
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lt

y
of

 In
fo

rm
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ri
ca

l
En

gi
ne

er
in

g
D

ep
ar

tm
en

t o
f E

ng
in

ee
ri

ng
 C

yb
er

ne
tic

s

M
as

te
r’

s
th

es
is

Jens Ludvik Grytnes Joberg

Multirotor pickup of object in the sea

Master’s thesis in Cybernetics and Robotics
Supervisor: Tor Arne Johansen

June 2019

Jens Ludvik Grytnes Joberg

Multirotor pickup of object in the sea

Master’s thesis in Cybernetics and Robotics
Supervisor: Tor Arne Johansen
June 2019

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Engineering Cybernetics

Preface

This thesis concludes my work to become a Master of Technology in Cybernetics and
Robotics at the Norwegian University of Science and Technology (NTNU) in Trondheim.
The work was performed in the spring of 2019.

I would like to thank my supervisor, Tor Arne Johansen, for providing help with the di-
rection and focus areas necessary to realize the project. My co-supervisor, Artur Piotr
Zolich, has been very helpful with providing assistance in setting up the hardware used
for experiments. He has also provided me with insight into the challenges that needed to
be dealt with in order to perform tests. Furthermore, I would like to thank Pål Kvaløy for
piloting the multirotor during testing. Finally, I would like to thank my girlfriend, Tonje,
for providing me with support and care when I’ve been to busy to care for my self.

Abstract

This project aims to to land a multirotor unmanned aerial vehicle (UAV) on a small object
floating at sea. The object is detected using a camera, while the elevation of the sea surface
is measured by a radar. By triangulating the altitude estimate and the inverse projection of
the camera detection, a position estimate is made.

The object is perturbed by the sea state, and the position estimates are to be used as input
to a model based prediction filter. A constant velocity Kalman filter has been implemented
to estimate motion induced by a uniform sea current .

A state machine governing the maneuvers necessary to perform the mission is imple-
mented. An architecture utilizing DUNE and ArduPilot software systems is proposed to
realize the state machine functionality. The architecture has been implemented in DUNE.

Libraries for interfacing an X4M03 radar and a Withrobot oCam camera has been config-
ured to be integrated with DUNE.

Tests of a constant bearing guidance controller has been tested in both simulations and
flights. While the accuracy in the simulation was within a few centimeters, the flight tests
showed error in the scale of tens of centimeters.

i

Sammendrag

Dette prosjektet sikter på å lande en multirotor (UAV) på et lite objekt som flyter i sjøen.
Objektet detekteres ved hjelp av et kamera, mens UAV’ens høyde over vannet måles med
radar. Ved å triangulere høydeestimatet og den inverse projeksjonen av kameradeteksjonen
kan det gjøres et posisjonsestimat.

Objektet forstyrres av sjøens tilsand, og kameraets posisjonsestimater skal brukes som
input til et modellbasert filter. En konstant hastighet Kalman filter har blitt implementert
for å estimere en uniform strømningsdel av havtilstandsbevegelsen. Et konstant hastighets
Kalman filter er implementert for å estimere bevegelsen foråsaket av en unifor vannstrøm.

En tilstandsmaskin er implementert for å styre manøvrene som er nødvendig for å gjen-
nomføre det satte målet. En arkitektur som benytter DUNE og ArduPilot sofware-systemer
er forslått for å realisere tilstandsmaskinens funksjonalitet. Arkitekturen har blitt imple-
mentert i DUNE.

Biblioteker for samordning av en X4M03 radar og et Withrobot oCam kamera har blitt
konfigurert slik at det er integrert i DUNE.

Tester for en konstant peiling veiledingskontroller har vært utført i både simuleringer of
flyvninger. Til tross for at presisjonen i simuleringen var innenfor noen få centimeter, viste
flyvningstestene feil i en skala av titalls centimeter.

ii

Contents

Preface 1

Abstract i

Table of Contents v

List of Tables vii

List of Figures ix

Abbreviations x

1 Introduction 1
1.1 Problem overview . 1

1.1.1 Measurements of MUG position 1
1.1.2 MUG motion state filter . 2
1.1.3 UAV control system . 2

1.2 Literature review . 2
1.2.1 Landing on land based targets 2
1.2.2 Landing on marine targets . 3
1.2.3 Relevance to this project . 3

2 Basic Theory 5
2.1 DUNE - Unified Navigation Environment 5

2.1.1 The DUNE task . 5
2.2 ArduPilot . 6

2.2.1 MAVLink . 7
2.2.2 ArduPilot simulation . 8

2.3 Camera vision . 8
2.3.1 Notation in camera vision . 8
2.3.2 Camera projection . 9

iii

2.3.3 Pose estimation . 12
2.4 Kalman Filter . 14

2.4.1 Extended Kalman Filter . 15
2.4.2 eXogenous Kalman Filter . 15

2.5 Guidance path control . 15
2.5.1 Constant Bearing Guidance . 16

3 Design and concepts 17
3.1 Overview and purpose . 17
3.2 Camera vision . 17

3.2.1 Position estimation using surface constraint 18
3.3 UAV State machine . 19

3.3.1 UAV state machine . 19
3.4 System architecture . 22

3.4.1 State machine sub-architectures 23

4 Dune implementation 29
4.1 IMC messages used . 29

4.1.1 Reused IMC messages . 29
4.1.2 Newly defined IMC messages 30

4.2 Module details . 32
4.2.1 Supervisor . 32
4.2.2 Radar altitude . 33
4.2.3 Camera object detection . 37
4.2.4 Target model filter . 42
4.2.5 Path Control . 45
4.2.6 UAV.Ardupilot . 46
4.2.7 UAV.Navigation . 47

5 Experiments 49
5.1 Sensor test above water . 49

5.1.1 Hardware setup . 49
5.1.2 Logging sensor data . 51
5.1.3 Testing maneuvers . 52
5.1.4 Post processing . 53
5.1.5 Results and discussion . 57
5.1.6 Applicability to the problem statement 58

5.2 DUNE flight control simulation . 59
5.2.1 ArduPilot multirotor simulation 60
5.2.2 DUNE setup . 60
5.2.3 Simulating maneuver . 62

5.3 Flight test . 63
5.3.1 Hardware setup . 64
5.3.2 DUNE configuration . 65
5.3.3 Maneuvers . 67
5.3.4 Results . 67

iv

5.3.5 Discussion . 67

6 Conclusion 71
6.1 Further work . 72

Bibliography 73

v

vi

List of Tables

2.1 Camera notation . 9

vii

viii

List of Figures

2.1 Communication diagram of DUNE running on a BBB and ArduPilot run-
ning on Pixhawk (Mads Bornebusch, 2018) 8

2.2 Pinhole projection, (Corke, 2017, p. 320) 10
2.3 Stereo camera projection (Corke, 2017, p. 402) 13

3.1 Position estimate error induced by wave 19
3.2 State machine of UAV control system 20
3.3 Proposed architecture . 23
3.4 Active architecture during state: takeoff 24
3.5 Active architecture during state: calibrate radar 25
3.6 Active architecture during state: Move to initial search location 26
3.7 Active architecture during state: Track target 27

4.1 Menu used to select IMC message for manual sending 31

5.1 CAD model of the housing and bracket for the radar 50
5.2 Sensor rig . 50
5.3 Radar output, filtered = adaptive cluttermap 53
5.4 Detection algorithm, region of interest 56
5.5 Radar altitude estimation from sensor rig test 57
5.6 Coordinate system opposing the motion of the camera 59
5.7 Command to launch ArduPilot simulation 60
5.8 Dune flight simulation maneuver . 63
5.9 Position error during circular tracking maneuver 64
5.10 Mounting bracket for camera, DCDC and level shifter 65
5.11 Payload overview . 66
5.12 Mounting of payload to multirotor . 66
5.13 DUNE controlled flight maneuver . 68
5.14 Position error during circular tracking 69

ix

Abbreviations

Symbol = definition
ECEF = Earth Centerd Earth Fixed (navigation frame)
GNSS = Global Navigation Satellite System
GPS = Global Positioning System
INS = Inertial Navigation System
MAV = Miniature Aerial Vehicle
MUG = Miniature Underwater Glider
NED = North East Down (navigation frame)
UAV = Unmanned Aerial Vehicle

x

Chapter 1
Introduction

1.1 Problem overview

The purpose of this project is to land a multi-rotor UAV on an object floating at sea, and
pick it up. In the scope of this project, the object is a Miniature Underwater Glider (MUG).
The MUG is significantly smaller than the UAV, and an accurate landing is necessary. To
do so, the multi-rotor is to be equipped with a camera and a radar altimeter, as well as an
autopilot system with an integrated INS.

It is sensible to divide the problem into three tasks:

1. Measure the position of the MUG

2. Filter the state of the MUG and predict its motion

3. Control the UAV to approach and land on the MUG

1.1.1 Measurements of MUG position

As there will not be a communication link between the MUG and the UAV, position data
contained in the MUG will not be available to the UAV. Computer vision is then the only
way for the UAV to obtain position measurements of the MUG. Visual detection and posi-
tion measurements can be simplified by applying a distinctive marker with known dimen-
sions. Frameworks for such markers are provided by the ArUco module in OpenCV, and
the AprilTag library by the APRIL Robotics lab at University of Michigan.

1

Chapter 1. Introduction

1.1.2 MUG motion state filter

The position measurements provided by a computer vision system will contain noise and
inaccuracies. In addition, the MUG is subject to motion induced by the sea state. By mod-
eling the motion of MUG, and applying a filter/observer, a more accurate position estimate
can be obtained. Additionally, predictions of future states can be made by the observer.
The predictions will add useful information to the planning of the landing maneuver. Fur-
thermore, the camera vision system is likely to loose track of the target during the last few
decimeters of the landing. When tracking is lost, the observer can be used to update the
estimated state, although the uncertainty will increase with time.

1.1.3 UAV control system

In order to perform the maneuvers required in this project, an autonomous UAV control
system has to be used. This control system must be able to communicate with the camera
system. It must also either perform the MUG state filtering, or be able to communicate with
the software performing the filtering. The control system also needs to perform inertial
navigation, or communicate with a navigation module.

The control system should contain the logic necessary to search for, approach, and land on
the MUG.

1.2 Literature review

There has been made several studies into autonomous landing of UAVs on both stationary
and moving targets. Most of the studies are concerned with autonomous landing on land
based applications, but some investigate landing on marine vessels as well.

1.2.1 Landing on land based targets

(Falanga et al., 2017) performs autonomous landing of a multirotor UAV on a mobile plat-
form. Their UAV uses a camera and onboard computing to detect and measure the position
of the landing target. In addition, the camera is used to perform visual odometry. Visual
odometry is combined with inertial measurement units (IMU) to perform local naviga-
tion. Their landing target is a mobile land robot moving at constant speed, with a platform
marked with a tag of known dimensions. They use an Extended Kalman Filter to estimate
the position, velocity and orientation of the landing platform. The landing maneuver is
planned using an optimization problem.

(Nguyen et al., 2018) performs a landing of a multirotor UAV on a static landing platform
on the ground. The platform is marked with several AprilTag markers, and the GPS coor-
dinate of the platform is known. The initial approach to the platform is performed based
on GPS, while the landing uses computer vision.

2

1.2 Literature review

(Line, 2018) performs autonomous landing on both ground based and maritime vehicles.
The landing platform is marked with ArUco markers, and camera vision is used to per-
form pose estimation. The estimated pose is processed in a Kalman filter with a constant
velocity assumption. The control logic is implemented in the programming framework
Robotics Operating System (ROS).

Similar studies into multirotor UAV landing on visual targets on ground platforms are
made by: (Lange et al., 2008), (Lange et al., 2009), (Borowczyk et al., 2017) and (Araar
et al., 2017)

1.2.2 Landing on marine targets

There has been some studies into performing landing on targets at sea. Both (Ling et al.,
2014) and (Frølich, 2015) investigates UAV landing maneuvers on marine vessels. These
vessels are significantly larger than the UAV used. (Ling et al., 2014) performs a landing
of a multirotor on a moving vessel, and approximates the velocity velocity to be constant.
The initial low accuracy approach to the vessel is done using GPS measurements of the
ship position. However, the final landing maneuver uses computer vision with an AprilTag
marker on the platform.

On the other hand, (Frølich, 2015) aims to perform an autonomous landing of a fixed wing
UAV in a catching net placed on a marine vessel. The UAV uses a neural network for time
series forecasting of the ship position. The programming framework DUNE was used
to write the logic of the autonomous control system. The DUNE system communicates
with an autopilot suite, Ardupilot, which performs the control maneuvers commanded by
DUNE.

The master thesis presented in (Lasson, 2018) is an initial study aimed at autonomous
landing on a floating platform. However, no landing experiments were made, and the
focus is mainly on detection and pose estimation of a marker in varying light conditions.

1.2.3 Relevance to this project

All the studies mentioned above considers landing on platforms larger than the UAV. A
higher accuracy is likely to be required in this project, as the smaller target yields lower
tolerance for error. Most of the studies also used some form of GPS information about the
target location, which is not available in this project. The landing platforms were either
assumed to be stationary, or moving at constant velocity. In this project, due to the motion
induced by waves, a constant velocity approximation is likely to not be sufficient.

Although this projects differ somewhat from the studies above, the approach of using
known visual markers to provide measurements seems sensible. The method of using a
Kalman filter to improve on the camera vision measurements is applicable to this project
as well, but the motion model should contain more information than a constant velocity
assumption.

3

Chapter 1. Introduction

4

Chapter 2
Basic Theory

2.1 DUNE - Unified Navigation Environment

The DUNE section is reused from (Joberg, 2018)

DUNE is runtime framework for embedded software in C++, created by Underwater Sys-
tems and Technology Laboratory (LSTS) at the University of Porto. It acts as a combined
task manager and message bus manager. DUNE offers a modular abstraction of tasks,
where a task has a closed scope and contains standardized functions to be called by the
task manager at specific events. The messages passed within DUNE are defined by the
inter-module communication protocol (IMC). Upon building DUNE, a single executable
is made, containing all tasks within it’s source directory. Different tasks of DUNE are
activated from the executable by using configuration files specifying its behaviour.

2.1.1 The DUNE task

A DUNE task is a struct, inheriting from either DUNE::Tasks::Task or
DUNE::Tasks::Periodic, the latter for periodic tasks. Note that the c++ struct is
similar to a public class and can have methods, as opposed to the struct in the C language.
Persistent variables in the outermost scope of the task, accessible by all methods, are
declared in the first lines of the struct. In the struct constructor, the persistent variables are
initialized. In addition, the IMC message subscriptions are declared in the constructor by
the line: bind<IMC::[msg type]>(this);. According to the LSTS convention,
the variables in persistent memory should contain the prefix m , e.g. m var.

5

Chapter 2. Basic Theory

Parameters in a task can be set using arguments from the configuration file. These parame-
ters are typically desired to be in persistent memory, and should be assigned to a persistent
variable in the task constructor. The configuration values are extracted to an argument
struct by the function: param(config var name, arg struct)

Methods called by DUNE

At specified events, the task manager will call specified methods of the task. The methods
are listed below

• consume(IMC::[msg type])

• onUpdateParameters()

• onEntityReservation()

• onEntityResolution()

• onResourceAcquisition()

• onResourceInitialization()

• onResourceRelease()

• onMain() for regular task

• task() for periodic tasks

For each IMC subscription there should be a method:
consume(const IMC::[msg type]) containing the actions to be performed at the
reception of a message. When a tasks task publishes a message using the dispatch(msg)
function, the task manager will call the consume method on activated tasks subscribed to
said message type.

2.2 ArduPilot

The ArduPilot section is reused from (Joberg, 2018)

ArduPilot (ArduPilot, 2018) is an autopilot suite. It is a collection control systems aimed at
several classes of unmanned vehicle control, including multi-rotor crafts. It contains low
level control systems, as well as high level guidance algorithms. In addition, ArduPilot
performs navigation. Some of the systems are intended to assist a remote operator, while
others are intended to be used in full autonomy. To separate the control systems allowed
to operate at a given time, a mode state is used.

6

2.2 ArduPilot

Some relevant multi-rotor modes are stabilize, guided, and rtl (return to launch). The
modes are described on the ArduPilot web page:
http://ardupilot.org/copter/docs/flight-modes.html

The controllers used in this project are accessible when ArduPilot is in guided mode. The
commands availible in guided mode are documented on the ArduPilot web page:
http://ardupilot.org/dev/docs/copter-commands-in-guided-mode.html

2.2.1 MAVLink

ArduPilot employs the MAVLink protocol (MAVLink, 2018), which can be used to access
ArduPilot functionality from external software systems. LSTS maintains a DUNE task,
Ardupilot, which provides an abstraction of the MAVLink interface to the ArduPilot soft-
ware. The Ardupilot task sets up a TCP socket to communicate with ArduPilot, and sends
and receives messages using the MAVLink protocol. This task subscribes to and publishes
various IMC messages, and handles their intended MAVLink use cases.

As of December 2018, on the LSTS DUNE master branch, the Ardupilot DUNE task
contains the following multi-rotor functionalities:

• Publishing of navigation data (on IMC::EstimatedState)

• Publishing of ArduPilot mode (on IMC::AutopilotMode)

• Automatic takeoff and landing

• Way-point tracking

• Altitude control

• Vertical rate control

• Roll control

• Speed control

• Idle maneuver

• Arm/disarm craft

In addition, NTNU UAVLab has implemented some additional functionalities to the Ardupi-
lot task in a private UAVLab repository. Of particular interest is the inclusion of control
of desired acceleration in three dimensions. However, the ArduPilot documentation of
commands in guided mode states that the acceleration command is not supported.

On the other hand, the documentation also states that velocity commands are accepted. De-
spite this, the Ardupilot DUNE task doesn’t contain functionality for sending the relevant
MAVLink message. An effort should then be made to implement the velocity command
in the Ardupilot task.

The MAVLink message containing velocity and acceleration commands are:

• SET POSITION TARGET LOCAL NED

7

http://ardupilot.org/copter/docs/flight-modes.html
http://ardupilot.org/dev/docs/copter-commands-in-guided-mode.html

Chapter 2. Basic Theory

• SET POSITION TARGET GLOBAL INT

Figure 2.1 illustrates an example setup of the communication between DUNE and ArduPi-
lot. In the example, DUNE is running on a Beagle Bone Black (BBB) and ArduPilot is
running on a Pixhawk flight computer.

Figure 2.1: Communication diagram of DUNE running on a BBB and ArduPilot running on Pix-
hawk (Mads Bornebusch, 2018)

2.2.2 ArduPilot simulation

ArduPilot contains environments for simulation of several classes of unmanned systems,
including multi-rotor systems. The simulations can be executed on a PC running Linux,
Windows or OS X. Setup of the simulation environment on Linux is described on the
ArduPilot web page http://ardupilot.org/dev/docs/setting-up-sitl-on-linux.
html

2.3 Camera vision

The Camera vision section is reused from (Joberg, 2018)

2.3.1 Notation in camera vision

In this section several formats are used to express points, as both three dimensional (3D)
and two dimensional (2D) coordinate systems are used. In addition, homogeneous coor-
dinates are used to facilitate homogeneous transformations. Various forms of the letter P

8

http://ardupilot.org/dev/docs/setting-up-sitl-on-linux.html
http://ardupilot.org/dev/docs/setting-up-sitl-on-linux.html

2.3 Camera vision

are used to express points, while the letter d is used to express vectors. The notation used
is described in table 2.1.

Case Tilde Point/vector Example Description

Lower no point p = [u,v]t Image coordinate
Lower yes point p̃ = [u,v,1]t Homogeneous image coordinate
Upper no point P = [x,y,z]t World coordinate
Upper yes point P̃ = [x,y,z,1]t Homogeneous world coordinate
- no vector d = [x,y,z]t World vector
- yes vector d̃ = [x,y,z,1]t Homogeneous world vector

Table 2.1: Camera notation

Furthermore, subscripts are used to indicate instances, while superscripts are used to in-
dicate which frame the instance is expressed in. For example, P̃C

o is the homogeneous
coordinates of the world point Po expressed in frame {C}

2.3.2 Camera projection

A camera image is the projection of a world scene, where the rays of light from objects
passes through a lens and onto a surface grid. Each grid on the surface, a pixel, is exited
by rays of light coming from a specific direction. Unless the ray experiences refraction,
the ray direction is the same as the direction from the camera to the object it originated in.
The relation between a given pixel in the image and the ray direction is described in the
camera model. There are several camera models. The type of lens and model most suited
to the application in this project is a pinhole camera model with geometric lens distortion.

The image projection of some point in a world frame depends on the intrinsic and extrinsic
parameters of the camera. The intrinsic parameters define the camera model, and describe
how a point, expressed in the camera frame, is projected onto the image. The extrinsic
parameters define the pose of the camera in some other frame. Together, the parameters
are used to form the projection of points expressed in the relevant frame.

Pinhole camera model

A pinhole camera model, also called perspective model, assumes light from the scene
passes through a small hole and onto a captive euclidean surface. The pinhole serves the
purpose of filtering out directions of light. In this process, the image will be inverted in its
axes. However, this is easily fixed by flipping the image arrays, and can be done in post
processing or by mapping the image surface grid with inverse axes. To model the image
without inverted axes, similarity of triangles can be used to set the captive surface in front
of the pinhole. The distance from the pinhole to the surface is called the focal distance.

Figure 2.2 shows the projection of a 3D point P = [X ,Y,Z]T onto an image surface. The
following properties are used (all points are expressed in {C}):

9

Chapter 2. Basic Theory

Figure 2.2: Pinhole projection, (Corke, 2017, p. 320)

• The origin, o, of the camera frame {C}, is in the pinhole.

• The z-axis goes through some point in the image at [0,0, f]T , where f is the focal
distance.

• The image surface is parallel to the XY -plane.

• The line from P to the origin of the camera frame, OP passes through the image
surface at position p = [x,y, f]T .

• The angle between OP and the ZY -plane is θx

• The angle between OP and the ZX-plane is θy.

The location of the point in the image can then be described by eqs. (2.1) and (2.2).

x = f
X
Z
= f tan(θx) (2.1)

y = f
Y
Z
= f tan(θy) (2.2)

The values of x and y will obtain the same unit as the focal distance. As we eventually will
map the point to a pixel, it is sensible to use pixel units for the focal distance. There might
be a difference in the x-dimension and y-dimension of a pixel, and this has to be addressed
when representing the focal distance in pixels. fx and fy will be used to express the focal
distance in x-pixels and y-pixels respectively. Thus, the expressions will be changed to

x = fx
X
Z
= fx tan(θx) (2.3)

y = fy
Y
Z
= fy tan(θy) (2.4)

10

2.3 Camera vision

The intersection between the camera frame z-axis and the image surface is referred to as
the principal point, and is usually close to the image center. The xy-coordinates describe
the location of a point relative to this principal point. In an image frame however, the
origin is desired to be at the top left corner. Thus an offset has to be included, and u and v
will be used to describe points relative to the image frame origin.[

u
v

]
=

[
x+ cx
y+ cy

]
=

[
fx

X
Z + cx

fy
Y
Z + cy

]
(2.5)

where [cxcy]
t is the position of the principal point represented in the image frame. Thus,

when x = y = 0, the image frame location will be [u,v]t = [cx,yx]
T .

This model can be described in matrix form.

λ

u
v
1

=

 fx 0 cx
0 fy cy
0 0 1

1 0 0 0
0 1 0 0
0 0 1 0




X
Y
Z
1

 (2.6)

λ p̃ = KP̃c (2.7)

Where p̃ is the homogeneous image coordinates corresponding to the projection of world
point P̃. K is the projection matrix, and along with the lens distortion coefficients com-
poses the intrinsic camera parameters. Homogeneous coordinates are used to ensure direct
compatibility with homogeneous transformations. However, the projection model could
also have been defined using cartesian coordinates.

Lens distortion

When a true pinhole camera is used, very limited amounts of light are let through the pin-
hole and onto the captive surface. This yields a need for either extremely high sensitivity
or long exposure time, resulting in high noise or high motion blur. To counter this effect,
a lens is used along with a larger aperture. The lens attempts to focus a larger area of light
from an object onto the pixel it would have hit through a pinhole. However, lenses are
not perfect, and some geometric distortions are introduced. This renders eq. (2.6) inaccu-
rate. In addition, straight lines in the real world might not be projected as straight lines in
the image. As this is an assumption made in many image post-processing algorithms, the
geometric distortion can have severe consequences.

The lens distortion can be modeled, and an inverse transformation can be applied to the
image to restore the pinhole model properties. The geometric distortion is composed of
radial and tangential distortion. Radial distortion applies a translation along the radial
direction from the principal point, and tangential distortion is a translation along a 90°
angle to the radii. The radial distortion can be approximated by a polynomial (Corke,
2017, p. 261)

δ r = k1r3 + k1r5 + k1r7 + ... (2.8)

11

Chapter 2. Basic Theory

The total effect of geometric distortion is a displacement of the pixel location such that the
new distorted pixel is ud = u+δu, vd = v+δv. This combined displacement of radial and
tangential distortion is approximated by (Corke, 2017, p. 262)

[
δu
δv

]
=

[
u(k1r2 + k2r4 + k3r6 + ...)
v(k1r2 + k2r4 + k3r6 + ...)

]
︸ ︷︷ ︸

radial

+

[
2p1uv+ p2(r2 +2u2)
p1(r2 +2v2)+2p2uv

]
︸ ︷︷ ︸

tangential

(2.9)

When the distortion is modeled with sufficient accuracy, the undistorted image I can be
restored by remapping the pixels in the distorted image Id

I
([u

v

])
= Id

([
u = u−δu(u,v)

v−δv(u,v))

])
(2.10)

The pixel displacements will typically not be integer, which means an exact remapping is
not possible. The easiest solution is to choose the closest pixel, however a better approach
is to use bilinear interpolation.

Camera calibration

In order to use the model, the model parameters has to be determined. They vary between
cameras, as well as with different settings on the same camera. Therefore, some proce-
dure should be made to estimate the parameters for the relevant camera with the relevant
settings.

Camera calibration is performed by capturing images of some known object, with a cor-
responding 3D-model of keypoints. The camera model is found by minimizing the pro-
jection error of the object onto the image. When calibrating the intrisic parameters of a
camera, the extrinsics has to be either known or estimated simultaneously (Corke, 2017,
p. 262). Both MATLAB (Computer Vision System toolbox, r2018b) and OpenCV contain
functionality for pinhole camera calibration without prior knowledge of extrinsic parame-
ters.

2.3.3 Pose estimation

Pose estimation is the task of determining the extrinsics between a camera and an object
captured in the image. Depending on the application, one could be interested in obtaining
the full transformation from the camera frame to the object frame, or just relative posi-
tion, euclidean distance or orientation. There are mainly two approaches to perform the
position part of pose estimation. Either using a known 3D-model of keypoints, or using
two cameras with known relative position. Note that for the orientation of the pose to be
defined, an object model must be present.

12

2.3 Camera vision

Pose estimation using known object model

If the object model is known with at least three keypoints1 identifiable in the camera image,
pose estimation can be performed with a single image. When using n points, this is called
the PnP (Perspective n Points) problem. By constraining each keypoint to lie along the
line where 3D points are projected to the identified keypoint pixel, the object pose can be
extracted. If more than three points are used, the robustness and accuracy is increased,
but the system will be over-determined. To fit such a system, one could use minimize
the square error between the observed pixel keypoints and their estimated projection using
estimated pose.

In order to provide a set of keypoints easy to detect and model, a square printable marker
could be used. The marker should contain encoded information about orientation and iden-
tification. The open source OpenCV library (Bradski, 2000) contains a module (ArUco),
which provides such markers.

Pose estimation using stereo camera

Figure 2.3: Stereo camera projection (Corke, 2017, p. 402)

Using a stereo camera, the position of a keypoint relative to the camera frames can be
estimated without a known object model. As the two cameras have their origin at different
points, the two lines from the object to the frame origins will intersect at the object. In
addition, points along the ray corresponding to the object in one camera will be projected
as a line in the other image. This line is called the epipolar line, and can be used to reduce
the search area for the relevant keypoint. It is important to note that due to discretization
and model errors, the lines are likely to not intersect at all. A good choice of position
estimate will then be the center of the two closest points along the lines (Corke, 2017, p.
404).

1A keypoint is a feature that is easy to uniquely identify by a computer

13

Chapter 2. Basic Theory

The distance between the camera origins is called the baseline [b]. For simplicity of calcu-
lation, the camera frames are assumed to be equal in orientation and offset along the x-axis.
Then the homogeneous transformation between the camera frame 1 {1} and camera frame
2 {2} will be:

T 1
2 =


1 0 0 b
0 1 0 0
0 0 1 0
0 0 0 1

 (2.11)

Let the homogeneous coordinates of the object in camera i be p̃i, with projection matrix
Ki. The rays from each camera origin, o1 and o2, to the object P, are parameterized as
oi +αidi. di is some vector along oi→ P.

Let Pi be an output, for any λ , of the inverse camera projection. Then Pi will lie on the
oi→ P line.

P̃i
i = K−1

λ p̃i (2.12)

The vectors di are then constructed

di = Pi−oi (2.13)

Finally, the object point P is found solving for the intersection point, or the two closest
points if errors are present.

P = o1 +α1d1 = o2 +α2d2 (2.14)

Expressed in a single frame, camera 1, this becomes:

P̃1 = α1d̃1
1 = T 1

2 (õ
2
2 +α2d̃2

2) (2.15)

2.4 Kalman Filter

The Kalman Filter section is reused from (Joberg, 2018)

The Kalman filter uses measurements and a system model to produce estimates of the
system states. Under the certain assumptions, the Kalman filter is the optimal observer
w.r.t minimum variance. The assumptions are:

• The system is linear

• Process and measurement errors are zero-mean Gaussian and uncorrelated2

2KF assumes no correlation between process and measurement noise, however, internal coupling of noise is
accounted for.

14

2.5 Guidance path control

• Process and measurement error variances are known

• The system is observable

• The error dynamics are controllable

that the with known variances, There exist several versions, fitting applications with either
linear or nonlinear process model, as well as continuous time or discrete time.

2.4.1 Extended Kalman Filter

The extended Kalman filter (EKF) is used to estimate a nonlinear process, and uses a
linearization about the estimated state. The EKF is only locally stable, and can diverge
from the correct solution. Given a process

ẋ = f (x, t,u)+w(t) (2.16)
y = h(x,u)+ v(t) (2.17)

the EKF produces a first order linearization by:

F =
∂ f (x, t,u)

∂x

∣∣
x=x̂ (2.18a)

H =
∂h(x,u)

∂x

∣∣
x=x̂ (2.18b)

And performs the regular Kalman filter prediction and update using F as state transition
matrix and H as measurement matrix.

2.4.2 eXogenous Kalman Filter

The eXogenous Kalman filter (XKF) is similar to the extended Kalman filter, and is also
intended for nonlinear processes. However, instead of applying linearization about the
estimated state, it uses a separate nonlinear observer to provide a state to linearize about.
The nonlinear observer should be globally convergent, but is expected to have sub optimal
performance. This is beneficial, as the XKF inherits the global convergence of the nonlin-
ear observer, while remaining close to optimal for the local solution (Johansen and Fossen,
2017).

2.5 Guidance path control

Guidance control is methods used to construct a desired velocity, such that the vehicle
approaches it’s target. Line of sight guidance is suitable when the vehicle should approach
it’s target along the path defined by two waypoints. Pure pursuit is used when the vehicle

15

Chapter 2. Basic Theory

should align its velocity vector directly at the target. Constant bearing guidance is similar
to the pure pursuit method, but uses an estimate of the target velocity to provide a feed
forward component. (Fossen, 2011).

In this project, only the Constant bearing guidance is considered.

2.5.1 Constant Bearing Guidance

The constant bearing guidance method consists of two velocity components. va is the
desired approach velocity, and is the rate at which the distance to the target should be
reduced. vt is the velocity of the target. The desired velocity of the vehicle vd is then given
by eq. (2.19)

vd = va + vt (2.19)

vt is either acquired by a communication link between the vehicle and the target, or by an
estimator.

va is set as:

va =−κ
p̃
‖p̃‖

(2.20)

where p̃ is the position error defined by p− pt . p is the vehicle position and pt is the target
position.

κ is set by eq. (2.21)

κ =Ua,max
‖p̃‖√

(p̃T p̃+∆2
p̃

(2.21)

Ua,max is a configuration parameter determining the approach speed at large distances.
∆p̃ is a configuration parameter determining the transient behaviour of the speed as the
position error gets small.

16

Chapter 3
Design and concepts

3.1 Overview and purpose

The designs and implementations developed as part of this thesis aims to produce a control
system in DUNE, capable of landing a multirotor UAV on a floating target perturbed by
the sea state. The system is to be run on a single board computer, and interface a radar, a
camera, and a Pixhawk running Ardupilot. The system should be structured in a modular
manner, and efforts have been made to design a system architecture where iterations to
modules can be made independently.

Firstly, a concept for calculating the position of a detected object is presented. Thereafter
a state machine governing the stages of the mission is proposed, A system architecture
realizing the state machine is described in fig. 3.3, where the modules are presented. The
modules are further explained in section 4.2.

3.2 Camera vision

The Camera vision section is reused from (Joberg, 2018)

In this section, the notation described in section 2.3.1 is used. Here, a method to estimate
the position of a detected keypoint floating on the sea surface is proposed. This method
relies on knowing the elevation of the camera above mean sea level, and assumes a pinhole
camera model is used.

17

Chapter 3. Design and concepts

3.2.1 Position estimation using surface constraint

In the absence of waves, a local subset of the sea surface can be approximated as euclidean.
As the object of interest in this project is known to float on the sea, a planar surface
constraint can be added to the problem. There will be some errors to this assumption, as
waves will induce motion above and below the mean sea level. However, it will add useful
information, especially at larger distances where other methods of position estimation will
suffer. In addition, the horizontal position error induced by waves will be strongly reduced
when the camera is positioned at steep angles above the object.

Note that the intersection between a plane and a line will yield one unique solution as long
as the plane and line are not parallel. If they are parallel there will either be infinite or no
solutions. While the camera is at any significant elevation above sea level, the line from
the camera to the object will not be parallel with the sea surface, and a single solution will
be produced.

Assuming the object has been detected in an undistorted image, the center of the object can
be chosen for position estimation. Using the camera model, a vector can be constructed
along the direction from the camera origin to the object. Let the pixel corresponding
to the detected object center be noted p̃O = [uO,vO,1]T . From eq. (2.7), a line 1

λ
d̃C

CO is
constructed, whereupon all points are projected onto p̃0. The line is realized by varying λ ,
and [D̃CO] is some vector pointing along the camera→object vector.

1
λ

D̃c
CO = K−1 p̃o (3.1)

For simplicity of calculation, a new frame is constructed with its origin coincident with
the camera frame and the z-axis pointing down towards the center of the earth. Lets call
the new frame the camera-1 frame {C1}. The xC1 and yC1 axes can be defined in any
way satisfying a right hand coordinate system, for example along north and east. The
homogeneous transformation from {C} to {C1} will be denoted TC1

C , then

P̃C1 = TC1
C P̃C (3.2)

Let the elevation of the camera above mean sea level be hC. As the {C1} frame points
directly down, points at the (planar) sea surface expressed in {C1} will have their z-axis
coordinate equal to hC. Let the z-axis value of DC1

CO be zD By choosing 1
λ
= hC

zD
, the

intersection point, and the object position estimate PO is found.

P̃C1
O =

1
λ

d̃C1
CO =

hC

zD
d̃C1

CO (3.3)

P̃C
O =

hC

zD
TC

C1d̃C1
CO (3.4)

Horizontal error

18

3.3 UAV State machine

Figure 3.1: Position estimate error induced by wave

The wave motion will induce errors to the position estimate based on the steepness of
the camera→object vector CO. Let θ express the angle between a vertical line and CO.
As shown in fig. 3.1, a unit step in the vertical part of the line will correspond to tan(θ)
in the horizontal part. If the wave induces an error in height above sea level by ev, the
corresponding error in horizontal position will be eh = ev tan(θ). Therefore, when the
camera is located at a steep angle above the object, θ will be small and the horizontal
position error will be small. However, as θ approaches ±90°, the error will approach ±
infinity (assuming ev 6= 0).

3.3 UAV State machine

3.3.1 UAV state machine

A state machine should be utilized in the UAV control system to switch between control
methods relevant to the different phases of the mission. A proposed set of states and
transitions are illustrated in fig. 3.2. The diagram is based on the state machine proposed in
(Joberg, 2018) It is important to note that an abort state should be included, with transitions
from every other state. To avoid clutter, it is excluded from the state diagram.

Initialize navigation

The state machine starts by initializing the navigation system. The navigation system
on ArduPilot uses an extended kalman filter for navigation, and uses IMU and GNSS
measurements. The IMU should be calibrated, and the GNSS estimates need time to
converge after being started. At the ”mission start” event, the machine should move
into the takeoff mode. Upon this transition, a MAVLink message should be sent to
ArduPilot to enter the ”GUIDED” mode. The DUNE task handling MAVLink mes-
sages currently contain no functionality for sending this message. The relevant mes-

19

Chapter 3. Design and concepts

Figure 3.2: State machine of UAV control system

sage is MAV CMD DO SET MODE and is documented in: https://mavlink.io/en/
messages/common.html#MAV_CMD_DO_SET_MODE

Arm and takeoff

When the takeoff state is entered, the UAV should be armed and a takeoff should be per-
formed to a suitable altitude. When the desired altitude is reached, the state machine
should move to the calibrate radar state.

Calibrate radar

The radar currently used, X4M03, has the transmitting antenna and receiving antenna
placed closely together on the same PCB. The poor isolation yields a significant direct
path component in the radar signal. In addition, the radar signal might be reflected by

20

https://mavlink.io/en/messages/common.html#MAV_CMD_DO_SET_MODE
https://mavlink.io/en/messages/common.html#MAV_CMD_DO_SET_MODE

3.3 UAV State machine

components on the multirotor. This is considered as a constant noise component when
the radar output is used for altitude estimation. To remove the noise, the radar output is
mapped at a high altitude, while the ground is outside of the radar range.

Upon entry to the “Calibrate radar” state, the multirotor should increase it’s altitude, if
necessary, such that the sea surface and other objects are outside the maximum radar
range. When this altitude is reached, the multirotor should hold it’s position while the
radar acquires information about the background noise. When the radar has completed it’s
calibration, the state machine should change to the initial search location state.

Move to initial search location

If prior information about the location of the MUG is available, this should be utilized
to provide a starting location for the search. A waypoint should be issued to move the
UAV to the relevant search location. Upon completion of the waypoint, the state should be
changed to search for the object.

Search for object

No work has been done to develop an algorithm for a search pattern in this project. How-
ever, when the object has been detected, the state machine should change to approach a
point above the MUG

Approach a point above the MUG

As the MUG average velocity will be roughly the same as the sea current, the MUG is
assumed to move slowly. A waypoint can then be used to move the UAV to a point above
the MUG. If the MUG has moved significantly during the maneuver, a new waypoint can
be issued to a position above the new MUG position. When the UAV’s horizontal position
is within a satisfactory radius of the MUG, the state should change to track the MUG and
employ a Kalman filter on its sate.

Track MUG and employ a Kalman filter

Upon entry to this state, the Kalman filter estimating the MUG state should be initialized.
If the UAV has communication with another vehicle using a Kalman filter containing pa-
rameters from the sea state, these parameters might be used in the initial state of the MUG
Kalman filter. Such a vehicle may be an unmanned surface vehicle (USV), which may be
the vessel the UAV was launched from. The initial covariance parameters should be in-
creased when copied from one Kalman filter to another. The covariance increment should
be decided based on the distance between the MUG and the vehicle the parameters were
based on.

21

Chapter 3. Design and concepts

As the UAV continues to observes the MUG, the covariances in the Kalman filter should
decrease until convergence is reached. While observing the MUG, the UAV should track
either the MUG position or its central wave position. When satisfactory covariances are
obtained, the state machine should change to the land state.

If the camera vision looses track of the MUG for a significant time, the state machine
should change to the search for MUG state.

Land at the MUG

An algorithm for the landing maneuver has yet to be implemented. However, constant
bearing guidance as described in (Fossen, 2011) is a good candidate.

When a landing has been detected, the UAV should be disarmed and the state machine
should be changed to the landed state.

Landed at sea

A tool to determine whether the MUG has been landed on with sufficient accuracy has yet
to be designed. However, if sufficient accuracy is achieved, the landing mission can be
concluded as successful, and the state machine can terminate. If sufficient accuracy is not
obtained, the state machine should move to the take off state.

3.4 System architecture

The purpose of the system architecture is to divide the control problem into modules per-
forming a specific manageable functionality, with a concise interface between the modules.
The architecture should utilize the exiting Ardupilot task in DUNE, and provide it’s own
interface to the camera and the radar.

A system architecture was proposed in (Joberg, 2018), and has been expanded upon in this
thesis. The outline is shown in fig. 3.3, and utilizes the existing DUNE tasks UAV.Navigation
and UAV.Ardupilot, as well as defining five new tasks:

• Supervisor

• Radar altitude

• Camera object detection

• Target model filter

• Path Control

A logical addition to the architecture would be a module handling the search state of the
state machine. However, no search functionality is implemented in this thesis, and it is
omitted from the architecture diagram to avoid clutter.

22

3.4 System architecture

Figure 3.3: Proposed architecture

3.4.1 State machine sub-architectures

For each state of the state machine presented in fig. 3.2, a subset of the system architecture
will be utilized. These subsets are presented below.

Throughout the state machine, the UAV.Ardupilot task sends the autopilot status to the
Supervisor. This is used to determine if the Supervisor should move to the abort state. The
abort state is not illustrated in fig. 3.2 to avoid clutter, as every state can transition to abort.

Arm and take off

The UAV.Ardupilot task maintains a state machine determining the type of control mes-
sages it accepts. In addition, the Ardupilot autopilot software must be armed before it
will accept any commands that will cause power being applied to the multirotor motors.
Upon entry to this state, the Supervisor is responsible for commanding the activation of
the velocity control loop in UAV.Ardupilot, as well as arming the autopilot. Additionally,
the Path Control module is actuated upon state entry.

Navigation data from UAV.Ardupilot is propagated through UAV.Navigation to the Super-
visor and the Path Control modules. Currently, UAV.Navigation adds no new information
to the navigation data from the autopilot. However, it can be used to employ RTK, as well
as to fuse the radar altitude estimates with the autopilot sensors.

The supervisor dispatches a waypoint to the Path Control directly above it’s current posi-
tion, and the Path Control assigns the proper velocity set points to UAV.Ardupilot.

23

Chapter 3. Design and concepts

Figure 3.4: Active architecture during state: takeoff

Calibrate radar

When entering the calibrate radar state, the Supervisor should issue a new waypoint to the
Path Control module. The waypoint should move the multirotor to a location without any
objects in the radar detection range. In the case of an open sea environment, this could be
achieved by increasing it’s altitude by the range of the radar.

When reaching the waypoint, the Radar altitude module is commanded to calibrate. If the
radar module detects abnormalities in the calibration, an error status should be returned
to the Supervisor. Otherwise, a successful status is returned, and the radar should begin
publishing it’s altitude estimates.

If the supervisor receives an error status from the radar, it should move the multirotor to a
new waypoint and repeat the process.

Move to initial search location / search

In the current state of the project, the move to search location state and the search state
have been combined. When an explicit search state and module is included, it would make
sense to delay the activation of the camera module until entering the search state.

Upon entering the “move to search location” state, the Supervisor commands the camera
module to start, as well as whether or not auto-exposure calibration should be used. The
Supervisor also dispatches the desired initial search location to the Path Control module.

24

3.4 System architecture

Figure 3.5: Active architecture during state: calibrate radar

When the camera modules acquires a successful detection of the object, an object found
message is sent to the supervisor. The supervisor then transitions to the approach state.

Approach point above object

This state uses a similar architecture utilization as fig. 3.6. The model filter is not initialized
yet is due the expectancy of significant target position errors. As presented in section 3.2.1,
when the vertical slope between the camera and the target is shallow, errors in the altitude
will yield a large position error. If there is a need for filtering while approaching the target,
the filter could be initialized here with a significant increase in the covariances expected
from the measurements.

Track and employ model filter

Land at object

The landing state uses a similar architecture utilization as fig. 3.7. The difference is that
the Supervisor doesn’t send an initialize command to the Target model filter. The desired
altitude sent from Supervisor to the Target model filter should be zero, while the model
filter is used to track the horizontal position of the target. When a landing is detected, the
Supervisor moves to the landed state.

25

Chapter 3. Design and concepts

Figure 3.6: Active architecture during state: Move to initial search location

Landed

Upon entering the landed state, the Supervisor should terminate terminate the active mod-
ules. A disarm request and a disable velocity control command should be sent to UAV.Ardupilot.
The Path Control and radar modules should be terminated. Unless the camera is used to
determine if the target is within the threshold distance, the camera module should be ter-
minated as well.

While the mechanism for picking up the target is not yet implemented, it should be able
to tell if the target has been properly engaged. If this pickup mechanism returns a success
status, the problem of landing on the target can be concluded. If the mechanism returns an
error, the Supervisor should move to the Arm and take off state.

26

3.4 System architecture

Figure 3.7: Active architecture during state: Track target

27

Chapter 3. Design and concepts

28

Chapter 4
Dune implementation

A slightly modified version of the architecture in fig. 3.3, and state machine in fig. 3.2, is
implemented in DUNE. Th implementation is targeted at a test where a pilot is exchanging
control of the vehicle with DUNE. In particular, the takeoff and landing will be done by
the pilot. This exchange of control causes the need for the changes to the state machine
and architecture.

Another modification is that the camera and radar module is being run at all times. This is
done to acquire as much log data as possible from the test.

4.1 IMC messages used

4.1.1 Reused IMC messages

It is the recommendation of LSTS to reuse IMC messages where possible.

IMC::EstimatedState

The estimated state message is used by the UAV.Navigation module to publish the esti-
mated spatial states of the vehicle. The estimates includes:

• Vehicle position in ECEF frame (WGS84).

• Vehicle position in a NED frame.

• Vehicle velocity in NED frame.

• Vehicle orientation relative to NED frame.

29

Chapter 4. Dune implementation

• Vehicle angular velocity in NED frame.

• Altitude above the Ardupilot HOME location.

IMC::AutopilotMode

The autopilot message is used by the UAV.Ardupilot task to publish information and re-
ceive requests related to the Ardupilot state and status. It contains an autonomy field and
a mode field. The autonomy field is used to determine determine whether the human op-
erator or the DUNE system is in control of the vehicle. The mode field is a string used for
various purposes. In this project the mode field is used for arming and disarming requests.

IMC::VehicleCommand

This message is used for controlling the status of the modules. The command info field is
a string used for targeting the module the message is intended for. In future iterations, it is
recommended that the targeting of modules is done with an enumerated value.

The command field is a uint8 type, and is set to an enumerated value assuming EXEC,
STOP, START CALIBRATION or STOP CALIBRATION

IMC::Distance

The IMC::Distance message is used by the radar to broadcast it’s altitude estimates. The
32 bit float field “value” is set to the estimated altitude.

IMC::DesiredControl

The IMC message used for velocity commands to UAV.Ardupilot. The 32 bit float fields
x, y, and z is set to the desired velocity in NED frame. The 8 bit uint field “flags” is used
as a bit mask for valid velocity components. Invalid components will be set to zero.

4.1.2 Newly defined IMC messages

IMC::CLI

The IMC::CLI message is defined to provide a command line interface (CLI) to be used
during experiments. There is a tool provided by LSTS for remotely dispatching an IMC
message to DUNE, but it is inconvenient to navigate between different IMC messages.
There are several hundred IMC messages, and a relatively tiny scrolling widget is used
for selection, fig. 4.1. The message contains a text field, as well as three 32 bit float
fields. Currently, it is used for controlling the sensor modules. This is done to enable
testing of those modules without running the state machine. In addition, the Supervisor

30

4.1 IMC messages used

Figure 4.1: Menu used to select IMC message for manual sending

module requires a IMC::CLI message in order to move to the state machine landing state.
Currently, the land message can only be sent manually to ensure that the multirotor will
not land unless explicitly told to.

IMC::CameraTracking

The IMC::CameraTracking message is created to transport the world point detected by
the camera module to the model filter module. It contains three 32 bit float fields, which
should be set to the NED frame coordinates of the detected point.

IMC::ConstantBearingTarget

This message is used to transmit the target state the Path Control module should track. It
contains six 32 bit float fields. Three for NED position, and three for velocity in NED.

IMC::DesiredAltitude

This message is constructed to communicate what elevation above the sea surface the vehi-
cle should maintain. While the purpose could be fulfilled by reusing the IMC::Distance
message, this message is implemented to maintain a clear intention. While it is possible
to check which module a message originated from, and thus derive intention, it is prone to
programmer errors. As the desired elevation is a safety critical message, clear intention is
regarded as more important than restricting the scope of new messages. The 32 bit float
field “value” is used to store the desired elevation.

31

Chapter 4. Dune implementation

4.2 Module details

4.2.1 Supervisor

The supervisor module has been named Supervisors.H2O Pickup in DUNE. It handles the
state machine illustrated in fig. 3.2 and activates or deactivates the proper modules upon
state transitions. It also receives information from the modules, relevant to the transition
criteria of the state machine. Simple waypoints are also dispatched from the Supervisor
module.

Handling exchange of control

As testing will be conducted with a pilot exchanging control of the multirotor, a MANUAL
control state is included.

If in MANUAL: Upon receiving an IMC::AutopilotMode message with the autonomy
field set to AL AUTO, the state machine is put in the TAKEOFF state.

If not in MANUAL: Upon receiving an IMC::AutopilotMode message with auton-
omy field AL MANUAL, the state machine is moved to MANUAL. Modules that may send
commands to UAV.Ardupilot is deactivated upon the transition to MANUAL. In addition,
enabled control loops in UAV.Ardupilot is disabled.

Takeoff

Upon entering the TAKEOFF state, the IMC message IMC::ControlLoops is used to
request a change in the set of active control loops utilized by UAV.Ardupilot. The autopilot
must also be armed. By dispatching a IMC::AutopilotMode message with the mode
field set to ”ARM”, UAV.Ardupilot will send a MAVLink request to arm the vehicle. The
Path Control module is also activated, using the IMC::VehicleCommand message.

In addition, a target is generated at a given altitude above the current position. The altitude
increment is set by a configuration variable. The target is dispatched to the Path Control
module using the message IMC::ConstantBearingTarget. Upon reaching a given
distance to the target, the state machine is set to CALIBRATE RADAR

Calibrate radar

When entering CALIBRATE RADAR, the a target at a vertical increment is issued to the
Path Control module. In addition, the vehicle position at state entry is saved.

When reaching the the target position, a IMC::CLI message is used to send a calibration
command to the radar module. When the calibration is done, a IMC::CLI message will
be returned to the supervisor. A successful calibration will cause the Supervisor to move
the state machine to SEARCH.

32

4.2 Module details

Search

As mentioned in section 3.3.1, no search algorithm is implemented. Instead, the vehicle
position that was saved at entry to the CALIBRATE RADAR state is used as the initial
search location. This position is dispatched as a target to the Path Control module. Upon
reaching the target, the position is held until an object is detected by the camera module.
The state is then changed to TRACK TARGET.

Track target

In this state, the Target model filter module is activated. While this module is activated, the
Supervisor should not send any targets to the Path Control module. While not implemented
yet, a suggestion for improvement is to implement a token dictating which module has the
right to dispatch targets to the Path Control module.

The altitude which should be maintained while tracking the horizontal position of the target
is determined by a configuration variable. The message IMC::DesiredAltitude is
used to send the desired altitude to the Target model filter module.

For safety reasons, the transition to the landing state is done using a message sent by a
human operator.

Landing

Upon entry to this state, the Supervisor dispatches IMC::DesiredAltitude with the
value field set to zero. The landing is then performed by keeping the horizontal tracking
from the previous state while descending.

No detection of a successful landing has been implemented yet. It is noted that the task
Monitors.Medium dispatches the message IMC::VehicleMedium. It contains infor-
mation about whether the vehicle is on the ground or in the air. However, it is a simple
altitude check based on the altitude in the IMC::EstimatedStatemessage. A custom
function utilizing the radar values should be better suited to check whether the vehicle is
landed.

4.2.2 Radar altitude

The radar altitude module is named Sensors.X4M03 in DUNE. It handles the interface to
the X4M03 radar, and publishes it’s altitude estimates. A shared-object driver provided by
the radar manufacturer, Novelda, is used to provide an abstraction to the radar firmware. It
receives receives control commands from the Supervisor, and returns the execution status
of the command.

33

Chapter 4. Dune implementation

Acquiring radar interface object

The interface to the radar is handled by an XeThru::XEP object. It contains methods
for configuring the radar, interacting with an output queue, and termination of the radar. A
pointer to such an object, named mp xep, is set as a member of the task struct.

The XeThru::XEP class needs to be constructed using an XeThru::ModuleConnector
object. The constructor of the Module Connector takes the path of the device file used by
the radar as an argument. This file will typically be "/dev/ttyACM0" or "dev/ttyACM1".
The purpose of this class is to establish contact with the radar firmware. By calling the
XeThru::ModuleConnector::get xep() method, an XeThru::XEP object is
constructed.

Note that the XeThru::XEP object appears to access memory allocated by the Module
Connector object. Thus, when the Module Connector is deconstructed, several XEP meth-
ods will cause a segmentation fault. This issue is handled by using a static variable to store
the Module Connector object.

Start up

On start up, the radar module initializes the firmware with a set of configurable parameters.
The parameters, and their default values, are:

• tx power = 2

• dac min = 949

• dac max = 1100

• iteration = 16

• pps = 300

• fps = 10

• offset = 0.18

• frame start = 0.4

• frame end = 5.0

• Downconversion = 1

The parameters are documented in Novelda (2018).

Upon setting the radar fps to a value greater than zero, the radar is started. This is currently
done along with the initialization, in order to record and monitor data during the entire
flight duration.

34

4.2 Module details

Accessing radar data

As the radar captures its frames, the XEP object stores them in a first in first out (FIFO)
queue. The oldest frame in the queue is extracted (popped), using the read message data float(&float)
method. To find the number of frames in the queue, the peek message data float()
method is used. By calling the read method until the peek method returns 0, the newest
frame is acquired.

Getting the amplitude waveform

The amplitude of the correlation between the transmitted and received signal, at a given
lag, describes the power of the reflected signal at a given range. As the Downconversion
setting is set to 1, the data extracted from the queue is a complex baseband. The complex
data is stored in a float array, where the first half contains the real part and the last half
contains the complex part. Assuming there are <n> complex numbers, the amplitude of
the frame is computed by
amplitude[i] = sqrt(data[i]ˆ 2 + data[n+i]ˆ2)
This describes the power of the reflected signal for each bin. (Novelda, 2018).

Bin to range

The radar transceiver operates at a sampling frequency of fs = 23.328GHz. The time τ

from the start of the frame to the bin k, is given by eq. (4.1):

τ =
k
fs

(4.1)

The delay observed is caused by the signal traversing a given range twice at the speed of
light. The range R is then found by eq. (4.2):

R =
c∗ τ

2
(4.2)

Where c≈ 3∗108 is the speed of light.

The first bin is sampled after a specified delay. The range of this delay is acquired using
the XEP method x4driver get frame area. In addition, the downconversion option
causes the bins to be decimated by a factor of 8. The range of a bin <k> is then found by:
range[k] = k*8*c/(fs*2) + frame area.start
(Novelda, 2018).

The radar task in DUNE is assigned a member variable to store a vector of the bin ranges,
m range vec. The vector is initialized as empty. If there is a size mismatch between
the range vector and the amplitude vector, the range vector is recalculated with the same
number of elements (bins) as the amplitude vector.

35

Chapter 4. Dune implementation

Calibrating the radar

Upon receiving the command line interface message IMC::CLI, with text field radar
calibrate, a calibration should be performed. The calibration is done by capturing an
averaged map of the background noise. The number of frames that should be used in the
calibration is determined by the val 0 field of the message. If the field is set to zero, a
default number of samples are used.

After the calibration is done, A IMC::CLI message with text field radar calibrate
done is dispatched. Additionally, a member variable is calibrated is set to true, and
altitude estimates will be published in subsequent iterations.

Altitude estimation

The background map set by the calibration routine is subtracted from the measured am-
plitude vector. A detection candidate is found by taking the max value of this corrected
amplitude map. If the amplitude of the candidate is below a configurable threshold, the
candidate is rejected.

The range of the candidate is found by looking up the index of the candidate in the range
vector. If the task has the variable m is tracking altitude set to false, the candi-
date is accepted, and the tracking variable set to true. If the tracking is true, the candidate
is only accepted if it is within a configurable range of the last estimated altitude.

If the time since the last accepted candidate exceeds a threshold, the
m is tracking altitude variable is set to false.

Whenever a candidate is accepted, a IMC::Distancemessage is dispatched, containing
the range of the candidate.

Library integration

The library provided by Novelda for interfacing the radar consists of a shared object (.so)
file, and a set of header files. The library files are placed in the folder “user/vendor/li-
braries/XeThru”, relative to the DUNE root folder.

The shared object file is named libModuleConnector.so, and there is one for x86 and one
for arm architectures. The x86 version is placed in a sub folder named “x86”, and the arm
version in an “arm” sub folder.

The library integration is configured using cMake. A cMake file named “Library.cmake”
is placed in the XeThru library folder. The architecture is detected by cmake using the if
condition:
IF(${CMAKE SYSTEM PROCESSOR MATCHES ”arm”)}
If an arm architecture is detected, the arm sub folder is appended to the set of DUNE li-
brary folders. Otherwise, the x86 folder is included. The appending of a folder <dir> to
the dune library folder path is done with the command:

36

4.2 Module details

set(DUNE VENDOR LIBS DIR ...
... ${CMAKE CURRENT LIST DIR}/<dir> ${DUNE VENDOR LIBS DIR}).

The superfolder of “XeThru” is added to the include path using the command:
set(DUNE VENDOR INCS DIR ${DUNE VENDOR INCS DIR} ...

... ${PROJECT SOURCE DIR}/user/vendor/libraries)

Prerequisites

The ModuleConnector shared object library requires a specific version of the boost::filesystem
and boost::system libraries. In this project, the ModuleConnector version used was
“1.6.2”. The x86 compatible ModuleConnector requires boost version “1.58”, while the
ARM compatible version requires boost version “1.62”. This is subject to change in sub-
sequent releases of the ModuleConnector library.

4.2.3 Camera object detection

The camera object detection module is named Sensors.oCam in DUNE. It uses an open-
source library provided by the manufacturer, Withrobots, to interface the camera firmware.
The library has been modified slightly in order to remove buffering of images. This was
necessary as the execution rate of the extraction of images was significantly slower than
the frame rate of the camera. The difference in rates lead to the camera module operating
on an old frame. By assigning the current body/ned rotation RN

B to the old image, the
detected target position would suffer significant errors.

oCam interface

The manufacturer of the oCam camera provide a library for interfacing the camera firmware.
The library defines a class, Withrobot::Camera, which handles configuration, start/stop
control, and extraction of image data.

A pointer to a Withrobot::Camera object is declared as the task member variable
mp camera. In the dune standard task method onResourceInitialization(), a
new camera object constructed:
mp camera = new Withrobot::Camera(m args.vid file.c str());
Where m args.vid file is a string containing the path of the device file used by the
camera. The vid file field og m args is configurable, and the default path is “/dev/video0”.

The camera is set to the correct format with the Camera method set format(...).
The camera is 1280x960 pixels, has monochrome color, and operates at 30 fps. The ap-
propriate call to configure the camera is:
mp camera->set format(1280, 960,

Withrobot::fourcc to pixformat(’G’,’R’,’E’,’Y’), 1, 30);
While not necessary, the brightness and exposure is set as well. This is done with the calls:
mp camera->set control("Brightness", 32);

37

Chapter 4. Dune implementation

mp camera->set control("Exposure (Absolute)", 48);
The initial values of the could have been set to configurable variables. Instead, the com-
mand line interface message IMC::CLI is used to update the parameters. If a CLI mes-
sage is received with text field “oCam brightness”, the brightness is set to the value of the
CLI field val 0. If the text field is “oCam exposure”, the exposure is set to the value field.

The image is extracted into an openCV object, cv::Mat, using the Withrobots Camera
method get frame(...). The methods takes the address of the data field of the
cv::Mat as the first argument. The second argument is the size of the image, (1280x960).

After the image is extracted, it is undistortion is applied using the cv::undistort(..)
function with radial lens distortion parameters determined durging calibration.

Auto exposure

The lighting conditions may vary between flights, or even within a single flight. To deal
with different light conditions autonomously, an auto exposure method is implemented.
The auto exposure tries to maintain a desired mean pixel brightness in the image. This
desired pixel brightness is set as a configurable range. The default range is 100 to 140.
The mean pixel value of the image is found using the openCV function cv::mean. If the
mean value is outside the desired range, an increment to the exposure is made in the desired
direction. Currently, the increment is set at a fixed, configurable value. A P controller may
be implemented to more quickly adjust for larger errors in the mean pixel brightness.

Auto exposure can be turned on and off using the IMC::CLI message, with text field
“oCam autoexposure”. If the val 0 field is 1, auto exposure is turned on. If the field is 0,
auto exposure is turned off.

ArUco detection

Object detection is not a primary field of investigation for this project. In the absence of
an object detection module, the ArUco module of OpenCV has been utilized for detection.

The ArUco module consist of a set of markers, and a set of methods for detecting those
markers. There is also methods for performing pose estimation on the detected markers.
The pose estimation feature has intentionally been avoided, in order to keep the system
compatible with simple object detection methods.

A marker with a specific ID has been printed on a sheet of paper. The openCV function
cv::aruco::detectMarkers(...) is used to detect the marker, and takes the
following arguments:

• cv::Mat image

• cv::Ptr<cv::aruco::Dictionary> dictionary

• std::vector<std::vector<cv::Point2f>> markerCorners

• std::vector<int> markerIds

38

4.2 Module details

• cv::Ptr<cv::aruco::DetectorParameters> parameters

• std::vector<std::vector<cv::Point2f>> rejectedCandidates

The function searches the image for markers contained in the dictionary, and gathers
a set of candidates. If the candidate detection likelihood is below a threshold defined
by the parameters, the candidate is rejected. The candidate’s corners is then added to
rejectedCandidates. If a candidate is accepted, its ID is added to the markerIds
vector. Additionally, the corners are added to the markerCorners vector.

After the cv::aruco::detectMarkers(...) function is called, the set of detected
markers is evaluated against the ID of the printed marker. If there is found no ID corre-
sponding to the printed marker, the detection is concluded as unsuccessful. Similarly, if
multiple markers with said ID is found, an error is assumed, and the detection is unsuc-
cessful. However, if only one correct ID is in markerIds, a successful detection has
been acquired. The center pixel of the detection is then calculated based on the marker’s
corners. Given corners A,B,C,D, the center pixel c is calculated as:

cx =
Ax +Bx +Cx +Dx

4
(4.3a)

cy =
Ay +By +Cy +Dy

4
(4.3b)

Rotation from camera to NED

The detected position of the target is to be computed in NED frame, and utilizes the method
described in section 3.2.1. By applying the inverse camera projection to the detected pixel,
a vector is constructed in the camera frame. This vector then needs to be described using
the NED frame axes.

A rotation matrix from the camera frame to the NED frame, RB
C is constructed. It is based

on the rotation from camera to BODY RC
B, and the rotation from BODY to NED RN

B .

RN
C = RN

B RB
C (4.4)

RB
C is constant throughout the flight, and is set as a member variable of the task struct. It

is constructed using configurable Euler angles. In the case where the camera has its z-axis
aligned with the z-axis of the vehicle, the only nonzero angle is ψ . This occurs when the
camera points directly down while the vehicle is level. A typical configuration will have
the upwards direction in the image aligned with the x-axis of the vehicle. Then the Euler
angles will be [φ , θ , ψ]T = [0°, 0°, 90°]T .

RC
B is determined by the Euler angles from NED to BODY. These angles are acquired di-

rectly from the IMC::EstimatedState message. When such a message is consumed,
the attitude is stored in a task member variable. The computation of the rotation message
is delayed until a succesful detection is achieved.

The rotation matrices are calculated according to eq. (4.5)

R = Rz(ψ)Ry(θ)Rz(φ) (4.5)

39

Chapter 4. Dune implementation

Rz(ψ) =

cos(ψ) −sin(ψ) 0
sin(ψ) cos(ψ) 0

0 0 0

 (4.6a)

Ry(θ) =

 cos(θ) 0 sin(θ)
0 1 0

−sin(θ) 0 cos(θ)

 (4.6b)

Rx(φ) =

1 0 0
0 cos(φ) −sin(φ)
0 sin(φ) cos(φ)

 (4.6c)

The matrices are stored in cv::Mat objects, which implements standard matrix opera-
tions.

Position estimate

The position estimator employs the method presented in section 3.2. The final equations
are repeated here.

In this implementation, the target position is first calculated relative to a NED frame fixed
to the camera frame origin. The relative position is then offset to a local earth fixed NED
frame. In this module description, the frame symbol {N} refers to the NED frame fixed
to the camera origin. By using coincident camera and NED frames, no vector translations
are performed while calculating the relative position. As only rotations are necessary, the
need for homogeneous vectors and homogeneous transformation is eliminated.

When a detection is deemed successful, the position is estimated based on the center
pixel, the camera to NED rotation RN

C , and the altitude. The altitude is received from the
IMC::Distance message, and is stored in a task member variable. It is assumed that
the radar and the camera frame origin are located near each other. If there is a significant
distance between them, the difference in elevation should be accounted for. Note that even
if they are in the same x-y BODY plane, roll and pitch can induce elevation differences.

The inverse camera projection is applied to the detected point, using the intrinsic camera
matrix. The camera matrix is configurable, and determined by a calibration procedure.

λPC = K−1[x(p), y(p), 1]T (4.7)

λPN = λRN
C PC (4.8)

λPN lies somewhere along the line between the vehicle and the target. The direction to
the target, assuming the oC = oN , is described by eq. (4.9).

dN = λPN = RN
C

(
K−1[x(p), y(p), 1]T

)
(4.9)

40

4.2 Module details

As the target is at the sea surface, the z-axis of PN should be the altitude of the camera
origin h. This is achieved by scaling dN by h

z(dN)

PN =
h

z(dN)
dN (4.10)

As mentioned above, PN is relative to a NED frame fixed in the camera origin. Letting
{NEF} represent the earth fixed NED frame, the target position to be dispatched is given
as PNEF The detected position should be dispatched relative to the local NED frame used
by ardupilot. This should be done by first offsetting PN to the BODY frame origin oB. At
this stage, the relation between oC and oB is not known, and this first offset is neglected.
Then, the relative position is added to BODY frame position expressed in the local earth
fixed NED frame. This position, PNEF

BODY , is aqcuired from the IMC::EstimatedState
message.

PN
EF = PN +PNEF

BODY (4.11)

Library integration

The manufacturer of the oCam camera, Withrobots, provide the source code for a library
used to interface the radar. The library provides an abstraction to a set of ioctl methods
that controls and extracts data from the camera.

The source files are placed in the “user/vendor/libraries/oCam” subfolder, relative to the
DUNE root path. A cMake configuration file named “Library.cmake” is added to the
oCam folder. The cMake file The set of “.cpp” files in the library is stored in the variable
DUNE OCAM FILES, using the command:
file(GLOB DUNE OCAM FILES user/vendor/libraries/oCam/*.cpp)
Thereafter, the DUNE OCAM FILES set is appended to the DUNE VENDOR FILES list.
This ensures that a static library of oCam is compiled and linked with the final dune pro-
gram.

The set source file properties function is used to set the same flags when com-
piling oCam as the rest of dune. This is important, as when the program is linked, the
libraries and object files must use the same hardware intrinsics.

In addition, OpenCV has to be integrated into the project. There already exist a cMake
configuration file for this purpose, “cmake/Libraries/OpenCV.cmake”. This file is acti-
vated by using the -DOPENCV=1 flag when generating the cmake build files. In the file,
FIND PACKAGE(OpenCV REQUIRED) and dune add lib(<lib>) commands are
used to link in the OpenCV libraries. However, some modifications are necessary to prop-
erly set the include headers. This is done with the command
set(DUNE VENDOR INCS DIR ${DUNE VENDOR INCS DIR}

${PROJECT SOURCE DIR}/user/vendor/libraries)
In addition, the line dune add lib(opencv aruco) has to be included to link the
ArUco module.

41

Chapter 4. Dune implementation

Prerequisites

In order to successfully compile dune with the cMake configurations described above, the
system has to have the following libraries installed:

• OpenCV

• udev

• v4l2

OpenCV has to be installed using cMake, in order to properly configure the FIND PACKAGE(OpenCV
REQUIRED) command. Udev and v4l2 can be installed from the command line using apt:
sudo apt install libudev-dev v4l-utils

4.2.4 Target model filter

The target model filter module has been named Sensors.Target filter in DUNE, and inherits
from the Periodic task. In the current state of the project, it employs a constant velocity
discrete Kalman filter. In future iterations, it should be updated to employ a model more
suited to an object perturbed by the sea state.

Model

The constant velocity kalman filter estimates the velocity and position of the target in the
horizontal NED plane. Thus there are four states, x and y position, and x and y velocity.

x1
x2
x3
x4

=


North(p)
East(p)
North(v)
East(v)

 (4.12)

In the case of a constant velocity filter, only first order integration is performed. Thus, the
Euler approximation of the discrete model is the same as the exact state model. Given an
update period dt, the state matrix is:

A =


1 0 dt 0
0 1 0 dt
0 0 1 0
0 0 0 1

 (4.13)

As there is actuator inputs, the input and feedthrough matrices B,D are empty.

The target position detected by the camera module is used as the measurements in the filter.
While the filter operates at a fixed rate, there is no guarantee that the camera produces new
measurements within each iteration of the filter. This yields the need for a time variant
observation matrix.

42

4.2 Module details

Dead reckoning should be performed in iterations where no new measurement is available.
During the dead reckoning steps, the model is updated using only predictions. This is
achieved by setting all the elements in the observation matrix to zero. As the Kalman gain
is given by K = PtHT

t S−1
t , Thus, a zero observation matrix will remove the updating step

of the filter, and only use the prediction.

However, when a new measurement is available, the measurements are are x1 and x2.

Ht =

[
1 0 0 0
0 1 0 0

] ∣∣∣∣ if new measurement (4.14a)

Ht =

[
0 0 0 0
0 0 0 0

] ∣∣∣∣ if no new measurement (4.14b)

Matrix class

The matrices and vectors in the Kalman filter are stored as DUNE::Math::Matrix
objects. The class supports standard matrix operations. In addition, the class has methods
for constructing diagonal matrices, setting sub matrices, and accessing elements.

• Matrix(float* diag, int n) constructor for diagonal matrix

• Matrix::put(int i, int j, Matrix) sets a sub matrix anchored at
element (i,j)

• Matrix::element(i, j) access element (i,j)

Initiate filter

The IMC message IMC::VehicleCommand is used to activate and deactivate the fil-
ter. The info field of the message is set to “track” if this module is the destination. If
the command field is VC EXEC MANEUVER, the module enters the active state by setting
the member variable m is active. Another member variable, m filter is init is
used to determine if a successful initialization has been performed.

Upon receiving a IMC::CameraTrackingmessage, the horizontal position of the mes-
sage is placed in the member variable m y. Simultaneously, the m new measurement
variable is set to true. Additionally in the case of m is active == true && m filter is init
== false, the initialization procedure is to be performed.

The initialization procedure sets the state matrix A and the observation matrix H as mem-
ber variables of the task. The H matrix is set to the version to be used when new measure-
ments are available. In order to properly set the A matrix, the execution period dt must be
known. This is achieved by acquiring the frequency using the Periodic::get frequency()
method, and setting m dt = 1/get frequency()

In addition, the process noise Q, the observation noise R, and the error P covariance ma-
trices are also set as member variables. They are diagonal matrices, with their values

43

Chapter 4. Dune implementation

determined by a set of configuration parameters. The state vector x is set to the horizontal
position in m y, with zero velocity.

Finally, the m filter is init variable is set to true, and the filter is ready for update
steps to be made.

Update filter

At each iteration of the task method, the m is active and m filter is init vari-
ables are checked. If either is false, the method is to return without updating the filter.
In addition, if the time since the last measurement was received exceeds a configurable
threshold, the method returns.

If none of the conditions to return are triggered, the filter is updated. A local variable H is
created. If a new measurement is available, the matrix is set to H = m H. However, if no
new measurement is received, the matrix is set to H = 0*m H. The steps used to update
the filter are shown in Listing 4.1

Listing 4.1: Update Kalman filter

m P = m A*m P* t r a n s p o s e (m A) + m Q ;
S = m R + H*m P* t r a n s p o s e (H) ;
m K = m P * t r a n s p o s e (H) * i n v e r s e (S) ;
m P = m P − m K * H * m P ;
m x= m A*m x + m K*(m y−m H*m x)

Finally, the m new measurement is set to false.

Dispatching target

After the Kalman filter has been updated, the target should be dispatched to the Path Con-
trol module. The horizontal state of the target is set to the state of the Kalman filter. The
vertical position however, is based upon the desired altitude, the measured radar altitude,
and the current altitude in the NED frame used by Ardupilot.

The calculation of the target z value is made each time the IMC::Distance mes-
sage is received. The message contains the measured radar altitude, which is placed in
the m current alt variable. The m desired alt variable is set by the message
IMC::DesiredAltitude. m z current is acquired from the z field in IMC::EstimatedState.

The error of the current altitude is calculated as
z error = m current alt - m desired altitude
In this form z error will be positive if the vehicle is above the desired height. As the
z-axis in NED has a downwards direction, the desired z value is:
m desired z = m z current + z error

44

4.2 Module details

The IMC::ConstantBearingTarget message is used to dispatch the target. Let the
message be stored in cbg target] .Using the Kalman filter state vector m x and the
desired z value m desired z, cbg target is set as:

Listing 4.2: Set constant bearing target

c b g t a r g e t . x = m x . e l e m e n t (0) ;
c b g t a r g e t . y = m x . e l e m e n t (1) ;
c b g t a r g e t . vx = m x . e l e m e n t (2) ;
c b g t a r g e t . vy = m x . e l e m e n t (3) ;

c b g t a r g e t . z = m d e s i r e d z ;
c b g t a r g e t . vz = 0 ;

4.2.5 Path Control

The path control module has been named Control.Path.ConstantBearing in DUNE, and
inherits from the Periodic task. It implements the constant bearing guidance controller
described in section 2.5.1.

Target

The constant bearing target consists of a NED frame position and velocity. Six member
variables are used to represent the target, which are set when receiving a
IMC::ConstantBearingTarget message.

Desired velocity

The desired velocity is calculated based on the target and the current position of the UAV.
The UAV position is received from the IMC::EstimatedState message. In addition,
two configurable variables are used: Delta p and U max a. U max a is the approach
speed when the target is far away, and Delta p describes the transient behaviour of the
approach speed as the vehicle closes in on the target.

Arrays of three 32 bit float values are used for the calculations. Functions for the two norm,
dot product and scalar multiplication of such arrays are implemented for convenience.

The desired velocity v ref is
v ref = v a + m target v
The approach velocity is calculated as
v a = scalar x arr fp32(-kappa, pos err normalized)
The normalized position error is a unit vector along the direction from the vehicle to the
target. It is calculated as the position error divided by the norm of the position error.

45

Chapter 4. Dune implementation

kappa is the speed at which the vehicle should move. It is calculated based on the config-
uration parameters and the size of the position error position error. Details are presented
in eq. (2.21).

4.2.6 UAV.Ardupilot

The Ardupilot module is named Control.UAV.Ardupilot in DUNE, and is a regular task.
The task is primarily responsible for providing an abstraction to the MAVLink interface to
the autopilot.

Two modifications are made to the task. One is to enable a velocity control, by consuming
IMC::DesiredControl messages and sending the appropriate MAVLink message.
The other is to handle the local NED frame navigation data received on MAVLink.

Velocity control

The MAVLink command used for velocity control is SET POSITION TARGET LOCAL NED.
The neccesary fields in the message are:

• coordinate frame

• type mask

• vx

• vy

• vz

The coordinate frame should be the same as the one used for navigation. However, as
only velocity is considered, any NED aligned frame will suffice. The frame is chosen as
MAV FRAME LOCAL NED.

The message supports control of position, velocity and acceleration. The type of control
used is determined by the type mask. In addition, the message supports control upon
any subset of axes. However, the ardupilot documentation states that all velocity axes
must be enabled for velocity control to function. The appropriate hex value to set velocity
control is:
type mask = 0x0DC7

The velocity fields of the message is determined by consuming the IMC::DesiredControl
message. The IMC message contains a flag field for determining which axes of control is
to be set. The flag is checked for the bits determined by FL X, FL Y, FL Z. Letting
the IMC message be stored in the pointer d vel, the MAVLink message velocity is set by
Listing 4.3

Listing 4.3: Set desired velocity

vx = (d v e l−>f l a g s & D e s i r e d C o n t r o l : : FL X) ? d v e l−>x : 0 ;

46

4.2 Module details

vy = (d v e l−>f l a g s & D e s i r e d C o n t r o l : : FL Y) ? d v e l−>y : 0 ;
vz = (d v e l−>f l a g s & D e s i r e d C o n t r o l : : FL Z) ? d v e l−>z : 0 ;

Local navigation

UAV.Ardupilot contains a function named handleArdupilotData(), which is called
in the main loop. The functions reads a message from MAVLink, and calls a parsing func-
tion on it depending on the message ID. The map between message ID’s and appropriate
parsing functions is stored in the m mlh variable. There was no callback function for
handling the local navigation MAVLink packet, and it has therefore been implemented.

The MAVLink message ID of the local navigation packet is 32, and is stored in the macro
MAVLINK MSG ID LOCAL POSITION NED = 32
A function Task::handleLocalPositionPacket(msg) is created, and added to
the callback map:
m mlh[32] = &Task::handleLocalPositionPacket;

The callback function is shown in in Listing 4.4. The type mavlink local position ned t
and function mavlink msg local position ned decode are available as part of
the mavlink library used by DUNE.

Listing 4.4: Handle local position MAVLinkpacket

void
h a n d l e L o c a l P o s i t i o n P a c k e t (c o n s t m a v l i n k m e s s a g e t * msg)
{

m a v l i n k l o c a l p o s i t i o n n e d t l p ;
m a v l i n k m s g l o c a l p o s i t i o n n e d d e c o d e (msg , &l p) ;

m e s t a t e . x = l p . x ;
m e s t a t e . y = l p . y ;
m e s t a t e . z = l p . z ;

}

m estate is an IMC::EstimatedState message used by the task to store navigation
data. At the reception of an attitude packed, the contents of m estate is copied into a
ExternalNavData message. This ExternalNavData message is then dispatched,
and is to be processed by the navigation task.

4.2.7 UAV.Navigation

The navigation task is named Navigation.UAV.Navigation in Dune, and is a non-periodic
task. No modifications are made to the task in this project.

The task receives IMC::ExternalNavDatamessages from UAV.Ardupilot. This mes-
sage contains the navigation data sent by the autopilot using MAVLink. Depending on the

47

Chapter 4. Dune implementation

configuration of the navigation task, additional processing is applied to the navigation
data. In particular, the task is responsible for handling RTK navigation if activated. As the
UAV should not depend on RTK for the maneuvers, RTK integration is deactivated. In this
configuration, the task simply feeds through the autopilot navigation data. The navigation
data is published using the IMC::EstimatedState message.

48

Chapter 5
Experiments

5.1 Sensor test above water

A platform for was built for testing the behaviour of a monochrome camera and a radar
while above water. The test was also to be used for determining how to integrate the radar,
camera, and inertial measurements.

5.1.1 Hardware setup

The sensor platform, and the tools necessary for the test, consists of:

• Acrylic plate, ≈ 20x60x1cm

• Withrobot oCam 1MGN monochrome camera

• Novelda XeThru X4M03 radar development kit

• Pixhawk Cube with 3DR GPS unit

• Bracket for radar, 3D printed PLA

• Bracket for camera, 3D printed PLA

• USB hub with 4 USB 2.0 ports with power supply

• USB 2.0 cable, 30m, with power supply

• 3x USB cable, 1m

• Mains power extension cord and power strip

• Velcro

49

Chapter 5. Experiments

• Windows PC

• Crane on pier

• Yellow buoy, ≈ 15cm diameter

The camera and the radar was mounted to the acrylic plate using brackets printed in PLA
plastic. The camera was mounted on top of the plate, with a hole drilled in the acrylic plate
to fit the camera lens. The radar was mounted underneath the plate. As the Pixhawk and
GPS module were already fitted with Velcro, complementary Velcro straps were glued on
top of the Acrylic plate. In addition, the USB hub was fastened to the plate using Velcro.

Figure 5.1: CAD model of the housing and bracket for the radar

The Pixhawk, the camera, and the radar was connected to the device ports of the USB hub,
using the three 1m USB cables. The 30m USB cable was used to connect the PC to the PC
port of the USB-hub. The power supply of the 30m USB-cable was connected to the hub
side of the cable.

Figure 5.2: Sensor rig

The acrylic plate was suspended from the hook of the crane, using rope attached to each
corner of the plate. The power strip and the 30m USB cable was also attached to the hook

50

5.1 Sensor test above water

of the crane. Using the extension chord, the power strip was connected to a mains voltage
supply on the pier. The power supplies of the USB cable and the USB hub were connected
to the power strip, and the 30m USB cable was connected to the laptop.

5.1.2 Logging sensor data

Camera

The oCam camera manufacturer provides the source code for a C++ windows application
for interacting with the camera, named “oCam-wiever Win”. This source code is found on
the github repository for the camera:
https://github.com/withrobot/oCam/

The source code supports configuring the camera for different resolutions and frame rates.
It is also used for setting exposure and brightness, in addition to some settings not used in
this test. The program displays the output of the camera, and a button is used to save an
image from the camera.

The source code was modified to enable rapid saving of consecutive image frames with
timestamps. A button in the graphical user interface was created to activate and disable the
logging functionality. The function timeGetTime() was used to represent the times-
tamp of each image, and was set as the image name. It returns a DWORD (32 bit unsigned
int), which wraps around every 49 days. In order to relate this timestamp to the local
system time, the function GetLocalTime() was used. At start up, the two time repre-
sentations are subsequently read, and printed to a file. When post processing the data, this
file is used to provide the offset relating the image frame timestamps to the local time.

Radar

The radar manufacturer, Novelda, provides a “ModuleConnector” library interface to the
radar from Matlab. This library contains functions for setting up the radar, and acquiring
and logging data frames.

A ModuleConnector object is created by calling the function
mc = ModuleConnector.ModuleConnector(COMPORT, 0);
where COMPORT is a string corresponding to the port assigned to the radar. The radar
interface is acquired by calling
xep = mc.get xep(); This radar interface is used to read frames from the radar, as
well as to configure the radar. The configuration used is the same as the one described in
section 4.2.2.

The logger object is constructed and started using Listing 5.1. It will then save the frames
outputted by the radar to a set of files.

Listing 5.1: Setup radar logger

51

https://github.com/withrobot/oCam/

Chapter 5. Experiments

r e c o r d e r = mc . g e t d a t a r e c o r d e r () ;
r e c o r d e r . s e t s e s s i o n i d (’ t e s t r e c o r d i n g ’) ;
d a t a f l o a t t y p e = . . .

ModuleConnector . D a t a R e c o r d e r I n t e r f a c e . D a t a T y p e F l o a t D a t a T y p e ;
% S t a r t r e c o r d i n g .
r e c o r d e r . s t a r t r e c o r d i n g (d a t a f l o a t t y p e , o u t p u t d i r) ;

While the logging is performed, the frames acquired from the xep object are processed
and plotted.

Pixhawk

The Pixhawk is interfaced from the Mission Planner program (http://ardupilot.org/
planner/). This is a program for commanding the behaviour of the autopilot and mon-
itoring the inertial navigation system (INS) through telemetry. In addition, it records the
telemetry output of the Pixhawk. It was primarily used to ensure that the INS state was
stable before the test maneuvers were performed.

The Pixhawk passively logs most of it’s internal states, including INS, to files on its SD
card. These files can be extracted using Mission Planner, as well as exported to a Matlab
compatible format.

5.1.3 Testing maneuvers

The laptop was used to log and monitor the output of the camera, the radar and the Pix-
hawk. The application for monitoring the camera was used to set an appropriate exposure
for the lighting conditions. The radar was set up using settings determined during testing
in an office environment.

The crane lifted the sensor rig above the water and performed several steady descending
and ascending maneuvers. In addition, a few descend/ascend maneuvers were performed
while significant roll/pitch motion was induced on the sensor rig. The lowest altitude
during these maneuvers were about 1.3m.

While the crane performed the descending and ascending maneuvers, the buoy was thrown
into the water in the field of view of the camera. Due to the water current, the buoy drifted
back to the pier, and out of view of the camera, in about 30s. The rope attached to the buoy
was then used to retrieve the buoy and throw it back into the field of view of the camera.
This process of throwing the buoy was repeated for the duration of the crane maneuvers.

52

http://ardupilot.org/planner/
http://ardupilot.org/planner/

5.1 Sensor test above water

5.1.4 Post processing

Radar altitude

Matlab was used to play back the radar log generated during the test maneuvers. A
DataPlayer object was generated using
player = ModuleConnector.DataPlayer(metafilename);
From this object, a virtual radar interface was constructed using the functions
mc = ModuleConnector.ModuleConnector(player,0);
xep = mc.get xep();
At this point, the xep objects acts as a regular radar interface without the capability of
setting the radar configuration. The virtual radar will begin outputting frames at a call to
the DataPlayer object.
player.set playback rate(rate);
The rate is used to scale the playback speed with respect to the real time speed at which
it was recorded.

An adaptive cluttermap method is applied to the data to remove the constant background
composition of the frames. A side effect is that slowly varying parts of the frame will also
be suppressed. As the altitude of the radar was not kept stationary during the maneuvers,
this did not lead to problems.

The adaptive cluttermap is described by eq. (5.1)

A f iltered [k] = (α)Ameasured [k]+ (1−α)A f iltered [k−1] (5.1)

where α ∈ (0, 1). At the first iteration, the filtered amplitude is initialized to the measured
amplitude.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

Range [m]

0

0.005

0.01

0.015

0.02

0.025

0.03

A
m

p
lit

u
d

e

Baseband amplitude - frameCounter = 5106 t= 304

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

Range [m]

0

0.005

0.01

0.015

0.02

A
m

p
lit

u
d

e

Filtered - frameCounter = 5106

Figure 5.3: Radar output, filtered = adaptive cluttermap

53

Chapter 5. Experiments

The filtered output of the adaptive cluttermap is used for altitude estimation. The maxi-
mum value is chosen as an altitude candidate. If the amplitude of the candidate exceeds a
threshold (0.005), it is accepted. The altitude is then set to the range of the candidate. If
no new candidate is accepted during the next second, the altitude is assumed to be outside
the range of the radar, which was set to 4m. In this case, the altitude is set to 5m. This
is not meant as a proper estimate, but it makes it easier to spot when the altitude is out of
range during analysis of plots.

Pixhawk attitude

The original plan was to use the SD card of the Pixhawk to extract INS logs. However,
the log files appeared to be corrupt. As an alternative, the telemetry logs on the laptop
were used. Telemetry data is sent at a significantly lower rate than the internal log. The
telemetry log of attitude was sent at the default rate, 4Hz. It would have been possible to
increase the telemetry rate, but this was not done as telemetry was not intended for post
processing.

The Mission Planner software was used to export the telemetry data to a Matlab compatible
format. By navigating to the Telemetry logs tab and loading the appropriate log, the log
could be played back and plotted. A plot was made containing the attitude (pitch, roll,
yaw) data. The data in the plot was exported to a “.mat” file using the “Create Matlab file”
button.

The “.mat” file was loaded in Matlab. The timestamp was represented using double
values, with unknown mapping to local time. However, the plot in Mission Planner, used
local time on the x-axis. The start and end time of the data was read off the plot. In Matlab,
the time double time axis was then remapped to local time using linear interpolation.

Camera detection

The camera was calibrated using the Matlab Single Camera Calibrator App. This gener-
ated the camera intrisic matrix K, and a radial distortion function with two parameters.

As mentioned in section 5.1.2, the file names of the images are used to represent their
timestamp. In addition, a file was used to provide an offset between the timestamps and
local time. This file was firstly loaded in matlab, and a time remapping function was made.

The images were then loaded, wile generating the appropriate local time. For each image,
the following operations were made:

• Undistortion

• Binarization

• Erosion

• Candidate (blob) rejection

• Dilation

54

5.1 Sensor test above water

• Circular Hough transform

As there is significantly different brightness between the sea and the buoy target, a bina-
rization is applied at an appropriate threshold. This is performed using the function
img = imbinarize(img, level);
level was chosen as 0.3. Pixels darker than 0.3 ∗ 255 are then set to 0, while brighter
pixels are set to 1.

Erosion is then applied to the image to remove noise and small bright areas in the image.
A structuring element approximating a disk with a radius of 5 pixels is created, and stored
in se erode. The erosion is performed using:
img = imerode(img, se erode);

Dilation is applied to attempt to reconstruct the shape of the regions still containing active
pixels. A new structuring element, se dil is created. It approximates a disk with a radius
of 10 pixels. The increased size is to ensure that dark spots on the buoy are filled in. The
dilation is performed by calling:
img = imdilate(img, se dil);

Due to parts of the pier being in the image at several instances, the above approach might
include large blobs on the pier. Blobs with unreasonably large area are therefore discarded.
img = img - (bwareaopen(img, max area));
max area is the required number of pixels in a blob that should be discarded, and is set
to 40’000.

A circular Hough transform is applied to the blob regions, operating on the original grayscale
image. The search radii are hard coded to include the expected pixel size of the buoy over
the range of altitudes in the test. To reduce the computational cost, the radii can be chosen
based on the altitude. The Hough transform outputs center, radius and a certainty metric.
[centers, radii] = imfindcircles(roi, [r0 r1], ...

’ObjectPolarity’,’bright’)
r0=10 and r1=30 represent the range of search radii. roi is the original image cropped
to a region of interest.

Target position and surface coordinate frame

After having performed the detection stage on an image, position estimation is to be per-
formed. To synchronize the time of the image, radar and Pixhawk, the altitude and attitude
were interpolated to the time of the image.

A coordinate system fixed to the sea surface directly below the camera was drawn in the
image. This was done by specifying homogeneous coordinates of rectangles representing
the axes. The points were transformed from a surface fixed NED frame to the camera
frame using the transformation TC

N

TC
N =

[
RC

N RC
Nt

01x3 1

]
(5.2a)

55

Chapter 5. Experiments

Figure 5.4: Detection algorithm, region of interest

tT = [0,0,h] (5.2b)

Once in the camera frame, the points are projected to image coordinates using the camera
intrisic matrix K. The rectangles are then drawn using the pixel coordinates of the world
points and the function insertShape(...)

The method described in section 3.2 and section 4.2.3 is used to estimate the target position
of the detected centers. The position is calculated with respect to the drawn surface frame.
The camera to body rotation RC

B was approximated as [φ , θ , ψ]T = [0°, 0°, 90°]T . The
attitude angles from the Pixhawk formed the body to NED rotation RN

B .

Movie generation

After processing an image, information such as altitude, time, and detected horizontal
positions were printed on the image. The images were then saved to an output folder. The
“ffmpeg” (https://ffmpeg.org) command line tool was then used to generate a movie
of the output. This was used to better visualize the behaviour of the altitude and position
estimation.

56

https://ffmpeg.org

5.1 Sensor test above water

While no guarantee is made for the future availability of the url, the movie has been up-
loaded to:
https://youtu.be/1PROmScl7UI

5.1.5 Results and discussion

Radar altitude

The estimated altitude is shown in fig. 5.5. The initial section where the altitude is about
1m correspond to the rig being above the pier. The constant 5m sections correspond to no
altitude candidate being accepted for at least a second. While no ground truth is available,

1 1.5 2 2.5 3 3.5

Time [s] 105

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

A
lt
it
u

d
e

 [
m

]

Radar altitude

Estimated altitude

Figure 5.5: Radar altitude estimation from sensor rig test

the general trend of the descending and ascending altitude fits the maneuvers performed
with the crane. In addition, the behaviour of the altitude printed in the generated movie is
observed to correspond to the perspective height of the camera.

The method of using an adaptive cluttermap for altitude estimation appears to produce
sensible results during the test maneuvers. However, the maneuvers were all in a steady
decent or ascent. In the multirotor application, it is desired that the multirotor holds a given

57

https://youtu.be/1PROmScl7UI

Chapter 5. Experiments

altitude for an extended period of time. This is to allow the target model filter to converge
to accurate estimates of the target state. As this has not been tested, the feasibility of using
an adaptive clutter map is not proven.

When at a constant altitude, it expected that the radar output is relatively stationary. As
the adaptive cluttermap will eventually remove the stationary signal, it is likely that the
altitude tracking will be lost. However, this can’t be fully concluded without further test
data.

Detection and position estimation

The movie generated in section 5.1.4 shows that the buoy is consistently detected when it
is in the image. However, several false positives are present. These false positives were
related to pier, usually corresponding to snowy patches. No false positives present on the
sea surface. It is therefore assumed that if only the sea and the buoy had been in the field
of view, no significant false positives would be present.

The motion of the drawn coordinate frame is observed to oppose the motion of the camera.
There is some drifting, as well as some abrupt changes in the motion of the coordinate
system. The drifting might be caused by projecting the coordinate system directly below
the camera, instead of using an (approximately) inertial NED frame. As the camera was
not horizontally stationary, the coordinate system projected to the sea surface can not be
expected to be stationary either. Due to the rope suspension of the sensor rig, the rig
acted as a pendulum on the crane. The induced roll and attitude maneuvers therefore also
induced significant horizontal travel as well.

The abrupt changes in the motion of the coordinate system is likely due to the low rate of
the telemetry attitude data. Additionally, the some of the telemetry data might be lost.

The position estimate is observed to correctly relate to the coordinate system projected to
the sea surface.

5.1.6 Applicability to the problem statement

While no ground truth is available for either the altitude or the position of the target, the
test serves the purpose of validating the concept.

The observed motion of the coordinate frame, opposing the motion of the camera, validates
the rotations between camera and NED frame. The accuracy of this opposing motion, and
its effect on error in position estimates is not investigated.

As the detection algorithm was constructed during post processing of the test data, no
presumption regarding generalization is made. In particular, varying light conditions is
likely to affect the ability to detect the buoy without producing false positives. Addition-
ally, different wave and wind conditions may induce shapes on the sea leading to false
positives.

58

5.2 DUNE flight control simulation

Figure 5.6: Coordinate system opposing the motion of the camera

5.2 DUNE flight control simulation

A simulation setup is configured to test the Supervisor and the Path Control modules.
The simulation presented here is performed on a desktop PC. While not covered in this
section, the same setup has been used to test the Camera module and the Target model
filter module.

The simulation consist of a Software in The Loop (SIL) configuration of DUNE, and an
Ardupilot simulation of a multirotor with autopilot software. The communication between
DUNE and Ardupilot is performed over a TCP socket.

59

Chapter 5. Experiments

5.2.1 ArduPilot multirotor simulation

The ArduPilot simulation setup section is reused from (Joberg,
2018)

The ArduPilot multirotor simulation is launched by the running the python script:
sim vehicle.py
from the terminal while in the ardupilot/ArduCopter directory. The python script
is added to the PATH environment in the installation procedure of the ArduPilot software.
The initial location of the the multirotor is set using the argument:
-l [lat],[lon],[geodetic alt],[heading]
Where the unit of the altitude is in meters, and the rest of the parameters are in degrees.
The location used in this experiment is at Agdenes Airport, and the corresponding location
argument is:
-l 63.62831245,9.72534,50,60
For convenience, the location data is stored in an environment variable, and the final com-
mand to start the ArduPilot simulation is shown in fig. 5.7. The additional arguments
launches a live map of the UAV and an information console, which outputs useful in flight
information. However, these arguments may be omitted.

During startup, MAVProxy is launched in the terminal. MAVProxy is a ground control
station (GCS) tool for the UAV, and commands can be used to control various ArduPilot
functionalities. In this experiment MAVProxy will only be used to take off and switch
the ArduPilot mode, which is used as a trigger in the DUNE state machine. In order to
take off, the UAV must be armed, and supplied with positive throttle. This is done with
the consecutive commands arm throttle rc 3 1600 Once the UAV is airborne, the
autonomous system can take control. This is enabled by calling:
mode GUIDED
Further information on the basic functionalities of MAVProxy is documented on the ArduPi-
lot webpage:
http://ardupilot.github.io/MAVProxy/html/index.html

Figure 5.7: Command to launch ArduPilot simulation

5.2.2 DUNE setup

Constant bearing target generator

A new DUNE task is created to replace the Target model filter, named Simulators.TargetGenerator.
The purpose of this task is to generate a reproducible constant bearing guidance target for
the Path controller to track.

60

http://ardupilot.github.io/MAVProxy/html/index.html

5.2 DUNE flight control simulation

The TargetGenerator task replaces the Target model filter module’s interface to the Su-
pervisor. However, the interface to the camera and the radar is ignored. The task state
is controlled by the IMC::VehicleCommand message with info field “track”. If the
command field is VC EXEC MANEUVER, the module is activated, and disabled if it is
VC STOP MANEUVER.

The task generates position and velocity setpoints for maneuvering the vehicle in a hor-
izontal circular motion. It is represented as a scaled unit circle. At the activation of the
task, the phase is set to zero, and the vehicle position is saved as (x0, y0,z0).

Two configuration parameters are supplied to the task: v reduction and radius.
v reduction increases the amount of time the vehicle should use to traverse the cir-
cle, and radius scales the radius of the circle.

The phase θ of the circle is calculated as:

θ =
t

v reduction
(5.3)

The desired position and velocity is then calculated by eq. (5.4)

x = x0 + radius∗
(
−1+ cos(θ)

)
(5.4a)

y = y0 + radius∗ sin(θ) (5.4b)

z = z0 (5.4c)

vx =−sin(θ)
radius

v reduction
(5.4d)

vx = cos(θ)
radius

v reduction
(5.4e)

vz = 0 (5.4f)

The position and velocity is placed in a IMC::ConstantBearingTarget message
and dispatched.

Configuration file

A DUNE configuration file, named “ntnu-hexa-H2O.ini”, is created to enable the appro-
priate tasks with desired parameters. The line
[Require uav/arducopter.ini]
is placed at the top to enable the basic tasks required for multirotor configurations. The
relevant modules are enabled with the lines in Listing 5.2.

Listing 5.2: Module configurations

[S u p e r v i s o r s . H2O Pickup]
Enab led = Always
E n t i t y Labe l = S u p e r v i s o r H 2 O P i c k u p

61

Chapter 5. Experiments

[C o n t r o l . Pa th . C o n s t a n t B e a r i n g]
E x e c u t i o n Frequency = 10
Enabled = Always
E n t i t y Labe l = C o n s t a n t B e a r i n g G u i d a n c e

[S i m u l a t o r s . T a r g e t G e n e r a t o r]
E x e c u t i o n Frequency = 10
Enabled = Always
E n t i t y Labe l = C B G T a r g e t g e n e r a t o r
Speed r e d u c t i o n = 4
Radius = 4

The DUNE program is then launched from the DUNE build folder. The profile used is
AP-SIL (Ardupilot SIL). The command to launch the configuration is:
./dune -c ntnu-hexa-H2O -p AP-SIL

5.2.3 Simulating maneuver

Once the simulations of both DUNE and Ardupilot are started, the ardupilot INS needs to
be properly initialized. When initialization of INS is done, the message
EKF2 IMU{0, 1} is using GPS
will be displayed in the MAVProxy console. After this, a manual take off is performed,
before putting the Ardupilot into GUIDED mode. This will activate the control system.

Upon receiving control of the multirotor, the Supervisor module will activate the Path
Control module and command a waypoint at a vertical increment to the current position.
When reaching the waypoint, the radar calibrate command is sent. As the radar module
is not enable, the IMC::CLI message expected by the supervisor is manually sent. The
text field of the message is set to return radar calibrate. The multirotor then
descends to the position where the Supervisor assumed control of the vehicle.

After descending, the supervisor moves to the tracking state, and control is handed over to
the Target Generator. The target generator then sends the position and velocity of a target
moving in a circular manner as described in section 5.2.2

Results

The vehicle is observed to correctly increase its altitude for the radar calibration in fig. 5.8.
After the calibration return message was received, the vehicle moved back to the starting
position. The circular target tracking was then begun. As shown in fig. 5.8, a smooth circle
trajectory was performed.

The absolute value of the position error is shown in fig. 5.9. After having converged, the
position error is observed to be less than 4cm.

62

5.3 Flight test

Figure 5.8: Dune flight simulation maneuver

Additional simulations

While the radar, camera and model filter modules were omitted from the experiment setup
above, they have been included in other simulations. Unit tests of the modules have been
performed in an office environment using an ArUco marker. By presenting the ArUco
marker to the right in the image, the vehicle is observed to move to the right, independently
of its heading. Similar results are achieved by presenting the ArUco marker to the left, top
and bottom of the image. The target filter module is also observed to converge to a steady
state when the image is stationary in the image.

5.3 Flight test

A flight test was conducted where the Odroid and the sensors were connected to a Pixhawk
on an DJI S1000 octacopter. The payload consisted of

• Odroid XU4

• Radar with bracket

• Camera with bracket

• Traco DCDC voltage converter

• Logic level shifter

63

Chapter 5. Experiments

0 50 100 150

t [s]

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

D
is

ta
n

c
e

 [
m

]

Position error (sim), circle target generator

Pos error

Figure 5.9: Position error during circular tracking maneuver

• 3.3V voltage regulator

• Container box

• 2x M5 Rocket (wireless bridge)

5.3.1 Hardware setup

Serial connection Odroid-Pixhawk

The MAVLink telemetry link between the Odroid and the Pixhawk is realized as a TCP
connection over a serial UART link. The Odroid operates on 1.8V logic while the Pixhawk
operates on 3.3V logic. A logic level converter was therefore placed between them.

The UART Rx and Tx wires of the Odroid were connected to the low voltage (LV) logic
pins of the converter. The 1.8V VCC and ground wires of the Odroid were connected to
the LV high reference and ground pins of the converter.

Similarly, the Rx and Tx wires of the Pixhawk were connected to the high voltage (HV)
logic pins of the converter. The Pixhawk ground wire was connected to the converter
ground pin. However, no 3.3V VCC was available on the Pixhawk to supply the HV
reference. Therefore, a 3.3V voltage regulator was placed between a 5V VCC on the
Pixhawk and the converter HV reference.

Payload container

A container box was used to mount the payload components in. The radar bracket created
in fig. 5.1 was placed underneath the container. The camera bracket was modified to
accommodate mounting points for the DCDC converter and the level shifter. The bracket
is illustrated in fig. 5.10. The camera, level converter and DCDC were fastened to the
bracket, before the bracket was mounted inside the payload container. Finally, the Odroid
was mounted inside the container.

64

5.3 Flight test

Figure 5.10: Mounting bracket for camera, DCDC and level shifter

An XT60 connector was used to connect the input voltage wires of the DCDC converter
to a battery on the octacopter. The 5V output wires of the DCDC converter was fitted with
a DC barrel jack. This jack was connected to the input power of the Odroid. The camera
was connected to the Odroid using a USB 3.0 port, and the radar was connected to a USB
2.0 port.

Finally, the payload container was mounted to rails beneath the center of the multirotor.
The UART cable from the payload was connected to a telemetry port of the Pixhawk using
a 6 pin DF13 headers. The DCDC was connected to a battery. The Ethernet port of the
Odroid was connected to a network switch, in order to communicate with the M5 Rocket
on the multirotor.

5.3.2 DUNE configuration

The configuration used in section 5.2.2 was expanded upon to enable the camera, the radar
and the target model filter module. The DUNE task Transports.SerialOverTCP,
which is enabled by the arducopter.ini file, was configured to use the /dev/SAC2
UART interface.

In addition, UDP streaming of every ¡n¿ camera frame and radar frame was implemented.
The decimation factors ¡n¿ were set as configuration parameters.

As the hardware specific tasks should be run, the DUNE profile used was “Hardware”.
This configuration was launched using:
./dune -c ntnu-hexa-H2O.ini -p Hardware

65

Chapter 5. Experiments

Figure 5.11: Payload overview

Figure 5.12: Mounting of payload to multirotor

66

5.3 Flight test

5.3.3 Maneuvers

The original plan was to perform unit tests of the radar and the camera. However, an issue
occurred with the camera, and the image output quickly deteriorated. The images became
unusable before any tests were performed.

In addition, it was discovered that the grass and soil of the airfield highly attenuated the
radar signal. The reflections only became visible at altitudes below 2.5m. The radar signals
above 1.5m were hard to distinguish clearly from noise. As such, no altitude estimation
was performed with the radar.

Instead, it was chosen to reproduce the simulation maneuver in section 5.2, using the
constant bearing target generator task. The radar and camera modules were running during
thees maneuvers to attempt to log some usable data. In addition, the calibration procedure
of the radar was performed without the need for a manual return message.

Procedure

The pilot performed the take off with the multirotor, and brought it to a safe altitude. The
autopilot was then set to GUIDEDmode, and DUNE received control of the multirotor. The
multirotor then increased it’s altitude, and begun the radar calibration procedure. When
the procedure was complete, the multirotor moved back to the position where it received
control. The Target Generator task was then activated, and the multirotor moved in a
circular maneuver. After several circles, the pilot assumed control of the vehicle, and
performed the landing.

5.3.4 Results

The vehicle position during the segment where DUNE was in control of the vehicle is
presented in fig. 5.13. The position error observed during the circular tracking is presented
in fig. 5.14.

5.3.5 Discussion

Circular tracking procedure

The vehicle motion shown in fig. 5.13 is significantly more noise than the simulation re-
sults in fig. 5.8. This is likely due to the absence of noise sources, such as wind and
gusting, in the simulation. In addition, it is likely that the controller used in the simulation
is better tuned to its model, than the real counterpart.

An additional source that could have deteriorated the performance, is that the Path Control
and Target Generator modules were run at lower rates during the flight test. During sim-

67

Chapter 5. Experiments

Figure 5.13: DUNE controlled flight maneuver

ulation, it has been observed that halving the rates will more than double the error. The
rates were reduced in order to free up some resources for the camera and radar modules.

The position error illustrated in fig. 5.14 is observed to be mostly within 20cm. In con-
junction with the circle plot, it appears as the controller did not converge to a steady state.
Instead, it seems to oscillate slightly. This might be improved by tuning the autopilot
velocity controller, as well as the transient behaviour of the constant bearing module.

Camera issue

The camera failure had not been experienced during office testing. Some of the parameters
that changed from testing was:

• Increased temperature

• Structural stress on USB cable

• Vibration from multirotor

• Brighter light conditions.

During office testing, the payload was usually left open, such that airflow was available for
cooling. In addition, when closing the payload lid, the lid would put significant pressure
on the camera side of the USB connection. This connection was bent at an angle after
testing.

68

5.3 Flight test

0 20 40 60 80 100 120

t [s]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

D
is

ta
n
c
e
 [
m

]

Position error (flight), circle target generator

Pos error

Figure 5.14: Position error during circular tracking

69

Chapter 5. Experiments

70

Chapter 6
Conclusion

A state machine governing the stages of the flight has been formulated. In order to re-
alize the state machine, an architecture supporting the functionality required by the state
machine, is proposed. The set of modules, and their interfaces has been implemented in
DUNE. As part of this implementation, libraries for interfacing an X4M03 and a Withrobot
oCam camera has been integrated in DUNE.

A triangulation method for integrating camera detections, altitude estimation and attitude
angles has been developed and implemented in DUNE. This triangulation method provides
position estimates, which is then used as measurement in a constant velocity Kalman filter.

The sensor rig described in section 5.1 was used to validate the feasibility of the triangula-
tion method. In addition, an object detection method was developed, as well as a method
for radar altitude estimation. However, the methods were made during post-processing,
and no assumptions about generalization is made for performance in different conditions.

Simulations were performed to test the DUNE modules. In order to test the constant bear-
ing path controller, a target generator was implemented. This generator provides position
and velocity setpoints for a target traversing a circle with configurable radius and veloc-
ity. The precision of the maneuver was very promising, with a position error of a few
centimeters.

A flight test was conducted with a configuration corresponding to the simulation test. The
same type of circular maneuver was attempted. However, the accuracy was much worse
in real conditions. Some potential sources of the reduced performance can be improved
upon, such as sampling rates, and controller tuning. However, other error sources which
are harder to improve upon may be present too.

71

Chapter 6. Conclusion

6.1 Further work

While sanity checks have been made for most of the modules, ground truth data has not
been acquired as part of this project. Future iteration should verify the metrics of the
performance potential of the systems.

The architecture proposed allows for major reworks to single modules, as long as the
interface is kept similar. The target model filter module should be expanded upon to better
represent the sea state, as only the sea current is modeled at this point. A camera detection
algorithm more suitable to the final target should be made as well.

72

Bibliography

Araar, O., Aouf, N., Vitanov, I., 2017. Vision based autonomous landing of multirotor uav
on moving platform. Journal of Intelligent & Robotic Systems 85 (2), 369–384.

ArduPilot, 2018. Autopilot suite. https://ardupilot.org, accessed: 8th Dec. 2018.

Borowczyk, A., Nguyen, D.-T., Phu-Van Nguyen, A., Nguyen, D. Q., Saussié, D., Le Ny,
J., 2017. Autonomous landing of a multirotor micro air vehicle on a high velocity ground
vehicle. IFAC-PapersOnLine 50 (1), 10488–10494.

Bradski, G., 2000. The OpenCV Library. Dr. Dobb’s Journal of Software Tools.

Corke, P., 2017. Robotics, Vision and Control: Fundamental Algorithms In MATLAB,
Second Edition, 2nd Edition. Springer Publishing Company, Incorporated.

Falanga, D., Zanchettin, A., Simovic, A., Delmerico, J., Scaramuzza, D., 2017. Vision-
based autonomous quadrotor landing on a moving platform. In: Proceedings of the
IEEE International Symposium on Safety, Security and Rescue Robotics, Shanghai,
China. pp. 11–13.

Fossen, T. I., 2011. Handbook of marine craft hydrodynamics and motion control. John
Wiley & Sons.

Frølich, M., 2015. Automatic ship landing system for fixed-wing uav. Master’s thesis,
NTNU.

Joberg, J., 2018. Specialization project, multirotor pickup of objects in the sea.

Johansen, T. A., Fossen, T. I., 2017. The exogenous kalman filter (xkf). International Jour-
nal of Control 90 (2), 161–167.
URL https://doi.org/10.1080/00207179.2016.1172390

Lange, S., Sünderhauf, N., Protzel, P., 2008. Autonomous landing for a multirotor uav
using vision. In: International Conference on Simulation, Modeling, and Programming
for Autonomous Robots (SIMPAR 2008). pp. 482–491.

73

https://ardupilot.org
https://doi.org/10.1080/00207179.2016.1172390

Lange, S., Sunderhauf, N., Protzel, P., 2009. A vision based onboard approach for landing
and position control of an autonomous multirotor uav in gps-denied environments. In:
Advanced Robotics, 2009. ICAR 2009. International Conference on. IEEE, pp. 1–6.

Lasson, Ø. R., 2018. Autonomous landing of multi-rotor uav. Master’s thesis, NTNU.

Line, V., 2018. Autonomous landing of a multirotor uav on a platform in motion. Master’s
thesis, NTNU.

Ling, K., Chow, D., Das, A., Waslander, S. L., 2014. Autonomous maritime landings for
low-cost vtol aerial vehicles. In: Computer and Robot Vision (CRV), 2014 Canadian
Conference on. IEEE, pp. 32–39.

MAVLink, 2018. Micro aerial vehicle link, protocol. https://mavlink.io/en/

messages, accessed: 8th Dec. 2018.

Nguyen, T. H., Cao, M., Nguyen, T.-M., Xie, L., 2018. Post-mission autonomous return
and precision landing of uav. In: 2018 15th International Conference on Control, Au-
tomation, Robotics and Vision (ICARCV). IEEE, pp. 1747–1752.

Novelda, 2018. XeThru X4 Radar User Guide - Rev. A.

74

https://mavlink.io/en/messages
https://mavlink.io/en/messages

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lt

y
of

 In
fo

rm
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ri
ca

l
En

gi
ne

er
in

g
D

ep
ar

tm
en

t o
f E

ng
in

ee
ri

ng
 C

yb
er

ne
tic

s

M
as

te
r’

s
th

es
is

Jens Ludvik Grytnes Joberg

Multirotor pickup of object in the sea

Master’s thesis in Cybernetics and Robotics
Supervisor: Tor Arne Johansen

June 2019

	Preface
	Abstract
	Table of Contents
	List of Tables
	List of Figures
	Abbreviations
	Introduction
	Problem overview
	Measurements of MUG position
	MUG motion state filter
	UAV control system

	Literature review
	Landing on land based targets
	Landing on marine targets
	Relevance to this project

	Basic Theory
	DUNE - Unified Navigation Environment
	The DUNE task

	ArduPilot
	MAVLink
	ArduPilot simulation

	Camera vision
	Notation in camera vision
	Camera projection
	Pose estimation

	Kalman Filter
	Extended Kalman Filter
	eXogenous Kalman Filter

	Guidance path control
	Constant Bearing Guidance

	Design and concepts
	Overview and purpose
	Camera vision
	Position estimation using surface constraint

	UAV State machine
	UAV state machine

	System architecture
	State machine sub-architectures

	Dune implementation
	IMC messages used
	Reused IMC messages
	Newly defined IMC messages

	Module details
	Supervisor
	Radar altitude
	Camera object detection
	Target model filter
	Path Control
	UAV.Ardupilot
	UAV.Navigation

	Experiments
	Sensor test above water
	Hardware setup
	Logging sensor data
	Testing maneuvers
	Post processing
	Results and discussion
	Applicability to the problem statement

	DUNE flight control simulation
	ArduPilot multirotor simulation
	DUNE setup
	Simulating maneuver

	Flight test
	Hardware setup
	DUNE configuration
	Maneuvers
	Results
	Discussion

	Conclusion
	Further work

	Bibliography

