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Abstract

A review of the existing literature on the concept of contactless braking using eddy currents
induced in conductive materials moving relative to a magnetic field, and the real world ap-
plications and control algorithms that take advantage of this phenomenon. The topics cov-
ered include: Analytical modeling of eddy current brake force, robust brake force control
using the discontinuous control algorithm; Sliding Mode Control, optimal linear control;
Linear Quadratic Regulation, digital implementation and simulation of brake force control
on linear motion of a conductive aluminium sheet.
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Chapter 1

Introduction

This report is a documentation of the work and literature review done by the student/author
on the subject of contactless braking, and serves as the main deliverable in the subject
TTK4550 - Specialization Project as part of the 5 year MSc programme Cybernetics and
Robotics at NTNU Gløshaugen. Brief introduction of the structure and contents of the
document, divided into five chapters:

1. Introduction: Preface, motivation and background theory.

2. ECB Control: Existing ECB control publications, sliding mode control and an ide-
alized example.

3. Model Extension: Extensions to accepted approximate models, continuous sliding
mode control and optimal linear control.

4. Results and Discussion: Simulation results of presented models and control algo-
rithms.

5. Conclusion

1
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1.1 Motivation

Electromagnetic braking has been explored as a concept for a little more than a century.
Today, an ever increasing number of real world applications have had their mechanical,
friction based, braking systems replaced by the Eddy Current Brake (ECB). Some of the
favourable properties of ECBs are:

1. Better high speed braking performance, as friction brakes suffer from a fading effect
when the temperature of the contact area rises.

2. Resistance to weather effects such as temperature and precipitation.

3. Longer lifespan of the braking mechanism, less wear and tear.

Exercise equipment, high speed railways and even fishing reels are just a few of the appli-
cations in which ECBs are common today.

2
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1.2 Background

This section will establish the framework for the ECB system, and torque control of a ro-
tating disc using such a system. This includes theoretical background of electromagnetism
and the eddy current phenomenon, and a rundown of some fundamental publications that
have formed a basis for the understanding and implementation of ECBs in control systems.

1.2.1 Fundamental Theory

In order to gain a deeper understanding of the topic, it is important that we familiarize our-
selves with some of the fundamental properties of electromagnetism. A solid understanding
of Maxwell’s equations, Lenz’s law and Lorentz force law are of particular importance in
order to grasp the cause and effect of electromagnetic damping.

Faraday’s Law of Induction (1.1), as generalized by Maxwell, states that when a mag-
netic field B is subject to change it will always be accompanied by an electric field E -
which spatial variation is given by the rate of change in time of B:

∇× E = −∂B
∂t

(1.1)

The opposite is also true, in that a time varying electric field will be accompanied by a spa-
tially varying magnetic field: Ampéres Circuital Law (1.2), also generalized by Maxwell,
describes the behaviour of the magnetic field around some flow of current. When an elec-
tric field E changes in time, such as when an electric current flows through a conductor, the
moving charges will be accompanied by a magnetic field around the conductor:

∇× B = µ0(J + ε0
∂E
∂t

) (1.2)

In (1.2) µ0 and ε0 are the permeability and permitivity of empty space, respectively. J is
the current density in the conductor.

Lenz’s Law states that when an electric current is induced in a conductor due to a change in
B, the orientation of said current will be such that it generates a magnetic field counteract-
ing the original change in B. One can see that Lenz’s law and (1.1) agree, in that the spatial
variation in E and the rate of change in time of B will always be opposite. Lenz’s law can
be seen as analogous to Newton’s third law in classical mechanics.

3
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Lorentz Force law (1.3) describes the Lorentz force that acts on a particle of charge q and
velocity v due to external electric and magnetic fields:

F = q(E + v× B) (1.3)

(1.3) tells us that when some conductive material moves through an external electric or
magnetic field, charged particles in the material will begin to move relative to the conduc-
tor due to the Lorentz force.

The vector form of Ohm’s Law is a reformulation of the original result by Georg Ohm,

J = σE =
1

ν
E (1.4)

stating that the amount of current flowing through a cross sectional area J at any point in
a material of conductivity σ (or alternatively, resistivity ν) is equal to the product of the
conductivity and the electric field E at the given point.

4
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1.2.2 Eddy Current

vBmag B
+

eddy

B
−

eddy

ieddy

Figure 1.1: Horizontal cross sectional view of a conductive sheet moving linearly through
a magnet air-gap. The circular area in the centre of the sheet is the projection of the pole
area onto the sheet. Blue, green and red vectors denote the sheet velocity, induced magnetic
fields and eddy current return paths, respectively.

Using the basic laws of classical electromagnetism presented in the previous section, this
section will attempt to give the reader a thorough and intuitive description of the eddy cur-
rent phenomenon and why it is useful to us.

When describing the phenomenon of eddy currents induced in a thin conductive sheet
moving through a magnetic gap, it is useful to view the pole as split in the middle and
consider what happens in the trailing part (the part moving into the magnetic field), and the
leading part (the part moving out of the magnetic field) of the sheet close to the pole area.
Let the sheet have instantaneous velocity v, conductivity σ and let the magnetic field B be
perpendicular to the sheet surface.

As the trailing part moves into the pole area, it will experience an increasing magnetic field
B. Since it is increasing, the time derivative ∂B

∂t
of this field will point in the same direction

as B. By Faraday’s law of induction (1.1), a change in B tells us that the curl the of the
electric field in the sheet will be equal to the negative time derivative of B: ∇× E = −∂B

∂t
.

Here ∇ × E is given by a vector perpendicular to the plane of the sheet, hence we know
that E is rotating in the plane and the direction follows from the right hand rule. The same
procedure for the leading half of the pole, where the magnetic field is decreasing in time
yields the same rotation of E in the plane, of opposite direction. The resulting current paths

5



TTK4550 - Specialization Project 1.2. BACKGROUND

are circular and branching out of, and back into, the pole area. These return paths for the
current are similar to eddy currents observed in turbulent fluids, which is where the eddy
current phenomenon gets its name.

The direction of the magnetic fields induced by the eddy currents can be deduced by Lenz’s
law. Again, note that for the trailing part of the sheet B is increasing and for the leading
part B is decreasing. Lenz’s law states that a current induced by a changing magnetic field
will induce a magnetic field of its own that opposes the original change. Using this fact,
we know that the magnetic field induced by the eddy currents in the trailing part; B−eddy
will point normal to the sheet plane, opposite to B. The opposing magnetic fields results in
a magnetic force of repulsion between the stationary magnet and the trailing end. On the
leading end, a magnetic field B+

eddy with the same direction as B is induced, resulting in a
magnetic force of attraction between the stationary magnet and the leading end. The forces
on both sides of the pole area combine to oppose the direction of movement. This is the
electromagnetic drag force due to eddy current induction.

6
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1.2.3 Fundamental Literature

Maxwell [1] was one of the first to investigate the effects of induced eddy currents in a thin
conductive sheet of indefinite length, moving with a velocity relative to the electromag-
net. He used what is now referred to as Maxwell’s receding image construction, to explain
how the counter-magnetic field of the induced eddy currents changes over time. Roughly
explained, the construction is based on a decomposition of the sheet into positive and neg-
ative parts - above and below the sheet respectively. A monopole q moves from left to right
above the sheet with a velocity v. Time discretization allows for analyzing the effects of
the instantaneous magnetic field of q onto the sheet at each time instant t. Maxwell’s theory
states that at time t, an image of the monopole q is created on the negative side of the sheet
- these images are denoted −q. At the next time instant t+ δt, as q moves a distance v · δt
along the sheet, an image of the same strength and opposite polarity of −q is created in its
previous position. The imagined monopoles on the negative side of the sheet, representing
the induced magnetic fields at each time-step, move away from the sheet with velocity:

v0 =
2

µ0σd
(1.5)

This is the characteristic recession velocity for a sheet with conductivity σ and thickness
d. Thus, q leaves behind it a trail of receding images for each given time instant. Maxwell
also investigated the forces applied to the moving monopole q. The drag force experienced
by a monopole of strength m moving at velocity v parallel to a thin conductive sheet at
distance z to the sheet was found as:

fd =
m2

4z2
v

√
v20 + v2 + v0 − v

(
√
v20 + v2 + v0)2

(1.6)

Maxwell’s results are limited by the fact that they predate the discovery of the electron.
Another limitation is the lack of modern computing tools, disallowing the choice of suffi-
ciently small time steps δt in the image construction for increased accuracy. Nevertheless,
Maxwell’s receding image construction was used to calculate accurate drag/lift force mod-
els in several succeeding articles on the eddy current phenomena.

The theory of eddy currents in thin conductive sheets was first (successfully) extended
to braking systems by Rüdenberg [2]. His results are based on a sheet of infinite length
moving through an infinite series of magnetic gaps. Suppose the magnets are designed
such that the magnetic field is sinusoidally alternating along the length of the sheet (Figure
1.2). Using the assumption that the eddy current distribution can be accurately described
using sinusoidal functions, he obtained the formula:

K =
1

4

d

s
B2

1vλ
2 w

(vl/s)2 + w2
(1.7)

7
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Figure 1.2: Rüdenbergs infinite sheet moving through a series of magnetic gaps with sinu-
soidally distributed magnetic fields with amplitude B1. τ is the space between each pole,
d is the sheet thickness, λ is the side length of the square poles, and v is the sheet velocity.
Figure source: [3, p.134].

Where K[10−3 · g] is the braking force for each pole. s[m2/s], w[1] and l[m] are known
parameters. Rüdenberg noted a decaying breaking force at high velocities. In particular,
(1.7) predicts a descent in K proportional to 1

v
as v → ∞, and predicts the critical torque

and velocity to be proportional to the magnet airgap δ.

Extensive experiments of the results and formulas proposed by the available literature on
ECBs in the early 20th century were conducted by Zimmermann [3]. Conductive sheets of
infinite length, which several of the relevant models were derived from, do not exist in re-
ality. Thus, testing rigs for the ECB brake force models are typically in the form of rotating
disks of some conductive material - and the measured braking torque by the ECB on them.
Two different experimental configurations were used: Firstly, a Pasqualini-brake, consist-
ing of a thin conductive disc rotating through two circular magnet gaps placed on opposite
sides of the disc at equal distance from the center. Secondly, a Siemens-brake, with a thin
conductive ring through polygonal magnet gaps on opposite sides. Various conductive met-
als, including aluminium, for the disc were also tested. Zimmermanns experimental results
were a crucial source of verification for the preceding and succeeding literature on ECBs.

The Pasqualini-brake configuration was found to consistently outperform the Siemens-
brake, which might explain why the former is the preferred experimental configuration
in later works on ECBs. Rüdenbergs [2] brake force formula could not be verified experi-
mentally (Figure 1.3), nor the claimed proportionality of critical velocity (and brake force)

8
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and the magnet airgap. Zimmermann instead observed a ”slower than proportional ascent”

Figure 1.3: Rüdenbergs equation (1.7) (gerechnet; expected) compared with experimental
results (gemessen; measured). The plot [3, p.144] shows braking force as a function of disc
velocity.

of brake force as a function of magnet airgap. Experimental results (Figure 1.3) revealed
that for low speeds, brake force is proportional to sheet velocity and for high speeds, brake
force is proportional to the inverse velocity. Zimmermann concludes that (1.7) has some
validity in predicting the ascending and descending proportionality of the brake force.

Smythe [4] and Scheiber [5] successfully expressed the induced eddy current distribution,
in a thin rotating disc through circular magnet gaps, in terms of differential equations -
solved analytically [4] and numerically [5] to yield agreeing expressions for the resulting
braking torque:

T =
π

2ν
R2δm2B2ω

[
1− (R/a)2

(1−m2/a2)2

]
(1.8)

Where ν = σ−1 is the sheet resistivity,R is the pole radius, δ is the sheet thickness,m is the
pole lever arm from disc centre and a is the disc radius. (1.8) proved accurate in the linear
low velocity region, but do not predict a critical velocity and braking torque. Smythe ex-
tended his method to the high speed region, but predicted a descent in brake torque steeper

9
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than ω−2 for ω > ωc which does not agree with experimental results (Figure 1.3).

Wouterse [6] introduced the concept of an ideal eddy current brake, and proposed a for-
mula for computing the critical velocity vc - more accurate to experimental results [3] than
the preceding literature. An ideal eddy current brake means that the return path of the in-
duced currents follows the outline of the pole area, and is of zero resistance, as if the pole
was surrounded by a superconductive ring. The result of this assumption is that the current
density J = −1/ν(v × B) of the induced electrical field E = −v × B is confined to the
volume of the sheet covered by the pole.

Instead of describing the eddy current distribution in the sheet and solving the differen-
tial equations, as done in detail by Smythe [4] and Scheiber [5], Wouterses braking force
model is based on the kinetic energy dissipated as heat in the sheet. The total power dis-
sipation in the sheet volume under the pole, and the resulting drag force, are given by:

Pdiss =

∫
V

νJ2dV =
π

4ν
D2dB2v2 (1.9a)

Fe =
Pd
v

=
π

4ν
D2dB2v (1.9b)

Where ν is the resistivity of the sheet material, D is the pole area diameter, d is the sheet
thickness, B is the external magnetic field acting on the sheet, and v is the sheet velocity.
At low speeds the magnetic brake behaves as a linear damper, as B does not deviate signif-
icantly [6, p. 154] from the initial magnetic field B0 for v << vc. Wouterse includes the
factor c

c =
1

2

[
1− 1

4

1

(1 + R
A

)2(A−R
D

)2

]
(1.10)

in (1.9) to compensate for the fact that in real systems, the return path of the eddy currents
is not of zero resistance. In (1.10), R is the lever arm of the pole from the disc center, and
A is the disc radius. This yields the drag force expression

Fe =
π

4ν
D2dB2

0cv (1.11)

which agrees with the initial results of Smythe [4] and Scheiber [5] (1.8).

Wouterse’s critical velocity formula:

vc =
2

µ0

√
1

cξ
· ν
d

√
x

D
(1.12)

10
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Where x is the airgap length, including sheet thickness, and ξ ≈ 1 is a proportionality
factor. Wouterse’s results, though not completely accurate to reality, form a good basis for
initial investigations of ECBs due to their simplicity.

11



Chapter 2

ECB Control

The sections contained in this chapter present existing literature on real time control im-
plementations of the models, a description of a particularly applicable control algorithm in
Sliding Mode Control, and application of a primitive such controller to an idealized brake
force model.

It is tempting to apply the ECB to the speed dynamics of some vessel, and indeed - most
of the literature on the topic of ECB control investigates ECB performance in speed reg-
ulation. However, use of approximate brake force models will serve as one of several
sources of error in such applications. For this reason we will focus on control of the one-
dimensional braking torque/force output of the ECB itself. While the system representing
the magnetic field density is characterized by the classically well behaved (under certain
conditions), linear relation B ∝ i - output reference control of the braking force/torque is
less straight forward.

Complications in controller implementations of the ECB arise from the nonlinearity in the
braking force output, ubiquitous to accepted analytical models (Section 1.2.3): FECB ∝
B2. The brake force dynamics of an ECB generally takes the form:

ẋ(t) = a(t)x(t) + b(t)u(t)

y = c(t)x(t)2

The lack of a sufficiently accurate, stationary brake force model has motivated the use of
robust and/or adaptive control algorithms to counter the uncertainty of the system parame-
ters, particularly in the brake force model parameter c(t).

12
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2.1 Existing Literature

Optimal torque control of an ECB mechanism on the wheel(s) of ground vehicles where the
minimized objective is the braking distance was investigated by Kapjin Lee and Kyihwan
Park [7], followed by Sohel Anwar and Bing Zheng [8]. Due to the many advantages of
ECBs compared to friction brakes, some of which have already been mentioned (Section
1.1), these publications investigate the use of ECBs in Anti-lock Braking Systems (ABS)
applications. A publication by Jeonghoon Song [9] also investigates the use of ECB for
control of the angular motion of rotating disks, and proposes a hybrid hydraulic-ECB - cit-
ing low braking force output of the ECB at low speeds. [7–9] share a similar approach to
ECB control, using variants of (1.11) as approximate braking force models and discontinu-
ous control algorithms (sliding mode control). Good reference torque tracking is consistent
for each of the three publications, as well as performance issues associated with the control
algorithm.

On the other hand, E. Simeu and D. Georges [10] successfully designed and implemented
a continuous linearizing control algorithm based on a modification of (1.11) to include
magnetic hysteresis, which combined with state/parameter estimation yielded quite good
experimental results while bypassing the drawbacks of the discontinuous controller used
by [7–9].

Linear motion braking force control was investigated by R. Hong-Je et al. [11]. 2D Finite
Element Method (FEM) was used instead of approximate models for the brake force, and
near constant brake force control was achieved experimentally using only a linear feedback
controller (PI).

13
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2.2 Sliding Mode Control

An alternative to numerical solutions of a complex system, is an approximate model ac-
companied by a robust control algorithm capable of effectively eliminating uncertainties in
finite time. This approach is often preferred in early stages of modeling and control due
to its reliability and comparably simple implementation. One such algorithm popular for
electro-mechanical systems is the Sliding Mode Controller (SMC).

Sliding mode control is a discontinuous control algorithm that, by defining the input as
u = −Mσ(s), forces the system to follow a sliding surface from both sides. To achieve
this, M is set as a very high gain - typically given by the maximum output of the actuator.
σ : <m → {−1, 0, 1}m is a discontinuous function, typically chosen as σ(s) = sgn(s).
Consider the nonlinear time varying state-space:

ẋ = f(x,u, t) , x ∈ <n

u = −Msgn{s(x)} , M > 0 , s ∈ <m

Where m ≤ n and s(x) = 0 defines m sliding surfaces. The system is said to be in sliding
mode when it is ”sliding” across the sliding surface(s) given by s = 0 for a first order SMC.
In general, the sliding mode for a p-order SMC is given by s = ṡ = ... = s(p−1) = 0 [12].
We wish to express s(x) = 0 in terms of wanted behaviour of the nonlinear system. One
example of this could be s = ẋ + cx, where c > 0 [13]. The sliding mode of the system is
then given by the dynamics ẋ = −cx, which has an asymptotically stable equilibrium point
at x = 0. SMCs are characteristically robust, as the feedback gain (if chosen large enough)
will overpower the effect of any uncertainties in the plant model.

One cannot blindly define desired system behaviour as a sliding surface however, as the
sliding surface must be reachable. The reachability conditions of a SMC are the conditions
at which the solutions x(t) reach the sliding surface in finite time. Reachability conditions
are not uniquely defined in the literature on SMC, using the η-reachability condition [12]:

siṡi < −η|si|, i ∈ {1, 2, ...,m}, ∀ s, ṡ ∈ <m/{0} (2.1)

Where η > 0 is some arbitrarily small design parameter.

SMCs are particularly well suited towards electromechanical systems, as they often use
transistors as actuators that naturally produce a high frequency switching output. In such
cases, discontinuous control algorithms such as SMC are often favored over continuous
control schemes with Pulse-width Modulation (PWM) [13].
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A significant drawback of the SMC algorithm, is the sliding mode behaviour of switching
around s = 0 at an infinitely large frequency. As this is obviously not possible in practice
due to physical limitations of actuators, sliding mode controllers give rise to a chattering
effect (high frequency oscillations) around the sliding surface. This effect is often exac-
erbated by the presence of unmodeled dynamics, that due to the high gain may become
significant. In practice, some approximation of the discontinuous function σ must be used
in the implementation - which can greatly reduce chattering depending on the approxima-
tion used. Higher order SMC implementations are also effective in reducing chattering.
Implementing observers has also shown to effectively filter out the high frequency com-
ponents of the sliding mode controller [13]. These methods all come with drawbacks, one
example being that control systems using approximations of the discontinuous control sig-
nal typically converge to a nonzero error. The error is greater depending on the accuracy of
the approximation.
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2.3 Example

Symbol Description Value
d Sheet thickness 5mm
D Magnet pole diameter 10mm
lg Air-gap length 5mm
lc Magnet core length 20cm
µ0 Vacuum permeability 4π · 10−7H/m
µc Magnet core permeability (iron 99.8% pure) 6.3 · 10−3H/m
µd Sheet permeability (aluminium) ≈ 4π · 10−7H/m
Rmag Electromagnetic circuit resistance 2.1Ω
N Number of inductor turns around magnet core 1200
σ Sheet conductivity (aluminium) 2.0202 · 107S/m
ν Sheet resistivity (aluminium) 0.0495 · 10−6Ωm
c Brake force model compensation factor 0.5

Table 2.1: Physical parameter values used for all simulations in this report.

To gain a better understanding of the basics of electromagnetic braking systems, as well as
their response to sliding mode controllers, consider the following example of a linear brake
controlled by a first order sliding mode controller. The system is considered in its simplest
form to highlight the performance of the ECB under ideal circumstances.

Assume a thin sheet of thickness d and conductivity σ and of indefinite length is placed un-
der an electromagnetic pole with airgap lg, exciting a stationary and uniformly distributed
magnetic field B of magnitude B0 through the plane of the sheet (Figure 2.1). Now let the
sheet move with velocity v and speed v relative to the pole. As explained in Section 1.2.2,
the sheet will experience a drag force caused by the magnetic fields of the induced eddy
currents on the sheet. Our objective is to control this electromagnetic drag force Fe (1.11)
to a reference force Fr using a sliding mode controller. For the described configuration, the
compensation factor (1.10) is c = 0.5

2.3.1 Modelling the electromagnet

The magnetic field B is generated by a simple RL-circuit (Figure 2.2). We will control the
strength of the magnetic field by using the command voltage Vcmd as our input. Kirchoff’s
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x

z
lg

Figure 2.1: xz-plane of the infinite sheet moving through the magnetic field B.

Figure 2.2: Circuit model of the electromagnet. Vcmd[V] is the command voltage generated
by the controller. Rmag[Ω] is the resistance of the electromagnet circuit. The inductor has
inductance L[10−3 · H] and has N windings around a metal core of permeability µc[Hm ].
VL(t) is the voltage over the inductor at time t.
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voltage law yields the differential equation:

d
dt
i(t) =

1

L
(−Rmagi(t) + Vcmd) (2.2)

The time-constant of which is given by:

τRL =
L

Rmag

(2.3)

Inductance L of the differential equation (2.2) can be calculated as:

L =
µ0N

2Ac
lc

(2.4)

Where Ac and lc are the cross-sectional area and length of the core, respectively.

An idealized electromagnetic model will be used to express B0. The magnetomotive force,
induced by the current i passing through the inductor with N windings around a permeable
core, is given by F = Ni. Magnetic flux through the core can be computed as φ = F

R
whereR is the total reluctance. Reluctances in the core, airgap, and disc are given in series
by:

Rc =
lc

µcAc

Rg =
lg − d
µgAg

Rd =
d

µdAd

Where li, µi, Ai are the length, permeability and cross-sectional area, and d is sheet thick-
ness. We assume no fringing in B, so that Ag = Ad = Ac. We also assume that the
permeabilities of air, the disc, and the core are equal to the vacuum permeability µ0. The
magnetic field, or magnetic flux density in the gap is then given by:

B0 =
φ

Ag
=

µ0Ni

lc + lg
(2.5)

If we assume that µc >> µ0, as is the case for most non air cores, the magnetic flux density
simplifies to

B0 =
µ0Ni

lg
(2.6)
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Figure 2.3: Architecture of ECB control systems referred to throughout this paper.

2.3.2 Controller Design

Consider the system architecture (Figure 2.3). We choose to design the control input u =
Vcmd of the electromagnet actuator as a primitive sliding mode controller: The simplest
form of a first order sliding mode controller is given by the sliding surface defined by the
tracking error: s = e = Fr − Fe = 0. Since our model (1.11) depends not on B0, but
on B2

0 , a traditional SMC design Vcmd = −Vmaxsgn(s) will fail to make our system slide
along s = Fr − Fe = 0. In physical terms, the inputs Vcmd = {−Vmax, Vmax} will
push Fe in the same direction since they only serve to reverse the polarity of B which will
produce a drag force of the same magnitude and direction. For this reason we must modify
either the sliding surface, or the controller u = Vcmd to yield desired results. The following
simulation results are based on sliding surface s = Fr −Fe = 0 and an "on/off" controller:

Vcmd = Vmaxθ(s)


Vmax s > 0
1
2
Vmax s = 0

0 s < 0

(2.7)

Where θ is the Heaviside function. In practice, we are controlling the switch in (Figure 2.2)
while the source is at a constant maximum voltage.

2.3.3 Simulations and Results

All simulations mentioned in this subsection were executed with v(t) as an external vari-
able expressed as a ramp function plateauing at v = 4.0m/s at t = 1.0 s. The maximum
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command voltage (2.7) was set to Vmax = 100 · 106 V. Note that extremely high voltage
(and current) is needed to generate a sufficiently strong magnetic flux density B0, this due
to our modeling of the magnet as an air core (µc=µ0).

The reference braking force was set to Fr = 0.5 N for all simulations, except one used
to examine the sliding properties for a time varying reference. A time delay e−τds was in-
cluded in the transfer function from Fe to Fr: Fe(s)/Fr(s) = H(s)e−τds with τd = 0.25 s.
The only other time constant in the system would otherwise be given by the current dy-
namics in the inductor (2.3), τRL = L/Rmag << τd. This was done as a measure to limit
the response time of Fe, simulating reality by including the time constant of a force sensor
in a physical system.

Various approximations of the discontinuous part of the controller (2.7) were tested (Figure
2.4), including a relay switching approach (Figure 2.5), a piecewise linear approximation
(Figure 2.6) and a smooth (logistic) approximation (Figure 2.7).

Relay: Vcmd =


Vmax s > q

[Vmax, 0] |s| < q

0 s < −q

Piecewise linear: Vcmd =


Vmax s > p

Vmax(
1
2

+ 1
2p
s) |s| < p

0 s < −p

Smooth (logistic): Vcmd = Vmax{
1

2
+

1

2
tanh (ks)}

Where q, p, k are sharpness parameters, determining how sharply each function turns at
s = 0. The sharper the turn, the closer the given function is to the discontinuous function
θ(s). Results presented in this subsection were obtained with parameters q = p = 0.002,
k = 100.

Simulation attempts of the system using the discontinuous controller (2.7) as is, did not
progress as soon as the sliding mode began. This was caused by chattering of frequency
approaching infinity, due to variable-step solver being used for the simulation instead of a
fixed-step solver.

The step response of the relay switch controller seems to follow its reference fairly well,
however: A high frequency chattering effect as discussed in (2.2) is apparent. These ef-
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Figure 2.4: Various approximations of the Heaviside-function θ.
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Figure 2.5: Step response of the braking force system with relay switching approximating
θ.

21



TTK4550 - Specialization Project 2.3. EXAMPLE

fects are not unexpected as the relay function, despite its switching threshold limiting the
chattering frequency, is still discontinuous.

Piecewise approximation of θ(s) yields a trajectory of Fr seemingly free from chattering
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Figure 2.6: Step response of the braking force system with a piecewise linear approxima-
tion of θ.

effects, while still converging to the reference signal. The sharpness of our approximation
however results in some spikes and chattering in the command voltage.

Slightly worsened trajectory for the braking force was observed for the smooth approxi-
mation of θ(s), but as expected (for a sufficiently small k) produced a command voltage
free of chattering. It is important to note that the command voltage time-series produced
by the last two simulations cannot be produced by a discontinuous actuator such as a tran-
sistor. We would need to control the source voltage or use a PWM of the control signal,
which partly defeats the purpose of the SMC design.

The measures taken to approximate θ have successfully removed the chattering effects
of the sliding mode, and have not been detrimental to the performance. Hence, there is
no immediate need to implement higher order sliding modes, observers or other methods
to decrease chattering for this system. Since there are no unmodeled uncertainties in this
idealized example, the robustness of SMCs has not been demonstrated by these results -
although: In practice, if our gain Vmax is not too limited and sliding surfaces are properly
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Figure 2.7: Step response of the braking force system with a smooth approximation of θ.
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Figure 2.8: Reaching and sliding modes of the system with time varying reference signal
Fr(t).
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defined, similar performance is expected regardless of the level of uncertainty in the sys-
tem parameters. As a final point about the results, we can see that the control laws without
discontinuous switching have a small stationary deviation. As mentioned in the section
about SMCs (Section 2.2), this is a common drawback of using this method to suppress
chattering effects. Other methods will therefore be explored in the succeeding chapter.

A simulation with a time varying reference signal Fr(t) as a negative ramp starting at
Fr = 0.5 N and saturating at Fr = 0 N was executed . The resulting phase plot (Fig-
ure 2.8) of (Fe(t),Fr(t)) provides a visual representation of the reaching mode - when the
system is being pushed toward the sliding surface from either direction, and the sliding
mode.
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Chapter 3

Nonlinear Model Extensions

Having successfully implemented Wouterse’s brake force model (1.11) and a first order
sliding mode controller, it is time to discuss the validity of the results. A good place to start
is the assumptions they are based on. In order of significance, some of these assumptions
are:

1. Linear damper: Speed constrained to low the "low" region, making the linear damper
an accurate brake force model.

2. Zero remanence: No magnetic memory effects in the electromagnet, so that the mag-
netic field density in the airgap can be switched on/off with the current.

3. Assumptions not investigated in this paper:

(a) Skin effects: The assumption that the width of the sheet d is small enough such
that dskin ≮ d. That is, eddy currents are not confined to a smaller volume of
the sheet of width dskin which would imply non-uniform distribution of eddy
currents in the material.

(b) Energy dissipation: That all kinetic energy dissipation due to induced eddy
currents is in the form of heat.

(c) Other assumptions such as no fringing of the magnetic field in the airgap, af-
fecting shape and size of the pole area on the sheet, and the notion of eddy
current return paths following a superconducting ring. These factors are partly
accounted for with the introduction of compensation factors (1.10).
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3.1 High Speed Region

The most significant assumption made, is that the sheet velocity is constrained to small
values - such that the drag force FD can be accurately modelled as a linear damper (1.11).
Many real world applications for ECBs are constrained to the low speed region, and a sim-
plified model is often sufficient. For high speed applications, however, we must consider
the following: For large v, a significant demagnetization of the external magnetic field B
occurs, as noted by [3, 4, 6]. The demagnetization of B, particularly its z-component (per-
pendicular to the sheet), results in a decaying drag force. Experimental results (Figure 1.3)
show a descent in FD proportional to v−1 for v > vc when the magnetic field is induced
by a constant voltage. This section includes an investigation into existing identifications of
the magnetic field as a function of sheet speed,

B(v) = B0f(v)

and an assessment of their accuracy and performance in a drag force control application.

3.1.1 Relevant Literature

The demagnetizing effect is caused by the fact that as the conductive sheet moves through
the pole at large speeds, the magnitude of the induced eddy currents and corresponding
magnetic field B′ increase to the point that |B| >> |B′| does not hold. Since B′ in the
trailing part of the sheet has the opposite direction of B, it will then partly annihilate the
external magnetic field. Wouterse [6] showed that as v → ∞, the magnetic field induced
by the eddy currents will effectively cancel out the z-component of the external magnetic
field - resulting in a net zero drag force exerted. We wish to extend Wouterse’s idealized
model (1.11) to account for this effect.

Davis and Reitz [14] applied, and in part corrected, the method of Sommerfeld [15] to cal-
culate an analytical drag force model including both low and high speed dynamics. Their
results are based on a moving monopole q a distance over a conductive sheet, and a receding
image construction - similar to that of Maxwell [1]. The rate at which eddy currents decay
in the conducting sheet was found using Maxwells equations (1.1) and (1.2), revealing a
characteristic recession velocity:

w =
2

µ0σd
(3.1)

Where d is the sheet thickness. This agrees with Maxwell’s initial result (1.5) for infinite
sheets. A Riemann double-space was used to express the sheets ”negative” side, where
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imagined monopoles −q recede from the sheet surface with velocity w (3.1), to yield an
expression for the lift and drag force experienced by the monopole q:

FL =
µ0q

2

16πz20

(
1− w

(v2 + w2)1/2

)
(3.2a)

FD =
w

v
FL (3.2b)

Where z0 is the elevation of the monopole over the sheet surface and q is the monopole
strength.

In general, drag force models based on analytic models of eddy current return paths [4,
5, 14, 16] fail to correctly identify the critical velocity of experimental torque-speed curves
[17, p. 93], even if they are asymptotically accurate in low/high speed regions. This is in
part caused by the large amount of heat generated in the conductive material, which can sig-
nificantly change the resistance of the return paths due to material conductivity depending
on temperature, while most analytical models assume constant conductivity (and resistiv-
ity). Conductivity was found by [18] to significantly impact critical braking force. Another
factor is non-uniform distribution of eddy currents due to skin effects. Both of these factors
becoming increasingly significant for high speed (and large eddy currents). For this reason,
More recent publications [17, 18] have moved away from analytical modeling to 3D FEM
analysis of the magnetic field in the air-gap.

3.1.2 Implementation

Linearity of FD at low speeds is well documented by both theoretical [2, 4–6] and experi-
mental results [3]. The nonlinear model (3.2) was therefore fitted to the linear model (1.11)
such that they coincide in the low speed region. Taylor series expansion of (3.2) about
v = 0 yields the linear approximation:

FD =
µ0q

2

16πz20

(
w −
√
w2

v
+

v

2
√
w2

+O(v2)

)
≈ µ0q

2

16πz20

v

2w
(3.3)

Matching coefficients of the linear approximation (3.3) and the linear model (1.11):

q = ±4πB0

√
cDz0

µ0

Which yields the fitted model:

FD =
πcD2

µ0

B2
0

w

v

(
1− w

(v2 + w2)1/2

)
(3.4)
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Figure 3.1: Drag force comparison of Wouterse’s linear damper and the fitted nonlinear
extension for idealized magnetic field B0 = 1.0T. Critical velocity vc and corresponding
drag force FD(vc) are indicated.

The critical velocity at which the maximum drag force is exerted (Figure 3.1) was found to
agree with Wouterse’s formula (1.12):

vc = w

√
1

2
(1 +

√
5) =

2

µ0

√
(1 +

√
5) · ν

d

√
1

2
=

2

µ0

√
1

cξ
· ν
d

√
x

D

With compensation factor c = 1/2, proportionality factor ξ = 2/(1 +
√

5) ≈ 0.618 and
airgap : pole-diameter ratio x/D = 1/2. Since the value of ξ is estimated to be unity, we
have an error of |1− ξ| · 100% ≈ 38.2% which results in a deviation of
|
√

1−
√

1/ξ| · 100% ≈ 27.2% in the critical velocity compared to Wouterse’s result. Nev-
ertheless, we consider the model sufficiently accurate to warrant further use.

A visual comparison of our fitted nonlinear model (3.4) (Figure 3.1) and experimental
results (Figure 1.3) shows a clear improvement in accuracy compared to the linear damper.
The dimensions of the experimental results are unclear, but one may claim that our drag
force model is roughly proportional to experimental results. We Verify expected propor-
tionality, FD ∝ v for v small and FD ∝ 1/v for v large, by the dominating terms of FD as
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v → {0,∞}:

lim
v→0

[
w

v

(
1− w

(v2 + w2)1/2

)]
= lim

v→0

(
w(v2 + w2)1/2 − w2

v(v2 + w2)1/2

)
~

[
0

0

]
(L’Hôpital’s rule)→ = lim

v→0

(
wv

2 · 2v2 + 2w2

)
= lim

v→0

v

2w

lim
v→∞

[
w

v

(
1− w

(v2 + w2)1/2

)]
= lim

v→∞
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Figure 3.2: Nonlinear model (3.2) performance compared to the idealized model (1.11) for
a sinusoidal reference signal Fr(t) and increasing sheet velocity v.

To showcase the limitations of the more realistic nonlinear model, simulations of the drag
force models (Figure 3.1) for a smooth Fr(t) were ran side by side (Figure 3.2). The same
first order sliding mode control scheme (2.7) was used as in the previous example (Section
2.3). The decay in drag force of the nonlinear model is clearly shown by its saturation for
higher speeds. Granted, notable saturation is only present for extremely high velocities in
the simulation. For a less modest reference signal however, saturation effects will become
significant in a more realistic velocity range. Saturation of FD for v >> vc can be avoided
by increasing the maximum voltage Vmax in the SMC, but this requires knowledge of the
velocity range of the given application.
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3.2 Magnetic Remanence

As seen in the idealized example (Section 2.3), the source voltage required to generate a
significant magnetic field using an air core is not attainable in reality. The inductor will
instead be winded around a core of some ferromagnetic material (iron, for instance), with
drastically higher permeability than air. This will remedy the voltage demand issue, but
brings with it another complication in an effect called magnetic remanence or magnetic
memory in the core material.

3.2.1 Problem Description

H

M(H)

Mr

−Hc

Ferromagnetic

Air

Cores:

Hs

Ms

Figure 3.3: Possible magnetic hysteresis loop for an arbitrary ferromagnetic core material,
compared with the linear magnetization of an air core.

When an external magnetic field of magnetic field strength H[A/m] is applied to a ferro-
magnetic material, the particles in the material become aligned (magnetized) with this field.
I.e, the ferromagnetic core gains the magnetization field M(H)[A/m]. We have previously
assumed that when the external magnetic field goes away, the particles go back to their
original orientation (demagnetized) autonomously. In reality, for large enough H , the ma-
terial will retain a remanent magnetization Mr even as H → 0 (Figure 3.3). For example:
The corresponding remanent flux density Br for a wrought iron core is Br = 1.3T. This
phenomenon is the basis for the creation of permanent magnets, but is generally unwanted
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behaviour in electromagnets as demagnetization of the core requires excitation of an op-
positely directed magnetic field. The magnetic field strength required to fully demagnetize
the core, is called the coercivity Hc of the material.
On top of increased complexity in the ECB actuator, unwanted effects of magnetic hystere-
sis includes energy losses [19, ch. 2]. Energy is lost due to the cycling between remanence
and coercivity (Figure 3.3), and in the form of heat due to the induction of eddy currents
within the core.
Previously we have assumed a linear relation between flux density B and H: B = µH .
In general, B(H) shares the nonlinear behaviour of M(H) for non-air cores: B(H) =
µM(H) in core material of permeability µ.

3.2.2 Mathematical Models

Most mathematical representations of the phenomenon are in the form of nonlinear hys-
teresis models. The Preisach-Krasnoselskij approach is a mathematical generalization by
Krasnoselskij [20] of the widely accepted discrete scalar model of magnetic hysteresis pro-
posed by Preisach [21]. Preisach’s proposed model is a decomposition of the hysteresis
curve into an infinite sum of relay switching functions γ̂αi,βi , where the (αi, βi) pairs de-
note the switching thresholds (lower and upper, respectively). The relay functions each
represent a magnetic dipole. Krasnoselskij’s generalized formulation of systems with hys-
teresis states:

f(t) =

∫∫
α≥β

µ(α, β)γ̂α,β(u(t))dαdβ (3.5)

Where (u(t), f(t)) is an arbitrary input-output pair, and µ(α, β) is an arbitrary weighting
function. The curve B(H) can be expressed as:

B =

∫∫
S

µ(α, β)γ̂α,β(H)dαdβ (3.6)

In the triangular region S: Hsat ≥ α ≥ β ≥ −Hsat, where the dipoles are distributed
according to µ(α, β).
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3.2.3 Relevant Literature

In [22], the following approximation of the nonlinear B/H curve (Figure 3.3) was shown
to be sufficiently accurate in ECB applications:

B(H) =


Br + µH for H > 0

[Br,−Br] for H = 0

−Br + µH for H < 0

(3.7)

Where µ is the permeability of the given material and the magnetic field excited by a current
i through N inductor windings around a core of length l is given by H = Ni/l. In [10],
(3.7) was used to extend the linear brake force model (1.11):

fb = (α0 + α1icmd + α2i
2
cmd)v (3.8)

The model parameters αi are:

α0 = f0 +
π

4ν
D2dB2

r c

α1 = ± π

2ν
D2dBrc

N

l
µ

α2 =
π

4ν
D2dc

(
N

l
µ

)2

Where f0 is the natural friction coefficient of the process, and c is given by (1.10). The
model was used in a feedback-linearization control scheme of the angular velocity of a con-
ductive disk with variable driving torque. Parameter estimation prior to each experiment,
as well as real time output estimation using an observer, was used to yield a seemingly
robust method. Experimental results showed good performance in the low speed region,
but high speed region performance was not investigated as the model does not account for
the corresponding demagnetizing effects (Section 3.1).

To the author’s knowledge, There are no models in the available literature on ECBs ac-
counting for both the demagnetizing effects of high speeds and magnetic hysteresis in the
electromagnet. Assuming high speed demagnetization and magnetic hysteresis are isolated
effects, one might consider extending the high speed model (3.4) to account for hysteresis
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effects as well. The proposed model is given by:

FD =
πcD2

µ0

w

v

(
1− w

(v2 + w2)1/2

)
B(H)2

B(H) =


Br + µ0H for H > 0

[Br,−Br] for H = 0

−Br + µ0H for H < 0

(3.9)

H =
Ni

lg

As stated, the above model makes no appearance in the publications included in the ECB
literature review. Thus, the accuracy of the model is unclear with the lack of experimental
results.
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3.3 More Control Algorithms

3.3.1 Optimal Linear Control

The performance loss of the ECB for high velocities may put high requirements for the
maximum voltage of the controller to avoid saturation of FD. If we are to continue us-
ing a SMC, this may lead to complications in the physical implementation. Specifically,
researchers who have implemented SMC on magnetic braking systems have cited issues
regarding heat generation in the electromagnetic current, in some cases damaging the com-
ponents. This motivates the use of a Linear Quadratic Regulator (LQR) to replace the SMC,
such that we can weight the system dynamics accordingly to avoid damaging the actuator.

To achieve continuous optimal control, a feedback controller u(t) = −K(t)x(t) is cho-
sen such that the infinite horizon cost function

J =
1

2

∫ ∞
t0

(
x(t)TQ(t)x(t) + u(t)TR(t)u(t)

)
dt (3.10)

is minimized. In (3.10), Q(t) ∈ <n×n and R(t) ∈ <m×m are weighting matrices on the
state vector x(t) ∈ <n and input vector u(t) ∈ <m respectively. Additionally, the weight-
ing matrices are positive definite: Q(·),R(·) > 0 and their entries are design parameters.
Traditional LQR implementations [23] assume a linear plant

ẋ(t) = Fx(t) + Gu(t) (3.11)

which means we want to express our system dynamics in accordance with (3.11) for ease
of implementation and ensured stability and optimality conditions. Since the underlying
dynamics of the electromagnet circuit are linear and the nonlinearity is limited to the output,
we may consider linear control methods. K(t) is given by:

K(t) = R−1(t)GT (t)P(t), P(·) > 0

−Ṗ(t) = P(t)F(t) + FT (t)P(t)− P(t)G(t)R−1(t)G(t)TP(t) + Q(t)

If we consider the sheet velocity v(t) a slowly varying measurable external disturbance,
and we can say that v̇(t) ≈ 0 for any given t, we get the following quasi-static model for
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nonlinear drag force dynamics:

d

dt
i(t) = ẋ1 =− Rmag

L
x+

1

L
u

ḞD(t) = ẋ2 = 2 · πcD
2

µ0

w

v

(
1− w

(v2 + w2)1/2

)
B0Ḃ0

=− 2πcD2w

v

(
1− w

(v2 + w2)1/2

)
µ0N

2Rmag

l2gL
x21

+ 2πcD2w

v

(
1− w

(v2 + w2)1/2

)
µ0N

2

l2gL
x1u

= −2
Rmag

L
x2 + 2

1

L

x2
x1
u (3.12)

Where B0 is given by (2.6). Due to the proportionality FD ∝ B2
0 ∝ i2, this is not a linear

model (3.11). Linear feedback control methods such as LQR can in some cases be applied
directly to nonlinear systems, but useful properties such as preserved passivity do not hold
in general - due to the superposition principle not applying to nonlinear systems. In our
case (3.12) it can be shown that the system has an asymptotically stable origin for a state
feedback input u = −kx and output y = FD = CDx

2, while the same cannot be said for
the output feedback input u− ky.

V (y) =
1

2
y2

V̇ (y) =yẏ = CDx
2(−2CD

Rmag

L
x2 + 2

1

L
xu)

=− 2C2
D

Rmag

L
x4 + 2

1

L
x3u

≤− 2C2
D

L
kx4 < 0 , ∀x ∈ </{0}

In order to ensure trajectory tracking ỹ = yr − y, we may instead express this behaviour
in terms of the state variable. This is preferable, as input-output stability is guaranteed
for state feedback inputs. If we instead define the manipulated variable as

√
FD, we can

identify the quasi-static linear model:

d

dt

(√
FD
)

=

[
πcD2

µ0

w

v

(
1− w

(v2 + w2)1/2

)]1/2
d

dt
|B0(t)|

=−
[
πcD2µ0

w

v

(
1− w

(v2 + w2)1/2

)]1/2
NRmag

lgL
|i(t)|

+

[
πcD2µ0

w

v

(
1− w

(v2 + w2)1/2

)]1/2
N

lgL
sgn(i(t))Vcmd(t) (3.13)

35



TTK4550 - Specialization Project 3.3. MORE CONTROL ALGORITHMS

The model (3.13) is valid as long as FD ≥ 0 such that
√
FD ∈ <, which is satisfied by

v = |v| ≥ 0. We choose to constrict the current to positive values, so that(
|i(t)|, sgn(i(t))Vcmd(t)

)
=
(
i(t), Vcmd(t)

)
and (3.13) satisfies (3.11). We make the ob-

servation that if the sheet speed is assumed constant at time t, the linear system (3.13) is
simply a linear combination of the circuit dynamics (2.2). Thus, we need only consider the
scalar case with i(t) as the only state variable.
Noting that ỹ =

√
FDr −

√
FD → 0 ⇒ FD → FDr for {FD, FDr} ≥ 0, a possible cost

function is of the form:

J =
1

2

∫ ∞
t0

(
ρ
[√

FDr −
√
FD
]2

+ rV 2
cmd

)
dt

=
1

2

∫ ∞
t0

(
CDρ

[
ir − i

]2
+ rV 2

cmd

)
dt (3.14)

The above conditions correspond to a constrained quadratic optimization problem,

min
u
J(i, ir, u) = min

u

1

2

∫ ∞
t0

(
ρ′
[
ir − i

]2
+ ru2

)
dt

subject to:
{i, ir} ≥ 0 ,

|u| ≤ Vmax (3.15)

the analytic solution of which is given by the Hamilton-Jacobi equation [23, ch. 2.2] with
J as the performance index:

∂J∗

∂t
= −min

u

{
ρ′(ir − i)2 + ru2 +

∂J∗

∂(ir − i)
d

dt
(ir − i)

}
(3.16)

Inserting u = −k(ir − i) = −kĩ into (3.16), we get the optimal feedback control law:

u∗ = −k∗ĩ =− arg min
k

{
ρ′̃i+ k2rĩ2 +

∂

∂ĩ
(ρ′̃i2 + k2rĩ)˙̃i

}
ĩ

=− arg min
k

{
ρ′̃i2 + k2rĩ2 + 2ρ′̃i(−Rmag

L
− 1

L
k)̃i

}
ĩ

=− arg min
k

{
(k2r − 2

1

L
ρ′k + ρ′ − 2

Rmag

L
ρ′)̃i

}
ĩ

=− 1

Lr
ρ′̃i (3.17)

The heat generated in the electromagnetic circuit can be modelled simply as:

Pmag(t) = Rmagi(t)
2 (3.18)
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Where Pmag(t) is the electric power of the electromagnetic circuit at time t. This is a
quadratic term that we may include in the cost function (3.10) if we want to penalize over-
heating due to high currents.

3.3.2 Higher Order SMC With Equivalent Control

To compare with the performance of our LQR design, some improvements on the SMC
used in the first example (Section 2.3) were implemented. The original controller used in
the example actually corresponds to a zero order SMC, where the sliding mode is given
by s = y − yr, but has no action to make sure the system stays there. Instead of us-
ing continuous approximations of the Heaviside function as the only method to prevent
chattering, other methods not accompanied by stationary deviations were explored. In par-
ticular, higher order sliding mode and equivalent control were considered as alternatives.
As previously mentioned, these methods have been used to great effect in ECB ABS appli-
ations [7, 8].

Consider the scalar, nonlinear, time-varying system:

x = f(x, u, t)

y = h(x, u, t) (3.19)
ỹ = y − yr

Where yris the desired output, and ỹ is the tracking error. In (3.19), let u(t) be given
by Slotine and Li’s definition of SMC [24, ch. 7]. In the cited publication, the sliding
surface s = 0 corresponding to desired behaviour of the system is generally given by the
expression:

s =

(
d

dt
+ λ

)(n−1)

ỹ (3.20)

Where n > 0 is the order of the sliding mode, and λ > 0 is a design parameter typically
selected based on the frequency range of unmodeled dynamics. Observe, for instance, how
λ > 0 ensures asymptotically stable tracking error at ỹ = 0 on a second order (n = 2)
sliding surface: s = 0⇒ ˙̃y = −λỹ.
Continuous Equivalent Control ueq is given by explicit solution of the sliding dynamics
ṡ = 0. ueq then corresponds to the control law that would, if the dynamics of the system
were exactly known, keep the system on the sliding surface: s = ṡ = 0. If the system is
uncertain, the discontinuous Reaching Control component ur = −k · sgn(s) is necessary
to fulfill the reachability condition (2.1) - and to guide the system to the sliding surface.
Adding the equivalent and reaching control components, yields the sliding mode control
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law:
u = ueq + ur (3.21)

In most cases, smooth approximation of the discontinuous reaching control is desirable.
For this purpose, we use a saturation function interpolating the values of s within a thin
boundary layer ψ > 0:

sat
(
s

ψ

)
=

{
s
ψ

, |s|
ψ
< 1

sgn( s
ψ

) , otherwise
(3.22)

Application of the control law (3.21) to our first-order braking force system,

ẋ =
d

dt
i(t) = −Rmag

L
i(t) +

1

L
Vcmd(t)

y = FD = πcD2w

v

(
1− w

(v2 + w2)1/2

)
µ0N

2

l2g
i(t)2 = CDi(t)

2 (3.23)

Vcmd = ueq + ur

for a conductive sheet of infinite length, requires a few modifications to both the sat()-
function and the control law due to the lack of a driving force. First, we choose ur and ueq
in accordance with [24, 25, ch. 7, ch. 14.1]:

ur(i, s, t) = −η(i)sat(
s

ψ
)

ṡ = ḞD − 0 = −2CD
Rmag

L
i(t)2 + 2CD

1

L
i(t)ueq = 0

⇒ueq(i, t) = Rmagi(t)

Assume that {FD, FDr} ≥ 0, and that the desired braking force is constant: FDr(t) = FDr .
Define the first order sliding surface as: s = F̃D = FD − FDr , and let a proposed control
law for the command voltage be given by:

Vcmd(i, s, t) = ur(i, s, t) + ueq(i, s, t) =

{
ur(i, s, t) + ueq(i, t) for s

ψ
< 1

0 otherwise

ur(i, s, t) = −η(i)sat(
s

ψ
) =


−η(i) s

ψ
for |s|

ψ
< 1

−η(i)sgn(s) for s
ψ
≤ −1

0 for s
ψ
≥ 1

(3.24)

ueq(i, t) = Rmagi(t)
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Reachability verification (2.1) of the sliding surface s = 0 by Lyapunov analysis for the
Lyapunov candidate function V (s) = 1

2
s2:

V̇ (s) = sṡ = sḞD = −2CD
Rmag

L
i(t)2s+ 2CD

1

L
i(t)sVcmd(i, s, t)

|s|/ψ ≥ 1:

s < 0 : V̇ (s) = −2CD
Rmag

L
i(t)2s− 2CD

1

L
i(t)sη(i)sgn(s) + 2CD

Rmag

L
i(t)2s

= −2(1− s)CD
Rmag

L
i(t)2 − 2CD

1

L
η(i)|s| ≤ −2CD

1

L
i(t)η(i)|s|

≤ −k|s|, k > 0 for η(i) =
L

2CDi(t)
· k, i(t) 6= 0

→boundary layer is reachable "from below" (s ≤ −ψ)

s > 0 : V̇ (s) = −2CD
Rmag

L
i(t)2s+ s · 0

(s > 0⇒ FD > Fr ≥ 0⇒ i(t) 6= 0)

= −2CD
Rmag

L
i(t)2s < 0, ∀s > 0

→system reaches boundary layer in finite time "from above" (s ≥ ψ)

|s|/ψ < 1:

V̇ (s) = −2CD
Rmag

L
i(t)2s+ 2CD

1

L
i(t)s[(− Lk

2CDi(t)
· s
ψ

+Rmagi(t)]

= −2CD
Rmag

L
i(t)2s− ks

2

ψ
+ 2CD

Rmag

L
i(t)2s

= −ks
2

ψ
= −k |s|

2

ψ
< −k|s|, ∀s ∈ (−ψ, ψ)

→s = 0 is reachable from within the boundary layer

This result proves that convergence to s = 0 in finite time is guaranteed for constant ref-
erence signals, assuming the convergence rate k is chosen large enough to counteract any
uncertainties in the system parameters.

A more traditional first order SMC design can be found by defining the sliding surface
in the same manner is in the section on LQR design (Section 3.3.1):

s = ỹ =
√
FD(t)−

√
FDr

=
√
CDi(t)2 −

√
CDi2r =

√
CD
(
|i(t)| − |ir|

)
(3.25)
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Reachability conditions are fulfilled by choosing u = ur + ueq such that ṡ = −ksat
(
s
ψ

)
,

k > 0:

ṡ = −Rmag

L

√
CD|i(t)|+

1

L

√
CDsgn

(
i(t)
)
u(t) = −ksat

(
s

ψ

)
⇒ u(t) = − L√

CDsgn
(
i(t)
)ksat

(
s

ψ

)
+Rmagi(t) (3.26)

= ur(t) + ueq(t)
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Chapter 4

Results and Discussion

Results of the literature survey and implementation of the methods described in (Chapter
3) will be presented and discussed in this chapter. Simulation results are based on the
framework described in (Section 2.3).
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4.1 Linear Optimal Control

This section contains the simulation results of the optimal linear feedback controller derived
in (Section 3.3.1). Dynamic model and control law expressions were implemented in a
MATLAB script, using the explicit midpoint rule with step-size h = 10−7 as the simulation
method:

yn+1 = yn + hf

(
tn +

h

2
, yn +

h

2
f(tn, yn)

)
(4.1)

Which was chosen due to stability issues using simple Euler integration. The maximum
voltage (3.15) was chosen equal to the common voltage of Norwegian electrical outlets:
Vmax = 230V. It is assumed that the force sensor measurement (Figure 2.3) is instanta-
neous: y(t) = FD(t).

By tuning the LQR parameters to heavily weight the tracking error (Figure 4.1), the model
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Figure 4.1: Tuning of the error/input penalization parameters ρ, r.

(3.4) converges to a constant reference braking force for a constant sheet speed
v(t) = v0 = 5m/s. Furthermore, the controller successfully tracks a time-varying refer-
ence well into the high speed region with only minor command voltage saturation (Figure
4.2 and 4.3).

Judging by the tracking performance when the uncertainties due to demagnetization in the
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Figure 4.2: High speed brake force tracking of time-varying reference of the tuned LQR.
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Figure 4.3: Optimal control time-series corresponding to (Figure 4.2).

high speed region (Figure 4.4) are unmodeled, robustness of the stationary LQR is lack-
ing. Convergence to a constant reference can however be achieved with higher weighting
of the tracking error (Figure 4.5 and 4.6). The LQR is thus "robust" in the sense that it
can be tuned to give convergence despite parameter uncertainties on a priori basis, but the
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Figure 4.4: System output responses of the LQR, where the demagnetizing effects of the
sheet velocity (Figure 4.2) are modeled (blue) or unmodeled (red) - assuming that the non-
linear damper (3.4) models the plant perfectly.
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Figure 4.5: Same scenario as in (Figure 4.4) where the LQR has been tuned such that
ρ : r = 100, leading to improved tracking.
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Figure 4.6: Command voltage and current time-series comparison for linear and nonlinear
dampers (Figure 4.5).

stationary LQR in this form lacks the adaptivity we are looking for in an application where
the analytical model is very uncertain. Ensuring convergence by letting ρ/r → ∞ is not
preferred, as it results in the exact same drawbacks as in the first SMC implementation
(Section 2.3).

Another limitation of the controller is the presence of unmodeled dynamics, such as in
the force sensor. To increase robustness of the LQR to both unmodeled dynamics and
parameter uncertainties, one might consider adding a dimension to the control system in
the form of an integral state augmentation. Of course, this introduces its own drawbacks,
such as integral windup due to command voltage saturation, and a significantly increased
time-constant of the system response.
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4.2 SMC With Equivalent Control
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Figure 4.7: First order SMC trajectory tracking with boundary layer ψ = 0.1 and conver-
gence rate k = 1000.
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Figure 4.8: Top: Command voltage from the SMC, yielding the trajectory (Figure 4.7).
Bottom: Reaching and equivalent control components of the command voltage.
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First order SMC designs with equivalent control, as described in (Section 3.3.2), were im-
plemented on the brake force model (3.4) and tested for various values of sheet speed and
brake force trajectories. Design parameters ψ and k were chosen by trial and error.

This time, the inertia of an arbitrary force sensor was included and implemented as a simple
first order differential equation:

τdẏ = −y + FD
y

FD
(s) =

1

τds+ 1
=

1

0.05s+ 1

Where τd is as an approximation of the Charge-/Discharge Time Constant (CTC, DTC)
property of piezoelectric force sensors. The sensor dynamics will remain unmodeled from
the perspective of the controller, and will serve to demonstrate the strengths and weak-
nesses of the SMC in the presence of unmodeled dynamics. The ECB model with both
SMCs were implemented individually and simulated using MATLAB & Simulink.

From initial results of the modified (3.24) SMC (Figure 4.7 and 4.8) we observe that the
braking force converges to a constant reference signal, but is subject to oscillations caused
by the unmodeled sensor dynamics. In particular, observe how the reaching controller
component remains very small despite the oscillations reaching far outside of the boundary
layer. We can also observe discontinuities in both reaching and equivalent control compo-
nents, due to the modification of the algorithm.

The negative effects of a disturbance in the system in the form of Gaussian White Noise
(GWN) (Figure 4.9) large enough to push the system outside of the boundary layer can be
partly mitigated by increasing the convergence rate k and/or reducing the boundary layer
ψ (Figure 4.10 and 4.11). By doing this, we may force the system as close to the sliding
surface as we want despite the stochastic disturbance - the adverse effects of this is obvious
from the command voltage time-series: Since both components of our modified SMC are
discontinuous, we get high frequency switching in the command voltage - made worse by
the choice of ψ. Another interesting observation is that the reaching control component
(voltage spikes outside of the scope) is activated when the system is pushed outside of the
boundary layer due to the disturbance, which was not the case for deviations caused by
unmodeled sensor dynamics.

If we consider instead the traditional SMC design (3.26) with continuous equivalent con-
trol, we can see the impact of the unmodeled dynamics more clearly (Figure 4.13). While
the system converges to the sliding surface despite unmodeled dynamics, they are clearly
detrimental to the controller performance. In particular, the SMC overshoots the sliding
surface by a large margin. This overshoot in braking force output of course corresponds
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Figure 4.9: Tracking performance of SMC with stochastic flux density. ψ = 0.1, k = 1000.
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Figure 4.10: Tracking performances of SMC on model with disturbance for reduced bound-
ary layer thickness ψ. k = 10000.

to a larger than necessary current in the circuit, that will shorten the lifespan of compo-
nents unnecessarily. The overshoot can be reduced by reducing k, but this is undesirable
as controller efficiency and robustness will be reduced as well. Changing ψ has no effect,
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Figure 4.11: SMC command voltages behind the above trajectories. (Figure 4.10).
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Figure 4.12: High speed tracking performance of the SMC. ψ = 0.1, k = 1000.

which agrees with Khalil’s [25, p. 556-557] observation that reducing the boundary layer
does not necessarily have a positive effect in the presence of unmodeled dynamics. Lastly,
notice how the proposed modified SMC does not suffer nearly as badly from the effects of
the unmodeled dynamics - albeit inadvertently.
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Figure 4.13: Braking force tracking of the traditional first order SMC design, comparing
its performance with and without sensor dynamics in the measurement. ψ = 0.1, k = 100.

50



TTK4550 - Specialization Project 4.3. STATE OF THE ART

4.3 State of the Art

The majority of publications with successful experimental results on the topic of ECB con-
trol seem to favor the use of simplistic, linear brake models FD ∝ v - most often based
on Wouterse’s superconducting ring perspective and kinetic energy dissipation as heat. In
general, robust control algorithms are used to compensate for uncertainties in the analytical
models - with SMC as a prominent choice [7–9]. Not all publications on ECB control use
SMC [10, 11], but some form of adaptive/robust control algorithm is ubiquotous. Even in
[11], where 2D FEM was used to analyze the braking force dynamics, required integral
action to counter the effect of uncertainties not explained by the finite element analysis.

Lately, detailed parametric analysis of the ECB using 3D FEM [17, 18] seems to have
replaced analytical modeling as a combination of technological advancements as well as
the models being consistently limited. With the exception of [11], the list of publications
where the worlds of parametric analysis and control of ECBs meet with meaningful results
is sparse.
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Chapter 5

Conclusion

This project report includes an extensive literature review of the theoretical background of
eddy current braking, as well as the state of the art within modeling and control of such sys-
tems. Digital implementation and comparison of a selection of accepted analytical models
and control algorithms has been conducted using MATLAB & Simulink. Additionally, a
few "new" perspectives and propositions have been presented:

1. An approximate braking force model including the effects of both high speed demag-
netization and magnetic hysteresis.

2. The proposed stationary Linear Quadratic Controller is a solid option given either
ideal circumstances or a very accurate model - linear control seems to be feasible.

3. A proposed sliding surface for traditional Sliding Mode Control has been presented
and simulated.

4. An empirical modification of the Sliding Mode Control algorithm has been proposed,
and it’s simulation results shown to outperform the traditional implementation.

Due to the lack of a real world testing rig, the author has not been able to verify the appli-
cability of any of the above propositions.
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5.1 Further Work

As mentioned, the few small propositions presented in this document require experimental
investigation. A logical next step is therefore either designing and building a testing rig
to conduct these experiments, or outsourcing to an existing rig. Possible additions to the
discussed control algorithms and models:

1. A more robust LQR may be attainable by adding state augmentation.

2. Continued extension of the braking force model, improving LQR performance.

3. Look into implementation of second order sliding mode control to reduce oscillations
and/or chattering. The Super Twisting Algorithm is an example of a second order
sliding mode control algorithm that warrants investigation.
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