
Fredrik O
peide

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lt

y
of

 In
fo

rm
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ri
ca

l
En

gi
ne

er
in

g
D

ep
ar

tm
en

t o
f E

ng
in

ee
ri

ng
 C

yb
er

ne
tic

s

M
as

te
r’

s
th

es
is

Fredrik Opeide

Deep Learning-Based Multi-Camera
Situational Awareness and Global
Localization for Autonomous Ships

Master’s thesis in Cybernetics and Robotics
Supervisor: Edmund Førland Brekke

June 2019

Fredrik Opeide

Deep Learning-Based Multi-Camera
Situational Awareness and Global
Localization for Autonomous Ships

Master’s thesis in Cybernetics and Robotics
Supervisor: Edmund Førland Brekke
June 2019

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Engineering Cybernetics

Preface

This is the report for the compulsory final project at the five year MSc program Cyber-
netics and Robotics at NTNU.
The project has been done in cooperation with Kongsberg Seatex, where I have been
provided with with a work place, powerful computers and peripherals, as well as a
huge data set with a programming interface.
The task given to me from Seatex was an open problem, to create a camera-based
localization system. Otherwise this has been a very self-driven project, as I have been
free to select the scope, methods and goals for this project myself.
Many choices in this master thesis are based on results from my project thesis from
the 2018 winter semester, titled "Camera-Based Position Estimation for Autonomous
Ships in Elevation Mapped Areas".
I would like to express my sincere thanks to my contacts and advisors at Seatex, Torb-
jørn Barheim, Arild Nøkland, Ståle Smedseng and Henrik Foss, for motivating me and
reviewing my progress for both my master- and project-thesis.
I also extend my gratitude to my NTNU advisor Edmund Førland Brekke at ITK for
his writing tips and feedback on drafts of this report.

Fredrik Opeide
June 2019

i

Abstract

I present the design, implementation and testing of a non-drifting 6DoF pose estimation
system for ocean vessels based on semantic segmentation of camera images using a
deep neural network. Only ship mounted cameras and publicly available geographical
height maps are used to accurately estimate the ship’s global pose.
The segmentation network is a PSPNet adapted to and trained on a custom dataset
from all along the Norwegian coast. Is is trained to label each pixel as either sky, land
or ocean. The trained net generalizes well and achieves 99.5% pixel accuracy, but is
limited by the imperfectly generated dataset.
The localization uses an arbitrary number of ship-mounted cameras simultaneously
and works by comparing the segmented camera images to a virtual reality expected
view for each camera, taking into account the camera poses, intrinsic parameters and
lens distortion effects. Given an initial ship pose estimate, iterative optimization (ICP)
is used to find a new ship pose that better matches the virtual model to the segmented
images. Localization with multiple cameras is demonstrated to be much more robust
and accurate than single-camera localization. Errors in the camera pose and calibration,
as well as inaccurate segmentation induces localization inaccuracy. Under the right
conditions sub-meter accuracy can be achieved several km from shore.
The entire system is implemented in python, and runs at ca. 0.2hz for 4 camera images
with resolution 1280x960, which is not fast, but promising for a proof of concept
prototype.
The localization system using four cameras is tested on test-data sequences from ca.
70 unique regions, and only fails for 3. The 3 failures were enabled by the starboard
camera periodically not working, but the fails were ultimately caused by bad image
segmentation again caused by some bad training samples. Videos for each localization
test sequence are available here
https://drive.google.com/drive/folders/1TPLzuMLonLWutZzT2lJlendu7V0de2xc.

ii

https://drive.google.com/drive/folders/1TPLzuMLonLWutZzT2lJlendu7V0de2xc

Sammendrag

Jeg presenterer design, implementasjon og testing av et ikke-driftende lokaliseringssys-
tem i seks frihetsgrader for skip, basert på semantisk bildesegmentering ved bruk
av et dypt neuralt nettverk. Kun skipsmonterte kameraer og offentlig tilgjengelig
høydekartdata brukes til å presist estimere skipets globale posisjon og orientering.
Segmenteringsnettverket er et PSPNet som er tilpasset og trent på et nytt generert
datasett langs den norske kysten. Nettet generaliserer godt, og oppnår 99.5% piksel-
nøyaktighet, men blir begrenset av imperfeksjoner i det genererte datasettet.
lokaliseringssystemet kan benytte et vilkårlig antall kameraer samtidig, og fungerer
ved å sammenligne segmenterte kamerabilder mot virtuelle kamerabilder fra en 3D-
modell av terrenget, som tar høyde for hvordan kameraene er montert, deres interne
parametre og linseforvrengning. Gitt en initiell posisjon og attitude for et skip, benyttes
iterativ optimalisering for å finne en ny posisjon og attitude som bedre matcher den
virituelle modellen mot de segmenterte kamerabildene. Lokalisering som bruker flere
kameraer vises å være mye mer robust og presist enn lokalisering med ett kamera. Feil
i kameramonteringsvinkler og kamerakalibrering, samt unøyaktig bildesegmentering
medfører unøyaktigheter i lokaliseringen. Under riktige forhold kan nøyaktigheten bli
på under én meter flere km fra kysten.
Hele systemet er implementert i python, og kjører i omtrent 0.2Hz for 4 kameraer med
bildeoppløsning 1280x960, som ikke er raskt, men lovende for en prototype ment som
konseptbevis.
Lokaliseringssystemet med fire kameraer er testet på testdatasekvenser fra ca. 70
unike regioner, og svikter for kun 3. De 3 sviktene ble lagt til rette for ved at styrbor-
dkameraet periodevis var ute av drift, men ble i bunn og grunn forårsaket av dårlig
bildesegmentering, igjen grunnet noen dårlige treningsdata. Videoer fra hver lokalis-
eringssekvens er tilgjengelig her
https://drive.google.com/drive/folders/1TPLzuMLonLWutZzT2lJlendu7V0de2xc.

iii

https://drive.google.com/drive/folders/1TPLzuMLonLWutZzT2lJlendu7V0de2xc

Contents

Preface i

Abstract ii

Sammendrag iii

1 Introduction 1
1.1 Motivation . 1
1.2 Related Work . 3

1.2.1 Visual Localization . 3
1.2.2 Deep semantic segmentation 6

1.3 Contributions . 8
1.4 System overview and structure of report 10

2 Theoretical Background 13
2.1 Kinematics . 13

2.1.1 Rigid transformation matrix 13
2.1.2 Euler angle parameterization 14
2.1.3 Twist Coordinate Parameterization 14

2.2 Cameras . 15
2.2.1 Pin-hole Camera Model . 15
2.2.2 Lens distortion . 17

iv

2.3 ICP - Iterative Closest Points . 17
2.3.1 ICP . 17
2.3.2 Gauss Newton Optimization 19

2.4 Edge detection . 20
2.4.1 Sobel . 20
2.4.2 Canny . 20

3 Available Data Set 21

3.1 Ship Seapath . 22
3.2 Cameras . 24

3.2.1 Camera position and orientation 24
3.2.2 Camera Calibration . 25

4 Terrain Model Generation and Rendering Engine 29

4.1 Heightmap Processing . 30
4.1.1 Acquiring Heightmap Data 30
4.1.2 Missing and Erroneous Heightmap Data 30
4.1.3 NED height correction . 32
4.1.4 Varying Levels of Detail . 34
4.1.5 Ocean Tides . 35

4.2 Triangle Mesh Creation . 37
4.3 Model Rendering with OpenGL . 40

4.3.1 Modelling the Real Camera in OpenGL 40
4.3.2 Triangle Mesh Loading . 42
4.3.3 Rendering and Retrieving Data 43

5 Camera Mounting Angle Correction 47

5.0.1 Orientation estimation with ICP 48
5.0.2 orientation estimation example 53
5.0.3 Correcting Camera Angles for Larger Time Periods 56

v

6 Semantic Segmentation 65
6.1 Creating an Image Segmentation Data Set 66
6.2 Semantic Segmentation Network . 70

6.2.1 Architecture and Transfer Learning 70
6.2.2 Training Setup . 73
6.2.3 Training Results . 80

7 Localization Using Semantically Segmented Camera Images 87
7.1 Algorithm overview . 88
7.2 Algorithm details . 93

7.2.1 Calculating edges and normal vectors 93
7.2.2 Justification for the Edge Reprojection Scheme 94
7.2.3 Analytical Gauss-Newton . 96

8 Localization Experiments and Results 103
8.1 Artificial Localization: Trondheim Fjord 104

8.1.1 Static Far from Land . 104
8.1.2 Static Close to Land . 105
8.1.3 Moving . 106

8.2 Real Localization: Trondheim Fjord Sequence 107
8.2.1 Single Camera Tracking . 108
8.2.2 Multi-Camera Tracking . 110

8.3 Multi-Camera Tracking Performance on Entire Test Set 112
8.3.1 Overview . 112
8.3.2 Localization Failures . 113

9 Conclusions and future work 117
9.0.1 Model and Rendering . 117
9.0.2 Semantic Segmentation Network 119
9.0.3 Localization . 120

References 123

vi

Chapter 1

Introduction

1.1 Motivation

The goals and choices are in large part based on the results from the precursor to
this master thesis, my project thesis, where canny edge detection in a single cam-
era was used to estimate the orientation (not full pose) of the ship. In the project
thesis I discovered and described the inherent weaknesses of using just one camera
for localization. The main weakness of using just one camera is that there is not
always enough information in a single image to determine a unique solution for the
localization. Furthermore the reliance on a single camera is extremely fault-intolerant.
Therefore the natural next step is to use multiple cameras and to also estimate the full
6DoF pose of the ship. Estimating the full pose, not just the orientation, completely
removes the need for GNSS, other than perhaps for initialization.

I was also dissatisfied with the performance of canny, which often fails to find the
correct edges, and produces a lot of clutter with no way of telling which edges are what.
I decided to explore the use of neural networks as they have shown remarkable perfor-
mance in image understanding, and has overcome the shortcoming of traditional edge
detection. Since the advent of powerful GPUs performance as exploded, and research

1

interest is at an all time high. Many different state of the art neural net architectures
are openly available online, and there exists multiple deep learning frame works to
choose from. There is an inherently big advantage to using semantic segmentation
instead of trying to develop more robust tracking with a better edge detector. This is
the fact that the semantic segmentation in itself provides situational awareness, giving
information about surrounding areas even if the ship has no idea where exactly it is.
Knowing what is what in an image can aid in making a more fail-safe system where
the system can navigate to avoid obstacles that it sees despite localization failure. It
can also be used to detect reefs, small vessels or other objects the navigation system
might otherwise not have known about from map data.

Having a system that resists GPS-failure has become a particularly important re-
search area. This is in part because some areas simply have poor GPS coverage due
to natural or man-made structures. However the most important reason is that GPS
signals are susceptible to interference and jamming, either unintentionally or mali-
ciously. Signals can even be imitated or spoofed without the recipient detecting this,
which is particularly dangerous. Trailer drivers have been known to use GPS jammers
to avoid being monitored by their employers, collaterally blocking GPS reception for
all nearby devices. In 2018 the GPS reception in the north of Norway was completely
blocked on three separate occasions, each disturbance lasting two to three weeks. The
Norwegian intelligence service, Etterretningstjenesten, states that the cause was the
Russian military testing new equipment for electronic warfare.

Recent law changes open up for more autonomy in the maritime sector, and a wider
array of sensors are now allowed to be used in a navigation system, including cameras.
Using as many sensors and data sources as possible is important for robust navigation,
and so camera-based navigation naturally becomes an important research topic. Fur-
thermore cameras are very cheap sensors compared to LIDAR and radar systems, and
are already used in virtually all driving assistance systems in the automotive industry.

Camera-based model tracking, where digital models are detected in an image and local-

2

ized in relation to a camera is a research area that has been studied for decades. Since
height map data is openly available in high detail for the entirety of the Norwegian
coast, it stands to reason that it could form the basis for a navigational system, where
a digital model of the terrain itself is used as a sort of way-point.

No filtering of the pose is performed. This is both due to time-limitations of the
project, and can also be justified by that it better exposes weaknesses in the system.
All the systems designed and implemented in this project are very modular, and so the
system can be extended later, to compensate for the discovered weaknesses.

1.2 Related Work

1.2.1 Visual Localization

Visual localization is a very popular research topic, and methods can generally be
divided into three categories; visual odometry, SLAM and model-based localization.
Structure from motion is also related to these methods, but here the focus is not on
camera pose estimation, rather just dense reconstruction of the environment [49].
Visual odometry concerns itself with using the camera images to estimate the camera
movement between the frames, and can be based on both directly comparing pixels
[9] or tracking detected feature-descriptors [29], such as licence-unrestricted ORB-
features [35]. A key problem of using monocular cameras that scale is unobservable
[36]. This can be remedied by fusing data from a sensor which does in fact observe the
scale, such as an IMU [43], or by using depth cameras [20] or a stereo camera setup
[46]. The depth measurements can even be imitated by in stead using a deep neural
network to predict the depth of a monocular camera image [53]. Feature based visual
inertial odometry has been shown to work well for sea surface vehicles in natural
environments with large scene depth variations and lighting variations [38].

The visual odometry concept is extended in SLAM (Simultaneous localization and
mapping), where the system gradually creates a map of it’s environment, while simul-

3

taneously estimating the camera’s location within the map [8]. This typically consist
of a front-end where visual odometry is used to estimate movement between image
frames, and a back-end that performs bundle-adjustment, which uses measurements
over time to refine both the camera path in the map and the geometry of the map
[14]. By recognizing already discovered areas and using the old map points in current
localization the system can remain drift-free within the generated map [1].

Both direct[10] and feature-based [27] SLAM is viable, and methods are often
further classified as dense [50] or sparse [12], depending on how many points are used
in the created map. Most SLAM methods are developed for single-camera systems, but
existing SLAM systems can later be modified to use a multi-camera rig [41].

Stumberg et al. uses a neural network to make a direct slam system more resistant
to lighting changes, feeding deep visual descriptors for each pixel into the SLAM-
system. Their system is more robust against bad initialization and weather changes
than both state-of-the-at direct and indirect methods, as of April 2019 [44]. Deep
learning can also be used for semantic labelling of image points, which can be used to
build a semantic map of the explored region [37].

Unless tied to the real world using prior information, a model, the localization in
SLAM is only in relation to the generated map. Using a prior model which the camera
is localized in relation to is called model-based localization, and when the global
localization of the model itself is known, by extension global localization of the camera
is possible. In the case of a visual SLAM system the geometry of the generated map
can be aligned with an existing chart of a known region [42], or a pre-made feature
map with true locations can be used with loop closure [26][13]. Global camera-based
localization does not need use a SLAM system as basis, in fact there is a myriad of
different methods for camera localization using prior knowledge.

visual place recognition, also known as topological or topometric localization, is
one such method, where a query-image is matched with a database of images from
known locations, using some lower dimensional representation of the images [5].
The lower dimensional representation can be feature based, such as [4] which uses a

4

pre-build large-scale database of mountain contour sections to localize a query image
with (sometimes manually) extracted contours, and achieves a 10 second query time
over the entirety of Switzerland. A lower dimensional image representation can also
be generated by a neural network, trained to give similar descriptors for images of the
same area [25] [30]. Topological localization over a large area is inherently slow, but
can be used to initialize a more accurate real-time localization system [3].

A marker-based tracking system has knowledge of specific visual descriptors
places at known locations on the model, which is an old technique [21] still used in
modern systems such as the HTC Vive[28]. Marker-less tracking is the alternative for
less controlled environments. Some model based localization systems are based on
iteratively aligning contours in a virtual reality model, for example a 2.5D model of
an urban environment, to detected edges in the camera image [52][33][23], a process
which can be fused with IMU data for robustness [34].

An image can also be registered to a virtual model using other measures than edges
and edge-distances, such as aligning whole image regions, not just edges. One such
system is PWP3D [32], which uses a statistical model for background segmentation,
which is used to match the foreground region with a model silhouette. PWP3D was
the first real-time capable system using region-based optimization, achieving this by
utilizing GPU acceleration.

Classical edge based and region based methods rely on manual tuning of feature
extraction parameters, and do not produce results that are in consistent with what
a human recognizes in the image. and so Arth et al. takes advantage of the recent
advances in deep neural network to do semantic segmentation of buildings in a monoc-
ular camera to generate line segments, which is then iteratively aligned against a 3D
model of an urban area [17] to estimate the camera pose. Their system was much
more robust than tradition edge detection based camera localization systems. Another
similar system by the same authors uses sampled poses around an initial pose estimate
for the camera, compares the segmented image to the model viewed from the different
poses and uses the best match as the new pose estimate [18]. The same authors propose
yet another approach based on semantic segmentation, namely a neural net trained
to directly predict a pose change that better aligns a semantically segmented camera

5

image and a model rendering at the initial estimated pose, taking these two images
as input [2]. Wang et al. use also perform updates to a pose estimation by feeding
semantically segmented camera images and model renderings into a pose estimating
neural network, and achieve additional robustness by fusing it with inertial sensors
[45].

1.2.2 Deep semantic segmentation

The original Convolutional Neural Network (CNN) was invented in 1980 by japanese
computer scientist Kunihiko Fukushima [11], and forms the basis for virtually all
modern image processing neural networks [15]. CNNs stand in contrast to fully
connected networks in that they use a set of smaller filters applied over the entire
image to extract features, requiring fewer parameters. Lower layers typically represent
features such as edges or colored dots, while deeper layer represent more complex
features. These extracted features can be used for tasks such as classifying images [22].
ery deep networks have been unstable to train until Resnet introduced the concept
of skip-connections that let residual values from past layers skip past layers and just
be added to the layer output in stead [16]. This reduces the problem of vanishing
gradients, which is a problem with very deep nets.

Deep semantic segmentation is concerned with using deep neural networks to
predict the category label of each pixel in an imput image, ie. classify each pixel as
one of several pre-determined objects. For example this can entail marking which
pixel are part of any humans in an image.For some time fully convolutional neural
networks were the state-of-the-art for semantic segmentation accuracy [24], as the
very local filters of CNN struggled to grasp the context necessary to correctly label
complex scenes [56]. A solution to this was proposed by Zhao et a. with the Pyramid
Scene Parsing Network [56]. The PSPNet is build on top of a resnet to extract a feature
map, and then uses a pyramid parsing module get different sub-region representations
(big and small regions), which are then upsampled and concatenation to form the final
feature representation, which carries both local and global context information. This
final feature representation is then fed to a CNNwhich predict pixel labels. The PSPNet

6

achieved state of the art and came first in ImageNet 2016 scene parsing challenge,
PASCAL VOC 2012 benchmark and Cityscapes benchmark. Other novel networks
have been developed with PSPNet as a basis, among them ICNet, which is a intended
for real-time, and as such sacrifices some accuracy for a huge speed boost, becoming
the state-of-the-art among networks of similar processing speed [55].

7

1.3 Contributions

The main contribution of this project is further developing existing concepts of
segmentation-image-to-model tracking to use multiple cameras simultaneously by
expressing the pose estimation for each camera in the ship-frame and optimizing with
all cameras jointly. The system is such that it only needs publicly available height maps,
not relying on a pre-build feature-map or a hand-crafted map. It is also demonstrated
that semantic segmentation based localization can work well in natural environments,
not just cities, at least when the weather is stable. The model generation and ren-
dering system used in both the generation of segmentation data and in the tracking
system is very modular. The system can easily be extended later to include more
semantic classes, again by using publicly available data to for example separate build-
ings from the terrain. The accuracy of the system under perfect conditions is tested
and discussed. The system is tested on multiple data sequences from areas it has not
been trained on, and the three cases where the system fails are inspected and discussed.

The interface to retrieve images and pose data from the Polarlys dataset, and the
Polarlys dataset itself is developed and maintained by Seatex employees, see ch. 3.
However, every other system-component described in project report is implemented
from scratch in python, by me. The project uses many python packages; Numpy, Scipy,
OpenGL, PIL, Pyrr, Keras, OpenCV and Matplotlib have been essential for this project.
There are a multitude of practical components to this project, all of which have been
completed solely by myself, and so here is a list of them.

• Created a 3D model generator, using publicly available heigthmap data from
Geonorge which is first corrected then used to create triangle meshes.

• Created a rendering engine using OpenGL to render the triangle meshes, simu-
lating a camera on a ship, using the camera intrinsic parameters. There is also a
simple LOD scheme to show closer terrain in higher detail.

• Created a tool to quantify and correct erroneous camera mounting angles in the
Polarlys dataset. Errors related to the camera calibration were also discovered

8

and documented. This angle correction tool is essentially the system that was
developed in the project thesis, just with a much better model generation and
rendering system.

• Used the model generation and rendering to create a semantic segmentation
dataset of ca. 4000 images, labelling each pixel as sky, land or ocean.

• Created a training pipeline and used this to train a PSPNet on the custom dataset,
with great performance and well documented results. Transfer learning was
used with weights from a net trained by the original author on the ADE20K
dataset. Errors in particular scenarios were discovered to be due to imperfections
in the training data.

• Designed, implemented and tested a localization system using multiple cameras
simultaneously, based on comparing semantic segmentation of images to a
virtual terrain model, taking into account the intrinsic and extrinsic parameters
of each camera.

9

1.4 System overview and structure of report

A simplified illustration of how the localization system’s main components interact
with each other is shown in figure 1.1. The figure also contains links to each compo-
nent’s main section in the report.

Chapter 3 introduces the dataset and some of it’s shortcomings such as poor camera
calibration, and how this is dealt with.
Chapter 4 describes the model generation process, and how the generated 3D model
is rendered to create a virtual reality equivalent for a real camera.
Chapter 5 details how the rendering system from chapter 4 is used to create a tool to
detect and correct inaccurate camera mounting angles in the data set.
chapter 6 describes the process of creating a data set for semantic segmentation. The
training process and performance of the trained network is also presented here.
Chapter 7 covers the implementation details of a localization system based on align-
ing chapter 6’s segmented camera images and chapter 4’s rendered model images to
estimate the pose of the ship.
Chapter 8 details how the localization system is tested on data sequences it has not
been trained on, and investigates the best case accuracy as well as failure causes.
Chapter 9 sums up and discusses the most important results, and considers how the
system can be developed further.

10

Semantic
Segmentation

Network

ICP
Alignment

Model
Renderer

Triangle Mesh
Generator

Height Map
Processor

Cameras

Parameters

Seapath

Ship Pose
Handler

data set

ch7

ch4.3

ch4.2

ch4.1

ch6ch3

ch5

ch7

images

initial pose

estimated pose

optimized pose

camdata
segmented
images

pose,
camdata

images,
depths

lat, long,
scales

triangle
-meshes

lat, long,
scales

heightmaps

Figure 1.1: System overview with chapter shortcuts

11

12

Chapter 2

Theoretical Background

2.1 Kinematics

2.1.1 Rigid transformation matrix

A rigid transformation matrix is a matrix that can be used to apply a rotation and a
translation to a point. This can be used to move a point within a reference frame, and
it can also be used to change which reference frame a point is defined in reference to.
This frame-change is achieved by letting the rigid transformation matrix represent
the rotation and translation between the two frames. An example is shown i eq.
2.2. To multiply a 3D vector with a rigid transformation matrix the vector must be
converted to homogenous coordinates, which is done by appending a 1, adding an
extra dimension to the vector, denoted using over the vector. Converting back from
homogenous coordinates is done by dividing all elements by the value of the extra
element, and then removing the extra element completely, reducing the dimensionality,
this is denoted as a function π (). Homogenous versions can be created from vectors of
any dimensionality. Rigid transformation matrices in 3D space are called the special
euclidean group, which is denoted SE(3).

13

T =


R3x3 T3x1

01x3 0

 (2.1)

Xb = π (T b
a X̃a) (2.2)

2.1.2 Euler angle parameterization

According to Euler’s rotation theorem [47], 3D rotations can be described using three
parameters, three angeles. By comparison, rotation matrices have nine parameters,
and is overdetermined. Euler angles can follow different convensions, but a common
one is ZYX, where the angles are referred to as roll, pitch and yaw. Here the the three
angles describe, in sequence, a rotation about the z-axis, yaw, a rotation about the new
frame’s y-axis, pitch, and a rotation bout the last frames x-axis, roll [48].

2.1.3 Twist Coordinate Parameterization

A tranformationmatrix can be parameterized using lie alegbra. This way the translation
matrix is reduced to a 6 parameter representation, ξ̂ ∈ se(3), which can be mapped to
a rigid body transform via exp(ξ̂) ∈ SE(3).

14

ξ =


w

v

 = [ω1,ω2,ω3,v1,v2,v3]
T ∈ R6 (2.3)

ξ̂ =


ŵ v

0 0

 =


0 −ω3 ω2 v1

ω3 0 −ω1 v2

−ω2 ω1 0 v3

0 0 0 0


∈ se(3) (2.4)

T = exp(ξ̂) ∈ SE(3) (2.5)

exp(ξ̂) ≈ I4x4 + ξ̂ (2.6)

exp(ξ̂) =


rodriдuez(w) v

0 0

 (2.7)

2.2 Cameras

2.2.1 Pin-hole Camera Model

The pinhole camera model is a model of how how the world is projected into the
pixels of a camera image. The model consists of a closed chamber with a small hole
(pinhole) that lets light in and projects in onto a plane [31]. The definition of the
camera frame, taken from the OpenCV documentation, is seen in figure 2.1. This
projection is mathematically represented with a camera calibration matrix, also known
as projection matrix, K. If the real depth of a pixel is known it can be back projected to
3D using the inverse of the projection matrix.

proj(Z) = π (KZ) (2.8)

π (Z) =


z1
z3
z2
z3

 (2.9)

15

K =


fx 0 cx

0 fy cy

0 0 1


(2.10)

K−1 =


1
fx

0 −
cx
fx

0 1
fy
−
cy
fy

0 0 1


(2.11)

Back-projection of a 2D point X with depth d uses the inverse of the camera matrix
K .

back(X ,d) = dK−1


x1

x2

1


=


D(X) x1−cxfx

d
x2−cy
fy

d


(2.12)

Figure 2.1: Pinhole camera model. Image from the OpenCV documentation

16

2.2.2 Lens distortion

A real camera has additional effects not captured by the pin-hole camera model. This
includes lens distortion effects, where tangential and radial distortion effects are the
most prominent. This project uses three parameters to describe the radial distortion,
k1,k2,k3, and two for the tangential distortion, p1,p2.

2.3 ICP - Iterative Closest Points

2.3.1 ICP

Iterative closest points (ICP) is a class of algorithms used to iteratively align two sets
of points [6]. When aligning two point clouds, one cloud is kept fixed while the other
is moved. At each iteration every moving point has it’s nearest neighbouring point
from the fixed cloud determined, then the error between the corresponding points is
exspressed as a function of movement in the movable cloud, and the optimal movement
is found through optimization. This is done over and over until the point clouds are
aligned. This is illustrated for the 2D case in figure 2.2. A common optimization
scheme is to use Gauss newton to minimize the sum of squared distances. Before the
minimization step outliers can be rejected. Point-to-line or point-to-plane distances are
a popular alternative to point-to-point distances as an error metric in ICP, as it typically
converges in fewer iterations [7] and is more precise. Point-to-line and point-to-point
in 2D is illustrated in figure 2.3.

17

Figure 2.2: Basic 2D ICP

Figure 2.3: point-to-line and point-to-point disatance in 2D

18

poinToLine = nT (P2 − P1) (2.13)

Projective ICP is a flavor of ICP where 2D points in a plane are aligned with
projections of 3D points onto that plane, a simplified illustration shown in figure 2.4.
The movement is typically expressed as a transformation of the camera-frame.

Figure 2.4: Point correspondence in projective ICP. Green is the 2D point, while red is
the projected 3D point

2.3.2 Gauss Newton Optimization

Gauss-newton can be used to minimize non-linear least squares problems, eq. 2.14,
for example the point distances in an ICP iteration. The error E is a function of some
parameter β . The jacobian, Ji for each residual function ri is calculated, and residuals
evaluated at β = 0 and jacobians are concatenated in their respective arrays r and J ,
which is used to calculate an update to β that minimizes the error, eq. 2.16.

minE(β) =
∑
i

(ri (β))
2 (2.14)

Ji =
∂ri
∂β

(2.15)

∆β = −(JT J)−1 JT r (0) (2.16)

19

2.4 Edge detection

2.4.1 Sobel

Sobel edge detection is done by convolving an image withe sobel operators, which
will approximate the x and y gradients of an image. The absolute value of the gradient
is then used to determine if there is an edge present in the image or not by comparing
it with threshold. The Sobel operators for the x and y directions are

Gx =


−1 0 +1

−2 0 +2

−1 0 +1


Gy =


+1 +2 +1

0 0 0

−1 −2 −1


2.4.2 Canny

Canny edge detection is a multi stage detection algorithm. First it smooths the image
with a gaussian filter. Then it finds the intensity gradients. Then it does non-maximal
suppression to remove pixels which most likely are not edges. Then hysteresis thresh-
olding is performed to decide which edges to keep and which to discard. This final
step uses two thresholds, max and min. Those above max are definitely strong edges
and kept, and those below min are discarded. The remaining edges, between min and
max, are kept if they are connected to a strong edge, the rest discarded.

20

Chapter 3

Available Data Set

21

3.1 Ship Seapath

Figure 3.1: The Hurtigrute ship Polarlys

Kongsberg Seatex has done extensive work in collecting data from active ships, and
have installed their navigation systems as well as additional sensors on a Hurtigruten
ship called Polarlys, shown in 3.1. This ship has traveled up and down the Norwegian
coast, collecting images, navigational data, AIS data, radar data and weather data. The
approximate route is shown in fig 3.2. The data is collected over the span of more
than a year. The dataset is very rich and varying, as there is a big diversity in the
terrain along the long Norwegian coast. The ship sees both natural environments and
environments more dominated by man-made structures.

The name of the navigation system used is Seapath, which is a product created by
Seatex. The system fuses GNSS, IMU and magnetometer data using kalman filtering,
giving highly accurate position and attitude measurements for the ship. For the rest
of the report the pose data from the Seapath system is just referred to as the ship’s
seapath. The ship pose, velocity and angular velocities as well as acceleration and
angular acceleration is available. The ship’s body frame is shown in fig 3.3, which is
taken from a report of a survey done by Anko Bluepix, with Konsberg Seatex as a client.
The body frame follows the convention for ships with positive x-axis forward along the
vessel centerline, positive y-axis out the starboard side and the positive z-axis is down.

22

The seapath is defined in reference to WGS84, and in the dataset the positon is stored
as lat, long, down, while the orientation is parameterized as z-y-x euler angles (yaw,
pitch, roll) in degrees. This project uses the dataset’s data for seapath, tidal height,
camera images and parameters related to the camera pose and calibration. Tidal height
is referenced to NN2000.

Figure 3.2: The route of hurtigruten, from lunga.no

23

DOC. REF.:

PAGE:

CLIENT:

PROJECT:

LOCATION:TITLE:

REF. DRAWING NO.

NOTES:

REV.NO. REV. DATE DRAWN PREPARED CHECKED APPROVEDREASON FOR ISSUE

KR
ENCL:

0 FOR USE

- SKETCH NOT TO SCALE
- ALL COORDINATES IN METRES
- CRP (WHERE X=0, Y=0, Z=0) IS AT CENTRE
 BOTTOM MGC1
- REFERENCE PLANE IS A BEST FIT PLANE
 OF POINTS SPREAD ON DECK 8

- CENTRELINE IS DEFINED FROM MEAN OF
 POINTS AFT/PORT AND AFT/STB TO MEAN OF
 POINTS FORE/PORT AND FORE/STB ON DECK 8
- POSITIVE X-AXIS IS FORWARD
- POSITIVE Y-AXIS IS TOWARDS STARBOARD
- POSITIVE Z-AXIS IS DOWNWARDS

KONGSBERG SEATEX AS

POLARLYS

BERGEN, NORWAY

10307-001 1

1

23.04.18 ABM AD RH
COORDINATE

REFERENCE SYSTEM

CL VESSEL

+X(FWD)

+X(FWD)

+Y(STB)

+Z(DOWN)

CRP
X=0.000
Y=0.000
Z=0.000

0

0

1

1

2

2

3

Figure 3.3: Sketch of the ship’s reference frame. Camera clusters indicated with blue
boxes

3.2 Cameras

3.2.1 Camera position and orientation

The dataset has synchronized the camera images to the seapath data, so that you can re-
trieve the pose of the ship the exact moment an image is taken. The pose of the camera
relative to the ship is also available. On the ship there are four separate camera clusters,
indicated in fig 3.3, all looking in different directions. Each of these clusters consist of
three individual cameras, which are shielded behind a shared glass dome. The cameras
are separate and each have different poses. Together all 12 cameras cover the full
360degpanoramaviewwithoverlapbetweenimaдes .Usinдonlythemiddlecamerasstillдivesдoodcoveraдe,butwithsomeblindspotsasthereisnooverlap.Thecameras ′posesarespeci f iedas f irstalocationrelativetotheshipbody f rame,andthenarotationrelativetotheshipbody f rame,parameterizedasz−

y−xeuleranдlesindeдrees .Theanдlesarede f ined f ora f rameinthecamerawherexpoints f orwardouto f thecamera,ypointshorizontallyouto f theriдhtsideo f theimaдe,andzpointsverticallydownouto f theimaдe .Thisiscalledthecameramountinд f rameintheresto f thereport , toseparateit f romthetraditionalcameraf rameorimaдe f rame,whichisde f inedsomewhatdi f f erently,perthebackдroundtheory.Theanдlesarespeci f ied f orcertaintimeperiods,allowinдvaluestochanдeistepsovertime .Thedataisstoredinaf ile,andisupdatedbymanuallychanдinдthevaluesinthe f ile .Itishoweverretrievedusinдthedataset ′snormalinter f ace .

24

3.2.2 Camera Calibration

The internal camera parameters, or camera intrinsics, are available from the same file
and interface as the extrinsics, the camera poses. The calibration was done by Seatex
employees before the project thesis was started in August 2018, and has not not done
again since. Therefore we won’t go into great detail on the calibration process. Suffice
to say chessboards were used. The cameras are modelled with the pinhole camera
model, and a 5 parameter lens distortion model, 3 radial coefficients and 2 tangential.
Each camera has been calibrated individually, and so the intrinsic matrix is unique for
each camera, as are the distortion parameters. The Seatex employees calibrated the
cameras taking into account the distortion caused by the glass dome. The calibration
is discovered to have some error though. Either due to the distortion caused by the
glass dome to not be captured by the relatively simple distortion model, or due to the
cameras changing their orientation over time, thus looking through the glass at new
angles, which requires recalibration. We know for a fact that the angles change over
time, and that calibration is not done as a response to angle change. The undistortion
is particularly poor for the tilted cameras on the side of each camera cluster, which
suggests that the distortion model might not have the expressive power to capture
such a complex lens distortion. The middle cameras are all good, likely since they look
straight through the dome, resulting in a more symmetric and simple distortion. For
this reason only the middle cameras are used for the rest of the project, both in the
creation of segmentation training data, and also for the localization tests. The tilted
side cameras are simply ignored. The superiority of the middle camera’s calibration is
apparent in 3.5, where undistorted images from a middle and side camera are compared
with their respective model renderings, as per chapter 4. The same mountain ranges
are visible in both images, and only in the side camera are they distorted, ruling out
3D model inaccuracies as the cause.

When I later in the project access any images from the dataset, I immediately undo
the distortion. This is done using tools from OpenCV. First a new optimal camera
matrix is calculated using the original camera matrix, the distortion parameters and the

25

dimensions of the image using openCV’s getOptimalNewCameraMatrix. The images
can now be undistorted using OpenCV’s function undistort, which takes a distorted
image, orignal camera matrix, new camera matrix and distortion coefficients. It returns
an undistorted version of the input image, as well as a region of interest that can be
used to crop out the black curved areas at the image edges, which are a bi-product of
the undistortion process. The black areas are cropped out in later stages, until then
the image resolution is kept consistent. From this point forward the camera intrinsic
and camera matrix refers not to the original camera matrix, but the new optimal one,
as this now represent the pin-hole-model related to the newly undistorted image. An
example of an undistorted image is shown in figure 3.4.
I decided to not attempt any recalibration with more complex distortion models, as the
scope of the project is already very large, and the main focus is on making a localization
proto-type. The middle cameras’ calibrations are still of good enough quality to make
a proto-type.

(a) Camera image with lens distortion effects (b) Undistorted camera image

Figure 3.4: The result of undistorting a camera image

26

(a) Forward camera cluster, middle camera

(b) Portside camera cluster, right camera

Figure 3.5: Undistorted and cropped camera images compared with model rendering
using optimal camera matrices

27

28

Chapter 4

Terrain Model Generation and
Rendering Engine

29

4.1 Heightmap Processing

4.1.1 Acquiring Heightmap Data

The source of the height data used to create the 3D models is a WMS server (web
map service) from Geonorge.no, the Norwegian national web service for map data
and other georeferenced data, developed and managed by Kartverket. This service
offers both DTM data (digital terrengmodell, digital terrain model) and DOM data
(digital overflatemodell, digital surface model). DTM models the underlying geological
structures, while DOM also covers vegetation and human made structures. There
is also data available on NAS devices (network accessible storage) through the local
Seatex network, but this does not include DOM data, just DTM.
Heightmap requests to theWMS servermust contain lat long bounding box coordinates,
which map source the data will be collected from as well as the resolution of the
heightmap in pixels. The DOM source data is only scale 1, while for the DTM data
there are three separate sources with scale 1, 10 and 50. The scale signifies the distance
in meters between each unique sample point. The lower scale data naturally captures
more detailed structures than the higher scale data. Lower scale data can be sampled
to provide higher scale data by dropping measurements, losing detail in the process.
A higher scale source can also be sampled to provide lower scale, duplicating or
interpolating measurements between the real sample points.

4.1.2 Missing and Erroneous Heightmap Data

0 is used as both the value for signaling that there is no available data, that the pixel
is ocean, and also as just a normal height-value, varying from region to region. For
some regions water is 0, while for others negative values are used for areas under
water. Note that 0 does not mean waterline, the 0 reference is used according to
NN2000. This inconsistency created a lot of instability in the model generation, and so
an assumption was made that negative values could be rounded up to 0, and it would
be mostly unnoticeable. This causes problems for some areas, where the tide goes
lower than 0 and the ship data happens to be sampled at low tide. But the benefit of

30

simpler generation outweighs having to delete a couple of bad model files.
A big problem with using the DOM data is that some areas were never measured. This
results in huge chunks missing from the terrain models. Luckily there is a default
value for missing regions, 0. Thus the DOM data is replaced with DTM data wherever
DOM==0. One such example is shown in 4.1. A further complication is that for some
areas the DTM of scale 1 is also missing data. This is rare, but in these areas the DTM
data of scale 10 can be downsampled and used in lieu of the scale 1 data. This gives
much lower resolution and very course structures, and for shorelines and small islands
this is particularly visible. However a visual inspection is done of all the heightmaps
and their renderings, and many recovered models are perfectly valid. The bad models
are are simply discarded.

(a) Incomplete DOM data (b) Replacement DTM data (c) Combined DOM and DTM

Figure 4.1: Replacing missing DOM data with DTM data. Model of the Trondheim
Fjord

Another problem is that in the DOM data set is that the ocean is measured just
like any part of the terrain. If these measurements are not removed, the model would
include a huge high-res structure representing the ocean, that also is rigid. Since it is
rigid, it does not generally represent the ocean at the time we’re interesed in, since
the tidal height varies. And since it’s high-res it’s a huge waste of resources. An
illustration of this is shown in 4.2, where a small DOM heightmap of a dock area is
converted to a triangle mesh (see section 4.2) and visualized in Meshlab. The solution
is to use the more reliable DTM data to create an ocean-mask, that can be used to mask

31

out the DOM ocean measurements, while still using the DOM data for land structures.
The ocean-mask is simply a mask of where DTM==0, and masked areas in the DOM
are replaced with DTM data.
Since the DTM is used as an ocean mask, structures in areas the DTM says is ocean
will not be included in the final terrain model. This mostly affects structures such as
poles and markers. I experimented with filtering them out by including DOM values
that were higher than some threshold, either set by tidal height or the lowest values in
the heightmaps, but I found no simple solution that gave consistently good models
across different regions. The available data is just not good enough to create perfect
models without much turmoil. It could probably be done using some more advanced
filtering technique, but due to the scope of the project there is not time enough to
develop each sub-system to their full potential.

Figure 4.2: Meshlab visualization of a small DOM heightmap directly converted to
triangle mesh without removing ocean

4.1.3 NED height correction

The map uses the NED coordinate frame, approximating the spherical earth by it’s
tangent plane. Since it is an approximation, it causes errors when the distance from the
center increases. At 50km from the center, the approximation error is significant, 196m.
These distances are not uncommon in the images, and still medium distance objects
suffer from the approximation error. When comparing a render with real images it
is very obvious. To fix this I calculate the curvature height drop, which is a function
of distance from the map center where the tangent plane intersects the earth. This

32

is calculated for a grid with the same dimensions as the heightmap, which is then
subtracted from the heightmap. The height drop is calculated as follows. h is the
height drop, d the distance from map center and r is the earth radius. The image is
also warped in the NE-plane, but this is already done by the WMS interface. This is
an approximation, but it is perfectly sufficient for our purposes. The rendered model
after the height correction can be aligned well with the properly undistorted camera
images. Of course this assumes that the vessel will only move near the map center, as
the pose is defined in NED, and a new map must be loaded if the ship were to move to
far from the center.

α

h

d

r

Figure 4.3: NED height approximation error h (red) at distance d (blue) from NED
origin, the tangent plane intersection with Earth

cos(α) =
d

r

α = cos−1(
d

r
)

sin(α) = 1 −
h

r

h = r (1 − sin(cos−1(
d

r
))) (4.1)

33

4.1.4 Varying Levels of Detail

Model areas closer to the ship requires a lower scale, to show the details of the
environment, like docks or individual trees, while far away areas can have lower
resolution without affecting their appearance in the camera images. To achieve this
multiple models of different scales are created and used simultaneously. To use all
these different scale models they must fit together, i.e. the overlap in the center must
be resolved. The larger heightmap has it’s center area of equivalent size to the smaller
heightmap removed. The area is removed by setting the heights to 0, which is defined
as ocean. This way the area will be removed for the rendering, but a sloped wall going
down to the ocean will remain at the edge of the cut area. Conversion of heihtmap to
triangle mesh is covered in ch. 4.2. This sloped wall masks any potential gaps in the
seam between the smaller and larger model. Now the resulting combination has more
detail in the center, and larger less detailed areas outisde of the center. Scale 1 is the
most details we can get for close structures, but a heightmap of scale 1 would cover a
very small area before scale 10 takes over, depending on the height and width of the
heighmap. A good combination of pixel resolution and scales seems to be 3000x3000
pixel resolution, and scales 2, 10 and 50. The resolution is as big as as the WMS allows,
and each scale is a 5x multiple of the others. For the largest heightmap the distance
from the map center to a map edge is 75km. Objects at this distance are generally
not visible, either due to the atmosphere, being hidden behind other terrain or due to
being over the horizon. An example of heightmaps made to fit together is shown in
figure 4.4 and 4.5.

34

(a) Scale 2 (b) Scale 10 (c) Scale 50

Figure 4.4: Heightmaps of different scales, made to fit together. Maps are of the
Trondheim Fjord

(a) DMT with scale 10 (b) DTM with scale 50 (c) Combined models

Figure 4.5: Meshlab visualization of two models made to fit together. Models are of the
Trondheim Fjord

4.1.5 Ocean Tides

The ocean measurements from the DOM data were removed due to generally not being
at the correct height, and for requiring too much data despite just being a surface. The
ocean is added back into the world by being modelled as a separate object from the
terrain. Since it is a curved surface it cannot simply be modelled as just a large square,
but 1m resolution is not necessary either. I create an array of 500x500 pixels, with
scale=300. The curvature does not change noticeably in 300m, and with this resolution
and scale, the ocean is exacly the same size as the largest heightmap. A flat grid with
height 0 is created, and then the curvature height adjustment is applied to form a
representation of a curved surface, that will act as the ocean in our model. Later when

35

rendering, the ocean vertices’ height values can be shifted to move the ocean to the
correct tidal height.

36

4.2 Triangle Mesh Creation

The heightmaps processed from the previous section 4.1 must be converted to a format
compatible with modern model rendering techniques. A square mesh structure was
considered since the heightmap is a square grid, but even though I would be spared
half the polygon faces, I went with triangle faces, since it is easier to check if a face
is defined correctly. Furthermore 4 vertices are not necessarily in a plane, unlike 3,
which may complicate the square mesh generation. Finally triangles are the standard
polygonal mesh structure, and graphics hardware is optimized for triangles, and even-
tually converts all polygons into triangles [19]. The triangle mesh is represented using
indexing, to avoid duplication of vertices, thus using less memory.
The triangle mesh generation algorithm takes as input a heightmap, a color, the scale
of the map as well as a landmask signifying weather a point in the heightmap is land
(1) or ocean (0). It outputs a list of 3D vertices, and a list of triangle faces that models
the land terrain in the heightmap. It also outputs a list specifying the color of each
vertex, which are all set to the input color. Land terrain is created to be green. When
creating the curved ocean object described in 4.1.5, the landmask is set as all ones to
create a mesh from all the data, and the color is blue.
A triangle face consists of three indices, where each index corresponds to a vertex
in the vertex array. The three vertices forming a triangle face are listed such that
the sequence forms a clockwise movement when viewed from the intended outside
of the mesh. This is shown in figure 4.6. from each square in the grid there exists
the potential for two triangles, one upper (includes top right corner) and one lower
(includes bottom left corner). The vertices are defined in a NED-frame, and the origin
is calculated as the center of the map, accounting for half pixel offsets.
The algorithm results in no vertex duplicates nor any unused vertices being included
in the vertex list. It also avoids creating any triangles that are wholly ocean, while
keeping the ocean vertices necessary to form the shoreline triangles, so that the terrain
does not appear to have gaps at the transition between land and ocean. Which vertices
are discarded and which are used to form triangles is visualized in 4.7. Meticulous opti-
mization and use of numpy indexing has reduced the mesh creation time from minutes

37

(similar system in project thesis) down to a second for a 3000x3000 heightmap. At
these matrix sizes and at the current speed the biggest bottleneck is simply initializing
new numpy arrays, as it’s a more complex data type than the native python list. The
mesh data arrays are cached as a .npy binary file, to be loaded quickly when rendering
in a new region.

0 1 2

3 4 5

(a) Triangle mesh with vertex indices

[0, 1, 4]
[1, 2, 5]
[0, 4, 3]
[1, 5, 4]

(b) Triangle faces using vertex indices

Figure 4.6: Construction of triangle faces with shared vertices

X

Figure 4.7: Heightmapwith land (green, height>0) and ocean (blue, height=0) converted
to triangle mesh (triangles). Unused vertex marked with red X

The mesh generation script is rather short, but manages to do quite a bit. A vertex
is to be included in the vertex list if it is a part of any triangle that has at least one
land vertex. A mask signifying if a vertex is the origin vertex of an upper or lower
triangle is calculated using the logical OR operation on shifted slices of the landmask,
shifted such that the vertices of a triangle share the same position. Since ocean is 0,

38

Figure 4.8: Meshlab visualization of how the 3D models consist of trianges

the OR needs needs just one land vertex in the triangle to yield valid. A new mask
signifying weather or not a vertex is part of any triangle at all, not just the origin of
one, is constructed by taking slices of a 0-initialized array and summing in the validity
arrays for triangle origin, sliced such that the valid origin vertex affects the vertices
of the triangle they would form. A vertex list of all the valid vertices can now be
constructed, calculating each vertex’s scaled vector distance from origin. I take the
cumulative sum of the validity array, and this is used as the vertex index values. Since
it is a cumulative sum of a mask (0 or 1) the valid vertices tick the index count by 1,
while invalid vertexes are ignored. This way each valid vertex is attributed an unique
index. These indices also correspond to each vertex’s position in a flattened list of
the valid vertices. This index matrix is used to create the upper and lower triangle
faces by concatenating three index array slices, sliced according to the shape of the
triangle, and masking out the valid ones using the already computed validity masks.
This is done separately for the upper and the lower triangle faces, since they have
different shapes and require different slicing. The upper and lower triangle faces are
concatenated to create one single triangle face list, that references the already created
vertex list. The color array is finally created by filling an array of the same size as the
vertex array with the inputted color value. The vertex array, triangle face array, and
the color array are then cached in a single .npy file, to be loaded later.

39

4.3 Model Rendering with OpenGL

The goal of the model creating and rendering engine is to simulate a real camera view.
The simulated view, or render, of an associated camera image will provide information
about what is visible in the camera image. Each pixels is labelled as either sky, land
or ocean, which is encoded in the rendering as colors. Red sky, green land and blue
ocean. The rendering system is initialized for a geographical region and time, after
which the model can be rendered from arbitrary view points with arbitrary camera
intrinsic matrices. Different camera views can be rendered in succession without
re-initialization. The renderer is implemented as a python class.
The rendering system is initialized with 6 parameters. It is given the desired resolution
of the rendered image, a list of triangle meshes for the land, and a single triangle mesh
for the ocean, as well as the tidal height.
A rendering call takes 3 arguments. The first argument is a rigid transformation matrix
between the ship pose and the NED frame at the center of the map, with the ship
frame as in 3.1. The second argument is a rigid transformation matrix between the
ship frame and the camera mounting frame as in 3.2.1. The third argument is a camera
intrinsic matrix.

4.3.1 Modelling the Real Camera in OpenGL

The camera lens distortion effects are already accounted for by undistorting the camera
images, detailed in chapter 3.2.2. This means the lens effects are irrelevant for the
rendering, and only the pose of the camera frame relative to the world frame, as
well as the camera intrinsic matrix is required to map 3D model points to the correct
pixels in the rendered image. This mapping from model to pixels is unique in OpenGL.
The transformation matrix to express a point in the world frame in the ship frame is
denoted T s

w . Similarly the matrix for ship to camera mount is Tm
s . The transformation

matrices are created with a helper function from the python library pyrr, which takes
into account the row-col convention OpenGL uses for matrix multiplication. The
helper function takes as input euler andgles and a position vector.
Now, the camera mounting frame is not the same as the traditional camera frame, and

40

so a matrix for mount to cam is specified as T c
m , which is just a sequence of rotations

of 90 deg around z and x. This is necessary because the projection from camera frame
to pixel coordinates assumes the points are expressed in the traditional camera frame.
Additionally openGL follows yet another convention where the camera is assumed to
be looking in direction of negative z-axis. This is handled by TGL , which is calculated
with a pyrr helper function called lookat. Then to the projection from camera frame to
pixel coordinates. This projection matrix is based on the camera intrinsix matrix, but
modified specifically for OpenGL, which has some additional functionality, as well as
some different conventions. This projection matrix is denoted PGL . This matrix, when
used in OpenGL, also ignores points which are closer than near or farther away than
f ar . Near and far are set to 5 and 105 respectively, which is closer and farther than
any point is expected to be to the camera.

PGL =



2 fxw 0 0 0

0 2 fyh 0 0

2 cxw − 1 2 cyh − 1
f ar+near
near−f ar −1

0 0 2 f ar∗near
near−f ar 0


(4.2)

The full transformation from a point expressed in model/world coordinates to
openGL pixel coordinates is denotedMVP (model, view, projection).

MVP = PGLTGLT
c
mT

m
s T s

w (4.3)

This MVP matrix is 4x4 float, and is passed to the the vertex shader as a glUni-
formMatrix4fv. The vertex shader multiplies the incoming vertex points with MVP
and outputs this as gl_Position, the vertex shader also passes the incoming vertex
colors to the fragment shader. The fragment shader simply outputs the incoming color
as FragColor. The shader code is stored in text files, and during initialization of the
renderer they are compiled into a shader program and set to be used by calling glUse-
Program(shaderProgram). The code for the fragment-fragment and vertex-shaders is
shown in the following listing.

41

Listing 4.1: Vertex Shader

v e r s i o n 330 co re
l a y ou t (l o c a t i o n =0) in vec3 ve r t exPos_mode l space ;
l a y ou t (l o c a t i o n =1) in vec3 v e r t e xCo l o r ;
out vec3 c o l o r ;
uni form mat4 MVP;
void main () {

/ / o u t p u t po s o f v e r t e x i n c l i p s p a c e
g l _ P o s i t i o n = MVP∗ vec4 (ve r t exPos_mode l space , 1) ;
c o l o r = v e r t e xCo l o r ;

}

Listing 4.2: Fragment Shader Code

v e r s i o n 330 co re
in vec3 c o l o r ;
out vec3 F ragCo lo r ;
void main () {

F r agCo lo r = c o l o r ;
}

4.3.2 Triangle Mesh Loading

In order to render the triangle mesh described in the previous section 4.2, the vertex list,
and the triangle face list and the color list will be loaded into the GPU’s memory. This is
done with the use of VBOs (vertex buffer objects). Since multiple separate heightmaps
are converted into triangle meshes, and are made to be rendered simultaneously, the
triangle meshes will be combined into a single triangle mesh, with a single vertex list
and a single list of triangle faces. Since the models were created individually, all their
triangle face lists assume that their corresponding vertex lists start at index 0. When
concatenating the vertex lists into one, an index offset is added to the triangle face
lists. This offset ensures that the triangle faces reference the correct indices in the
new concatenated vertex lists. The offset is equal to the number of vertices that have
already been added to the concatenated list.
When loading it is specified which .npy file is the ocean, and during loading the vertices

42

are shifted to the correct tidal height. All this is implemented as a python class called
MeshContainer, which is used by the renderer as a data container.
Before rendering, the list of vertices, list of vertex colors, and and list of triangle
faces are put in two attribute buffers and an index buffer respectively. In the current
implementation data is intended to be loaded once and not be modified. This means
that filling the buffers using a GL_STATIC_DRAW hint will give optimal performance.

4.3.3 Rendering and Retrieving Data

The rendering happens off-screen without actually opening a window and changing
pixels on a physical screen. This is accomplished in openGL with the use of a frame
buffer object. The frame buffer object consists of two render buffer objects; one for
the color image and one for depth data. Both of these must be initialized and OpenGL
must be told to render into the framebuffer, not the real screen. After a render call the
image and depth can then be retrieved from the frame buffer.

GLFW is a lightweight library used to handle low-level OS tasks that OpenGL
itself doesn’t provide the necessary mechanisms for. GLFW provides a programming
interface for creating and managing windows with openGL context. A python binding
for GLFW is being used. Even though the renderer does ’windowless’ or ’offscreen’
rendering, openGL still requires a context to function. There are alternatives available,
such as FreeGLUT, but GLFW is chosen primarily because there exists some extensive
beginner friendly tutorials for it.

The rendered image should not have any color blending, so that the rendering
color directly encodes the semantic class of the pixel. Pure red is sea, pure green is
land, and pure blue is sky. To stop the blending of edges, GL_POLYGON_SMOOTH
is disabled. Having the land, sky and ocean entities completely separated by color
channel makes some processing later very simple. The loaded ocean mesh is already
blue, and the loaded terrain mesh is already green. The sky is not modelled by any
actual objects, and so it makes sense to use a background color for the rendering to
simulate the virtual sky. This is done by calling the glClearColor function with the
color blue (0,0,255) as an argument.

43

The screen buffer must be emptied between each render, so as to muddle new
renderings with old data. This is done by calling glClear(GL_COLOR_BUFFER_BIT |
GL_DEPTH_BUFFER_BIT), | signifying bitwise OR.
Vertex attribute array 0 and 1 are in turn enabled and bound to the vertex buffer and
vertex color buffer respectively. This way the vertices and their colors will be available
to the shader. Then the GL_ELEMENT_ARRAY_BUFFER is bound to the triangle face
buffer. glDrawElements is called with GL_TRIANGLES, specifying that the element
array buffer contrains triangles, and also the size of the triangle face list. The model
has now been rendered, and the rendered data is available in buffers.
The use of a frambufferobject makes the rendering process slightly more manual.
To make the render data accessible, first the glReadBuffer function is called with
GL_COLOR_ATTACHMENT0. This loads the render data into buffers that can be
accessed with glReadPixels. The rendered image is retrieved using glReadPixels with
GL_RGB_COMPONENT as argument. The data is parsed using numpy’s frombuffer
function, supplying the datatype uint8. Since the buffer data is shapeless, it is reshaped
back into a 2D array using the known image dimensions.
The depth data is retrieved using glReadPixels with GL_DEPTH_COMPONENT as
argument. To make openGL calculate the depth data, GL_DEPTH_TEST must have
been enabled. We’re still using numpy’s frombuffer function, this time with datatype
float32, to parse the data. This data is also reshaped to the original image dimensions.
The depth values are specified using some internal openGL units, which has a nonlinear
relationship with metric depth. The openGL depths can be converted to meters using
eq 4.4, where near and far are the near and far clip distances, planes outside of which
vertices won’t be rendered. The depth value is the distance along a back-projected ray
to the first object it hits. That is, it is the actual distance from the camera, not just the
distance from the image plane.

depthmetr ic =
(
near∗f ar
near−f ar)

(
depthдl−f ar
f ar−near)

(4.4)

An example of a model rendering using the real ship pose and camera data is

44

shown in figure 4.9. The rendering is a compared to a real camera image, and it can
be seen that they match very well. I is apparent that a good rendering can be used
as semantic ground truth for a camera image. Figure 4.10 shows a rendenderings of
models with some malformed structures. (a) also demonstrates the fact that boats
are not part of the rendering, and are subsequently labelled by whatever is behind
them. Overly malformed models are just discarded, but another problem that affects
all renderings is the fact that the camera angles are somewhat inaccurate, causing a
slight misalignment between the camera image and the rendering. This can be seen
in figure 4.11 where the rendering is tilted so that it is below the real terrain. This is
looked into in the next chapter, chapter 5.

(a) Undistorted camera image (b) Rendered image (c) Camera and render overlay

Figure 4.9: Decent model rendering compared with corresponding real camera image

(a) malformed building (b) malformed bridge (c) missing small reef

Figure 4.10: Bad model rendering compared with corresponding real camera image

45

Figure 4.11: Inaccurate camera angle in render-camera overlay

46

Chapter 5

Camera Mounting Angle
Correction

47

5.0.1 Orientation estimation with ICP

The idea is to do edge alignment between canny edges in a real image and edges
from a rendering given ship and camera pose. The edges from the camera are pixel
coordinates, while edges for the rendering are back-projected to 3D using the camera
intrinsics and the rendered depth map. The orientation is then optimized using ICP,
where the error measure is the squared distance between the re-projected render edges
and their nearest neighbour edges from the camera image edges. The re-projection of
the 3D render edges is a function of the change in camera orientation, for which an
optimal value is found iteratively. This change in camera orientation is parameterized
on-manifold using lie algebra. Since the camera angles were believed to change slowly
over time, the tools was not intended to be very robust or reliable, and only had to be
accurate for a fraction of the attempts, and the outliers could be filtered out afterwards.
Besides, at this point in the project the more accurate and reliable pose estimation tool
described in ch. 7 was not developed yet. This entire camera angle correction tool is
essentially a re-implementation of the system developed in the project thesis in the
previous semester.

The process starts with detecting edges in the camera image by using canny edge
detection with parameters 50,175. The parameters were chosen to capture as many of
the real contour edges at the cost of more clutter, since the camera angles are pretty
close to the correct values already, so missing contours would be a bigger problem
than clutter.
Then an initial view is rendered using an initial orientation estimate and calculating
the edges of the render image using the sobel operator. Only the edges corresponding
to the transition from land to sky in the model is used by setting the ocean to be the
same color as the land. This is because the canny edges at the top of the terrain is
more reliable than the canny edges near the shoreline, and so these are the only ones
we want to align our model with. This is illustrated in figure 5.1. Furthermore the
completely flat shoreline when far away adds little to the optimization other than

48

slowing down horizontal convergence if a match is even found. As specified in ch. 3,
the images have already been undistorted, and the corresponding camera intrinsics are
used in the rendering. The edges are sampled randomly for a speed increase and then
back-projected. The edges are not re-rendered after every step in orientation since
change in orientation barely changes the relationship between the edges. ICP is instead
done by just rotation the edges with the current cumulative change in orientation and
then re-projecting them from there. Multiple runs of this ICP-scheme is run which
each render anew, but each run only renders once. The point-to-point error metric
has slow convergence properties, and so multiple runs are needed.

49

(a) Camera image, zoomed

(b) Canny edges of camera image, zoomed

(c) Rendering of model’s sky-land transition, zoomed

Figure 5.1: Side by side comparison of camera image, canny edges of camera image,
and model rendering

50

The update to the orientation at each step is calculated analytically, shown at the
end of this section. the orientation change is initialized as I3x3, and since it is defined in
the camera image frame, when the ICP iterations are done the orientation is converted
to specify a new rotation from ship to camera-mount. The resulting rotation matrix is
then converted to Euler angles, which is what the data set uses.

Xi is a render contour point in the 3D camera frame, and x ′i is the corresponding
nearest real image contour point in the 2D image plane. K is the camera intrinsic matrix.
ω is the orientation parameterization, and J is the jacobian for a point correspondence’s
residual error. The papers [39] and in particular [40] were useful for seeing what the
jacobian is supposed to look like, although they skipped the calculation.

ri (ω,R) = x ′i − π (Kexp(ω̂)RXi) (5.1)

π (X) =


X1
X3
X2
X3

 (5.2)

exp(ω̂) ≈ I3x3 + ω̂ (5.3)

Ji =
∂ri (ω,R)

∂ω

����
ω=0
= −

∂π

∂K(I3x3 + ω̂)RXi

∂K(I3x3 + ω̂)RXi

∂ω

����
ω=0

(5.4)

∂π (X)

∂X
=


1
X3

0 −
X1
(X3)2

0 1
X3
−

X2
(X3)2

 (5.5)

X̃ = RX (5.6)

KX̃ =


fx X̃1 + cx X̃3

fyX̃2 + cyX̃3

X̃3


(5.7)

51

∂π (K(I3x3 + ω̂)RXi)

∂K(I3x3 + ω̂)RXi

����
ω=0
=
∂π (KX̃)

∂KX̃
=


1
X̃3

0 −
fx X̃1+cx X̃3
(X̃3)2

0 1
X̃3
−
fy X̃2+cy X̃3

(X̃3)2

 (5.8)

Using a vector-by-vector identity K can be kept outside, as it does not depend on ω

∂K(I3x3 + ω̂)RXi

∂ω

����
ω=0
= K

∂


1 −ω3 ω2

ω3 1 −ω1

−ω2 ω1 1


X̃

∂ω

= K

∂


X̃1 − ω3X̃2 + ω2X̃3

ω3X̃1 + X̃2 − ω1X̃3

−ω2X̃1 + ω1X̃2 + X̃3


∂ω

= K


0 X̃3 −X̃2

−X̃3 0 X̃1

X̃2 −X̃1 0


(5.9)

Inserting 5.8 and 5.9 back into 5.4 and multiplying K into the leftmost matrix yields

Ji =


1
X̃3

0 −
fx X̃1+cx X̃3
(X̃3)2

0 1
X̃3
−
fy X̃2+cy X̃3

(X̃3)2

 K

0 X̃3 −X̃2

−X̃3 0 X̃1

X̃2 −X̃1 0


=


fx
X̃3

0 −
fx X̃1
(X̃3)2

0 fy
X̃3
−

fy X̃2

(X̃3)2



0 X̃3 −X̃2

−X̃3 0 X̃1

X̃2 −X̃1 0


(5.10)

The jacobi matrices and residual errors are concatenated into their own respective
larger matrices, which are used to calculate the optimal Gauss-Newton update step

52

∆ω = −(JT J)−1 JT r (ω = 0,R) (5.11)

R ← exp(∆ω)R (5.12)

5.0.2 orientation estimation example

The convergence of the third euler parameter, relating to yaw of the camera, has a
very slow convergence, seen in 5.2. This is due to the error metric used in the ICP.
The error metric that is implemented is a point-to-point error. The ICP assumes that
model points and image points that are close to each other correspond, and minimize
their distance. When terrain contours are flat, a horizontal camera offset still yields a
good match between the model and the image, working against the convergence to
the global minimum. Furthermore the edge tracking is mostly just meant as a way to
correct camera angles to create an accurate data set for semantic segmentation, in a
way bootstrapping a better tracking system. The canny tracking method is particularly
vulnerable to the presence man made structures, which often are very distinct. They
give rise to a myriad of edges not related to the land-sky contours or the land-ocean
contours, trapping the optimization in one of many local minima.

53

0 2 4 6 8 10 12 14 16

−2.4

−2.2

Eu
l 1

0 2 4 6 8 10 12 14 16

−15.00

−14.75

−14.50

Eu
l 2

0 2 4 6 8 10 12 14 16
optimization sequence

1.50

1.75

2.00

Eu
l 3

Figure 5.2: Camera orientation euler angles (degrees) during automatic angle correction

54

(a) Initial camera angle values, zoomed

(b) 1st iteration camera angle optimization, zoomed

(c) 15th iteration camera angle optimization, zoomed

Figure 5.3: Model rendering overlaid camera images during automatic camera angle
correction

55

5.0.3 Correcting Camera Angles for Larger Time Periods

Using the list of timestamps from which segmentation data later will be generated
(ch. 6.1), the angle optimization procedure is run for each timestamp. This creates
a time-sequence of optimized camera angles, showing how the angle error evolves.
At each time step the estimation is initialized at the current camera angle from the
data set. For many timestamps there are insufficient contours to track, either due to
the camera view or due to poor detection with canny. Furthermore there is a lot of
contour clutter from the sky and ocean and the terrain itself, the cost of wanting to
detect faint contours of far away mountains. Angles are optimized for each camera
individually in 3 DoF, expressed in euler angles. The starboard side camera system was
malfunctioning for a period of time, resulting in a shorter sequence for that camera
(cam 1,1). The specific datetime corresponding to each point in each camera’s sequence
is stored in a file during the run, together with the angle values, but are omitted from
the plot, as the essential information is the fact that the angles change, not specifically
when. The time span for the data is around 4 months. The optimization over the
timestamps is done in two consecutive runs. To save time the first run is done using
every other timestamp. All points in the sequence are optimized independently from
each other. The initial angle values at each time stamp are loaded from the data set,
and may change in steps over time. The first run is used to manually update the data
set’s angle values for specified time periods, accounting for noise and outliers. Using
the new angles a second run is performed, this time for all the timestamps. In this run
in it appeared that the camera angles were now satisfactory, and no further change
was made.
The second run clearly shows that the camera angles change periodically, apparently
oscillating around some mean. This oscillation is very visible for the first ca. 100
datetimes in the second run, for all the cameras, because these datetimes are closer
together and more consistently spaced. The eul2 parameter is the parameter with he
most consistent and large oscillation. This is the parameter specifying the forward tilt
of the camera, making the camera look upwards or downwards. The angles typically
change over the course of a day, indicating that some cyclic event is responsible. This

56

could be the day itself; as the ship warms up and cools down the metal hull might get
warped, thus slightly changing the orientation of the camera. The camera angles can
also change their values in larger more permanent steps, shown in the port-side cam
figure 5.11. Attitude bias being the cause of the angle errors is ruled out, as the camera
angle errors do not correspond to the some change in ship pose. For some periods the
cameras, facing in different directions, are all starting to tilt more upwards. A ship
attitude bias would cause the aft camera to tilt down as the front camera tilts upwards.

57

5.0.3.1 First Angle Correction Run

0 25 50 75 100 125 150 175 200
−2.5

−2.0

Eu
l 1

0 25 50 75 100 125 150 175 200
−15.5

−15.0

Eu
l 2

0 25 50 75 100 125 150 175 200
datetime sequence

1.0

1.5

Eu
l 3

(cam,lens):(0, 1) euler angles old eul
new eul
optimized eul

Figure 5.4: First angle optimization run, front cam

58

0 20 40 60 80 100

0.5

1.0

Eu
l 1

0 20 40 60 80 100
−18.0

−17.5

E
l 2

0 20 40 60 80 100
datetime seq ence

88.5

89.0

E
l 3

(cam,lens):(1, 1) e ler angles old e l
new e l
optimized e l

Figure 5.5: First angle optimization run, starboard cam

59

0 25 50 75 100 125 150 175 200

0.5

1.0

Eu
l 1

0 25 50 75 100 125 150 175 200

−14.5

−14.0

Eu
l 2

0 25 50 75 100 125 150 175 200
datetime sequence

−180.0

−179.5

Eu
l 3

(cam,lens):(2, 1) euler angles old eul
ne eul
optimized eul

Figure 5.6: First angle optimization run, aft cam

0 25 50 75 100 125 150 175 200

0.5

1.0

Eu
l 1

0 25 50 75 100 125 150 175 200

−16.0

−15.5

Eu
l 2

0 25 50 75 100 125 150 175 200
datetime sequence

−93

−92

Eu
l 3

(cam,lens):(3, 1) euler angles old eul
new eul
optimi ed eul

Figure 5.7: First angle optimization run, port-side cam

60

5.0.3.2 Second Angle Correction Run

0 50 100 150 200 250 300 350 400
−2.5

−2.0

Eu
l 1

0 50 100 150 200 250 300 350 400

−15.0

−14.5

Eu
l 2

0 50 100 150 200 250 300 350 400
datetime sequence

1.0

1.5

Eu
l 3

(cam,lens):(0, 1) euler angles new eul
optimized eul

Figure 5.8: Second angle optimization run, front cam

61

0 50 100 150 200

0.5

1.0

Eu
l 1

0 50 100 150 200
 18.0

 17.5

Eu
l 2

0 50 100 150 200
datetime sequence

88.0

88.5

Eu
l 3

(cam,lens):(1, 1) euler angles new eul
optimized eul

Figure 5.9: Second angle optimization run, starboard cam

62

0 50 100 150 200 250 300 350 400

0.5

1.0

Eu
l 1

0 50 100 150 200 250 300 350 400

−14.5

−14.0

Eu
l 2

0 50 100 150 200 250 300 350 400
datetime sequence

−180.0

−179.5

Eu
l 3

(cam,lens):(2, 1) euler angles ne eul
optimized eul

Figure 5.10: Second angle optimization run, aft cam

0 50 100 150 200 250 300 350 400

0.5

1.0

Eu
l 1

0 50 100 150 200 250 300 350 400
−16.0

−15.5

Eu
l 2

0 50 100 150 200 250 300 350 400
datetime sequence

−93.5

−93.0

Eu
l 3

(cam,lens):(3, 1) euler angles new eul
optimi ed eul

Figure 5.11: Second angle optimization run, port-side cam

63

64

Chapter 6

Semantic Segmentation

65

6.1 Creating an Image Segmentation Data Set

Training, validation and testing data for semantics segmentation is created by rendering
terrain models using the rendering system described in chapter 4, then using the
rendering as ground truth for the corresponding undistorted camera images. This
yields a data set with three segmentation classes, each of which are encoded as a
color. Since we have three classes, and RGB images have three color channels, each
class is encoded in it’s own color channel; red sky, green land and blue ocean. A
list of datetimes for which the renderings are created is made by manually looking
through the dataset selecting datetimes with good weather conditions and varying
scenes. The updated camera angles calculated in chapter 5 are used for the rendering.
As demonstrated in chapter 4 some of the generated 3D models have missing chunks
or other problems. The models and renderings with obvious errors are discarded by
sorting through the data manually. In particular bridges and smaller rock-formations
in the water are often badly modelled, and thus provide somewhat unreliable training
data even when the worst is discarded. 390 unique locations form the basis for the
final dataset, for which images from 4 separate camera clusters are used. Some regions
are missing the starboard camera images, as this cluster was disabled for a period of
time. Only the middle cameras from each cluster are used, due to the side camera’s
inaccuracies as described in chapter 3.2.2.
Crop masks are created for each camera to crop out the visible parts of the ship, as
well as the black areas from the image undistortion process. The front and aft images
are much wider than high after the cropping, and are split into three square patches
of 473x473, with some overlap. Starboard and port-side images are split into two
473x473 patches, also with some overlap. The data is stored as image patches with
corresponding segmentation masks, still encoded as color images. This is illustrated
in figure 6.1, where an image from the forward together together with a rendering is
converted into 3 training samples consisting of 474x474 images with corresponding
segmentation labels.
This yields a final dataset of ca. 3500 unique images total from those 390 geographical
locations. The size of the dataset is later artificially expanded, as detailed in chapter

66

6.2.2. Upon creation the dataset is partitioned into training data (.8*.8=64%), validation
data(.8*.2=16%) and testing data (.8=20%), stored in separate folders. As the names
suggest the training data is meant to be used for training the net, the validation data is
for validating the network’s performance during training, and the final performance
is tested using the test data. All image patches from a specific geographical region is
strictly used as either training, validation or testing, to ensure ensure proper separation
between training and testing data. It is possible that some images from separate regions
see some of the same terrain, but this is assumed to be insignificant as the Norwegian
coastline is very long, and the weather conditions would also likely be different causing
the data to have little similarity. For the images in the dataset the majority of the
pixels are labelled as ocean, followed by sky and at last land. The exact pixel label
distribution is shown in table 6.1.

The data must be processed before it can be used by the segmentation network.
The network uses arrays as input and output, not PNG image files. When the Data is
to be used by the net, either for testing or training, the image and label-image is loaded
using PIL, and converted to arrays using numpy. Furthermore the label-image is also
decoded from colors to label probabilities. Since the labels are completely separated in
their own RGB color channels the decoding is as as simple as dividing the array by
255, the max RGB value, to yield an array of binary masks for each class. The array of
masks now represents a probability distribution between the different labels for each
pixel. The decoding of the label-image is illustrated in figure 6.1.

67

(a) camera image (b) rendered ground truth segmentation label

(c) camera image patches

(d) segmentation label patches

Figure 6.1: converting camera image and rendering into multiple data samples

68

(a) Scaled and cropped camera image (b) Semantic encoding of camera image

(c) sky mask (d) land mask (e) ocean mask

Figure 6.2: A data sample, where (a) is input and (c),(d),(e) are the binary masks for
each class, decoded from (b)

Table 6.1: Total pixel label distribution in the dataset

Class ID Pixel Distribution

0 (Sky) 26%

1 (Land) 16%

2 (Ocean) 58%

69

6.2 Semantic Segmentation Network

6.2.1 Architecture and Transfer Learning

Pyramid Scene Parsing Network (PSPNet) is chosen as the architecture for the semantic
segmentation network. PSPNet was presented in december 2016 and remains state of
the art at the beginning of 2019. The idea of PSPNet is to process the input at multiple
scales using an original pyramid-module, which can be attached to an existing feature
extracting network, referred to as back-bone. The final layers also contain a dropout
layers. It has gained popularity and existed long enough that it is well documented
and implemented in several deep learning frameworks, including Keras. Keras with
Tensorflow backend is chosen as the framework since it is good for quick prototyping
and testing, widely used and well documented. Another architecture alternative that
was heavily considered was ICNet, which is based upon PSPNet and is able to run
much faster, at the cost of some accuracy. Since the system is not yet meant to run
in real time, and is rather a research project to develop visual navigation methods,
the most accurate net, PSPNet, is chosen. The original backbones of the network are
ResNet-50 or ResNet-101. Using ResNet-50 backbone, a PSPNet with batch size 4 can
be loaded onto a 12GB GTX1080 TI. Using ResNet-101 backbone only allows for batch
size 1. A batch size of 1 would make the training drastically slower as a lower learning
rate is needed to maintain stability. This could make the final performance worse as
well. Therefore ResNet-50 is the chosen backbone. Furthermore the input and output
size of the net is limited to 473x473, also out of memory concerns. These limitations
when training PSPNet is a know problem in the semantic segmentation community,
and it’s apparent that the original author had access to some serious hardware. It is
easy to find a PSPNet implementation with these backbones that are trained on some
of the most popular semantic segmentation data sets, such as Cityscapes, ADE20K
and VOC2012. I found weights for a PSPNet with backbone ResNet-50 trained on
ADE20K, Cityscapes and VOC2012 respectively. The weights were converted to keras
weights by Github user Karolmajek from the pytorch implementation by the original
PSPNet author. The suitability for transfer learning is evaluated by using the weights
to predict an image from this project’s dataset, the creation of which is detailed in

70

chapter 6.1. The nets trained on Cityscapes and VOC2012 did not understand the scene
at all, while the net trained on ADE20K gave some pretty decent segmentation results,
as shown in figure 6.3. These results are very reasonable, when looking at what kind
of images the datasets contain. ADE20K has many training samples resembling this
project’s dataset. Cityscapes’ data does not much resemble this project’s data, as it’s
images are from a car driving trough a city. Cityscapes does see a couple of trees,
and this project’s data does have some buildings, but that’s as far as the overlap goes;
the overall scenes are completely different. VOC2012 mainly has object labels such
as bicycles, birds, boats, and bottles, so it’s not surprising that it doesn’t work here.
ADE20K weights gave best performance due to some overlap in their dataset and that
of this project. The segmentation is still rather inaccurate, and fails completely for
land regions that are far away, so the weights cannot be used out of the box for this
project. The weights are instead used as starting weights when training the dataset,
drastically cutting the training time. ADE20K contains 120 classes, while the dataset
used here only contains 3. Therefore the structure must also be modified somewhat.
First the PSPNet structure is loaded, and the structure of the last layers is changed so
as to only give three output channels (473x473x3). Then the name of the final layer is
modified by adding the string "_custom". Now when the ADE20K weights are loaded
with the by_name flag in keras, all layers are initialized with ADE20K weights, except
the last layer which gets initialized with random weights.

71

(a) camera image

(b) segmentation ground truth

(c) segmentation with ade20k weights

(d) segmentation with cityscapes weights

(e) segmentation with voc2012 weights

Figure 6.3: Comparing predictions using PSPNet with weights trained on various
datasets 72

6.2.2 Training Setup

6.2.2.1 Initial Over-fit Test

A simple test is performed by training the net on a single input-output pair. The input
is just a black image, all 0 in all color channels. The desired output is all 0 in all output
class channels, except for one arbitrary channel, which is all 1. This is just to test if
the network is able to over-fit. If the network had not been able to over-fit, something
must have gone very wrong. Here this test is passed, as the net reaches loss ≈ 0 and
accuracy = 1 in just a few batches of size 8, with learning rate 10−2.

6.2.2.2 Random Data Augmentation

Data augmentation is a common technique in deep learning, and the original PSPNet
paper places an emphasis on data-augmentation being important to avoid over-fitting
and to generalize well. Random data augmentation artificially enriches the dataset
by making random changes to each training sample before it gets passed through
the network. The image is randomly rotated, zoomed, shifted, sheared and flipped
horizontally. The augmentation values are specified as a range, and the augmentation
values for each image are sampled uniformly from these ranges. When the transformed
image does no longer covers the entire original (473,473) square, such as after being
shifted, the missing values outside the augmented image boundary must be filled in.
This is done by making a reflection of the image about the boundary, thus filling in the
blank area with meaningful data. The exact same augmentation is performed on both
the image and the semantic masks. An example of a pretty extreme augmentation is
shown in figure 6.4. The exact values used for in the three final training runs are as
follows. Zoom multiplier range 0.5-1.5, rotation range 25 deg, horizontal and vertical
shift range 0.3, shear range 0.2 and horizontal flips set to true.

73

(a) original training input (b) original training label

(c) augmented training input (d) augmented training label

Figure 6.4: Example of random augmentation on training sample

6.2.2.3 Loss Function

The loss function is weighted categorical cross-entropy, a standard loss function
for training semantic segmentation networks. Since the pixel label distribution is
somewhat skewed, as per table 6.1 the classes are weighted by the inverse of their

74

representation in the data set. Land pixels are weighted heaviest, followed by sky and
finally ocean, specific values seen in table 6.2. The main motivation for this however
is that false negative for land could be very dangerous. It is obviously better for a ship
to avoid some true ocean area it believes to be land, rather than sailing into some land
area it believes to be ocean. We try to use the weighting to coax the net into predicting
land if the image is ambiguous. Weighted categorical cross entropy is not implemented
in keras, but someone made a forum post with a sketch for how such a function should
look, which was used in this project. (https://forums.fast.ai/t/unbalanced-classes-in-
image-segmentation/18289)

Table 6.2: Class weights for loss

Class ID weight

0 (Sky) 4.3

1 (Land) 6.7

2 (Ocean) 1.6

6.2.2.4 Optimizer and Learning Rate

The optimizer-scheme is mini-batch stochastic gradient descent (SGD) with 0.9 nes-
terov momentum. An optimizer with adaptive learning rate was considered, but
researchers at UC Berkeley found that adaptive methods generalize worse than SGD,
even if the solutions show better training performance [51]. This comparative research
did not test Adadelta, a robut extension of Adagrad [54], and so I was inclined to never
the less do a training run with Adadelta. The advantage of an adaptive optimizer is
that it requires minimal manual parameter tweaking. The results of training with
Adadelta were much poorer than SGD, and are not looked further into. Suffice to say
training was not as stable as SGD.
Many learning rates and learning rate schemes were tested for shorter training se-
quences, but variety in full-scale experiments is limited by the long training times;
it takes more than 48 hours to do 500 training epochs with the current training data.

75

Three large large-scale training sequences are presented, one with a constant learning
rate of 5e-4, and two sequences with step decay in the learning rate, starting at 1e-3 and
1e-4 respectively. The learning rate with decays by a decay_f actor every epoch_wait
epochs, as in eq. 6.1. In both runs the decay is 0.5 every 50th epoch. The relatively
small batch size does not allow for as large a learning rate as bigger batches would.
However since pre-trained weights are being used, a lower learning rate is not very
problematic, as learning rate is often lowered towards the end of training anyways.
The learning rates for these training runs were decided based on the baselines set in
the many small-scale experiments. Furthermore it is in line with what is generally
accepted as a range of normal learning rates for training deep neural networks. Graphs
from the training process for each run, as well as a confusion matrices and total ac-
curacy on the test data are shown in figures 6.5, 6.6 and 6.7. The comparison of each
run is more briefly summarized in table 6.3, where it can be seen that the constant
learning rate gave the lowest loss and highest pixel accuracy on the test data. due
to the inaccuracies in what is used as ground truth in the dataset the loss and pixel
accuracy is not a perfect measure of the real segmentation performance, though it
gives a good indication. For both runs with step decay it is seems like the learning
capabilities are killed rather quickly, as the loss and accuracy stops changing. This is
does not happen in the constant learning rate run. Step decay was done to try to avoid
over-fitting, but over-fitting turns out to not a problem when using constant learning
rate. Had over-fitting become a problem this would have been seen by a ramping up
in the validation loss. The images generated by running the test images through the
final model checkpoint for the training runs is a qualitative measure of the model’s
performance. The final evaluation is not just done by comparing the numbers for loss
and accuracy, since these can be misleading due to the imperfect dataset. Segmented
test-set images are also compared, where it can be seen that the step decay runs in
fact do perform worse, as they have more segmentation artifacts (obviously wrong
segmentations), supporting the initial suspicion that learning rate is indeed killed off
too early. Therefore the weights from the constant learning rate training run are the
ones that will be used further on in this project, in the localization system, which is
covered in chapter 7 and 8. When referring to the network in other sections of this

76

report, this means the network with weights from this training run. A qualitative
evaluation of the network’s performance on the test set is made at the end of this
chapter, in section 6.2.3.

base_lr (decay_f actor)f loor (
epoch

epoch_wait) (6.1)

Table 6.3: Step decay vs constant learning rate

lrn_rate test_loss test_acc

1e-3 step 0.01577 99.460%

1e-4 step 0.01665 99.386%

5e-4 const 0.01506 99.498%

77

6.2.2.5 lrn rate 1e-3 with step decay

0 60 120 180 240 300 360 420 480
Epoch

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Lo
ss train_loss

val_loss

(a) Training and validation loss

0 60 120 180 240 300 360 420 480
Epoch

0.960

0.965

0.970

0.975

0.980

0.985

0.990

0.995

1.000

Ac
cu

ra
cy train_acc

val_acc

(b) Training and validation accuracy

(c) confusion matrix with test data set

test loss 0.01577

test accuracy 99.460%

(d) loss and accuracy on test data set

Figure 6.5: training metrics and test metrics using model checkpoint epoch-500

78

6.2.2.6 lrn rate 1e-4 with step decay

0 60 120 180 240 300 360 420 480
Epoch

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Lo
ss train_loss

val_loss

(a) Training and validation loss

0 60 120 180 240 300 360 420 480
Epoch

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1.00

Ac
cu

ra
cy train_acc

val_acc

(b) Training and validation accuracy

(c) confusion matrix with test data set

test loss 0.01665

test accuracy 99.386%

(d) loss and accuracy on test data set

Figure 6.6: training metrics and test metrics using model checkpoint epoch-500

79

6.2.2.7 lrn rate 5e-4 constant

0 60 120 180 240 300 360 420 480
Epoch

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Lo
ss train_loss

val_loss

(a) Training and validation loss

0 60 120 180 240 300 360 420 480
Epoch

0.960

0.965

0.970

0.975

0.980

0.985

0.990

0.995

1.000

Ac
cu

ra
cy train_acc

val_acc

(b) Training and validation accuracy

(c) confusion matrix with test data set

test loss 0.01506

test accuracy 99.498%

(d) loss and accuracy on test data set

Figure 6.7: training metrics and test metrics using the final model checkpoint epoch-462

6.2.3 Training Results

The network outputs very convincing segmentation labels for the images in the test-
partition of the dataset. Some example segmentations performed by the network can
be seen in fig 6.9, where the segmentation from the network is re-encoded as color and
overlain with the input image. The network has generalized well from the examples

80

and often outputs segmentation labels that are more accurate than those stored in the
dataset, illustrated in figure 6.8. The network predictions can however be bad for some
scenarios, illustrated in 6.10. In particular, this includes images with bridges and small
islands, which are often misrepresented in the dataset, as described in chapter 6.1, due
to problems with the terrain models, as described in chapter 4.3. It became apparent
that the network performed worse on images with darker lighting conditions, as well
as images with extreme glare. Both of these scenarios are shown in figure 6.10. Some
rare images have random artifacts for no apparent reason.

81

Figure 6.8: Dataset labels in left column, and network predicted labels in right column

82

Figure 6.9: Some selected segmented test images

83

(a) bridge (b) small reef (c) dark

(d) artifact (e) artifact (f) glare

Figure 6.10: Bad segmented test images

6.2.3.1 Sliding Prediction

When the net has given the class probabilities an image is constructed by associating
each pixel color to the class with the highest probability. Multiple 473x473 patches
can be extracted from an image and segmented individually, before being combined to
a single prediction. For the overlapping sections the average probability of the patches
is used.

84

(a) whole image

(b) overlapping image patches

(c) prediction for whole image

Figure 6.11: Sliding evaluation of image

85

86

Chapter 7

Localization Using
Semantically Segmented
Camera Images

87

7.1 Algorithm overview

The purpose of the algorithm is to calculate a 6DoF pose in a virtual replica of the real
world that best aligns virtual camera images (ch. 4) with the semantic segmentation
of the camera images (ch. 6), illustrated in a concept drawing in figure 7.1. This is
done by iteratively optimizing the ship’s virtual pose to minimize the point-to-line
distance between virtual image points and corresponding camera image points. It is
important to not that edges are only matched with other edges of the same semantic
type, illustrated in figure 7.2. A high-level view of the localization system’s flow is seen
in figure 1.1. The pose estimation at each time step is initialized with the optimized
pose from the last time-step, but the optimization is otherwise not constrained by
earlier pose estimation values. No filtering techniques are used because the time limits
forced restrictions on the scope of the project. A justification however is that this
more clearly exposes the weaknesses of the core algorithm, the segmentation-to-model
tracking, as each second in a localization sequence is vulnerable.

Figure 7.1: Illustration of the concept of comparing real images with a virtual world

88

Simplified high-level pseudo-code for the algorithm is shown in algorithm 1, which
is explained in text in the following paragraphs. The algorithm starts with some
initialization before progressing to a main loop. The real implementation of this
algorithm is ca. 300 lines in python, not including the modules it uses, such as the
rendering and the image segmentation. Each cam iteration also iterates over the
different types of semantic edges, handling them in separate lists. Here they are
summarized as one edge-list to make the pseudo-code brief enough to fit on one page,
but the algorithm still conveys the core principle. The pseudo-code is high level, and
references functions that are described in more detail in other sections of this chapter,
such as edge extraction and processing, the projection and backprojection, the jacobian
calculation and the optimal step calculation.

In chapter 5 projective ICP was used to align edges in the model rendering with
canny edges in the real image to estimate the camera orientation. Now the edges
between different semantic regions in a rendering is aligned against semantic seg-
mentations of multiple camera images to estimate the full ship pose. The semantic
labels of the edges are respected, distinguishing between sky-land, sky-sea and land-
sea transitions. These edges are aligned against edges with corresponding labels in
the segmentation image, not just using any detected edges as was done in chapter 5.
Furthermore the error measure that is being minimized here is a point-to-line distance.
The previously used point-to-point error can cause extremely slow convergence since
when a line is aligned with a another line the optimization is penalized for moving
the lines parallel to each other, since the distance being measured is between specific
points on the line. The point-to-line error however does not penalize such movement,
allowing faster convergence in regions with sparsely featured contours. The point-to-
line distance for two points requires the definition of a line through one of the points.
This is defined with a normal vector to that line. Here the line is defined for the edges
in the semantic segmentation image, since the edges in the rendering will be moved
around, and would require recalculation of the normal vectors. The normal vectors are
kept spatially consistent by smoothing the edges the normal vectors are based on. This
ensures that the edges that are jagged due to the pixelation do not yield normal vectors
with alternating directions. The calculation of edge-points and normals is detailed

89

in 7.2.1. The render-edges are back-projected to 3D coordinates using the rendered
depth-map and each camera’s intrinsic matrix. Then the iterative process of aligning
the points is started, the main loop.
For each ICP-step, in stead of re-rendering the edges, the initially calculated and
back-projected render-edges are instead transformed using the pose-change calculated
thus far, which is initialized as eye(4) and updated at the end of each iteration. This is
explained in ch. 7.2.2, but is summarized by that reprojecting existing points in stead
of rendering new ones saves a lot of time. We discard the points that are projected
outside of the area equivalent to the crop-area for each camera, removing the ship
structure and the undistortion artifacts described in ch. 3.2.2. The remaining repro-
jected render-edges’ nearest neighbours among the camera segmentation edges are
calculated for each camera and for each edge-type. This is sped up by representing the
camera segmentation edges as KD-Trees using the python package scipy. The image
segmentation edges are the same each iteration, so the trees need only be created
once. Point correspondences that are more than 10 pixels away from each other are
discarded. Now that the iteration’s point correspondences are decided the residual
errors (point-to-line distances) and jacobians for these errors for each camera can be
calculated. The error functions being minimized for each camera are all expressed in
the ship frame. Since the functions are in the same space they can be jointly optimized
by just concatenating all the camera’s residual errors and jacobians. Then, as described
in 7.2.3, analytical gauss-newton is used to find the optimal change in ship pose that
jointly minimizes the residual errors. This optimal change in pose is parameterized
on-manifold, using lie algebra, and once calculated it is converted to an SE4 rigid
transformation matrix, using 7.7 with openCV’s rodrigues formula. This is more stable
over multiple multiplication operations than the approximation 7.6, which causes the
determinant of the rotation matrix to explode when multiplied with itself some tens of
times. The optimal step is used to update the overall pose-change thus far, which is
where the initial render-points will be transformed to next iteration. When the loop is
done the calculated pose change is combined with the original ship poseT s

w to express
the new improved ship pose.

90

A type of photometric error minimization, sum of squared differences between
model image and segmentation was considered, and the jacobian for this problem was
even formulated. But it was painstakingly slow to calculate this jacobian, since it uses
all pixels of two large 2D images, in addition to having to backproject all the pixels in
one image, even those whose movement doesn’t affect the error. Using ICP there are
much fewer points being used in the calculation, just the contours, whose movement
actually affect the error. It could be made faster with GPU-programming framework
like CUDA, since jacobians relating to each point-correspondence are independent
from each other. Furthermore though, using simple SSD there is no convergence for
objects that do not already overlap, which is not a problem with ICP it minimizes the
distance to the nearest point. This can be remedied by converting the images to trun-
cated signed distance maps (distance to contours), but this does not seem too different
from straight contour tracking with ICP, just a lot more pre-processing. A region based
method would however give more weight to large regions, not just regions with a long
contour, which could be argued gives a more intuitive or fair matching criteria.

91

Algorithm 1 Refine ship pose from segmented camera images
Require: shipPose, camSeдs, camPoses, intrinsics

for all cam ← cams do # Also loops skyland, skysea, landsea edges
seдEdдes[cam], seдNormals[cam] ← дet_edдes_and_normals(camSeдs[cam])

seдEdдesTree[cam] ←makeKDTree(seдEdдes[cam])

imд[cam],depth[cam] ← render (shipPose, camPoses[cam], intrinsics[cam])

edдes ← дet_edдes(imд[cam])

edдes3DInit[cam] ← backproject(edдes,depth, intrinsics[cam])

end for
T ← eye(4)
for i := 0ton_iterations do
resErrList = []

jacobiansList = []

for all cam ← cams do # Also loops skyland, skysea, landsea edges
Tw
s ← SE4(shipPose)

T s
m ← SE4(camPose[cam])

Tm
c ← SE4(internal .viewAnдles)

T c
w ← (T

m
c)
−1(T s

m)
−1(Tw

s)
−1

edдes3D ← trans f orm(edдes3DInit[cam], (Tw
c)
−1TTw

c)

edдes ← project(edдes3D, intrinsics[cam])
idx ← seдEdдesTree[cam].query(edдes, internal .outlier_thresh)
tarдets ← seдEdдes[cam][idx]

normals ← seдNormals[cam][idx]

resErrList .append(normalsT (tarдets − edдes))

jacobianList .append(jacobian(normals, edдes3D, intrinsics[cam],Tw
c))

end for
∆ξ ← дet_step(jacobianList , resErrList)
T ← exp(∆ξ)T

end for
return T s

wT

92

7.2 Algorithm details

7.2.1 Calculating edges and normal vectors

Image contour points are used in the ICP-process, and so these edges are extracted
from the render-image and the semantically segmented camera image. The alignment
process respects the semantic labels of the regions associated with the contours. This
means that sky-land, sky-sea and land-sea edges are onlymatchedwithin their semantic
groups, and must therefore be calculated and handled individually. These different
semantic edges are illustrated in figure 7.2. With three classes there are three types of
edges; sky-land, sky-sea and land-sea.
The shared edges for two classes in the rendered image is extracted by calculating
by using the sobel operator to create a mask of edges between the classes. Once
the semantic edge masks are created, a simple call to np.argwhere with each mask
gives a list of pixel-coordinates for each edge pixel. This is repeated for all three
class combinations. The process for the camera segmentation image is similar, but
includes some extra steps. The process starts with using a gaussian blur on each class
mask before calculating each pixel’s normal vector using sobel. The sobel derivative
used to create normal values does not yield normalized vectors. This fact is used in
the thresholding process to find the strongest edges. Because we used a gaussian
blur before the edge detection, the detected edges have had their normals smoothed.
Slightly smoothed normals better represent the contours as sobel is only a 3x3 filter,
making it sensitive to changes in just a single pixel.

(a) rendered labels (b) sky-land edges (c) sky-sea edges (d) land-sea edges

Figure 7.2: Semantic edge extraction for tiny image

93

Algorithm 2 Extract transition edge pixels between two semantic masks
Require: mask1,mask2
дx ← convolve(imд1, sobelX)
дy ← convolve(imд1, sobelY)
edдeMask ← (дxorдy)andimд2 # logical, not bitwise
return np.arдwehere(edдeMask)

Algorithm 3 Extract transition edge pixels and smoothed normal vectors between
two semantic masks
Require: mask1,mask2
imд1← дaussianblur (imд1)
дx ← convolve(imд1, sobelX)
дy ← convolve(imд1, sobelY)
edдeMask ← (дxorдy)andimд2 # logical, not bitwise
normals ← [дx[edдeMask],дy[edдeMask]]

normals_norm ← norm(normals)

edдes ← numpy.arдwhere(edдeMask)[normals_norm > threshold]

normals ← normals[normals_norm > threshold]

return edдes,normals

7.2.2 Justification for the Edge Reprojection Scheme

ICP requires multiple steps before converging, due to it’s approximate iterative nature.
One of the most costly parts of the algorithm is the calculation of edges, and so to
save time edges are reused by transforming them to the new pose at the start of
every iteration instead of rendering new edges at the new pose. This assumes that
the points representing the contours remain approximately the same as you move
around. This is of course not true when moving far, and so the edges must eventually
be re-rendered. This is illustrated in figure 7.3, where the estimate rendering starts at
pose 0, 150m from the true position. The first optimization run, using the transformed
edges rendered at pose 0, converges with an error of ca. 40m, at pose 1. Even though

94

the edge-images (b) and (c) look similar at pose 1, when the edges are re-rendered this
corrects the edge-inaccuracies and using transformations of these new edges allows
the second pass to continue converging towards ground truth, converging ca. 4m from
the true position, at pose 2. ICP is after all inherently an iterative algorithm, so as
long as approximating contours using transformed edges reduces the pose error, that
is all that’s required. This scheme manages to drastically cut down the number of
rendering and edge extraction procedures and thus saves a lot of time. In the current
implementation two passes of ICP with 15 iterations each would take 10 times as long
if re-rendering at each internal iteration of the ICP. With re-rendering convergence
requires slightly fewer total iterations due to accurate edges at each step, but not few
enough to compensate for the rendering overhead. Keep in mind that the rendering,
which uses the GPU, is in itself very fast, it is the edge extraction and pre-processing
which is slow, as it is implemented in python and just uses the CPU.

95

(a) camera edges and initial render edges at pose
0

(b) camera edges and reprojected render edges
at pose 1

(c) camera edges and initial render edges at pose
1

(d) camera edges and reprojected render edges
at pose 2

Figure 7.3: Iterative pose estimation, where both camera edges and render edges are
shown. The camera edges are static

7.2.3 Analytical Gauss-Newton

This section describes the error being minimized at each step of the ICP algortihm,
and how the optimal step that minimizes this error is calculated.
The error, E(ξ),is a sum of all point correspondences’ squared residual errors, ri (ξ),
where i denotes a specific correspondence. Two corresponding points are from the
segmented camera image, x ′i , and the rendered image, xi , respectively. The residual

96

error for two corresponding points is a point-to-line distance between a line through
the 2D camerapoint defined by a normal vector ni , and the 2D renderpoint that gets
backprojected to 3D, rigidly transformed through a change in the ship pose, and then
re-projected back into into 2D. projection and back projection is defined in 7.8 and 7.13
respectively. This rigid transformation is what gets optimized to minimize the error.
The rigid transformation is parameterized on-manifold with lie algebra, denoted ξ , eq.
7.3, and can be converted to an SE4 rigid transformation matrix, eq 7.4. T c

w and Tw
c are

used to change the frame the points are referenced to between the virtual camera frame,
c , and the virtual world-frame, w , more on this in 4.3. The jacobian for the residual
errors, 7.17, is calculated analytically, and used to calculate a an optimal gauss-newton
step for the rigid transformation in the ship frame that minimizes the error for the
current point correspondences, eq. 7.18. Since the error corresponding to each camera
is a function of the same variable, a rigid transform in the ship frame, the errors can
be jointly optimized by simply concatenating all their point correspondences’ residual
errors and jacobians, and using these two larger arrays to calculate a single gauss-
newton step that accounts for all camera alignments simultaneously. This assumes
that dataset’s stored values for the camera’s poses relative to the ship are perfect. As
was described in chapter 5 the angles are not perfectly correct, but as chapter 8 shows
the localization still works well.

ξ ∗ = arдmin
ξ

E(ξ) = arдmin
ξ

∑
i

(nTi (x
′
i − proj(T

c
wexp(ξ̂)T

w
c back(xi ,di))))2 (7.1)

ri (ξ) = nTi (x
′
i − proj(T

c
wexp(ξ̂)T

w
c back(xi ,di)))

= nTi (x
′
i − π (K(T

c
wexp(ξ̂)T

w
c z̃i)3x1)) (7.2)

97

ξ =


w

v

 = [ω1,ω2,ω3,v1,v2,v3]
T ∈ R6 (7.3)

ξ̂ =


ŵ v

0 0

 =


0 −ω3 ω2 v1

ω3 0 −ω1 v2

−ω2 ω1 0 v3

0 0 0 0


∈ se(3) (7.4)

∆T = exp(ξ̂) ∈ SE(3) (7.5)

exp(ξ̂) ≈ I4x4 + ξ̂ (7.6)

∆T =


rodriдuez(w) v

0 0

 (7.7)

Projection of a 3D point Z in the camera frame into pixel coordinates, using camera
intrinsic matrix K.

proj(Z) = π (KZ) (7.8)

π (Z) =


z1
z3
z2
z3

 (7.9)

∂π (Z)

∂Z
=


1
z3

0 −
z1
(z3)2

0 1
z3
−

z2
(z3)2

 (7.10)

K =


fx 0 cx

0 fy cy

0 0 1


(7.11)

98

K−1 =


1
fx

0 −
cx
fx

0 1
fy
−
cy
fy

0 0 1


(7.12)

Back-projection of a 2D point X with depth Dm(X) uses the inverste of the camera
matrix K .

back(X ,Dm(X)) = Dm(X)K
−1


x1

x2

1


=


Dm(X)

x1−cx
fx

Dm(X)
x2−cy
fy

Dm(X)


(7.13)

The definition of the jacobian is expressed as follows.

Ji =
∂ri (ξ)

∂ξ

����
ξ=0
= −nTi

∂π

∂K(exp(ξ̂)z̃i)3x1
K
∂(exp(ξ̂)z̃i)3x1

∂ξ

����
ξ=0

= −nTi
∂π

∂K((I4x4 + ξ̂)z̃i)3x1
K
∂((I4x4 + ξ̂)z̃i)3x1

∂ξ

����
ξ=0

= −nTi
∂π

∂Kzi
K
∂((I4x4 + ξ̂)z̃i)3x1

∂ξ
(7.14)

The equations for the jacobian-factors are solved individually

∂π

∂Kzi
=

∂π

∂


fx 0 cx

0 fy cy

0 0 1



zi,1

zi,2

zi,3


=

∂π

∂


fxzi,1 + cxzi,3

fyzi,2 + cxzi,3

zi,3


=


1
zi,3

0 −
fx zi,1+cx zi,3
(zi,3)2

0 1
zi,3

−
fyzi,2+cx zi,3
(zi,3)2

 =

1
di

0 −
xi,1
di

0 1
di
−
xi,2
di

 (7.15)

99

∂(T c
w (I4x4 + ξ̂)T

w
c z̃i)3x1

∂ξ
=

(
T c
w

∂



1 −ω3 ω2 v1

ω3 1 −ω1 v2

−ω2 ω1 1 v3

0 0 0 1





z(w)i,1

z(w)i,2

z(w)i,3

1


∂ξ

)
3x1

=

(
T c
w

∂



z(w)i,1 − ω3z
(w)
i,2 + ω2z

(w)
i,3 +v1

ω3z
(w)
i,1 + z

(w)
i,2 − ω1z

(w)
i,3 +v2

−ω2z
(w)
i,1 + ω1z

(w)
i,2 + z

(w)
i,3 +v3

1


∂
[
ω1 ω2 ω3 v1 v1 v3

]T)
3x1

=

(
T c
w


0 z(w)i,3 −z(w)i,2 1 0 0

−z(w)i,3 0 z(w)i,1 0 1 0

z(w)i,2 −z(w)i,1 0 0 0 1


)
3x1

(7.16)

The individual factors of the jacobian are combined to fully express the jacobian.

100

Ji = −
[
ni,1 ni,2

] 
1
zi,3

0 −
fx zi,1+cx zi,3
(zi,3)2

0 1
zi,3

−
fyzi,2+cx zi,3
(zi,3)2



fx 0 cx

0 fy cy

0 0 1


T c
w

·


0 z(w)i,3 −z(w)i,2 1 0 0

−z(w)i,3 0 z(w)i,1 0 1 0

z(w)i,2 −z(w)i,1 0 0 0 1


= −

[
ni,1 ni,2

] 
fx
zi,3

0 −
fx zi,1
(zi,3)2

0 fy
zi,3

−
fyzi,2
(zi,3)2

 T c
w


0 z(w)i,3 −z(w)i,2 1 0 0

−z(w)i,3 0 z(w)i,1 0 1 0

z(w)i,2 −z(w)i,1 0 0 0 1


(7.17)

To minimize the error, 7.1, the jacobians and residual errors for each point corre-
spondence are all concatenated and used to jointly calculate the optimal gauss-newton
step in the parameterized rigid transformation.

ξ∗ = −(JT J)−1JT r (0) (7.18)

101

102

Chapter 8

Localization Experiments and
Results

103

8.1 Artificial Localization: Trondheim Fjord

For this test the localization uses simulated segmentation images by rendering at
ground truth. This way errors in the 3D model, camera intrinsic errors, camera angle
errors and errors in the segmentation are non-existent, and we can learn the upper
bounds for accuracy and convergence speed. Three test are done, one where the ship
is static far away from land, one where it is static close to land, and one the ship is
moving along a path. In the static tests the ship’s estimated attitude and position is
initialized relatively far away from the true pose, and int he moving test it is initialized
with the true pose in the first step. The plots and graphs related to position are the
most interesting, and so the estimated attitude angle plots are omitted. Suffice to say
the attitude converges at approximately the same rate as the position. The values are
however mentioned if they are interesting. The localization process for each time-step
consist of two iterations of rendering the estimate and doing ICP with reprojected
points for 15 internal iterations. It is done this way because when doing pose estimation
with real data, we want to make sure that the estimate for each time step converges,
therefore two passes are needed to mostly negate the effect of the reprojection scheme,
as discussed in section 7.2.2.

8.1.1 Static Far from Land

The true pose of the virtual ship is set to be somewhere the middle of the Trondheim
Fjord looking straight north with no pitch or roll. The estimate is initialized with an
offset of 2km in both the north and east directions. The roll pitch and yaw initialized at
a +1 deg offset. The localization converges after around 5 iterations to a 4m absolute
error in the position, and less than 0.005 deg absolute error for each roll, pitch and
yaw angle.

104

−20000 −15000 −10000 −5000 0 5000 10000 15000 20000
EAST [m]

−15000

−10000

−5000

0

5000

10000

15000

NO
RT

H
[m

]

true pos
estimated pos

(a) position at start of each iteration

0 2 4 6 8 10
iteration

0

500

1000

1500

2000

2500

er
ro

r [
m

]

estimated pos err

(b) absolute position error at start of each itera-
tion

Figure 8.1: position and error plot for artificial static localization far from land

8.1.2 Static Close to Land

The true pose of the virtual ship is set to be close the shore at the center of the map,
looking straight north with no pitch or roll. The estimate is initialized with an offset
of 200m in both the north and east directions. The roll pitch and yaw initialized at
a +1 deg offset. The localization converges after just 2 iterations to a 0.6m absolute
error in the position, and less than 0.004 deg absolute error for each roll, pitch and yaw
angle. Note that the position plot is 5x more zoomed in than for the test far from land.

105

−4000 −3000 −2000 −1000 0 1000 2000 3000 4000
EAST [m]

−3000

−2000

−1000

0

1000

2000

3000

NO
RT

H
[m

]

true pos
estimated pos

(a) position at start of each iteration

0 2 4 6 8 10
iteration

0

50

100

150

200

250

er
ro

r [
m

]

estimated pos err

(b) absolute position error at start of each itera-
tion

Figure 8.2: position and error plot for artificial static localization close to land

8.1.3 Moving

This test uses pose data from the real dataset as ground truth. The speed of the ship is
about 15m/s in this sequence. The pose estimation achieves sub-meter accuracy for
most of the sequence, over a kilometer from the closest point of land.

106

−20000 −15000 −10000 −5000 0 5000 10000 15000 20000
EAST [m]

−15000

−10000

−5000

0

5000

10000

15000

NO
RT

H
[m

]

true pos
estimated pos

(a) position at each time step

0 50 100 150 200 250 300
time [s]

0

1

2

3

4

5

er
ro

r [
m

]

estimated pos err

(b) absolute position error at each time step

−2000 −1500 −1000 −500 0
EAST [m]

−250

0

250

500

750

1000

1250

NO
RT

H
[m

]

true pos
estimated pos

(c) position at each time step, zoomed in

Figure 8.3: position and error plot for the sequence

8.2 Real Localization: Trondheim Fjord Sequence

These localization sequences uses the real data from the dataset, and the segmentation
network is used on real camera images at each time step. This is the same sequence as
the artificial test. First each camera is used individually, and finally all cameras are
used simultaneously.

107

8.2.1 Single Camera Tracking

8.2.1.1 Front

https://drive.google.com/drive/folders/1XQlq7MKUCJPH9exrF3fNQFMk85A6cExp
The localization fails and gets stuck in a local minima, but recovers after around 10
seconds.

−20000 −15000 −10000 −5000 0 5000 10000 15000 20000
EAST [m]

−15000

−10000

−5000

0

5000

10000

15000

NO
RT

H
[m

]

true pos
estimated pos

(a) True path compared with estimated path

0 50 100 150 200 250 300
time [s]

0

200

400

600

800

er
ro

r [
m

]

estimated pos err

(b) absolute error in estimated path

Figure 8.4: Tracking using front camera

8.2.1.2 Starboard

https://drive.google.com/drive/folders/1fPv4wAnEo-6sFbkE810Vb8lrkUBGAiN5
Here the localization failed hard, and so no video was created. The estimated position
inside the mountain gave no visible points in the rendering, which the system cannot
recover from.

108

−20000 −15000 −10000 −5000 0 5000 10000 15000 20000
EAST [m]

−15000

−10000

−5000

0

5000

10000

15000

NO
RT

H
[m

]

true pos
estimated pos

(a) True path compared with estimated path

−20 0 20 40 60
time [s]

0

250

500

750

1000

1250

1500

1750

er
ro

r [
m

]

estimated pos err

(b) absolute error in estimated path

Figure 8.5: Tracking using starboard-side camera

8.2.1.3 Aft

https://drive.google.com/drive/folders/1xZYr0M3TzEzoWIJrnJsId_KMFkywyT4o
The localization fails spectacularly and gets stuck in a local minima as a small island
exits the view, but manages to recover once the island is far enough away.

−20000 −15000 −10000 −5000 0 5000 10000 15000 20000
EAST [m]

−15000

−10000

−5000

0

5000

10000

15000

NO
RT

H
[m

]

true pos
estimated pos

(a) True path compared with estimated path

0 50 100 150 200 250 300
time [s]

0

500

1000

1500

2000

2500

3000

er
ro

r [
m

]

estimated pos err

(b) absolute error in estimated path

Figure 8.6: Tracking using the aft camera

109

8.2.1.4 Port-side

https://drive.google.com/drive/folders/1OJkbG54Wk0QPDjEhxAzxalG7gwP9fIF2
This camera has the best view of the nearby terrain, and manages to localize the ship
throughout the entire sequence, albeit with some noise.

−20000 −15000 −10000 −5000 0 5000 10000 15000 20000
EAST [m]

−15000

−10000

−5000

0

5000

10000

15000

NO
RT

H
[m

]

true pos
estimated pos

(a) True path compared with estimated path

0 50 100 150 200 250 300
time [s]

0

10

20

30

40

50

60

70

80

er
ro

r [
m

]

estimated pos err

(b) absolute error in estimated path

Figure 8.7: Tracking using the port-side camera

8.2.2 Multi-Camera Tracking

https://drive.google.com/drive/folders/1aSd98XqZtE7QBRDFcIzrYqACC3fpLhPn
Using all cameras simultaneously in the localization is much better than the combined
localization of each single camera, and manages to consistently and relatively accu-
rately localize the ship throughout the entire sequence. The error has a bias that is
larger for the later part of the sequence. The first part has good view of a nearby
island, and the error increases once this island moves out of view. This sequence has
a known camera angle error of around 0.1 deg, causing perfect alignment of every
camera to be impossible, seen in the trackblend-videos, by extension making perfect
pose estimation impossible. The segblend videos also show that the segmentation
generally is very good, but does not predict all contours perfectly accurate, which
will also affect the segmentation-to-model alignment. Since segmentation and camera
calibration is the only difference from the artificial localization, it is apparent that this

110

is causes the localization error.

−20000 −15000 −10000 −5000 0 5000 10000 15000 20000
EAST [m]

−15000

−10000

−5000

0

5000

10000

15000

NO
RT

H
[m

]

true pos
estimated pos

(a) True path compared with estimated path

0 50 100 150 200 250 300
time [s]

5

10

15

20

25

30

35

er
ro

r [
m

]

estimated pos err

(b) absolute error in estimated path

−2000 −1500 −1000 −500 0
EAST [m]

−250

0

250

500

750

1000

1250

NO
RT

H
[m

]

true pos
estimated pos

(c) True path compared with estimated path,
zoomed

Figure 8.8: Tracking using all cameras simultaneously

111

8.3 Multi-Camera Tracking Performance on Entire
Test Set

8.3.1 Overview

Here the localization system is tested on data-sequences from all the regions in the
test-set (see ch. 6.1), and the localization performance in each sequence is classified
as good, ok or fail. Good means the system managed to accurately and consistenly
estimate the pose, taking distance from land into consideration. Ok, means that there
are a few small but visible misalignments causing error-spikes, which the system
quickly recovers from. Fail means that the system makes very large errors in the
localization for however long, or consistently makes obvious misalignments causing a
constant significant error. As per chapter 3, normal ship velocity when moving can
be up to 20m/s, so when the ship loses track it is very obvious, as the error explodes
or grows linearly. Videos are created for each localization sequence, and are together
with the error graphs inspected to classify the localization performance for a sequence.
The videos are available here
https://drive.google.com/drive/folders/1TPLzuMLonLWutZzT2lJlendu7V0de2xc

Each sequence uses a minute of data, and two seconds pass between each localiza-
tion, which each do two ICP passes, described in ch. 7. A single ICP pass could have
been ran every second halving the start error at each time step, but a focus of these
test is to stress the system to expose weaknesses. The first pose at step 0 is like the
previous tests initialized with the ground truth pose. Longer sequences would have
been preferred, but video creation creates a lot of overhead, and to simulate for all 70
sequences this late in the project compromises had to be made. The tracking results
for all test regions is shown in table 8.1.

112

https://drive.google.com/drive/folders/1TPLzuMLonLWutZzT2lJlendu7V0de2xc

Table 8.1: Performance of all-cam tracking runs in test-data areas

Run Datetime Result

2018-06-13_11-50-00 OK

2018-06-13_12-00-00 GOOD

2018-06-13_23-45-00 GOOD

2018-06-15_02-00-00 GOOD

2018-06-15_10-30-00 GOOD

2018-06-15_16-40-00 OK

2018-06-15_18-00-00 GOOD

2018-06-15_19-30-00 GOOD

2018-06-15_20-00-00 GOOD

2018-06-15_21-30-00 GOOD

2018-06-15_22-00-00 GOOD

2018-06-15_23-00-00 GOOD

2018-06-16_07-00-00 GOOD

2018-06-16_07-30-00 GOOD

2018-06-16_08-00-00 GOOD

2018-06-16_08-30-00 GOOD

2018-06-17_05-36-00 GOOD

2018-06-17_15-00-00 GOOD

2018-06-17_19-00-00 GOOD

2018-06-18_03-00-00 GOOD

Run Datetime Result

2018-06-18_07-30-00 GOOD

2018-06-18_13-30-00 GOOD

2018-06-18_18-00-00 GOOD

2018-06-19_05-00-00 GOOD

2018-06-23_12-20-00 GOOD

2018-06-23_12-30-00 OK

2018-07-01_02-24-00 GOOD

2018-07-01_03-20-00 GOOD

2018-07-01_04-50-00 GOOD

2018-07-03_08-50-00 GOOD

2018-07-03_09-10-00 GOOD

2018-07-03_10-00-00 OK

2018-07-03_11-00-00 GOOD

2018-07-03_11-20-00 GOOD

2018-07-03_11-50-00 GOOD

2018-07-03_19-00-00 GOOD

2018-07-05_13-00-00 GOOD

2018-07-05_15-00-00 GOOD

2018-07-07_04-00-00 GOOD

2018-07-07_07-00-00 GOOD

Run Datetime Result

2018-07-07_08-00-00 GOOD

2018-07-11_03-00-00 GOOD

2018-07-11_04-30-00 GOOD

2018-07-11_07-30-00 GOOD

2018-07-11_14-30-00 GOOD

2018-07-11_15-00-00 GOOD

2018-07-11_15-30-00 GOOD

2018-07-11_16-30-00 GOOD

2018-07-14_12-00-00 GOOD

2018-07-14_19-00-00 GOOD

2018-07-14_19-30-00 GOOD

2018-07-25_10-00-00 OK

2018-07-25_11-00-00 GOOD

2018-07-26_02-00-00 GOOD

2018-07-26_02-30-00 GOOD

2018-07-26_04-00-00 FAIL

2018-07-26_07-00-00 GOOD

2018-07-26_08-00-00 GOOD

2018-07-26_12-30-00 OK

2018-07-26_18-00-00 GOOD

Run Datetime Result

2018-07-26_21-00-00 GOOD

2018-07-26_22-30-00 FAIL

2018-07-27_01-30-00 GOOD

2018-07-27_04-30-00 GOOD

2018-08-06_15-30-00 GOOD

2018-08-06_19-00-00 GOOD

2018-08-07_02-45-00 GOOD

2018-08-07_16-30-00 FAIL

2018-08-07_18-00-00 OK

2018-08-07_19-50-00 GOOD

2018-08-07_21-00-00 GOOD

2018-09-05_04-30-00 GOOD

2018-09-05_05-30-00 GOOD

2018-09-08_05-30-00 GOOD

2018-09-08_06-00-00 GOOD

2018-09-08_07-00-00 GOOD

2018-10-01_14-00-00 GOOD

2018-10-02_10-20-00 GOOD

8.3.2 Localization Failures

8.3.2.1 Tracking Failure: 2018-07-26_04-00-00

https://drive.google.com/drive/folders/1qo0nYpNseYYh3kEEG6LC096zW2KWVO9H
It’s only really visible in the video, but a small island entering the simulated frame
makes the pose estimation get stuck in a local minima, as it does not know what to do
with the virtual island, as the real island has not entered the camera view. The island
is allowed to enter the simulated frame because the starboard camera that actually has
a good view of the nearby landmass is disabled. This allows the estimated position
vary a lot more, as the only landmasses used in the pose estimation are very far away,
requiring big movement to change visually. It also fails at recognizing a small island
in the right side of the frame, both in the rendered ground truth and in the segmented
image.

113

−20000 −15000 −10000 −5000 0 5000 10000 15000 20000
EAST [m]

−15000

−10000

−5000

0

5000

10000

15000

NO
RT

H
[m

]

true pos
estimated pos

(a) True path compared with estimated path

−30 −20 −10 0 10 20 30
time [s]

0

200

400

600

800

1000

1200

1400

er
ro

r [
m

]

estimated pos err

(b) absolute error in estimated path

(c) ground truth (d) segmentation result (e) estimated pose

Figure 8.9: Data from the failed localization sequence 2018-07-26_04-00-00

8.3.2.2 Tracking Failure: 2018-07-26_22-30-00

https://drive.google.com/drive/folders/1jPF7hpTr_LITxG5o7W87MxJa6gQy7g79
The cameras barely have some view of far away land despite being close to land due
to the land-facing starboard camera being disabled for this sequence. This coupled
with failed segmentation of one camera image makes the localization fail. The sun has
almost gone down in this sequence, and dark lighting conditions are very sparsely
represented in the training data for the segmentation network.

114

−20000 −15000 −10000 −5000 0 5000 10000 15000 20000
EAST [m]

−15000

−10000

−5000

0

5000

10000

15000

NO
RT

H
[m

]

true pos
estimated pos

(a) True path compared with estimated path

−30 −20 −10 0 10 20 30
time [s]

0

500

1000

1500

2000

2500

er
ro

r [
m

]

estimated pos err

(b) absolute error in estimated path

(c) ground truth (d) segmentation network result

Figure 8.10: Data from the failed localization sequence 2018-07-26_22-30-00

8.3.2.3 Tracking Failure: 2018-08-07_16-30-00

https://drive.google.com/drive/folders/1mj1OZkudKTtQXLBUScISvUBfvlISVIX-
In this tracking sequence, like in the other failed sequences, the missing starboard
camera is the only one that is pointed towards any large land masses, while the other
cameras barely have some view of very far away land. The port-side camera does
in fact have direct view of many close small reef structures, but the segmentation
network fails almost completely at labelling them as land.

115

−20000 −15000 −10000 −5000 0 5000 10000 15000 20000
EAST [m]

−15000

−10000

−5000

0

5000

10000

15000

NO
RT

H
[m

]

true pos
estimated pos

(a) True path compared with estimated path

−30 −20 −10 0 10 20 30
time [s]

0

200

400

600

800

1000

er
ro

r [
m

]

estimated pos err

(b) absolute error in estimated path

(c) ground truth (d) segmentation network result

Figure 8.11: Data from the failed localization sequence 2018-08-07_16-30-00

116

Chapter 9

Conclusions and future work

9.0.1 Model and Rendering

The rendered ground truth images do not match the camera images perfectly. This
in both due to errors in the 3D models, and errors in the camera angles. Some error
in the camera mounting angle was measured and corrected, but part of the error was
changing periodically, most likely due to warping of the ship hull as the sun heats the
metal. The periodical error seemed to have an amplitude of 0.1 deg, and no further
measures were taken to correct this, due to time constraints. When working with
the data this is noticeable and important to take into consideration, and should be
corrected if high-precision data is required. Since the angle error typically can change
over the course of an hour, one could attempt angle correction at a frequency of every
5 minutes over a larger period of interest and store the results as a part of the dataset.
Furthermore the calibration of the camera intrinsic parameters and lens distortion
coefficients was found to be unsatisfactory for the side cameras in each camera cluster.
The middle cameras are ok, and the only difference between the middle and side
cameras is the angle at which they look through the shared protective glass dome.
It is therefore likely that the 5-parameter lens distortion model does not have the
expressive power to model the distortion caused by the tilted view through the glass

117

dome. Re-calibration using a more complex distortion model should therefore be
considered.

Currently the model generation has some problems with incomplete source data,
in particular reefs, islands and small ocean structures are very poorly modelled in
some regions. Other regions also has huge chunks of missing DOM data, but this can
be replaced using DTM data in stead. Using DTM data causes vegetation and man
made structures to be unmodelled for those regions. It could be viable to use sentinel
data from the Copernicus project in lieu of geonorge.

Certain objects are particularly prone to errors due to simply not being modellable
using just a heightmap. One such example is bridges, there is no way of modelling the
empty area beneath the bridge, which causes the bridge to either look like a block or
be completely missing, depending on the source data. This could warrant the use of
some other technique to model these objects, perhaps auto-generating bridge-models,
which can then be aligned better by manual inspection.

Currently when models for neighbouring regions are created no information is
shared about the overlapping area. Since separate maps must be created when the ship
moves out of the center of a map this is a huge waste of space. Splitting the terrain into
more modular chunks that can be transformed to conform to the moving ship should
definitely be explored. A more modern but still simple LOD technique that would go
well with this is chunked LOD. Perhaps if the model was created and stored in ECEF
coordinates then the ship’s pose could just be converted to ECEF for the rendering,
and all maps could easily be created offline without the wasteful duplicate storage of
the current implementation.

The current bottleneck of the model generation is the heightmap accessation, since
the server needs to gather all the data, and then convert it to NED, which it does
extremely slowly for some reason. The Seatex local map service is also slow, due to the
conversion. The mesh generation only takes a second, but retrieving the heightmaps
takes several minutes, making in the biggest bottleneck of the system by several orders
of magnitude. Skipping or optimizing it could give high speed increases.

118

9.0.2 Semantic Segmentation Network

The segmentation network achieved around 99.5% pixel accuracy on the test-set, but
due to the imperfection in what is used as ground truth for the evaluation much closer
to 100% is practically impossible. When the network is used to evaluate an image it
was trained on it is apparent that it has indeed learned to recreate the specific errors in
the training data, the net generalizes well, but the training data errors are definitely a
problem, in varying degrees. The network consistently fails for bridges as well as reefs
that barely stick out of the water, which are particularly poorly represented in the
dataset. Not just represented little, but rather represented incorrectly, and even with
good generalization the network does learn to recreate this error, as it is consistently
rewarded for it during training. Incorrectly labelling clearly visible small reefs as water
is very dangerous for a navigation system relying on situational awareness, and so
correcting this faulty data should be a top priority before any new net is trained. Many
training runs have been done in parallel with improving in the dataset, and making
the dataset bigger more accurate had a direct large impact on the performance. The
only bad performance of the segmentation network is for images that are known to be
unrepresented or even misrepresented in the training data. The prediction performed
poorly in dark lighting conditions, even though structures were clearly visible to
a human looking at the pictures. There are not many such images in the data set.
Adding more varied lighting conditions to the dataset should therefore be done, but
another a simple and effective measure would be to add brightness adjustment to the
data augmentation during training, which was neglected due to reaching the internal
deadline for work on the segmentation training pipeline. It should be a fairly simple
fix, but would require some change to the current method of augmentation which
applies the same seeded augmentation to both the image and the mask, which can not
be done with an additional brightness adjustment to just the image. Other than adding
brightness adjustment the training pipeline does not seem to be in dire need of any
improvements, and so the focus should in stead be on improving and expanding the
data set.
One important improvement would be to create a segmentation class for boats. Cur-

119

rently boats are ignored, and are just labelled according to what is behind them, water,
land or sky. This often causes some confusion in the test images, but mostly the
network correctly predicts what is behind the ship. Still ships that are close to the
shore tend to, at the very least, warp the segmented shoreline somewhat. Adding
ships to the training data can be done by rendering a color-encoded box in the virtual
world using AIS data. AIS data would give both the location and approximate size of
the ship, all the parameters needed for the box. Since the world model is in 3D the
renderer handles occlusion as well, in case a ship is partially or completely behind
some structure. Training samples could also be created by manually labelling data.
Recognizing boats is not just important to not confuse the localization system through
prediction errors, but could also aid in collision avoidance if a ship has a faulty AIS
system, or no AIS at all. Other classes can also be added relatively easily, by using
publicly available geotagged data, such as where buildings are located. This could be
used to render buildings in a separate color from the general terrain, thus encoding
buildings in the rendering. This could be used to then train the net to predict where
building are in the image, creating additional information that can be used by the
localization system.

9.0.3 Localization

During the experiments it was demonstrated that localization with multiple cameras
is much more robust than tracking with single cameras, even when only one camera
has close view of the land. The localization using real data was not as accurate as
the simulation, which used perfect data. The main causes is that the segmentation of
camera images is not perfectly accurate, and secondly the camera data is not perfect,
in particular the camera angles, but also the calibration. Furthermore the localization
test failed for 3/70 sequences, an in all of the failed test the only camera with good
view of the main landmass was the starboard camera, which was disabled for these
sequences. In addition to seeing little land, the little land that is seen is mislabeled by
the segmentation network, which is again caused by bad training data. The localization
can still be successful even if one of the cameras makes some occasional inaccurate

120

predictions. One such extreme case happened when the ship drove towards a bridge,
and the front camera made wild predictions due to poor training on bridges. The other
three cameras still kept the localization mere meters from ground truth over the whole
sequence. In the test sequences all the failures could actually have been avoided if all
the cameras were available like they were supposed to, and the segmentation network
was trained without the faulty data.

It was inadvertently discovered how much the accuracy of the camera calibration
affects the accuracy of the tracking. For an initial run which is not documented further
the intrinsics for the forward camera was accidentally used as the intrinsics for all
the cameras, even though their values differ. This caused the tracking to become very
unstable with a big bias, and much less accurate even when the segmentation and the
model was good. Erroneous camera angles also affect the localization accuracy. In
areas where the camera angles are particularly inaccurate for a camera, this camera
does not give a perfect model alignment for the same ship pose as the other cameras.
This causes the localization to compromise at a pose that’s not a perfect alignment
any of the cameras, a pose that is near but not at the ground truth.

For some of the localization test the error spikes just as objects, such as small
islands, are leaving the frame. This is since to the edge pair selection process knows
nothing about points that are not seen in the current frame, causing some confusion
when the camera segmentation points leave the frame but the render points remain.
This effect is particularly large for these test since no filtering is performed. If the ship
moves at 20m/s even perfect localization at each frame will start with a 40m error when
estimating the pose every 2 seconds, meaning the initial rendering and segmentation
image can be quite different, particularly for close terrain such as small islands.

One very natural extension of the system is to include a kalman filter in the
localization system, smoothing out jittery localization and respecting the ship dynamics
between time steps. Multiple faulty localizations in succession could still greatly impact
the filtered value however. A more robust system, which is the basis of most modern
visual localization system would be to use a graph based filtering approach. one such
graph framework, GTSAM (Georgia Tech Smoothing And Mapping), lets you add
custom factors to the smoothing process, proved you have the jacobian, meaning

121

we could add the segmentation-to-model alignment for different times as factors.
This would basically be motion only bundle adjustment, very related to SLAM. It
could therefore be interesting to go further and fuse feature point tracking into the
localization, turning it into a full fledged SLAM system, where the segmentation-to-
model alignment is used to correct drift in the system over time. The terrain model
could even be used to initialize the location of feature points, and the segmentation
masks out feature points that are undesired for tracking. If also fused with inertial
measurements, there is the potential for a very robust system. No matter what filter
system is chosen, one suggestion would be to model the camera angels to have a bias
that can change over time, thus automatically compensating for the changing camera
angles. Bias estimation is already common for IMUs, so why not for camera angles.

A huge weakness of the system right now is that it has no way of accounting for
occlusions, such as clouds hanging low over mountains, causing the mountains to be
classified as sky, which is not modelled. One idea could be to detect if the alignment
for some region becomes poor, and gradually give lower weight in the optimization
to consistently poorly aligned regions. Since the render depth is known, less weight
could be given to regions far away, as they are more likely to be occluded. One could
also consider temporarily changing the labels in the model, and in doing so modelling
the clouds. This kind of weighing is more intuitive when the whole image is used
for alignment, not just the label transitions, motivating further evaluation of such an
approach, in which case GPU programming should be looked more into.

As of now the system is pretty slow, ca. 0.2Hz, as virtually no steps have been
taken to optimize speed, apart from the re-projection scheme. Extracting the various
edges is particularly slow, and so perhaps the edges could be created directly by the
rendering engine, or at least be calculated using some GPU programming framework,
like CUDA. Numpy, a python package which is used for almost all the maths in this
project, is very slow when using big arrays, and just initializing a large array takes
considerable time due to the complex datatypes it implements. Doing matrix math and
loops in general is much slower in python than for instance in c++, and so a real-time
implementation should definitely consider changing implementation language, or at
least wrap some sections with c++.

122

References

[1] Adrien Angeli, David Filliat, Stéphane Doncieux, and Jean-Arcady Meyer. A fast
and incremental method for loop-closure detection using bags of visual words.
IEEE Transactions on Robotics, pages 1027–1037, 2008.

[2] Anil Armagan, Martin Hirzer, Peter M. Roth, and Vincent Lepetit. Learning to
align semantic segmentation and 2.5d maps for geolocalization. In The IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), July 2017.

[3] C. Arth, C. Pirchheim, J. Ventura, D. Schmalstieg, and V. Lepetit. Instant out-
door localization and slam initialization from 2.5d maps. IEEE Transactions on
Visualization and Computer Graphics, 21(11):1309–1318, Nov 2015.

[4] Georges Baatz, Olivier Saurer, Kevin Köser, and Marc Pollefeys. Large scale visual
geo-localization of images in mountainous terrain. volume 7573, pages 517–530,
10 2012.

[5] Hernán Badino, Daniel Huber, and Takeo Kanade. Real-time topometric local-
ization. In 2012 IEEE International Conference on Robotics and Automation, pages
1635–1642. IEEE, 2012.

[6] Paul J Besl and Neil D McKay. Method for registration of 3-d shapes. In Sensor
Fusion IV: Control Paradigms and Data Structures, volume 1611, pages 586–607.
International Society for Optics and Photonics, 1992.

[7] Andrea Censi. An icp variant using a point-to-line metric. 2008.

123

[8] MWM Gamini Dissanayake, Paul Newman, Steve Clark, Hugh F Durrant-Whyte,
and Michael Csorba. A solution to the simultaneous localization and map building
(slam) problem. IEEE Transactions on robotics and automation, 17(3):229–241, 2001.

[9] J. Engel, V. Koltun, and D. Cremers. Direct sparse odometry. In arXiv:1607.02565,
July 2016.

[10] J. Engel, T. Schöps, and D. Cremers. LSD-SLAM: Large-scale direct monocular
SLAM. In European Conference on Computer Vision (ECCV), September 2014.

[11] Kunihiko Fukushima. Neocognitron: A self-organizing neural network model
for a mechanism of pattern recognition unaffected by shift in position. Biological
cybernetics, 36(4):193–202, 1980.

[12] X. Gao, R. Wang, N. Demmel, and D. Cremers. Ldso: Direct sparse odometry
with loop closure. In iros, October 2018.

[13] Marcel Geppert, Peidong Liu, Zhaopeng Cui, Marc Pollefeys, and Torsten Sat-
tler. Efficient 2d-3d matching for multi-camera visual localization. CoRR,
abs/1809.06445, 2018.

[14] Giorgio Grisetti, Rainer Kummerle, Cyrill Stachniss, and Wolfram Burgard. A
tutorial on graph-based slam. IEEE Intelligent Transportation Systems Magazine,
2(4):31–43, 2010.

[15] Jiuxiang Gu, Zhenhua Wang, Jason Kuen, Lianyang Ma, Amir Shahroudy, Bing
Shuai, Ting Liu, Xingxing Wang, Gang Wang, Jianfei Cai, et al. Recent advances
in convolutional neural networks. Pattern Recognition, 77:354–377, 2018.

[16] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning
for image recognition. In The IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), June 2016.

[17] Martin Hirzer, Clemens Arth, Peter M. Roth, and Vincent Lepetit. Efficient 3d
tracking in urban environments with semantic segmentation. 09 2017.

124

[18] Martin Hirzer, Peter Michael Roth, Clemens Arth, and Vincent Lepetit. Pose
determination with semantic segmentation, March 14 2019. US Patent App.
15/699,221.

[19] Hugues Hoppe. Smooth view-dependent level-of-detail control and its application
to terrain rendering. In Proceedings Visualization’98 (Cat. No. 98CB36276), pages
35–42. IEEE, 1998.

[20] Albert S Huang, Abraham Bachrach, Peter Henry, Michael Krainin, Daniel Matu-
rana, Dieter Fox, andNicholas Roy. Visual odometry andmapping for autonomous
flight using an rgb-d camera. In Robotics Research, pages 235–252. Springer, 2017.

[21] Hirokazu Kato and Mark Billinghurst. Marker tracking and hmd calibration for a
video-based augmented reality conferencing system. In Proceedings 2nd IEEE and
ACM International Workshop on Augmented Reality (IWAR’99), pages 85–94. IEEE,
1999.

[22] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification
with deep convolutional neural networks. In Advances in neural information
processing systems, pages 1097–1105, 2012.

[23] Julien Li-Chee-Ming and Costas Armenakis. Uav navigation system using line-
based sensor pose estimation. Geo-spatial Information Science, 21:1–10, 01 2018.

[24] Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully convolutional networks
for semantic segmentation. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 3431–3440, 2015.

[25] Colin McManus, Ben Upcroft, and Paul Newman. Learning place-dependant
features for long-term vision-based localisation. Autonomous Robots, 39(3):363–
387, 2015.

[26] R. Mottaghi, M. Kaess, A. Ranganathan, R. Roberts, and F. Dellaert. Place
recognition-based fixed-lag smoothing for environments with unreliable gps.
In 2008 IEEE International Conference on Robotics and Automation, pages 1862–
1867, May 2008.

125

[27] Montiel J. M. M. Mur-Artal, Raúl and Juan D. Tardós. ORB-SLAM: a versatile and
accurate monocular SLAM system. IEEE Transactions on Robotics, 31(5):1147–1163,
2015.

[28] Diederick C Niehorster, Li Li, and Markus Lappe. The accuracy and precision
of position and orientation tracking in the htc vive virtual reality system for
scientific research. i-Perception, 8(3):2041669517708205, 2017.

[29] David Nistér, Oleg Naroditsky, and James Bergen. Visual odometry for ground
vehicle applications. Journal of Field Robotics, 23(1):3–20, 2006.

[30] Gabriel L Oliveira, Noha Radwan, Wolfram Burgard, and Thomas Brox. Topo-
metric localization with deep learning. arXiv preprint arXiv:1706.08775, 2017.

[31] Simon JD Prince. Computer vision: models, learning, and inference. Cambridge
University Press, 2012.

[32] Victor Prisacariu and Ian D. Reid. Pwp3d: Real-time segmentation and tracking
of 3d objects. volume 98, 01 2009.

[33] Srikumar Ramalingam, Sofien Bouaziz, and Peter F. Sturm. Pose estimation using
both points and lines for geo-localization. pages 4716–4723, 05 2011.

[34] Gerhard Reitmayr and Tom Drummond. Going out: robust model-based tracking
for outdoor augmented reality. In ISMAR, volume 6, pages 109–118, 2006.

[35] Ethan Rublee, Vincent Rabaud, Kurt Konolige, and Gary R Bradski. Orb: An
efficient alternative to sift or surf. Citeseer.

[36] Davide Scaramuzza and Friedrich Fraundorfer. Visual odometry [tutorial]. IEEE
robotics & automation magazine, 18(4):80–92, 2011.

[37] K. Tateno, F. Tombari, I. Laina, and N. Navab. Cnn-slam: Real-time dense monoc-
ular slam with learned depth prediction. In 2017 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pages 6565–6574, July 2017.

126

[38] George Terzakis, Riccardo Polvara, Sanjay K. Sharma, Phil F. Culverhouse, and
Robert Sutton. Monocular visual odometry for an unmanned sea-surface vehicle.
CoRR, abs/1707.04444, 2017.

[39] Henning Tjaden, Ulrich Schwanecke, Elmar Schömer, and Daniel Cremers. A
gauss-newton approach to real-time monocular multiple object tracking. CoRR,
abs/1807.02087, 2018.

[40] Henning Tjaden, Ulrich Schwanecke, Elmar Schömer, and Daniel Cremers. A
gauss-newton approach to real-time monocular multiple object tracking. CoRR,
abs/1807.02087, 2018.

[41] Steffen Urban and Stefan Hinz. MultiCol-SLAM - a modular real-time multi-
camera slam system. arXiv preprint arXiv:1610.07336, 2016.

[42] J. Ventura, C. Arth, G. Reitmayr, and D. Schmalstieg. Global localization from
monocular slam on a mobile phone. IEEE Transactions on Visualization and
Computer Graphics, 20(4):531–539, April 2014.

[43] L. von Stumberg, V. Usenko, and D. Cremers. Direct sparse visual-inertial odom-
etry using dynamic marginalization. In International Conference on Robotics and
Automation (ICRA), May 2018.

[44] Lukas von Stumberg, Patrick Wenzel, Qadeer Khan, and Daniel Cremers. Gn-net:
The gauss-newton loss for deep direct slam, 2019.

[45] Peng Wang, Ruigang Yang, Binbin Cao, Wei Xu, and Yuanqing Lin. Dels-3d: Deep
localization and segmentation with a 3d semantic map. In The IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), June 2018.

[46] R. Wang, M. Schwörer, and D. Cremers. Stereo dso: Large-scale direct sparse
visual odometry with stereo cameras. In International Conference on Computer
Vision (ICCV), Venice, Italy, October 2017.

[47] Eric W Weisstein. Euler angles. 2009.

127

[48] Eric W Weisstein. Euler angles. 2009.

[49] Matthew J Westoby, James Brasington, Niel F Glasser, Michael J Hambrey, and
JM Reynolds. ‘structure-from-motion’photogrammetry: A low-cost, effective
tool for geoscience applications. Geomorphology, 179:300–314, 2012.

[50] Thomas Whelan, Stefan Leutenegger, R Salas-Moreno, Ben Glocker, and Andrew
Davison. Elasticfusion: Dense slam without a pose graph. Robotics: Science and
Systems, 2015.

[51] Ashia C Wilson, Rebecca Roelofs, Mitchell Stern, Nati Srebro, and Benjamin
Recht. The marginal value of adaptive gradient methods in machine learning. In
Advances in Neural Information Processing Systems, pages 4148–4158, 2017.

[52] Harald Wuest and Didier Stricker. Tracking of industrial objects by using cad
models. Journal of Virtual Reality and Broadcasting, 4, 10 2007.

[53] N. Yang, R. Wang, J. Stueckler, and D. Cremers. Deep virtual stereo odometry:
Leveraging deep depth prediction for monocular direct sparse odometry. In eccv,
September 2018. "https://vision.in.tum.de/research/vslam/dvso".

[54] Matthew D. Zeiler. ADADELTA: an adaptive learning rate method. CoRR,
abs/1212.5701, 2012.

[55] Hengshuang Zhao, Xiaojuan Qi, Xiaoyong Shen, Jianping Shi, and Jiaya Jia.
Icnet for real-time semantic segmentation on high-resolution images. CoRR,
abs/1704.08545, 2017.

[56] Hengshuang Zhao, Jianping Shi, Xiaojuan Qi, Xiaogang Wang, and Jiaya Jia.
Pyramid scene parsing network. CoRR, abs/1612.01105, 2016.

128

Fredrik O
peide

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lt

y
of

 In
fo

rm
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ri
ca

l
En

gi
ne

er
in

g
D

ep
ar

tm
en

t o
f E

ng
in

ee
ri

ng
 C

yb
er

ne
tic

s

M
as

te
r’

s
th

es
is

Fredrik Opeide

Deep Learning-Based Multi-Camera
Situational Awareness and Global
Localization for Autonomous Ships

Master’s thesis in Cybernetics and Robotics
Supervisor: Edmund Førland Brekke

June 2019

	Preface
	Abstract
	Sammendrag
	Introduction
	Motivation
	Related Work
	Visual Localization
	Deep semantic segmentation

	Contributions
	System overview and structure of report

	Theoretical Background
	Kinematics
	Rigid transformation matrix
	Euler angle parameterization
	Twist Coordinate Parameterization

	Cameras
	Pin-hole Camera Model
	Lens distortion

	ICP - Iterative Closest Points
	ICP
	Gauss Newton Optimization

	Edge detection
	Sobel
	Canny

	Available Data Set
	Ship Seapath
	Cameras
	Camera position and orientation
	Camera Calibration

	Terrain Model Generation and Rendering Engine
	Heightmap Processing
	Acquiring Heightmap Data
	Missing and Erroneous Heightmap Data
	NED height correction
	Varying Levels of Detail
	Ocean Tides

	Triangle Mesh Creation
	Model Rendering with OpenGL
	Modelling the Real Camera in OpenGL
	Triangle Mesh Loading
	Rendering and Retrieving Data

	Camera Mounting Angle Correction
	Orientation estimation with ICP
	orientation estimation example
	Correcting Camera Angles for Larger Time Periods

	Semantic Segmentation
	Creating an Image Segmentation Data Set
	Semantic Segmentation Network
	Architecture and Transfer Learning
	Training Setup
	Training Results

	Localization Using Semantically Segmented Camera Images
	Algorithm overview
	Algorithm details
	Calculating edges and normal vectors
	Justification for the Edge Reprojection Scheme
	Analytical Gauss-Newton

	Localization Experiments and Results
	Artificial Localization: Trondheim Fjord
	Static Far from Land
	Static Close to Land
	Moving

	Real Localization: Trondheim Fjord Sequence
	Single Camera Tracking
	Multi-Camera Tracking

	Multi-Camera Tracking Performance on Entire Test Set
	Overview
	Localization Failures

	Conclusions and future work
	Model and Rendering
	Semantic Segmentation Network
	Localization

	References

