURE WORK

and navigation data loggers on a ship. The data is available through an interface
made by Seatex employees. The testing is confined to data collected in the Trondheim
Fjord. The experiments found that position estimation convergence is rather slow.
The convergence is faster when the position error is greater, since the gradients of the
reprojection errors are greater. This enhances the lagging effect of the tracking. The
tracking with the synthetic images was much more accurate than the tracking with
real camera images, indicating that if the edge image for the real and guessed images
were more similar the tracking would perform better. When tracking on synthetic data
the tracking was not lost even when subjected to a view with sparse information in the
contours. The tracking on real data was lost after some time due to multiple movement
directions yielding the same change in view. This failure mode for ambiguous views
is by far the biggest weakness of the system. The tracking of synthetic images could
also fail to this, but the additional errors in the real data making the tracking even
more difficult. In addition the Canny edge detection yields many outlier edges and
fails to detect some contour edges, which the system does not account for, it simply
tries to move any edges closer to each other. It is apparent that terrain contours alone
are not sufficient to robustly visually track the ship position due to the high likelihood
of scenes having too sparse and indistinct contours.

5.2 Future Work

Many of the systems and methods devloped in this project will serve as a basis for a
master thesis. Especially the model creation and rendering system is very reusable.
Figuring out how to use the DOM data instead of the DTM will make the model much
more similar to the real world. To remove the ocean from the DOM the DTM can be
used as a mask, since the ocean here is at always at height 0. As of now the world reso-
lution is simply higher in a confined area at the center of the map. A chunked LOD’ing
technque will be considered for making the resolution dependent on the position of the
ship, making the operation area of the system much higher. Reduction of redundant
polygons, such as those in flat areas, will be considered. This would give the model a
lower polygon count, letting us use high resolution for larger areas, as well as load-

5.2. FUTURE WORK 53

ing a bigger part of the world, making objects on the far horizon visible if that is desired.

The camera calibration, both internal and the rotation relative to the ship will have
to be corrected. The camera will possibly have to be recalibrated, after the camera
distoriton effects are ruled out. The camera mounting angles could be adjusted by
aligning the renderings with the real images.

The system will be more accurate if the position estimation is fused with IMU-data.
The initial error would be smaller for each step, making the search easier and possibly
less prone to tracking loss. A visual odometry system could also be implemented,
tracking the velocity by comparing real images frame to frame. This is complex to
do with a monocular camera however, since scale is not observed, and would have to
be estimated. IMU fusion will be prioritized for sensor fusion, as the data is already
available through INS systems developed at Kongsberg Seatex. IMU data and positonal
data compliment each other well when fused. For the fusion the uncertainty of the
position estimation might be approximated according to how close the ship is to land.
Both a Kalman filter approach and factor graphs will be considered. Their main draw-
backs and advantages will be compared before making a decision about which to use.

It was determined that the tracking convergence was relatively slow, and can be
improved, potentially drastically, by implementing some kind of line search. Even
though edge tracking might not be used in future work, any gradient descent related
methods will be tested with some line search implementation. Furthermore a robust
estimator, such as Tukey, should be used in the optimization process to make it more
robust. Insead of minimizing a distance between points, a projective distance could be
minimized in stead, minimizing the distance from a point to a plane created with the
other points normal. This might reduce some of the problems with tracking sideways
motion relative to the terrain.

The tracking system has a problem tracking ambiguous view, and so other methods
than pure terrain contour tracking must be considered. If a DOM model is acquired

54 CHAPTER 5. CONCLUSIONS AND FUTURE WORK

edges could be created within the terrain, providing more edges to track, thus making
the view less ambiguous. Another idea might be to backproject strong features detected
in the real images back onto the 3D model, which would provide additional tracking
points, also reducing the ambiguous view problem. One must be wary of introduction a
a possibility for drifting to the system with this approach, as the approach is similar to
feature based monocular visual odometry, which drifts. One problem with the system
was creating an accurate understanding of the image scene, as the canny edge detection
was not smart enough to know which edges we desired. One idea is to use a neural
network to do semantic segmentation on the image, detecting moutnains, buildings,
vegetation, ocean, sky and so on. Transfer learning could be used by retraining an
existing net on data generated with the rendering system, which is able to render
a semantic mask, which can be associated with a real image from the dataset. The
semantic data could be added in the .obj model, and be encoded as different colors in
the rendering. Some kind of region based matching approach can then be implemented,
where the semantically segmented real image is matched to the guessed rendered
segmentation. An entropy or correlation based matching approach could be used. A
region based matching approach based on semantic segmentation will be strongly
considered for the main task of the master thesis.
A weakness of the system is that if the tracking is lost, there is no mechanism attempt-
ing to detect and correct this. A relocalization system should therefore be looked into,
using visual place recognition to make a position guess based on a search in an image
database created offline. Some dimensionality reduction method for the images should
considered to make the search faster, possibly utilizing the segmentation network
proposed in the previous paragraph.

Appendix A

Appendix

Listing A.1: Heightmap to mesh code

import numpy as np

c l a s s I n d e x T a b l e :
def _ _ i n i t _ _ (s e l f , shape) :

s e l f . d e f a u l t _ v a l = −1
s e l f . t a b l e = np . f u l l (shape , s e l f . d e f a u l t _ v a l)
s e l f . n e x t _ i n d e x = 0
s e l f . s o r t e d _ l i s t = []

def g e t _ c r e a t e (s e l f , row , c o l) :
i f s e l f . t a b l e [row , c o l] == s e l f . d e f a u l t _ v a l :

s e l f . t a b l e [row , c o l] = s e l f . n e x t _ i n d e x
s e l f . n e x t _ i n d e x += 1
s e l f . s o r t e d _ l i s t . append ((row , c o l))

return s e l f . t a b l e [row , c o l]

55

56 APPENDIX A. APPENDIX

def g e t (s e l f , row , c o l) :
return s e l f . t a b l e [row , c o l]

def num_ind ices (s e l f) :
return s e l f . n e x t _ i n d e x

def heightmap_to_obj_mesh (heightmap , s c a l e , o r i g i n _ o f f s e t
, s a v e _ p a t h) :
print (' c r e a t i n g ␣ OBJ ␣ mesh ␣ from ␣ heightmap ')

v e r t i c e s = ' '
normals = ' '
f a c e s = ' '

v e r t e x _ i n d i c e s = I n d e x T a b l e (heightmap . shape)
f a c e _ n o r m a l s = np . empty (heightmap . shape , d type =objec t

)
for row , c o l in np . ndindex (heightmap . shape) :

f a c e _ n o r m a l s [row , c o l] = []

t r i 1 = [(0 , 0) , (−1 , −1) , (0 , −1)] # o f f s e t s t h a t
form two t r i a n g l e s i n a squar e , c o u n t e r c l o c k w i s e

t r i 2 = [(0 , 0) , (−1 , 0) , (−1 , −1)]

index = 1 #OBJ i s 1− i n d e x e d
print (' c r e a t i n g ␣ t r i a n g l e ␣ f a c e s ␣ with ␣ v e r t e x − ␣ and ␣

normal− i n d i c e s ')

57

for (row , c o l) , h in np . ndenumerate (heightmap) :
i f c o l == 0 or row == 0 : # s qua r e o r i g i n (2 x t r i)

i s bo t t om r i g h t c o r n e r o f s q ua r e
continue

for t r i in [t r i 1 , t r i 2] :
t r i _ h e i g h t s = [heightmap [row + r , c o l + c]

for (r , c) in t r i]
i f a l l (h == 0 for h in t r i _ h e i g h t s) or any (h

< 0 for h in t r i _ h e i g h t s) : # ch e c k i f
s q ua r e i s a l l ocean , o r i f any va l u e
i n v a l i d t o d o : b i tmap
continue

f a c e _ i n d i c e s = [1+ v e r t e x _ i n d i c e s . g e t _ c r e a t e (
row + r , c o l + c) for (r , c) in t r i] # +1
s i n c e OBJ 1 i n d e x e d

f a c e s += ' f ␣ { f [0] } / / { f [0] } ␣ { f [1] } / / { f [1] } ␣ { f
[2] } / / { f [2] } \ n ' . format (f = f a c e _ i n d i c e s) #
f a c e c o n s i s t s o f v e r t e x and normal i n d e x e s
, which a r e i d e n t i c a l

f a c e _ v e r t i c e s = [np . a r r a y ([(row+ r) ∗ s c a l e , (
c o l +c) ∗ s c a l e , heightmap [row+r , c o l +c]])
for r , c in t r i]

f a c e _ n o r m a l = np . c r o s s (f a c e _ v e r t i c e s [1] −
f a c e _ v e r t i c e s [0] , f a c e _ v e r t i c e s [2] −
f a c e _ v e r t i c e s [0])

for (r , c) in t r i :
f a c e _ n o r m a l s [row+r , c o l +c] . append (

f a c e _ n o r m a l)

58 APPENDIX A. APPENDIX

print (' i n d e x i n g ␣ v e r t i c e s ␣ and ␣ c r e a t i n g ␣ normals ')

for (row , c o l) in v e r t e x _ i n d i c e s . s o r t e d _ l i s t :
v e r t i c e s += ' v ␣ { } ␣ { } ␣ { } \ n ' . format (row ∗ s c a l e +

o r i g i n _ o f f s e t [0] , c o l ∗ s c a l e + o r i g i n _ o f f s e t
[1] ,

f l o a t (heightmap [
row , c o l]))

combine f a c e no rma l s
normal = sum (f a c e _ n o r m a l s [row , c o l])
normal /= np . l i n a l g . norm (normal)
normals += ' vn ␣ { } ␣ { } ␣ { } \ n ' . format (normal [0] ,

normal [1] , normal [2])

with open (save_path , 'w+ ') a s f :
f . w r i t e (' # ␣ OBJ ␣ \ n# ␣ T e r r a i n ␣ t r i a n g l e ␣ mesh \ n ')
f . w r i t e (v e r t i c e s)
f . w r i t e (normals)
f . w r i t e (f a c e s)

print (' comple ted ! ')

Listing A.2: Loading .obj files

import numpy as np
import os

c l a s s ModelConta iner :
def _ _ i n i t _ _ (s e l f) :

s e l f . i n d e x O f f s e t = 0

59

def _add_ob jData (s e l f , v e r t i c e s , normals , i n d i c e s) :
i f s e l f . i n d e x O f f s e t == 0 :

s e l f . i n d i c e s = i n d i c e s
s e l f . v e r t i c e s = v e r t i c e s
s e l f . normals = normals
s e l f . i n d e x O f f s e t += np . shape (v e r t i c e s) [0]

e l se :
i n d i c e s += s e l f . i n d e x O f f s e t
s e l f . i n d i c e s = np . c o n c a t e n a t e ((s e l f . i n d i c e s ,

i n d i c e s))
s e l f . v e r t i c e s = np . c o n c a t e n a t e ((s e l f . v e r t i c e s

, v e r t i c e s))
s e l f . normals = np . c o n c a t e n a t e ((s e l f . normals ,

normals))
s e l f . i n d e x O f f s e t += np . shape (v e r t i c e s) [0]

def l o a d _ o b j (s e l f , f i l e _ p a t h , u se_cache) :
print (' l o a d i n g ␣ f i l e : ␣ { } ' . format (f i l e _ p a t h))

i f f i l e _ p a t h . s p l i t (' . ') [−1] != ' o b j ' :
print (' f i l e ␣ i s ␣ not ␣ . o b j ')
return

c a c h e _ p a t h = f i l e _ p a t h . s p l i t (' . ') [0] + ' _cache_ .
npy '

i f use_cache and os . pa th . i s f i l e (c a c h e _ p a t h) :
print (' found ␣ cache ')
v e r t i c e s , normals , i n d i c e s = np . l o a d (

c a c h e _ p a t h)

60 APPENDIX A. APPENDIX

s e l f . _add_ob jData (v e r t i c e s , normals , i n d i c e s)

e l se :
print (' no ␣ cache . ␣ p a r s i n g ␣ f i l e ')

v e r t i c e s = []
normals = []
i n d i c e s = []

with open (f i l e _ p a t h , ' r ') a s f :
i = 0
for l i n e in f . r e a d l i n e s () :

i f l i n e . s t a r t s w i t h (' # ') :
print (' \ t { } ' . format (l i n e))

i f l i n e . s t a r t s w i t h (' v ␣ ') :
l i n e = l i n e . s t r i p () . s p l i t ()
v e r t e x = np . a r r a y (l i n e [1 :] , d type

=np . f l o a t 3 2)
v e r t i c e s . append (v e r t e x)

e l i f l i n e . s t a r t s w i t h (' vn ␣ ') :
l i n e = l i n e . s t r i p () . s p l i t ()
normal = np . a r r a y (l i n e [1 :] , d type

=np . f l o a t 3 2)
normals . append (normal)

e l i f l i n e . s t a r t s w i t h (' f ␣ ') :
l i n e = l i n e . s t r i p () . r e p l a c e (' / ' ,

' ␣ ') . s p l i t ()
v e r t e x I n d i c e s = np . a r r a y (l i n e

61

[1 : : 2] , d type =np . u i n t 3 2) −1
i n d i c e s . append (v e r t e x I n d i c e s)

v e r t i c e s = np . a r r a y (v e r t i c e s)
normals = np . a r r a y (normals)
i n d i c e s = np . a r r a y (i n d i c e s)

np . save (cache_path , [v e r t i c e s , normals ,
i n d i c e s])

s e l f . _add_ob jData (v e r t i c e s , normals , i n d i c e s)

i f __name__ == ' __main__ ' :
o b j = O b j C on t a i n e r ()
o b j . l o a d _ o b j (' models / s q u a r e . o b j ' , True)

62 APPENDIX A. APPENDIX

References

[1] E. Marchand Amaury Dame. Accurate real-time tracking using mutual informa-
tion. 2010.

[2] Calvin1602@github. Opengl tutorial, 2015.

[3] fileformat.info. Wavefront obj file format summary, 2012.

[4] Alan Grant, Paul Williams, Nick Ward, and Sally Basker. Gps jamming and the
impact on maritime navigation. Journal of Navigation - J NAVIG, 62, 04 2009.

[5] Chris Harris and Carl Stennett. Rapid - a video rate object tracker. In BMVC,
1990.

[6] Hani Javan Hemmat, Egor Bondarev, Gijs Dubbelman, and Peter H. N. de With.
Improved icp-based pose estimation by distance-aware 3d mapping. 2014 Interna-
tional Conference on Computer Vision Theory and Applications (VISAPP), 3:360–367,
2014.

[7] M Jalloul, Mohammed Baydoun, and Mohamad Al-Alaoui. Gauss-newton image
registration with cuda. pages 305–309, 12 2011.

[8] kartkatalogen. Norgeskart, 2018.

[9] G. Klein and T. Drummond. Tightly integrated sensor fusion for robust visual
tracking. 2004.

63

64 REFERENCES

[10] V. Lepetit L. Vacchetti and P. Fua. Combining edge and texture information for
real-time accurate 3d camera tracking. 2004.

[11] Peter Lindstrom, David Koller, William Ribarsky, Larry Hodges, N Faust, and
Gregory A. Turner. Real-time, continuous level of detail rendering of height
fields. pages 109–118, 01 1996.

[12] Manolis Lourakis and Xenophon Zabulis.

[13] E. Malis and E. Marchand. Experiments with robust estimation techniques in
real-time robot vision. 2006.

[14] olivers posterous. linear depth in glsl, 2010.

[15] Victor Prisacariu and Ian D. Reid. Pwp3d: Real-time segmentation and tracking
of 3d objects. volume 98, 01 2009.

[16] G. Reitmayr and T. W. Drummond. Going out: robust model-based tracking for
outdoor augmented reality. In 2006 IEEE/ACM International Symposium on Mixed
and Augmented Reality, pages 109–118, Oct 2006.

[17] C. Teulière, E. Marchand, and L. Eck. Using multiple hypothesis in model-based
tracking. In 2010 IEEE International Conference on Robotics and Automation, pages
4559–4565, May 2010.

[18] Naty Hoffman Tomas Akenine-Moller, Eric Haines. Real-time rendering. CRC
Press, 2002.

[19] Thatcher Ulrich. Rendering massive terrains using chunked level of detail control.
01 2002.

	Abstract
	Introduction
	Motivation
	Literature review
	Assumptions
	Background and Contributions
	Outline

	Theoretical Background
	Coordinate systems
	Rotation and translation
	North East Down
	Body frame
	Euler Angles

	Sensor systems
	INS
	Cameras

	3D models
	heigthmap
	triangle mesh
	the .obj file format

	Rendering
	OpenGL
	Shaders
	VBO indexing

	Edge detection
	Sobel
	Canny

	Optimization
	Nearest neighbours, KD-trees
	ICP
	Gauss-newton

	System Implementation
	World Model Generation
	Acquiring Terrain Data
	Generating an .Obj Model

	World Model Rendering
	Loading and Combining .Obj Models
	Rendering with OpenGL
	Retrieving True Depth Map

	World Model Tracking
	Contours in 2D and 3D
	Analytical Gauss Newton for Projective Registration
	Pose Estimation with Iterative Closest Points
	Tracking Position Over Consecutive Frames

	Experiments and Results
	Model and Rendering
	model
	rendering

	Tracking
	Tracking Synthetic Images
	Tracking Real Images

	Conclusions and future work
	Report Summary
	Future Work

	Appendix
	References

