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Summary

A problem is found with a set of Kaggle competition submissions, regarding the incred-
ible size of the solutions which are used to win. With this motivation, a study of how to
create well-performing ensembles is conducted. A technique that could be relevant to the
original problem is found, called Negative Correlation Learning, which induces diversity
in ensembles of classifiers. A study into the effect of diversity in ensembles of varying
sizes is performed. In this study, an effect is shown, where ensembles with few members
show no effect of diversity, while ensembles consisting of slightly more members have a
significant effect. This is shown on multiple datasets, for different sizes of datasets and
varying problem difficulties. It is made an attempt at explaining the observed effect based
on a new definition of a local specialist classifier, and the analysis of single classifier ac-
tivations using the tool GradCAM. Both the explanation and the local specialist definition
appears to act in line with the given expectations, which backs up both the definition and
the explanation.
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Sammendrag

Under et studie av et sett vinnende Kaggle-løsninger, ble det fastslått at det er et prob-
lem at de vinnende løsningene består av veldig store ansamlinger av klassifikatorer. Med
dette som motivasjon ble det utført et studie av forskjellige eksisterende teknikker som kan
brukes for å lage velfungerende ansamlinger. I dette studiet ble det funnet en teknikk som
var relevant for problemet, nemlig negativ korrelasjonslæring. Negativ korrelasjonslæring
indusererer mangfold blant klassifikatorene i en ansamling. Negativ korrelasjonslæring
ble brukt til å studere effekten av mangfold blant ansamlinger med forskjellig antall klas-
sifikatorer. I denne studien blir det vist at ansamlinger av få klassifikatorer har ingen effekt
av mangfold i klassifikatorene. Ansamlinger av flere klassifikatorer ble vist å ha stor effekt
av mangfold blant klassifikatorene. Denne effekten blir vist på flere dataset, med forskjel-
lige dataset-størrelser og for klassifikasjonsproblemer med varierende vansklighetsgrad.
Videre blir det gjort et forsøk på å forklare denne effekten ved bruk av en ny definisjon av
en lokal, spesialistklassifikator og analyse av klassifikatorene sine aktiveringer ved bruk av
verktøyet GradCAM. Både forklaringen og definisjonen av en lokal, spesialistklassifikator
oppfører seg slik forventninger skulle tilsi, hvilket støtter oppunder både definisjonen og
forklaringen.
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CHAPTER

ONE

INTRODUCTION

This chapter will introduce the problem which this thesis will try to address. That includes
section 1.1 which will present the problem and the steps that will be taken in order to
answer it. Section 1.2 will give the reader an insight into the Kaggle platform because the
motivation for the thesis builds on this platform. Section 1.3 will present the main dataset
which will be used for this project, and section 1.4 will give an insight into the motivation
of the author for pursuing this question.

1.1 The problem
In January of 2018, Equinor, together with partner C-CORE, hosted a competition on
Kaggle.com. In this competition, the international machine learning community was chal-
lenged to make the best classifier for discriminating between icebergs and ships in satellite
Synthetic Aperture Radar (SAR) imagery. Many different techniques were applied, by
the 3343 international teams who entered the competition. Many of these entries used the
concept of ensemble learning, which is presented in chapter 2.4. The problem that will
be tackled in this master thesis is related to the ever-growing complexity of the ensemble
solutions.

A robust process for getting high solution accuracy on a submission on Kaggle is to
combine more and more models in the solution. Combining large amounts of models
is even referenced as a winning strategy by the Kaggle platform itself (Gorman (2016)).
This increases the solution complexity. This is not a concern in a Kaggle competition since
anything that gives increased performance is worth it. However, if it is desired to bring a
Kaggle solution to an industrial and operational context, the solution size to performance
ratio becomes a concern. Based on this problem, the objective of this thesis is to explore
the concept of ensemble learning and how to make the best performing ensemble possible
with a limited number of classifiers.

To be more specific, a set of base models will be ensembled. Given N of these base
models, the goal is to optimize the ensemble for some number m � N of base models
which would result in the “best" combination of performance in the categories accuracy,

1



Chapter 1. Introduction

inference time, variance and bias.
To try to address this problem, this thesis will contain:

1. Some machine learning theory, including general theory, ensemble methods, and
how to evaluate models. This will be necessary background theory to understand
the rest of the thesis.

2. A literature review of what has been done in this field related to creating optimal
ensembles. This will include a look into the concept of diversity and the world of
Auto-ML.

3. Based on this review, some approach will be chosen to explore, which is related
to making well-performing ensembles. The exploration will be related to ensemble
size and how the chosen approach affects this.

1.2 Kaggle

Usmani (2017) gives an introduction to Kaggle, which will be presented here. Kaggle is
a crowd-sourced platform made to attract, train, and challenge data scientists to solve data
science and machine learning problems. A lot of data scientists are only theorists who
rarely get to practice their art before being employed. The Kaggle team wants to chal-
lenge that, by providing a platform for hosting real-life data science and machine learning
competitions. The competitions can be anything from projects with only an educational
purpose to genuine problems from real-life companies. Participation is incentivized by re-
wards, which can be anything from job offers to monetary rewards. The most remarkable
were Heritage Heath, who offered $3 000 000 in prize money for solving their problem.
Many of the prize pools hover around the $10 000 to $50 000 range.

The Kaggle community is significant, with over one million members, having submit-
ted over four million models to different competitions (Usmani (2017)). Of these four
million submissions, 47 799 was submitted to the Equinor/C-CORE competition, with an
average of 514 submissions each day. This makes it the most popular image-based com-
petition of all time, and the seventh most popular of all Kaggle competitions (C-CORE
(2018)).

1.3 The dataset

The dataset selection process is described in C-CORE (2018). The dataset is a state-of-
the-art dataset consisting of Sentinel-1 imagery, mostly acquired along the east coast of
Newfoundland and Labrador in 2017. With some additional supplements from other parts
of the word, the final dataset contains 2553 icebergs and 2488 ships. The targets were
classified using expert analysts.

2



1.4 Motivation

Figure 1.1: An example image from the dataset, including both HH and HV polarization. The image
illustrates a ship.

Each sample is a 75 × 75 two-channel image containing the HH and HV channel
from the Sentinel-1 SAR imagery. This is different from RGB images, as each pixel
represents the intensity of the reflected signal the earth surface produces when illuminated
by an energy beam. The images were collected using the Sentinel-1 Interferometric Wide
Swath mode. There is no georeferencing information, but it contains metadata about the
incidence angle of the target chip. An example image is shown in figure 1.1. The images
were subject to several constraints: Each image should contain a target in open ocean,
with only one target per image and no image borders or ambiguities. This resulted in over
5000 images, like what is shown in figure 1.1. This image is an RGB interpretation of the
reflected intensities.

1.4 Motivation
The motivation for this project comes from the authors work relating to the Kaggle com-
petition in an earlier project (Foslien (2018)). A review of the solutions given by the top 3
contestants showed three very complex solutions. One contestant reported inference times
of about half an hour. On Kaggle, the only criteria the contestants are judged by are the
model accuracy. There is no judgment of model complexity, inference time, bias, variance,
or any other evaluation criteria. In the real world, this matters to the companies that host
the competitions. If the winning solution should be employed in some industry setting,
inference times of half an hour are often too long. In addition to this, the models use a
lot of memory space in the computer and make it difficult to integrate it into pre-existing
data processing pipelines. This sparked the motivation to try to explore the world of how
to make optimal ensembles, in the hope that parts of the work could address some of the
problems raised in this paragraph.
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CHAPTER

TWO

BASIC THEORY

This section will present the basic theory needed to understand the rest of the thesis. The
first section, section 2.1, will present the concept of machine learning and go deeper into
the concept of neural networks, and convolutional neural networks. Then, in section 2.2,
the concept of bias and variance will be presented. Section 2.3 will give an introduction of
how to evaluate the performance of a machine learning classifier. The final section, section
2.4, will contain an introduction to some basic ensemble learning algorithms and ways of
combining classifiers.

2.1 Machine learning

Alpaydin (2010) gives an introduction to machine learning. According to him, it is when
a machine learns by itself to solve a problem. This is typically used when the algorithm
needed to solve a problem is unknown. Then one can employ a machine learning algo-
rithm to make the machine design the algorithm by itself. A typical example of this is the
problem of classifying an e-mail as spam or not spam. The problem is known, the input
is known, and in most cases, the desired output is known. However, an algorithm that can
be used to map the input to the correct output is unknown. When facing this problem, a
computer can be used to infer the algorithm. In many machine learning cases, the algo-
rithm is extracted from large amounts of data. Machine learning is usually divided into
three categories: supervised learning, unsupervised learning, and reinforcement learning.
Unsupervised learning uses lots of data, but no ground truth to extract patterns that can be
useful. Reinforcement learning interacts with some environment to learn the optimal way
of controlling it based on some reward function. However, supervised learning will be the
main focus of this thesis.

Mathematically, supervised learning can be described in the following way: It is an
attempt at making an estimator f(x;W ) that approximates an unknown function g(x).
This is done by using a training set of n pairs Θ = {(x1, y1), (x2, y2), . . . , (xn, yn)} and
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Chapter 2. Basic Theory

modifying W such that

W (Θ) = arg min
W

n∑
i=1

L(f(xi;W ), yi) (2.1)

where L(f(xi;W ), yi) is some loss function. The goal is that this f , parametrized
by W , will generalize well to new, never before seen, pairs. This estimator can then be
used to answer questions like xtest ∈ R by generating a corresponding guess ytest ∈ R.
The estimator can be made with any machine learning algorithm, with varying levels of
complexity and accuracy.

For further reading into the machine learning world, the reader is directed to Alpaydin
(2010), Raschka (2015) or any other book on the subject. By far, the most heavily used
machine learning algorithm in the Kaggle competition was neural networks. Therefore,
neural networks will be a focus of this thesis and will be presented in the next section.

2.1.1 Neural networks

Figure 2.1: A figure illustrating a typical lay-
out for a neural network. Figure courtesy of
Glosser.ca (2013)

Neural networks were the most frequently
used algorithm in the Kaggle competition.
The reason for this is probably due to
its historically high performance in im-
age classification tasks. This can, at least
partly, be attributed to the invention of
convolutional neural networks (CNN), a
type of neural network. CNN will be pre-
sented later.

According to Wu (1992), neural net-
works are heavily inspired by the human
brain. The neural network is based on
a large number of processing units, of-
ten called neurons, which are connected
in such a way that they can learn from
data they experience. In a dense network,
the network is organized in layers, where
a neuron has a connection to each of its
predecessors in the earlier layer, as can be
seen in figure 2.1. The first layer is an in-
put layer, which is where the network is
given its input. The last layer is the output
layer, which produces the output. Finally, there is a hidden layer, which is used to add
complexity so that the network can find complex patterns. One can use as many hidden
layers as is necessary. Each neuron produces an output signal based on the sum of the
weighted inputs from the last layer:

ŷi = f(

n∑
j=1

wjixj) (2.2)
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2.1 Machine learning

where ŷi is the output, wji is the weight of the connection from neuron j in the last
layer to neuron i in the current layer, xj is the output of neuron j in the previous layer and
f is a nonlinear activation function. The weights wij are adjusted based on an algorithm
called backpropagation. A loss function (i.e., mean squared error, binary cross entropy,
or any other loss function) uses the network output ŷi and the ground truth yi to calculate
some loss value. The gradient of this loss function is calculated and used to determine how
to adjust each weight in order to minimize the loss.

∆wij = −η ∂L(ŷi, yi)

∂wij
(2.3)

where ∆wij is the adjustment of wij , η is a constant between 0 and 1 determining
the network learning rate and L(ŷi, yi) is the loss function given a ground truth yi and a
network output ŷi. This is done iteratively until the network hopefully converges towards
a satisfying mapping f . This algorithm described here is called backpropagation. One
can add optimizers to this algorithm, which adds effects like momentum or weight decay.
Throughout this thesis, the optimizer RMSProp (Tieleman and Hinton (2012)) will be
used.

For more information about neural networks and anything related, the reader is sug-
gested reading Goodfellow et al. (2016), Wu (1992), LeCun et al. (2015) or any other
introduction literature to neural networks.

Convolutional Neural Networks

CNN’s was a breakthrough for neural network applications in image processing. A prob-
lem with densely connected neural networks is that the amount of learnable parameters
quickly rises to enormous amounts with increasing input size and hidden layer sizes. A
28 × 28 pixel image results in 28 · 28 = 784 input neurons. A small 30 neuron hidden
layer would then result in 784 · 30 = 23520 learnable parameters.

To alleviate this problem, the idea of CNN’s was proposed. It is based on two basic
ideas: local receptive fields and shared weights. Instead of connecting every neuron in the
last layer to every neuron in the next, a small, local receptive field of neurons (for example
5 × 5 neurons) are connected to a single neuron in the next layer. This local receptive
field moves with a certain stride between each step. These 5 × 5 weights are also shared,
which further cuts down on the number of parameters. This is especially well suited for
images since the shared weights will act as a filter, looking for the same patterns over the
entire image. It exploits the spatial invariance of an image. To learn more about CNN’s
Goodfellow et al. (2016) is a good bet, but also Nielsen (2015).

CNN’s sprung into popularity for image classification purposes in 2012 when AlexNet,
a CNN architecture, (Krizhevsky et al. (2012)) and the SuperVision-team from the Univer-
sity of Toronto won the ImageNet Large-Scale Visual Recognition Challenge (ILSVRC)
with an error of 15.4% (Russakovsky et al. (2015)). Second place had a 26.2% error rate.
The SuperVision team was the first to use CNN’s successfully in this contest, and it was
the first significant proof that CNN’s worked. In the 2013 ILSVRC, a majority of the con-
testants used CNN’s for classification. This 2012 competition is seen as a breakthrough
for CNN’s, which has been immensely popular ever since.
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Figure 2.2: A sketch illustrating the relationship between bias, variance and generalization error.
Figure courtesy of Brown (2004).

2.2 Bias and Variance
To understand how to minimize the generalization error of a machine learning algorithm, it
is beneficial to look at how this generalization error can be decomposed. A decomposition
of the generalization error was first presented by Geman et al. (1992), using a quadratic
error function. He states that the error of a classifier C can be broken down into two parts:
bias and variance.

Formally, this decomposition are given by the following:

E{(f − d)2} = E{(f − E{f}+ E{f} − d)2}
= E{((f − E{f}) + (E{f} − d))2}
= E{((f − E{f})2 + (E{f} − d)2 + 2(f − E{f})(E{f} − d}
= E{(f − E{f}}+ (E{f} − d)2

= var(f) + bias(f)2

(2.4)

for some arbitrary testing point d. The intuitive explanation of bias is how close to the
target the estimator f is, on average. Variance is a measure of how stable f is. A large
variance and the estimator will tend to vary a lot more, jumping further from the average
classifier output. One can also see figure 2.2. It presents a sketch of the relationship
between error, bias, and variance given some training time.

2.3 Cross-validation
Cross-validation (CV) is one popular way of evaluating the performance of a machine
learning classifier and will be used in this thesis. It is therefore presented here. Re-
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Figure 2.3: An illustration of the training-process when using 5-fold cross validation.

faeilzadeh et al. (2009) gives an introduction to the concept of CV. CV is a technique
used for evaluating the performance of a machine learning algorithm. Evaluation is done
by dividing the training-set into two parts, a training set, and a validation set. The main
idea behind cross-validation is that each data point has to cross over between training and
validation so one can validate against every point. The most basic form of CV is called
hold out cross-validation.

2.3.1 Hold out validation

Hold out validation is when one uses one part of the dataset Θ for validation, holding it
out of the training process. This has the disadvantage that it might give a skewed result
as the data held out might be too hard or too easy. This is something Kaggle contestants
are deeply afraid of, as it might have them submit their not best model. To mitigate these
problems k-fold CV was introduced.

2.3.2 k-fold cross validation

In k-fold CV the training set Θ consists of n examples θi = (xi, yi) for i ∈ {1, 2, . . . , n},
where xi is a feature vector and yi is its classification. This Θ is partitioned into k equal
sized, disjoint sets. At all times, k − 1 of these sets are used for training (which will be
called Θj,1), and one is used for validation (which will be called Θj,2). This is done k
times, each time with a new set used as validation. This approach guarantees that every
data point is validated against, and gives the best possible impression of the accuracy of
the algorithm. The process is illustrated in figure 2.3, with k = 5.

2.3.3 Leave-one-out cross validation

A more specific version of k-fold CV is called leave-one-out CV. This is a particular case
of k-fold, where the number of folds is equal to the number of samples. Only one sample
is used for validation for each iteration. This is very computationally expensive but is often
used when the data availability is low.
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2.4 Ensemble learning
This section will introduce the most common ensemble learning methods used in the field
of machine learning. Boosting and bagging will be given a quick introduction in sections
2.4.1 and 2.4.2. Following that, section 2.4.3 will present ways of combining the output of
multiple models.

2.4.1 Boosting
Boosting is a concept first presented in Schapire (1990). In this paper Schapire tried to
answer a question posed by Kearns and Valiant (1988, 1989): “Is strong model of learn-
ability equivalent to weak model of learnability?" Strong learnability requires the output
of a model to be of arbitrarily high accuracy. Weak learnability only requires "better-than-
guessing" performance. This would require some method for boosting the low accuracy
of the weak methods, and was therefore called the hypothesis boosting problem. This has
later become known as boosting.

Zhou (2012) gives an intuitive explanation of the general boosting algorithm. Given
a binary classification problem with a training set Θ, consisting of three parts θ1, θ2 and
θ3, a strong model of learnability should be made. Each of the three parts takes 1/3 of
the training set, and a model making random guesses has a 50% classification error on the
problem. A classifier C1 is trained, and it performs with 100% accuracy on θ1 and θ2, but
not θ3. This means that C1 is a weak classifier. To correct the mistakes made by C1 one
can use the concept of boosting.

A new training set Θ′ is made, with a higher concentration of samples from θ3, which
was where the model was wrong. Then a new model is trained. This might result in a
classifier C2 that performs well on θ1 and θ3, but not on θ2. Combining C1 and C2 will
result in 100% accuracy on θ1, but varying performance on θ2 and θ3. The samples which
the combined classifier misclassified is then used to create a third dataset Θ′′, and a new
model is trained using this dataset to create classifier C3. Suppose this performs well on
θ2 and θ3. By combining C1, C2 and C3 a perfect classifier is made.

In this explanation of the boosting algorithm, there are still unspecified steps, like
how to choose the new dataset and how to combine the classifiers. This is given by more
specific instances of the boosting algorithm. An example of this is the AdaBoost algorithm,
where the dataset update and the combination method of the classifiers are determined such
that they minimize the exponential loss function:

lexp(C|D) = Ex∼D[e−f(x)C(x)] (2.5)

where the samples in Θ are drawn from the distributionD. For more information about
AdaBoost, please see the original AdaBoost paper by Freund and Schapire (1997). Other
iterations of the boosting algorithm includes LogitBoost (Friedman et al. (2000)), LPBoost
(Demiriz et al. (2002)), XGBoost (Chen and Guestrin (2016)) and many more.

2.4.2 Bagging
Bagging, or Bootstrap Aggregating, as it is shorthand for, were first presented in Breiman
(1996). Where boosting is what one would call a sequential ensemble method, bagging is
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a parallel ensemble method. This means that many classifiers are trained at the same time.
As explained in Zhou (2012), bagging exploits the fact that a combination of independent
classifiers will result in a dramatic decrease in errors. Therefore, these classifiers should
be as independent as possible. One could train each classifier on a separate part of the
dataset, but this results in a small, unrepresentative dataset. Therefore one applies boot-
strap sampling to make the data subsets. Given a training set Θ with m samples, T data
subsets are created. Each subset consists of m samples, which are generated by sampling
with replacement the original dataset.

2.4.3 Combination methods
The different ways of combining the outputs of multiple classifiers will now be presented.
To do this, some of the explanations by Wolpert (1992) will be used. This paper built
on the concept of generalizers, which earlier in this thesis has been referred to as ma-
chine learning algorithms (see section 2.1). This thesis will continue to use the name
machine learning algorithm. It starts by defining the Rn+1 space given by the training
set Θ as the “level 0 space”. This training set will be divided into k partitions, as de-
scribed by k-fold cross-validation. These partitions make the sets {Θ1,1,Θ2,1, . . . ,Θk,1}
and {Θ1,2,Θ2,2, . . . ,Θk,2}, where Θj,1 is the training set, and Θj,2 is the test set of a cer-
tain partition. On this level 0 space a set of classifiers {C1, C2, . . . , CN} will be trained.
They are given by Cj

l = Ll(Θj,1), where Ll(Θj,1) is a machine learning algorithm trained
on Θj,1. This is called a “level 0 algorithm". For each of the k partitions, each classifier is
used to generate predictions ŷlj = Cj

l (Θj,2). This results in the meta-level dataset on the
form of ((ŷ1

1 , . . . , ŷ
N
1 , ŷ

1
2 , . . . ŷ

N
k ), (y1, . . . , yk)). This is called the “level 1 space" and we

now wish to generalize from Θ by looking at this new learning set. This results in a “level
1 algorithm". The ways to generalize from this set will noe be explained.

Voting

Voting is the simplest way of generalizing from the level 1 space. This can be done using
majority wins, where every prediction ŷli, for all classifiers l ∈ {1, 2, . . . , N}, is a vote for
a label. The label with the most votes becomes the ensembles end classification ŷi. This
can also be used on class probabilities, as first proposed by Ting and Witten (1999). Given
a base classifier Cl which is to classify the sample xi givenm number of classes will result
in the probability distribution:

pCl(xi) = (pCl(c1|xi), pCl(c2|xi), . . . , pCl(cm|xi)) (2.6)

As explained by Džeroski and Ženko (2004), voting is not the best way to do ensem-
bling. No learning is taking place in the level 1 algorithm. The voting scheme remains
the same no matter what classifiers are combined. There is the opportunity to use machine
learning at the level 1 space, for the ensemble weighting to change depending on the input.

Machine learning approaches

As the level 1 algorithm, almost any machine learning algorithm can be used. Ting and
Witten (1999) recommended to use multi-response linear regression. This is an adaptation
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of linear regression for a classification problem withm classes, {c1, c2, . . . , cm}. For each
class ci, a regression problem is formed where a linear equation LRi predicts a binary
value which is 1 if the class label is ci and zero if not. Given a new example x, LRi(x) is
calculated for all i and the class label ck is chosen such that LRk(x) is maximum. Another
approach that has gained popularity is to use a neural network as the level 1 algorithm,
especially when the level 0 algorithms are different variations of neural networks. This
gives the benefit that it is possible to connect the level 0 and level 1 algorithms for a single
pipeline. A neural network also has the possibility of finding highly complex relationships
between the level 0 algorithms, which give it the opportunity of out-performing simpler
algorithms like linear regression.
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CHAPTER

THREE

LITERATURE REVIEW

This chapter will contain a literature review of research related to the problem presented
in 1.1. Firstly, section 3.1 will present research done into making optimal ensembles by
using the concept of diversity. Then, section 3.2 will present some Auto-ML approaches
to the same problem.

3.1 Diversity
This section will present earlier attempts at using diversity to produce optimal ensembles.
When combining classifiers in an ensemble, many will state that it intuitively makes sense
to use as diverse base classifiers as possible. One will gain nothing from combining 1
million classifiers if they all give the same prediction. Combine a set of diverse classifiers,
and they can, ideally, fill out each other’s shortcomings. To explore the legitimacy of this
assumption, a definition of diversity is needed.

3.1.1 Diversity definitions
Ambiguity

There have been many attempts at defining diversity in a mathematical framework. One
of them comes from Krogh and Vedelsby (1994). Given the same supervised learning task
as presented in section 2.1, an ensemble consisting of i = {1, 2, . . . , N} estimators fi is
created. The weighted ensemble average is given by

f̄(x) =
∑
i

wifi(x). (3.1)

Here wi is the weighting of ensemble estimator fi. Krogh and Vedelsby defines the
ambiguity on input x as

ai(x) = (fi(x)− f̄(x))2 (3.2)

which gives the following definition of the ensemble ambiguity:
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ā(x) =
∑
i

wiai(x) =
∑
i

wi(fi(x)− f̄(x))2 (3.3)

This equation gives a measurement of the disagreement among the N estimators. The
ensemble ambiguity could also be called the diversity among the N estimators. Further,
the single estimator error and the ensemble error is then defined:

ei(x) = (fi(x)− yi)2 (3.4)

e(x) = (f̄(x)− yi)2 (3.5)

Using (3.3), (3.4) and (3.5) along with the fact that the weights
∑

i wi = 1, the fol-
lowing equation can be derived:

ā(x) =
∑
i

wiei(x)− e(x) (3.6)

Defining
∑

i wiei(x) = ē(x) gives

e(x) = ē(x)− ā(x) (3.7)

This equation can be interpreted as: The ensemble error equals the weighted average
of all errors in an ensemble minus the weighted average of all the ambiguity among the
estimators. Notably, this means that the ensemble error is always smaller than the weighted
average error of all the single models. It also means the larger the ambiguity, the smaller
the ensemble error is compared to the ensemble average.

Based on this conclusion, Krogh and Vedelsby goes on to propose different strategies
to increase ambiguity among the ensembled estimators. It is proposed two different ways:
using different training sets or mixtures of entirely different approximators.

Covariance

Another way of looking at diversity in ensembles is through the bias-variance decomposi-
tion first presented in section 2.2. According to Ueda and Nakano (1996) a further break
down of the variance is possible, given a simple uniformly weighted combination of the
ensembled estimators.

First, three concepts are defined: the average bias, the average variance, and the aver-
age covariance:

Bias(X0) =
1

M

M∑
m=1

EΘN
m
{fm(X0; ΘN

m)} − Y0 (3.8)

Var(X0) =
1

M

M∑
m=1

EΘN
m
{(fm(X0; ΘN

m)− EΘN
m
{fm(X0; ΘN

m)})2} (3.9)

Cov(X0) =
1

M(M − 1)

∑
m

∑
m′ 6=m

EΘN
m,ΘN

m′
{(fm(X0; ΘN

m)−

EΘN
m
{fm(X0; ΘN

m)})(fm′(X0; ΘN
m′)− EΘN

m′
{fm′(X0; ΘN

m′)})}
(3.10)
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Here the notation is the same as earlier, but X0 is a random vector sample given to
the estimator and Y0 is the corresponding ground truth. EΘN

m
is the expectation over the

particular training set ΘN
m. For ease of notation, the expressions are shortened, using:

EΘN
m
{·} = Em{·}

fm(X0; ΘN
m) = fm

giving

Bias =
1

M

M∑
m=1

Em{fm} − d (3.11)

Var =
1

M

M∑
m=1

Em{(fm − Em{fm})2} (3.12)

Cov =
1

M(M − 1)

∑
m

∑
m′ 6=m

Em,m′{(fm − Em{fm})(fm′ − Em′{fm′})} (3.13)

where d is some testing point. Using these definitions alongside the fact that the en-
semble f is a uniformly weighted combination and equation (2.4), Krogh and Vedelsby
shows that it is possible to derive the following equation:

Var(
1

M

∑
m

fm) = E{( 1

M

∑
m

fm−E{
1

M

∑
m

fm})2} = (1− 1

M
)Cov+

1

M
Var (3.14)

Meaning that the ensemble variance can be divided into a variance portion and a co-
variance portion. One can also modify the bias:

Bias(
1

M

∑
m

fm)2 = (E{ 1

M

∑
m

fm} − d)2 = (
1

M

∑
m

(E{fm} − d))2 (3.15)

This gives the final expression for the ensemble mean squared error:

E{(f̄ − d)2} = Bias
2

+
1

M
V ar + (1− 1

M
)Cov (3.16)

This means that the error depends heavily on the covariance between the ensembled
estimators.

Brown (2004) shows how to connect the covariance to ambiguity. Using the ambiguity
term from (3.7), and the expected value of this term, Brown shows that

E{ 1

M

∑
m

(fm − f̄)2} = Var + “deviations”− 1

M
Var− (1− 1

M
)Cov (3.17)

where “deviations” = 1
M

∑
m(Em{fi} − E{f̄})2. This means that decreasing the

covariance gives higher ambiguity which gives lower squared error. This legitimizes the
assumption that higher diversity among ensembled estimators gives lower error.
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3.1.2 Diversity measurements
Even though many will agree on the fact that diversity is an essential characteristic for
improved ensemble accuracy, there exists no agreed preferred way of measuring diversity.
Many measurements have been tried, and this section will sum up what has been presented
in earlier literature.

Kuncheva and Whitaker (2003) gives a presentation of ten different diversity statis-
tics that have been used to measure diversity. Kuncheva and Whitaker divide the mea-
surements into two categories: pairwise and non-pairwise measurements. The pairwise
measurements measure diversity between two models — the non-pairwise measurements
measure the diversity among as many models as wanted models. Finding the diversity
measurement for an ensemble consisting of more than two models when using a pairwise
measurement, will require calculating the pairwise measurement for all possible combina-
tions of two classifiers and then calculating the average.

The Q-statistic

The first measurement presented is the Q-statistic, which was first defined by Yule (1900).
The Q-statistic is a pairwise measure. Given the set of classifiers {C1, C2, . . . , CN}, the
training set Θ = {(x1, y1), (x2, y2), . . . , (xn, yn)} and l = {l1,1, l2,i, . . . , lN,1, l1,2 . . . , lN,n}
such that lj,i = 1 if Ci correctly recognizes θj and 0 otherwise, table 3.1 is defined.

Ck correct Ck wrong
Ci correct N11 N10

Ci wrong N01 N00

Table 3.1: A table illustrating the relationship of the variables used when measuring diversity among
classifiers.

Here Nab is the number of elements θj in the training set Θ, where lj,i = a and
lj,k = b. This gives the following definition of the Q statistic:

Qi,k =
N11N00 −N01N10

N11N00 +N01N10
(3.18)

This equation implies that Q can vary between −1 and 1. If the classifiers tend to
classify the same samples correctly, the Q value will approach 1. If they tend to misclassify
different objects, the Q value will approach −1.

The correlation coefficient ρ

Sneath and Sokal (1973) first present the correlation coefficient. It is also a pairwise mea-
surement for two classifiers Ci, Ck. It is defined as follows:

ρi,k =
N11N00 −N01N10√

(N11 +N10)(N01 +N00)(N11 +N01)(N10 +N00)
(3.19)

This equation uses the same definitions that are given in table 3.1.
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The disagreement measure

The disagreement measure is the ratio between the number of training samples the clas-
sifiers disagree on and all the samples. This measurement has been used by Ho (1998)
and Skalak (1996) for measuring diversity in machine learning ensembles. It is a pairwise
measurement between two classifiers Ci, Ck, and is defined as follows:

Disi,k =
N01 +N10

N11 +N10 +N01 +N00
(3.20)

It uses the same variables as is defined in table 3.1.

The double-fault measure

The double-fault measure is the ratio between the number of samples misclassified by
both models and all the samples. This measurement was first used by Giacinto and Roli
(2001) to measure and select the least related classifiers. It is also a pairwise measurement
between two classifiers Ci, Ck, and is defined as follows:

DFi,k =
N00

N11 +N10 +N01 +N00
(3.21)

It uses the same variables as is defined in table 3.1.

The entropy measure E

The concept of entropy was first used to measure diversity by Cunningham and Carney
(2000). It calculates the diversity of a set of classifiers D consisting of any number of
classifiers. It is defined as follows:

E =
1

n

n∑
j=1

1

(L− dL/2e)
min{l(θj), L− l(θj)} (3.22)

whereL is the number of classifiers, and l(θj) is the number of classifiers that correctly
classify the sample θj .

Kohavi-Wolpert variance

Kohavi and Wolpert (1996) derived an expression for the variability of the predicted class
label y for x.

variancex =
1

2

(
1−

c∑
i=1

P (y = wi|x)2

)
(3.23)

where c is the number of classes and wi is a class. Kuncheva and Whitaker (2003) shows
that this results in the following expression for a binary classification problem

KW =
1

nL2

n∑
j=1

l(θj)(L− l(θj)) (3.24)
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This is proposed as another way of measuring diversity and is called the Kohavi-
Wolpert variance.

The interrater agreement κ

The interrater agreement κ is a measurement of interrater reliability, first derived by Fleiss
(1981). If one were to translate this to the terminology used in this thesis, a rater would
be a classifier. κ is a measurement of the level of agreement between classifiers while
correcting for chance. It is defined as follows:

κ = 1−
1
L

∑n
j=1 l(θj)(L− l(θj)

n(L− 1)p̄(1− p̄)
(3.25)

where p̄ is the average individual classification accuracy.

The difficulty φ

Kuncheva and Whitaker (2003) defines the difficulty θ, which from now on will be re-
ferred to as φ since θ already is defined as the training set in this thesis. The difficulty
measurement uses a discrete random variableX taking values in {0/L, 1/L, . . . , L/L}. It
denotes the number of classifiers inD that correctly recognizes x. The difficulty is defined
as the variance of X . Lower variance indicates greater diversity.

φ = Var(X) (3.26)

Generalized diversity

This measurement was first proposed by Krzanowski and Partridge (1997). They define
pi as the probability that i of the L classifiers fail on a randomly chosen x. Then p(i) is
defined as the probability that i randomly chosen classifiers will fail on a randomly chosen
x. On the case of two classifiers, maximum diversity is gained when the failure of one
classifier is always accompanied by the success of the other. This results in the following
definition:

GD = 1−
∑L

i=1
i
L

(i−1)
(L−1)pi∑L

i=1
i
Lpi

(3.27)

Coincident failure diversity

The coincident failure diversity was also proposed by Krzanowski and Partridge (1997). It
is designed to have a maximum value when every misclassification is unique.

CFD =

{
0, p0 = 1.0

1
1−p0

∑L
i=1

L−i
L−1pi, p0 < 1

(3.28)
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Kuncheva and Whitaker (2003) goes on to test these measurements, seeing if it is
possible to find a correlation between the diversity measurements and ensemble accuracy.
Four different experiments are conducted.

First a simulation is performed, using some Matlab script, to produce L binary classi-
fier outputs for n objects so that the individual accuracy approximates p with a symmetric
matrix of dependencies Q = [Qi,k], where Qi,k is the Q-statistic for classifier Ci and Ck.
A large set of experiments were run, for different numbers of classifiers L and different
approximate accuracy p. pmax, the maximum accuracy of a single classifier was found,
along with the pmaj , the majority vote accuracy. This was calculated for a set of different
Qav in a uniform range from −1 to 1.

Qav were plotted against Pmaj − Pmax, which showed a clear correlation between
diversity and improvement in accuracy. It is worth noting that this is a result from both a
highly synthetic dataset and synthetic classifier, and might not translate as well into the real
world. Alongside this, the experiment did not use any other diversity measurement than
the Q-statistic and therefore did not tell anything about how well the Q-statistic performs
compared to other measurements. A point made by Kuncheva and Whitaker was that the
worst ensemble was not made by combining identical classifiers. The worst ensemble was
made by ensembling positively correlated but not identical classifiers.

A second experiment was conducted, where all possible combinations of L = 3 clas-
sifiers and n = 30 samples were enumerated for p = 0.6. This was done using the same
Matlab script as the last experiment. Then diversity was measured using three different
measurements for all iterations. This showed a clear increase in the majority vote accu-
racy as diversity was increased. However, it also showed that the worst ensemble was not
the ensemble with minimum diversity. This agrees with the first experiment. Worst case
were found for slightly positive Q-statistic, slightly positive ρ and CFD = 0.5. It is also
interesting to note that there is a certain diversity threshold value, where for any diversity
value greater than this threshold, a loss improvement is guaranteed.

A third experiment was conducted on a real (not-synthetic) dataset, the Wisconsin
Diagnostic Breast Cancer database(Olvi L. Mangasarian (1995)). All possible partitions
of the ten element feature set were made when splitting the features into partitions of
size 4, 4, 2 or 4, 3, 3. Three classifiers were used and trained at a subset of the features.
The classifiers strained were both linear and quadratic classifiers. They were ensembled
using eight different combination methods. Kuncheva and Whitaker describes the results
as showing there is no useful predictive value in diversity measures. Correlation between
each diversity measure and the improvement in accuracy reaches a maximum of 47%, but
is overall quite low. Maximum is reached for the difficulty measure φ.

Kuncheva and Whitaker (2003) explains the lacking results with the fact that very few
classifiers were combined (only 3) and the overall improvement was small. It might have
been too small for a diversity measure to be effective. Compared to the earlier experiments,
this experiment was not as controlled, with no restrictions on individual accuracy or mutual
dependency. This could be a reason for the experiment not quite lining up with earlier
experiments.

The last experiment uses two datasets and three different ways of making the base
classifiers for the ensemble. Bagging and using a simple linear classifier, bagging and
using a small neural network as a classifier, and making weak classifiers using the linear
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discriminant functions assigned with random coefficients. The number of base classifiers
was set to L = 9, and the entire process was done 500 times with random splitting of the
dataset into training and testing. The correlation between diversity and accuracy was again
shown to be quite low, but it was highest for bagging using neural networks.

Another illustration was made, plotting the Q-statistic against accuracy, and marking
the ensembles where pmaj were significantly higher than the average accuracy p̄ of the en-
semble. This illustration also showed a low correlation between diversity and an increase
in pmaj over p̄. This goes against what the theory showed in equation (3.7).

One criticism that can be made of the work done by Kuncheva and Whitaker is that a
large number of base classifiers were never tested. Only the first experiment was tested for
different amounts of base classifiers, and a larger L seemed to indicate a more significant
effect of high diversity. This is something that definitely should have been followed up.

Lofstrom et al. (2007) were also critical of some of the work done in Kuncheva and
Whitaker (2003). He says the experiments were conducted in a somewhat artificial setting,
meaning that they did not use real datasets nor real classifiers.

Lofstrom et al. (2007) wanted to deal with these problems and therefore conducted an
own set of experiments. Twenty neural networks were used to make 10 000 randomized
ensembles. They also experimented with the use of a validation set, and the effects it could
have, which was not used in Kuncheva and Whitaker (2003). Diversity among the 20
neural networks was targeted by using different network architectures, anything from 0 to
2 hidden layers with varying amounts of neurons. 10000 ensembles were made of varying
sizes (2 - 20 members). This was tested on eight datasets from the UCI Repository (Dua
and Graff (2017)).

A few different ways of illustrating the results were shown. First, the correlation be-
tween the diversity measures and test-set accuracy is compared to the correlation between
training- and validation-set accuracy to test-set accuracy. This showed that no single di-
versity measure had a better correlation with test-set accuracy than the correlation with
either validation- or test-set accuracy. The difficulty measure φ performed the closest to
the validation- and test-set. Double fault, CFD and Kohavi-Wolpert were also good per-
formers.

Lofstrom et al. argues that this measure might not be that interesting since one usually
wants to choose one ensemble to apply to the unseen data. Would it be beneficial to choose
an ensemble with higher diversity on training data? This is emulated by picking out the
top 1% and the top 50% most diverse ensembles. The average top 1% ensemble performs
worse than the average ensemble, but the average ensemble in top 50% performs better.

Another approach taken in Lofstrom et al. (2007) is to try to combine several mea-
surements. A simple summation of the diversity measurements is done for every possible
combination. The top 1% is extracted for each combination, and test-set accuracy is com-
pared. For the classifiers trained without a validation set, training set accuracy resulted in
the best top 1% ensembles, with a combination of accuracy and φ following close. For the
classifiers trained with a validation set, the best performer was a combination of validation
set accuracy and φ.

The thought of combining two or more measurements is an interesting proposal and
makes sense when compared to the ambiguity decomposition in equation (3.7). Ensemble
accuracy equals the average base classifier accuracy minus the ambiguity. This might also
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explain why the top 1% most diverse ensembles perform worse than the average ensemble.
Choosing the most diverse ensemble might result in a too big emphasis on diversity and
results in a low average base classifier accuracy. Using a weighted combination of diversity
and base classifier accuracy is more in line with the existing theory.

Another paper tackling the concept of measuring diversity is Tang et al. (2006). They
base their article around 6 of the 10 diversity measurements from Kuncheva and Whitaker
(2003): Disagreement (Equation (3.20), Double Fault (Equation (3.21)), KW (Equation
(3.24)), interrater agreement (Equation (3.25)), generalized diversity (Equation (3.27)) and
difficulty (Equation (3.26)).

The paper analyses these diversity measures based on the concept of margins, first
introduced by Schapire et al. (1998) to explain the success of boosting algorithms. If vi,l
is the total vote that the ensemble casts for label c on sample xi. The ensemble margin on
sample xi is defined as

mi = vi,yi
−
∑
c 6=yi

vi,c (3.29)

According to Tang et al., maximizing the minimum margin of an ensemble will result
in the lowest generalization error. Then they go on to show that the minimum margin of an
ensemble is not monotonically increasing with respect to any of the six diversity measure-
ments they included. Higher diversity will often result in a lower minimum margin, but
not necessarily. They argue that this is the reason for papers like Kuncheva and Whitaker
(2003) not being able to find a clear correlation between diversity and accuracy.

A final way of measuring diversity which has been heavily cited by the community is
brought up by Sharkey and Sharkey (1997b) and is described in terms of levels of diversity.
They are defined in table 3.2. These levels are well suited for describing ensembles in
more general categories but lack the accuracy and measurability of the earlier mentioned
measures. Therefore, as an optimization criterion, the levels of diversity is probably not
that well suited.

Even though nobody seems to have shown a direct correlation between ensemble di-
versity and ensemble generalization, the motivation of pursuing diversity among the base
classifiers is still well accepted in the literature. The leading hypothesis is that the right
formulation and measures for diversity are not found yet. Finding this definition and un-
derstanding how it affects ensemble performance remains a holy grail problem. (Zhou
(2012))

3.1.3 Achieving diversity
While the literature seems not to have produced defining evidence that diversity results in
better ensemble performance, there has been done much research related to how to achieve
diversity among base classifiers in an ensemble. This section will consist of a presentation
of the current state-of-the-art research done concerning achieving diversity in ensembles.

A survey was done by Brown et al. (2004) concerning methods for creating diversity.
They define two categories to divide the diversity creating tactics: implicit and explicit.
Which category the technique falls into depends on whether or not the technique takes
into account information about diversity when constructing the ensemble. As an example,
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Table 3.2: The levels of diversity as described by Sharkey and Sharkey (1997b)

Level 1
There are no coincident failures, meaning that no
inputs resulted in more than one failing classifier

Level 2
There are some coincident failures, but the majority

is always correct. More than one classifier
can fail, but the function is always covered.

Level 3

When a simple majority vote will not result in the
correct answer, but at least one classifier will always

produce the right answer. It might be possible to weigh
the outputs so that the right answer is always obtained.

Level 4

Failures are shared by all classifiers, resulting in an
ensemble that never will be reliable. The classifier

can however be used in conjunction with other
ensembles to improve generalization.

the technique Bagging, as presented in section 2.4.2, be an implicit method, due to the
random sampling of a training set. At no point is a measurement made to make sure that
diversity is achieved.

On the other hand, there is boosting, presented in section 2.4.1, which is an explicit
method. The training data is directly manipulated based on diversity in the base classifiers.
Brown et al. explains the difference between explicit and implicit the following way:
during the training of a classifier, an approximator will traverse the hypothesis space. The
goal is to have classifiers that occupy different points in the hypothesis space. Implicit
methods rely on randomness to make the classifiers traverse differently, while the explicit
methods choose different paths for the classifiers.

Brown et al. cites Sharkey (1999) as having identified four different ways one can
influence diversity. These categories were very specific to making ensembles of neural
networks and did not encapsulate all techniques to be presented by Brown et al.. Three
new categories were therefore made, which was supposed to encapsulate all possible tech-
niques.

1. Starting point in hypothesis space.

2. Set of accessible hypotheses.

3. Traversal of hypothesis space.

Different techniques for ensuring diversity will now be presented and placed into the
different categories proposed by Brown et al. (2004). A large part of this will be based on
the survey done by Brown et al. (2004), but since this survey is quite old, this review will
also consist of newer literature found by the author if this thesis.
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Starting point in hypothesis space

This section will look at the different proposed techniques which ensure diversity by ma-
nipulating the starting point in hypothesis space. This means to initialize the classifiers
with different initial conditions, which will make it more likely for them to traverse the
hypothesis space differently. According to Brown et al. (2004), this is one of the most
common ways of creating diversity, but also probably one of the worst. It is sometimes
used as a benchmark to compare new techniques against.

Noel Sharkey (1995) explored the relationship between initial output weight vectors
and the final backpropagation solutions in a neural network. They systematically varied the
initial vector values used by the networks and trained the networks on the same fuzzy XOR
task with the same dataset. The solutions were not found to be statistically independent,
so they had converged towards very similar local optima.

This is also supported by Yates and Partridge (1996) and Parmanto et al. (1996), which
ranked varying the initial conditions for neural networks dead last when comparing diver-
sity making techniques with regards to the best generalization performance.

There has been little research done with regards to explicit enforcing of diversity using
the initial conditions. The closest is Maclin et al. (1995), where they use competitive learn-
ing (Rumelhart and Zipser (1985)) to intelligently create initial network weights that are
located initially far from the weight space origin, thereby potentially increasing the set of
reachable local minima. This was showed to increase performance somewhat, especially
for ensembles consisting of a larger number of networks.

Set of accessible hypotheses

This section will look at the different proposed techniques which ensure diversity by ma-
nipulating the set of hypotheses that are accessible to the classifier. This is done in one of
two ways: restricting the accessible data for training, or changing the architecture of the
classifier.

Restricting accessible data is probably the most popular way of creating diversity due
to techniques like boosting and bagging. It is also probably the most widely investigated
method. It is also possible to use k-fold cross validation for this (Krogh and Vedelsby
(1994)), even though it is probably more relevant for evaluating classifier performance, as
talked about in section 2.3

Another approach is to use distortion methods, meaning to pre-process some of the
features to get a different representation of the sample. This opens a plethora of different
ways to augment the data, so only a few documented approaches will be presented here.

In Sharkey and Sharkey (1997a) (which is explained not entirely right in Brown et al.
(2004)), three neural nets were used for classification. They were called ANN1, ANN2,
and ANN3 and worked on pressure data from a diesel engine. In addition to these three
networks, two networks were used for transformation. Transformation A was an under-
complete autoencoder, a neural net trained to copy its input with hidden layers of smaller
dimensions than the input and output layers (for more information, check Goodfellow
et al. (2016)). The smaller dimension hidden layer representation was extracted and used
as input to ANN1. ANN2 got its input from Transformation B, which was a randomly
initialized neural network that had never been trained. ANN3 got the untransformed pres-
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sure data. Sharkey and Sharkey showed that this ensemble produces better results than an
ensemble of classifiers using only non-transformed data. Another example of transform-
ing the features is Raviv and Intrator (1996), where they used a variation of Bagging, but
added small amounts of Gaussian noise to the input vector. This was repeated multiple
times with varying levels of noise, and the best performer was picked. This technique
showed significant improvements over Bagging without noise.

More testing of implicit ways to create diversity was shown in Johansson and Löfström
(2012). Here many different techniques were tested in different experiments, but notably
restricting the number of accessible features for each ANN. They use something they call
sparse nets, where a certain proportion of the connections in each layer were randomly re-
moved, resulting in a different subset of features being used for each network. Ensembles
of 15 neural networks were created, and through much testing, using sparse nets consis-
tently resulted in the best performing ensembles. Another interesting point to note became
apparent when Johansson and Löfström ran the same test for larger ensembles of 51 neu-
ral networks. Targeting diversity implicitly gave a much larger performance increase for
larger ensembles compared to small ensembles when they are compared to the baseline
model.

There are also more explicit ways of creating diversity using the restricting of hypothe-
ses. Zenobi and Cunningham (2001) used a diversity measure to select a subset of features
for each classifier. A feature was evaluated if it should be added to the subset of a clas-
sifier by using both a diversity measurement and the classifier error. If improvement to
one of them comes at the cost of the other, then the feature is not added to that classifier’s
subset. The results showed that taking into account the diversity during feature evaluation
gave a better result, but only when the ensembles were big enough. This is interesting, as
it the same result as shown in Johansson and Löfström (2012). Zenobi and Cunningham
proposes that this is because the classifiers become local specialists when they are created
while taking into account diversity. A certain number of specialists is required before they
become better than the "generalists" that are made when not accounting for diversity. A
similar approach was taken by Oza and Tumer (2001) where they calculated correlations
between the input features and classes. A classifier was trained on the features that have
the highest correlation with a single class, making every classifier a class specialist. This
was shown to produce better results compared to an ensemble of classifiers trained on fea-
tures picked out by PCA. It would have been interesting to see this also compared to more
popular ensemble techniques, like bagging or boosting.

Another example of an explicit method is called DECORATE as presented by Melville
(2003). DECORATE is an acronym that stands for "Diverse Ensemble Creation by Op-
positional Relabeling of Artificial Training Examples". The algorithm constructs diverse
hypotheses by using additional artificially constructed training examples. Each classifier
is trained on a separate set of oppositely labeled artificial training data. This reduces
the correlation between the base classifiers, ergo increasing diversity. DECORATE was
shown to perform better than AdaBoost, Bagging, and Random Forests, especially for
small datasets. An experiment was also conducted, which showed the performance of
DECORATE for varying ensemble sizes. Unfortunately, this is not compared to the other
algorithms or a baseline, so there is no way of telling if DECORATE performs even better
as the ensembles grow larger, as the techniques from Johansson and Löfström (2012) and
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Zenobi and Cunningham (2001).
Changing the set of accessible hypotheses can also be done by manipulating the net-

work architectures. Partridge (1996) did a study of the effect the number of neurons had
on generalized diversity, as defined in equation (3.27). The number of neurons was shown
to have about the same effect as varying the initial weight seed, and very much lower than
varying the training set. Unfortunately, they only varied the number of hidden neurons
from 8 to 12, which, to be frank, is not enough to draw any conclusions.

CNNE is an algorithm that manipulates the network architectures to achieve diversity.
It uses incremental learning, negative correlation learning, and a constructive approach to
designing the network architecture. Networks are trained iteratively using the concept of
negative correlation. After a user-defined amount of epochs, the network is tested, and if
a specific criterion is fulfilled, more neurons are added. If that criterion is not fulfilled, the
ensemble is tested for another criterion which determines if another NN should be added
to the ensemble. This loops until some performance measure are reached. The algorithm
was tested on seven real-life classification datasets and outperformed other ensemble tech-
niques(Bagging, Arcboost, Adaboost, for example) consistently. It also performed well on
the Mackey–Glass Chaotic Time Series prediction problem (for more info see Glass and
Mackey (2010)), which is a regression problem as opposed to a classification problem.

There has also been proposed genetic algorithms for finding diverse network archi-
tectures. An example of this is the ADDEMUP (Accurate anD Diverse Ensemble Maker
giving United Predictions) genetic algorithm proposed by Opitz and Shavlik (1996). The
algorithm starts with an initial population of trained neural networks and uses genetic op-
erators to create new networks continually. It keeps the networks that are highly accurate
and disagrees with each other as much as possible. This technique was shown to trade
blows with bagging on four different datasets.

Hypothesis space traversal

If the search space is defined by the network architecture and the training data provided, a
strategy for achieving diversity is to modify the traversal of the learning algorithm trough
this space. A way one could do this is to add a penalty term to the loss function. A penalty
term that penalizes low diversity, for example. This is first proposed by Rosen (1996), and
extended by Liu and Yao (1999a). Rosen first proposed adding the penalty term to the
loss-function, using the loss function

ei =
1

2
(fi − d)2 + λ

i−1∑
j

c(j, i)(fi − d)(fj − d) (3.30)

where c(j, i) defines which networks i and j should be decorrelated. This was taken
one step further by Liu and Yao, which proposed to train the networks in parallel and
changed the penalty term to

pi = (fi − f̄)
∑
j 6=i

(fj − f̄) (3.31)

This was first called Cooperative Ensemble Learning System (CELS) (Liu and Yao
(1999b)) and later renamed to Negative Correlation Learning (Liu and Yao (1999a)). It

25



Chapter 3. Literature Review

has been shown to outperform other ensemble techniques consistently. The reason for this
is explained by Brown (2004). They show how negative correlation directly controls the
covariance of the ensemble. Which, trough the bias-variance-covariance-decomposition
((3.16)), is an explanation of why negative correlation learning can affect the generaliza-
tion error of an ensemble.

As Brown said himself: "When training a simple ensemble, we only minimize the er-
rors of the individual networks, and therefore only explicitly influence the bias component
in the ensemble. However, when training with NC, we use the individual error plus the
Ambiguity term as a regularisation factor. The expected value of the Ambiguity term pro-
vides the missing second half of the ensemble error that is not included in simple ensemble
learning. It, therefore, can be seen that the reason for the success of NC is that it trains the
individual networks with error functions which more closely approximate the individual
network’s contribution to ensemble error, than that used by simple ensemble learning."
(Brown, 2004, p. 59)

This only applies to regression problems, due to the ambiguity decomposition being
formulated based on a regression problem. It can be used for classification, as long as they
are reformulated as a regression problem. In later years, the ambiguity decomposition
has been formulated for the 0-1 error function (Chen (2008)), which made it possible to
introduce an ambiguity term for that loss function. This ambiguity term can be used as
the penalty term in the loss function, which makes it possible to do negative correlation
learning for classification problems with 0-1 error functions as well.

These results were used by Wang et al. (2010) to create what they called AdaBoost.NC.
He extended the ambiguity term from Chen (2008) to all classification tasks, including
multi-class domains. This is then used in the framework of AdaBoost, by adding a di-
versity measure to the weights of the training examples along with the misclassification
information used in the original AdaBoost. This information is then used to build the next
classifier for the ensemble. This means that AdaBoost is closer to negative correlation
learning with sequential training of the classifiers. The algorithm is tested and compared
to NCL on ten different datasets. It was shown to trade blows with NCL, outperforming
NCL on 50% of the datasets, and being worse on the other half.

Negative correlation learning has shown to perform very well and increase generaliza-
tion over standard training for ensembles. However, Chan and Kasabov (2005) argues that
a problem facing the user of NCL is its very slow training time. It requires a communi-
cation line between the component networks to measure the network diversity compared
to the others. This slows down training and makes it a hassle to use third-party code.
Therefore Chan and Kasabov proposes a method they call Negative Correlation Learning
via Correlation-Corrected Data (NCCD). Correlation-Corrected (C-C) data is transformed
training data that induce negative correlation when the networks are trained on it. This
data is transformed again periodically to reflect the changes done to the networks during
the training process.

3.2 Auto-ML
Auto-ML is short for automatic machine learning. The University of Freiburg has a ma-
chine learning lab that has published a book about the concept (Hutter et al. (2018)). Ac-
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cording to them, Auto-ML aims to make decisions about hyperparameters, regularization
methods, training procedures, and any choice which has to be made when using a ma-
chine learning algorithm, something which is automatically chosen based on the data. The
Auto-ML algorithm will determine the approach that works best for this particular applica-
tion. There have been attempts at making Auto-ML algorithms that design neural network
ensembles. They differ from the techniques from the earlier section, in that they do not
necessarily search after the concept of diversity.

An example of this is the very recent Autostacker algorithm, as presented by Chen
et al. (2018). Autostacker automatically searches for the optimal stacked ensemble for a
certain dataset. The user has to specify the maximum number of layers for each network
and the maximum number of neurons in each layer. They can also specify the machine
learning algorithms that can be used in each classifier. AutoStacker uses a basic evolution-
ary search algorithm to find the best set of hyperparameters for the problem at hand. A set
of N complete pipelines is created at random. Half of them are mutated by changing one
hyperparameter at random, and the other half is crossed over with the mutated set. This
creates a new set of N pipelines. These total 2N pipelines are evaluated, and the N best
performing are kept. This loops until the algorithm are finished. This was tested against
other algorithms, more specifically Random Forest (Breiman (2001)), Tree-based Pipeline
Optimization Tool (TPOT) (Olson et al. (2016)) and AutoSklearn (Feurer et al. (2015)).
AutoStacker was better than Random Forest 100 % of the time, 12 of 15 times it was better
than TPOT and 9 of 15 times it was better than AutoSklearn. It is unfortunate that they did
not test AutoStacker against any other ensemble technique. It is unfair game to compare a
classifier using a single model against one that uses 200, which is the case of AutoStacker.

Other than this, the author has not been successful at finding any other AutoML ap-
proach that makes ensembles. As Chen et al. (2018) talked about, the Auto-ML com-
munity has done much research related to automatically making single classifiers. These
single classifiers can, of course, be put into an ensemble if that is wanted, but each classi-
fier is designed to be optimal on its own. Autostacker is an ensemble method by default
and designs each classifier to be optimal in an ensemble. The fact that Autostacker is the
only algorithm to pursue this seems to indicate there is more research that can be done
concerning AutoML ensembles.
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CHAPTER

FOUR

METHOD

In this section, the methodology which will be used to answer the different aspects of the
original problem given in the introduction will be presented. The design choices made in
the experiments will be argued and explained. This section consists of five parts. First,
the problem will be further defined in section 4.1. Secondly, the resources and tools used
will be explained in section 4.2. Then, in section 4.3, some of the considerations regarding
the code used will be presented. In section 4.4, the set of experiments that will be done
is explained and argued. Finally, section 4.5 will explain the ways the results will be
analyzed. All the code referenced here and that is used in this project, will be made
available at the author’s GitHub at https://github.com/sondrfos/TTK4900-
--NCL/.

4.1 Defining the problem
The research question posed in section 1.1, is quite a big question: how to produce the
optimal ensemble when stacking multiple classifiers together. As the literature review
has shown, there is a lot of different ways of tackling this problem. One could take the
Auto-ML route, maybe use diversity or take a completely different route. Therefore, this
question needs to be narrowed down, to stake out a clearer path to follow.

It was decided that it would be interesting to explore the effects of diversity on a ho-
mogeneous ensemble of neural networks. Exploring this could give valuable insights into
how to create ensembles, and more specifically creating more optimal ensembles of limited
size. It would also be highly relevant to the Kaggle submissions as homogeneous ensem-
bles of neural networks often are both a used and winning strategy. Based on what was
read in the literature review, and the original research question, it was decided to pursue
the following two questions:

1. Is there a clear indication that ensembles with more members have a larger benefit
from enforcing diversity?

2. Can we pose some hypothesis as to why this is the case, and back it up?

29

https://github.com/sondrfos/TTK4900---NCL/
https://github.com/sondrfos/TTK4900---NCL/


Chapter 4. Method

4.2 Tools and design choices
To produce diversity in the ensemble a strategy presented in the literature review will be
used. Since a controlled and scientific study of the effects of diversity was desired, it was
decided that it would be more interesting to pursue an explicit way of enforcing diversity
into an ensemble. This way, the effect of diversity could be controlled, and this would lend
itself to a more systematic review of the diversity effect.

These considerations narrow down the possible techniques that could be used from
the literature review. A possible approach would have been to use a genetic algorithm,
maybe something like ADDEMUP or DECORATE. Another possibility would be to use
a diversity measure to select a subset of features for each classifier given by Zenobi and
Cunningham (2001) or using sparse nets, as shown in Johansson and Löfström (2012).
Unfortunately, none of these techniques give direct control over the amount of diversity
in the ensemble. Because of this, it was decided to use negative correlation learning to
experiment with diversity in ensembles for this thesis. Adaboost.NC was not chosen due
to the unnecessarily complicated pipeline it would create for our experiments. NCCD did
not directly control diversity in the ensemble as much as was wanted and was therefore
not used.

There exists no openly available implementation of negative correlation learning on the
internet. NCL was designed in quite a different time, before the time of GitHub and other
code repository sites, which might be an explanation for why no implementation exists.
Therefore, negative correlation learning will have to be implemented from the ground up
using modern frameworks and tools.

The deep learning framework of choice will be Keras (Chollet et al. (2015)), because it
is the framework the author has the most experience using. The use of Keras is somewhat
of a weak point of this thesis. A framework with lower level control, like for example,
Torch (Paszke et al. (2017)), would have been beneficial, but this was not realized before
too late in the work. The reason why more low-level control would have been beneficial,
will be pointed out in section 4.3, which talks about the implementation of NCL.

The primary dataset which will be used for testing is the C-CORE/Equinor dataset, as
presented in section 1.3. The reason for this is the fact that the idea for the project sparked
from the C-CORE/Equinor Kaggle competition, where this dataset was used. It is also
a state-of-the-art binary classification image dataset, and will result in relevant results.
Still, any observation made during testing on the C-CORE/Equinor dataset will require
confirmation on other datasets. To confirm it will mean to do the same experiments another
image classification dataset, like for example CIFAR10 (Krizhevsky and Hinton (2009)).

It was decided to use 4-fold-cross-validation, to make the results as representable as
possible. 30% of the dataset was kept as a test-set and were used to test the performance
of the classifier in the final results, which will be presented in this thesis. Further, it
was decided to keep the learning rate consistent between all experiments done in this
thesis. This is because tuning learning-rate would lead to another factor to tune during
experimentation. If raw performance were important to the experiments, one would have
to tune the learning rate. However, since this experiment is most concerned about the
relative performance of the best performing ensemble compared to the baseline with no
diversity emphasis, it was decided to keep the experiments with as few factors to modify
as possible.
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4.3 NCL implementation
This section will present how the NCL algorithm was implemented. The design choices
made will be argued for, and it will all be illustrated by a figure. It will also consist of an
explanation of why Keras was not the optimal framework for implementing NCL.

First, the theory behind NCL will be repeated. As explained in the literature review,
NCL is a way to change the traversal of the learning algorithm through hypothesis space,
so it converges towards more diverse spaces. Changing the traversal is done by adding a
penalty term to the cost function, which penalizes low diversity. In NCL this penalty term
is given by the equation:

pi = (fi − f̄)
∑
j 6=i

(fj − f̄) (4.1)

where fi is the classifier output of the classifier currently training, f̄ is the average clas-
sifier output and the sum loops over all classifiers except the one in training currently. This
penalty term is added to the cost function (which in our case will be mean squared error),
weighted by a parameter which can be changed to give differing emphasis on diversity.
This results in the following cost function:

ei =
1

2
(fi − d)2 + λpi (4.2)

This cost function, in addition to the fact that all networks should be trained at the
same time, results in quite the challenge. How can one train multiple networks at the same
time, which are dependent on each other?

Solving this challenge is where another framework than Keras would have come in
handy. Keras has somewhat limited functionality when it comes to defining a cost func-
tion. One can define a custom cost function, but there is no way for this function to
be dependent on some dynamic variable which is not part of the model that’s currently
training. This results in a significant restriction on how to implement negative correlation
learning, which is entirely dependent on using the other models’ dynamic outputs as input
to its cost function. Implementing NCL would have been more natural in some lower level
frameworks like Torch or even TensorFlow, but due to the author’s limited knowledge of
these frameworks, and the limited time at hand, it was chosen to pursue some functional
implementation in Keras.

The final implementation for n networks is illustrated in figure 4.1. To overcome the
restrictions on the cost function, all the models were connected for the cost function to
be able to access all predictions from every model. A single input-layer feeds forward
the input to each neural network, which is to be trained to correlate negatively with each
other. n − 1 networks are frozen at all times (illustrated by the blue boxes in figure 4.1).
The non-frozen network is the network that is currently trained, and its output is used to
calculate the mean squared error. Its output is also used, along with all the other network
outputs, to calculate the penalty term. This cost is then used to adjust the weights of the
non-frozen network according to the backpropagation algorithm. The steps described runs
once, before which network that’s un-frozen rotates, and a new input batch is fed into the
networks. This loops until all the networks converge towards some optimum.
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Figure 4.1: An illustration of how the algorithm is implemented in Keras for n different neural
networks.

32



4.4 Experiments

This implementation works and does what it is designed to do: negative correlation
learning. It comes, however, at the cost of some performance. Freezing and unfreezing
is quite a resource intensive task in Keras. It was also implemented a version of check-
pointing, to make sure that the best version of each of the n networks always was kept.
A patience-factor of 7 epochs were defined. If a network did not gain performance on
the validation set when training, the checkpoint routine was started. In this routine, the
network which did not improve was trained 7 epochs, consecutively. If it were not able to
improve during these 7 epochs, the network was rolled back to the version from before the
training started. This checkpoint routine, along with freezing and un-freezing, impacted
the performance. This could be improved by using a framework with lower level control,
which would not require such a hacky way to implement the training process.

4.4 Experiments
A set of experiments was conducted to gain some insight into the effect of diversity on
ensembles. They will be described in this section, along with the reasoning behind them.

The literature review showed that some earlier experiments had indicated that larger
ensembles benefited more from diverse ensembles. To investigate this was chosen as a
goal for this thesis. Would the effect still be prevalent in this application? Further, this
thesis will contain some analyzation to try to explain this effect. None of the proposed
explanations for this effect has been backed up by any evidence in the literature as of yet.

All the experiments conducted are presented in table 4.1. This selection was made
to be able to answer the research question. A strong foundation was a goal, so first, two
experiments at full dataset size were conducted for ensembles of size 2 and of size 8.
These two experiments will give a good representation of the effect diversity has on small
ensembles compared to larger ones. Then the training dataset size was lowered. Lowering
the dataset size was done with two goals in mind:

1. To study the effects of enforcing diversity in situations where the available data is
limited.

2. To speed up the training process, to be able to get more interesting results quickly.

The same experiments were conducted again, along with tests for both ensembles with
4 members and 12 members. These experiments could help illustrate if the effect of diver-
sity scaled for smaller and larger ensembles. Then the same experiments were repeated,
but this time using the CIFAR10 dataset. The reason for this is to determine if the effects
observed on the C-CORE/Equinor dataset were proprietary to that dataset, or if it is a more
general result that is more likely to apply to many datasets. The CIFAR10 dataset will be
modified to be a binary classification problem. This modification will be done by sam-
pling the dataset, so it consists of 600 images of a predetermined class, and 600 random
images of the other classes in the dataset. The task of the classifier will be to determine
if the image is of the predetermined class or not (1/0). Experiments will be done using
both ships and dogs as the predetermined class. This was an itneresting choice of classes
since ships are considered the easiest to classify in the CIFAR10 dataset, while the dogs
are considered the hardest (Antonio (2018)). These experiments will only be done with
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two and eight members. The reason for not running for 12 and four members is mostly a
time-saving measure. It is still considered enough experiments to show that the effect is
not only prevalent on the C-CORE/Equinor dataset.

Table 4.1: The different experiments using NCL conducted in this thesis to answer the research
question posed.

Experiment
no.

Number of
members

Number of
runs Dataset Dataset size

1 2 10 C-CORE/Equinor 100 %
2 8 10 C-CORE/Equinor 100 %
3 2 10 C-CORE/Equinor 10 %
4 4 10 C-CORE/Equinor 10 %
5 8 10 C-CORE/Equinor 10 %
6 12 10 C-CORE/Equinor 10 %
7 2 10 CIFAR10 (ship) 10 %
8 8 10 CIFAR10 (ship) 10 %
9 2 10 CIFAR10 (dog) 10 %

10 8 10 CIFAR10 (dog) 10 %

The following neural network architectures were used during the experiments pre-
sented in table 4.1:

• 2 member ensemble:

– convolutional layers: [64, 128, 256], dense layers: [512, 256], dropout: 0.2

– convolutional layers: [32, 64, 128, 256], dense layers: [512, 256], dropout: 0.2

• 4 member ensemble:

– convolutional layers: [64, 128, 256], dense layers: [256, 128], dropout: 0.2

– convolutional layers: [64, 128, 256], dense layers: [512, 256], dropout: 0.2

– convolutional layers: [32, 64, 128, 256], dense layers: [256, 128], dropout: 0.2

– convolutional layers: [32, 64, 128, 256], dense layers: [512, 256], dropout: 0.2

• 8 member ensemble:

– convolutional layers: [64, 128, 256], dense layers: [256, 128], dropout: 0

– convolutional layers: [64, 128, 256], dense layers: [512, 256], dropout: 0

– convolutional layers: [64, 128, 256], dense layers: [256, 128], dropout: 0.2

– convolutional layers: [64, 128, 256], dense layers: [512, 256], dropout: 0.2

– convolutional layers: [32, 64, 128, 256], dense layers: [256, 128], dropout: 0

– convolutional layers: [32, 64, 128, 256], dense layers: [512, 256], dropout: 0

– convolutional layers: [32, 64, 128, 256], dense layers: [256, 128], dropout: 0.2
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– convolutional layers: [32, 64, 128, 256], dense layers: [512, 256], dropout: 0.2

• 12 member ensemble:

– convolutional layers: [64, 128, 256], dense layers: [128, 64], dropout: 0
– convolutional layers: [64, 128, 256], dense layers: [256, 128], dropout: 0
– convolutional layers: [64, 128, 256], dense layers: [512, 256], dropout: 0
– convolutional layers: [64, 128, 256], dense layers: [128, 64], dropout: 0.2
– convolutional layers: [64, 128, 256], dense layers: [256, 128], dropout: 0.2
– convolutional layers: [64, 128, 256], dense layers: [512, 256], dropout: 0.2
– convolutional layers: [32, 64, 128, 256], dense layers: [128, 64], dropout: 0
– convolutional layers: [32, 64, 128, 256], dense layers: [256, 128], dropout: 0
– convolutional layers: [32, 64, 128, 256], dense layers: [512, 256], dropout: 0
– convolutional layers: [32, 64, 128, 256], dense layers: [128, 64], dropout: 0.2
– convolutional layers: [32, 64, 128, 256], dense layers: [256, 128], dropout: 0.2
– convolutional layers: [32, 64, 128, 256], dense layers: [512, 256], dropout: 0.2

This list specifies the unique part of each ensemble member. The general outline for
each member is as follows: The input is passed through a batch normalization-layer, to
improve performance and convergence time. This normalized input is passed on to a
convolutional layer of size as specified in the list above. Kernel size on all convolutional
layers are 3 × 3, and the activation function used were always rectified linear units. In
between each convolutional layer is a max pooling layer with pool size 2 × 2 and strides
of 2 × 2. The top layers are as specified by the dense layers in the list above. They also
use the activation function rectified linear units. If dropout were specified, it was applied
in between each layer.

The reasons for using the architectures as specified in the list above were due to differ-
ent requirements and considerations. When working with neural networks, architectures
like VGG16 are often used in the literature since it is well known and used by many. Ide-
ally one would use VGG16 here as well, but due to the sheer size of that network, it was
deemed infeasible to train 12 of them at the same time. Something relatively small and
lightweight was wanted. Therefore the solutions proposed in the Kaggle competition were
studied, and the small, lightweight architectures were extracted. Then a small initial test
was performed, and the two architectures which performed the best in an ensemble using
completely regular training were picked. That way, it was known that any increase in per-
formance would be an actual improvement on the best solution. These two architectures
were then used in the two-member ensemble. For all larger ensembles, slight modifications
were done to the two original architectures before they were added to the ensemble.

It is also of note that the diversity emphasis will need to be shrunk as the ensembles
glow large. As the number of ensemble members increases, it becomes harder to find a
local minimum that is both highly accurate, while still being diverse compared to 7 or 11
other members. This local minimum will be easier to find in the case where backpropa-
gation only has one other member to consider. Therefore the emphasis will be lowered as
the ensembles grow in size. The goal will be to find the optimum diversity emphasis for
each configuration. Optimum diversity will be found by trial and error.

35



Chapter 4. Method

Figure 4.2: An illustration of what GradCAM can show. Here a convolutional net is trained to
distinguish cats from dogs, and the tool illustrates which features were important for the classifier to
determine that the image consisted of a dog or a cat. From the activations, one can see that the face
of the boxer was significant, and probably a distinguishing feature between the cats and the dogs the
classifier noticed in the training set. The cat has very high activation on the belly, probably due to
the stripes being a distinguishing feature. Figure courtesy of Selvaraju et al. (2016).

4.5 Analsis tools

This section will present the tools an methods used for analyzing the results gained from
running the experiments discussed in the last section. The goal of the analyzation is to
answer the two questions posed in section 4.1 and the main research question.

The first question from section 4.1 has been shown in earlier literature. To analyze this,
the ensemble loss after stacking will be plotted for multiple different diversity emphasizes.
These plots will make it possible to see at what diversity emphasis the current ensemble
performs the best, how the performance compares to the diversity emphasis and that the
emphasis found is quite close to the optimum.

These ensemble loss plots from different experiments can be compared to see if there
is some difference in the effect of diversity on larger ensembles compared to smaller ones.

With regards to question two, this has been speculated about in earlier literature but
has never backed up by any experiment or theory. This thesis will build on this proposed
explanation and try to back it up. This will be done by using a tool called Grad-CAM
(Selvaraju et al. (2016)).

GradCAM is a tool used for visual explanations of why a CNN concluded as it did. It
calculates the average activation of each pixel in the image and illustrates that as a heatmap
on top of the original image. An illustration of this is showed in figure 4.2. GradCAM can
give valuable information as to why a neural network acts as it does. This tool will be used
to inspect the classifiers to back up the explanation to question 2.

The proposed hypothesis as to why large ensembles benefit more from diversity is that
when an classifier is trained with an emphasis on diversity, they become local specialists.
The author has not been successful at finding a definition of the term "local specialist",
so in order to figure out if our classifiers are local specialists, a definition of the term will
need to be established. This definition will be presented here, as it is considered crucial to
have a clear definition of the term before an investigation is conducted.
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When thinking about a specialist, one often thinks of something or someone that is de-
voted to a single and specific task. When transferring this to the field of machine learning,
one could think of a specialist as a classifier that’s devoted to a more specific task than the
typical generalist classifier. When combining this with the term "local", one arrives at a
classifier that good at a specific job and uses localized features. In this thesis, GradCAM
will be employed to try to notice if classifiers trained with a more significant emphasis
on diversity is more focused towards more specific attributes and localized features in the
images they classify. This will be done by analyzing the activations of each classifier,
and seeing if some classifiers have more concentrated, sharper spikes in their activations
compared to other classifiers. If that is the case, especially as the average over the entire
dataset, then this indicates that an emphasis on diversity in large ensembles creates local
specialists.

One would expect a generalist to have larger blobs of medium to high activation, as it
cares about bigger sections of the image. A local specialist would have a few areas with
high activation, and many pixels with low activation. This might not always be the case
on an individual image, as one could imagine an image having many versions of the same
feature that the local specialist reacts to. Imagine an eye specialist classifier and a close up
image of a spider. It might react to all the eyes on the spider, while the generalist does not
activate on such a large area. One would, however, expect the general activation outline
described earlier in this paragraph to be present when one averages over many images.
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CHAPTER

FIVE

RESULTS

This chapter will present the results found when doing the experiments and analyzation,
which was described in chapter 4. First, the plots gained from the experimentation with
ensemble size and diversity will be presented in section 5.1, before a more in-depth look
into the behavior of the networks in section 5.2 will be examined. The results will be
discussed in section 6.

5.1 NCL
The results from the first experiment from table 4.1 will be presented first. It was consid-
ered important to see that the NCL implementation worked as intended, and therefore, a
handful of diversity measurements were used as a sanity check of the effectiveness of the
algorithm. This is seen in figure 5.1.

Continuing, the effect of diversity emphasis on the ensemble was plotted. This can be
seen in figure 5.2. This is the result after much experimentation with both lower and higher
diversity emphasis to find values that were high enough that they affected the traversal in
hypothesis space, while still being small enough not to make the diversity emphasis so
large that it dominated the actual classification loss. The result is the average of ten runs,
in an attempt to counteract randomness in the results.

Following this experiment, the same experiment was done, with an increased amount
of members in the ensemble. This time, eight members were used. The ensemble loss
plotted against the diversity emphasis of this ensemble can be seen in figure 5.3. This
result is again an average of 10 runs for the results to be as representative as possible. The
emphasis is lower in this experiment, which is explained in the last chapter but also will
be commented in the discussion later.

To see how the effect of diversity scales, experiments using both an in-between amount
of members and a larger amount of members were conducted. The dataset size was now
dropped to 10 % of the original, to speed up the training process and to see how enforcing
diversity might act differently when the dataset-size is smaller. The ensemble loss plotted
against the diversity emphasis for an in-between size of four members can be seen in figure
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Figure 5.1: A graph showing the measured diversity of each ensemble for a given diversity em-
phasis. ρ, Q and Double Fault are diversity measures where a lower value means a more diverse
ensemble.
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Figure 5.2: A graph showing the ensemble loss of a two-member ensemble plotted against the
diversity emphasis used in the NCL algorithm trained on the C-CORE/Equinor dataset.
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Figure 5.3: A graph showing the ensemble loss of a eight-member ensemble plotted against the
diversity emphasis used in the NCL algorithm trained on the C-CORE/Equinor dataset.

5.4. The ensemble loss plotted against the diversity emphasis for an even larger size of 12
members can be seen in figure 5.5. Both of the plots are a result of averaging ten runs.

An experiment using the ensemble consisting of eight and two members were also
conducted when using only 10% of the training data. The ensemble loss plotted against
the diversity emphasis is shown in figures 5.6 and 5.7. Again, this is the result of 10 runs.

The same experiments were to be conducted on another dataset, in order to see if the ef-
fect was specific to the C-CORE/Equinor dataset or a more general observation. CIFAR10
was chosen as the second dataset and was adapted to be used in a binary classification set-
ting, as described in section 4. First, the class to be classified was ship. 10% of the dataset
was used, both a two-member ensemble and an eight member-ensemble were trained, and
the results were compiled as the average of 10 runs. These results can be seen in figures
5.8 and 5.9.

The second experiment on another dataset was done with the same CIFAR10. The
dataset was again adapted to a binary classification setting, but this time, the class to be
classified were dog. 10% of the dataset was used, both a two-member ensemble and an
eight member-ensemble were trained, and the results were compiled as the average of 10
runs. These results can be seen in figures 5.10 and 5.11

5.2 GradCAM
This section will show some of what could be considered typical activation heatmaps pro-
duced by GradCAM when analyzing the models trained with differing diversity emphasis.
This section will also contain histograms of pixel activations, to look for trends or patterns
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Diversity emphasis vs ensemble loss

Figure 5.4: A graph showing the ensemble loss of a four-member ensemble plotted against the
diversity emphasis used in the NCL algorithm trained on only 10% of the C-CORE/Equinor dataset.
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Figure 5.5: A graph showing the ensemble loss of a 12-member ensemble plotted against the diver-
sity emphasis used in the NCL algorithm trained on only 10% of the C-CORE/Equinor dataset.
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Figure 5.6: A graph showing the ensemble loss of a two-member ensemble plotted against the
diversity emphasis used in the NCL algorithm trained on only 10% of the C-CORE/Equinor dataset.
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Figure 5.7: A graph showing the ensemble loss of a eight-member ensemble plotted against the
diversity emphasis used in the NCL algorithm trained on only 10% of the C-CORE/Equinor dataset.
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Figure 5.8: A graph showing the ensemble loss of a two-member ensemble plotted against the
diversity emphasis used in the NCL algorithm trained on only 10% of the CIFAR10 dataset adapted
to a binary classification problem of ships and not-ships.
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Figure 5.9: A graph showing the ensemble loss of a eight member ensemble plotted against the
diversity emphasis used in the NCL algorithm trained on only 10% of the CIFAR10 dataset adapted
to a binary classification problem of ships and not-ships.
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Figure 5.10: A graph showing the ensemble loss of a two-member ensemble plotted against the
diversity emphasis used in the NCL algorithm trained on only 10% of the CIFAR10 dataset adapted
to a binary classification problem of dogs and not-dogs.
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Figure 5.11: A graph showing the ensemble loss of a eight member ensemble plotted against the
diversity emphasis used in the NCL algorithm trained on only 10% of the CIFAR10 dataset adapted
to a binary classification problem of dogs and not-dogs.

45



Chapter 5. Results

Figure 5.12: A figure showing a RGB interpretation of a SAR image, and two activation heatmaps.
The first is from a classifier trained with no emphasis on diversity, while the second is from the
eight-member ensemble with an emphasis of 1 · 10−7

Figure 5.13: A figure showing a RGB picture of a boat from the CIFAR10 dataset, and two activation
heatmaps. The first is from a classifier trained with no emphasis on diversity, while the second is
from the eight-member ensemble with an emphasis of 1 · 10−7

which can give information about the effect of diversity.
The typical activation patterns will be shown for three different networks. The first is

trained on the C-CORE/Equinor dataset and will show activations on an RGB interpreta-
tion of a SAR-image. The model comes from the ensemble consisting of eight members
and is defined as: convolutional layers: [64, 128, 256], dense layers: [512, 256], dropout:
0.2. The activation heatmap can be seen in figure 5.12.

The second is a model trained on the CIFAR10 dataset to spot ships and not-ships.
Again the model comes from the ensemble consisting of eight members and is defined as:
convolutional layers: [64, 128, 256], dense layers: [512, 256], dropout: 0.2. The activation
heatmap can be seen in figure 5.13.

The third is a model trained on the CIFAR10 dataset to spot dogs and not-dogs. Again
the model comes from the ensemble consisting of eight members and is defined as: con-
volutional layers: [64, 128, 256], dense layers: [512, 256], dropout: 0.2. The activation
heatmap can be seen in figure 5.14.

Finally, this result section contains histograms of pixel activations. A few different
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Figure 5.14: A figure showing a RGB picture of a dog from the CIFAR10 dataset, and two activation
heatmaps. The first is from a classifier trained with no emphasis on diversity, while the second is
from the eight-member ensemble with an emphasis of 1 · 10−9

plots will be presented here, to look for consistencies across ensembles with differing
amount of members, but somewhat equal diversity emphasis. The histograms presented
here represent all pixel activations across all images in the dataset for all ten training runs
for each model for all four cross-validation folds. This will give an as true as possible rep-
resentation of the differing pixel activation patterns for each amount of diversity emphasis.
The first histogram can be seen in figure 5.15, where the pixel activations for convolutional
layers: [64, 128, 256], dense layers: [512, 256], dropout: 0.2 in the eight-member ensem-
ble trained with 0.0 emphasis on diversity is shown. Continuing, figure 5.16 contains
pixel activations for the same model architecture, but trained with a diversity emphasis of
1 · 10−7.

The same activation histograms were also plotted for two other model architectures,
namely convolutional layers: [64, 128, 256], dense layers: [256, 128], dropout: 0.2 and
convolutional layers: [32, 64, 128, 256], dense layers: [512, 256], dropout: 0.2. They are
illustrated in figure 5.17 and 5.19 for 0.0 diversity emphasis and 5.18 and 5.20 for 1 · 10−7

diversity emphasis.
The model activations were also studied in the two member ensemble. This can be seen

in figure 5.21, 5.22 and 5.23 with diversity emphasis 0.0, 0.02 and 0.1, respectively. This
is for architecture A, which refers to convolutional layers: [64, 128, 256], dense layers:
[512, 256], dropout: 0.2.
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Figure 5.15: A histogram showing the activations of each pixel made by a model from the eight-
member ensemble trained using NCL and a diversity emphasis of 0.0. The model is referred to as
architecture A, which means the model defined as convolutional layers: [64, 128, 256], dense layers:
[512, 256], dropout: 0.2. This is the sum of all pixel activations made by all folds and all runs on all
images from the C-CORE/Equinor dataset

0.0 0.2 0.4 0.6 0.8 1.0
Normalized pixel activation

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8

Co
un

t

1e8
Average pixel activations for architecture A, regularization 1e-07

Figure 5.16: A histogram showing the activations of each pixel made by a model from the eight-
member ensemble trained using NCL and a diversity emphasis of 1 · 10−7. The model is referred
to as architecture A, which means the model defined as convolutional layers: [64, 128, 256], dense
layers: [512, 256], dropout: 0.2. This is the sum of all pixel activations made by all folds and all
runs on all images from the C-CORE/Equinor dataset.
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Figure 5.17: A histogram showing the activations of each pixel made by a model from the eight-
member ensemble trained using NCL and a diversity emphasis of 0.0. The model is referred to as
architecture B, which means the model defined as convolutional layers: [64, 128, 256], dense layers:
[256, 128], dropout: 0.2. This is the sum of all pixel activations made by all folds and all runs on all
images from the C-CORE/Equinor dataset
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Figure 5.18: A histogram showing the activations of each pixel made by a model from the eight-
member ensemble trained using NCL and a diversity emphasis of 1 · 10−7. The model is referred
to as architecture B, which means the model defined as convolutional layers: [64, 128, 256], dense
layers: [256, 128], dropout: 0.2. This is the sum of all pixel activations made by all folds and all
runs on all images from the C-CORE/Equinor dataset.
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Figure 5.19: A histogram showing the activations of each pixel made by a model from the eight-
member ensemble trained using NCL and a diversity emphasis of 0.0. The model is referred to as
architecture C, which means the model defined as convolutional layers: [32, 64, 128, 256], dense
layers: [512, 256], dropout: 0.2, dropout: 0.2. This is the sum of all pixel activations made by all
folds and all runs on all images from the C-CORE/Equinor dataset
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Figure 5.20: A histogram showing the activations of each pixel made by a model from the eight-
member ensemble trained using NCL and a diversity emphasis of 1 · 10−7. The model is referred to
as architecture C, which means the model defined as convolutional layers: [32, 64, 128, 256], dense
layers: [512, 256], dropout: 0.2. This is the sum of all pixel activations made by all folds and all
runs on all images from the C-CORE/Equinor dataset.
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Figure 5.21: A histogram showing the activations of each pixel made by a model from the two-
member ensemble trained using NCL and a diversity emphasis of 0.0. The model is referred to as
architecture A, which means the model defined as convolutional layers: [64, 128, 256], dense layers:
[512, 256], dropout: 0.2. This is the sum of all pixel activations made by all folds and all runs on all
images from the C-CORE/Equinor dataset

0.0 0.2 0.4 0.6 0.8 1.0
Normalized pixel activation

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Co
un

t

1e8
Average pixel activations for architecture A, regularization 0.02

Figure 5.22: A histogram showing the activations of each pixel made by a model from the two-
member ensemble trained using NCL and a diversity emphasis of 0.02. The model is referred to as
architecture A, which means the model defined as convolutional layers: [64, 128, 256], dense layers:
[512, 256], dropout: 0.2. This is the sum of all pixel activations made by all folds and all runs on all
images from the C-CORE/Equinor dataset
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Figure 5.23: A histogram showing the activations of each pixel made by a model from the two-
member ensemble trained using NCL and a diversity emphasis of 0.1. The model is referred to as
architecture A, which means the model defined as convolutional layers: [64, 128, 256], dense layers:
[512, 256], dropout: 0.2. This is the sum of all pixel activations made by all folds and all runs on all
images from the C-CORE/Equinor dataset
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CHAPTER

SIX

DISCUSSION

This chapter will contain a discussion of the results presented in chapter 5. The main
goal of this discussion is to comment on the findings, try to answer some of the questions
posed in the chapter 4, and in the end give some answer to the research question posed in
the introduction. To do this, this chapter will first contain comments and thoughts from
each figure in chapter 5, before these comments will be summed up and used to answer
the research questions. The first section, section 6.1 will contain comments regarding the
results from negative correlation learning, and using this information to answer related
research questions. The second section, section 6.2 will do the same, only focusing on the
results from the GradCAM visualisations. Finally there will be done an effort to try to pull
all the results together to answer the main research question of the thesis and draw some
bigger lines in section 6.3.

6.1 NCL
First in this section, comments will be made on the results from the experiments con-
ducted while using the NCL-algorithm. The first graph presented in figure 5.1, contains
the average of three diversity measurements plotted against the diversity emphasis for the
two-member ensemble. The point of this graph is to see that the implementation of NCL
works, and increased diversity emphasis gives an increased amount of diversity among
the classifiers. The measurements used here are the Q-statistic, ρ and double fault(DF) as
presented in equations (3.18), (3.19) and (3.21), respectively. They have been scaled, so
the lowest value for each measure is 0, and the highest is 1. Then all the measurements
were averaged before this average value was presented in this graph. The reason this set
of diversity measurements were chosen is that they are often used and they all work in
the same way, where a lower value represents higher diversity. This makes a plot of them
combined easily interpretable.

Generally, one can say that the diversity trends towards higher diversity(lower value) as
the emphasis is increased. This trend is good news because this is what the algorithm was
designed to do. One can also see that the diversity sometimes decreases when the diversity
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emphasis is increased. This diversity decrease happens twice, but the diversity jumps
quite quickly back up to even higher than before. A few theories are posed to explain
why this happens. It could be an effect of randomness in the hypothesis space, where
backpropagation overshoots the diverse space found by the lower emphasis solution, while
not quite being able to reach the solution found when using higher diversity emphasis. This
should not be a general problem, but might result in small spikes like the ones seen in figure
5.1. As long as the trend still is right, this will not be considered a problem. There is also
the fact that there exists no definite measurement of diversity. There is no guarantee that
the three measurements Q, ρ, and DF represents the diversity that is sought after. So, this
plot is considered an indication that the algorithm works as intended, but it is no guarantee
that good results will come.

The next graph is figure 5.2 containing a plot showing the ensemble loss for varying
levels of diversity emphasis for the two-member ensemble. The base-case, with no empha-
sis on diversity, had a loss of 0.1824. The best model had an emphasis of 0.04 on diversity,
which resulted in a loss of 0.1811. A slight improvement, but an improvement of 0.7% is
not considered all that impressive. The general trend also seems to indicate that increasing
diversity in an ensemble has no other effect than worsening the performance. This trend
is in line with earlier work presented in the literature review, where the effect of enforcing
diversity in small ensembles have been shown to have minimal effect on the classification
loss. (Johansson and Löfström (2012), Zenobi and Cunningham (2001))

The third graph presented is the ensemble loss of the eight-member ensemble, plotted
against the diversity emphasis. This can be seen in figure 5.3. Experimentation with
varying diversity emphasis showed that using values in the range of 10−2, as was done
with the two-member ensemble, resulted in a cost function being completely dominated
by the diversity term. In practical terms, this meant that the classifier jumped around in
hypothesis space, never being able to converge towards any solution. This effect is a result
of two factors. Since the penalty term, as defined in equation 4.1, is a simple summation of
a pairwise diversity measure between one model and the others, this sum grows to roughly
four times the size when using four times the amount of members. A way to remove this
effect could have been to let the penalty term take into account the size of the ensemble,
and divided by the number of members. The second factor, which, presumably, is the
largest, is that the difficulty of finding eight spots in the hypothesis space that are both
diverse from each other, while still being fairly accurate, is tremendous, compared to just
finding two of those spots. These two factors make it necessary to decrease the diversity
emphasis quite a lot.

Another thing worth commenting is the difference in baseline ensemble loss in the
eight-member ensemble compared to the two-member ensemble. One would expect an
ensemble consisting of eight members to be more accurate than an ensemble consisting
of two members. This is not the case here but can be explained by the non-tuning of the
learning rate. However, as explained in chapter 4, the concern is not raw performance, but
the relative performance compared to the baseline.

A concern one might have with this is that what the experiments here are showing is
that the worse an ensemble gets, the greater the performance gain of enforcing diversity.
This point will be addressed in a set of experiments later in this section, where the dataset
size will decrease, subsequently worsening the performance of the two-member ensemble.
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Back to figure 5.3. The baseline loss with no diversity emphasis in this graph is 0.2595,
while the best performing model with a diversity emphasis of 1 ·10−7 had a loss of 0.2463.
This difference is an improvement of 5%, which is 7 times higher than the performance
increase of the two-member ensemble. This indicates that something happens when the
amount of ensemble members increases. However, to say anything about how this effect
manifests itself, it is needed to look at more results, for differing amounts of ensemble
members and different datasets.

To continue, exactly that will be done. Figure 5.4 contains the ensemble loss of the
four-member ensemble plotted against the diversity emphasis. First, it is important to
note that this graph is the result of training using only 10% of the available data in the
C-CORE/Equinor dataset. This explains the drastically lowered ensemble loss, as less
training data means lower performance. It also explains why the four-member ensemble
has optimum diversity emphasis around the same values as the ensemble with eight mem-
bers trained on the full dataset. Changing the dataset size will make it harder to find good
solutions that are both diverse and accurate. When inspecting the performance of the en-
semble, something interesting can be noticed. It is quite clear that optimum diversity is
somewhere in the region of 2 · 10−7, where the ensemble loss is 0.3445. This is a per-
formance increase of about 5.5%, which is even better than the eight-member ensemble.
Does this mean the benefit of diversity does not necessarily grow as the ensemble adds
more members? Alternatively, could it be that when training with a smaller dataset, the
benefit of diversity is even larger? To investigate, one needs to inspect the performance of
an eight-member ensemble trained with only 10% of the dataset.

The performance of the eight-member ensemble trained on only 10% of the C-CORE/
Equinor dataset can be seen in figure 5.7. The optimum diversity is quite a lot lower
than the four-member ensemble, at 1 · 10−10. This change is presumably due to the en-
semble being twice as large, leading to higher difficulty in finding diverse and accurate
hypotheses, and the diversity penalty in the loss function becoming twice the size. The
best performance of the eight-member ensemble is 0.4037, while the baseline is 0.4309,
an improvement of 7.5%. Better than the other eight-member ensemble which was trained
on the full dataset, and better than the four-member ensemble. This is again a strong in-
dication that larger ensembles benefit more from diversity in its members, but also that if
the dataset one uses is smaller it is beneficial to enforce some diversity in the ensemble
members at the expense of some raw, individual performance.

To continue to look at the scaling of the diversity effect, figure 5.5 will be commented
next. It contains the ensemble loss of a 12-member ensemble plotted against the diversity
emphasis. Again has the diversity emphasis been lowered quite a lot, due to the same rea-
sons as before. Here an even more extreme increase in performance can be seen. The loss
jumps from 0.5247 for 0.0 diversity emphasis, to 0.5207 for 1 · 10−19 diversity emphasis,
to 0.4972 for 1 · 10−18 diversity emphasis, to 0.4704 for 1 · 10−17 diversity emphasis.
That’s a performance increase of over 10% from the baseline to the best case. This is a
significant indicator that the diversity effect scales with the size of the ensemble.

The same experiment, training using only 10% of the dataset has also been conducted
using the two-member ensemble. This can be seen in figure 5.6. Again, there seems to be
no discernible improvement for enforcing diversity. However, this plot can also be used
to explore a concern raised earlier in the discussion. Since the ensembles gradually per-
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form worse, it is hard to know if the relative improvement as the ensemble size becomes
larger is because the ensemble can exploit the specialists to a larger degree or because the
ensembles become worse performing. Maybe the effect comes from the fact that worse
ensembles benefit more from diversity? In this experiment, the baseline with zero diversity
emphasis had a loss of 0.3292, and it never improves for any diversity emphasis. The base-
line of the eight-member ensemble trained on the full dataset had a baseline loss of 0.2595,
and an improvement of 5% for some diversity emphasis. If the performance increase of
the eight-member model were because it was worse performing, one would expect this
two-member model to be able to benefit from some diversity emphasis. Its baseline is
worse than the eight-member ensemble that showed clear improvement. These findings
mean that one can put the concern to rest.

A related question, which was posed in section 4.4 is the effect of diversity when the
dataset size is limited. When looking at figures 5.7 and 5.6 compared to figure 5.3 and
5.2, the results seems to indicate that there is two points one can make. The first is that
there seems to be a larger improvement in performance when using a smaller dataset. The
second is that if the ensemble is not able to reap the benefits of diversity when trained on
a large dataset, it probably won’t be able to if the dataset size is lowered either. This can
be explained by the theory that enforcing diversity creates local specialists. You need a
certain number of classifiers to take advantage of the specialists, no matter the training
dataset size.

There was also conducted a quick experiment to look at the same effect of diversity
on ensembles of varying sizes but using another dataset. With this goal in mind, the
CIFAR10 dataset was adapted to a binary-classification problem, as described in chapter
4. Both ships and dogs were used as the class to classify. The results can be seen in figures
5.8 and 5.9 for the ship class. These graphs clearly show the same patterns that have
been noticed earlier. While the small ensemble of two members seems to have no benefit
from diversity, the eight-member ensemble benefits greatly from a diversity emphasis of 5·
10−7. The ensemble loss drops from 0.4331 to 0.4088, which is about a 5.5% performance
increase. The dog-class results can be seen in figures 5.10 and 5.11. This again shows the
same pattern, the two-member ensemble shows no improvement while the eight-member
ensemble goes from 0.5090 to 0.4731, an improvement of 7%. Even better than the ship
class, which might be attributed to that the dog class is a harder class to classify correctly.

The results will now be summed up to try to answer the research questions. In this
section, the effect of enforcing diversity on an ensemble has been studied. A two-member
ensemble showed no significant increase in performance by enforcing diversity while an
eight-member ensemble showed some increase. This was also studied for a dataset of
lower size, this time also with a four-member ensemble and a twelve-member ensemble.
The effect seemed to scale, with a lower performance increase for the four-member en-
semble, a medium increase for the eight-member ensemble and the highest for the twelve-
member ensemble. It was also studied on another dataset, which also showed the same
effect.

These experiments have been done in order to answer question 1, posed in chapter 4.
It will be repeated here.

1. Is there a clear indication that ensembles with more members have a larger benefit
from enforcing diversity?
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It is the author’s belief that this has been shown in the aforementioned figures and
experiments. A very minimal effect on a two-member ensemble was shown for multiple
datasets, and a large effect for an eight-member ensemble also shown on multiple datasets,
and multiple dataset sizes. There was also shown an increase in the effect of diversity when
the ensemble size was increased from four to eight to twelve. The next goal will be to try
to explain this effect. To attempt this, the tool GradCAM will be used. The discussion
about the GradCAM results will follow in the next section.

6.2 GradCAM
This section will contain a study into the illustrations and visualizations made by the Grad-
CAM tool will be conducted. The first illustrations of the GradCAM activations can be
found in figure 5.12. This figure consists of tree subfigures: an RGB interpretation of the
SAR-image, the activations from a model trained with no emphasis on diversity printed on
top of the RGB image, and the activations from a model from the eight-member ensemble
trained with 1 · 10−7 emphasis on diversity, which is also printed on top of the RGB in-
terpretation. The first thing to notice is that both models seem to be reacting to the target
in the middle of the image. This makes sense and gives an indication that both models are
reacting to the right things in the image. One could become suspicious if there were many
activations in the periphery of the image, as that is water. At the same time, one cannot
say, as a human, that using the properties of the water to determine the image contents is
the wrong approach. Maybe the water in some images consists of specific reflections that
are only apparent when there is a boat in the image.

To continue, the activation differences between the models will be compared. These
images are obliviously a cherry-picked example, to illustrate differences between a clas-
sifier that looks more like a generalist, and a classifier that, comparatively, looks more
like a specialist. While it looks like the classifier trained with zero emphasis on diversity
cares about the entire yellow “blob" in the RBG interpretation, the activation pattern of the
classifier trained with some diversity emphasis is much more concentrated. This pattern is
very much in line with the definition of local specialist provided in chapter 4.

Looking at the CIFAR10-image in figure 5.13, one can see the same general outline.
The activation heatmap from the model trained with an emphasis on diversity has more
concentrated activations, and only cares about the bow on the boat. The classifier trained
with no diversity emphasis is more of a generalist. It has larger activations all over the
bow on the boat, and it also cares somewhat about the sky to make its decision. This is
also present in the dog activations in figure 5.14. The diversity enforced model only cares
about the snout and the paw, while the model trained with no diversity emphasis has more
medium-sized activations all over the dog face.

But, as said earlier, these are cherry-picked examples, mostly used to illustrate what to
look for. To draw some conclusion about the activation patterns of each classifier, and the
effect enforcing diversity has, the total average over all images need to be studied. Given
these examples presented here, and the definition of a local specialist given in chapter 4,
some expectations of the histograms can be formulated. One should expect the histogram
of a specialist to have more pixels with low and high activations, since it cares greatly
about some parts of the image, and not at all about others. The generalist should have more
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medium sized activations, as it cares somewhat about broad parts of the image. It should,
therefore, have less of the very high and very low activations compared to a specialist.

To study this, one can look at figures 5.15 and 5.16, which is the histogram of every
single pixel activation for a classifier trained with no emphasis on diversity and 1 · 10−7

emphasis on diversity. These are the average for all runs, all folds, and all images, on
model architecture convolutional layers: [64, 128, 256], dense layers: [512, 256], dropout:
0.2. It is possible to see the patterns that were expected. The model with enforced diversity
has more activations of size 0− 0.1 and 0.1− 0.2. All activation bins from 0.2 to 0.7 have
more pixels on the model with no enforced diversity, and from activations of 0.7 to 1.0
there are more pixels on the model with enforced diversity. This is the exact pattern that
was expected to be seen when comparing a generalist to a specialist. These histograms
directly back up the theory that enforcing diversity when training models makes a set of
local specialists.

To further build on this theory, the activations from other classifiers in the eight-
member ensemble will be studied next. They are illustrated in figures 5.17 and 5.18 for
0.0 and 1 · 10−7 diversity emphasis, respectively. These are, again, the average for all
runs, all folds, and all images, on another model architecture, namely convolutional lay-
ers: [64, 128, 256], dense layers: [256, 128], dropout: 0.2. When the two patterns are
compared, one can see the same pattern as was expected for a local specialist compared
to a generalist. The generalist, with no emphasis on diversity, has a lot of medium sized
activations. On the other hand, the specialist, with some diversity emphasis, has more very
low activations and very high activations. This is, again, a strong indication that making
diverse classifiers makes them local specialists, due to these patterns.

A third set of activations from a third model architecture were also plotted, as seen in
figures 5.19 and 5.20 for 0.0 and 1 · 10−7 diversity emphasis, respectively. This was quite
a different architecture, convolutional layers: [32, 64, 128, 256], dense layers: [512, 256],
dropout: 0.2. The reason this ends in such a different histogram of activations is that there
is no padding in the convolutional layers in the models and there is max-pooling between
each convolutional layer. Therefore, the 75× 75 input shrinks to about 5× 5, which when
resized to 75× 75 for the heatmap, results in a lot of medium sized activations compared
to the two earlier models. Despite this large difference in general activation pattern, one
can still clearly see the same differences between the activations of the model trained with
0.0 diversity emphasis and the model trained with 1 · 10−7 diversity emphasis. 1 · 10−7

diversity emphasis has a larger amount of low and high activations, while the 0.0 diversity
emphasis has a lot more medium-sized activations.

To further back up this theory, the same histograms will be made using models from
the two-member ensemble. They can be seen in figures 5.21 and 5.22. Here the pixel
activations are from the model with architecture convolutional layers: [64, 128, 256],
dense layers: [512, 256], dropout: 0.2, and a diversity emphasis of 0.0 and 0.02. A slightly
different pattern can be seen here. They have very similar activations for medium values
of activations, but at the extremes, there is a quite clear difference. The classifier with no
emphasis on diversity has more high activations, while the classifier with some emphasis
on diversity has more very low activations.

While this is a difference sort of in line with the theory of how the histograms should
look, it is not everything that was expected. It is expected that the diverse classifier has
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a larger amount of low activations, but it should also have more high activations. To
understand if this can be explained by some factors, one needs to consider the differences
between this experiment and the last. This classifier comes from an ensemble trained
with only two members, and the last one came from an ensemble of eight members. It is
oblivious that this affects the way the models are trained, but could it result in the effect
that is observed here?

It is hypothesized that the reason for the two-member ensemble not benefiting from
diversity, while the eight-member ensemble does, is that the diverse ensemble members
created acts as local specialists. One is lead to believe that the two-member ensemble does
not have enough specialists to benefit from them compared to the performance of a decent
generalist. If that were the case, one would expect the histogram of activations from a
classifier from the two-member ensemble to also exhibit specialist traits. The histogram
presented in figure 5.22 does not fulfill all those expectations.

Why doesn’t it fulfill the expectations set? It could be one of several reasons:

1. There is not enough diversity in the two-member ensemble

2. The local specialist definition given in this thesis is wrong

The first point will be addressed in this thesis, and the second will be saved for further
work. A proposal for how to explore it, will be given in chapter 7, which is dedicated to
further work.

To address point number one, it probably needs some explanation. Shouldn’t there be
enough diversity in the ensemble since the emphasis on diversity is so high compared to the
low value of the eight-member ensemble? Not necessarily. When there are four times as
many classifiers in the hypothesis space in the eight-member ensemble as the two-member
ensemble, they could end up with pushing each other far more into the extremes than a
two-member ensemble would, even though the emphasis is much lower. This is because
it is more likely that there already is a classifier too close to the general solution normal
backpropagation would find in an ensemble consisting of more members. The classifier
will go searching into the more extremes to find something diverse from all the eight other
solutions. When there is only one other classifier to care about, it is not necessary to go
searching into such extremes.

Because of this, NCL with two members in the ensemble and even higher diversity
emphasis will be studied next. It can be seen in figure 5.23. This is activations plotted for
a diversity emphasis of 0.1. For a diversity emphasis of 0.1 the ensemble has very clearly
started to become worse. In this histogram, one can now see all the expected traits of a
local specialist — a larger amount of lower and high activations, and less of the medium
activations.

This backs up the theory that when plotting the activations for a low diversity emphasis
with approximately the same performance, the classifiers were not diverse enough yet to
embody all the characteristics of a local specialist. When the emphasis was increased,
the classifiers took on more of the characteristics of a local specialist. Unfortunately, at
this point, the performance of the ensemble had become significantly worse. A possible
explanation for this is that there were not enough members in the ensemble to properly
exploit the properties of a specialist that makes it better than a generalist.
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The GradCAM results will now be summarized, and used to answer the research ques-
tions. In this discussion a hypothesis was presented, which outlined how it was expected
that the activations of a local specialist would look compared to a generalist. The activa-
tions of one of the classifiers from the eight-member ensemble were studied for zero and
some diversity emphasis, and the patterns seemed to fall in line with the expected acti-
vations, suggesting that the classifier trained with an emphasis on diversity were a local
specialist. This was also studied for two other architectures, which all showed the same
pattern.

Next, it was wanted to back this up even further. The activations from the two-member
ensemble were now studied, by making a histogram for 0.0 and 0.02 diversity emphasis.
This deviated from some of the proposed expectations of a local specialist. It was sug-
gested that it was because 0.02 was a too low emphasis on diversity, and a much higher
emphasis of 0.1 was tested. At this point, the histogram showed a pattern more in line with
what is expected of a local specialist.

Two questions were posed in section 4, when the problem was narrowed down. The
one that relates to this section will be repeated here:

1. Can we pose some hypothesis as to why this is the case, and back it up?

This thesis based the hypothesis as to why this is the case, on a theory that had been
presented in an earlier paper. Making very diverse classifiers will result in local specialists.
One needs a certain amount of specialist before one can properly take advantage of them,
compared to using some generalist. To back this up, the activation patterns of classifiers
trained with differing emphasis on diversity where studied. The eight-member ensemble
showed clear indications that enforcing diversity produced classifiers that exhibited more
specialist-like traits compared to when no diversity was enforced. At the same time, the
classifiers with an emphasis on diversity had a positive effect on the performance of the en-
semble. The same local specialist traits were also shown in the two-member ensemble, but
only for high diversity emphasis. It had to be tuned so high that the ensemble performance
became significantly worse compared to the baseline. This is also in line with the original
theory, which states that when the classifiers become local specialists, the two-member
ensemble has too few specialists to get improved performance.

6.3 Answering the research question
The original, much more extensive and broad research question that was given in chapter
1, was how to make the best performing ensemble possible with a limited number of
classifiers. The study that has been conducted in this thesis gives some answers to parts of
this question. Pursuing diversity, to a certain extent, can have a good effect on an ensemble,
given that the number of members so large that the ensemble can utilize it.

It is also very interesting to see that optimal ensembles are not necessarily made by
making as well performing single models as possible and combining these. There are
other considerations at play. This has implications in many fields. For example, regarding
picking which models to use in an ensemble, given that the ensemble should be of a certain
size. A typical way of doing this in, for example, a Kaggle competition is to evaluate every
model using k-fold cross-validation, and picking the best performer. One might be able
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to push the ensemble performance further by using a combination of diversity and cross-
validation to evaluate each model.

This also applies to the world of Auto-ML. As talked about in the literature review,
most of the research done in the field of Auto-ML has been related to designing single
classifiers and making these single classifiers perform the best on their own. Autostacker
was the first Auto-ML approach to try to make classifiers designed to perform their best in
an ensemble along with other classifiers. The findings in this thesis do indicate that there
is additional performance to be gained from making an Auto-ML algorithm which takes
into account the fact that the classifiers should be made for an ensemble and not for best
performance by itself.
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CHAPTER

SEVEN

FURTHER WORK

This section will present more work to study the field of diversity in homogeneous ensem-
bles further. This work will be other research directions that the author has thought about
while making this thesis. These are research directions that could bring something new
or further back up existing theories. Of course, with regards to the bigger question: how
to make the best performing ensemble possible with a limited number of classifiers, there
are too many ways to move forward to count. Therefore, this chapter will be restricted to
further work that is directly related to the main problem tackled in this thesis, regarding
diversity in ensembles.

First of all, for NCL to be useable for more than just to experiment with diversity,
there should be made an effort into implementing NCL using some other framework than
Keras. The goal should be a more effective implementation, which avoids the problem of
freezing and un-freezing the models. A suggestion is to use Torch or Tensorflow, which
grants more flexibility into defining a custom loss-functions.

A natural step to take this further is to experiment with much larger ensembles, for
example, in the order of hundreds of members. This would require a more effective im-
plementation of NCL as described above. The ensemble size would also be limited by the
GPU memory of the computer training the models. Because of this, NCL will probably
never be relevant for models consisting of thousands of models. At the same time, it is
expected that at a certain point, the improvements gained by enforcing diversity might
drop off. Given that the ensemble classifiers have slightly different architecture that makes
them a little bit different, then a set of one thousand such classifiers will span a quite
diverse hypothesis space naturally. Enforcing diversity in this set might not give any in-
creased diversity due to the already high degree of diversity. So it would be interesting to
try with larger ensembles, but it is expected that the positive effect of NCL will drop off at
a certain point.

As talked about in the discussion in section 6.2, the definition of local specialist could
use more research to be backed up. A straight forward way of doing this could be to
apply the definition to other known classifier specialists and generalists, and see how well
it holds up. The activation heatmaps could be compared, along with activation histograms
and see if the same patterns are present. If that were the case, it would be an interesting
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finding by itself, but it would also strengthen the work done in this thesis.
Another exciting route to research would be to train an ensemble of many members, for

0 diversity emphasis and some diversity emphasis that gives an improvement in ensemble
performance. Then, one could extract, say, two of those members, trained both for 0
diversity emphasis and some diversity emphasis that gave a performance increase. The two
extracted members with 0 diversity emphasis could be ensembled, and the two extracted
members with some diversity emphasis ensembled. Then one could study the performance
again. If two members in the ensemble are too few to take advantage of the specialists
made by enforcing diversity, one would expect the two-member ensemble trained with 0
diversity emphasis to perform better than the other. Is that the case? This could further
solidify the theory that the smaller ensembles do not gain any performance because the
classifiers become local specialists.

In general, one could say that it would be beneficial to study further the properties of
the members trained to have more diversity compared to no diversity. Other methods of
making diversity could be used, and other ways of studying the classifiers.

One could also study the effect diversity has on other performance measures than en-
semble loss. The literature review showed that diversity had a positive effect on the loss
due to its effect on the variance and the covariance. Showing this effect on real classi-
fiers would be very interesting. This would make enforcing diversity in the classifiers very
relevant for use-cases where a low variance would be beneficial.
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EIGHT

CONCLUSION

This thesis has been a study into making and designing optimal ensembles, meaning as
high performing as possible, of a specific size. A literature review was conducted to show
ways that have been used to to make these optimal ensembles. This review mainly con-
sisted of ways of exploiting diversity and an Auto-ML approach. Based on this review,
it was decided to pursue the world of diversity, and looking into some earlier findings
regarding diversity and ensemble size.

These earlier findings showed that smaller ensembles have minimal (if any at all) per-
formance gain of diversity. Larger ensembles had a positive effect. This was recreated in
this thesis, using an algorithm called negative correlation learning. An ensemble of two
members showed no effect of enforcing diversity, while an eight-member ensemble had a
significant performance increase. This effect was shown on multiple datasets for multiple
network architectures.

This thesis wanted to contribute with something new. To do that, it was wanted to try
to explain why this effect of diversity on ensembles was as shown. A hypothesis for this
was proposed, which also had been proposed in earlier literature. This definition said that
the ensemble members became local specialists when enforcing diversity when trained. A
definition of a local specialist was given, which were to be used to study the classifiers.

The tool GradCAM was used to study the activations of each classifier on each im-
age. The individual pixel activations were tallied up for every image and placed into a
histogram to study if there were some discernible differences. It was proposed that a
generalist classifier would have more medium sized activations, while a specialist classi-
fier would have, comparatively, more very low and very high activations. This was shown
for multiple classifiers with different architectures, in both a two-member ensemble and an
eight-member ensemble. The classifier trained with an emphasis on diversity showed clear
specialist traits, and also gave a clear performance increase in the eight-member ensemble
compared to the baseline. At the same time, one had to increase the diversity emphasis to
the point where the performance had been lowered significantly to see specialists-traits in
the two-member ensemble.

These studies and experiments help answer a small part of the question: how does one
make an optimal ensemble given a specific size? Enforcing diversity is beneficial, given
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Chapter 8. Conclusion

that the ensemble is of a large enough size. This research, along with other research into
making optimal ensembles, could give the winning edge if the ensemble size is restricted,
which it sometimes is due to hardware limitations.
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