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Tasks:  
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ADCS design. Include disturbances and uncertainties (solar pressure, gravity 
gradient, magnetic field, atmospheric drag…) in the model and environment. Also 
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assembly. 
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Abstract

Orbital mechanics and attitude dynamics are modeled for a satellite actuated by re-
action wheels and magnetorquers. A nonlinear satellite model is implemented in
Matlab/Simulink. The controls used are conventional sliding mode control, the gener-
alized super-twisting algorithm, linear-quadratic regulator, and proportional-derivative
controller for both target pointing and slewing using the reaction wheels, as well as a
B-dot tumbling and momentum dumping controllers using the magnetorquers. Control
simulations are presented with and without a sliding mode observer. The simulation
results are based on HYPSO, a 6U CubeSat mission developed at NTNU that will host
a hyperspectral imager to detect and monitor ocean color along the Norwegian coast.
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Sammendrag

Dynamikken i en satellitts bane og attitude modelleres for en satellitt med reaksjon-
shjul og magnetorquere som aktuatorer. Den ulineære modellen er implementert i
Matlab/Simulink. Regulatorene som blir brukt er konvensjonell sliding mode con-
trol, generalized super-twisting algorithm, linear-quadratic regulator og proporsjonal-
derivasjon-regulator med reaksjonshjulene for peking og rotasjon. Magnetiske tor-
quere brukes for å regulere tumblingen med B-dot algoritmen, samt en regulator for å
regulere drivmomentet i reaksjonshjulene. Systemet blir simulert både med og uten en
slidingmode observer. Resultatene fra simuleringen basererer seg på HYPSO-satellitten
ved NTNU, en 6U CubeSat som vil bruke et hyperspektralt kamera for å overvåke
havfarge langs norskekysten.
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Chapter 1

Introduction

1.1 Motivation

This work is related to the HYPSO mission, part of the MASSIVE project at the NTNU
SmallSat lab (see appendix A). The HYPSO mission consists of a CubeSat mounted
with a camera for ocean observation. The attitude determination and control system,
ADCS, is the subsystem that is responsible for aiming the hyperspectral imager at
desired target areas. Control is to be developed to meet the demands to attitude control
on the HYPSO mission, such as accuracy in target pointing and slewing.

1.2 Related work

Attitude control means to control the orientation of a reference frame, generally
attached to a vehicle or some other controllable entity, relative to another frame. There
exists a lot of research on attitude control, for vehicles such as ships [1], aircrafts [2],
or satellites [3].

Sliding mode control is a form of nonlinear control that is robust to modeling
errors, external disturbances and uncertainties [4]. The sliding mode control is widely
used in control literature ([5], [6]), also for attitude control problems ([7], [8]).

1
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The problem of attitude control for a satellite is well studied ([9], [10], [11]). Sliding
mode control for attitude control on satellites actuated with reaction wheels also exists
([12], [13]). Research on the attitude control problem for satellites also exists from
NTNU, both with [14] and without [15] observers, often with attitude control based
on magnetorquers ([16], [17]), as the earlier satellite projects at NTNU were actuated
by magnetorquers only, such as NUTS ([18], [19]).

1.3 Contributions

The contributions in this thesis are in the in the field of control theory.

(a) A PD controller with gyroscopic compensation is used on simulations on a 6U
CubeSat using magnetorquers with a momentum dumping algorithm.

(b) Sliding mode control, in particular the second order sliding mode control gener-
alized super-twisting algorithm, is applied to the attitude control problem of a
pointing and slewing satellite actuated by reaction wheels.

(c) A comparison of the response of the controllers based on simulated results is
presented.

1.4 Thesis outline

In chapter 2, the theory used in the rest of the thesis will be introduced. Relevant
background theory concerning notation, coordinate frames and attitude representation,
is introduced.

In chapter 3, the dynamics of the system is developed in a mathematical model.
This includes the orbital mechanics, attitude dynamics, and perturbations that affect
the system.

In chapter 4, the relevant controller and observer theory is included.
Chapter 5 contains the control laws designed for the attitude control problem. Four

different controllers, namely PID, LQR, sliding mode control (SMC), and a second order
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SMC, the generalized super-twisting algorithm, are included for both target pointing
and the slewing maneuver. For the magnetorquers, the B-dot algorithm for detumbling
and an algorithm for momentum dumping is shown.

In chapter 6 the observers are designed. Two complete observers will be presented:
A sliding mode observer (SMO), and a higher order sliding mode observer (HOSMO).
An extra SMO for angular velocity is also presented.

In chapter 7 the model created in Simulink for simulation is presented.
Chapter 8 includes results and the discussion of the results. Results for detumbling,

pointing, and slewing is presented, both with and without a time delay present in
the simulation, with and without observer. The chapter also includes results for
the different observers, the B-dot detumbling algorithm, the momentum dumping
algorithm, and how robust the controllers are to perturbations in the torque distribution
matrix.

In chapter 9 the findings are summarized, and description of future work is in-
cluded.
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Chapter 2

Background theory

2.1 Notation

A vector is denoted as x ∈ Rn , where n is the dimension of the vector. Any lowercase,
boldface symbol represents a vector, whereas a roman symbol represents a scalar. A
matrix with m rows and n columns is represented with uppercase, boldface symbols
such as A ∈ Rmxn . Vectors and matrices may be represented in coordinate frames
using the notation xa , where x is represented in frame {a}. A similar notation is used
for differentiation with respect to different frames. For example, differentiating xa with
respect to time in the {a} frame is shown using Leibniz’s notation as

ad
dt x

a . Angular
velocity is defined between two coordinate frames, whereωc

ab is the angular velocity
between frames {a} and {b} represented in frame {c}. The cross product between vectors
in three dimensions such as x × y can be represented as S(x)y, where S(x) is a skew
symmetric matrix formed by a vector x, given by

S(x) =


0 −x3 x2

x3 0 −x1

−x2 x1 0


. (2.1)

5
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2.2 Coordinate frames

2.2.1 Earth-centered inertial frame

The Earth-centered inertial frame, ECI, is denoted by {i}. Its origin is at the center of
the Earth, with the first axis pointed towards the vernal equinox, the third axis points
through the North Pole, and the second axis completes the right handed coordinate
frame.

2.2.2 Earth-centered, Earth-fixed frame

The Earth-centered, Earth-fixed frame, ECEF, is denoted by {e}. Its origin is, like the
ECI frame, at the center of the Earth, with the third axis pointed out of the North
Pole. The first and second axes spans the equatorial plane, with the first axis pointing
through the prime meridian. ECEF follows the Earth’s rotation, having the angular
velocity about the third axis ωie = 7.2921 · 10−5 [20, p. 16].

2.2.3 Longitude and latitude

For a spherical body, a point on the surface can be represented by the angle from the
pole, the angle from a position at the equator, and the distance from the center of the
sphere. A three-dimensional Cartesian coordinate position vector can therefore be
represented using a coordinate system like this. For the Earth, longitude, latitude, and
distance is used to describe these three coordinates. Longitude is the angle that moves
from east to west, from -180° in the east, 0° at the prime meridian, and 180° in the west.
Latitude is 0° at the Equator, extending to 90° at either pole. The distance from the
center of the Earth completes the coordinate frame.

2.2.4 Perifocal frame

The perifocal frame, or PQW, is an inertial frame centered in the Earth’s center. The
perifocal frame is useful because it defines a frame that is fixed to the orbit, not any of
the moving parts of the modeled system, such as the Earth or the satellite. The first



2.2. COORDINATE FRAMES 7

axis, p, is pointing toward the periapsis, which is the shortest radius in orbit. The
second axis, q, has a true anomaly of 90° from p, making it orthogonal to the first axis.
The third axis, w, is the cross product of the p and q axes.

By using the perifocal frames own set of parameters, called orbital parameters, one
can uniquely desribe an orbit. The orbital parameters are defined as

• a - Semi-major axis

– Half of the major axis of the ellipsis created by the orbit plane.

• e - eccentricity

– A parameter that describes how unlike the orbit is a circle. When e is 0, the
orbit is completely circular. Eccentricity between 0 and 1 gives an elliptical
orbit.

• i, Ω, ω - inclination, longitude of the ascending node, and argument of periapsis

– three angles defining the orbit plane’s attitude in space relative to the equato-
rial plane.

• θ - true anomaly

– Describes the position of the orbiting body in the orbit.

2.2.5 Orbit Frame

The orbit frame, denoted {o}, is the first of two frames centered in the satellite’s center.
Its purpose is to have a frame that follows the path of the satellite as it orbits the Earth,
and therefore does not have any involvement when it comes to the satellite’s attitude.
The first axis is pointing in the direction of the velocity of the satellite, while the third
axis is always pointing toward the center of the Earth. The second axis completes
the right handed coordinate system. This is also known as Vehicle Velocity, Local
Horizontal, or VVLH, frame.
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ẑo = −
ri

| |ri | |2

x̂o =
vi

| |vi | |2

ŷo =
ẑo × x̂o

| |ẑo × x̂o | |2

(2.2)

where ri , vi are the position and velocity vectors, respectively, in the ECI frame.

2.2.6 Body frame

The body frame is, like the orbit frame, centered in the satellite’s center. Denoted {b}, it
follows the satellite as it rotates. It is therefore useful to describe attitude as a rotation
between the body and orbit frame.

2.2.7 Wheel frame

The wheel frame is not a right handed reference frame. This is a frame has each axis
fixed to the rotational axis of each reaction wheel. The wheel frame is useful as a
tool to separate vectors that are represented in the body frame and the vectors that
represents the behavior of all the reaction wheels. Due to the nature of reaction wheels,
the wheel frame and the body frame will not rotate relative to each other, and the
rotation between vectors in either of the frames can be described by a constant matrix
A, called the torque distribution matrix. Vectors in the wheel frame have the same
length as the number of reaction wheel in the satellite, and are denoted by a {w}.

2.2.8 Transport theorem

The differentiation of a vector u that is represented in the rotating reference frame b
in frame a is given by the transport theorem [21, p. 243]

ad

dt
u =

bd

dt
u +ωb

ab × u (2.3)
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2.3 Attitude representations

2.3.1 Euler angles

Euler angles are three angles used to describe an attitude, one about each axis. To
specify a specific transformation, three rotations are required. Because only three
parameters are used to define an attitude, there exists a singularity in the representa-
tion. The order of rotations for the Euler angles decides where the singularity in the
representation appears. For some applications, choosing the correct order of rotations
would be enough to avoid singularities. For a satellite, it is not realistic to assume that
a given attitude will be avoided.

2.3.2 Quaternions

The quaternion between coordinate frame a and coordinate frame b is defined as [21,
p. 233]

qab =

η

ϵ

 =

cos( θ2 )

k sin( θ2 )

 (2.4)

where the angle θ and the vector k are the angle-axis parameters.

The version of quaternions used in this thesis are also referred to as unit quater-
nions, as they are being constrained by q⊺q = 1 ⇒ η2 + ϵ⊺ϵ = 1.

The quaternion product is defined as

q = q1 ⊗ q2 =

η1 −ϵ⊺1

ϵ1 η1I3x3 + S(ϵ1)

 q2 (2.5)

The inverse of a quaternion is defined as

q =

η

ϵ

 ⇒ q−1 =

η

−ϵ

 (2.6)
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The quaternion error is defined using the quaternion product from equation 2.5 as

qe = q−1d ⊗ qval (2.7)

where qd is the desired quaternion, while qval is current value. The quaternion has
reached its desired value when the quaternion error is

qe =

±1

03x1

 (2.8)

2.3.3 Rotations

A rotation is a coordinate transformation. A rotation matrix from {b} to {a} can be
constructed by [21, p. 219-220]

Rab = {®a · ®b} (2.9)

where ®a and ®b are the orthogonal unit vectors that create the right handed coordinate
frame {a} and {b}, respectively. Alternatively, it can be done by

Rab = ( ba1 ba2 ba3 ) (2.10)

where bai is the ith unit vector of the {b} frame represented in {a} frame.
A rotation matrix constructed this way is called a direction cosine matrix, DCM. It

uses nine parameters to construct a rotation, is for that reason overparameterized and
will not have any singularities.

Being a part of SO(3), the rotation matrix has the following properties[21, p. 219-
221]

SO(3) ={R|R ∈ R3x3,RTR = I3x3, det(R) = 1} (2.11a)

Rba = (Rab )
−1 = (Rab )

T (2.11b)

Rda = Rdc R
c
bR

b
a (2.11c)
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Matrices to represent a full rotation can also be represented by Euler angles, section
2.3.1, and quaternions, section 2.3.2. For the Euler angles, a full rotation is represented
by the product of three simple rotations. A simple rotation is a rotation by an angle
about an axis. Using θ,ϕ and ψ as the angles of rotation about the 1st, 2nd and 3rd
axis, respectively, gives

Rab = R3(ψ )R2(θ )R1(ϕ) (2.12)

Using quaternions, where η is the scalar part and ϵ is the vector part, the rotation
matrix can be constructed by using the formula [20, p. 28]

Rη,ϵ = I3x3 + 2ηS(ϵ) + 2S2(ϵ) (2.13)

The time derivative of a rotation matrix is given by [21, p. 240]

ÛRab = S(ωa
ab )R

a
b (2.14a)

ÛRab = RabS(ω
b
ab ) (2.14b)

2.4 Angular velocity

Angular velocity shows the rotational velocity relative to some point, i.e. the origin of
some frame. Addition or subtraction can be applied to angular velocities in order to
find different angular velocity properties

ωb
ac = ωb

ab +ω
b
bd −ωb

cd (2.15)

For this thesis, ωb
ob is an interesting property, as it shows the satellite’s angular

velocity relative to the orbit it is in. ωb
ib can be measured by an IMU, so the function

giving the desired angular velocity is

ωb
ob = ωb

ib −ωb
io = ωb

ib − Rboω
o
io (2.16)



12 CHAPTER 2. BACKGROUND THEORY

whereωo
io is given by [22]

ωo
io = Roi

S(ri )vi

(ri )⊺ri
(2.17)

2.5 Relative degree

The definitions in this section are from [23]. The Lie derivative of h(x) along with
respect to f(x) is defined as

Lf h(x) =
∂h
∂x

f(x) (2.18)

Taking the Lie derivative several times is defined as

LдL
k
f h(x) =

∂(Lkf h)

∂x
g(x) (2.19)

For a system on the form

Ûx = f(x) + g(x)u (2.20a)

y = h(x) (2.20b)

the derivative is defined as

Ûy =
∂h
∂x

(f(x) + g(x)u) = Lf h(x) + Lдh(x)u (2.21)

The relative degree ρ of a system is defined as the number of times the output has
to be differentiated before the input any element of the input vector u appears. In
other words, the ρth derivative of the output y is given by

y(ρ) =
∂(L

ρ−1
f h)

∂x
(f(x) + g(x)u) = L

ρ
f h(x) + LдL

ρ−1
f h(x)u (2.22)

where LдLi−1f h(x) = 0, i = 1, 2, ..., ρ − 1; LдL
ρ−1
f h(x) , 0
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The vector relative degree is the relative degree when the chosen output is a vector.

ρ = {ρ1, ρ2, ρ3, ...} (2.23)

The total relative degree is defined as the sum of the elements in the vector relative
degree,[24]

ρt = Σρi (2.24)
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Chapter 3

Mathematical modeling

3.1 Orbital Mechanics

Newton’s law of universal gravitation is given by [25, p. 423]

f =
Gm1m2r
∥r∥3

(3.1)

wherem1 andm2 are the masses of the object and G is the gravitational constant. In
developing the orbital mechanics of the system, several assumptions will be made.

• This is a two-body problem, meaning that the objects (primarily) interact with
each other.

• The objects can be modeled as point masses.

• The Earth is spherical.

• The mass of the satellite is a lot smaller than the Earth’s mass.

Rewriting the equation by dividing both sides of the equation by the mass of the
satellite gives

15
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a =
f

mtotal
=

µr
∥r∥3

(3.2)

where µ is the standard gravitational parameter for the Earth, given as the product of
the gravitational constant G and the Earth’s mass.

Using Newton’s second law,
id
dt (mv) = f with Ûr = v, the equation describing the

orbital motion of the satellite is found to be

id

dt
vi = µ

ri

∥ri ∥3
+
f iper turbations

mtotal
(3.3)

The superscript i denotes a vector represented in the ECI frame, which is inertial. By
representing the position and velocity vectors in an inertial reference frame, Newton’s
second law may be applied directly.

The force from the gravitational pull from the Earth is the largest force acting on
the satellite and is for this reason included in equation 3.3. The remaining forces make
up the f iper turbations vector. The perturbations are discussed and modeled in section
3.5.

3.2 Kinematic Equation

The kinematic equation, showing how the attitude changes over time, is given by [20]

Ûqob =

Ûηob

Ûϵob

 = T(qob )ωb
ob =

1
2


−ϵ⊺ob

ηob I3x3 + S(ϵob )

 ωb
ob =


− 1

2ϵ
⊺
ob

U(qob )

 ωb
ob (3.4)

Remark. The quaternion in 3.4 is for the attitude between the orbit and body frame.
The same kinematic equation would hold for different quaternions.

Note that the determinant of 2U(ϵob ),
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det(2U(q)) = det(ηI3x3 + S(ϵ)) = det(


η −ϵ3 ϵ2

ϵ3 η −ϵ1

−ϵ2 ϵ1 η


)

= η(η2 − (ϵ21 )) − (−ϵ3)(ηϵ3 − ϵ1ϵ2) + ϵ2(ϵ3ϵ1 − (−ηϵ2))

= η3 + η(ϵ21 + ϵ
2
2 + ϵ

2
3 )

(3.5)

is singular when η is zero.
Another property of note is [26]

T⊺(q)T(q) =
1
4
I3x3 (3.6)

3.3 Kinetic Equation

The angular momentum of the satellite given in body frame is [27]

Hb
s = Jωb

ib + AJwω
w
bw (3.7)

where J is the inertia of the spacecraft including the reaction wheels, Jw is a matrix
with the inertia of each reaction wheel on the diagonal entries. Js denotes the inertia
of spacecraft without the reaction wheels. It is defined as Js = J − AJwA+, where A is
the torque distrubution matrix and A+ pseudoinverse of the is the A matrix, which
may be defined as the Moore-Penrose inverse [28].

By Euler’s second axiom, the kinetic differential equation is

id

dt
(Hb

s ) = J
bd

dt
ωb
ib + AJw

wd

dt
ωw
bw + S(ω

b
ib )H

b
s = τ

b
mtq + τ

b
e (3.8)

where the fact that there is no rotation between the body ({b}) and wheel ({w}) frames
has been used, as well that the torque distribution matrix A is constant in both frames.
τbmtq and τbe are the torques from the magnetorquers and the sum of the external
perturbing torques, respectively.
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3.4 Reaction wheel dynamics

The angular momentum of the reaction wheels given in the body frame, is [27]

Hb
w = AJwA+(ωb

ib + Aω
w
bw ) = AJwωw

iw = AJwA+ωb
iw (3.9)

The differential equation for the reaction wheels is found by using Euler’s second
axiom

id

dt
(Hb

w ) =
bd

dt
(AJwA+ωb

iw ) + S(ω
b
iw )H

b
w = AJwA+

bd

dt
ωb
iw + S(ω

b
iw )(AJwA

+ωb
iw )

= AJwA+
bd

dt
ωb
iw + S(Aω

w
iw )(AJwω

w
iw ) = AJwA+

bd

dt
ωb
iw

= AJwA+(
bd

dt
ωb
ib +

bd

dt
ωb
bw ) = AJwA+(

bd

dt
ωb
ib + A

wd

dt
ωw
bw ) = τ

b
u

(3.10)

Several assumptions were taken in developing equation 3.10. Among those are
that the body and the wheel frames do not rotate relative to each other. Due to this
assumption, no gyroscopic term will appear when differentiating a vector represented
in the body frame in the wheel frame, or the other way around. All that is needed is a
rotation matrix between the frames, a role the torque distribution matrix A has here.
A and Jw are given in the wheel frame. Since the wheel frame and the body frame has
no relative rotation the same matrices are constant in the body frame as well.

On the second line of equation 3.10, the gyroscopic term S(Aωw
iw )(AJwω

w
iw ) has

been cancelled. This is based on an assumption about the physical characteristics of
the reaction wheels. Jw is an Rnxn matrix with the inertia of each reaction wheel about
the rotating axis on the diagonal [27]. If the inertia of every reaction wheel is identical,
the cross-product term disappears since

S(Aωw
iw )(AJwω

w
iw ) = S(Aωw

iw )(Aσ Inxnω
w
iw ) = S(Aωw

iw )(σAω
w
iw )

= σS(Aωw
iw )(Aω

w
iw ) = σS(ω

b
iw )(ω

b
iw ) = 0

(3.11)
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where the property S(x)x = 0 has been used. In this thesis the inertia of the reaction
wheels are assumed to be identical, and therefore the cross-product term will not be
included in the reaction wheel dynamics.
τbu is the torque input for the reaction wheels given in the body frame. The torque
input in the wheel frame is τbu distributed by the torque distribution matrix, A, or
τwu = A+τbu .

3.5 Perturbations

Perturbations are any force or torque that affects the satellite other than the gravi-
tational force from the Earth, defined in section 3.1. These perturbations sum up to
the torques denoted as τbe in equation 3.8 and the forces denoted as f iper turbations in
equation 3.3. It should be noted that not all external forces and torques are included,
such as lunar gravitation, tidal waves, and the geodesy of the Earth. With respect
to perturbations, the perturbations will be modeled as worst-case scenarios. If the
controller is able to handle the worst-case scenario, it would be able to handle less
severe scenarios as well.

3.5.1 Gravity gradient

Because the satellite is not a point mass, the gravity from the Earth will apply a torque
to the satellite. The torque from the gravity gradient is given by [29]

τbд = 3(
µ

∥ri ∥3
)S(c3)Jc3 (3.12)

where c3 is the third column of the rotation matrix from the orbit frame to the body
frame.

3.5.2 Solar radiation pressure

The sun emits radiation, which exerts pressure upon bodies moving in the Solar System.
The force is given by [17]
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fbSRP =
GSRP

c

A

2
(1 + η)cos(α)


1√
2
1√
2

0


(3.13)

where

• GSRP is the solar constant, 1367W /m2.

• c is the speed of light in vacuum, 3 · 108m/s .

• A is the area the solar radiation is hitting.

• η is the emittance, set to 0.2.

• α defines the angle of the sunlight.

The force from the solar radiation pressure is dependent on the area the radiation is
hitting. In the simulation used in this thesis, a worst-case version of the solar radiation
pressure is used. For this reason, the angle α is set to 0° and the area A is set to area of
the face of the satellite with the largest surface area. The vector at end denotes the
direction of the force. Together with the vector specifying the direction of the force,
this maximizes the force from the solar radiation pressure. There is also radiation
due to Earth albedo and black body radiation. These effects have not been explicitly
modeled in this thesis.

Remark. The direction of the solar radiation pressure is constant. This is a simplification
that removes the need for a model of the Sun’s position. However, it does introduce
an unphysical element to the model: When the satellite rotates, the source of the solar
radiation pressure, the Sun, rotates with it.

The torque is given by

τbSRP = r × fSRP = (xCP − xCG ) × fSRP (3.14)
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where xCP and xCG are the position vectors to the center of pressure and the center of
gravity, respectively. For this purpose, the centers are taken to be at each of the sides of
the largest face of the satellite. It should be noted that this is not a reasonable to assume
that the center of gravity would be in any of those points, as a placement that far
outside of the geometric center violates the CubeSat standard. From the maximization
of the force in equation 3.13, it can be seen that the center of pressure actually at the
geometric center of the largest face of the satellite. However, the given choice of xCP
and xCG will produce a higher torque, which is better for a worst-case scenario.

3.5.3 Atmospheric drag

Atmospheric drag comes from the resistance in the fluid the body moves through, here
the atmosphere. The force works in the opposite direction of the motion of the body.
The force acting on the satellite is given by

fbatm = −
1
2
ρA∥vb ∥2CD


1√
2
1√
2

0


(3.15)

where ρ,A andCD are constants denoting the fluid density, the area of the satellite and
the drag coefficient, respectively. The area A is set to the surface area of the largest
face of the satellite in order to maximize the force.

The torque is given by

τbatm = r × fatm = (xCP − xCG ) × fatm (3.16)

where xCP and xCG are chosen in the same way as for the solar radiation pressure in
section 3.5.2 to maximize the effect for a worst-case perturbation.

3.5.4 Magnetic disturbance

A satellite with electronic equipment will be affected by a torque due to the Earth’s
magnetic field. When the electronics in the satellite are in use, a dipole is set up. This
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residual magnetic dipole induces a torque that can be represented as [16]

τbm = DBb (3.17)

where D is a constant. Bb is the magnetic field acting on the satellite, represented in
the body frame. For the model used to simulate the Earth’s magnetic field, see section
7.2.

3.6 Dynamics

From equations 3.4, 3.8, and 3.10, the full set of equations for the attitude becomes

JwA+(
bd

dt
ωb
ib + A

wd

dt
ωw
bw ) = τ

w
u (3.18a)

Ûqob =
1
2
T(qob )ω

b
ob (3.18b)

J
bd

dt
ωb
ib + AJw

wd

dt
ωw
bw + S(ω

b
ib )H

b
s = τ

b
mtq + τ

b
e (3.18c)

Taking advantage of the fact that Js = J − AJwA+, these equations become

Jw
wd

dt
ωw
bw = τ

w
u − JwA+

bd

dt
ωb
ib (3.19a)

Ûqob =
1
2
T(qob )ω

b
ob (3.19b)

Js
bd

dt
ωb
ib = −S(ωb

ib )H
b
s − Aτwu + τ

b
mtq + τ

b
e (3.19c)

With (x⊺1 , x
⊺
2 , x3, x

⊺
4 )

⊺ = ((ωw
bw )

⊺, (ωb
ib )

⊺,η, ϵ⊺)⊺ and (u⊺1 , u
⊺
2 , u

⊺
3 )

⊺ = ((τwu )
⊺, (τbmtq)

⊺, (τbe )
⊺)⊺,

the model used for linearization is
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Jw
wd

dt
x1 = u1 − JwA+

bd

dt
x2 (3.20a)

Js
bd

dt
x2 = −S(x2)Hb

s − Au1 + u2 + u3 (3.20b)

Ûx3 = −
1
2
x⊺4 (x2 −ωb

io) (3.20c)

Ûx4 =
1
2
(x3I3x3 + S(x4))(x2 −ωb

io) (3.20d)

3.7 Error dynamics

Sinceωb
ob and qob are the variables of interest, the error variables are defined as

ωb
e = ωb

ob −ωb
d (3.21)

and

qe = q−1d ⊗ qob (3.22)

as defined in section 2.3.2.

To find the error dynamics, the error variables needs to be differentiated. From
equation 2.16, it is clear thatωb

e is given by

ωb
e = ωb

ob −ωb
d = ωb

ib − Rboω
o
io −ωb

d (3.23)

Differentiating this equation with respect to time in the body frame yields the error
dynamics of the angular velocity. The time derivative ofωb

d depends on the desired
input signal, while the time derivative ofωb

ib can be found in 3.19. Differentiating the
final term
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bd

dt
Rboω

o
io =

bd

dt
(Rbo )ω

o
io + R

b
o

bd

dt
(ωo

io) = S(ωb
ob )R

b
oω

o
io + R

b
o (

od

dt
ωo
io − S(Rboω

o
ob )ω

o
io)

(3.24)
Noting that the angular velocity of the orbit given in the orbit frame,ωo

io , will be
close to constant over time, its time derivative in orbit frame is approximately zero,
od
dtω

o
io ≈ 0. Equation 3.24 becomes

bd

dt
Rboω

o
io = S(ωb

ob )R
b
oω

o
io − RboS(R

b
oω

o
ob )ω

o
io (3.25)

Putting the results together, the error dynamics become

Ûqe = T(qe)ωb
e (3.26a)

Js
bd

dt
ωb
e = −S(ωb

ib )H
b
s − Aτwu + τ

b
mtq + τ

b
e − JsS(ωb

ob )R
b
oω

o
io

+JsRbo (S(R
o
bω

b
ob )ω

o
io) − Js

bd

dt
ωb
d

(3.26b)



Chapter 4

Control and observer theory

4.1 Control theory

The basic concept behind the controllers used for the reaction wheels are presented
in this section. The controllers used with the magnetorquers, the detumbling control
objective and momentum dumping, are only presented in the control design chapter
(sections 5.1 and 5.2).

4.1.1 PID control

Proportional-integral-derivative control is on the form τ = Kpe + Ki
∫
edt + Kd

d
dt e,

where e is the error value. The PID controller has three parts, where the P term gives a
proportional contribution based on the error, the I term eliminates steady-state errors
in the response, and the D term is a dampening term.

4.1.2 Linear-quadratic regulator

The linear-quadratic regulator, or LQR, is a form of optimal control. The LQRminimizes
a cost function on the form J = x⊺Qx + u⊺Ru, where Q = Q⊺ > 0,R = R⊺ > 0 are
the matrices used to penalize the state and input vectors, respectively. The result

25
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of the minimization is a matrix K, which is the gain matrix that is to be applied in
the state-feedback control, u = −Kx. As the equations describing the attitude of the
satellite are nonlinear, it is necessary to linearize the equations before the LQR can be
applied.

4.1.2.1 Linearization

Ûx = f (x, u) (4.1a)

Ûx = Ax + Bu (4.1b)

By linearizing the system, a system given on the form in equation 4.1a takes the
form of the dynamic system in equation 4.1b. A and B are found by taking the Jacobian
of f (x, u).

A =


∂f1
∂x1

· · ·
∂f1
∂xn

...
. . .
...

∂fm
∂x1

· · ·
∂fm
∂xn

 (x,u)=(x0,u0)
,B =


∂f1
∂u1

· · ·
∂f1
∂un

...
. . .
...

∂fm
∂u1

· · ·
∂fm
∂un

 (x,u)=(x0,u0)
(4.2)

The point (x, u) = (x0, u0) is referred to as the point of linearization.

4.1.3 Sliding mode control

Sliding mode control (SMC) is a form of nonlinear control that is robust to disturbances
and unmodeled dynamics [30]. To apply the control, a sliding surface σ has to be
constructed. The control has two phases: The reaching phase, where the state variables
reach the sliding manifold, and the sliding phase, where the state slides along the
sliding surface with σ = 0 until the origin is reached.
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x1

x2

s = x1 + x2 = 0

x0

Reaching phase

Sliding phase

Figure 4.1: Figure illustrating the reaching and sliding phase. Credit: Arnt Erik Stene.

The choice of the sliding surface is for that reason important. Constructing a
sliding surface based on the error variables would lead to a desirable result, as the
sliding mode control ensures finite-time convergence to zero for the sliding variables
[30].
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4.1.3.1 Conventional sliding mode control

Equivalent control is the control signal that equates the dynamics of the system in the
derivative of the sliding surface

Ûσ = f(x, t) + u ⇒ ueq = −f(x, t) (4.3)

Note that this takes advantage of that the relative degree of the sliding surface is no
more than one along any channel.
The conventional sliding mode control input is on the form

uSMC = ρsiдn(σ ) (4.4)

where σ is the sliding suface, ρ is the control gain given by the bound on the noise on
the system, and siдn(·) is a function defined as

siдn(x) =

1, if xi ≥ 0.

−1, if xi < 0
(4.5)

Combining the conventional sliding mode control in equation 4.4 with the equiva-
lent control in equation 4.3, making the total control signal u = ueq + uSMC . However,
the equivalent control may be expensive to compute or difficult to find all together.
The SMC can compensate for this by setting the control input to u = uSMC if the gain
ρ is set to be ρ = ∥ueq ∥max + ρold , as shown in [31].

4.1.3.2 Generalized super-twisting algorithm

A first order sliding mode control, such as the one discussed in 4.1.3.1 has a problem
known as chattering. This effect appears due to the discontinuous switching in the
control signal when the sliding surface is close being equal to zero, and thus the
control signal switching between positive and negative. Second order sliding mode
controls hold an advantage over the first order sliding mode controls in that their
discontinuities are hidden behind an integrator, thus attenuating the chattering. In this
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thesis, a second order sliding mode controller known as the generalized super-twisting
algorithm is used. The generalized super-twisting algorithm is given in the form [32]

u = −k1ϕ1(x) + z (4.6a)

Ûz = −k2ϕ2(x) (4.6b)

where ϕ1(x) and ϕ2(x) are defined as

ϕ1(x) = ⌈x⌋
1
2 + βx (4.7a)

ϕ2(x) =
1
2
⌈x⌋0 +

3
2
β ⌈x⌋

1
2 + β2x (4.7b)

where ⌈a⌋b = |a |bsiдn(a). The benefit of the generalized super twisting algorithm
over the super twisting algorithm, another second order sliding mode control, is that it
is robust in the presence of unmatched disturbances, as well as time and state varying
perturbations. This is a necessity, as the perturbations present in this problem, defined
in section 3.5, are both state and time dependent.

4.2 Observer theory

An observer exists to estimate the states of the system based on the inputs and outputs
of the system. The idea a sliding mode observer builds on is to introduce an observer
injection term that gets designed so that the estimated values go to the values they
estimate. A sliding mode observer can make the output estimation error go to zero in
finite time and the observer states converge to the system states asymptotically if the
magnitude of the disturbances is bounded [30].
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Chapter 5

Control design

The control design reflects the control objectives in section A.3. In this chapter, several
controllers will be developed for both pointing and slewing. For detumbling, the results
shown in the specialization project using the B-dot algorithm will be presented. As
discussed in chapter A, the reaction wheels will be used for pointing and slewing.
The B-dot algorithm is based on the magnetorquers for detumbling, and is one of two
control schemes shown for the magnetorquers in this thesis. The other is an algorithm
used for momentum dumping of the reaction wheels.

5.1 Detumbling controller design

The B-dot algorithm is an algorithm that controls against a magnetic field. It uses the
derivative of the magnetic field, B-dot, in order to construct a control signal.

The control torque is given by

τbMTQ = mb × Bb (5.1)

where Bb is the representation of the Earth’s magnetic field vector in the body frame.
The B-dot algorithm itself comes from the form of mb ,

31
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mb = −k ÛBb ,k > 0 (5.2)

The Bb vector can be found from the IGRF model, see section 7.2. However, the
derivative of the model cannot easily be read out of the model. Due to a simplification
made by assuming that the time derivative of the magnetic field in the inertial frame
is approximately zero [16], the derivative can be found as

bd

dt
ÛBb = −ωb

ib × Bb (5.3)

The vectormb is the magnetic moment applied by the magnetorquers. mb is given,
in all three components, by the product of the current passing through the coils, the
number of windings, and the surface area in the given direction.

mb =


ixNxAx

iyNyAy

izNzAz


(5.4)

In the simulation, only the B-dot algorithm in equation 5.2 is used to produce the
mb vector for the control torque. Equation 5.4 is used to produce the saturation limits
for the magnetorquer control signals in the simulation, using the physical properties
of the magnetorquers and the maximum values for current for the HYPSO mission as
constraints.

5.2 Momentum dumping

When the reaction wheels are used to achieve a control objective, the reaction wheels
will spin up in order to produce the correct motion. The reaction wheels work best
when they are spinning above a certain thresholded angular velocity due to their
mechanics. At a certain point the reaction wheels would saturate, so keeping the
angular velocity of the reaction wheels away from the saturation limit is preferable. If
the angular velocity from the reaction wheels along each axis in the body frame is zero,
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with the reaction wheels still spinning, the satellite is easier to control. In conclusion,
what should be done is

• Spinning up the reaction wheels.

• Whenever the angular velocity of the reaction wheels change from the reference
value, apply a torque to either increase or decrease their angular velocity.

This momentum dumping torque is given by [33]

τMD = (
km

∥Bb ∥
(heb ×

Bb

∥Bb ∥
)) × Bb ,km > 0 (5.5)

where Bb is the magnetic field vector, and heb is the error in angular momentum
for the reaction wheels, given by

heb = AJw (ω
w
bw −ωw

bw ,r ef ) (5.6)

Remark. The excess momentum in the reaction wheels that this torque dumps can only
be dumped with external torque, such as it is done here with magnetorquers.

5.3 Pointing control design

Pointing is one of the control objectives. It involves tracking the trajectory of the
quaternion. The goal is to control the attitude quaternion, qob , to a given attitude.
When the satellite is pointing in some direction, both the angular velocity ωb

ob and
the quaternion rate Ûqob will change when the attitude changes. For example, when
the satellite has reached a setpoint, it will stay there if the angular velocity, or the
quaternion rate, is zero. For this reason, either of them can be used when designing
controllers for achieving the pointing objective.

5.3.1 PD control

The PD control used for pointing is in the form
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τb = siдn(ηe )Kpϵe + Kdω
b
ob + S(ω

b
ob )(AJwω

w
bw ) (5.7)

where Kp and Kd are positive definite matrices. S(ωb
ob )(AJwω

w
bw ) is a gyroscopic

compensation term. As shown in [34], the PD controller without the gyroscopic
compensation term controls the error quaternion to [1 03x1]⊺ or [−1 03x1]⊺ depending
on the sign in front of the ϵe -term.

5.3.2 LQR

Using the definition of the Jacobians given in 4.2 with the representation of the attitude
dynamics defined in equation 3.20, the linearized model becomes

A =

A+J−1s S(x2)AJw A+J−1s (S(x2)J−S(Jx2)−S(AJwx1)) 0nx1 0nx3
−J−1s S(x2)AJw −J−1s (S(x2)J−S(Jx2)−S(AJwx1)) 03x1 03x3

01xn − 1
2 x

⊺
4 01x1 − 1

2 (x2−ω
b
io )

⊺

03xn 1
2 (x3I3x3+S(x4))

1
2 (x2−ω

b
io ) − 1

2 S(x2−ω
b
io )

 (x,u)=(x0,u0) (5.8a)

B =



Jw + A+J−1s A −A+J−1s −A+J−1s

−J−1s A J−1s J−1s

01xn 01x3 01x3

03xn 03x3 03x3

 (x,u)=(x0,u0)
(5.8b)

where the first, second, and third columns of the B matrix are related to the torque
from the reaction wheels, the torque from the magnetorquers, and the perturbing
torques, respectively. When using this model to calculate the LQR control gain, a
reduced version is used.

A =

−J−1s (S(x2)J − S(Jx2) − S(AJwx1)) 03x3

1
2 (x3I3x3 + S(x4)) − 1

2S(x2 −ωb
io)

 (x,u)=(x0,u0) (5.9a)
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B =

−J−1s

03x3

 (x,u)=(x0,u0) (5.9b)

Note that this model is rewritten to use the input torque to the reaction wheels in the
body frame, not in the wheel frame.

The model is linearized about a chosen point. The points of interest are the target
points. As Simulink does not allow for solving of the algebraic Riccati equation at each
time step, the point has to be chosen offline. For more on this, see appendix C.

The point chosen is taken as the initial values for the reaction wheels for x1, the zero
vector for x2 andωb

ob due to the vectors representing small numbers. The quaternion
is set to [1; 0; 0; 0], as it is a valid quaternion.

Using these initial conditions the optimal gain can be calculated in Matlab and
applied in Simulink as

τbu = −Kx = −K

ωb
ob ,e

ϵob ,e

 (5.10)

5.3.3 Sliding mode control

For the sliding mode controls, there are two parts that needs to be designed: the sliding
surface and the control input.

5.3.3.1 Sliding surface

In choosing a sliding surface, it is desirable to choose one that has good stability
properties. Two surfaces will be used for the pointing objective.

σ = Ûϵe + Kϵe ,K = K⊺ > 0 (5.11)

Setting σ = 0, this becomes

Ûϵe + Kϵe = 0 ⇒ Ûϵe = −Kϵe (5.12)
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which is asymptotically stable since K is a positive definite matrix. ϵe → 0, and from
the identity that η2e + ϵ

⊺
e ϵe = 1, ηe = ±1. The other surface used is from [35]

σ = ωe + Kϵe ,K = K⊺ > 0 (5.13)

Again, setting σ = 0, this becomes

ωe + Kϵe = 0 ⇒ ωe = −Kϵe (5.14)

Using the Lyapunov function candidate like in [35],

V = 1 − ηe (5.15)

which positive definite as ηe lies between -1 and 1. The time derivative becomes

ÛV = −Ûηe =
1
2
ϵ⊺eωe = −

1
2
ϵ⊺e Kϵe (5.16)

which makes the system asymptotically stable. ϵe → 0, and from the identity that
η2e + ϵ

⊺
e ϵe = 1, ηe = ±1. When on the sliding surface, ωe = −Kϵe , and therefore ωe

asymptotically converges to zero too.

Note that both these sliding surfaces have vector relative degree ρ = {1, 1, 1}, as the
input can be found in the output of their first derivatives.

5.3.3.2 First order SMC

The first order sliding mode that will be used is the conventional one. As noted
in section 4.1.3.1, setting the gain large enough would enable the control without
equivalent control would work as well as calculating the equivalent control [31].

τbu = ρsiдn(σ ) (5.17)

The surface from equation 5.13 will be used by the first order SMC for pointing.
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5.3.3.3 GSTA

The full GSTA algorithm is defined in equations 4.6 and 4.7, where the parameter x
is the sliding surface. The surface from equation 5.11 will be used by the GSTA for
pointing.

5.4 Slewing control design

With slewing, the objective is for the satellite to move at a given angular velocity.
From this angular velocity, the rotation given by the angle-axis representation is given
by the relationship [36]

θ (t) =

∫
ω(t)dt (5.18)

When the satellite is set to slew at a constant angular velocity, θ (t) would become
ωt . The angle and axis parameters can be separated by

θ (t) = ∥θ (t)∥ (5.19a)

e(t) =
θ (t)

∥θ (t)∥
(5.19b)

In order to generate the reference trajectory used in the slewing objective, the
angular velocity setpoint is used to calculate the quaternion reference by the relation
in equation 5.19. The relation between the angle-axis parameters and quaternions is
given by the definition of the quaternion in equation 2.4.

qd (t) =

η(t)

ϵ(t)

 =


cos( θ (t )2 )

e(t) sin( θ (t )2 )

 (5.20)

5.4.1 PD control

For slewing, the PD control is defined as
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τb = siдn(ηe )Kpϵe + Kdω
b
e + S(ω

b
ob )(AJwω

w
bw ) (5.21)

where Kp and Kd are positive definite matrices. siдn(·) is the signum function defined
in equation 4.5, (ηe , ϵe ) are the attitude error coordinates, and ωb

e is theωb
ob angular

velocity error. S(ωb
ob )(AJwω

w
bw ) is a gyroscopic compensation term. Note that this

is the same PD controller as used for pointing, assuming that the angular velocity
reference used in equation 5.7 is the zero vector.

5.4.2 LQR

The LQR control gain will be calculated the same way for slewing as it was for pointing
in section 5.3.2.

5.4.3 Sliding mode control

For the sliding mode control, the control signals themselves will be the same for the
slewing objective as they were in section 5.3.3 for the pointing objective. However,
another surface is suggested, given by [26]

σ = ωe − 2c
∂W

∂ηe
ϵe (5.22)

UsingW (ηe ) = 1 − |ηe | as the Lyapunov function candidate, [26] shows that both
ηe = 1 and ηe = −1 are asymptotically stable equilibrium points. Note that in equation
5.22, ∂W

∂ηe
= −siдn(ηe ). This surface is used for both the first order SMC and for the

GSTA when slewing.
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Observer design

6.1 Sliding mode observer

The first order sliding mode observer for the satellite attitude problem used here is
from [31]

Û̂ϵob = −L1siдn(ϵ̂ob − ϵob ) (6.1a)

τ Ûz = −z − L1siдn(ϵ̂ − ϵ) (6.1b)

Û̂ωb
ob = −L2siдn(U(ϵob )ω̂

b
ob − z) (6.1c)

where τ is a constant selected in order for equation 6.1b to work as a low pass filter.
Note that the matrix U(ϵob ) is defined in equation 3.4.

An IMU is available for HYPSO, so the angular velocity measurements will be
available. An alternative sliding mode observer for the angular velocity would be

Û̂ωb
ib = J−1s (−S(ω̂b

ib )(Jω̂
b
ib + AJwω̂

w
bw ) − τbu + τ

b
MTQ ) + Lsiдn(ω

b
ib − ω̂b

ib ) (6.2)

where the first terms are the dynamics, excluding the perturbing torques. From

39
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integrating this equation, ωb
ob is by equation 2.16 found by subtracting ωb

io , which is
assumed to be known, from the estimate ofωb

ib .

6.2 Higher order sliding mode observer

The higher order sliding mode observer, or HOSMO, is based on the observer in [37].
The system in [37] is based on a system on the form

M(q)Üq + C(q, Ûq) + g(q) = τ (6.3)

Using the fact that T⊺(q)T(q) = 1
4 I3x3 from equation 3.6, the attitude dynamics can be

represented using this form by using the identity [26]

Ûqob = T(qob )ωb
ob ⇒ ωb

ob = 4T⊺(qob )Ûqob (6.4)

Ûωb
ob = 4(T⊺(Ûqob )Ûqob + T⊺(qob )Üqob ) = 4T⊺(qob )Üqob (6.5)

From these identities, [35], [27] show that the system can be represented on the form
in equation 6.3 with M(q) given on the form

M(q) =
1
2
T(qob )JsT⊺(qob ) (6.6)

However,M(q) can be singular [27], which makes it unsuitable as a starting point. It
is possible to find the error dynamics directly. As in [37], defining

x̃1 = ϵe (6.7a)

x̃2 = Û̃ϵe = U(q)eωe (6.7b)

Differentiating the equations with respect to time, taking advantage of the equations
in section 3.7
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Û̃x1 = x̃2 = U(qe )ωe =
1
2
(ηe I3x3 + S(ϵe ))ωe (6.8a)

Û̃x2 =
d

dt
(U(qe )ωe ) =

d

dt
(U(qe ))ωe + U(qe )

d

dt
(ωe ) =

1
2
( Ûηe I3x3 + S(Ûϵe ))ωe + U(qe )

d

dt
(ωe )

= (−
1
4
ϵ⊺eωe I3x3 + S(

1
4
(ηe I3x3 + S(ϵe ))ωe ))ωe + U(qe )J

−1
s (−S(ωb

ib )H
b
s − Aτwu + τ

b
mtq

+τbe − JsS(ωb
ob )R

b
oω

o
io + JsR

b
o (S(R

o
bω

b
ob )ω

o
io) − Js

bd

dt
ωb
d )

(6.8b)

Equivalent results can be found using the Lie derivative. Choosing the output as

y = h(x) =


h1(x)

h2(x)

h3(x)


= ϵob (6.9)

It can be seen from the definition of the relative degree in section 2.5 that the vector
relative degree of this output is {2,2,2}, as input vectors appear in the derivative the
first time after two differentiations. Using the equations in equation 3.20, rewriting
so that x1 is represented in the body frame and the model is on the form used for Lie
derivatives, shown in equation 2.20a.

Ûx =



bd
dtω

b
bw

bd
dt ω

b
ib

Ûηob

Ûϵob


= f(x) + g(x)u + d =



J−1s S(x2)(Jx2 + AJwA+x1)

−J−1s S(x2)(Jx2 + AJwA+x1)

− 1
2x

⊺
4 (x2 −ωb

io)

1
2 (x3I3x3 + S(x4))(x2 −ωb

io)


+



AJwA+ + J−1s J−1s

−J−1s J−1s

01x3 01x3

03x3 03x3



τbu

τbMTQ

 +


J−1s

J−1s

01x3

03x3


τbe

(6.10)
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As the vector relative degree is {2, 2, 2}, the solution will be on the form

Üy =


Üy1

Üy2

Üy3


= ϕ(x) + E(x)u

ϕ(x) = L2f h(x), E(x) = LдLf h(x)u

(6.11)

Note that these equations are for the dynamics of the system, not the error dynamics.
Finding the Lie derivatives needed,

Lf h(x) = [03x3, 03x3, 03x1, I3x3]f(x) =
1
2
(x3I3x3 + S(x4))(x2 −ωb

io) (6.12a)

L2f h(x) = [03x3,
1
2
(x3I3x3 + S(x4)),

1
2
(x2 −ωb

io),−
1
2
S(x2 −ωb

io)]f(x)

= −
1
2
(x3I3x3 + S(x4))J−1s S(x2)(Jx2 + AJwA+x1)

−
1
4
(x2 −ωb

io)x
⊺
4 (x2 −ωb

io) −
1
4
S(x2 −ωb

io)(x3I3x3 + S(x4))(x2 −ωb
io)

=


L2f h1(x)

L2f h2(x)

L2f h3(x)


= ϕ(x)

(6.12b)

LдLf h(x) = [03x3,
1
2
(x3I3x3 + S(x4)),

1
2
(x2 −ωb

io),−
1
2
S(x2 −ωb

io)]g(x)

=
[
− 1

2 (x3I3x3 + S(x4))J
−1
s

1
2 (x3I3x3 + S(x4))J

−1
s

]
= E(x)

(6.12c)

A coordinate transformation as described in [38] requires E(x) to be a square, nonsin-
gular matrix. In [24] it is shown that the matrix can have more columns than rows
and still satisfy the conditions, as long as the matrix has full rank. From equation 3.5 it
can be seen that this does not hold when η is zero. For this reason, this approach is
scrapped, and the one used in [37] is attempted. This gives an observer in the form

Û̂x1 = x̂2 + z1 (6.13a)
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Û̂x2 = x̂3 + z2 + U(·)J−1s (−τbu + τ
b
MTQ ) (6.13b)

Û̂x3 = z3 (6.13c)

where
z1 = k1 |e1 |2/3sдn(e1) (6.14a)

z2 = k2 |e1 |1/2sдn(e1) (6.14b)

z3 = k3sдn(e1) (6.14c)

where the error variables are defined as e1 = x1 − x̂1, e2 = x2 − x̂2, and e3 = −x̂3 + F(·).
F(·) is given by the remaining terms of the equation defining x2 once the terms with
the control input are removed. This is a third order higher order sliding mode observer.
The error dynamics of the observer becomes

Ûe1 = −k1 |e1 |2/3sдn(e1) + e2 (6.15a)

Ûe2 = −k2 |e1 |1/2sдn(e1) + e3 (6.15b)

Ûe3 = −k3sдn(e1) + ÛF(·) (6.15c)

Using the sliding surface
σ̂ = ˆ̃x1 + ˆ̃x2 (6.16)

where ˆ̃x = x̂ − xd . As shown in section 5.3.3, the state variables would asymptotically
converge to zero along σ̂ = 0. Due to the stability of the HOSMO, σ̂ will go to σ in
finite time.

In [37] the stability of the cascaded system is proven when the third order sliding
mode observer is using Euler angles. The idea from this point would be to follow the
same path in order to prove the stability for the cascaded system in this problem using
an observer based on quaternions: design a control input such that Û̂σ = uGSTA, so that
the GSTA controller can drive the sliding surface to zero.

Differentiating the surface and solving for the control input gives
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Û̂σ = Û̂x̃1 +
Û̂x̃2 = Û̂x1 − Ûx1,d + Û̂x2 − Ûx2,d

= x̂2 + z1 − Ûx1,d + x̂3 + z2 + U(·)J−1s (−τbu + τ
b
MTQ ) − Ûx2,d

τ (·) = −τbu + τ
b
MTQ = U(·)−1Js (−x̂2 − z1 + Ûx1,d − x̂3 − z2 + Ûx2,d + uGSTA)

(6.17)

With this control torque, the full system would be

Û̃x1 = −x̃1 + σ̂ + e1 + e2 (6.18a)

Û̂σ = −k1ϕ1(σ̂ ) + z (6.18b)

Ûz = −k2ϕ2(σ̂ ) (6.18c)

Ûe1 = −k1 |e1 |2/3sдn(e1) + e2 (6.19a)

Ûe2 = −k2 |e1 |1/2sдn(e1) + e3 (6.19b)

Ûe3 = −k3sдn(e1) + ÛF(·) (6.19c)

which is what is in [37], and the stability proof proving that the cascaded system is
UGAS would be given by following the calculations in the paper. However, there are
some problems that makes the proof impossible to follow directly. One is that the
quaternions have two equilibrium points, in [±1, 0], making the stability results local.
The other is that the matrix U(·) becomes singular when η is zero, as it reduces to the
skew-symmetric matrix with zeros on the diagonal that represents the cross product in
three dimensions. Avoiding the hypersurface that is η2 = ϵ⊺ϵ = 0 is not feasible for a
satellite, particularly not a slewing satellite. Due to this, the control signals will not be
multiplied with the inverse of the U(·) matrix. Finding a way around this singularity
in order to prove the stability of the cascaded system will be a task for future work.



Chapter 7

Simulation

The full model of the satellite’s movement, including the attitude dynamics, equa-
tion 3.19, and the orbital mechanics, equation 3.3, is implemented in Simulink. The
parameters and functions used in the simulations are defined in Matlab scripts and
functions.

Remark. The structure of the Simulink model has been kept from the specialization
project. The internal structure of some of the subsystems has been updated to reflect the
equations developed in the master’s thesis. See the preface for a list of the changes in the
model between the specialization project and the master’s thesis.

7.1 Reference model

A reference model is a model that outputs a smooth signal to the control system when
given a reference signal as input. Here, a first-order low-pass filter is used in cascade
with a mass-damper-system, as suggested in [20].

Ûηd = νd

Ûνd + 2ζωnνd + ω
2
nηd = ω

2
nr

(7.1)

45
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Here r is the reference value and ηd is the smooth output. For the simulation, ζ is
set to 1 for critical damping. ωn is set to 1.

To enable the reference model to output correct values from the beginning of the
simulation, initial values are assigned to the integrator in the low pass filter as well
as the final integrator. This is particularly important for the quaternion reference, as
initializing the reference model for the quaternion reference as [0; 0; 0; 0], the Simulink
standard, would give a singularity in the model due to [0; 0; 0; 0] not being a possible
quaternion coordinate, as the norm is not equal 1. Initializing the reference models
with the initial values of the simulations avoids this problem. It should be noted,
however, that during slewing, the reference model for the quaternion reference is
bypassed, and the desired quaternion is simply calculated based on the output of the
angular velocity reference model.

7.2 International Geomagnetic Reference Field
Model - IGRF

The International Geomagnetic Reference Field Model [39] is used to generate a model
of the Earth’s magnetic field. Given the satellite’s position relative to the Earth and
the satellite’s attitude, the IGRF block returns the magnetic field vector represented in
the body frame. This field vector is used to calculate the torque acting satellite by the
magnetic disturbance, the B-dot algorithm, and the momentum dumping torque. In
order to create the IGRF model block in Simulink, the code from [40] was used. This
was done in the specialization project.

7.3 Noise

Noise is added to the system in three places: on the angular velocity on the reaction
wheels, on the angular velocity of the body frame about the inertial frame, and on the
quaternion. These aremeant to represent jittering on the reactionwheels, measurement
noise on the measurement from the inertial measurement unit (IMU), and quaternion
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measurement provided by the star tracker. All the noises are represented as white
noise.

Name, variable Variance

Jittering,ωw
bw

√
30
2∗π
60

IMU noise,ωb
ib 1e-7 rad

s

Quaternion noise, qob 0.01°

The measurement noise on theωb
ib measurements are not measured from a real IMU,

but rather a value used here for simulation purposes. Note as well that this thesis does
not deal with issues such as drift in the measurements.

7.4 Time delay

Signals from the control block is delayed before applied to the satellite dynamics
system by using a transport delay block. This block is meant to represent the total
delay in the system. Physically, this is meant to represent the delay from when a
measurement is taken to when a control action can be applied to the actuators, due to
factors such as pulse per second, real time clock, overhead in physical transfer of data
in the cables, and the processing power of each sub-block.

7.5 Uncertainty in assembly of reaction wheels

Nominally, the reaction wheels are set in a formation such that there is one reaction
wheel on each of axes of the body frame, as well as a fourth reaction wheel mounted
such that it has equal components along the three axes. The nominal torque distribution
matrix is given as

A =


1 0 0

√
1
3

0 1 0
√

1
3

0 0 1
√

1
3


(7.2)
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This torque distribution matrix is used when distributing the torque calculated in
the control system block to the reaction wheels. To simulate an uncertainty in the
assembly of the reaction wheels, the torque distribution matrix representing the true
positions of the reaction wheels is perturbed by a small value on each column, before
each column is normalized.

7.6 Performance

To compare the efficacy of the different controllers for each of the control objectives,
three measures will be compared: settling time, accuracy, and steady-state error.
Settling time is the time it takes for a system to reach the desired output value, within
a given error band. The accuracy is taken as the RMSE value from the time the system
has settled. The accuracy measurements is used as a measurement on the error in
attitude when pointing, and the on the error in angular velocity when slewing. The
steady-state error is taken as the absolute error in the final point of each simulation.

7.7 Setup

The setup of the Simulink model is shown in figure 7.1.
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Figure 7.1: Top level of the Simulink model.

The control block produces a torque for both the magnetorquers and the reaction
wheels, using the control laws designed in chapter 5. The observer block estimates the
states from the satellite. In the satellite dynamics block, the dynamics of the satellite
are simulated. This includes the attitude kinetics, attitude kinematics, as well as the
orbital mechanics. The insides of the satellite dynamics block is shown in figure 7.2.
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Figure 7.2: Top level of the Simulink model.

The sampling rate for the simulation is set to 4Hz, as this is the sampling rate that
will be used on the HYPSO mission due to limitations due to the star tracker.



Chapter 8

Results and Discussion

The results from the simulations are presented with and without time delays in the
system, with and without an observer present, and for both the target pointing and
the slewing control objective. The results from each of the controllers designed in
chapter 5 are examined. The B-dot algorithm, section 5.1, the algorithm used in
the specialization project for detumbling, is shown in section 8.1. In section 8.2, a
discussion of the available observers is performed. Section 8.6 shows the effect of the
momentum dumping algorithm given in section 5.2. The effect of uncertainty in the
assembly of the reaction wheels is shown in section 8.7. In the final section, section
8.8, target pointing and slewing are put together for the nominal operations that will
be run with the HSI on the HYPSO satellite.

The controllers are compared based on the performance measures defined in
section 7.6 in section 8.3 and 8.4. Both target pointing and slewing are analyzed. When
pointing is analyzed, the initial attitude is set to be [20°;0;10°], and after a given time,
the reference is set to [-20°;0;0]. For the slewing plots, the angular velocity reference
starts at zero, then the second channel is set to the desired slew rate, which is 0.7238°/s.
Note that the error measures are defined for errors in attitude for pointing, and for
errors in angular velocity for slewing. The error bands used for settling time are defined
to be 0.5° for pointing and 0.0004 rad/s for slewing throughout the chapter. Due to the

51
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number of results in sections 8.3 and 8.4, some of the discussion will be contained in
the paragraphs named Comparison, along with a table showing the performance of the
controllers. A discussion summarizing the results of these two sections is found in
section 8.5.
The measurement noise is turned on for all simulations in section 8.3 and 8.4, and the
momentum dumping algorithm on the magnetorquers is active. The time delay is,
when in use, 0.25 seconds.

The group of plots that show the results come in two variants. The state variable
plots show the ϵob andωb

ob values together with the reference values, in addition to
the quaternion error. The difference between the pointing and slewing variant of the
plots is that the pointing variant has the ϵob plot on top, whereas theωb

ob will be on
top for slewing. The torque plot shows the angular velocity of the reaction wheels, the
torque input to the reaction wheels and the torque provided by the magnetorquers.
Any plot showing estimated values has the estimated values in dashed lines. For the
observers, the ϵob plot is above theωb

ob plot.
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8.1 Detumbling

To test the detumbling of the satellite, the simulation is initialized with a significant
value forωb

ib , set at [0.1;0.4;0.9] radians per second. The B-dot algorithm is used on the
magnetorquers, while the control of the reaction wheels have been disabled, simulating
the conditions of the detumbling phase of the satellite after launch.
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Figure 8.1: Detumbling of angular velocity

The B-dot algorithm manages to detumble the high initial angular velocity over
around forty minutes. As is clear from the figure, the detumbling algorithm works
well.
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Figure 8.2: Torque from the magnetorquers during detumbling. The torque to the
reaction wheels are included to show that the magnetorquers are the only actuations
in use.
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8.2 Observer results

The observers used in this thesis estimate the vector part of the quaternion, ϵ . From
these three coordinates the final coordinate, the scalar part η, is to be reconstructed. η is
calculated from the estimated ϵ in the different observers using the identityη2+ϵ⊺ϵ = 1.
When the simulator propagates the quaternion value using equation 3.4, the η value
reaches both positive and negative values. In the function that reconstructs η from ϵ ,
the positive solution to η =

√
1 − ϵ⊺ϵ is always chosen. This leads to a discontinuity

when η reaches zero during slewing, as the wave representing η is rectified, as opposed
to following a sinusoidal wave. The kinematic equation, equation 3.4, uses both η and
ϵ . This equation is used by both the first order sliding mode observer and the higher
order sliding mode observer in chapter 6, based on their estimates of the given attitude,
to give an estimate of the angular velocity and epsilon rate, respectively. During a
slewing maneuver, these estimates exhibit strange behavior around η = 0, where the
signal becomes mirrored about the 0 line, as seen in figure 8.3, where the calculated
angular velocity based on Ûηob in the HOSMO is shown.
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Figure 8.3: HOSMO during slewing.

Figuring out a way to fix it is a task for future work.
Due to the shortcomings of angular velocity estimates of the sliding mode observers

that are based on the quaternion measurements, the sliding mode observer using the
measurements from the IMU, from equation 6.2, will be used together with one of the
other sliding mode observers for ϵ estimation. The η = 0 problem does not appear in
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the estimates for ϵ for either the sliding mode observer or the higher order sliding
mode observer.

The errors of the SMO for ϵ goes toward zero faster than those of the HOSMO, but
the error ends up being smaller for the HOSMO. For this reason, the HOSMO estimates
for the ϵ values are used together with the SMO based on the IMU measurements.
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8.3 Results without time delays

8.3.1 Without observer

8.3.1.1 Pointing

PD control without time delay, without observer. Pointing.
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Figure 8.4: PD pointing without delay, without observer. State variables
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Figure 8.5: PD pointing without delay, without observer. Torques
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LQR without time delay, without observer. Pointing.
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Figure 8.6: LQR pointing without delay, without observer. State variables
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Sliding mode control without time delay, without observer. Pointing.
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Figure 8.8: SMC pointing without delay, without observer. State variables



8.3. RESULTS WITHOUT TIME DELAYS 63

0 50 100 150 200 250 300

seconds

-400

-200

0

200

400

r
a
d
/s

Angular velocity reaction wheels, 
bw
w

Omega wheel 1

Omega wheel 2

Omega wheel 3

Omega wheel 4

0 50 100 150 200 250 300

seconds

-1.5

-1

-0.5

0

0.5

1

1.5

N
m

10-3 Control torque to reaction wheels

tau 1

tau 2

tau 3

tau 4

0 50 100 150 200 250 300

seconds

-1.5

-1

-0.5

0

0.5

1

1.5

2

N
m

10-5 Torque from magnetorquers

tau 1

tau 2

tau 3

Figure 8.9: SMC pointing without delay, without observer. Torques
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GSTA without time delay, without observer. Pointing.
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Figure 8.10: GSTA pointing without delay, without observer. State variables



8.3. RESULTS WITHOUT TIME DELAYS 65

0 50 100 150 200 250 300

seconds

-400

-300

-200

-100

0

100

200

300

r
a
d
/s

Angular velocity reaction wheels, 
bw
w

Omega wheel 1

Omega wheel 2

Omega wheel 3

Omega wheel 4

0 50 100 150 200 250 300

seconds

-4

-2

0

2

4

N
m

10-4 Control torque to reaction wheels

tau 1

tau 2

tau 3

tau 4

0 50 100 150 200 250 300

seconds

-1

-0.5

0

0.5

1

1.5

N
m

10-5 Torque from magnetorquers

tau 1

tau 2

tau 3

Figure 8.11: GSTA pointing without delay, without observer. Torques
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Comparison of the different controllers based on settling time, accuracy, and steady-
state error.

Errors
Settling time[s] RMSE [°] Steady-state error[°]

ϵ1 ϵ2 ϵ3 ϵ1 ϵ2 ϵ3 ϵ1 ϵ2 ϵ3

PD 164.25 148.75 202 0.1892 0.2116 0.3576 0.0244 0.0706 0.2255
LQR 15.5 208.5 267.5 0.1676 0.1872 0.2778 0.0814 0.1751 0.2401
SMC 19.25 45 171.25 0.1347 0.1658 0.1577 0.1206 0.2071 0.2364
GSTA 79 67 73.25 0.1144 0.1055 0.1216 0.0465 0.0265 0.0820

Table 8.1: Error comparison. Pointing, without delay, without observer

Notice that the LQR has the best settling time for the first output channel, the
SMC has the best settling times for the second, while the GSTA is the best on the third.
From the plots looks like the LQR and then the SMC are the two fastest controllers.
However, the SMC and LQR in particular comes out with worse settling times as the
control is unable to hold the reference value as well as the two others, and thus the
line exits the error band at some point. The control input to the reaction wheels from
the SMC and LQR are of higher magnitude than the input for PD and GSTA, also after
the plots indicate they have settled. This may give rise to the behavior channel escapes
the error band and settles again. Relaxing the size of the error band would have made
the settling time numbers look better for both the LQR and the SMC.

The steady-state error can vary when the signal experience noise such as the
SMC and LQR experience in some form. This is due to the measurement rather than
the controller: The steady-state error is measured at one point. Choosing a different
property for performance measuring could have been preferable. However: It would
work well for a signal that are robust to noise, i.e. signals that would stay at their
steady-state value when settled. The largest value for steady-state error is for the
first output channel for PD control. Given the long settling time of the PD controller,
it is possible this larger value is due to simulation being stopped while it was still
converging.
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When it comes to RMSE, the GSTA is the best one. The RMSE is taken from when
the system has settled. Notice that there is not much difference between the SMC
output channels that immediately settles and the one that jumps back inside the error
band after 171.25 seconds.
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8.3.1.2 Slewing

PD control without time delay, without observer. Slewing.
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Figure 8.12: PD slewing without delay, without observer. State variables
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Figure 8.13: PD slewing without delay, without observer. Torques
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LQR without time delay, without observer. Slewing.
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Figure 8.14: LQR slewing without delay, without observer. State variables
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Figure 8.15: LQR slewing without delay, without observer. Torques
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Sliding mode control without time delay, without observer. Slewing.
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Figure 8.16: SMC slewing without delay, without observer. State variables
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Figure 8.17: SMC slewing without delay, without observer. Torques
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GSTA without time delay, without observer. Slewing.
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Figure 8.18: GSTA slewing delay, without observer. State variables
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Figure 8.19: GSTA slewing without delay, without observer. Torques
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Comparison of the different controllers based on settling time, accuracy, and steady-
state error.

Errors
Settling time[s] RMSE [ rads ] Steady-state error[ rads ]
ω1 ω2 ω3 ω1 ω2 ω3 ω1 ω2 ω3

PD -1 71.5 -1 0.388e-4 2.175e-4 1.008e-4 0.902e-4 0.762e-4 0.377e-4
LQR - 160.5 - - 1.1e-3 - 5.5e-3 3e-4 1.64e-2
SMC -1 14.75 -1 0.3897e-4 0.5723e-4 0.4037e-4 0.373e-4 0.44e-6 0.477e-4
GSTA -1 6.75 -1 0.309e-4 0.201e-4 1.245e-4 0.32e-4 0.224e-4 1.192e-4

Table 8.2: Error comparison. Slewing, without delay, without observer

Entries in the table has been set to - whenever the value does not exists. For
example, the first and third channel for the LQR have - as settling time as they do not
end up inside the error band during the simulation time. -1 denotes that the value
never leaves the error band.

The LQR manages to control towards a slew rate, but it does not manage to hold
the other two channels at zero. The signal, also the settled slew rate, is dominated by
noise. The GSTA has the best settling time for slewing, followed by the SMC, then PD.
The RMSE values are also better for the GSTA, apart from on the third channel, where
it is the worst of the three that settled.
The GSTA and SMC goes towards the angular velocity reference, but there is a lag
in the epsilon value, showing in the quaternion error plot. This is fine, as regulation
towards the angular velocity reference is all that matters for the slewing objective.
The PD control, however, has a small overshoot in the angular velocity in order to
follow both references, and ends up tracking the reference in both angular velocity
and epsilon.
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8.3.2 With observer

8.3.2.1 Pointing

PD control without time delay, with observer. Pointing.
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Figure 8.20: PD pointing without delay, with observer. State variables
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Figure 8.21: PD pointing without delay, with observer. Torques
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Figure 8.22: PD pointing without delay, with observer. Estimated values
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LQR without time delay, with observer. Pointing.
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Figure 8.23: LQR pointing without delay, with observer. State variables
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Figure 8.24: LQR pointing without delay, with observer. Torques
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Figure 8.25: LQR pointing without delay, with observer. Estimated values
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Sliding mode control without time delay, with observer. Pointing.
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Figure 8.26: SMC pointing without delay, with observer. State variables
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Figure 8.27: SMC pointing without delay, with observer. Torques
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Figure 8.28: SMC pointing without delay, with observer. Estimated values
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GSTA without time delay, with observer. Pointing.
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Figure 8.29: GSTA pointing without delay, with observer. State variables
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Figure 8.30: GSTA pointing without delay, with observer. Torques
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Figure 8.31: GSTA pointing without delay, with observer. Estimated values
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Comparison of the different controllers based on settling time, accuracy, and steady-
state error.

Errors
Settling time[s] RMSE [°] Steady-state error[°]

ϵ1 ϵ2 ϵ3 ϵ1 ϵ2 ϵ3 ϵ1 ϵ2 ϵ3

PD 166 147.75 169.75 0.1932 0.2099 0.3596 0.0551 0.0360 0.2285
LQR 236 58.25 218.25 0.2106 0.2144 0.2123 0.2631 0.2158 0.0991
SMC 21 57.75 17.25 0.1484 0.1601 0.1623 0.2748 0.1107 0.0741
GSTA 92 70.75 71.25 0.1315 0.1247 0.1304 0.0251 0.0578 0.0032

Table 8.3: Error comparison. Pointing, without delay, with observer

Compared to when the observer was not in use, the SMC does not jump out of the
error band after the first settling. The same is the case for the second LQR channel.
The third channel of the LQR settles faster, while the first jumps out of the error band
and in again for the final time at 236 seconds. The PD control settles faster. As for the
RMSE values, they are slightly worse for the PD controller, worse for all LQR channels
apart from the third one, where it has improved, similar but slightly worse for the
SMC, and worse for the GSTA.
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8.3.2.2 Slewing

PD control without time delay, with observer. Slewing.
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Figure 8.32: PD slewing without delay, with observer. State variables
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Figure 8.33: PD slewing without delay, with observer. Torques
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Figure 8.34: PD slewing without delay, with observer. Estimated values
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LQR without time delay, with observer. Slewing.
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Figure 8.35: LQR slewing without delay, with observer. State variables
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Figure 8.36: LQR slewing without delay, with observer. Torques
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Figure 8.37: LQR slewing without delay, with observer. Estimated values
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Sliding mode control without time delay, with observer. Slewing.
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Figure 8.38: SMC slewing without delay, with observer. State variables
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Figure 8.39: SMC slewing without delay, with observer. Torques
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Figure 8.40: SMC slewing without delay, with observer. Estimated values
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GSTA without time delay, with observer. Slewing.
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Figure 8.41: GSTA slewing without delay, with observer. State variables



100 CHAPTER 8. RESULTS AND DISCUSSION

0 50 100 150 200 250

seconds

-400

-300

-200

-100

0

100

200

300

r
a
d
/s

Angular velocity reaction wheels, 
bw
w

Omega wheel 1

Omega wheel 2

Omega wheel 3

Omega wheel 4

0 50 100 150 200 250

seconds

-3

-2

-1

0

1

2

N
m

10-4 Control torque to reaction wheels

tau 1

tau 2

tau 3

tau 4

0 50 100 150 200 250

seconds

-5

0

5

10

15

N
m

10-6 Torque from magnetorquers

tau 1

tau 2

tau 3

Figure 8.42: GSTA slewing without delay, with observer. Torques
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Figure 8.43: GSTA slewing without delay, with observer. Estimated values
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Comparison of the different controllers based on settling time, accuracy, and steady-
state error.

Errors
Settling time[s] RMSE [ rads ] Steady-state error[ rads ]

ω1 ω2 ω3 ω1 ω2 ω3 ω1 ω2 ω3

PD -1 61.5 -1 0.694e-4 2.398e-4 1.244e-4 1.199e-4 1.567e-4 0.115e-4
LQR - - - - - - 1.1e-3 1.6e-3 6.9e-3
SMC -1 14.5 0.25 1.183e-4 1.256e-4 1.335e-4 2.173e-4 0.656e-4 0.7e-4
GSTA -1 6.75 13.25 1.19e-4 1.152e-4 1.627e-4 1.236e-4 0.178e-4 1.069e-4

Table 8.4: Error comparison. Slewing, without delay, with observer

The LQR does not manage to settle when the observer is in the loop. The settling
times for SMC and GSTA are almost identical in the second channel, while the PD is a
full 10 seconds faster. SMC and GSTA gets settling times for the third channel as well,
meaning that it exits the error band during the first few seconds. The RMSE values are
higher than without the observer, significantly higher for the SMC and the GSTA.
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8.4 Results with time delays

8.4.1 Without observer

8.4.1.1 Pointing

PD control with time delay, without observer. Pointing.
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Figure 8.44: PD pointing with delay, without observer. State variables
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Figure 8.45: PD pointing with delay, without observer. Torques
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LQR with time delay, without observer. Pointing.
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Figure 8.46: LQR pointing with delay, without observer. State variables
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Figure 8.47: LQR pointing with delay, without observer. Torques
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Sliding mode control with time delay, without observer. Pointing.
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Figure 8.48: SMC pointing with delay, without observer. State variables
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Figure 8.49: SMC pointing with delay, without observer. Torques
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GSTA with time delay, without observer. Pointing.
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Figure 8.50: GSTA pointing with delay, without observer. State variables
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Figure 8.51: GSTA pointing with delay, without observer. Torques
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Comparison of the different controllers based on settling time, accuracy, and steady-
state error.

Errors
Settling time[s] RMSE [°] Steady-state error[°]

ϵ1 ϵ2 ϵ3 ϵ1 ϵ2 ϵ3 ϵ1 ϵ2 ϵ3

PD 164.25 149 202.25 0.1897 0.2111 0.3574 0.0241 0.0710 0.2251
LQR 261.5 239.5 - 0.1888 0.2129 - 0.1972 0.0314 0.7144
SMC 28.5 140.7 183.75 0.1620 0.1573 0.1699 0.1818 0.1749 0.3013
GSTA 79 66.75 73.75 0.1177 0.1054 0.1265 0.0753 0.0368 0.0737

Table 8.5: Error comparison. Pointing, with delay, without observer

Comparing these result to the equivalent without time delay, the LQR now performs
worse far worse, as the settling time is a lot longer for the first channel and undefined
for the third. PD and GSTA are close to unchanged from the idealized system without
time delay. SMC has worse settling times on all channels, as well as worse RMSE
values.
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8.4.1.2 Slewing

PD control with time delay, without observer. Slewing.
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Figure 8.52: PD slewing with delay, without observer. State variables



8.4. RESULTS WITH TIME DELAYS 113

0 20 40 60 80 100 120 140 160 180 200

seconds

-400

-300

-200

-100

0

100

200

300

r
a
d
/s

Angular velocity reaction wheels, 
bw
w

Omega wheel 1

Omega wheel 2

Omega wheel 3

Omega wheel 4

0 20 40 60 80 100 120 140 160 180 200

seconds

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

N
m

10-4 Control torque to reaction wheels

tau 1

tau 2

tau 3

tau 4

0 20 40 60 80 100 120 140 160 180 200

seconds

-5

0

5

10

15

N
m

10-6 Torque from magnetorquers

tau 1

tau 2

tau 3

Figure 8.53: PD slewing with delay, without observer. Torques
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LQR with time delay, without observer. Slewing.
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Figure 8.54: LQR slewing with delay, without observer. State variables
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Figure 8.55: LQR slewing with delay, without observer. Torques
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Sliding mode control with time delay, without observer. Slewing.
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Figure 8.56: SMC slewing with delay, without observer. State variables
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Figure 8.57: SMC slewing with delay, without observer. Torques
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GSTA with time delay, without observer. Slewing.
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Figure 8.58: GSTA slewing with delay, without observer. State variables
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Figure 8.59: GSTA slewing with delay, without observer. Torques
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Comparison of the different controllers based on settling time, accuracy, and steady-
state error.

Errors
Settling time[s] RMSE [ rads ] Steady-state error[ rads ]
ω1 ω2 ω3 ω1 ω2 ω3 ω1 ω2 ω3

PD -1 71.75 -1 0.397e-4 2.163e-4 1.020e-4 0.796e-4 0.7554e-4 0.5224e-4
LQR 24.75 - - 9e-3 - - 4e-4 2.8e-3 6.5e-3
SMC -1 15 -1 1.123e-4 1.199e-4 1.168e-4 0.112e-4 0.7545e-4 0.7856e-4
GSTA -1 6.5 -1 0.656e-4 0.346e-4 2.578e-4 0.635e-4 0.299e-4 2.468e-4

Table 8.6: Error comparison. Slewing, with delay, without observer

The settling time is unaffected by adding time delay for PD, SMC and GSTA. The
LQR no longer settles the slew rate. The RMSE values go up slightly for the PD
controller, while almost doubling for SMC and GSTA. From the plots, a chattering
effect can be observed along the slew rate for the SMC.
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8.4.2 With observer

8.4.2.1 Pointing

PD control with time delay, with observer. Pointing.
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Figure 8.60: PD pointing with delay, with observer. State variables
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Figure 8.61: PD pointing with delay, with observer. Torques
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Figure 8.62: PD pointing with delay, with observer. Estimated values
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LQR with time delay, with observer. Pointing.
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Figure 8.63: LQR pointing with delay, with observer. State variables
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Figure 8.64: LQR pointing with delay, with observer. Torques
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Figure 8.65: LQR pointing with delay, with observer. Estimated values
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Sliding mode control with time delay, with observer. Pointing.
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Figure 8.66: SMC pointing with delay, with observer. State variables
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Figure 8.67: SMC pointing with delay, with observer. Torques
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Figure 8.68: SMC pointing with delay, with observer. Estimated values
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GSTA with time delay, with observer. Pointing.

0 50 100 150 200 250 300 350

seconds

-0.2

0

0.2

0.4

0.6

0.8

1
Quaternion error

Eta

Epsilon 1

Epsilon 2

Epsilon 3

0 50 100 150 200 250 300 350

seconds

-0.2

-0.1

0

0.1

0.2

0.3
ob

 with reference value

Epsilon 1

Epsilon 2

Epsilon 3

Epsilon ref 1

Epsilon ref 2

Epsilon ref 3

0 50 100 150 200 250 300 350

seconds

-0.02

-0.01

0

0.01

0.02

r
a
d
/s

ob

b
 with reference value

w obb 1

w obb 2

w obb 3

w obb ref 1

w obb ref 2

w obb ref 3

Figure 8.69: GSTA pointing with delay, with observer. State variables



8.4. RESULTS WITH TIME DELAYS 131

0 50 100 150 200 250 300 350

seconds

-400

-300

-200

-100

0

100

200

300

r
a
d
/s

Angular velocity reaction wheels, 
bw
w

Omega wheel 1

Omega wheel 2

Omega wheel 3

Omega wheel 4

0 50 100 150 200 250 300 350

seconds

-4

-3

-2

-1

0

1

2

3

N
m

10-4 Control torque to reaction wheels

tau 1

tau 2

tau 3

tau 4

0 50 100 150 200 250 300 350

seconds

-1

-0.5

0

0.5

1

N
m

10-5 Torque from magnetorquers

tau 1

tau 2

tau 3

Figure 8.70: GSTA pointing with delay, with observer. Torques
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Figure 8.71: GSTA pointing with delay, with observer. Estimated values
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Comparison of the different controllers based on settling time, accuracy, and steady-
state error.

Errors
Settling time[s] RMSE [°] Steady-state error[°]

ϵ1 ϵ2 ϵ3 ϵ1 ϵ2 ϵ3 ϵ1 ϵ2 ϵ3

PD 166.25 147.5 171.25 0.1870 0.2199 0.3638 0.0516 0.0348 0.2481
LQR - - - - - - 6.1077 2.5892 4.2654
SMC 267.5 261.5 - 0.2594 0.5619 - 0.3681 0.4081 0.8239
GSTA 91.75 70.5 71.75 0.1273 0.1243 0.1236 0.0256 0.0602 0.0234

Table 8.7: Error comparison. Pointing, with delay, with observer

The LQR and SMC oscillate too rapidly for what the observer is able to follow. The
controllers still manage to regulate towards the reference to a certain degree. The SMC
does this better than the LQR, as two of the three channels end inside the error band.
Comparing these results to the case where there was no time delay, the GSTA and PD
keeps their responses almost identical, both in settling time and in RMSE values.
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8.4.2.2 Slewing

PD control with time delay, with observer. Slewing.
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Figure 8.72: PD slewing with delay, with observer. State variables
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Figure 8.73: PD slewing with delay, with observer. Torques
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Figure 8.74: PD slewing with delay, with observer. Estimated values
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LQR with time delay, with observer. Slewing.
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Figure 8.75: LQR slewing with delay, with observer. State variables
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Figure 8.76: LQR slewing with delay, with observer. Torques
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Figure 8.77: LQR slewing with delay, with observer. Estimated values
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Sliding mode control with time delay, with observer. Slewing.
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Figure 8.78: SMC slewing with delay, with observer. State variables
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Figure 8.79: SMC slewing with delay, with observer. Torques
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Figure 8.80: SMC slewing with delay, with observer. Estimated values
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GSTA with time delay, with observer. Slewing.
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Figure 8.81: GSTA slewing with delay, with observer. State variables
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Figure 8.82: GSTA slewing with delay, with observer. Torques
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Figure 8.83: GSTA slewing with delay, with observer. Estimated values
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Comparison of the different controllers based on settling time, accuracy, and steady-
state error.

Errors
Settling time[s] RMSE [ rads ] Steady-state error[ rads ]

ω1 ω2 ω3 ω1 ω2 ω3 ω1 ω2 ω3

PD -1 62 -1 0.787e-4 2.344e-4 1.313e-4 1.283e-4 1.73e-4 0.04e-4
LQR - - - - - - 8.3e-3 2.17e-2 8.6e-3
SMC 102.75 146.75 144.5 1.588e-4 2.369e-4 1.235e-4 1.468e-4 3.87e-4 0.34e-4
GSTA -1 6.5 10.25 1.408e-4 1.369e-4 1.45e-4 1.123e-4 0.52e-4 0.82e-4

Table 8.8: Error comparison. Slewing, with delay, with observer

By introducing the time delay, the LQR combined with the observer seems to be
performing worse than it was before with the observer. The SMC looks to work well,
but when the time delay is added, the controller makes the response jump out of the
error band more, and thus the settling time is increased. The PD and the GSTA works
the same as they did without the time delay.
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8.5 Controller discussion

This section is a discussion on the results from sections 8.3 and 8.4.
Throughout the tests, the PD control with gyroscopic compensation and the GSTA

show consistent performance. The LQR and the SMC vary more depending on the
change in control objective, observer, and time delay, and thus look like the less robust
of the four controllers.

For pointing, the GSTA has consistently the best RMSE values, and the same kind
of settling times at every step. But they are not the fastest settling times, as both the
LQR and the SMC originally reach the reference faster. The GSTA settling time is often
the best anyway, as the LQR and SMC may escape the error band. For slewing, the
RMSE values of the controllers that managed to reach a settling time are similar to
each other, though ranking the controllers by their settling times is possible. The GSTA
is the fastest, the SMC is the second fastest whenever the observer is not connected
with a time delay, and the PD is slow compared to the sliding mode controllers. The
PD controller settles slowly due to it having a small overshoot in the angular velocity,
due to the desire to track the epsilon values as well. The LQR does not always reach a
good slew rate, and even when it does, the angular velocity is visibly contaminated
by noise. A way to try to fix this could be to change the calculated LQR gain used for
slewing to only include the angular velocity error, not the epsilon error.

The LQR and SMCwork worse with the observer when there is a time delay. In fact,
the observer does not seem to add any performance to the system, but rather slightly
decrease the performance compared to the system without observer. In some cases,
such as the time delayed system with the LQR or SMC, using the observer would make
the system less stable. Because of this, it is reasonable to suggest that the observer
should not be used as it is. A different observer should be developed to take advantage
of whichever of the measurements, from the IMU or from the star tracker, are the most
accurate. An example of this is the observer in equation 6.14.
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8.6 Momentum dumping

Without any measurement noise, and with no observer, it becomes easier to compare
and to see the importance of the momentum dumping control the magnetorquers
provide. The satellite is fed two references, which are switching at an interval in
between each new reference in order for the system to settle. The GSTA controller is
used.

Figure 8.84: With momentum dumping, reference switching. State variables
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Figure 8.85: With momentum dumping, reference switching. Torques and reaction
wheel angular velocity
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Figure 8.86: Without momentum dumping, reference switching. State variables
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Figure 8.87: Without momentum dumping, reference switching. Torques and reaction
wheel angular velocity

The figures show the difference the momentum dumping control makes. The
angular velocity of the reaction wheels are kept at an almost constant level when the
momentum dumping controller is active, whereas the lines clearly diverge when the
controller is missing. If this simulation went on indefinitely, the impact of this would
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have become more clear: The reaction wheels would saturate without the momentum
dumping controller, and the satellite would because of it not be able to be controlled
toward the desired attitude.
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8.7 Uncertainty in assembly of reaction wheels

The nominal torque distrubution matrix describing the placement of the reaction
wheels is shown in equation 7.2, here repeated for convenience

Anom =


1 0 0

√
1
3

0 1 0
√

1
3

0 0 1
√

1
3


(8.1)

The real placement of the wheels is in this section given as a perturbed version of
the torque distribution matrix, given as

A =


0.9879 0.0902 −0.1098 0.5442

−0.1098 0.9918 −0.1098 0.6385

−0.1098 0.0902 0.9879 0.5442


(8.2)

The controllers are compared with the results from section 8.3.1.1, the section
where the controllers are used for pointing without observer and no time delay is
inserted into the system. Note that there is no uncertainty in the reaction wheel
assembly in section 8.3.1.1.
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Figure 8.88: PD pointing without delay, without observer. With uncertain assembly.
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State variables



8.7. UNCERTAINTY IN ASSEMBLY OF REACTION WHEELS 159

0 50 100 150 200 250 300

seconds

-400

-200

0

200

400

600

r
a
d
/s

Angular velocity reaction wheels, 
bw
w

Omega wheel 1

Omega wheel 2

Omega wheel 3

Omega wheel 4

0 50 100 150 200 250 300

seconds

-1

-0.5

0

0.5

1

N
m

10-3 Control torque to reaction wheels

tau 1

tau 2

tau 3

tau 4

0 50 100 150 200 250 300

seconds

-1.5

-1

-0.5

0

0.5

1

1.5

2

N
m

10-5 Torque from magnetorquers

tau 1

tau 2

tau 3

Figure 8.93: SMC pointing without delay, without observer. With uncertain assembly.
Torques



160 CHAPTER 8. RESULTS AND DISCUSSION

0 50 100 150 200 250 300

seconds

-0.2

0

0.2

0.4

0.6

0.8

1
Quaternion error

Eta

Epsilon 1

Epsilon 2

Epsilon 3

0 50 100 150 200 250 300

seconds

-0.2

-0.1

0

0.1

0.2
ob

 with reference value

Epsilon 1

Epsilon 2

Epsilon 3

Epsilon ref 1

Epsilon ref 2

Epsilon ref 3

0 50 100 150 200 250 300

seconds

-0.02

-0.01

0

0.01

0.02

r
a
d
/s

ob

b
 with reference value

w obb 1

w obb 2

w obb 3

w obb ref 1

w obb ref 2

w obb ref 3

Figure 8.94: GSTA pointing without delay, without observer. With uncertain assembly.
State variables



8.7. UNCERTAINTY IN ASSEMBLY OF REACTION WHEELS 161

0 50 100 150 200 250 300

seconds

-400

-300

-200

-100

0

100

200

300

r
a
d
/s

Angular velocity reaction wheels, 
bw
w

Omega wheel 1

Omega wheel 2

Omega wheel 3

Omega wheel 4

0 50 100 150 200 250 300

seconds

-3

-2

-1

0

1

2

3

4

N
m

10-4 Control torque to reaction wheels

tau 1

tau 2

tau 3

tau 4

0 50 100 150 200 250 300

seconds

-1

-0.5

0

0.5

1

1.5

N
m

10-5 Torque from magnetorquers

tau 1

tau 2

tau 3

Figure 8.95: GSTA pointing without delay, without observer. With uncertain assembly.
Torques



162 CHAPTER 8. RESULTS AND DISCUSSION

Errors
Settling time[s] RMSE [°] Steady-state error[°]

ϵ1 ϵ2 ϵ3 ϵ1 ϵ2 ϵ3 ϵ1 ϵ2 ϵ3

PD 176.5 144.75 265.5 0.2304 0.1896 0.4760 0.0299 0.0023 0.4589
LQR 14 140.25 249.75 0.1740 0.1725 0.2202 0.1084 0.1995 0.0103
SMC 17.5 44.75 22 0.1388 0.1638 0.1488 0.0858 0.1824 0.1724
GSTA 79.5 67.25 72.25 0.1177 0.1069 0.1239 0.0441 0.0298 0.0797

Table 8.9: Error comparison. Pointing, without delay, without observer. Uncertainty in
assembly of reaction wheels

The performance of the PD control drops when the uncertainty in the reaction
wheel assembly is introduced. The controllers based on sliding mode, the SMC and
the GSTA, as well as the LQR seem to be robust with respect to uncertainty in the
placement of the reaction wheels. The settling times for SMC improves along the
first and third channel. The settling time and RMSE improve for the LQR. For both
the SMC and the GSTA, the RMSE values go up slightly. This may be due to the
fact that the current initial reaction wheel angular velocities are set to create zero
total angular velocity in total. When the configuration is changed, i.e. the torque
distribution matrix is changed, this is no longer the case and the system reacts slower.
The response of the momentum dumping controller is better seen when a switching
reference scheme for target pointing is used. The GSTA is used, without time delay,
observer or measurement noise.
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Figure 8.96: GSTA pointing without delay, without observer. With uncertain assembly.
Reference switching. State variables
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Figure 8.97: GSTA pointing without delay, without observer. With uncertain assembly.
Reference switching. Torques

The momentum dumping controller deviates more compared to figures 8.86 and
8.87, but it still manages to control the momentum of the wheels. Note that the
momentum dumping control is dependent on the torque distribution matrix, see
equation 5.5.



8.8. FULL MISSION 165

8.8 Full mission

The following section show the result for the nominal operations with HSI for the
HYPSO satellite. The satellite begins the scenario with pointing nadir. Then, it points
[0;-20°;0] in the orbit frame. After that it slews at the rate 0.7238°/s along the second
axis for 65 seconds. When the slewing is over, the satellite returns to pointing nadir.

The full mission is performed with the GSTA controller, using the combination
of the third order HOSMO for quaternions and first order SMO for angular velocity.
The simulations include a 0.25 second time delay, uncertainty in the reaction wheel
assembly, and measurement noise. Sampling rate is 4Hz.



166 CHAPTER 8. RESULTS AND DISCUSSION

0 50 100 150 200 250 300 350 400 450 500

seconds

-0.2

0

0.2

0.4

0.6

0.8

1
Quaternion error

Eta

Epsilon 1

Epsilon 2

Epsilon 3

0 50 100 150 200 250 300 350 400 450 500

seconds

-0.2

-0.1

0

0.1

0.2

0.3
ob

 with reference value

Epsilon 1

Epsilon 2

Epsilon 3

Epsilon ref 1

Epsilon ref 2

Epsilon ref 3

0 50 100 150 200 250 300 350 400 450 500

seconds

-0.02

-0.01

0

0.01

0.02

r
a
d
/s

ob

b
 with reference value

w obb 1

w obb 2

w obb 3

w obb ref 1

w obb ref 2

w obb ref 3

Figure 8.98: Tracking for the full mission
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Figure 8.99: Full mission control torques and reaction wheel angular velocity
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Figure 8.100: Full mission observed values

Note the small overshoot in slewing rate that was not present without the perturbed
torque distribution matrix.

The only parameter that has not been evaluated as to it affect the performance
of the system in this report is the sampling rate. A sampling rate of 4Hz is not very
high for a modern computer. Below are the full mission simulations, run with a 40 Hz
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sampling rate. The time delay is still 0.25 seconds.

Figure 8.101: Tracking for the full mission, 40 Hz
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Figure 8.102: Full mission control torques and reaction wheel angular velocity, 40 Hz
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Figure 8.103: Full mission observed values, 40 Hz

As can be seen from the state variable plots, the response is smoother when the
sampling rate is increased.
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Chapter 9

Conclusion

9.1 Findings

The GSTA seems to be the most robust of the controllers tested. It worked well with
the observer, with time delay, and with the uncertainty in the assembly of the reaction
wheels. The PD control with gyroscopic compensation worked well with the observer
and with time delay, but was not robust to the assembly uncertainty. The SMC and
LQR both seem to do fine with uncertainty in the assembly of the reaction wheels, but
struggle when connected to the observer. The SMC performs well without the observer.
The LQR implementation used is not ideal for slewing. By most performance measures,
the GSTA is the most desirable control law, aside from settling time during target
pointing, where both LQR and SMC at times was able to produce a faster response.

As for the HYPSO mission, it would be necessary to gather more information about
the specifications on theωb

ib measurements. Should the system not be any worse than
what is simulated, then it can be seen that the GSTA is good enough for slewing. It
has a fast settling time, and a low enough RMSE. For pointing, no conclusion can be
made. The required RMSE value for HYPSO is 0.01°, which is about 10% of what the
GSTA manages to produce here.
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9.2 Future work

Future work related to the observers would be to solve the quaternion reconstruction
problem explained in section 8.2 and find a way around the singularity in the stability
proof for the higher order sliding mode observer in section 6.2. Observing both states
of interest based on one measurement could be desirable, as mentioned in section 8.5.

Further analysis on pointing accuracy to reach the desired RMSE values for the
HYPSO mission can be done in two ways: increasing the efficacy of the controller,
or decreasing the effect of noise. The first can be attempted with tuning, should the
chosen controller be GSTA for its robustness. The latter can be done either by using
high quality sensors or by using an effective observer.



Appendix A

Mission overview

A.1 HYPSO

HYPer-spectral Smallsat for ocean Observation (HYPSO) is a small satellite project at
NTNU Centre for Autonomous Marine Operations and Systems (AMOS). It is part of
the MASSIVE project (Mission-oriented autonomous systems with small satellites for
maritime sensing, surveillance and communication), under the NTNU SmallSat lab.
The purpose of HYPSO is to observe ocean color off the coast of Norway and to detect
and monitor algae blooms using a hyperspectral imager (HSI).
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Figure A.1: SmallSats in the MASSIVE project. Credit: Mariusz Eivind Grøtte.

A.2 The satellite

The HYPSO satellite is a CubeSat of size 6U. HYPSO uses the M6P 6U nano-satellite
bus from nanoAvionics [41]. Sun sensors, an inertial measurement unit (IMU), gyros,
magnetometers, and a star tracker are included in the setup. The hyper spectral camera
will be mounted along the z-axis of the satellite’s body frame. HYPSO has two types
of actuators: magnetorquers and reaction wheels. The magnetorquers are a set of
electromagnetic coils that set up a magnetic dipole when current runs through them.
As the Earth has a magnetic field, this dipole can be used to control the satellite’s
attitude. The reaction wheels are set of wheels that each spin about their own axis.
The axes are fixed. The reaction wheels are included because of their high accuracy,
torque, and momentum storage capability, which is required to satisfy the control
objectives in section A.3.
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Figure A.2: ADCS, HYPSO. Credit: Mariusz Eivind Grøtte.

A.3 Control objectives

The control objectives that the attitude determination and control system (ADCS) has
to perform in order to meet the mission requirements of the HYPSO mission can be
summarized in four points.

• Pointing

– Pointing refers to the objective of aiming the HSI at a desired target, for
example nadir (straight down).

• Slewing maneuver

– Slewing over an area at a specific angular velocity. The full maneuver
consists of pointing towards the starting point, slew at the given angular
velocity until the desired area has been covered, and then return to pointing
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nadir. The motivation behind this maneuver is to produce overlapping
pixels.

• Achieve high accuracy for pointing and slewing

– High accuracy is crucial to fulfil the mission requirements. The RMSE
requirement for target pointing accuracy is 0.01°. For this reason, the
HYPSO satellite has reaction wheels. See section A.2.

• Detumbling

– Slowing down the satellite’s spin when the spin gets above a set threshold.



Appendix B

Stability Theory

The following paragraph is based on [23].
Stability of a system is defined in equilibrium points. A point is stable if there for
every chosen region ϵ there exists a region δ (ϵ) where the states may start and end up
inside the ϵ region. The point is asymptotically stable if it is stable and converges to
the equilibrium point as time goes to infinity, given that the states start within some
domain. It is exponential stable if it is stable and converges to the equilibrium point at
an exponential rate, given that the states start within some domain. Global asymptotic
stability or global exponential stability is achieved if the domain is the whole of R.

Finite-time stability implies convergence to the equilibrium point in finite time.
Finite-time stability and exponential stability are both stronger properties than asymp-
totic stability, and either of global finite-time stability or global exponential stability
implies global asymptotic stability.
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Appendix C

LQR in Simulink

Implementing the LQR from a state-space representation of a system may be done
easily in Matlab. The function lqr(·) gives the optimal gain used for the controller.

To produce a state-space representation, linearization is required for nonlinear
systems. The motivation for implementing the LQR in a Matlab Function block in
Simulink was that the ideal point of linearization would vary. The problem was that
lqr(·) was not available for code generation at the time (spring 2019), so it could not be
used directly.

From there other options were explored: care(·) solves the algebraic Riccati equation
used to find P in u = −Kx,K = R−1BP, but like lqr(·) it is not supported for code
generation. Defining the Hamiltonian as

Z =

A −BR−1B⊺

−Q −A⊺

 (C.1)

the solution P can be found from the Schur decomposition of the Z matrix, as shown
in [42]. There exists a function available for code generation that produces a Schur
factorization in Matlab. However, for this method to work to solve the algebraic
Riccati equation, the Schur decomposition needs to have leading negative eigenvalues.
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Matlab’s schur(·) cannot guarantee the order of the eigenvalues along the diagonal. To
solve the problem this way in Matlab, it is required to use schur(·), then ordschur(·) to
have the desired matrices. ordschur(·) is not available for code generation. Attempts
at implementing an alternative to the ordschur(·) function were abandoned as the
alternative algorithms (such as the algorithm presented in [43]) were too complicated
and time-demanding for the purpose of this thesis. Instead, the lqr(·) function were
used offline, before the simulation in Simulink were started.
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