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Abstract

The articulated intervention autonomous underwater vehicle (AIAUV) has emerged
from the underwater snake robot (USR) by equipping it with longitudinal and
tunnel thrusters. The AIAUV is an overactuated and highly redundant underwater
floating base manipulator, where its entire articulated body serves as a floating
manipulator arm, and its slender shape allows it to access narrow and confined
spaces. Motivated by the redundant and overactuated AIAUV, this thesis is
concerned with prioritized control of redundant robotic systems. Operational
space control is investigated in the context of multiple-input and multiple-output
(MIMO) feedback linearization, where conditions for input-output linearizability
and full-state linearizability by an operational space control law are given. With
the goal of including set-based tasks within a dynamic task priority framework,
operational space control is merged with control barrier functions (CBFs). However,
strict priority between tasks is lost in the process. As a consequence, operational
space control is not pursued further and a novel task priority framework based on
a hierarchy of control Lyapunov function (CLF) and control barrier function based
quadratic programs (QPs) is developed. This framework ensures strict priority
among different groups of control tasks such as safety related, operational and
optimization tasks, which entails that tasks with a lower priority have no effect on
the execution of all higher priority tasks. Moreover, a soft priority measure in the
form of tunable penalty parameters can be employed to prioritize tasks at the same
priority level. In contrast to kinematic control schemes, the proposed framework
is a holistic approach to AIAUV control which solves the redundancy resolution,
dynamic control and control allocation problems simultaneously.
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Sammendrag

Artikulerte intervensjons-autonome undervannsfarkoster (AIAUV-er) har oppstått
ved å utstyre undervanns slangeroboter (USR-er) med sideveis- og langsgående pro-
peller. AIAUV-er er overaktuerte og svært redundante undervannsmanipulatorer,
hvor hele dens artikulerte kropp fungerer som en flytende flerleddet manipulatorarm.
Denne oppgaven er motivert av den redundante og overaktuerte AIAUV-en, og
omhandler prioritert regulering av redundante robotsystemer. Sammenhengen
mellom dynamisk nullromsbasert regulering og multivariabel (MIMO) linearisering
ved tilbakekobling undersøkes, hvor kriteriene for inngang-utgang linearisering og
full-tilstand linearisering er gitt. Dynamisk nullromsbasert regulering fusjoneres
med kontrollbarrierefunksjoner (CBF-er) i et forsøk på å designe en dynamisk
regulator som støtter mengdebaserte reguleringsopppgaver. Fusjonen resulterer i et
optimaliseringsbasert rammeverk hvor streng prioritet mellom reguleringsoppgaver
ikke lengre kan garanteres. Dynamisk nullromsbasert regulering droppes dermed og
en reguleringsmetode basert på et hierarki av kontroll Lyapunovfunksjon- (CLF) og
kontrollbarrierefunksjon-baserte kvadratiske programmer (QP-er) er utviklet. Dette
optimaliseringsbaserte rammeverket sikrer streng prioritet mellom ulike grupper
av reguleringsoppgaver som sikkerhetsrelaterte, operasjonelle og optimalisering-
soppgaver, noe som innebærer at oppgaver med lavere prioritet ikke har noen
effekt på gjennomføringen av alle høyere prioriterte oppgaver. Videre kan et
mykt prioritetsmål i form av innstillbare straffeparametere benyttes for å prior-
itere oppgaver på samme prioritetsnivå. I motsetning til kinematiske regulatorer
er det foreslåtte rammeverket en helhetlig tilnærming til styring av AIAUV-er
hvor redundansoppløsning, dynamisk regulering og kontrollallokering tas hånd om
samtidig.
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Chapter 1

Introduction

This introductory chapter will present the motivation behind this thesis and a
description of the problems to be solved. Relevant literature is also reviewed, before
the contributions of the thesis are presented.

1.1 Motivation

As the number of subsea oil and gas installations continue to grow while ageing
subsea infrastructure requires more preventive maintenance, the need for subsea
inspection, maintenance and repair (IMR) solutions is increasing [1]. Historically,
the remotely operated vehicle (ROV) has been the go-to solution for all subsea IMR
operations. ROVs are operated by a human operator via a tethered telecommuni-
cations link from a submarine or surface ship, ROV operations are therefore both
costly and time consuming. Increasing the autonomy of subsea IMR operations has
the potential to significantly improve the safety and cost-effectiveness of operations
[2]. While AUVs and smaller inspection class ROVs have gradually taken over
subsea inspection operations, manipulation tasks still require the flexibility of a
robotic arm.

The articulated intervention autonomous underwater vehicle (AIAUV) has
emerged from the underwater snake robot (USR) by adding longitudinal and
tunnel thrusters along the body. AIAUVs are a special class of underwater vehicle
manipulator systems (UVMSs), where the system is both vehicle and manipulator
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2 Introduction

at the same time [3]. The small size of the AIAUV and its articulated body enable
it to better access narrow and confined spaces compared to a traditional UVMS
with a large floating base. Because of its flexible shape, the AIAUV can assume an
energy efficient torpedo shape similar to a conventional AUV for transportation or
inspection tasks, while serving as a floating base manipulator for intervention tasks.
The Eelume AIAUV [4] is depicted in Figure 1.1 and is designed to permanently
live underwater by connecting to a docking station on the seabed.

Figure 1.1: The Eelume AIAUV. Courtesy of Eelume [5].

AIAUVs are highly redundant and overactuated robotic systems, and both of
these properties lead to optimization problems to be solved by the control system.
Although these problems have traditionally been decoupled, this thesis develops a
novel task priority control scheme that solves both problems in a unified manner.

1.2 Problem Description

AIAUVs are redundant with respect to typical equality tasks such as end-effector
configuration control since they possess more degrees of freedom (DOFs) than those
strictly required to execute the task. This presents the possibility of satisfying

https://www.eelume.com


1.3 Literature review 3

additional tasks simultaneously by utilizing the redundant DOFs of the system.
To this end, task priority frameworks enable multiple tasks to be defined and
prioritized with respect to their relative importance. Safety related tasks such as
collision avoidance and joint limit avoidance are inherently described by inequalities
that represent the sets in which they are satisfied. These types of tasks are referred
to as set-based tasks, and a large research effort has been put into extending task
priority frameworks to handle these tasks in recent years.

The overactuation property of AIAUVs entails that control allocation must
be performed. Traditional task priority frameworks for redundancy resolution
such as operational space control or kinematic control frameworks all decouple
redundancy resolution and control allocation. As a result, the commanded forces
and torques are computed with no regard to criteria such as actuator limits, actuator
rate constraints and minimization of the actuator inputs. This is an important
drawback for highly redundant robotic systems such as an AIAUV, where multiple
commanded forces and torques may satisfy the control objectives. When the
commanded forces and torques cannot be exactly allocated due to exceeding the
actuator limits or rate constraints, tasks are no longer prioritized and the control
performance degrades significantly, possibly destabilizing the system.

The main goal of the work presented in this thesis has been to develop a unified
approach to redundancy resolution, dynamic control and control allocation of an
AIAUV that supports set-based tasks. Thereby ensuring that the redundancy and
overactuation properties can be fully exploited while strict priority among tasks
can be guaranteed at all times.

1.3 Literature review

This section reviews literature relevant to this thesis in the context of the problem
description in the preceding section.

1.3.1 Task priority frameworks

Redundant robotic systems are designed to accomplish multiple tasks simultaneously.
Tasks are usually functions of the system configuration, and can be divided into



4 Introduction

equality- and set-based tasks. Equality-based tasks (or simply equality tasks) are
control objectives that should be driven to a specific desired value, while set-based
tasks should be kept within their valid set. Kinematic task priority control is a
redundancy resolution method introduced in [6], developed in [7] and generalized to
any number of priority levels in [8]. This control approach decouples the controller
into a kinematic and dynamic controller, and has been successfully implemented on
a number of robotic systems. This scheme was extended to support tasks described
by sets or inequalities in [9], [10] and [11]. The aforementioned kinematic control
approaches all resolve redundancy at the velocity level by generating velocity
references for some dynamic controller to follow. An immediate drawback is that
acceleration references cannot be included, resulting in worse tracking accuracy.

Operational space control [12] is a holistic approach that assigns joint torques di-
rectly by transforming the equations of motion from joint space into the operational
space, which is also known as task space. Although it was mainly introduced for
non-redundant systems, a dynamically consistent null space operator was defined
in [12], that allowed two operational space tasks to be defined and controlled
simultaneously. In [13], the scheme was extended to a task priority framework
with an arbitrary number of tasks by generalizing the dynamically consistent null
space operator from [12] to an arbitrary number of priority levels. These null space
operators ensure that torques generated by lower priority tasks do not generate
accelerations or forces affecting the task dynamics of higher priority tasks. The
operational space framework was extended to include set-based tasks in [14], but
this approach does not scale well for systems with a high number of DOFs.

Generalizing the operational space framework to set-based tasks was also
attempted in [15] by utilizing the results in [9]. While this approach resulted in
a set-based task priority operational space framework, the commanded force and
torque vector exhibits discontinuous jumps whenever set-based tasks are activated
or deactivated. Moreover, overshoots above or below the boundary of the valid set
is observed whenever a set-based task is activated, which requires excessively large
derivative gains in order to mitigate.
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1.3.2 Control Lyapunov function based quadratic programs

Control Lyapunov functions (CLFs) extend Lyapunov theory to systems with
inputs and have become an essential part of nonlinear control design after the
groundbreaking work in [16–18]. The CLF concept was extended to rapidly
exponentially stabilizing control Lyapunov functions (RES-CLFs) in [19], which
achieve exponential convergence at a controllable rate. Through CLFs or RES-
CLFs, the control designer is free to chose among an infinite number of controllers.
An important example is the point-wise minimum norm controller [20, 21], which
selects the control value of minimum norm from all control values that render
the time derivative of the CLF negative definite. The point-wise minimum norm
controller has a closed form solution since it is the solution to a quadratic program
(QP) with only one inequality constraint. This QP can be augmented with control
input saturation limits and other control input constraints, at the expense of a
closed form solution [22]. For redundant robotic systems, two control tasks can
be satisfied simultaneously by defining CLFs for each task and solving a quadratic
optimization problem for the control input that ensures the negativeness of both
CLF time derivatives while minimizing some quadratic objective function [23].

1.3.3 Control barrier functions

Barrier functions have been used extensively in constrained optimization [24, 25],
and have motivated the concept of barrier certificates for safety-critical control.
Barrier certificates were introduced as a tool for proving forward invariance of sets
[26, 27]. These sets can encode safety related objectives, and proving the invariance
of a safe set implies that the system will remain safe, as long as you start safe.
Barrier certificates tend to infinity as the state tends to the boundary of the safe
set, and in order to obtain safety guarantees beyond the boundary of the safe
set, various Lyapunov-like approaches have been proposed such as in [28], where
a positive definite barrier certificate is employed as a barrier Lyapunov function.
However, the positive definiteness property is overly strong, since it enforces the
invariance of every level set, and not just the set in question.

Barrier certificates were extended to systems with inputs by introducing the first
notion of a control barrier function (CBF) in [29]. These control barrier functions
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were combined with control Lyapunov functions in [30], and further improved in
[31] to establish conditions for so-called control Lyapunov-Barrier functions, which
jointly guarantee safety and stability. These conditions were shown to be too
restrictive and was hence relaxed in [32]. CBFs were generalized to exponential
control barrier functions (ECBFs) in [33], which enforce forward invariance of
higher order set-based tasks. The barrier function conditions were extended to the
entire safe set in [34] by moving from reciprocal barrier functions to zeroing barrier
functions1, which enabled controller synthesis through optimization-based methods
[35]. In particular, the CLF based QP [22, 23] could be augmented with CBFs to
ensure stability and safety [32, 35].

1.3.4 Previous work on AIAUV control

The decoupled motion control framework depicted in Figure 1.2 was suggested and
utilized for an AIAUV in [1]. Within this framework, the kinematic controller re-

Kinematic
Control

Dynamic
Control

Control
Allocation AIAUV

ζd τ uσd ξ, ζ

Figure 1.2: Overall control architecture for an AIAUV when employing a kinematic
control scheme. The kinematic controller transforms a goal specified through an
operational space task into desired system velocities that accomplish the goal.

solves redundancy by transforming multiple prioritized task space control objectives
into system velocity references for the dynamic controller to track. The output of
the dynamic controller is a vector of commanded forces and torques, which have to
be transformed into thruster and joint torque control inputs by solving the control
allocation problem.

This framework has been employed extensively within AIAUV research in recent
years. Kinematic control schemes have been studied in [1, 15, 36–39], while sliding
mode control has been investigated as a dynamic controller within this framework
in [40]. Dynamic control of an AIAUV within this framework is also the topic of

1In this thesis, all barrier functions are zeroing barrier functions.
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[41], which considers sliding mode control and adaptive inverse dynamics control.
The framework in Figure 1.2 decouples the redundancy resolution, dynamic

control and control allocation problems into three separate parts. The main
advantage is that each part can be designed under the assumption that the other
parts are working perfectly, e.g. a kinematic controller can be designed under the
assumption that the output velocity references are perfectly tracked. However, there
are several inherent drawbacks to this scheme. Firstly, the mathematical stability
proofs for velocity level kinematic control assumes that the velocity references
are tracked perfectly by the dynamic controller, which entails that the kinematic
controller has to be substantially slower than the dynamic controller for practical
underwater applications. Secondly, task space acceleration references cannot be
included when resolving redundancy at the velocity level in a kinematic controller,
resulting in worse tracking performance. Finally, control allocation is performed
after the reference velocities and commanded forces and torques have been computed.
Hence, if exact control allocation is infeasible for the commanded forces and torques
(due to e.g. violating control input limits and/or rate constraints), the control inputs
are either saturated or found by minimizing the error between the commanded
and allocated forces and torques in some sense. In other words, no attempt is
made to utilize the inherent redundancy of the robotic system by optimizing the
velocity references and/or commanded forces and torques with respect to physically
realizable control inputs. As a result, priority among tasks is lost whenever exact
control allocation is not possible, resulting in performance degradation of the
control system, and instability in the worst case.

Alternatively, the kinematic and dynamic control blocks in the control architec-
ture in Figure 1.2 can be merged into one by resorting to task priority operational
space control [12, 13]. Within the operational space formalism, task space velocity
feedback and task space acceleration references can be employed in the control
laws, which improves tracking performance. In the context of AIAUV control,
this approach has been the pursued in [15]. Despite improving tracking accuracy
and unifying redundancy resolution and dynamic control, there are also several
drawbacks to this approach for AIAUV control. Firstly, while velocity level kine-
matic control schemes have been successfully extended to include set-based tasks
[9, 10], the same cannot be said for task priority operational space control. The
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method for set-based control within the operational space formalism in [15] results
in discontinuous commanded forces and torques, chattering in the activation and
deactivation of tasks and inevitable overshoots around the boundaries of the safe
sets corresponding to set-based tasks. Secondly, control allocation is still fully
decoupled from the control law, which means that the commanded forces and
torques are computed with no regard to criteria such as actuator limits, actuator
rate constraints and minimization of the actuator inputs. This is an important
drawback for highly redundant robotic systems, where multiple commanded forces
and torques may satisfy the control objectives, but where only some can be exactly
allocated. Finally, since this approach relies on input-output linearization of the
dynamics of every task, stabilizing terms are cancelled instead of exploited, and
PD controllers are designed for the linearized dynamics of every task in order to
achieve exponential convergence. The robustness of this input-output linearizing
approach is questionable for practical applications, where modeling errors may lead
to an unstable system.

1.4 Contributions

The main contributions of this thesis are:

• The connection between task priority operational space control as described
in [13] and multiple-input and multiple-output (MIMO) feedback linearization
as discussed in [42, 43]. This work includes formulating the task priority
operational space control law described in [13] in matrix-vector form in a
MIMO feedback linearization setting. Moreover, explicit conditions for input-
output and full-state linearizability of a robotic system by a task priority
operational space control law are given. (Section 3.1)

• A novel task priority framework in the form of a hierarchy of control Lyapunov
function and control barrier function based quadratic programs. Strict priority
levels are established by solving a quadratic program for every priority level,
ensuring that tasks at lower priority levels have no effect on the execution
of tasks at higher priority levels. This framework is especially useful for
redundant robotic systems that are also overactuated, since the control
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allocation and redundancy resolution problems are solved simultaneously.
(Section 3.2)

• The task priority framework is implemented and verified for an AIAUV
application through MATLAB simulations. (Chapter 5)

• The main contribution on dynamic task priority control of redundant robotic
systems using a hierarchy of CLF and CBF based QPs has been condensed
into a conference paper draft, which is to be submitted to the 2020 American
Control Conference. (Appendix B)

1.5 Outline

The rest of this thesis is organized as follows. Chapter 2 summarizes relevant
background theory. In Chapter 3, the conditions for input-output and full-state
linearizability of a robotic system under a task priority operational space control
law are given. Chapter 3 also develops a novel task priority framework based
on a hierarchy of control Lyapunov function and control barrier function based
quadratic programs. In Chapter 4, kinematic and dynamic models of an AIAUV
are presented for control and simulation purposes. Chapter 5 contains a case
study of the proposed task priority framework for an AIAUV, while the conclusion
and suggestions for future work can be found in Chapter 6. Finally, Appendix A
contains various mathematical definitions and theorems employed in this thesis
and Appendix B contains a draft for a conference paper based on the main result
of this thesis.



Chapter 2

Background Theory

In this chapter, the necessary background material relevant to this thesis will be
presented. A more thorough exposition on input-output linearization of MIMO
systems can be found in [42, 43], while control barrier functions are discussed at
length in [35].

2.1 Modeling of Robotic Systems

The system configuration of an n degree of freedom (DOF) robotic system can
be expressed by the joint variables q = [q1, q2, . . . , qn]T. The joint space dynamic
equations of motion for a robotic manipulator are given by [44]

M(q)q̈ + C(q, q̇)q̇ + g(q) = τ, (2.1)

where M(q) is the manipulator inertia matrix, C(q, q̇) is the Coriolis and centrifugal
matrix, g(q) is the gravity torque vector and τ is the joint torques.

A task is defined as a generic m-dimensional control objective, specified as a
function of the system configuration. The relationship between the joint space and
task space variables are given by the direct kinematics equation [45]

σ(q) = f(q(t)), (2.2)

where f : Rn → Rm is a mapping from joint space to task space, which is nonlinear

10
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in general. By differentiating (2.2) with respect to time once and twice, the first-
and second-order differential kinematics equation are obtained, viz.

σ̇ = J(q)q̇, (2.3)

σ̈ = J(q)q̈ + J̇(q, q̇)q̇, (2.4)

where J(q(t)) = ∂f(q(t))
∂q

∈ Rm×n is the configuration-dependent task Jacobian
matrix, q̇(t) ∈ Rn is the system velocity vector and q̈(t) ∈ Rn is the system
acceleration vector. A robotic system is kinematically redundant when it has more
DOFs than those strictly required to execute a given task [45], which requires the
dimension of the system configuration q to be larger than the dimension of the
task variable σ.

2.2 Operational Space Control

Operational space control [12] presents an alternative to controlling a robotic system
in joint space by transforming the dynamic equations of motion into operational
space. It is a holistic approach in the sense that forces and torques are computed
directly from operational space variables, instead of relying on a kinematic controller
to generate joint velocity or joint acceleration references for a dynamic controller
to track in joint space.

To obtain the operational space dynamics, (2.1) is solved for q̈, which is inserted
into (2.4)

σ̈ = JM−1 (τ − Cq̇ − g) + J̇ q̇. (2.5)

By mapping the generalized torque into a generalized force through the relation

τ = JTF, (2.6)

defining the inertia matrix associated with the task variable σ as

Λ =
(
JM−1JT

)−1
∈ Rm×m, (2.7)
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and pre-multiplying both sides of (2.5) by Λ, the operational space dynamics are
obtained as

Λσ̈ + Λ
(
JM−1Cq̇ − J̇ q̇

)
+ ΛJM−1g = f, (2.8)

Λσ̈ + µ+ p = f. (2.9)

If the system is redundant with respect to the task σ, i.e. dim (q) = n >

m = dim (σ), the generalized torque vector may be decomposed into a torque
corresponding to the primary task and another torque acting in the null-space of
the primary task as follows [12]

τ = JTf +Nτ0, (2.10)

where τ0 is an arbitrary torque and the null-space operator N is given by

N = In − JTJ̄T, (2.11)

with

J̄ = M−1JTΛ (2.12)

= M−1JT
(
JM−1JT

)−1
∈ Rn×m. (2.13)

The matrix J̄ is known as the dynamically consistent pseudoinverse of J , which is
a weighted pseudoinverse of J where the weight is the inverse of the inertia matrix
[12].

2.2.1 Extension to k tasks

The null space operator in (2.11) is extended to an arbitrary number of priority
levels in [13] as follows

N1 = I, (2.14a)

Nk+1 = I −
k−1∑
i=1

NiJ
T
i

(
JiN

T
i M

−1NiJ
T
i

)−1
JiN

T
i M

−1, (2.14b)
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where Ji is the Jacobian of task i. Moreover, by defining

Λi =
(
JiN

T
i M

−1NiJ
T
i

)−1
=
(
JiM

−1NiJ
T
i

)−1
, (2.15)

J̄i = M−1JT
i Λi, (2.16)

and employing certain properties of the null-space operator, (2.14) can be rewritten
[15]

N1 = I, (2.17a)

Nk+1 = Nk

(
I − JT

k J̄
T
kNk

)
. (2.17b)

An operational space control torque for k tasks arranged in priority is then
given by [13, 15]

τ = JT
1 f1 +N2J

T
2 f2 + · · · +NkJ

T
k fk, (2.18)

where

fi = Λiai + µi + pi, (2.19)

ai = σ̈d,i −Kd,i
˙̃σi −Kp,iσ̃i − J̇iq̇ − JiM

−1
i−1∑
j=1

NjJ
T
j Λjaj, (2.20)

µi = Λi

(
JiM

−1Cq̇ − J̇iq̇
)

(2.21)

pi = ΛiJiM
−1g, (2.22)

where σ̃ = σ − σd represents the task error and Kd,i and Kp,i are derivative and
proportional gains, respectively.
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2.3 Input-Output Linearization of MIMO Sys-
tems

Consider an input affine nonlinear control system of the form

ẋ = f(x) +
m∑
i=1

gi(x)ui

yj = hj(x), 1 ≤ j ≤ m

(2.23)

where x ∈ D ⊂ Rn is the state vector, f, gi : D → Rn are smooth vector fields, and
hi : D → R are smooth functions. Differentiating the ith output yi with respect to
time yields

ẏi = Lfhi +
m∑
j=1

(
Lgj

hi
)
uj. (2.24)

Observe that if Lgj
h = 0 for all j = 1, . . . ,m, then the input does not appear in ẏi.

Assume that yi has to be differentiated with respect to time ri times before at least
one component of the control input vector u explicitly appears in a time derivative
of yi, then the rith derivative of yi is given by

y
(ri)
i = Lri

f hi +
m∑
j=1

Lgj

(
Lri−1
f hi

)
uj. (2.25)

The integer ri is defined as the smallest integer such that

Lgj
Lkfhi(x) = 0, 1 ≤ j ≤ m, k ≤ ri − 2 (2.26)

Lgj
Lri−1
f hi(x) ̸= 0, for at least one 1 ≤ j ≤ m. (2.27)

For single input single output (SISO) systems with m = 1, (2.26) and (2.27) is the
definition of the relative degree of y = h(x), with h : Rn → R. The relative degree
concept is extended to multiple-input and multiple-output (MIMO) systems as
follows [42, 43]:

Definition 2.1 (Vector relative degree). The system (2.23) has a vector relative
degree {r1, . . . , rm} at a point x0 if
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(i)
Lgj

Lkfhi(x) = 0, 0 ≤ k ≤ ri − 2 (2.28)

for all 1 ≤ j ≤ m, for all 1 ≤ i ≤ m, and for all x in a neighborhood of x0.

(ii) The m×m matrix

A(x) =



Lg1L
r1−1
f h1(x) Lg2L

r1−1
f h1(x) . . . LgmL

r1−1
f h1(x)

Lg1L
r2−1
f h2(x) Lg2L

r2−1
f h2(x) . . . LgmL

r2−1
f h2(x)

...

Lg1L
rm−1
f hm(x) Lg2L

rm−1
f hm(x) . . . LgmL

rm−1
f hm(x)


(2.29)

is nonsingular at x = x0.

Remark. For SISO systems, Definition 2.1 reduces to (2.26) and (2.27) since m = 1
implies that A(x) is a scalar, which is invertible as long as it is non-zero. However,
for MIMO systems, the characterization of ri as the integer such that (2.26) and
(2.27) holds is only implied by, but not equivalent to Definition 2.1. Importantly,
MIMO systems also require that the matrix A(x) is nonsingular, which implies
that it is square and hence that the number of inputs must equal the number of
outputs. However, as long as the number of outputs is less than or equal to the
number of inputs, condition ii can be relaxed to requiring that A(x) has linearly
independent rows [42].

Remark. Several recent articles employ the notation Lfh when h : Rn → Rm and
f : Rn → Rn, which is intended to represent the Lie derivative of h with respect
to f [22, 32, 33, 46]. However, these papers interpret the Lie derivative of h with
respect to f as ∂h

∂x
f(x), which is only correct whenever h : Rn → R, i.e. when h is

a function. When h and f are both vector fields in Rn, the Lie derivative of h with
respect to f is known as the Lie bracket, which is given by [42, 43]

Lfh = [f, h] = ∂h

∂x
f(x) − ∂f

∂x
h(x). (2.30)

Moreover, the notation Lgh(x) is also used when g : Rn → Rn×m, which is supposed
to be interpreted as ∂h

∂x
g(x). However, the Lie derivative of a vector field is not
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defined with respect to a matrix [47].

2.3.1 Input-output dynamics

As long as ri is well defined according to (2.26) and (2.27) for i = 1, . . . ,m, the
input-output dynamics is given by

y
(r1)
1

y
(r2)
2
...

y(rm)
m


=



Lr1
f h1

Lr2
f h2
...

Lrm
f hm


︸ ︷︷ ︸

b(x)

+



Lg1L
r1−1
f h1 . . . LgmL

r1−1
f h1

Lg1L
r2−1
f h2 . . . LgmL

r2−1
f h2

... . . . ...

Lg1L
rm−1
f hm . . . LgmL

rm−1
f hm


︸ ︷︷ ︸

A(x)



u1

u2
...

um


. (2.31)

Moreover, assuming that r1 = r2 = · · · = rm = r yields

y(r) =


y

(r)
1
...

y(r)
m

 =



Lrfh1

Lrfh2
...

Lrfhm


︸ ︷︷ ︸

b(x)

+



Lg1L
r−1
f h1 . . . LgmL

r−1
f h1

Lg1L
r−1
f h2 . . . LgmL

r−1
f h2

... . . . ...

Lg1L
r−1
f hm . . . LgmL

r−1
f hm


︸ ︷︷ ︸

A(x)



u1

u2
...

um


, (2.32)

and the system (2.23) can be decomposed into transverse dynamics states η =[
yT, ẏT, . . . ,

(
y(r−1)

)T
]T

∈ Rrm and zero dynamics states z ∈ Z ⊂ Rn−rm, viz.

η̇ = f̄(η, z) + ḡ(η, z)u, (2.33a)

ż = fz(η, z), (2.33b)
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with f̄(η, z) = Fη +Gb(x) and ḡ(η, z) = GA(x) where

F =



0 I 0 · · · 0

0 0 I · · · 0
... . . . . . . . . . ...

0 0 0 · · · I

0 0 0 0 0


, G =



0

0

0
...

I


, (2.34)

while 0 is the m×m matrix of zeros and I is the m×m identity matrix.
If the system (2.23) has a vector relative degree according to Definition 2.1, the

state feedback control

u = A−1 (µ− b) , (2.35)

will yield the linear and decoupled system

η̇ = Fη +Gµ, (2.36)

which can be exponentially stabilized by standard linear control techniques [48].

Remark. Recent articles such as [23, 32–35, 46] all characterize the scalar r in
(2.32) as the relative degree of the vector-valued function y ∈ Rm. However, the
relative degree concept is only defined for SISO systems [42, 43], which means
that the aforementioned articles should resort to the concept of vector relative
degree for MIMO systems. Using the relative degree concept for MIMO systems is
problematic, because it is not clear what is assumed when it is stated that some
vector valued function y ∈ Rm has a relative degree of r. For instance, it could
mean that at least one component of the control input u appears in at least one
component of the rth derivative of the vector-valued function y, with no guarantees
on the linear independence of the rows of the decoupling matrix A(x). Alternatively,
stating that y ∈ Rm has a relative degree of r could mean that the vector-valued
function y has a vector relative degree of {r1, r2, . . . , rm} = {r, r, . . . , r}, which
implies that A(x) is nonsingular.
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2.4 Control Lyapunov Functions

The control Lyapunov function (CLF) extends Lyapunov theory to systems for
which a feedback control has not already been selected [20]. For a nonlinear control
system of the form

ẋ = f(x, u), (2.37)

a CLF is a candidate Lyapunov function V (x) for which there exists admissible
control inputs u for every x ≠ 0 such that ∇V (x) · f(x, u) < 0, which is to say that
for any x, the time derivative of the candidate Lyapunov function can be made
negative by appropriate selection of control input u.

Definition 2.2 (Control Lyapunov function). A continuously differentiable and
positive definite function V : D → R is a control Lyapunov function (CLF) for the
system (2.33) if there exists α1, α2, α3 ∈ K∞ such that [20, 49]

α1(∥η∥) ≤ V (η) ≤ α2(∥η∥), (2.38)

inf
u∈U

[
Lf̄Vϵ(η, z) + LḡVϵ(η, z)u

]
< −α3(∥η∥). (2.39)

In order to explicitly control the rate of exponential convergence, a specific type
of CLF is defined in [19] as follows:

Definition 2.3 (RES-CLF). A continuously differentiable and positive definite
function Vϵ : D → R is said to be a rapidly exponentially stabilizing control
Lyapunov function (RES-CLF) for the system (2.33) if there exists constants
c1, c2, c3 > 0 such that for all 0 < ϵ < 1 and for all states (η, z) it holds that

c1∥η∥2 ≤ Vϵ(η) ≤ c2

ϵ2 ∥η∥2, (2.40)

inf
u∈U

[
Lf̄Vϵ(η, z) + LḡVϵ(η, z)u

]
≤ −c3

ϵ
Vϵ(η). (2.41)

From Definition 2.3, the set of all stabilizing controllers for every η ∈ Rrm can
be expressed as

Kϵ(η) :=
{
u ∈ U : Lf̄Vϵ(η, z) + LḡVϵ(η, z)u ≤ −c3

ϵ
Vϵ(η)

}
. (2.42)
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Any Lipschitz continuous feedback control law u ∈ Kϵ(η) satisfies

Vϵ(η) ≤ e− c3
ϵ
tVϵ(η(0)), (2.43)

and

∥∥η(t)
∥∥ ≤ 1

ϵ

√
c2

c1
e− c3

2ϵ
t
∥∥η(0)

∥∥, (2.44)

which shows that the rate of exponential convergence can be directly controlled
with the constant ϵ through c3

ϵ
[19].

2.4.1 Constructing RES-CLFs

RES-CLFs can be constructed for the system (2.33) by solving the continuous time
algebraic Riccati equation

F TP + PF − PGGTP +Q = 0, (2.45)

for P = P T > 0, where Q is any positive definite matrix. In order to stabilize the
transverse dynamics at a rate ϵ define

Vϵ(η) = ηT

1
ϵ
I 0

0 I

P
1
ϵ
I 0

0 I

 η := ηTPϵη, (2.46)

where Pϵ = MϵPMϵ. Inserting P = M−1
ϵ PϵM

−1
ϵ into (2.45) yields

F TM−1
ϵ PϵM

−1
ϵ +M−1

ϵ PϵM
−1
ϵ F

−M−1
ϵ PϵM

−1
ϵ GGTM−1

ϵ PϵM
−1
ϵ +Q = 0,

(2.47)

multiplying both sides of the equation by Mϵ yields

MϵF
TM−1

ϵ Pϵ + PϵM
−1
ϵ FMϵ − PϵM

−1
ϵ GGTMϵPϵ +MϵQMϵ = 0 (2.48)

ϵF TPϵ + ϵPϵF − PϵGG
TPϵ +MϵQMϵ = 0 (2.49)

F TPϵ + PϵF − 1
ϵ
PϵGG

TPϵ + 1
ϵ
MϵQMϵ = 0. (2.50)
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Now, let Vϵ(η) = ηTPϵη and differentiate with respect to time, viz.

V̇ϵ(η, x) = (Fη +Gb+GAu)T Pϵη + ηTPϵ (Fη +Gb+GAu) (2.51)

= ηT
(
F TPϵ + PϵF

)
η + 2ηTPϵGb︸ ︷︷ ︸

Lf̄Vϵ(η)

+ 2ηTPϵGA︸ ︷︷ ︸
LḡVϵ(η)

u. (2.52)

Inserting (2.50) yields

V̇ϵ(η, x) = ηT

(
1
ϵ
PϵGG

TPϵ − 1
ϵ
MϵQMϵ

)
η + 2ηTPϵGb+ 2ηTPϵGAu. (2.53)

Define γ := λmin(Q)
λmax(P ) > 0, where λmin(·) and λmax(·) are the minimum and maximum

eigenvalues of the matrix, respectively. It follows that γP ≤ Q, which yields

V̇ϵ(η, x) ≤ ηT

(
1
ϵ
PϵGG

TPϵ − γ

ϵ
Pϵ

)
η + 2ηTPϵGb+ 2ηTPϵGAu (2.54)

= ηTPϵG

(
1
ϵ
GTPϵη + 2b+ 2Au

)
− γ

ϵ
Vϵ(η), (2.55)

which implies that

inf
u∈Rm

[
Lf̄Vϵ(η) + LḡVϵ(η)u

]
≤ −γ

ϵ
Vϵ(η), (2.56)

as long as A(x) has linearly independent rows. In this case, Vϵ(ϵ) is a RES-CLF
for (2.33) with c1 = λmin (Pi), c2 = λmax (Pi) and c3 = γ.

2.5 Control Barrier Functions

Control objectives described by inequalities or sets can be enforced by rendering
the superlevel set

C =
{
x ∈ D ⊂ Rn : h(x) ≥ 0

}
, (2.57)

of some smooth function h : D → R forward invariant. For instance, the inequality
σ(x) ≥ σmin is satisfied by ensuring that h(x) = σ(x) − σmin ≥ 0. These functions
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h are known as control barrier functions if a control input u can be found rendering
the set C forward invariant [34, 35]:

Definition 2.4. Let C ⊂ D ⊂ Rn be the superlevel set of a continuously differ-
entiable function h : D → R, then h is a control barrier function (CBF) for the
system (2.23) if there exists an extended class K∞ function α such that

sup
u∈U

[
Lfh(x) + ∂h(x)

∂x
g(x)u

]
≥ −α

(
h(x)

)
, (2.58)

for all x ∈ Int(C).

The existence of a CBF implies that the superlevel set of the function h is
forward invariant [34], which means that if x(t0) = x0 ∈ C, then x = x(t) ∈ C for
all t ≥ t0. Equivalently, if h(x0) ≥ 0, then h(x) ≥ 0 for all t ≥ t0.

2.5.1 Exponential Control Barrier Functions

Definition 2.4 assumes that ∂h(x)
∂x

g(x) ̸= 0, which is to say that at least one
component of the input vector u appears in the time derivative of the function h.
However, safety related tasks for robotic systems are often only a function of the
configuration variables, which means that they have to be differentiated twice for
the input to appear. Introduced in [33] and refined in [35], exponential control
barrier functions (ECBFs) generalize CBFs to functions h(x) that satisfy

∂Lkfh(x)
∂x

g(x) = 0, 0 ≤ k ≤ ρ− 2 (2.59)

∂Lρ−1
f h(x)
∂x

g(x) ̸= 0, (2.60)

for an arbitrary integer ρ ≥ 1.

Definition 2.5. Given a set C ⊂ D ⊂ Rn defined as the superlevel set of an
r-times continuously differentiable function h : D → R, then h is an exponential
control barrier function (ECBF) for the control system (2.23) if there exists a row
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vector Kα ∈ Rρ such that

sup
u∈U

Lρfh(x) +
∂
(
Lρ−1
f h(x)

)
∂x

g(x)u

 ≥ −Kαξ(x), (2.61)

where ξ = col
(
h(x), Lfh(x), L2

fh(x), . . . , Lρ−1
f h(x)

)
, results in h(x) ≥ 0 whenever

h(x0) ≥ 0 for all x ∈ Int (C).

Remark. For ρ = 1, Definition 2.5 is a special case of Definition 2.4 where α(·) is a
linear function of h(x), i.e. α

(
h(x)

)
= kh(x) with k ∈ R.

Remark. The authors of [33, 35] define the value of ρ to be the relative degree of
the ECBF h. However, the relative degree concept is only defined for SISO systems
[42]. In the context of ECBFs for MIMO systems, ρ describes the number of times
h must be differentiated with respect to time for at least one of the components of
the control input to appear. In order to avoid any confusion, this thesis will refer
to the scalar ρ as the order of the ECBF.

2.6 Optimization Based Control

The RES-CLF and ECBF conditions in (2.41) and (2.61) are both affine in the
control input u. Consequently, these conditions can be employed as inequality
constraints in a convex optimization problem for u. More specifically, by selecting
a convex quadratic objective function, the convex optimization problem becomes a
quadratic program (QP). The CLF-ECBF QP is given by [23], [35]:

minimize
u∈Rm,δ∈R

1
2u

TH(x)u+ cT(x)u+ wδ2

subject to

Lf̄Vϵ(η, z) + LḡVϵ(η, z)u ≤ −γ

ϵ
Vϵ + δ,

Lρfh(x) +
∂Lρ−1

f h(x)
∂x

g(x)u ≥ −Kαξ(x),

(CLF-ECBF QP)

where H(x) ∈ Rm×m is any positive semi-definite matrix, c(x) ∈ Rm, δ ∈ R is a
slack variable penalized by w > 0, ensuring feasibility of the quadratic program



2.6 Optimization Based Control 23

(QP) in case of incompatible equality and set-based tasks, and the Lie derivatives
Lf̄Vϵ(η, z) and LḡVϵ(η, z) are given by (2.52). This controller ensures exponential
stability of the equality task described by the RES-CLF Vϵ, as long as it does not
interfere with the satisfaction of set-based task encoded by the ρth order ECBF
h(x).

The CLF-ECBF QP can effortlessly be extended to incorporate control input
saturation limits and rate constraints [22]:

minimize
u∈Rm,δ∈R

1
2u

TH(x)u+ cT(x)u+ wδ2

subject to

Lf̄Vϵ(η, z) + LḡVϵ(η, z)u ≤ −γ

ϵ
Vϵ + δ,

Lρfh(x) +
∂Lρ−1

f h(x)
∂x

g(x)u ≥ −Kαξ(x),

umin ≤ u ≤ umax,

∆umin ≤ ∆u ≤ ∆umax,

(2.62)

where umin and umax are the lower and upper limits on the control input, ∆u is the
change in control input since the last time step, while ∆umin and ∆umax represents
the maximum allowed change in control input from one time step to the next.



Chapter 3

Dynamic Task Priority Control of
Redundant Robotic Systems

This chapter presents the main results of this thesis. In Section 3.1, the connection
between operational space control of an arbitrary number of equality tasks and
MIMO feedback linearization is investigated. Explicit conditions for the solvability
of the input-output linearization and state space exact linearization problems are
found. Section 3.1.3 continues the work in [23] on optimization based operational
space controllers in an attempt to develop a dynamic controller that supports
set-based tasks, which is achieved by employing CBFs. However, strict priority
among tasks is lost when operational space control is combined with CLFs and
ECBFs, and null space based control is therefore not pursued any further. Instead,
the CLF-ECBF QP controller from [35] is extended to an arbitrary number of
equality and set-based tasks in 3.2.1. Section 3.2.2 builds on this framework in
order to achieve strict priority among different sets of tasks.

3.1 Operational Space Control and Feedback Lin-
earization

The dynamic equations of motion for a robotic manipulator are given by [44]

M(q)q̈ + C(q, q̇)q̇ + g(q) = τ, (3.1)

24
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and a task priority operational space control law for k equality tasks is given by

τ = JT
1 v1 +N2J

T
2 v2 + . . . NkJ

T
k vk (3.2)

=
[
JT

1 N2J
T
2 . . . NkJ

T
k

]


v1

v2
...

vk


(3.3)

= T (q)v, (3.4)

where vi ∈ Rmi , v ∈ Rm with m = ∑k
i=1 mi and where the null space operators

Ni are given by (2.17). For i = 1, . . . , k, define the equality task variables as
σi(x) ∈ Rmi and yi(x) = σi(x) − σi,d(t) as the task error, where σi,d(t) are the
desired task values. By applying the pre-control law in (3.4), the dynamic equations
of motion can be expressed in state space form as a nonlinear affine control system

ẋ = f(x) + g(x)v,

y = h(x),
(3.5)

where x = [xT
1 , x

T
2 ]T = [qT, q̇T]T ∈ D ⊂ R2n is the state vector of joint angles and

joint velocities and

f(x) =

 x2

−M(x1)−1 (C(x1, x2)x2 + g(x1)
)
 ∈ R2n, (3.6)

g(x) =

 0n×m

M(x1)−1T (x1)

 ∈ R2n×m, (3.7)

h(x) =


y1(x)

...

yk(x)

 ∈ Rm. (3.8)
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3.1.1 Input-output dynamics

In the robotics literature, it is usually assumed that a task only depends on the
configuration of the robotic system [45], viz.

σ(t) = f(q(t)). (3.9)

In this case, the task error yi(x1) has to be differentiated with respect to time twice
for the input to appear. Taking the time derivative of yi(x1) and resorting to the
chain rule yields

ẏi(x) = ∂σi(x1)
∂x

ẋ− σ̇i,d (3.10)

= ∂σi(x1)
∂x

(
f(x) + g(x)v

)
− σ̇i,d, (3.11)

where

∂σi(x1)
∂x

f(x) =
[
∂σi(x1)
∂x1

∂σi(x1)
∂x2

]  x2

−M(x1)−1 (C(x1, x2)x2 + g(x1)
)
 (3.12)

= ∂σi(x1)
∂x1

x2 (3.13)

= Ji(x1)x2, (3.14)

and

∂σi(x1)
∂x

g(x) =
[
∂σi(x1)
∂x1

∂σi(x1)
∂x2

]  0

M(x1)−1T (x1)

 (3.15)

= 0. (3.16)

As expected, the control input does not appear in ẏi. Differentiating the task error
with respect to time once more yields

ÿi(x) = ∂

∂x

(
∂σi(x1)
∂x

f(x)
)
f(x) + ∂

∂x

(
∂σi(x1)
∂x

f(x)
)
g(x)v − σ̈i,d (3.17)
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=



L2
fσi1(x) − σ̈i1,d

L2
fσi2(x) − σ̈i2,d

...

L2
fσimi

(x) − σ̈imi ,d


︸ ︷︷ ︸

bi(x)

+



Lg1Lfσi1(x) . . . LgmLfσi1(x)

Lg1Lfσi2(x) . . . LgmLfσi2(x)
... ...

Lg1Lfσimi
(x) . . . LgmLfσimi

(x)


︸ ︷︷ ︸

Ai(x)

v, (3.18)

where

Ai(x) = ∂

∂x

(
∂σi(x1)
∂x

f(x)
)
g(x) (3.19)

= ∂

∂x

(
Ji(x1)x2

)
g(x) (3.20)

=
[
∂Ji(x1)x2

∂x1

∂Ji(x1)x2
∂x2

]  0

M(x1)−1T (x1)

 (3.21)

= Ji(x1)M(x1)−1T (x1), (3.22)

and

bi(x) = ∂

∂x

(
∂σi(x1)
∂x

f(x)
)
f(x) − σ̈i,d,

= ∂

∂x

(
Ji(x1)x2

)
f(x) − σ̈i,d,

=
[
∂Ji(x1)x2

∂x1

∂Ji(x1)x2
∂x2

]  x2

M(x1)−1 (C(x1, x2)x2 + g(x1)
)
− σ̈i,d,

= ∂Ji(x1)x2

∂x1
x2 − ∂Ji(x1)x2

∂x2
M(x1)−1 (C(x1, x2)x2 + g(x1)

)
− σ̈i,d,

= ∂Ji(x1)
∂x1

(x2 ⊗ In)x2 + Ji(x1)
∂x2

∂x1
x2

−
(
∂Ji(x1)
∂x2

(x2 ⊗ In) + Ji(x1)
∂x2

∂x2

)
M(x1)−1 (C(x1, x2)x2 + g(x1)

)
− σ̈i,d,

= ∂Ji(x1)
∂x1

(x2 ⊗ In)x2 − Ji(x1)M(x1)−1 (C(x1, x2)x2 + g(x1)
)

− σ̈i,d,

(3.23)
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where the product rule for the partial derivative of the product of a matrix and a
vector with respect to a vector has been utilized [50], and ⊗ denotes the Kronecker
product. Since J̇i(x1) = ∂Ji(x1)

∂x1
(ẋ1 ⊗ In) and ẋ1 = x2 it holds that

bi(x) = J̇i(x1)x2 − Ji(x1)M(x1)−1 (C(x1, x2)x2 + g(x1)
)

− σ̈i,d. (3.24)

The input-output dynamics of all tasks can therefore be expressed as

ÿ1

ÿ2
...

ÿk


=



b1(x)

b2(x)
...

bk(x)


︸ ︷︷ ︸

b(x)

+



A1(x)

A2(x)
...

Ak(x)


︸ ︷︷ ︸

A(x)

v, (3.25)

where

b(x) =



J̇1x2 − J1M
−1 (Cx2 + g) − σ̈1,d

J̇2x2 − J2M
−1 (Cx2 + g) − σ̈2,d

...

J̇kx2 − JkM
−1 (Cx2 + g) − σ̈k,d


, (3.26)

and

A(x) =



J1M−1JT
1 0m1×m2 0m1×m3 . . . 0m1×mk

J2M−1JT
1 J2M−1N2JT

2 0m2×m3 . . . 0m2×mk

J3M−1JT
1 J3M−1N2JT

2 J3M−1N3JT
3

. . . 0m3×mk

...
...

...
. . .

...

JkM−1JT
1 JkM−1N2JT

2 JkM−1N3JT
3 . . . JkM−1NkJT

k


, (3.27)

since Ai = JiM
−1T and JiM

−1Nk = 0 for i < k.
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3.1.2 MIMO feedback linearization

A standard assumption in kinematic or operational space control is that all tasks are
compatible. For operational space control, assuming that all tasks are compatible
around a point x0 is equivalent to assuming

Null
(
NiJ

T
i

)
= ∅, i = 1, . . . , k, (3.28)

at the point x0. Equation (3.28) implies that the matrix NiJ
T
i has full rank at x0

and thus that (2.15) is well-defined without resorting to a pseudoinverse for all
i = 1, . . . , k. Hence, every submatrix in (3.27) has full rank, which implies that
A(x) has full rank and the system in (3.5) has a vector relative degree

{r1, r1, . . . , rm} = {2, 2, . . . , 2} , (3.29)

at x0.
When the system (3.5) has a well-defined vector relative degree, the system is

input-output linearizable and the control input

v = A−1(x)
(
µ− b(x)

)
, (3.30)

will fully linearize the input-output dynamics

ÿ1

ÿ2
...

ÿk


=



µ1

µ2
...

µk


, (3.31)
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where the inverse of A(x) is given by

A−1(x) =



M1 0m1×m2 0m1×m3 . . . 0m1×mk

−M2J2M−1Γ21 M2 0m2×m3 . . . 0m2×mk

−M3J3M−1Γ31 −M3J3M−1Γ32 M3
. . . 0m3×mk

...
...

...
. . .

...

−MkJkM−1Γk1 −MkJkM−1Γk2 −MkJkM−1Γk3 . . . Mk


, (3.32)

with

Γij = NjJ
T
j Λj −

i−1∑
k=j+1

NkJ
T
k ΛkJkM

−1NjJ
T
j Λj, (3.33)

where Λj is given by (2.15). Since (3.31) is a linear system, µ can easily be designed
such that the input-output dynamics of every task is stable. However, the zero
dynamics must be asymptotically stable in order to guarantee that the MIMO
system is minimum phase, and hence stable [42].

In order to avoid analyzing complicated zero dynamics, the tasks can be designed
such that

r1 + r2 + · · · + rm = 2n, (3.34)

and by assuming that g(x0) has rank m in a neighborhood around x0, the state
space exact linearization problem is solvable by Lemma 5.2.1 in [42]. In other
words, if the tasks are defined in such a way that the system has a vector relative
degree in a neighborhood around x0, the matrix g(x0) has rank m around x0 and
r1 + r2 + · · · + rk = 2n, then the system has no zero dynamics and the system is
full-state feedback linearizable. Consequently, stability of the entire system can be
guaranteed by designing µ such that the linear system described by (3.31) is stable.

The task priority operational space control law in [13] can be formulated as
input-output linearization by employing PD control laws µi for every task. By
defining the vectors ηi := [yT

i , ẏ
T
i ]T, eq. (3.31) yields the following differential
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equations

η̇i = f̃i + g̃iµi, (3.35)

= Fiηi +Giµi, (3.36)

where

Fi =

0 I

0 0

 , Gi =

0

I

 , (3.37)

for i = 1, . . . , k. By employing the PD control law

µi =
[
−Kp,i −Kd,i

]
ηi, (3.38)

the closed loop system for each task becomes

ÿi +Kd,iẏi +Kpyi = 0, (3.39)

under the assumption that all tasks are compatible, i.e. that the system exhibits a
vector relative degree.

Remark. The control law given by (3.4), (3.30) and (3.38) is exactly equal to (2.18),
which was introduced in [13].

3.1.2.1 Incompatible tasks

If the ith task becomes incompatible with one or more higher priority tasks at the
point x0, then A(x0) is singular and the system does not have a vector relative
degree. However, as long as all the higher priority tasks are still compatible with
each other, the submatrix of A(x) containing the first ∑i−1

k=1 mk rows and columns
will still be nonsingular. Consequently, the first i− 1 tasks are still input-output
linearizable. As for the ith task, the singular value decomposition of Λ−1

i can be
used to characterize the controllable directions and compute a pseudoinverse of
Λi, which can be employed in (3.32). It can be shown that the error coordinates
representing the controllable directions are still GAS under the control law given
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by (3.4), (3.30) and (3.38) [51].

3.1.3 Implementation through quadratic programs

Instead of choosing a predetermined control law for each task, rapidly exponentially
stabilizing control Lyapunov functions can be utilized in order to guarantee rapid
exponential stability of the task variables ηi [52]. By constructing a RES-CLF,
Vϵ,i = ηT

i Pϵ,iηi for (3.35), a control law µi ∈ Kϵ,i(x) can be found by solving the
following quadratic program (QP)

minimize
µi∈Rmi

µT
i µi (3.40a)

subject to

Lf̃i
Vϵi + Lg̃i

Vϵiµi ≤ −γi
ϵi
Vϵi. (3.40b)

This QP has a single affine inequality constraint, and it therefore has an explicit
solution given by [53]

µi(ηi) =


−ψ0,i(ηi)ψ1,i(ηi)
ψT

1,i(ηi)ψ1,i(ηi)
, if ψ0,i(ηi) > 0,

0, if ψ0,i(ηi) ≤ 0,
, (3.41)

where

ψ0,i = Lf̃i
Vϵi + γi

ϵi
Vϵ,i, (3.42)

ψ1,i =
(
Lg̃i

Vϵ,i
)T
. (3.43)

In order to obtain control inputs µi for every task according to (3.30), one possibility
is to employ (3.41) for i = 1, . . . , k. When A(x) has linearly independent rows, this
approach yields controllers that achieve exponential stability of every task at a
predetermined rate, while minimizing the control effort µ. However, set-based tasks
described by ECBFs cannot be accounted for without augmenting every QP in
(3.40) with additional inequality constraints, which entails that the QPs no longer
have closed form solutions.
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Alternatively, the QP in (3.40) can be extended from one task to k tasks by
solving a single QP with k affine inequality constraints as shown for the two task
case in [23], viz.

minimize
µ∈Rm,δ∈Rk

µTµ+ δTWδ (3.44a)

subject to

Lf̃i
Vϵi + Lg̃i

Vϵiµi ≤ −γi
ϵi
Vϵi + δi, i = 1, . . . , k, (3.44b)

where slack variables δ, penalized by W ∈ Rk×k are added to each CLF constraint
in order to ensure feasibility of the QP, in case of conflicting tasks. Since this
formulation solves a single QP with one inequality constraint for each task, it is
a simple matter of extending (3.44) to account for l set-based tasks described by
ECBFs hj ∈ R as follows [32]

minimize
µ∈Rm,δ∈Rk

µTµ+ δTWδ (3.45a)

subject to

Lf̃i
Vϵi + Lg̃i

Vϵiµi ≤ −γi
ϵi
Vϵi + δi, i = 1, . . . , k, (3.45b)

L
ρj

f hj +
∂L

ρj−1
f hj

∂x
gA−1 (µ− b) ≥ −Kα,jξj, j = 1, . . . , l, (3.45c)

where ξj = col
(
h(x), Lfh(x), . . . , Lρj−1

f h(x)
)

and Kα,j = row
(
α1,j, α2,j, . . . , αρj ,j

)
.

A well known drawback associated with feedback linearizing control is the
reliance on exact cancellation of all nonlinearities. Nonlinearities are not inherently
bad, and stabilizing nonlinearities should be exploited instead of canceled by
feedback. In an attempt to mitigate this, the QP in (3.45) can also be formulated
in terms of v by solving (3.30) for µ [23]

µ = Av + b. (3.46)

By rewriting the objective function term µTµ as

µTµ = vTATAv + 2bTAv + bTb, (3.47)
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the QP in (3.45) be expressed as

minimize
v∈Rm,δ∈Rk

vTATAv + 2bTAv + δTWδ (3.48a)

subject to

Lf̃i
Vϵi + Lg̃i

Vϵi (Aiv + bi) ≤ −γi
ϵi
Vϵi + δi, i = 1, . . . , k, (3.48b)

L
ρj

f hj +
∂L

ρj−1
f hj

∂x
gv ≥ −Kα,jξj, j = 1, . . . , l. (3.48c)

In addition to including set-based tasks, the schemes in (3.45) and (3.48) can be
extended to incorporate control input saturation limits and rate constraints as
shown in Section 2.6.

3.1.3.1 Discussion

Both of the QPs in (3.45) and (3.48) extend operational space control to set-based
tasks, where the former includes the nonlinear task dynamics within the CLF
constraints. As a result, ‘good’ nonlinearities can be exploited instead of canceled,
possibly reducing the overall control effort and robustifying the system with respect
to modeling errors. However, the price to be paid is that whenever two or more
tasks are incompatible, both QPs yield control inputs µ and v that do not respect
the strict priority between tasks. This is due to the fact that a single objective
function encodes the satisfaction/stability of all tasks through the value of the
slack variables δ and penalty parameters in W . Therefore, when two or more
tasks cannot be achieved simultaneously, the solution µ or v will invariably lead to
trade-off configurations that do not satisfy any of the tasks perfectly. The problem
can be somewhat mitigated by choosing excessively large penalty values for higher
priority tasks.

There is another issue in (3.48) that leads to coupled tasks. Consider the
following term in the second CLF constraint

A2v = J2M
−1JT

1 v1 + J2M
−1N2J

T
2 v2, (3.49)

which entails that the control inputs for higher priority tasks (such as v1) are
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optimized not only with respect to their own task dynamics, but also with respect
to how they influence the execution of lower priority tasks.

The aforementioned problems do not occur when applying the min-norm con-
troller from (3.40) for every task, since these QPs are fully independent of each
other. However, the closed form solutions come at the cost of a single inequality
constraint, which means that set-based tasks are not supported. These issues were
not addressed in [23], wherein the authors claimed that the QP in (3.48) with the
control law (3.4) does not allow for dynamic weighting of the tasks, because lower
priority tasks only act in the null space of higher priority tasks. While it is true
that the control input vk of some lower priority task does not directly influence the
task dynamics of some task p < k, the control inputs vk and vp are found through
(3.48), where the effect of vk on the pth task is explicitly taken into account, as
demonstrated for p = 1 and k = 2 in (3.49). Because slack variables are added to
each CLF constraint, the tasks can in fact be dynamically weighted by tuning the
penalty parameters.

The main idea behind null space based control such as operational space control
is to ensure strict priority between tasks by utilizing null space operators. As a
result, trade-off configurations do not occur when tasks are incompatible. In this
way, lower priority optimization tasks can safely be included without affecting the
mission related control tasks. By losing this defining feature, the author argues that
null space based control is not suitable in combination with the optimization-based
controllers from (3.45) and (3.48).

3.2 Prioritizing Tasks through Quadratic Programs

The conclusion of the previous section was that tasks at different priority levels
become coupled when combining control Lyapunov function and control barrier
function based optimization problems with an operational space pre-control law.
Importantly, lower priority tasks affect the execution of higher priority tasks. In
order to achieve strict priority between tasks, this section abandons the operational
space pre-control law in (3.4), and extends the CLF-ECBF QP controller in [35] to
N equality- and M set-based tasks distributed to an arbitrary number of priority
levels. Strict priority between tasks at different priority levels is achieved, while a
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soft priority measure can be employed to prioritize tasks at the same priority level.

3.2.1 CLF penalty parameters as a priority measure

Consider the nonlinear affine control system

ẋ = f(x) + g(x)u, (3.50)

y = h(x), (3.51)

where f and g are locally Lipschitz, x ∈ D ⊂ Rn and u ∈ U ⊂ Rp is the set
admissible control inputs. The N equality tasks are described by locally Lipschitz
vector-valued error functions yi : Rn → Rmi , which are stacked in the output vector

h(x) =



y1(x)

y2(x)
...

yN(x)


. (3.52)

The following is assumed on the scalar output component yij of every task:

Assumption 3.1. For every equality task yi ∈ Rmi , there exists an integer ri such
that

Lgj
Lkfyil = 0, 1 ≤ j ≤ m, 0 ≤ k ≤ ri − 2 (3.53)

Lgj
Lri−1
f yil ̸= 0, for at least one 1 ≤ j ≤ m, (3.54)

for every l = 1, . . . ,mi and i = 1, . . . , N .

Assumption 3.1 states that the control input appears in each component of y(ri)
i ,

and in no components of y(k)
i for k < ri. Under this assumption, the input-output
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dynamics of each task y(ri)
i is given by


y

(ri)
i1 (x)

...

y
(ri)
imi

(x)

 =


Lri
f yi1(x)

...

Lri
f yimi

(x)


︸ ︷︷ ︸

bi(x)

+


Lg1L

ri−1
f yi1(x) ... LgpL

ri−1
f yi1(x)

... . . . ...

Lg1L
ri−1
f yimi

(x) ... LgmL
ri−1
f yimi

(x)


︸ ︷︷ ︸

Ai(x)

u. (3.55)

Transverse dynamics states ηi =
[
yT
i , ẏ

T
i , . . . ,

(
ẏ

(ri−1)
i

)T
]T

∈ Rrimi and RES-CLFs

Vϵ,i can then be defined analogously to (2.33a), (2.34) and (2.46) with the goal of
driving ηi → 0 for all i = 1, . . . , N .

Set-based tasks can be included if there exists control barrier functions or
exponential control barrier functions h(x) : Rn → R encoding the set-based tasks.
A straightforward extension of the QP defined for two control tasks in [23] to an
arbitrary number of tasks N as well as M set-based tasks is given by

minimize
(u,δ,s)∈Rm+N+K

uTH(x)u+ cT(x)u+ δTWδ + sTKs (3.56a)

subject to

Lf̄i
Vϵ,i + Lḡi

Vϵ,iu ≤ −γi
ϵ
Vϵ,i + δi, i = 1, . . . , N, (3.56b)

L
ρj

f hj +
∂L

ρj−1
f hj

∂x
gu ≥ −Kα,jξj, j = 1, . . . ,M, (3.56c)

where H(x) ∈ Rm×m is any positive semi-definite weighting matrix, c(x) ∈ Rm is
an arbitrary vector of weights, δ ∈ RN is a vector of slack variables, W ∈ RN×N is
a diagonal matrix of penalty parameters and

Lf̄i
Vϵ,i = ηT

i

(
F T
i Pϵ,i + Pϵ,iFi

)
ηi + 2ηT

i Pϵ,iGibi, (3.57)

Lḡi
Vϵ,i = 2ηT

i Pϵ,iGiAi, (3.58)

for i = 1, . . . , N , where Ai and bi are defined in (3.55). Moreover, note that the
omission of slack variables in (3.56c) defines M hard constraints in the form of
safety related set-based tasks, and implicitly defines two distinct priority levels, the
safety related set-based tasks, and the relaxed equality tasks.
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The equality tasks encoded by RES-CLFs are prioritized by adjusting the
elements of the diagonal penalty matrix W . The satisfaction of all equality tasks
are therefore described by a single objective function through the value of the
slack variables δ and the penalty parameters in W . Whenever equality tasks are
incompatible, this fact invariably leads to trade-off configurations that do not
satisfy any of the tasks. Hence, strict priority between tasks cannot be achieved
in the sense that lower priority tasks have no effect on the execution of higher
priority tasks. As a result, it is challenging to include lower priority optimization
based tasks since they will interfere with more critical higher priority tasks such as
end-effector control whenever the tasks are incompatible.

3.2.2 Enforcing strict priority between a selection of tasks

In order to establish more than two strict priority levels, we propose to solve a
quadratic program for every priority level as suggested for kinematic control in [11].
The idea is to begin by computing a control input according to (3.56) that only
accounts for equality tasks at the highest priority level and potential safety related
set-based tasks. Subsequently, a new quadratic program is solved for each priority
level, which refines the previously computed solution in an attempt to satisfy lower
priority tasks without affecting the execution of higher priority tasks.

3.2.2.1 Motivating example: Two priority levels

Consider N = 2 equality-based tasks and M = 2 set-based tasks distributed to
k = 3 priority levels. Three priority levels implies that two QPs are solved when
high priority set-based tasks are included. The first quadratic program finds a
control input that satisfies the highest priority set-based task, which is safety-
related, as well as attempting to satisfy the highest priority equality-based task as
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well as possible. The first control input is obtained by solving

minimize
(u,δ)∈Rm+1

1
2u

TH(x)u+ cT(x)u+ wδ2 (3.59a)

subject to

Lf̄1Vϵ,1 + Lḡ1Vϵ,1u ≤ −γ1

ϵ1
Vϵ,1 + δ, (3.59b)

Lρ1
f h1(x) +

∂Lρ1−1
f h1(x)
∂x

g(x)u ≥ −Kα,1ξ1(x). (3.59c)

Note that the absence of a slack variable in (3.59c) implies that this quadratic
program enforces strict priority between the safety-related task described by an
ECBF and the equality task in (3.59b) described by a RES-CLF.

Now, if the system is redundant with respect to these two tasks, the control
input u∗

1 can be changed to accommodate additional tasks, without affecting how
the two higher priority tasks are executed. This is achieved by solving another
quadratic program, viz.

minimize
(u,δ,s)∈Rm+2

1
2u

TH(x)u+ cT(x)u+ wδ2 + ks2 (3.60a)

subject to

Lḡ1Vϵ,1u ≤ Lḡ1Vϵ,1u
∗
1, (3.60b)

Lf̄2Vϵ,2 + Lḡ2Vϵ,2u ≤ −γ2

ϵ2
Vϵ,2 + δ, (3.60c)

∂Lρ1−1
f h1(x)
∂x

g(x)u ≥
∂Lρ1−1

f h1(x)
∂x

g(x)u∗
1, (3.60d)

Lρ2
f h2(x) +

∂Lρ2−1
f h2(x)
∂x

g(x)u ≥ −Kα,2ξ2(x) − s, (3.60e)

where s is a slack variable penalized by the penalty parameter k > 0. Equation
(3.60b) is obtained by enforcing the condition

Lf̄1Vϵ,1 + Lḡ1Vϵ,1u ≤ Lf̄1Vϵ,1 + Lḡ1Vϵ,1u
∗
1 ≤ −γ1

ϵ1
Vϵ,1 + δ. (3.61)
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Similarly, (3.60d) is obtained from

Lρ1
f h1(x) +

∂Lρ1−1
f h1(x)
∂x

g(x)u ≥ Lρ1
f h1(x) +

∂Lρ1−1
f h1(x)
∂x

g(x)u∗
1 ≥ −Kα,1ξ1(x).

(3.62)

3.2.2.2 Extension to k priority levels

Consider N equality-based tasks and M set-based tasks as in Section 3.2.1. In
contrast to (3.56), ECBFs are no longer restricted to the highest priority level. This
enables defining ECBFs for non-safety related tasks such as set-based optimization
tasks. Moreover, let the tasks be distributed to k priority levels, and let N1 +
. . .+Nk = N and M1 + . . .+Mk = M , where Ni and Mi denotes the number of
equality and set-based tasks at priority level i, respectively. A control input u∗

1 that
disregards all lower priority tasks is obtained by solving (3.56) with i = 1, . . . , N1

and j = 1, . . . ,M1.
If the system is redundant with respect to these N1 + M1 tasks, the control

input u∗
1 can be refined without affecting how the N1 higher priority equality tasks

are executed by enforcing

Lf̄i
Vϵ,i + Lḡi

Vϵ,iu ≤ Lf̄i
Vϵ,i + Lḡi

Vϵ,iu
∗
1 (3.63)

which implies Lḡi
Vϵ,iu ≤ Lḡi

Vϵ,iu
∗
1 for all i = 1, . . . , N1. Similarly, the higher priority

set-based tasks are unaffected by enforcing

∂Lρk−1
f hk

∂x
gu ≥

∂Lρk−1
f hk

∂x
gu∗

1, (3.64)

for all k = 1, . . . ,M1. Consider N2 additional equality-based tasks and M2 addi-
tional set-based tasks. The control input u∗

2 is obtained by solving the following
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QP
minimize

u∈Rm,δ∈RN2 ,s∈RM2
uTH(x)u+ cT(x)u+ δTWδ + sTKs

subject to

Lḡi
Vϵ,iu ≤ Lḡi

Vϵ,iu
∗
1, i=1,...,N1,

Lf̄j
Vϵ,j + Lḡj

Vϵ,ju ≤ −γj
ϵj
Vϵ,j + δj, j=N1+1,...,N1+N2,

∂Lρk−1
f hk

∂x
gu ≥

∂Lρk−1
f hk

∂x
gu∗

1, k=1,...,M1,

Lρl
f hl +

∂Lρl−1
f hl

∂x
gu ≥ −Kα,lξl − sl, l=M1+1,...,M1+M2,

(3.65)

where slack variables s penalized by the elements in the diagonal matrix K > 0
have been added to the lower priority set-based tasks enforced through ECBFs to
ensure feasibility of the optimization problem.

By observing that the solution u∗
2 to (3.65) enforces the constraints

Lḡi
Vϵ,iu

∗
2 ≤ Lḡi

Vϵ,iu
∗
1, (3.66)

∂Lρk−1
f hk

∂x
gu∗

2 ≥
∂Lρk−1

f hk

∂x
gu∗

1, (3.67)

for all i and k, it is straightforward to generalize (3.65) to an arbitrary priority
level n, viz.

minimize
u∈Rm,δ∈RNn ,s∈RMn

uTH(x)u+ cT(x)u+ δTWδ + sTKs

subject to

Lḡi
Vϵ,iu ≤ Lḡi

Vϵ,iu
∗
n−1, i=1,...,N̄n−1,

Lf̄j
Vϵ,j + Lḡj

Vϵ,ju ≤ −γj
ϵj
Vϵ,j + δj, j=N̄n−1+1,...,N̄n,

∂Lρk−1
f hk

∂x
gu ≥

∂Lρk−1
f hk

∂x
gu∗

n−1, k=1,...,M̄n−1,

Lρl
f hl +

∂Lρl−1
f hl

∂x
gu ≥ −Kα,lξl − sl, l=M̄n−1+1,...,M̄n,

(3.68)

where N̄n = N1 +N2 + . . .+Nn and M̄n = M1 +M2 + . . .+Mn.
Note that the objective function is slightly different at every priority level, since
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the slack variables δ and s always correspond to tasks at the current priority level.
This prevents the occurrence of an optimal compromise between the satisfaction of
incompatible tasks, where a solution is found that minimizes the objective function,
and is hence optimal, but in which none of the tasks are fully satisfied.

3.2.2.3 Summary

Within this framework, equality tasks are satisfied by enforcing the negative
definiteness of the time derivative of rapidly exponentially stabilizing control
Lyapunov functions. RES-CLFs are employed to directly control the rate of
exponential convergence. Moreover, set-based tasks are satisfied by rendering their
valid sets forward invariant, which is achieved by formulating the valid sets as the
superlevel sets of exponential control barrier functions.

The procedure is summarized in Algorithm 1, where it is assumed that the N
equality and M set-based tasks are distributed to k + 1 priority levels1 where Ni

and Mi represents the number of equality and set-based tasks at priority level i,
respectively. In Algorithm 1, H(x) ∈ Rm×m and c(x) ∈ Rm are design parameters
that weight the control inputs.

Algorithm 1 Task priority CLF-ECBF QP controller
Input: H(x), c(x), Vϵ,i(ηi), i = 1, . . . , N , hj(x), j = 1, . . . , M .
Output: u

1: Solve (3.56) to obtain u∗
1 with i = 1, . . . , N1 and k = 1, . . . , M1.

2: for p = 2 to k do
3: Solve (3.68) to obtain u∗

p.
4: end for
5: return u = u∗

k

1If there are set-based tasks without slack variables at the highest priority level. If not, there
are k priority levels.



Chapter 4

Modeling of AIAUVs

This chapter describes the dynamic and kinematic modeling of AIAUVs presented
in [54, 55]. The chapter was originally written for [15] and is restated here with
minor modifications for completeness.

4.1 Reference Frames

Because AIAUVs in work mode operate in local areas, approximately constant
longitude and latitude can be assumed. Moreover, the Earth’s rotation can be
neglected and a local Earth-fixed North-East-Down tangent frame denoted {n}
is used for navigation. This frame is assumed to be inertial such that Newton’s
laws still apply. The origin of the NED frame is fixed, the x-axis points North,
the y-axis points East while the z-axis points downwards normal to the Earth’s
surface. Note that in the navigation literature this frame is often referred to as
NED assumed to be inertial or a non-rotating tangent frame [56].

The body-fixed reference frame {b} is rigidly attached to the AIAUV and
located at the base, the x-axis points forward, z-axis points upwards and the y-axis
points sideways to complete the right-handed coordinate system. The reference
frame of the end-effector {e} is rigidly attached to the front of the AIAUV, where
the x-axis points forward, z-axis points upwards and the y-axis points sideways to
complete the right-handed coordinate system.

43
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4.2 Kinematic Modeling of AIAUVs

The system configuration of an AIAUV is defined as ξ = [ηT, θT]T ∈ R6+n, where
θ ∈ Rn represents the joint angles and

η =

pnnb
Θnb

 ∈ R6, (4.1)

where pnnb = [N,E,D]T ∈ R3 represents the position of the base frame in the afore-
mentioned NED frame, while the orientation between {n} and {b} is represented
by the Euler angles Θb

nb = [ϕb, θb, ψb]T ∈ R3. The components of Θnb are denoted
roll, pitch and yaw, respectively. Alternatively, the orientation can be represented
by unit quaternions q = [η, ϵT]T ∈ R4, ∥q∥ = 1, where η ∈ R is the real part of the
quaternion, while ϵ ∈ R3 corresponds to the vector part. By using a unit quaternion
representation, the system configuration is defined as ξ =

[
ηT
q , θ

T
]T

∈ R7+n where

ηq =


pnnb

η

ϵ

 ∈ R7. (4.2)

4.2.1 Differential kinematics

The body-fixed velocity of the AIAUV is given by

ζ =

V b
nb

θ̇

 ∈ R6+n, V b
nb =

vbnb
ωbnb

 ∈ R6, (4.3)

where vbnb = [u, v, w]T ∈ R3 and ωbnb = [p, q, r]T ∈ R3 are the linear and angular
velocities of the body-fixed frame, respectively. θ̇ ∈ Rn represents the joint
velocities.

The relation between the body-fixed velocities and the NED-frame velocities
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can be expressed by

ξ̇ = Jξ(Θnb)ζ, (4.4)

where

Jξ(Θnb) =


Rn
b (Θnb) 03×3 03×n

03×3 Tnb(Θnb) 03×n

0n×3 0n×3 In

 . (4.5)

The rotation matrix Rn
b (Θnb) = Rz(ψb)Ry(θb)Rx(ϕb) transforms the linear velocity

from the body-frame to the NED-frame and is computed according to the zyx con-
vention, which is common practice in guidance, navigation and control applications
[57]. The angular velocity transformation matrix that maps the body-fixed angular
velocities to the Euler angle derivatives is given by

T (Θ) =


1 sinϕ tan θ cosϕ tan θ

0 cosϕ − sinϕ

0 sinϕ
cos θ

cosϕ
cos θ

 . (4.6)

4.2.1.1 Quaternions and Euler angles

While the Euler angle attitude parametrization is intuitive and only requires three
parameters, it suffers from a singularity corresponding to θ = ±90◦ as observed
from (4.6). This singularity is not a problem for surface vehicles, but for an AIAUV
it can become problematic if the vehicle is operating close to the singularities.
This is why a four-parameter unit quaternion representation is used in all of the
simulations conducted as part of this thesis.

By employing unit quaternions, the relation between the body-fixed velocities
and the NED-frame velocities can be expressed by

ξ̇ = Jξ(q)ζ, (4.7)
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where

Jξ(q) =


Rn
b (q) 03×3 03×n

04×3 Tq(q) 04×n

0n×3 0n×3 In

 . (4.8)

The rotation matrix is given by

Rn
b (q) = I3×3 + 2ηϵ× + 2 (ϵ×)2 , (4.9)

where ϵ× ∈ so(3) represents the skew-symmetric form of ϵ. The transformation
matrix mapping the angular velocity decomposed in the base frame to the quaternion
time derivative is given by

Tq(q) = 1
2



−ϵ1 −ϵ2 −ϵ3

η −ϵ3 ϵ2

ϵ3 η −ϵ1

−ϵ2 ϵ1 η


. (4.10)

4.2.2 Differential task kinematics

For an AIAUV, operational space tasks are nonlinear mappings σi(ξ) = fi(ξ). The
first order differential kinematics are given by

σ̇i(ξ, ζ) = ∂fi(ξ)
∂ξ

Jξ(q)ζ (4.11)

= Jiζ. (4.12)

4.2.3 Forward kinematics

An AIAUV consists of n+ 1 links interconnected by n joints, the links are labeled
1, . . . , (n+ 1), where link 1 is the tail, or base link and link n+ 1 is the head. All
joints are single DOF joints, and the AIAUV is assumed to only consist of revolute
joints. Joints with multiple DOFs are therefore modeled as two consecutive joints
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with an additional link between them.
For each link a homogeneous transformation matrix is defined

Hi =

Rni pni

01×3 1

 ∈ SE(3), (4.13)

for i = 1, . . . , n+ 1 which uniquely specifies the pose of link i in the NED frame
defined in Section 4.1. Furthermore, let Ai(θi) ∈ SE(3) represent the mapping from
the coordinate frame defined by Hi to the coordinate frame defined by Hi+1, where
θi is the joint variable of joint i. Given the transformation matrix H, describing the
position pnnb and orientation Rn

b of the base frame in the NED frame, the position
and orientation of link i+ 1 is then given by the recursive equations

H1 = H (4.14)

Hi+1 = HiAi(θi) (4.15)

= HA1(θ1)A2(θ2) · · ·Ai(θi). (4.16)

The position and orientation of link n+ 1, or the head frame can then be written

Hn+1 = HA1,n(θ), (4.17)

where θ = [θ1, θ2, . . . , θn]T ∈ Rn is the vector of joint parameters and

Ai,j(θ) =


Ai(θi)Ai+1(θi+1) · · ·Aj(θj), if i ≤ j

0, if i > j
. (4.18)

The instantaneous velocity of a rigid body in terms of its linear and angular
components will from now on be described by twists, which are infinitesimal
versions of a screw motion. Background material can be found in [58]. Let
ai = [βT

i , λ
T
i ]T ∈ R6 represent the twist coordinates of joint i, the corresponding
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twist is given by

a∧ =

β
λ


∧

=

λ× β

0 0

 ∈ R4×4, (4.19)

where the wedge operator represents the mapping ∧ : R6 → se(3) with se(3) defined
as

se(3) =
{
(β, λ×) : β ∈ R3, λ× ∈ so(3)

}
. (4.20)

The 4 × 4 matrix a∧ ∈ se(3) can be interpreted as a generalization of the skew-
symmetric matrix ω× ∈ so(3). The rigid motion associated with rotating and
translating along the axis of the twist can be represented by [58]

Ai(θi) = Ai(0)ea∧
i θi , (4.21)

where the exponential map ea
∧θ : se(3) → SE(3) is given by

ea
∧θi =

eλ×θ
(
I − eλ×θ

)
(λ×β) + λλTβθ

01×3 1

 , ω ̸= 0, (4.22)

eλ×θ = I + λ× sin θ + (λ×)2 (1 − cos θ) , ∥λ∥ = 1, (4.23)

where eλ×θ : so(3) → SO(3). Assuming that the AIAUV only consists of revolute
joints, the twist of each joint is given by

ai =



0

0

0

λi


, (4.24)

where λi ∈ R3 is a unit vector defining the axis of rotation of joint i. Moreover,
under the additional assumption that the coordinate frame of link i+ 1 is attached
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to joint i with its x-axis parallel to the link direction, (4.21) can be written

Ai(θi) = Ai(0)

e(λi)×θi 0

01×3 1

 , (4.25)

with

Ai(0) =

 I3 lie1

01×3 1

 , (4.26)

where li is the length of link i and e1 = [1, 0, 0]T.
The head frame defined by Hn+1 has its origin at head joint, which is at the back

of the head link. The transformation Ae from the head frame to the end-effector
frame is given by a pure translation in the x-direction

Ae =

 I3 ln+1e1

01×3 1

 , (4.27)

such that the position pne and orientation Rne of the end-effector frame relative to
the NED frame is found by the transformation

He =

Rne pne

01×3 1

 = Hn+1Ae. (4.28)

4.2.4 Jacobians

The body twist of the base is defined as

(
V b
nb

)∧
= H−1Ḣ, (4.29)

where H is the homogeneous transformation matrix from the base frame to the
NED frame. Hence, the body twist of link i is given by

(
V i
ni

)∧
= H−1

i Ḣi, (4.30)
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where Hi is given by (4.16), (4.18) and (4.21). Since the joint twist given by (4.21)
is constant, taking the time derivative of (4.21) yields

Ȧi(θi) = Ai(0)ea∧
i θia∧

i θ̇i, (4.31)

which yields

A−1
i Ȧi = e−a∧

i θiA−1
i (0)Ai(0)ea∧

i θia∧
i θi (4.32)

= a∧
i θi. (4.33)

The body twist of link i is then given by
(
V i
ni

)∧
= H−1

i Ḣi

= A−1
1,i−1H

−1ḢA1,i−1

+ A−1
2,i−1a

∧
1A2,i−1θ̇i + A−1

3,i−1a
∧
2A3,i−1θ̇2 + . . .

+ A−1
i−1,i−1a

∧
i−2Ai−1,i−1θ̇i−2 + a∧

i−1θ̇i−1.

(4.34)

In order to proceed the adjoint operator and its inverse has to be defined. The
adjoint operator, Ad(Ai) : R6 → R6 maps a velocity twist in frame i + 1 to
frame i, representing the adjoint transformation associated with the homogeneous
transformation matrix Ai and is defined by

(
Ad(H)V

)∧ = HV ∧H−1, (4.35)

and its inverse, Ad−1(H) : R6 → R6 is defined by

(
Ad−1(H)V

)∧
= H−1V ∧H. (4.36)

Both operators have matrix representations given by

Ad(H) =

 R p×R

01×3 R

 ∈ R6×6, (4.37)



4.2 Kinematic Modeling of AIAUVs 51

Ad−1(H) =

 RT −RTp×

01×3 RT

 ∈ R6×6. (4.38)

Therefore, (4.34) can be rewritten in body velocity twist coordinates as

V i
ni = Ad−1(A1,i−1)V b

nb + ai−1θ̇i−1 +
i−2∑
j=1

Ad−1(Aj+1,i)aj θ̇j. (4.39)

The body velocity twist coordinates of the base frame and the joint angle velocities
are collected in the vector ζ =

[
V b
nb, θ̇

]T
∈ R6+n. Define the Jacobian matrices

Ji ∈ R6×(6+n) by

V i
ni = Jiζ, (4.40)

which maps the velocity twist coordinates V b
nb and joint velocities θ̇ to link velocity

twist coordinates V i
ni decomposed in their own frame. From inspection of (4.39)

the Jacobians are given by

J1 =
[
I6 06×n

]
, (4.41)

Ji+1 =
[
Ad−1(A1,i) Ad−1(A2,i)a1 . . . ai 06×(n−i)

]
(4.42)

= Ad−1(Ai)Ji +
[
06×(5+i) ai 06×(n−i)

]
. (4.43)

The time derivatives of the Jacobians are found recursively by differentiation of
(4.41) and (4.43) as [54]

J̇1 = 06×(6+n), (4.44)

J̇i+1 = − ad(ai)Ji+1θ̇i + Ad−1(Ai)J̇i. (4.45)

Since the transformation matrix Ae from the head frame to the end-effector
frame is constant, the body manipulator Jacobian of the end-effector is therefore
given by

Je = Ad−1 (Ae) Jn+1, (4.46)
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where Jn+1 is the Jacobian of the head frame. The time derivative of the end-effector
Jacobian is

J̇e = Ad−1 (Ae) J̇n+1. (4.47)

4.3 Equations of Motion

The equations of motion in the base frame are given by [54]

ξ̇ = Jξ(q)ζ, (4.48a)

M(θ)ζ̇ + C(θ, ζ)ζ +D(θ, ζ)ζ + g(ξ) = τ, (4.48b)

where the control inputs u are mapped to commanded forces and moments τ
through the actuator configuration matrix B(θ), viz.

τ = B(θ)u, (4.49)

where u =
[
ut, uj

]T
∈ Rm consists of the thruster inputs ut ∈ Rp and joint torque

inputs uj ∈ Rn. The equations of motion can be rewritten in state space form as

ẋ = f(x) + g(x)u, (4.50)

where x = [xT
1 , x

T
2 ]T = [ξT, ζT]T ∈ R13+2n, u ∈ Rm and

f(x) =

 Jξ(x1)x2

−M(x)−1 (C(x)x2 +D(x)x2 + g(x1)
)
 , (4.51)

g(x) =

 0

M(x)−1B(x1)

 . (4.52)

The actuator configuration matrix is given by

B(θ) =
[
J1(θ)TB1 J2(θ)TB2 · · · Jn(θ)TBn Bjoint

]
, (4.53)
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where the link thrust configuration matrices Bi are constant and expressed as

Bi =

 βt,i,1 βt,i,2 · · · βt,i,p

rt,i,1 × βt,i,1 rt,i,2 × βt,i,2 · · · rt,i,p × βt,i,p

 , (4.54)

where βt,i,j and rt,i,j are the thrust direction and point of attack of the jth thruster
of link i expressed in the frame of link i. The matrix Bjoint is given by

Bjoint =

06×p

In

 . (4.55)

Note that the thruster inputs also generate torques affecting the joints, while joint
torque inputs only affect the joints directly.

The inertia matrix M(θ) is given by

M(θ) =
n∑
i=1

JT
i (θ)MiJi(θ), (4.56)

where Mi is the inertia matrix of link i containing the rigid body mass and inertia
matrix and the added mass matrix

Mi = MR,i +MA,i, (4.57)

where

MR,i =

 miI3 mi

(
rg,i
)T

×

mi

(
rg,i
)

×
IR,i

 , (4.58)

and IR,i is the rigid body inertia matrix of link i. By assuming cylindrical links
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with a common radius r and link lengths li the added mass matrix for link i is

MA,i = ρπr2liCa



αi 0 0 0 0 0

0 1 0 0 0 1
2 li

0 0 1 0 −1
2 li 0

0 0 0 0 0 0

0 0 −1
2 li 0 1

3 l
2
i 0

0 1
2 li 0 0 0 1

3 l
2
i


, (4.59)

where αi is a parameter that permits added mass in surge, ρ is the density of water
and Ca is the added mass coefficient.

The Coriolis and centripetal matrix C(θ, ζ) is given by

C(θ, ζ) =
n∑
i=1

(
Ji(θ)TMiJ̇i(θ, θ̇) − Ji(θ)TWi(θ, ζ)Ji(θ)

)
, (4.60)

Wi(θ, ζ) =


03×3

({
MiV

i
ni

}
v

)
×({

MiV
i
ni

}
v

)
×

({
MiV

i
ni

}
ω

)
×

 , (4.61)

where
{
MiV

i
ni

}
v

∈ R3 and
{
MiV

i
ni

}
ω

∈ R3 are the first three and final three entries
of MiV

i
ni, respectively. Hydrodynamic damping is modeled by D(θ, ζ), which is

given by

D(θ, ζ) =
n∑
i=1

Ji(θ)TDi(θ, ζ)Ji(θ), (4.62)

where Di(θ, ζ) is the hydrodynamic damping matrix of link i, such that DiV
i
ni

yields the hydrodynamic forces and moments on link i.
The generalized hydrostatic force g(ξ) is given as

g(ξ) =
n∑
i=1

Ji(θ)Tgi(ξ), (4.63)
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where gi(ξ) are the hydrostatic forces and moments on link i

gi(ξ) = GiR
T
niγ0, (4.64)

where γ0 is the constant direction of gravity in the NED frame, and Rni is the
rotation matrix from the NED frame to the frame of link i. The matrices Gi ∈ R6×6

are constant and given as

Gi =

 (ρvig −mig) I3

ρvig
[
rb,i
]

×
−mig

[
rg,i
]

×

 , (4.65)

where ρ is the density of water, vi is the effective volume of link i, g is the
gravitational acceleration constant, mi is the mass of link i and rb,i and rg,i is the
location of the center of buoyancy and center of gravity of link i expressed in the
coordinate frame of link i, respectively.



Chapter 5

AIAUV Control

In this chapter, an extensive case study of the task priority framework developed
in Section 3.2 is conducted for an AIAUV application. Section 5.1 presents the
AIAUV simulation model, before the set-based and equality-based tasks to be
controlled are defined in Section 5.2 and Section 5.3, respectively. Two control laws
are developed in Section 5.4, followed by simulation results and a discussion.

5.1 AIAUV Model

The AIAUV simulation model is identical to the one in [59]. The AIAUV consists
of 5 links with 4 cardan joints connecting them, which are joints that can rotate
about the y and z-axis that they are attached to. The cardan joints are modeled
as consecutive 1-DOF joints, thereby introducing short links separating two joints
actuated about different axes, creating four new links. The total number of joints
and links are therefore 8 and 9, respectively. Odd-numbered joints rotate about
the z-axis, and even-numbered joints rotate about the y-axis.

The AIAUV has 7 thrusters in total, two of which are positioned on the third
link, pointing in the z and y directions of the coordinate frame of link 3. Three
thrusters are positioned on the fifth link, pointing in the x, y and z directions in
the coordinate frame of link 5. The last two thrusters are located at the seventh
link, pointing in the y and z directions in the coordinate frame of link 7.

56
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5.2 Set-Based Tasks for AIAUV Control

This section introduces the safety related set-based tasks that should be satisfied at
all times. Their satisfaction is ensured through exponential control barrier functions
(ECBFs).

5.2.1 End-effector collision avoidance

To avoid a collision between the end-effector and some obstacle, the scalar distance
measure between them is employed as a set-based task

σa =
√

(pnobs − pnne)
T (pnobs − pnne), (5.1)

which must be differentiated twice for the control input to appear, viz.

σ̇a = Jaζ, (5.2)

σ̈a = JaM
−1 (Bu− Cζ −Dζ − g) + J̇aζ, (5.3)

where the task Jacobian Ja ∈ R1×(6+n) is given by [60]

Ja = − (pnobs − pnne)
T

σa

[
Rn
e (q) 03×3

]
Jeζ, (5.4)

where the end-effector Jacobian Je ∈ R6×(6+n) is given by the recursive equations
(4.41), (4.43) and (4.46). In order to obtain an expression for the time derivative
of the task Jacobian, consider the term

x = −(po − p)
σa

, (5.5)

the time derivative is given by

dx
dt = ∂x

∂p
ṗ (5.6)

=
Iσa + (po − p) ∂σa

∂p

σ2
a

v (5.7)
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=
 I

σa
− (po − p) (po − p)T

σ3
a

 v, (5.8)

transposing both sides yields

dxT

dt = vT

 I

σa
− (po − p) (po − p)T

σ3
a

T

(5.9)

= vT

 I

σa
− (po − p) (po − p)T

σ3
a

 . (5.10)

Hence, the time derivative of the task Jacobian is given by

J̇a = (vnne)
T

 I

σa
− (pnobs − pnne) (pnobs − pnne)

T

σ3
a

[Rn
e 03×3

]
Je (5.11)

+ − (pnobs − pnne)
T

σa

([
Rn
e [ωene]× 03×3

]
Je +

[
Rn
e 03×3

]
J̇e

)
, (5.12)

where the time derivative of the end-effector Jacobian J̇e (θ) ∈ R6×6+n is given by
the recursive equations (4.44), (4.45) and (4.47).

5.2.2 Actuator singularity avoidance

The rank deficiency of the actuator configuration matrix B(θ) was pointed out in
[1], and implies that no force or moment can be generated in certain directions in
the vector space R6+n belonging to τ . Inspired by the manipulability index [44],
the actuation index task is introduced to prevent singular configurations and is
defined by

σb := det
(
B(θ)B(θ)T

)
, (5.13)

where B(θ) is the actuator configuration matrix. The actuator singularity avoidance
task must be differentiated twice with respect to time for the control input to show
up, as seen from

σ̇b = Jbζ, (5.14)
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σ̈b = JbM
−1 (Bu− Cζ −Dζ − g) + J̇bζ, (5.15)

where the task Jacobian is given by

Jb =
[
01×6

∂σb

∂θ1
∂σb

∂θ2
∂σb

∂θ3
· · · ∂σb

∂θn

]
, (5.16)

and the actuation index derivative is given by [61]

∂σb
∂θi

= 2σb Tr
 ∂2B

∂θi∂B

†
 , (5.17)

where B† is the right Moore-Penrose pseudoinverse of B. Furthermore, the task
Jacobian derivative is given by [61]

J̇b =
[
∂
∂θ

(01×6) θ̇ ∂
∂θ

(
∂σb

∂θ1

)
θ̇ ∂

∂θ

(
∂σb

∂θ2

)
θ̇ · · · ∂

∂θ

(
∂σb

∂θn

)
θ̇

]
(5.18a)

=



06×1

∂2σb

∂θ2
1
θ̇1 + ∂2σb

∂θ1∂θ2
θ̇2 + ∂2σb

∂θ1∂θ3
θ̇3 + · · · + ∂2σb

∂θ1∂θn
θ̇n

∂2σb

∂θ2∂θ1
θ̇1 + ∂2σb

∂θ2
2
θ̇2 + ∂2σb

∂θ2∂θ3
θ̇3 + · · · + ∂2σb

∂θ2∂θn
θ̇n

∂2σb

∂θ3∂θ1
θ̇1 + ∂2σb

∂θ3∂θ2
θ̇2 + ∂2σb

∂θ2
3
θ̇3 + · · · + ∂2σb

∂θ3∂θn
θ̇n

...
∂2σb

∂θn∂θ1
θ̇1 + ∂2σb

∂θn∂θ2
θ̇2 + ∂2σb

∂θn∂θ3
θ̇3 + · · · + ∂2σb

∂θ2
n
θ̇n



T

(5.18b)

=



06×1

θ̇1

θ̇2

θ̇3
...

θ̇n



T



06×n

∂2σb

∂θ2
1

∂2σb

∂θ2∂θ1
∂2σb

∂θ3∂θ1
· · · ∂2σb

∂θn∂θ1

∂2σb

∂θ1∂θ2
∂2σb

∂θ2
2

∂2σb

∂θ3∂θ2
· · · ∂2σb

∂θn∂θ2

∂2σb

∂θ1∂θ3
∂2σb

∂θ2∂θ3
∂2σb

∂θ2
3

· · · ∂2σb

∂θn∂θ3
... ... ... . . . ...

∂2σb

∂θ1∂θn

∂2σb

∂θ2∂θn

∂2σb

∂θ3∂θn
· · · ∂2σb

∂θ2
n



, (5.18c)
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where the cross partials are given by

∂2σb
∂θi∂θj

= 2∂σb
∂θj

Tr
(
∂B

∂θi
B+

)
+ 2σb Tr

 ∂2B

∂θj∂θi
B+ + ∂B

∂θi


(
∂B

∂θj

)T

(5.19)

−B+

∂B
∂θj

BT +B

(
∂B

∂θj

)T
(BBT

)−1

 .
When implemented, the actuator configuration matrix B(θ) is computed symboli-
cally in order to find the partial and cross partial derivatives ∂B

∂θi
and ∂

∂θj

∂B
∂θi

. The
computations are performed offline and stored in a look-up table depending on the
joint angle due to the computational complexity.

5.2.3 Joint limit avoidance

To avoid exceeding mechanical joint limits a set-based joint limit avoidance task is
defined by

σc := θ, (5.20)

which when differentiated twice with respect to time yields

σ̇c = Jcζ, (5.21)

σ̈c = JcM
−1 (Bu− Cζ −Dζ − g) , (5.22)

where the task Jacobian is constant and given by

Jc =
[
0n×6 In×n

]
. (5.23)

5.2.4 Exponential control barrier functions

In order to ensure that the aforementioned set-based tasks are satisfied, exponential
control barrier functions are employed. Because the collision avoidance and actuator
singularity avoidance tasks are only bounded from below, the ECBFs of these tasks
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are given by

h1 = σa − σa,min, (5.24)

h2 = σb − σb,min. (5.25)

The joint limit avoidance task is bounded from below and above, i.e. σc,min ≤ σc ≤
σc,max. Sixteen ECBFs are therefore required, which are given by

h2+i = σc,i − θi,min, (5.26)

h10+i = θi,max − σc,i, (5.27)

for i = 1, . . . , 8. All of the set-based tasks only depend on the system configuration,
ξ. Hence, they have to be differentiated twice for the input to appear, as seen
from the second time derivative of the set-based tasks in (5.3), (5.15) and (5.22).
Differentiating the ECBFs twice with respect to time and inserting the second
time derivatives of the set-based tasks together with the equations of motion (4.48)
results in

ḧ1 = J̇aζ − JaM
−1 (Cζ +Dζ + g) + JaM

−1Bu, (5.28)

ḧ2 = J̇bζ − JbM
−1 (Cζ +Dζ + g) + JbM

−1Bu, (5.29)

ḧ2+i = −Jc,iM−1 (Cζ +Dζ + g) + Jc,iM
−1Bu, (5.30)

ḧ10+i = Jc,iM
−1 (Cζ +Dζ + g) − Jc,iM

−1Bu, (5.31)

where Jc,i is the ith row of Jc. These equations can be rewritten in terms of the
state space model (4.50) as

ḧi(x) = L2
fhi(x) + ∂Lfhi(x)

∂x
g(x)u, (5.32)

for i = 1, . . . , 18.

5.2.5 Valid domains

The obstacle to be avoided by the collision avoidance task is a sphere with radius
robs = 0.3 m centered at pobs = [2.5 m, 0.5 m,−10 m]T, where the coordinates are
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given in a North-West-Up coordinate frame. In order to visualize how the AIAUV
avoids the obstacle in a 3D plot, a threshold is defined such that the minimum
distance to the obstacle becomes slightly larger. The valid domains for all set-based
tasks are shown in Table 5.1.

Table 5.1: The valid domains for the set-based tasks.

σa σb σc,i

σmin robs + 0.02 m 0.1 −60◦

σmax ∞ ∞ 60◦

5.3 Equality-Based Tasks for AIAUV Control

This section introduces the equality-based tasks and derives their input-output
dynamics. Moreover, rapidly exponentially stabilizing control Lyapunov functions
(RES-CLFs) are defined for each task, and conditions on the RES-CLF time
derivatives that ensure task stability are derived. Finally, the desired equality
task values are discussed, where a reference model that is presented to smooth out
discontinuous steps in the reference signal.

5.3.1 End-effector configuration control

The end-effector configuration task is divided into two tasks at the same priority
level, namely, an end-effector position task and an attitude task. In this way,
individual RES-CLFs can be defined for position and attitude control, which means
that the rates of exponential convergence can differ.

5.3.1.1 End-effector position control

The pose of the end-effector relative to the NED frame is given by the forward
kinematics as described in Section 4.2.3. Hence, the position of the end-effector
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can be found from

pnne =
[
I3 03×1

]
Hn+1(θ)

ln+1e1

1

 , (5.33)

where e1 ∈ R3 is the unit vector in the x-direction, and the base position pnnb is
found by solving (4.48). The end-effector position error is defined by

y1 := pnne − pnne,d, (5.34)

which must be differentiated twice with respect to time before the input shows up,
viz.

ẏ1 = J1ζ − ṗd, (5.35)

ÿ1 = J1M
−1 (Bu− Cζ −Dζ − g) + J̇1ζ − p̈d, (5.36)

where the Jacobian and its time derivative are given by

J1 =
[
Rn
e (q) 03×3

]
Je(θ) ∈ R3×(6+n), (5.37)

J̇1 =
[
Rn
e (q) [ωene]× 03×3

]
Je(θ) +

[
Rn
e (q) 03×3

]
J̇e(θ). (5.38)

5.3.1.2 End-effector attitude control

For attitude or orientation control, a unit quaternion representation is employed,
where the end-effector quaternion q = [η, ϵT]T can be obtained from the rotation
matrix Rn

e given by the forward kinematics. From a quaternion qd = [ηd, ϵT
d ]T

describing the desired attitude, a corresponding desired rotation matrix Rn
d can

be calculated. The rotation matrix representing the attitude error between the
desired end-effector attitude and the end-effector attitude given by the forward
kinematics is given by [60]

R̃ = Rn
d (Rn

e )T . (5.39)
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The quaternion associated with R̃ can be computed from the quaternion product
q̃ = qd ⊗ q∗ given by

η̃ = ηdη + ϵT
dϵ, (5.40)

ϵ̃ = ηϵd − ηdϵ+ ϵ×ϵd, (5.41)

where q∗ = [η,−ϵT]T is the conjugate of the end-effector quaternion. Because
the rotation matrix representing two aligned frames is given by R̃ = I, which
corresponds to the quaternion q̃ = [1, 0T]T, it is sufficient to represent the attitude
error as the three-dimensional imaginary part ϵ̃ of the quaternion error vector q̃.
Define the end-effector attitude error by

y2 := ϵ̃ = ηϵd − ηdϵ+ ϵ×ϵd. (5.42)

Note that the attitude error is not a simple subtraction between a measured and
desired value. Differentiating the attitude error with respect to time yields [45]

ẏ2 = 1
2 (η̃I3 − ϵ̃×) ω̃nne, (5.43)

where ω̃nne = ωd − ωnne is the angular velocity error, expressed in the NED frame.
Differentiating with respect to time once more yields

ÿ2 = 1
2

( ˙̃ηI3 − ˙̃ϵ×
)
ω̃nne + (η̃I3 − ϵ̃×)

(
ω̇d − d

dt (Rn
eω

e
ne)
) , (5.44)

where

d
dt (Rn

eω
e
ne) = d

dt

([
03×3 Rn

e

]
Jeζ

)
(5.45)

= Rn
e [ωene]× ω

e
ne︸ ︷︷ ︸

=0

+
[
03×3 Rn

e

]
J̇eζ +

[
03×3 Rn

e

]
Jeζ̇ (5.46)

=
[
03×3 Rn

e

] (
J̇eζ + JeM

−1 (Bu− Cζ −Dζ − g)
)
, (5.47)
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where Je ∈ R6×(6+n) is the end-effector Jacobian, which is given by the recursive
equations (4.41), (4.43) and (4.46), while J̇e ∈ R6×(6+n) is the time derivative of
the end-effector Jacobian, which is given by (4.44), (4.45) and (4.47). Equation
(5.44) is affine in the control input u and can be rewritten

ÿ2(x) = b2(x) + A2(x)u, (5.48)

where

A2(x) = −1
2 (η̃I3 − ϵ̃×)

[
03×3 Rn

e

]
JeM

−1B, (5.49)

and

b2(x) = 1
2

[(
˙̃ηI3 − ˙̃ϵ×

)
ω̃nne+

(η̃I3 − ϵ̃×)
(
ω̇d −Rn

e J̇e,ωζ −
[
03×3 Rn

e

]
JeM

−1 (Cζ +Dζ + g)
) , (5.50)

with

˙̃η = −1
2ϵ

Tω̃nne. (5.51)

5.3.2 Base position control

The AIAUV essentially has two end-effectors, since there is no well-defined base
from a physical perspective. Nonetheless, the base is defined as the tail link of the
AIAUV in this thesis, while the end-effector is at the front of the head link. The
base positioning task will serve as a lower priority equality task, in this way, the
effect of incompatible tasks on the control performance can be tested.

The position of the base in the NED frame is given by pnnb ∈ R3, the base
position position error is defined by

y3 := pnnb − pnb,d, (5.52)

which must be differentiated with respect to time twice for the input to appear,
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viz.

ẏ3 = J3ζ − ṗnb,d, (5.53)

ÿ3 = J3M
−1 (Bu− Cζ −Dζ − g) + J̇3ζ − p̈nb,d, (5.54)

where the Jacobian J3 ∈ R3×(6+n) and its time derivative are given by

J3 =
[
Rn
b (q) 03×(3+n)

]
, (5.55)

J̇3 =
[
Rn
b (q)

(
ωbnb

)
×

03×(3+n)

]
. (5.56)

(5.57)

5.3.3 Joint velocity regulation

The end-effector configuration and base positioning tasks only consume 9 DOFs,
which means that internal instability will occur if the zero dynamics is not asymp-
totically stable. In order to ensure system stability, a task at the lowest priority
level is defined which attempts to regulate the first n− 1 joint velocities to zero,
thereby consuming any residual DOFs in the system. The task is defined by the
error

y4 = J4ζ, (5.58)

which depends on the generalized system velocities, and hence only has to be
differentiated once for the control input to appear, viz.

ẏ4 = J4M
−1 (Bu− Cζ −Dζ − g) , (5.59)

where the Jacobian J4 ∈ R(n−1)×(6+n) is constant and given by

J4 =
[
0(n−1)×6 In−1 0(n−1)×1

]
. (5.60)

Note that end-effector attitude control implicitly determines the angle of the
nth joint, which ensures stability of the nth joint angle. Finally, remark that in
the robotics literature, it is common to define a null space tasks similar to this one
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at the configuration level, and thereby also attempting to obtain a desired pose
while regulating the joint velocities to zero [62].

5.3.4 RES-CLFs

As shown in the preceding sections, the end-effector configuration and base posi-
tioning tasks have to be differentiated twice in order for the input to appear, which
yields transverse dynamics on the form

ÿi = bi(x) + Ai(x)u. (5.61)

The joint velocity regulation task is a function of the generalized system velocity,
which yields transverse dynamics of the form

ẏ4 = b4(x) + A4(x)u. (5.62)

By defining ηi = [yT
i , ẏ

T
i ]T for i = 1, 2, 3 and η4 = y4, the transverse dynamics (5.61)

and (5.62) can be rewritten as

η̇i = f̄i(x) + ḡi(x)u, (5.63)

where f̄i(x) = Fiη +Gibi(x) and ḡi(x) = GiAi(x) with

Fi =

0 I

0 0

 , Gi =

0

I

 , i = 1, 2, 3 (5.64)

F4 = 0(n−1)×(n−1), G4 = In−1, (5.65)

for the end-effector configuration and base positioning tasks, where 0 is a 3 × 3
matrix of zeros and I is the 3 × 3 identity matrix.

RES-CLFs are then defined for each task as follows

Vϵ,i(ηi) := ηT
i

 1
ϵi
I 0

0 I

Pi
 1
ϵi
I 0

0 I

 ηi = ηT
i Pϵ,iηi, i = 1, 2, 3 (5.66)
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Vϵ,4(η4) :=
(

1
ϵ4

)2

ηT
4P4η4 = ηT

4Pϵ,4η4, (5.67)

where Pi = P T
i > 0 is the solution to the continuous time algebraic Riccati equation

F T
i Pi + PiFi − PiGiG

T
i Pi +Qi = 0, (5.68)

where the positive definite matrix Qi is chosen to be the identity matrix. From the
analysis in Section 2.4.1, Vϵ,i is a RES-CLF for (5.63) as long as Ai(x) has linearly
independent rows. Rapid exponential stability of the task variables can be ensured
by selecting the control input u ∈ Rm such that

Lf̄i
Vϵ,i(ηi) + Lḡi

Vϵ,i(η)u ≤ −γi
ϵi
Vϵ,i(ηi), (5.69)

where γi := λmin(Qi)
λmax(Pi) and the Lie derivatives are given by

Lf̄i
Vϵ,i(ηi) = ηT

i

(
F TPϵ,i + Pϵ,iF

)
η + 2ηT

i Pϵ,iGbi, (5.70)

Lḡi
Vϵ,i(ηi) = 2ηT

i Pϵ,iGAi. (5.71)

5.3.5 Desired equality task values

The end-effector configuration task consists of a series of constants steps at 50
second intervals from t = 0 to t = 350. The base positioning task is constant and
does not change, with the goal of minimizing base movement while reconfiguring
the end-effector. From t ≥ 350 s, the end-effector position is commanded outside of
the manipulator workspace (when the base is kept at its current position) which
implies that the base positioning task is no longer compatible with the end-effector
positioning task. This is done to verify that tasks at lower priority levels have
no effect on how higher priority tasks are executed in the novel hierarchical task
priority framework from Section 3.2.2, ensuring that the end-effector position is
reached perfectly at the expense of larger steady state errors in the lower priority
base positioning task.

The discontinuities in the end-effector configuration set-points are smoothened
by employing a third order reference model. A third order model was chosen to
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obtain continuous acceleration references. In this way, large and discontinuous
jumps in the end-effector configuration set-point are avoided, mitigating excessive
rates of change of the control inputs when the set-points change, which manifests
itself as overshoots and slow convergence when control input rate constraints are
employed. The reference model is given by [57]

σ
(3)
d + (2Λ + I) Ωσ̈d + (2Λ + I) Ω2σ̇d + Ω3σd = Ω3σr, (5.72)

where Λ > 0 and Ω > 0 are diagonal design matrices of relative damping ratios
and natural frequencies, σr =

[
pT
n,d, q

T
d

]T
∈ R7 is the constant (and discontinuous)

reference signal and σ1,d, σ̇1,d and σ̈d are the smoothened desired end-effector
configuration, linear and angular velocity and linear and angular acceleration,
respectively. The first and second time derivative of the desired quaternion qd is
mapped into desired angular velocities ωd and accelerations ω̇d through

ωd = T †
q (qd)q̇d, (5.73)

ω̇d = T †
q (qd)

(
q̈d − Ṫq(qd)qd

)
, (5.74)

where T †
q ∈ R3×4 is the Moore-Penrose pseudoinverse of Tq and

Ṫq(qd) = ∂Tq
∂q

(q̇ ⊗ I3) , (5.75)

with

∂Tq
∂q

=
[
∂T
∂η

∂T
∂ϵ1

∂T
∂ϵ2

∂T
∂ϵ3

]
(5.76)

=



0 0 0 −1 0 0 0 −1 0 0 0 −1

1 0 0 0 0 0 0 0 1 0 −1 0

0 1 0 0 0 −1 0 0 0 1 0 0

0 0 1 0 1 0 −1 0 0 0 0 0


∈ R4×12. (5.77)

(5.78)
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5.4 Control Laws

In this section, the two control schemes from Section 3.2 are developed for an
AIAUV performing the tasks described in the preceding sections. The objective is
to control the configuration of the end-effector while minimizing base movement,
avoiding a collision with a spherical obstacle, respecting the joint limits and avoiding
configurations for which the actuator configuration matrix is singular.

The design matrix H(x) and design vector c(x) in the objective functions of the
quadratic programs are selected by following the approach in Section 3.1.3, where
the virtual control input µ = Au+ b was minimized. In terms of u, this yields

µTµ = uTATAu+ 2bTAu+ bTb, (5.79)

which implies that H(x) = ATA and cT(x) = 2bTA.

5.4.1 N task CLF-ECBF QP controller

The control input is found from (3.56) with H(x) = ATA, cT(x) = 2bTA and the
ECBFs and RES-CLFs from Section 5.2.4 and Section 5.3.4, respectively. The
modified quadratic program is

minimize
u∈R15,δ∈R4

uTATAu+ 2bTAu+ δTWδ (5.80a)

subject to

Lf̄j
Vϵ,j + Lḡj

Vϵ,ju ≤ −γj
ϵj
Vϵ,j + δj, j = 1, . . . , 4, (5.80b)

L2
fhk + ∂Lfhk

∂x
gu ≥ −Kα,kξk, k = 1, . . . , 18, (5.80c)

− 50 N ≤ u ≤ 50 N, (5.80d)

− 0.1 N/s ≤ ∆u ≤ 0.1 N/s, (5.80e)

where W = diag {w1, w2, w3, w4} is a diagonal matrix of penalty parameters and
the Lie derivatives Lf̄j

Vϵ,j and Lḡj
Vϵ,j are given by (5.70) and (5.71), respectively.
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5.4.2 Hierarchical task priority CLF-ECBF QP controller

By employing Algorithm 1 with H(x) = ATA, cT(x) = 2bTA and the ECBFs and
RES-CLFs from Section 5.2.4 and Section 5.3.4, respectively, the following QP is
solved

minimize
u∈R15,δ1∈R,δ2∈R

uTATAu+ 2bTAu+ w1δ
2
1 + w2δ

2
2 (5.81a)

subject to

Lf̄j
Vϵ,j + Lḡj

Vϵ,ju ≤ −γj
ϵj
Vϵ,j + δj, j = 1, 2, (5.81b)

L2
fhk + ∂Lfhk

∂x
gu ≥ −Kα,kξk, k = 1, . . . , 18, (5.81c)

− 50 N ≤ u ≤ 50 N, (5.81d)

− 0.1 N/s ≤ ∆u ≤ 0.1 N/s, (5.81e)

which yields a control input u = u∗
1 that only accounts for the safety-related tasks

and the end-effector configuration task. The end-effector configuration task only
consumes 6 DOFs, which means that at most 8 DOFs may still be uncontrolled.
Hence, the solution u∗

1 can be refined by attempting to keep the base stationary
and minimizing the joint velocities through the following QP

minimize
u∈R15,δ3∈R,δ4∈R

uTATAu+ 2bTAu+ w3δ
2
3 + w4δ

2
4 (5.82a)

subject to

Lḡi
Vϵ,iu ≤ Lḡi

Vϵ,iu
∗
1, i = 1, 2, (5.82b)

Lf̄j
Vϵ,j + Lḡj

Vϵ,ju ≤ −γj
ϵj
Vϵ,j + δj, j = 3, 4, (5.82c)

∂Lfhk
∂x

gu ≥ ∂Lfhk
∂x

gu∗
1, k = 1, . . . , 18, (5.82d)

− 50 N ≤ u ≤ 50 N, (5.82e)

− 0.1 N/s ≤ ∆u ≤ 0.1 N/s, (5.82f)

which yields the final control input that is applied to the AIAUV.
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5.5 Simulation Results

The QPs are solved in MATLAB using quadprog and the closed loop system is
simulated in Simulink using ode3.

5.5.1 Control parameters and initial conditions

The control parameters for the equality-based tasks consists of the RES-CLF
convergence rates ϵi and the penalty parameter values wi, these are all shown in
Table 5.2. As seen from (2.44), the rate of exponential convergence is inversely

Table 5.2: Equality task convergence rates and penalty parameters.

σ1 σ2 σ3 σ4

ϵ 1.2 0.2 1.2 0.5
w 60 60 10 10

proportional to ϵi, which entails that lower values of ϵi results in faster convergence.
The set-based gains Kα,k are chosen by placing the eigenvalues of the closed

loop systems

ξ̇k =
(
F −GKα,k

)
ξk, (5.83)

where

F =

0 1

0 0

 , G =

0

1

 , (5.84)

and Kα,k =
[
αk,1 αk,2

]
at λ1 = −1 and λ2 = −3 for k = 1, . . . , 18. Solving

det
(
λI2 −

(
F −GKα,k

))
= (λ+ 1)(λ+ 3), (5.85)

for αk,1 and αk,2 yields Kα,k =
[
3 4

]
.

The relative damping ratios and natural frequencies of the reference model are
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chosen as

Λ = diag {λ1, λ2, . . . , λ7} = I, (5.86)

Ω = diag {ω1, ω2, . . . , ω7} = 0.12I, (5.87)

where I is the 7 × 7 identity matrix.
The system is initialized from the following initial configuration

ξ0 =
[
1.43 m, 2.2 m,−10 m, 1, 0, 0, 0, π6 , 0,

π

6 , 0,
π

6 , 0,
π

6 , 0
]T

. (5.88)

5.5.2 N task CLF-ECBF QP

Simulation results for the N task CLF-ECBF QP controller in (5.80) are presented
in Figure 5.1.
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(a) North-West-Up plot. pe, pb and pd represents the end-effector, base and the desired
end-effector position, respectively.



74 AIAUV Control

0 50 100 150 200 250 300 350 400

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

0.28

0.3

(b) The actuation index and its minimum
value.

0 50 100 150 200 250 300 350 400

-60

-40

-20

0

20

40

60

(c) Joint angles and their maximum and
minimum values.

0 50 100 150 200 250 300 350 400

0

0.5

1

1.5

2

2.5

(d) Distance from the end-effector to the
spherical obstacle.

0 50 100 150 200 250 300 350 400

-20

0

20

40

60

80

100

120

140

(e) End-effector attitude.



5.5 Simulation Results 75

0 50 100 150 200 250 300 350 400

0

1

2

3

0 50 100 150 200 250 300 350 400

0

1

2

0 50 100 150 200 250 300 350 400

-11

-10

-9

(f) End-effector, desired end-effector, base and desired base position.

0 50 100 150 200 250 300 350 400

-15

-10

-5

0

5

10

15

(g) Thruster input.

0 50 100 150 200 250 300 350 400

-4

-3

-2

-1

0

1

2

3

4

(h) Joint torque inputs.

Figure 5.1: Simulation results for the N -task CLF and CBF based QP controller.
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5.5.3 Task priority CLF-ECBF QP

Simulation results for the hierarchical task priority CLF-ECBF QP controller given
by (5.81) and (5.82) are presented in Figure 5.1.
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(a) North-West-Up plot. pe, pb and pd represents the end-effector, base and the desired
end-effector position, respectively.



5.5 Simulation Results 77

0 50 100 150 200 250 300 350 400

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

0.28

0.3

(b) The actuation index and its minimum
value.

0 50 100 150 200 250 300 350 400

-60

-40

-20

0

20

40

60

(c) Joint angles and their maximum and
minimum values.

0 50 100 150 200 250 300 350 400

0

0.5

1

1.5

2

2.5

(d) Distance from the end-effector to the
spherical obstacle.

0 50 100 150 200 250 300 350 400

-20

0

20

40

60

80

100

120

140

(e) End-effector attitude.



78 AIAUV Control

0 50 100 150 200 250 300 350 400

0

1

2

3

0 50 100 150 200 250 300 350 400

0

1

2

0 50 100 150 200 250 300 350 400

-11

-10

-9

(f) End-effector, desired end-effector, base and desired base position.

0 50 100 150 200 250 300 350 400

-15

-10

-5

0

5

10

15

(g) Thruster input.

0 50 100 150 200 250 300 350 400

-4

-3

-2

-1

0

1

2

3

4
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Figure 5.2: Simulation results for a task priority framework based on a hierarchy
of CLF and CBF based QPs.
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5.6 Discussion

Observe that the optimization problems in (5.80), (5.81) and (5.82) are all for-
mulated in terms of the thruster and joint torque control inputs u, and not the
generalized forces and torques τ = Bu. Consequently, the hierarchical CLF-ECBF
QP controller solves the control allocation problem in addition to resolving redun-
dancy and acting as a dynamic controller. By unifying the redundancy resolution
and control allocation problems, strict priority among tasks can always be ensured
under the assumption of a perfect dynamic model. The same cannot be said for
decoupled AIAUV control approaches that resort to e.g. kinematic or operational
space control. Kinematic or operational space control frameworks provide no a
priori guarantees that the commanded force and torque vector computed by the
dynamic controller can be exactly allocated, since the commanded forces and
torques are typically computed with no regard to physical actuator limits, rate
constraints, or actuator configuration matrix singularities. If the commanded forces
and torques cannot be exactly allocated, the forces and torques are usually allocated
to thruster inputs and joint torques by minimizing the allocation error, which is
done independently of the redundancy resolution algorithm. Hence, tasks are no
longer prioritized and the control system performance may dramatically decrease
even though the allocation error is somewhat small.

Intervention and inspection tasks are performed at low-speed, where thruster
dynamics are essential to the control problem [63]. Instead of modeling the entire
thruster dynamics, the rate of change of the thruster input can be limited as seen
in (5.80e), (5.81e) and (5.82f). As a result, more realistic behavior is obtained
without affecting the priority between tasks. This is an important advantage of
the proposed scheme with regard to a future experimental implementation.

By comparing Figure 5.1f and Figure 5.2f, it is evident that the non-hierarchical
approach in (5.80) does not achieve strict priority between the end-effector and base
positioning tasks for t ≥ 350 s. At t = 350 s, the end-effector position is commanded
outside of the manipulator workspace (when the base is kept at pnnb = [0, 0,−10 m]T).
Instead of executing the higher priority end-effector task perfectly, a compromise
between two incompatible tasks, weighted by the penalty parameters in (5.80a)
is found. Even though this compromise is optimal with respect to the objective
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function, it is not what is desired. The end-effector task is classified as mission
related, and should be satisfied whenever it does not conflict with safety related
tasks. However, the base positioning task (or any other optimization task) is only
included because of the redundancy of the system, and should never affect how the
end-effector (or any mission related task) is executed. This is achieved by resorting
to the hierarchical task priority CLF-ECBF QP scheme as seen in Figure 5.2f,
where perfect end-effector position tracking is achieved at the expense of a greater
error in the base position.

Observe from Figures 5.1c and 5.2c that four joints have non-zero angles at
t = 400 s. This is somewhat unexpected since a configuration for which all joint
angles are equal zero will yield the largest distance between the end-effector and the
base. However, the actuator configuration matrix of the particular AIAUV used
for simulation exhibits a singularity at the configuration for which all joint angles
are zero, i.e. σb = det

(
B(0)B(0)T

)
= 0. By inspecting Figures 5.1b and 5.2b it is

clear that the actuation index σb is at its lower limit from t > 375 s. Consequently,
multiple joint angles are kept non-zero by the actuation index task, resulting in a
larger deviation in the base position than strictly necessary.

In general, the control performance is excellent for both approaches, all set-
based tasks are satisfied at all times, while the end-effector configuration tracking
is fast and accurate. There is a noticeable deviation in the x-coordinate of the
end-effector position from t ≃ 268 s to t ≃ 281 s, since the desired x-position of the
end-effector is inside of the spherical obstacle.

The simulation results are very similar whenever tasks are compatible. Con-
sequently, the non-hierarchical approach could be employed whenever tasks at
different priority levels are compatible, and the hierarchical approach whenever
tasks are incompatible, thereby ensuring strict priority between the end-effector
and base task at all times, while reducing the computational burden. One possible
check for compatible tasks is given by the condition (3.28).



Chapter 6

Conclusion

This thesis has presented task priority operational space control in a MIMO
feedback linearization setting, where explicit conditions for input-output and full-
state feedback linearizability of a task priority operational space control law has
been given. This work led to the merging of operational space control with control
Lyapunov function and control barrier function based quadratic programs, with
the goal of obtaining a dynamic set-based task priority framework. The unification
resulted in a framework that supports set-based tasks; however, strict priority
among tasks was lost in the process. As a result, null space based control was not
pursued any further. Instead, a novel task priority framework based on a hierarchy
of control Lyapunov- and control barrier function based quadratic programs was
developed, generalizing the work in [23, 32] to any number of priority levels. There
is considerable design freedom within this framework, soft priority measures can be
employed between tasks at the same priority level, while a strict priority measure
in the form of solving another quadratic program can be used to ensure that lower
priority tasks have no effect on higher priority tasks. This allows optimization
based control objectives to be safely included, without affecting the execution of
mission related tasks.

The proposed framework has been verified in simulation for an AIAUV, which
is an overactuated and redundant robotic system. For these types of systems, the
proposed task priority framework also solves the control allocation problem, which
is highly advantageous since control input bounds and rate constraints can be
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accounted for when resolving redundancy, effectively avoiding a situation in which
commanded generalized forces and torques cannot be allocated explicitly, leading
to a loss of priority among tasks.

6.1 Future Work

The effect of modeling uncertainties on the CLF-ECBF QP controllers should be
investigated. This is especially relevant for an underwater vehicle application such
as an AIAUV, since accurate identification of the dynamic model parameters is
difficult [60]. In order to mitigate the negative effects of modeling uncertainties,
robust and adaptive control methods that are applicable to the task priority CLF-
ECBF QP framework presented in this thesis can be investigated. Robust control
of CLF based QPs has already been investigated to some extent in [64]. A robust
experimental implementation of the proposed control system will help investigate
the effect of modeling uncertainties.

Another topic for future work is to include force-based multi-contact tasks
directly through the QP based formulations as done in [23]. In this way, the
proposed framework could be employed for intervention tasks. Different objective
functions could also be utilized in order to weight the usage of thruster inputs
versus joint torque inputs.



Appendix A

Definitions and Theorems

Definition A.1. The Lie derivative of a scalar function h : Rn → R along a vector
field f : Rn → Rn is given by [42]

Lfh =
n∑
i=1

∂h

∂xi
fi(x) = ∂h

∂x
f(x). (A.1)

Definition A.2. An extended class K∞ function is a function α : R → R that is
strictly increasing and with α(0) = 0 [65].

Definition A.3. For a, b ∈ R3, the cross product by a is a linear operator. Hence,
b → a× b can be represented by a skew-symmetric matrix [58]

a× b = a×b, (A.2)

where

a× =


0 −a3 a2

a3 0 −a1

−a2 a1 0

 ∈ so(3), (A.3)

and

so(3) =
{
S ∈ R3×3 : ST = −S

}
. (A.4)
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Definition A.4. If A ∈ Rm×n and B ∈ Rp×q, then the Kronecker product A⊗B ∈
Rmp×nq is given by [66]

A⊗B =


a11B . . . a1nB

... . . . ...

am1B . . . amnB,

 . (A.5)

Definition A.5. The partial derivative of a matrix A(x) with respect to x, where
A : Rn → Rm×p is given by [55]

∂A

∂x
=
[
∂A
∂x1

∂A
∂x2

. . . ∂A
∂xn

]
∈ Rm×pn. (A.6)

Theorem A.1. The time derivative of a matrix A(x) ∈ Rm×p, with x(t) ∈ Rn is
given by [55]

d
dtA(x) =

n∑
i=1

∂A

∂xi
ẋi = ∂A

∂x

(
ẋ⊗ Ip

)
, (A.7)

where ⊗ denotes the Kronecker product.

Theorem A.2. The partial derivative of the product of two matrices A(x) ∈ Rm×p

and B(x) ∈ Rp×s with respect to a vector x ∈ Rn is defined by the following rule
[50]

∂

∂x

(
A(x)B(x)

)
= ∂A(x)

∂x

(
B(x) ⊗ In

)
+ A

∂B

∂x
, (A.8)

where In is the n× n identity matrix.

Definition A.6. Given a dynamical system

ẋ = f(x), (A.9)

and a trajectory x(t, x0) where x0 is the initial point. A set M is said to be forward
invariant if [65]

x0 ∈ M =⇒ x(t) ∈ M, (A.10)
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for all t ≥ 0.



Appendix B

Conference paper

This appendix contains a draft of a conference paper based on the main result on
dynamic task priority control of redundant robotic systems. The article will be
submitted to the 2020 American Control Conference.
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Task Priority Control of Redundant Robotic Systems using Control
Lyapunov and Control Barrier Function based Quadratic Programs

Erlend A. Basso1 and Kristin Y. Pettersen1

Abstract—Redundant robotic systems are designed to ac-
complish multiple tasks simultaneously. Tasks are functions of
the system configuration, and can be divided into groups by
their priority. System redundancy can be exploited by including
lower priority optimization tasks within the control framework.
However, it is important that the inclusion of such lower priority
tasks does not have an effect on higher priority safety related
and operational tasks. This paper presents a novel task priority
framework based on a hierarchy of control Lyapunov function
(CLF) and control barrier function (CBF) based quadratic
programs (QPs). The proposed method guarantees strict pri-
ority among different groups of tasks such as safety related,
operational and optimization tasks. Moreover, a soft priority
measure in the form of penalty parameters can be employed
to prioritize tasks at the same priority level. As opposed to
kinematic control schemes, the proposed framework is a holistic
approach to robot control that solves the redundancy resolution,
dynamic control and control allocation problems simultaneously.
Simulation results of a hyper-redundant articulated intervention
underwater autonomous vehicle (AIAUV) is presented to validate
the proposed framework.

I. INTRODUCTION

A robotic system is kinematically redundant when it has
more degrees of freedom (DOFs) than those strictly required
to execute a given task. This enables additional tasks to be
executed simultaneously by utilizing the redundant DOFs of
the system. It is useful to divide control tasks into three
groups, safety related tasks, operational tasks and optimization
tasks, arranged by decreasing priority [1]. Redundancy should
be resolved such that lower priority tasks do not affect the
execution of higher priority tasks.

Kinematic task priority control is a redundancy resolution
method introduced in [2], developed in [3] and generalized
to any number of priority levels in [4]. This control approach
decouples the controller into a kinematic and dynamic con-
troller, and has been successfully implemented on a number
of robotic systems. The framework was extended to support
tasks described by sets or inequalities in [5], [6] and [7].
These kinematic control approaches all resolve redundancy at
the velocity level by generating velocity references for some
dynamic controller to follow. An immediate drawback is that
acceleration references cannot be included, resulting in worse
tracking accuracy.

Operational space control [8] is a holistic approach that
assigns joint torques directly by transforming the equations
of motion from joint space into the operational space (also
known as task space). Although it was mainly introduced for
non-redundant systems, a dynamically consistent null space

1 Department of Engineering Cybernetics, Norwegian University of Science
and Technology, Trondheim, Norway, erlenab@stud.ntnu.no

operator was defined in [8], that allowed two operational space
tasks to be defined and controlled simultaneously. In [9], the
scheme was extended to a task priority framework with an
arbitrary number of tasks by generalizing the dynamically con-
sistent null space operator from [8] to an arbitrary number of
priority levels. These null space operators ensure that torques
generated by lower priority tasks do not generate accelerations
that affect the task dynamics of higher priority tasks. The
operational space framework was extended to include set-
based tasks in [10], but this approach does not scale well for
systems with a high number of DOFs.

Control Lyapunov functions (CLFs) extend Lyapunov the-
ory to systems with inputs and have become an essential part
of nonlinear control design after the groundbreaking work in
[11]–[13]. The CLF concept was extended to rapidly exponen-
tially stabilizing control Lyapunov functions (RES-CLFs) in
[14], which achieve exponential convergence at a controllable
rate. Through CLFs or RES-CLFs, the control designer is free
to chose among an infinite number of controllers. An important
example is the point-wise minimum norm controller [15],
[16], which selects the control value of minimum norm from
all control values rendering the time derivative of the CLF
negative definite. The point-wise minimum norm controller has
a closed form solution since it is the solution to a quadratic
program (QP) with only one inequality constraint. This QP
can be augmented with control input saturation limits and
other control input constraints, at the expense of a closed form
solution [17]. For redundant robotic systems, two control tasks
can be satisfied simultaneously by defining CLFs for each
task and finding a control input that minimizes some quadratic
objective function while ensuring that the time derivatives of
the CLFs are negative definite [18]. However, strict priority
between tasks cannot be ensured.

Barrier functions have been used extensively in constrained
optimization [19], [20], and they have motivated the concept
of barrier certificates for safety-critical control. Barrier certifi-
cates were introduced as a tool for proving forward invariance
of sets [21], [22]. Since these sets often encoded safety related
objectives, proving invariance of a safe set implies that the
system will remain safe, as long as you start safe. These barrier
certificates tend to infinity as the state tends to the boundary
of the safe set, and in order to obtain safety guarantees beyond
the boundary of the safe set, various Lyapunov-like approaches
have been proposed such as [23], where a positive definite
barrier certificate is employed as a barrier Lyapunov function.
However, these conditions are overly strong since the positive
definiteness property enforces the invariance of every level set,
and not just the safe set of the set-based task in question.



Barrier certificates were extended to systems with inputs
by introducing the first notion of a control barrier function
(CBF) in [24]. These control barrier functions were com-
bined with control Lyapunov functions in [25], and further
improved in [26] to establish conditions for so-called control
Lyapunov-barrier functions, which jointly guarantee safety and
stability. These conditions were shown to be too restrictive
and was hence relaxed in [27]. CBFs were generalized to
exponential control barrier functions (ECBFs) in [28], which
enforce forward invariance of set-based tasks with a higher
relative degree. The barrier function conditions were refined
and extended to the entire safe set in in [29], which enabled
controller synthesis through optimization-based methods [30].
In particular, the CLF based QP [17], [18] could be augmented
with CBFs to ensure stability and safety [27], [30].

The main contribution of this paper is a novel task priority
framework in the form of a hierarchy of control Lyapunov
function and control barrier function based quadratic pro-
grams. In contrast to the CLF based QP in [18], the proposed
framework establishes strict priority levels by resorting to a
hierarchy of QPs, where tasks at a lower priority level have no
effect on the execution of tasks at higher priority levels. This
framework is especially useful for redundant robotic systems
that are also overactuated, since the control allocation and
redundancy resolution problems are solved simultaneously.

II. BACKGROUND MATERIAL

In this section, the necessary background material will be
presented. For compactness, we will abuse notation and denote

Lgh(x) =
∂h

∂x
g(x), (1)

whenever h(x) is a scalar or vector-valued function, and g(x)
is a vector field or a matrix. Note that (1) is only equal to the
Lie derivative of h(x) along g(x) when h(x) is a multivariable
scalar function and g(x) a vector field.

A. Model

Consider the nonlinear affine control system

ẋ = f(x) + g(x)u, (2)

where f and g are locally Lipschitz, x ∈ D ⊂ Rn and u ∈
U ⊂ Rp is the set admissible control inputs. Let the locally
Lipschitz vector-valued function y = σ(x)−σd(t) describe the
error coordinates of the equality task σ : Rn → Rm. Under
the following assumption

LgL
k
fy = 0, 0 ≤ k ≤ ρ− 2 (3)

LgL
ρ−1
f y 6= 0, (4)

the input-output dynamics becomes

y(ρ) = Lρfy(x)
︸ ︷︷ ︸
b(x)

+LgL
ρ−1
f y(x)

︸ ︷︷ ︸
A(x)

u. (5)

The system (2) can be decomposed into transverse dynamics
states η = col

(
y, ẏ, . . . , y(ρ−1)

)
∈ Rρm and zero dynamics

states z ∈ Z ⊂ Rn−ρm, viz.

η̇ = f̄(η, z) + ḡ(η, z)u, (6a)
ż = fz(η, z), (6b)

with f̄(η, z) = Fη +Gb(x) and ḡ(η, z) = GA(x) where

F =




0 I 0 · · · 0
0 0 I · · · 0
...

. . . . . . . . .
...

0 0 0 · · · I
0 0 0 0 0



, G =




0
0
0
...
I



, (7)

where 0 is the m ×m matrix of zeros and I is the m ×m
identity matrix.

B. Control Lyapunov Functions

A control Lyapunov function is a candidate Lyapunov func-
tion V (x) for which V̇ (x) can be made negative by appropriate
selection of the control input u. In order to explicitly control
the rate of exponential convergence, a specific type of CLF is
defined in [14] as follows:

Definition 1. A continuously differentiable and positive defi-
nite function Vε(η) : D → R is said to be a rapidly exponen-
tially stabilizing control Lyapunov function (RES-CLF) for the
system (6) if there exists constants c1, c2, c3 > 0 such that for
all 0 < ε < 1 and for all states (η, z) it holds that

c1‖η‖2 ≤ Vε(η) ≤ c2
ε2
‖η‖2, (8)

inf
u∈U

[
Lf̄Vε(η, z) + LḡVε(η, z)u

]
≤ −c3

ε
Vε(η, z). (9)

Such a function can be constructed by solving the continu-
ous time algebraic Riccati equation

FTP + PF − PGGTP +Q = 0, (10)

for P = PT > 0, where Q is any positive definite matrix. In
order to stabilize the transverse dynamics at a rate ε define

Vε(η) = ηT
[

1
ε I 0
0 I

]
P

[
1
ε I 0
0 I

]
η := ηTPεη. (11)

When A(x) has linearly independent rows, it can be shown
that the time derivative of (11) satisfies [14]

inf
u∈U

[
Lf̄Vε(η, z) + LḡVε(η, z)u

]
≤ −γ

ε
Vε(η), (12)

where γ := λmin(Q)
λmax(P ) > 0 and

Lf̄Vε(η, z) = ηT
(
FTPε + PεF

)
η + 2ηTPGb, (13)

LḡVε(η, z) = 2ηTPεGA. (14)



C. Control Barrier Functions

Control objectives described by inequalities or sets can be
enforced by rendering the superlevel set

C = {x ∈ D ⊂ Rn : h(x) ≥ 0} , (15)

of some smooth function h : D → R forward invariant [30].

Definition 2. Let C ⊂ D ⊂ Rn be the superlevel set of a
continuously differentiable function h : D → R, then h is a
control barrier function (CBF) for the system (2) if there exists
an extended class K∞ function α such that

sup
u∈U

[Lfh(x) + Lgh(x)u] ≥ −α (h(x)) , (16)

for all x ∈ Int(C).

The existence of a CBF implies that the superlevel set of
the function h is forward invariant [29], which means that
if x(t0) = x0 ∈ C, then x = x(t) ∈ C for all t ≥ t0.
Equivalently, if h(x0) ≥ 0, then h(x) ≥ 0 for all t ≥ t0.

D. Exponential Control Barrier Functions

Definition 2 assumes that the relative degree of h is equal
to one. However, safety related tasks for robotic systems are
often a function of the configuration variables only, meaning
that they have a higher relative degree. Introduced in [28]
and refined in [30], exponential control barrier functions
generalizes CBFs to functions h(x) with arbitrary relative
degree r ≥ 1.

Definition 3. Given a set C ⊂ D ⊂ Rn defined as the su-
perlevel set of an r-times continuously differentiable function
h : D → R, then h is an exponential control barrier function
(ECBF) for the control system (2) if there exists a row vector
Kα ∈ Rr such that

sup
u∈U

[
Lrfh(x) + LgL

r−1
f h(x)u

]
≥ −Kαξ(x), (17)

where ξ = col
(
h(x), Lfh(x), L2

fh(x), . . . , Lr−1
f h(x)

)
, re-

sults in h(x) ≥ 0 whenever h(x0) ≥ 0 for all x ∈ Int (C)
E. Combining CLFs and ECBFs

The RES-CLF and ECBF conditions in (9) and (17) are
both affine in the control input u, which means that the control
problem can be formulated as a convex optimization problem,
enabling the incorporation of control input saturation limits
and rate constraints [17]. The CLF-ECBF based QP is [18],
[30]:

minimize
u∈Rm,δ∈R

1

2
uTH(x)u+ cT (x)u+ wδ2

subject to

Lf̄Vε(η, z) + LḡVε(η, z)u ≤ −
γ

ε
Vε + δ,

Lrfh(x) + LgL
r−1
f h(x)u ≥ −Kαξ(x),

(18)

where H(x) ∈ Rm×m is any positive semi-definite matrix,
c(x) ∈ Rm and δ ∈ R is a slack variable penalized by w > 0,
ensuring the feasibility of the QP in case of conflicting set-
based and equality-based control objectives.

III. QUADRATIC PROGRAMS FOR N EQUALITY- AND M
SET-BASED CONTROL TASKS

This section extends the CLF-ECBF QP controller in [30]
to an arbitrary number of equality- and set-based control tasks
distributed to an arbitrary number of priority levels.

A. CLF Penalty Parameters as a Priority Measure

Inspired by [18], the QP in (18) can be extended to N
equality-based control objectives by deriving the input-output
dynamics for each control objective as in Section II-A and
defining

y =




y
(ρ1)
1

y
(ρ2)
2
...

y
(ρN )
N




=




Lρ1f y1(x)

Lρ2f y2(x)
...

LρNf yN (x)




︸ ︷︷ ︸
b(x)

+




LgL
ρ1−1
f y1(x)

LgL
ρ2−1
f y2(x)

...
LgL

ρN−1
f yN (x)




︸ ︷︷ ︸
A(x)

u. (19)

Transverse dynamics states ηi = col
(
yi, ẏi, . . . , ẏ

(ρi−1)
i

)
and

RES-CLFs Vε,i can then be defined analogously to (6a),
(7) and (11). Moreover, M set-based tasks described by the
superlevel sets Cj of some rj times continuously differentiable
function hj(x) can be included at the highest priority level
(which is implied by no slack variables). The control input
can then be obtained from the QP:

minimize
u∈Rm,δ∈RN

uTH(x)u+ cT (x)u+ δTWδ

subject to

Lf̄iVε,i + LḡiVε,iu ≤ −
γi
ε
Vε,i + δi, i = 1, . . . , N,

Lrkf hk + LgL
rk−1
f hku ≥ −Kα,kξk, k = 1, . . . ,M,

(20)

where W ∈ RN×N is a diagonal matrix of penalty parameters
and

Lf̄iVε,i = ηTi
(
FTi Pε,i + Pε,iFi

)
ηi + 2ηTi PiGibi, (21)

LḡiVε,i = 2ηTi Pε,iGiAi, (22)

for i = 1, . . . , N , where Ai and bi are given by

y
(ρi)
i (x) = Lρif yi(x)

︸ ︷︷ ︸
bi(x)

+LgL
ρi−1
f yi(x)

︸ ︷︷ ︸
Ai(x)

u. (23)

The equality tasks encoded by RES-CLFs are prioritized
by adjusting the elements of the diagonal penalty matrix W .
The satisfaction of all equality tasks are therefore described
by a single objective function through the value of the slack
variables δ and the penalty parameters in W . Whenever
equality tasks are incompatible, this fact invariably leads to
trade-off configurations that do not satisfy any of the tasks.
Hence, strict priority between tasks cannot be achieved in the
sense that lower priority tasks have no effect on the execution
of higher priority tasks. As a result, it is challenging to include
lower priority optimization based tasks since they will interfere
with more critical higher priority tasks such as end-effector
control whenever the tasks are incompatible.



B. Main Result: Enforcing Strict Priority Between a Selection
of Tasks

In order to establish more than two strict priority levels,
we propose to solve a quadratic program for every priority
level as suggested for kinematic control in [7]. The idea is to
begin by computing a control input according to (20) that only
accounts for safety related set-based tasks and equality tasks
at the highest priority level. Subsequently, a new quadratic
program is solved for each priority level, refining the previous
solution in an attempt to satisfy lower priority tasks without
affecting the execution of higher priority tasks.

Consider N equality tasks and M set-based tasks distributed
to k priority levels, with N = N1 + . . .+Nk and M = M1 +
. . . + Mk, where Ni and Mi denotes the number of equality
and set-based tasks at priority level i, respectively. A control
input u∗1 that disregards all lower priority tasks is obtained by
solving (20) with i = 1, . . . , N1 and k = 1, . . . ,M1. If the
system is redundant with respect to these N1 +M1 tasks, the
control input u∗1 can be refined without affecting how the N1

higher priority equality tasks are executed by enforcing

Lf̄iVε,i + LḡiVε,iu ≤ Lf̄iVε,i + LḡiVε,iu
∗
1 (24)

which implies that LḡiVε,iu ≤ LḡiVε,iu∗1 for all i = 1, . . . , N1.
Similarly, the higher priority set-based tasks are unaffected
by enforcing LgL

rk−1
f hku ≥ LgL

rk−1
f hku

∗
1 for all k =

1, . . . ,M1. Consider N2 additional equality-based tasks and
M2 additional set-based tasks. The control input u∗2 is obtained
by solving:

minimize
(u,δ,s)∈Rm+N2+M2

uTH(x)u+ cT (x)u+ δTWδ + sTKs

subject to

LḡiVε,iu ≤ LḡiVε,iu∗1, i=1,...,N1,

Lf̄jVε,j + LḡjVε,ju ≤ −
γj
ε
Vε,j + δj , j=N1+1,...,N1+N2,

LgL
rk−1
f hku ≥ LgLrk−1

f hku
∗
1, k=1,...,M1,

Lrlf hl + LgL
rl−1
f hlu ≥ −Kα,lξl − sl, l=M1+1,...,M1+M2,

(25)
where slack variables s penalized by the elements in the
diagonal matrix K > 0 have been added to the lower priority
set-based tasks enforced through ECBFs to ensure feasibility
of the optimization problem.

By observing that the solution u∗2 to (25) enforces the
constraints LḡiVε,iu

∗
2 ≤ LḡiVε,iu

∗
1 and LgL

rk−1
f hku

∗
2 ≥

LgL
rk−1
f hku

∗
1 for all i and k, it is straightforward to generalize

(25) to an arbitrary priority level n, viz.

minimize
u∈Rm,δ∈RNn ,s∈RMn

uTHu+ cTu+ δTWnδ + sTKns

subject to

LḡiVε,iu ≤ LḡiVε,iu∗n−1, i=1,...,N̄n−1,

Lf̄jVε,j + LḡjVε,ju ≤ −
γj
ε
Vε,j + δj , j=N̄n−1+1,...,N̄n,

LgL
rk−1
f hku ≥ LgLrk−1

f hku
∗
n−1, k=1,...,M̄n−1,

Lrlf hl + LgL
rl−1
f hlu ≥ −Kα,lξl − sl, l=M̄n−1+1,...,M̄n,

(26)

where N̄n = N1 + N2 + . . . + Nn and M̄n = M1 + M2 +
. . .+Mn. Note that the objective function is slightly different
at every priority level, since the slack variables δ and s always
correspond to tasks at the current priority level. This prevents
trade-off configurations where none of the tasks are satisfied
from occurring. The procedure is summarized in Algorithm 1.

Algorithm 1 Task priority CLF-ECBF QP controller
Input: H(x), c(x), Vε,i(ηi), i = 1, . . . , N , hj(x), j = 1, . . . ,M .
Output: u

1: Solve (20) to obtain u∗
1 with i = 1, . . . , N1, k = 1, . . . ,M1.

2: for p = 2 to k do
3: Solve (26) to obtain u∗

p.
4: end for
5: return u = u∗

k.

IV. SIMULATIONS

In this section, the proposed hierarchical control scheme
is validated in simulation on an articulated intervention au-
tonomous underwater vehicle (AIAUV) based on the Eelume
robot [31], [32], see Figure 1. The AIAUV is a floating base
manipulator, with n+1 links interconnected by n joints, where
link 1 is the tail, or base link and link n+ 1 is the head. The
simulation model has n = 8 joints and p = 7 thrusters, where
all joints are single DOF and revolute. The system configu-
ration can be described by ξ = col

(
piib, q, θ

)
∈ R7+n, where

piib ∈ R3 is the position of the base of the AIAUV in an inertial
frame, q ∈ R4 is a unit quaternion describing the orientation
of the base and θ ∈ R8 are the joint angles. The linear and
angular velocities of the base frame with respect to an inertial
frame are denoted viib and ωiib, respectively. These quantities
are collected in a velocity vector ζ = col

(
vii,b, ω

i
i,b

)
. The

equations of motion are given by [31]

ξ̇ = Jξ(q)ζ, (27)

M(θ)ζ̇ + C(θ, ζ)ζ +D(θ, ζ)ζ + g(ξ) = B(θ)u, (28)

which can be rearranged in state space form

ẋ = f(x) + g(x)u, (29)

where x = col (x1, x2) = col (ξ, ζ). With 6 + n = 14 DOFs
and n + p = 15 control inputs, the system is overactuated as
well as redundant with respect to typical control tasks such as
end-effector configuration control.

For an AIAUV, operational space tasks are defined by σ =
f(ξ), and the Jacobians by

σ̇(ξ, ζ) =
∂f(ξ)

∂ξ
Jξ(q)ζ (30)

= Jζ. (31)

We consider three equality tasks and three set-based tasks,
at three different priority levels for simulation. The set-based
tasks are safety related and are thus placed at the highest
priority level. The safety related tasks consist of end-effector
collision avoidance, joint limit avoidance, and actuator matrix
singularity avoidance and are all encoded by ECBFs with a



Fig. 1. The Eelume AIAUV [33].

relative degree of two, since they are only functions of the
configuration variables. The end-effector collision avoidance
and actuator matrix singularity avoidance ECBFs are given by

h1 =

√(
piobs − piie

)T (
piobs − piie

)
︸ ︷︷ ︸

σa

−(robs + ε), (32)

h2 = det
(
B(θ)BT (θ)

)
︸ ︷︷ ︸

σb

−σb,min, (33)

where piie and piobs is the position of the end-effector, which
is placed at the front of the head link and the obstacle,
respectively. Eight joints with upper and lower limits yield
a total of 16 ECBFs of the form

hi+2 = θi − σci,min, (34)
hi+10 = σci,max − θi. (35)

for i = 1, . . . , 8. The second priority level contains the end-
effector configuration task

y1 =

[
piie − pid,e

ε̃

]
, (36)

where piie ∈ R3 is the end-effector position in the inertial
frame, and ε̃ is the imaginary part of the quaternion error
vector q̃ = qd ⊗ q∗, which is given by

ε̃ = ηεd − ηdε+ [ε]× εd, (37)

where [·]× : R3 → so(3) ⊂ R3×3 is the skew symmetric map.
The third and final priority level consists of a base position-

ing task, intended to keep the base of the AIAUV stationary
while reconfiguring the end-effector. The end-effector configu-
ration and base positioning tasks only consume 9 DOFs, which
entails that there are still 5 uncontrolled DOFs if all set-based
tasks are inactive. Stability of the entire system is ensured by
eliminating the residual DOFs by a joint velocity regulation
task. The task errors are given by

y2 = piib − pid,b, (38)

y3 = θ̇. (39)

Because y1 and y2 only depend on the configuration variables
ξ, they have to be differentiated twice with respect to time
for the input u to appear. The joint velocity regulation task
y3 is a function of the generalized velocity ζ, and thus needs
to be differentiated once for the input to show up. Hence,
ρ1 = ρ2 = 2 and ρ3 = 1. Similarly, (32)-(35) all have to be
differentiated twice with respect to time for the input to show
up, hence r1 = · · · = r18 = 2. According to Algorithm 1, we
solve the following QP:

minimize
u∈R15,δ1∈R

uTATAu+ 2bTAu+ w1δ
2
1

subject to

Lf̄1Vε,1 + Lḡ1Vε,1u ≤ −
γ1

ε1
Vε,1 + δ1,

L2
fhk + LgLfhku ≥ −Kα,kξk, k = 1, . . . , 18,

− 50 N ≤ u ≤ 50 N,

− 0.1 N/s ≤ ∆u ≤ 0.1 N/s,

(40)

which yields a control input u = u∗1 that only accounts
for the safety-related tasks and the end-effector configuration
task. However, since the end-effector configuration task only
consume 6 DOFs, we may potentially have 8 remaining un-
controlled DOFs. The solution u∗1 can be refined by attempting
to keep the base stationary and minimizing the joint velocities
as follows

minimize
u∈R15,(δ2,δ3)∈R2

uTATAu+ 2bTAu+ w2δ
2
2 + w3δ

2
3

subject to

Lḡ1Vε,1u ≤ Lḡ1Vε,1u∗1,
Lf̄jVε,j + LḡjVε,ju ≤ −

γj
εj
Vε,j + δj , j = 2, 3,

LgLfhku ≥ LgLfhku∗1, k = 1, . . . , 18,

− 50 N ≤ u ≤ 50 N,

− 0.1 N/s ≤ ∆u ≤ 0.1 N/s,

(41)

which yields the final control input u = u∗2 that is applied to
the AIAUV.

The optimization problems are formulated in terms of
the thruster and joint torque control inputs u, and not the
commanded forces and torques τ = Bu. Consequently,
the proposed framework also solves the control allocation
problem. By unifying the redundancy resolution and control
allocation problems, strict priority among tasks can always be
ensured. The same cannot be said for other redundancy res-
olution schemes which decouple dynamic control and control
allocation, since the commanded forces and torques may not
be exactly allocable, leading to a loss of priority among tasks.

Simulation results are presented in Figures 2 to 5. From
Figures 4 and 5 we observe that the set-based tasks are satisfied
at all times, where the collision avoidance task results in a
small deviation in the x-coordinate of the end-effector position
from t ' 268 s to t ' 281 s. Moreover, from t ≥ 350 s, the
end-effector position is commanded outside of the manipulator
workspace (when the base is kept at its current position), which
implies that the base positioning task is no longer compatible



with the end-effector positioning task. As expected, the end-
effector position converges to its desired value at the expense
of a greater error in the base position.
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Fig. 2. The x, y, z positions of the end-effector pe and base pb.
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Fig. 3. The thruster and joint torque control inputs.

V. CONCLUSION

This paper has presented a novel framework for dynamic
control of redundant robotic systems based on a hierarchy of
CLF-ECBF QPs. The framework generalizes the work in [18],
[27] to any number of priority levels. There is considerable
design freedom within this framework, soft priority measures
can be employed between tasks at the same priority level,
while a strict priority measure in the form of solving another
QP can be used to ensure that lower priority tasks have no
effect on higher priority tasks. This allows optimization based
control objectives to be safely included, without affecting the
execution of mission related tasks.
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Fig. 4. The distance to the center of the spherical obstacle σa and its minimum
value, and the actuation index σb and its minimum value.
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Fig. 5. The joint angles θ, their maximum and minimum limits and the
attitude response.

The proposed framework has been verified in simulation for
an AIAUV, which is an overactuated and redundant robotic
system. For these types of systems, the proposed task priority
framework also solves the control allocation problem, which
is highly advantageous since control input bounds and rate
constraints can be accounted for when resolving redundancy,
effectively avoiding a situation in which commanded general-
ized forces and torques cannot be allocated explicitly, leading
to a loss of priority among tasks.
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