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Abstract

Artificial intelligence have progressed immensely the past decade and is starting to be used for con-
trol of complex systems. This project concerns itself with the application of reinforcement learning
to the task of controlling robotic manipulators. A history of the control of robotic manipulators is
presented, followed by an introduction to increasingly advanced reinforcement learning theory and
methods. The methods are applied to simple textbook problems to show their performance. Lastly
the project uses the recent Proximal Policy Optimization method to control a simulated robotic
manipulator performing various tasks, showing both how it can quickly learn a simple task, and
requires more than a direct application for more complex tasks.
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Chapter 1

Introduction

Artificial intelligence as a tool for control of physical systems is a large topic in research, and new
methods and techniques are developed continuously. This project focuses on the application of
reinforcement learning for control of robotic manipulators, to improve performance over classical
control and enable the execution of new categories of tasks. A brief introduction to the history of
robotic manipulators and the theory behind reinforcement learning is presented, before progressively
more modern methods are applied to progressively more complex problems. The goal of this project
is to go through the fundamentals of reinforcement learning and explore the capability of state-of-
the-art reinforcement learning for the purpose of controlling a robotic manipulator.

Section 1.1 will succinctly describe the development of the robotic manipulator throughout the past
decades, before Section 1.2 introduces reinforcement learning in the context of controlling a robotic
manipulator.

1.1 History of Robotic Manipulator Control

A robotic manipulator (RM) is a subset of the category of industrial robots. RM may have multiple
interpretations and configurations, but will here be defined as an open kinematic chain of rigid bodies
interconnected by joints with a specialized tool at the end, as described by Siciliano (2009). RMs
have been in development for a long time, and it can be unclear exactly when something we would
today call an RM came to be. The precursor to the early RM were the teleoperated systems, where a
slave machine copied the movements performed by a human-operated master device, later including
force feedback to the operator (Spong, 1989).

A brief overview of the development of the control of RMs through the 60s is given by Paul (1981),
starting with George Devols’ robot arm. This device have little claim to the term robot as it is
understood today. Instead it was guided through a series of motions, which it stored and was then
able to repeatably play back. Nevertheless, this simple repeated motions machine was useful for
similarly simple tasks, and the machine could be reprogrammed to perform a new task when needed.
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Figure 1.1: The basic shape of an RM. Picture: nptel

Only a year later, in 1961 at MIT, another RM was created, using touch sensors to detect when it
had run into something, which would activate a preprogrammed response. The technology remained
dependent on predetermined, humanly added knowledge of the environment. It did however not
rely on absolute movements, and was perhaps the first step towards programming goals and letting
the machine determine when they were accomplished. It was also in the 60s that the first real steps
in computer vision were taken, and the position and orientation of known, simple objects could be
determined from images in real time (Wichman, 1967).

1.1.1 1970-80

In the 1970s, more advanced methods for control were being researched, while most industrial
robots in use remained either teleoperated by humans, or copying a set of movements with simple,
slow control methods to guide them (Dubowsky and DesForges, 1979). One of the focuses of
research were methods of specifying the end of the movement in Cartesian coordinates, and have
them translated into joint positions and realized. Multiple approaches were used, such as solving
complicated polynomials for planning and using a simple PID-like controller to adjust the exact
inputs (Paul, 1972). In comparison, past methods would linearize the system and neglect external
loads (Dubowsky and DesForges, 1979). Adaptive methods that would not require exact knowledge
of the parameters of the RM were being developed. They could estimate both their parameters and
the mass properties of an external load (Paul, 1981). Still, they were based on linearization of the
system and simplifying the load to a simple mass attached to the end. Landau (1974) compiles a
survey of the state of the art research on model reference adaptive techniques, summarizing that
adaptive methods remain limited by the available computing power and detail of the modelled
dynamics of the system.

1.1.2  1980-90

The works of Uchiyama (1989) details the state of the art of control of robot arms by that time,
split into two main categories: motion control and force control. Motion control is based on
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Figure 1.2: A set of six-axis robots used for welding. Picture Wikipedia (b)

the control of the absolute position of the end-effector, split again into model-based control and
feedback control. Model-based control was a recent innovation for practical use, as it was only
possible with a fast and powerful computer. These methods also required a detailed model of the
system. The payout for these high requirements were faster and more tightly-controlled motions
than feedback methods could achieve. Feedback control is the evolution of the control methods
of the 70s and includes schemes like adaptive control methods. Feedback control generally makes
use of less detailed models, incorporating only the basic setup of the system while disregarding
the need to know the exact parameters. The drawback were slower movements and less ability to
quickly answer to new movement commands. In contrast to motion control methods, force control
methods were based on more direct interaction with the environment. The use of force and torque
sensors would detect collisions and exertions of force such as acceleration. These methods rely
on an accurate description of the system and the task to be performed when used in a computer-
operated system (Whitney, 1987). Still, most industrial robots depended on human expertise to
perform the planning and coordination, which was then stored for later playback (Lewis, 2004).
Force control was a useful tool for creating teleoperated robots (Uchiyama, 1989). Two important
pieces of research were the Computed Torque Method (CTM) (Luh et al., 1980) and the discovery
that "the conventional PD feedback servo-loop assures the globally asymptotic stability for point-to-
point position control (setpoint control) if the gravity force is carefully compensated.”,as stated by
Arimoto (1994) (Takegaki and Arimoto, 1981).

1.1.3  1990-2000

Model Predictive Control (MPC) was a major innovation of model-based control that became very
popular for a significant number of processes, but less so for the control of RMs (Allgower et al.,
1999). The Nonlinear Model Predictive Controller (NMPC) however, was found to be suitable for
point to point control and showed high efficiency of movement at the cost of significant compu-
tation costs. It required detailed knowledge of the system, and manual tuning of costs (reward
function equivalent) (Poignet and Gautier, 2000). Force control continued through two main paths:
impedance control and hybrid control. Yoshikawa (2000) surveys the state of the art of force control
by that time. There is little conceptual difference to the methods of the previous decade, though
advances in the theory allowed for a greater number of possible applications.
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While there have been advances in the control of RMs outside the field of Al since 2000, they
are less interesting with regards to understanding the past of RM control. Methods such as CTM,
MPC, NMPC and linear-quadratic controller (LQR) remain at the forefront of robot control. The
main improvements are in more powerful computers and efficient calculations (Ajwad et al., 2014),
(Sciavicco and Siciliano, 2012).

1.2 Robotic Manipulator Control Using Reinforcement Learn-
ing: State of the Art

Reinforcement learning (RL) is a subset of machine learning focused on an agent exploring an
environment and determining a policy for performing actions dependent on the state that maximizes
some give reward. RL can in some ways be framed as an evolution of the adaptive optimal control
methods mentioned earlier (Sutton et al., 1992). In terms of control theory, the policy to be optimized
is the controller, the environment is the plant, the reward is the cost function, the state is the and the
action is the control vector. One of the most significant differences between classical control and
RL methods are the latter’s ability to function without a priori information of the system model. RL
methods can be completely model free, or they can incorporate a model estimate either supplied by
the creator and adapted by the algorithm or completely self taught (Li, 2017). The general version
of an RL method as a function of the state s and action a taken to reach that state. The policy 7 is
the mapping of states to actions with the purpose of optimizing a sum of rewards R(s, a). The goal
of any RL method is to revise this policy to reach a "good" or, when feasible, optimal policy. Thus,
the sum of rewards is maximized.

Kober et al. (2013). RL is distinguished from other forms of Al learning in the exploration of the
environment. An RL based agent is not told what action it should take, or should have taken, but
instead is given only a reward based on the action taken. Thus, there is no information gained about
the reward from unexplored options, and the addition of uncertainty means that even previously
taken actions are not necessarily fully known. Actions may also have long reaching consequences
not immediately obvious.

The current field of RL is wide and varied, with some approaches being more applicable for RM than
others. Kober et al. (2013) divides these methods into two groups: value-functions approaches, split
into dynamic programming methods, Monte Carlo methods and temporal difference methods, and
policy search. A significant amount of past research have been based on value-function approaches.
These are however less suitable for RM due to factors such as a continuous state and action space and
high dimensionality. Some approaches leverages the best of both methods with what is called actor-
critic methods, where the value function, the critic, is used only for policy updates, and not for action
selection. A brief look at value-function methods includes State—Action—Reward—State—Action
(SARSA), the Q-learning method, its deep reinforcement learning variant deep Q-learning (DQL)
(Mnih et al., 2015) and an adaption for continuous action space, Normalized Advantage Functions
(NAF) (Gu et al., 2016). Recent policy search methods include guided policy search (GPS) (Levine
and Koltun, 2013), deep deterministic policy gradient (DDPG) (Lillicrap et al., 2015) and trust region
policy optimization (TRPO) (Schulman et al., 2015). Some methods are based on the stability
analysis of Lyapunov functions to create methods safer for physical systems (Chow et al., 2018).
Many methods for RL are "deep" methods, methods with one or more hidden layers between the
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Figure 1.3: A series of RMs learning to open a door, sharing their experience for a faster
learning curve. Picture: Yahya et al.

input and the output, such as a neural network. Li (2017) describes this and attempts to explain why
that is the case: "Why has deep learning been helping reinforcement learning make so many and
so enormous achievements? Representation learning with deep learning enables automatic feature
engineering and end to-end learning through gradient descent, so that reliance on domain knowledge
is significantly reduced or even removed. Feature engineering used to be done manually and is
usually time consuming, over-specified, and incomplete. Deep, distributed representations exploit
the hierarchical composition of factors in data to combat the exponential challenges of the curse of
dimensionality. Generality, expressiveness and flexibility of deep neural networks make some tasks
easier or possible".

A key motivation for this work is the question of why RL is necessary. To say that RL is better than
classical control, or will replace it in the foreseeable future would be questionable. There are many
problems and applications where the control methods of today are reliable, cheap and effective.
In a known environment the current industry standards certainly perform great work. Both robotic
control and Al control have greatly evolved over the previous decades, allowing new challenges to be
addressed in both fields. The challenge RL seeks to overcome, that today’s classical control cannot,
is that of flexibility, of adaptability. Many tasks require a human hand simply because there are
no current methods that can tackle the amount of varying situations that can be encountered. With
the last years’ explosion of available data and new techniques, RL is now in a place where these
problems can be faced, and hopefully solved. With this in mind, RL is headed towards becoming
a useful tool for control of RMs, and more and more combined methods employing both RL and
classical control are likely to surface in research in the near future.






Chapter 2

Theory

This chapter provides an introduction to the theory behind RL and a select few methods. Section
2.1 covers the fundamental theory RL is based on, and several introductory methods incorporating
various key aspects. Section 2.2 details more modern techniques and the workings of a modern
method making use of then.

2.1 The Basics of Reinforcement Learning

RL is a wide topic, and this project will only concern itself with giving an introductory explanation.
Subsection 2.1.1 will cover the basic theory behind all of RL, and Subsection 2.1.2 describes several
early methods demonstrating elements of the theory.

2.1.1 Fundamental Theory

Reinforcement learning deals with solving problems of sequential decisions with limited feedback.
Contrasted with supervised learning, where the agent is told the correct action it should have taken,
and unsupervised learning, where the agent receives no feedback at all, RL agents receive feedback
in the form of a scalar reward. The goal of the agent is to maximize the cumulative reward. The
agent does this by calculating or learning a policy of what action to take in each possible state. To
go further, some notation is required.

A Markov decision process (MDP) is a fundamental tool in RL. Any problem to be solved is almost
always stated as an MDP. An MDP consists of states, actions, transitions and rewards. The set of
states .S is a finite set of all the possible states of the system. A state characterizes all parameters
of the problem that are relevant for the agent. The set of actions A is the finite set of all possible
actions. Some actions may not be possible in certain states. The transition function T'(s, a, s)
describes the chance for ending up in a new state s’ after preforming action a in state s. It is
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a mapping from S x A x S — [0,1]. Lastly the reward function R denotes the reward of an
outcome. It may be dependent only on the state reached, R : S — R, or the path taken to reach it,
R:Sx AxS — R. The notation is usually simplified for a problem to only specify the parameters
that affects the outcome. MDPs also have the Markov Property, which states that the next state is
only dependent on the current state. That is, the past is irrelevant; only the current state and the
action taken affect the outcome of each state transition.

As stated in Section 1.2, the goal of the RL agent is to maximize the received reward. With the
notation of the MDP, we can formulated that reward as E?:lm. Usually we want to discount the
value of future rewards with a factor v € [0,1] and use winf Al Lastly, the average reward
variant %Ef‘:lm may also be used. Given the MDP {S, A, T, R} the agent attempts to learn a
policy m : S — A. There also exists a stochastic variant 7(s,a) — [0, 1]. Often, the problem the
RL agents are exploring is a stochastic problem, and the exact outcome of an action is not certain. In
this case it is useful to consider the expected reward. In the deterministic case the expected reward
is the exact reward, so the same notation may be used for both. Since we want to maximize the
cumulative reward, we must also take into account the expected future rewards. With this we can
assign each state s an expected value if we follow a policy 7, defining the value function V™ (s).
Here, the discounted infinite horizon is used as the model for cumulative rewards. Equations (2.1)
and the similar state-action value function (also known as the Q-function), Equations (2.2), which
additionally specifies the first action taken before following the policy afterwards, describes this
expected value.

inf
V™(s)=E [nyiri+1‘| Vs e S. 2.1
1=0
inf
Q" (s,a) =E lz Wiri+1] Vs € S,Va € A. (2.2)
i=0

Equation (2.3), the Bellman equation, gives a recursive definition the value function, creating a set
of nonlinear equations:

V7T(s) = Z T(s,n(a),s") (R(S,W(a)7 s') + ’yVﬂ(s')) Vs € S. (2.3)

s'es

The Bellman equation describes the value when following any policy. An optimal policy 7 will
fulfill V™" (s) > V™(s) Vs € S, V. For simplicity V™ is denoted V*. The Bellman optimality
equation (2.4) gives an expression for this optimal value function, which can also be phrased in terms
of the Q-function as equation (2.5).

V*(s) = max Z T(s,a,s") (R(s, a,s’) + ny*(s/)) Vs € S, 24
s'esS
Q" (s,a) = Z T(s,a,s") (R(s, a,s’) + quxQ*(s', a’)) Vs € S,Va € A. (2.5)

s'eS
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The optimal policy may be extracted from the value function or the Q-function using (2.6) or (2.7)
respectively.

7(s) = argmax Z T(s,a,s") (R(s7 a,s’) + 7V<s’)) Vs € S9,. (2.6)
o s'eS
w(s) = argmax Q(s,a) Vs € S,. 2.7

a’

2.1.2 Introductory Methods in RL

The following subsections will describe a selection of basic methods for solving textbook RL prob-
lems.. At first, perfect knowledge is assumed in Policy Iteration (PI) and Value Iteration (VI), then
exploration is added with Q-learning, and continuous states with REINFORCE.

2.1.2.1 Policy and Value Iteration

The calculation of the optimal value function, and so the optimal policy, is a set of non-linear
equations. This is complicated and time consuming to solve analytically. Instead, it can be shown
that iteratively computing the value function using the Bellman Equation as an update rule, as done
in equation (2.8), will converge to the optimal value function. Because convergence happens in the
infinite horizon, the update is usually stopped when the difference between the old value and the new
value is below some margin o.

Vit1(s) = Z T(s,a,s") (R(s, a,s’) + ’ka(s/)>. (2.8)

s'es

PI starts with some arbitrary policy 7o, and calculated the value function V™ using the method
described above (policy evaluation). Then it uses this value function to compute an improved policy
w1 (policy improvement), which in turn is used to calculated V™ and so on. This continues until
there is no change in policy from one iteration and the next. This policy must then be the optimal
policy, as the corresponding value function fulfills the Bellman optimality equation. Algorithm 1 is
the pseudocode for performing this calculation in two alternating functions until termination.



10 2.1. The Basics of Reinforcement Learning

Algorithm 1 Policy Iteration

Initialization
V(s) € Rand 7(s) € R arbitrarily forall s € S

1. Policy evaluation:

while A > o do

A+—0

for s € S do
v<+— V(s)
V(s) = X [T(s.7(s),5") (Rls, 7(5), 8) + 9V ()]
A +— mazx(A, v —V(s)])

end

end
2. Policy Improvement:

while not stable do
stable = True

for s € Sdo
Told = 71'(8)

m(s) +— argznax Yoo T(s,a,s") (R(s, 7(s),a) + 'yV(s’))]

if Told 7é 7T(8) then
| stable = False
end
end
if not stable then
| preform Policy evaluation()

end

end
Pseudocode from Wiering and Otterlo (2012)

The drawback of PI is that the policy evaluation is repeated multiple times. An alternate method
of calculating the optimal policy is to instead combine the action of policy evaluation and policy
improvement to 1 step and repeat that until the value function converges. Then the optimal policy
can be extracted from the value function at the end. Pseudocode for the VI method is shown in
Algorithm 2.
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Algorithm 2 Value Iteration
Initialization
V(s) € R arbitrarily for all s € S except V (terminal) = 0

while A > o do

A<+—0

for s € S do
v<+— V(s)
V(s) «— max ), [T(s,a,s’) (R(s, a,s’) + ’yV(s’))}
A +— mazx(A, v —V(s)])

end

end
for s € S do
‘ n(s) = argmax Y, P(s',r|s,m(s))[r + vV (s')]

end
Pseudocode from Wiering and Otterlo (2012)

2.1.2.2 Q-learning

PI and VI both lack a key part of the concept of RL: exploration. The requirement of knowing the full
model is one that RL attempts to circumvent, by taking actions and using the feedback received to
understand the system. Some methods use this to model the transition function, while others, like Q-
learning, use it in a model-free way to directly choose actions. Unlike PI and VI, Q-learning interacts
with the environment while learning the policy. Exploring methods are split in two categories: on-
policy and off-policy. On-policy methods incorporate exploration and exploitation as one policy,
while off-policy methods can explore with a different strategy than what it consider optimal for
exploitation. Q-learning have a lot in common with on-policy methods, but is considered off-policy
as it updates the Q function based on the greedy policy, but may take a random, non-greedy action.
That is, it does not exactly follow the policy it is creating.

Q-learning agents updates the value of a state-action pair (s, a) based on the result of taking action
a while in state s, similar to the update rule of PI and VI, but bound by having to actually perform
the action before learning the reward of the outcome. It will in some way chose an action, and
update the Q function based on update rule in (2.9). A learning rate o decides how much importance
should be given to the new information compared to the previously learned value. In a deterministic
environment o = 1 will cause the Q-function to quickly reach the true value. Q-learning can be
shown to converge as long as the method of choosing the action leads to every state being visited
an infinite amount of times. The most common method of choosing the action is e-greedy, which
will choose the greedy option based on the already learned Q-function, with a chance € € [0, 1]
of choosing a random action. The chance often starts high, and is then lowered over time as the
Q-function approaches the true values.

Qr+1(8t,at) = Qr(st,at) + Ol(rt + ngka(StH, a) — Qx(st, at))~ (2.9)
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Algorithm 3 Q-learning
Require discount factor ~, learning rate « Initialize Q arbitrarily

for each episode do

s is initialized as the starting state

while s is not a goal state do

choose an action a € A(s) based on Q and an exploration strategy
perform action a

observe the new state s’ and received reward r

Q(s,0) = Q(s,a) + a7 +7 max Qu(s',a') = Qls,a)

§i=S

end

end
Pseudocode from Wiering and Otterlo (2012)

2.1.2.3 REINFORCE

All of the described methods have so far been discrete, tabular value function methods. These form
an important base for the topic of RL and the understanding of the state value functions and state-
action value functions. However, their discrete nature makes them less applicable to the task of
controlling an RM. This brings us to REINFORCE, a policy gradient method. REINFORCE is a
stochastic, continuous method based on creating a parameterized policy directly, without the use
of a value function. The policy has a parameter vector called @ giving the notation 7(a|s,0) =
Pr(A: = a|S: = s,0: = 0) for the probability of selecting action a at time t while in state s if
the parameter is 6. The second new notation is J(0), denoting a scalar performance measure used
to update the policy parameter vector. Policy gradient methods are called so because they seek to
use the gradient of the performance measure to update the policy parameter vector through gradient
accent. The general update rule is

—

0t+1 = 0t + aVJ(Ot), (210)

where AJ(6:) is an estimate whose expectation approximates the gradient of 6.

In particular, the update rule of REINFORCE is

0 « 0 + ay'GVinm(As|St, 0), 2.11)
where G is the return given by
T
G+ Z AR, (2.12)
k=t+a

and t iterates through each step of the episode, from 0 to T-1. This update is performed at the
end of each episode, meaning the policy parameter and thus the policy remains unchanged during
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each episode. REINFORCE has good convergence properties in theory, but often ends up with high
variance.

2.2 Modern RL

In the last decade the field of RL has experienced a huge growth, with new supporting techniques
and methods. This section will cover a portion of this relevant to the control of an RM.

2.2.1 Deep Learning and Neural Networks

A neural network (NN) is at its most simple a function approximator, taking some input and trans-
forming it to some output. The least complex form of an NN is a perceptron, developed in the
50s (Rosenblatt, 1958). A perceptron takes a number of inputs =1 to z, each multiplied with a
corresponding weight w1 to ws as well as a scalar bias b to produce a binary output. An NN is a
network of perceptron stacked in parallel, then layered so that each stack of perceptrons take input
from the previous layer (or the function input for the first layer) and provides its results as inputs
from the next input (or as the function output from the last layer). The layers between the input
layer and the output layers are referred to as hidden layers. A modern NN may use several different
non-binary activation methods for deciding the output of a perceptron such as Sigmoid, Softmax or
Rectified linear units (ReLu). In common most activation methods is the limitation that the output
is a scalar € [0, 1] or € [—1, 1]. These have different effects on learning rate and are fit for different
applications. Sometimes a mix of different functions can be effective, and the choice of activation
function is a mayor part of designing a NN. One key benefit of these common activation methods
are that they introduce non-linearity, allowing the NN to represent non-linear functions.

When training an NN, the parts of the system that changes are the weights. This is done through
backpropagation with the use of a loss function. A loss function is a measure of how far off target
the output was for any given input. This is a whole topic on its own, and a large part of each RL
method using an NN is the design of this function. The important part is that as this function gives
some form of measure of how close an output is to being correct it can be used improve the NN.
This is done using the gradient of the loss function and updating each weight based on this gradient
through backpropagation. It uses the chain rule to update each layer in turn, starting with the weights
between the last hidden layer and the output, propagating backwards through each layer.
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Hidden
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Figure 2.1: An NN with one hidden layer taking three scalar inputs, providing two scalar
outputs. Picture: Wikipedia (a)

2.2.2 Trust Region

Trust region is a term for the area around the current search point where the approximation, generally
the current function approximation, is trusted to be correct. This is used when updating an approxi-
mation to avoid moving too far in any direction, as the uncertainty of the approximation outside the
trust region means that while it looks like an improvement, it could end up being worse. When an
update would case a value to move outside the trust region, it will instead be stopped at the boundary.

2.2.3 Proximal Policy Optimization

Proximal Policy Optimization (PPO) proposed in Schulman et al. (2017) has become hugely popular
for its good convergence and high performance. It is an on-policy method suited for complex
continuous state- and action-spaces; exactly what is needed to control an RM. PPO is a recent
method, published just over 1 year ago, and already widely well regarded in research for its potential
applications. PPO is often implemented as an actor-critic method, defining an value function to be
trained together with the policy function. This is used to create a loss function LY = (Vy(s;) —
V,'*"9¢)2 When evaluating a new policy it is compared to the old policy, so Ry (6) defines the ratio
between the new policy and the old so that a measure for the improvement L7 is defined as

LOPI() = {m At} — B [r(®)A], 2.13)

where A is the estimated advantage function. Maximizing this is stated to lead to excessively large
policy updates, so the method proposes several different ways of dealing with this issue. One version
is to use trust regions to set restrictions for the new policy, another to adapt the strict restrictions to
instead be a penalty, but the main, simplest and most promising trick is to use clipping on this
function, but only when the change is too positive, creating
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LCLIP(H) =F [min(m(@), clip(r«(6),1 — e, 1+ e)At)], (2.14)

with € being a hyperparameter for the method. The complete function for optimizing the policy then
becomes

LOLIPHVE+S gy — | [LCPI(H) — LY+ CQS[TI’GKSt):I , (2.15)

where c1 and c2 are hyperparameters and S an entropy bonus.

The method runs through a number of iterations where NV actors each interacts with an environment
for T' timesteps, creating N * 1" datapoints. These are then used to optimize the policy, before a
new batch runs using the new policy, repeating until the agent is finished or simulation stopped. The
process is shown in Algorithm 4.

Algorithm 4 PPO, Actor-Critic Style

for iteration=1,2,... do
for actor=1,2,...,N do
Run policy 7go14
Compute advantage estimates Al, e Ar
end
Optimize surrogate L wrt 8, With K epochs and minibatch size M < NT
Oota <+ 0
end
Pseudocode from Schulman et al. (2017)

The result is a method that avoids overly optimistic adjustments in order to avoid the inaccuracies
introduced be moving further away from the old policy, and thus the parameters under which the
current data was gathered.






Chapter 3

Implementation

This chapter will go through the specifics of how each method was implemented, what tools where
used and which decisions were made.

3.1 Tools

Each method was implemented using Python version 3.6.1 using PyCharm community edition as
IDE. The Scipy and Numpy libraries were used for calculations on vectors and matrices, and Ten-
sorFlow and Keras were used for the NNs. Open Al: gym were used for it’s implementations of
many classical problems in RL, and the RM used for the manipulator problems. The environment
provides the number of states, the number of actions and a list of each possible outcome of action
a taken from state s. Additionally the implementation offers the ability to take actions and receive
feedback about the outcome.

3.2 FrozenlLake

The FrozenLake problem is a classic introductory problem in reinforcement learning. An agent
has to navigate a slippery lake, avoiding falling into a hole and reaching the goal. The problem is
episodic, stochastic, stationary and discrete. The lake is modeled as a 4x4 grid, for a total of 16
possible states. Some states are holes, giving a negative rewards and ending the episode, and one
state is the goal state, giving a positive reward and ending the episode. All other states give zero
rewards. In each non-terminal state there are four available actions, moving up, down, right or left.
When taking an action, the agent has a 33% chance of moving as intended, and 33% to move to
either side instead. It will never move in the opposite direction of the movement chosen. Moving
into a wall leaves the agent in the previous state. As will be seen later, this slippery surface leads
to some unintuitive policies. Perfect information about the transition function is available, allowing
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methods such as PI and VI to solve the problem. The agent can also be denied this information, and
be given only the result of each action as feedback.

s F F F
F H F H
F F F H
H F F

Figure 3.1: The 4x4 grid of the frozen lake problem. Picture: Analytics India Magazine

3.2.1 Policy and Value Iteration

There are three main ways to affect the policy iteration algorithm: the initial policy o, the initial
value function Vo(s) and the discount factor . The effect of  is how much value is placed on
future reward. There are three values that are interesting to look at the effects of: 0, <0,1> and 1.
The effect of the initial policy and the initial value function is the direction of the initial search, and
thus the number of iterations needed. This can be clearly seen by considering the case where the
initial policy and initial value function is the optimal policy and optimal value function respectively.
Policy iteration is likewise parameterized, excepting the lack of policy iterations and thus setting of
an initial policy.

3.2.2 Q-learning

As the Q-learning algorithm interacts with the environment it requires a few extra configurations.
The agent will go through 25 000 episodes for each configuration. An episode is defined to end when
the agent lands in a hole, reaches the goal, or reaches 1000 steps. It explores with epsilon greedy,
starting with €9 = 0.5 updating at each step so that €;+1 = €; * 0.999. Note that € is set to 0.5 at the
start of the algorithm, not at the start of each episode.

The algorithm will then be run with different values for the learning rate (« = 1, = 0.9, =
0.1, = 0.01) and discount factor (y = 1,y = 0.9). The performance is measured as a running
average of the rewards from each episode.
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3.3 CartPole

The cartpole problem is a classic continues problem where the algorithm attempts to keep a pole
upright on top of a cart, by moving the cart left or right. Different versions use discrete actions
(LEFT, RIGHT) or continuous from -1 to 1. The state shown to the agent is the poles current angle
and angular velocity, and the carts current position and velocity. Each episode is failed if the cart
moves to far from the center or the pole leans too far to either side. The agent gets a reward of 1
per timestep alive, as well as a penalty for moving away from the center of the stage, for a total
r =1 — abs(z) = 0.01 given at each timestep. . The episode also ends if 500 points is reached.

Figure 3.2: The CartPole environment rendered by Gym

3.3.1 REINFORCE

Like the Q-learning algorithm, REINFORCE learns through interaction. It interacts with the cartpole
environment, attempting to keep the pole upright for 500 steps. The hyperparameters used are set
to learning rate = 0.001 and discount factor v = 0.99. The policy function is implemented
through a deep NN with 2 or 3 hidden layers. All hidden layers have the same number of nodes, 10,
24 or 100. The NN is trained using Categorical Crossentropy (CC) as loss function and "adam" as
optimizer. CC is reduced to H (p,q) = A * log(m(s,a)) as it is used. The implementation is based
on the implementation by Woongwon et al. (2017).

3.3.2 Proximal Policy Optimization

The implementation of PPO used is based on an Keras implementation by OctThel6th (2018). The
policy estimator is created using an NN with 2, 3 or 4 hidden layers with equal numbers of nodes.
The number of nodes used varies between 10 and 200. The implementation uses a separate but
identical value estimator. The hyperparameters used for all runs are presented in Table 3.1.
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Learning rate 0.0001
Discount factor 0.99
Entropy coefficient 0.001
Cliprange 0.2
Epochs 10
Batch size 64
Number of steps per update 256

Table 3.1: Hyperparameters for PPO

3.4 Manipulator

Open AI GYM contains a robotic manipulator simulated using the physics engine Mujoco. There
are multiple environments using this implementation, including FetchReach and FetchPush. All
environments uses a state containing information about each joint of the manipulator, both position
and angular velocity. Additionally, there are a few states related to the goal, dependent on the
exact environment. PPO as described in Subsection 3.3.2 is used as the agent for all manipulator
simulations.

For FetchReach this is the XYZ coordinates for the goal position. The action is a four continuous
values denoting the XYZ coordinates to reach for the next movement and the final value controls
the parallel gripper at the end. The feedback is given in one of two variations. Sparse rewards
give -1 each step, and a O when the goal is reached, ending the episode. Dense rewards give
negatively proportional to the euclidean distance between the end manipulator and the goal. The
goal is considered reached if the end manipulator is within a certain distance from the goal. The
episode can also end after 50 steps if the goal is not reached by that time, or if the agents sets the
manipulator outside the operational space.

FetchPush is a problem where the goal is to move a block to a set location on the ground. The ma-
nipulator may simply push the block without picking it up. FetchPickAndPlace is a more advanced
version, where the goal is suspended in the air, forcing the manipulator to grab the block to achieve
the goal. The non-completion endings are as for FetchReach, while the dense and sparse rewards
are instead based on the distance between the block and the goal. This means that the agents initial
actions have no impact on the reward, and it must first reach the block before it will receive any
feedback.
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Figure 3.3: The FetchReach environment rendered by Gym. The red dot represent the
target area.






Chapter 4

Results

This chapter will cover the output and results of each implemented method. Section 4.1 contains
the results from the methods solving the FrozenLake problem, Section 4.2 the methods solving the
CartPole problem, and Section 4.3 the results from the various RM problems.

4.1 FrozenlLake

The FrozenLake problem was solved using PI, Subsection 4.1.1 , VI, Subsection 4.1.2, and Q-
learning, Subsection 4.1.3.

4.1.1 Policy Iteration

Using all zeroes as the initial value function and the initial policy, v = 1 and o = 107% it takes
a total of 7 iterations to reach the optimal policy. The value function and the policy it generates
is shown in Tables 4.1-4.8 The final policy and the value of each state is show in Table 4.8. The
holes are shown as red cells, and the goal as green. Repeating the algorithm with v = 0.9 results
in a similar policy as seen in Table 4.9, with each state having a lower value. The algorithm also
stopped one iteration earlier. Other values of v € <0, 1> are similar. Using v = 0 updates the one
non-terminal state adjacent to the goal with the value 0.333, but the value does not spread and no
usable policy is created. From table 4.10 it can be read that as v = 1 and the value function of the
starting state (0,0) is 0.824 the expected reward using this policy from this position is 0.824. As this
is always the starting position, and this is the optimal policy, it can be interpreted as a 82.4% chance
of reaching the goal when following an optimal policy.
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4.1. FrozenlLake
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Table 4.1: Policy iteration, iteration zero

— | — | — | 0] 0] 0.038 | 0019
— | |« | « 0] 0| 0.077 0
— | — | — | 0] 0] 0.192 0
— |« | ) | « 0| 0| 0.500 1
Table 4.2: Policy iteration, iteration one
— 4| =11 0| 0.061 | 0.184 | 0.184
— || | 0 0 0.184 0
— | L |« |« 0| 0.237 | 0.368 0
— | | | = |« 0 | 0.342 | 0.684 1
Table 4.3: Policy iteration, iteration two
L l=1=11 0.144 | 0.114 | 0.227 | 0.227
— | = | — |« 0.174 0 0.227 0
1 |« | « 0.205 | 0.409 | 0.455 0
— | = | = |« 0 0.568 | 0.727 1
Table 4.4: Policy iteration, iteration three
~— | T /=117 0.750 | 0.542 | 0.333 | 0.333
— | — | — | « 0.750 0 0.333 0
T |« | « 0.750 | 0.750 | 0.667 0
— | = | | | « 0 0.833 | 0.917 1
Table 4.5: Policy iteration, iteration four
— | T |« 7T 0.780 | 0.658 | 0.536 | 0.536
— || | « 0.780 0 0.415 0
T ]« | « 0.780 | 0.780 | 0.707 0
— | = | ] | « 0 0.854 | 0.927 1

Table 4.6: Policy iteration, iteration five
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~ | 7T T T 0.823 | 0.823 | 0.823 | 0.823
— | | « | « 0.823 0 0.529 0
T 1|« | « 0.823 | 0.823 | 0.765 0
— | = | | | « 0 0.882 | 0.941 1

Table 4.7: Policy iteration, iteration six. Final policy have been reached

PRI B I S 0.823 | 0.823 | 0.823 | 0.823
PR Ry RV R 0823 | 0 | 0529 0
S I i 0.823 | 0.823 | 0.765 | 0
P R IR g 0 08820941 | 1

Table 4.8: Policy iteration, iteration seven. Final value function has been reached, same
policy is generated and algorithm stops

— | T« |71 0.069 | 0.061 | 0.074 | 0.056
— | — | — | « 0.092 0 0.112 0
T L]« | « 0.145 | 0.247 | 0.300 0
— | = | ] | « 0 0.380 | 0.639 1

Table 4.9: Policy iteration with v = 0.9, final policy and value function.

4.1.2 Value Iteration

Using all zeroes as the initial value function and the initial policy and v = 1, it takes a total of 991
iteration for the value function to converge within the threshold o = 108, The final policy and the
value of each state is show in Table 4.10. Using v = 0.9 the iterations required is reduced to 55, 10
for 0.5 and 5 for 0.2, all producing the same policy. When reduced even further however, the policy
changes, shown in Table 4.11 for v = 0.1. At this point the value does not spread all the way to the
top-left state before the change from one iteration to the next is bellow . With v = 0 the effect is
exactly the same as for PI, stopping after a single iteration.

— | 1 T T 0.824 | 0.824 | 0.824 | 0.824
— | | « | « 0.824 0 0.529 0
T L]« | « 0.824 | 0.824 | 0.765 0
— | = | ] | « 0 0.882 | 0.941 1

Table 4.10: Value iteration using v = 1, taking 991 iterations to reach convergence
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— | L] =11 0 0 0.000 | 0.000
— |~ |« | « 0 0 0.000 0
1 |« | « 0.000 | 0.000 | 0.000 0
— | = | |l | « 0 0.000 | 0.033 1

Table 4.11: Value iteration using v = 0.1, taking 4 iteration to reach convergence. Values
shown as 0.000 are very small non-zero numbers.

4.1.3 Q-learning

The algorithm was repeated with different parameterizations of o and ~y, with the results being
calculated as the moving average reward across 25 000 episodes each. The results are shown in
Figure 4.1. They were chosen for their performance as measured by the moving average reward.

Running average reward of Q-learning with y=0.1 on FrozenLake
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Running average reward of Q-learning with y=0.5 on FrozenLake
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Figure 4.1: Results after 25000 episodes of FrozenLake using Q-learning with different

parameters
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Additionally the policy and extracted value function for the various configurations are in Tables
4.12-4.17. Most variations of the Q-learning algorithm approaches something near the maximum
average score of 0.824, but there is a clear difference between parameters. The runs with o = 0.01
performs the worst for three out of four values of ~, and second worst in the last. Similarly the runs
with o = 1 performs second worst in two runs, and in the run with v = 1 fails completely. o = 0.9
and 0.1 both gives the optimal policy when v = 0.9. The left side of Table 4.14 and Table 4.15
shows this policy.

0.947 | 0.947 | 0.947 | 0.947
0.794 0 0.989 0
0.309 | 0.975 | 0.105 0

0 0.916 | 1.000 1

LI« T|—

—=|T|T|—
Tt

1|4 ||

Table 4.12: Policy after running 25000 episodes with Q-learning, o = 0.9 and v = 1.
Note that this policy will be stuck in the upper row if employed as is.

T T T T 0.829 | 0.829 | 0.829 | 0.829
— | | « | « 0.736 0 0.331 0
T |« | « 0.593 | 0.535 | 0.460 0
— | = |« | « 0 0.528 | 0.512 1

Table 4.13: Policy after running 25000 episodes with Q-learning, & = 0.1 and v = 1.
Note that this policy will be stuck in the upper row if employed as is.

— | T« |7 0.047 | 0.126 | 0.023 | 0.000
— | — | = | « 0.197 0 0.016 0
T L]« | « 0.605 | 0.663 | 0.882 0
— | = | ] | « 0 0.493 | 0.940 1

Table 4.14: Policy after running 25000 episodes with Q-learning, « = 0.9 and v = 0.9

T 0.062 | 0.061 | 0.111 | 0.025
— 0.100 0 0.195 0
— 0.157 | 0.276 | 0.309 0
— 0 0.367 | 0.750 1

T~ 1|1
L~ T|—

“ ||

Table 4.15: Policy after running 25000 episodes with Q-learning, « = 0.1 and v = 0.9
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1 T« 1 0.000 | 0.000 | 0.001 | 0.000
— |~ |« | « 0.000 0 0.001 0
T =1 1 |« 0.000 | 0.000 | 0.008 0
— | = | T |« 0 0.000 | 0.001 1

Table 4.16: Policy after running 25000 episodes with Q-learning, & = 0.9 and v = 0.1

=S| = | « | « 0.000 | 0.000 | 0.000 | 0.000
R I I R 0.000 0 0.000 0
= | = ] | « 0.000 | 0.001 | 0.009 0
— | | = |« 0 0.010 | 0.347 1

Table 4.17: Policy after running 25000 episodes with Q-learning, « = 0.1 and v = 0.1

4.2 CartPole

The CartPole problem was solved using first REINFORCE, then for comparison, PPO.

4.2.1 REINFORCE

Figure 4.2 to Figure 4.7 shows the reward per episode across 4000 episodes each. There were no
large variations in computation speed, as the simulation took far greater time in comparison. Thus,
while there were major variations in speed, they were dependent on the length of the episode, which
is equal to the score, and negligibly correlated with the complexity of the NN. The agent using an
NN with three hidden layers of 24 nodes, Figure 4.6, and both agents using 100 nodes per layer,
Figures 4.4 and 4.7, suffers a complete non-recovering failure, though they do manage to solve at
least one or more episodes first. The two layered 24 node network also failed in a second run seen
in figure 4.8. The remaining networks also suffer from repeated intermittent complete failures for

some number of episodes, before rapidly recovering.
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Figure 4.2: Reward per episode for REINFORCE with a NN with two hidden layers of ten
nodes applied to the CartPole problem.
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Figure 4.3: Reward per episode for REINFORCE with a NN with two hidden layers of 24
nodes applied to the CartPole problem.
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Figure 4.4: Reward per episode for REINFORCE with a NN with two hidden layers of
100 nodes applied to the CartPole problem.

JM |

T T T T T T T
0 500 1000 1500 2000 2500 3000 3500 4000

500 4

400 -

300 4

200 4

100 -

Figure 4.5: Reward per episode for REINFORCE with a NN with three hidden layers of
ten nodes applied to the CartPole problem.
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Figure 4.6: Reward per episode for REINFORCE with a NN with three hidden layers of
24 nodes applied to the CartPole problem.
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Figure 4.7: Reward per episode for REINFORCE with a NN with three hidden layers of
100 nodes applied to the CartPole problem.
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Figure 4.8: A second plot of reward per episode for REINFORCE with a NN with two
hidden layers of ten nodes applied to the CartPole problem.
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4.2.2 Proximal Policy Optimization

PPO ran a total of 6 times, varying the NN each time. The different configurations as well as
their computation times for 4000 episodes of CartPole can be seen in Table 4.18. The reward is
plotted against the episode number for each of the runs and shown in Figure 4.9 and Figure 4.10.
Additionally the actor and critic loss for runs using three hidden layers are shown in Figure 4.11 and
Figure 4.12 respectively. As with REINFORCE there are intermittent drops in performance, but they
are universally quicker to recover. Additionally, for the agents using three hidden layers the drops
are far shorter, still maintaining more than 250 points per episode in most cases.

One notable result is in the agent using three hidden layers with 24 nodes each, in Figure 4.10
near the 4000th episode there is a large drop that does not fully recover by the end of the run. In
Figure 4.11 and Figure 4.12, there is a clear reaction shortly afterwards, corresponding to when the
performance starts to recover. By far the most consistent performance is achieved by the agent using
three hidden layers of 10 nodes each, though it is slow to reach stability. In general simpler networks
learns faster while more complex networks are more stable once trained.

Layers | Nodes per layer Time
2 10 16m 17s
2 24 17m 30s
2 100 20m 11s
3 10 19m 24s
3 24 21m 34s
3 100 25m 47s

Table 4.18: Computation time for different runs of PPO using neural networks with the
specified number of layers and nodes per layer
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Figure 4.9: Plot of reward against episode number for PPO solving CartPole. The three
graphs are all using two hidden layers. Red is 100 nodes per layer, Blue is 24 and Orange
is 10.
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Figure 4.10: Plot of reward against episode number for PPO solving CartPole. The three
graphs are all using three hidden layers. Grey is 100 nodes per layer, green is 24 and pink
is 10.
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Figure 4.11: Plot of actor loss against batch number for PPO solving CartPole. The three
graphs are all using three hidden layers. Grey is 100 nodes per layer, green is 24 and pink
is 10.
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Figure 4.12: Plot of critic loss against batch number for PPO solving CartPole. The two
graphs are both using two hidden layers. Pink is 24 nodes per layer, blue is 128.
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4.3 Manipulator

Figure 4.13 through Figure 4.15 shows the results from the FetchReach problem, using two layers.
The graphs are smoothed for readability; the original values can be seen faded in the background.
There is high variance between individual episodes due to the random distance from the initial
position to the target. Compared to the graphs generated when solving the CartPole problem,
Figure 4.13 and Figure 4.14 shows noticeable less smooth developments, indicating there are many
adjustments made after each batch attempting to model the far more complex system. It also takes
far more episodes to create a functional policy. The more complex NN performs far better than the
simpler 24 nodes per layer NN.

Figure 4.16 shows the results from the FetchPush problem, where the agent should push a block
to specified location (not necessarily pick up), and Figure 4.17 shows the result from the Fetch-
PickAndPlace problem, where the agent is to pick up a block, and move it to a location suspended
in the air. Both figures shows result equivalent to that of taking random actions at each step.

Actor_loss

0.000 200.0 2000 600.0 800.0 1.000k 1.200k 1.400k 1.600k

Figure 4.13: Plot of actor loss against batch number for PPO solving FetchReach. The two
graphs are both using two hidden layers. Pink is 24 nodes per layer, blue is 128.
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Figure 4.14: Plot of critic loss against batch number for PPO solving FetchReach. The
three graphs are all using two hidden layers. Red is 100 nodes per layer, Blue is 24 and
Orange is 10.
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Figure 4.15: Plot of reward against episode number for PPO solving FetchReach. The two
graphs are both using two hidden layers. Pink is 24 nodes per layer, blue is 128.
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Figure 4.16: Plot of reward against episode number for PPO solving FetchPush. The two
graphs are both using three hidden layers. Red is 128 nodes per layer, blue is 256.
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Figure 4.17: Plot of reward against episode number for PPO solving FetchPickAndPlace,
using three hidden layers of 128 nodes each.



Chapter 5

Discussions

5.1 Methods in Reinforcement Learning

VI and PI are two very similar methods used for solving the same category problems, MDPs where
each element of the problem is known. The results from Sections 4.1.1 and 4.1.2 show that the
same policy is reached for the same values of ¢ and . However, the resulting value functions differ
slightly between the methods, even while using the same V°(s) and v, as PI does not guarantee
converging on the true value of each state. From Table 4.10, it can be concluded that as the value
function of the starting state (0,0) is 0.824, there is an 82.4% chance of reaching the goal when
following an optimal policy. VI requires fever calculations to reach convergence, but each of those
calculations for each of those steps calculates the nonlinear max function, whereas PI computes
linear operations for the majority of the operations, only using the max operator during the infrequent
policy improvement iterations. Each method demonstrate the iterative working of an RL agent
solving a problem.

For solving the same FrozenLake problem, Q-learning is massively slower and less effective, as it is
denied the perfect information of the environment and must rely on exploration. Tables 4.14-4.17
shows that most configurations resulted in the agent learning a policy quite close to the optimal
policy. From Figure 4.1 it can be seen that Q-learning agents with less extreme values for a perform
similarly well in most cases, indicating that the optimal parameter values lies somewhere in between.
As they switch places dependent on the value of -, there is likely no one value that would lead to
the best performance in all cases. There is also a clear correlation between parameter pairs that learn
quickly and converges on the highest values.

REINFORCE manages to solve the task of holding the pole upright for the full length of an episode
across all configurations, but is also highly unstable. Multiple agents ends up failing consistently
after a few hundred episodes, and never recover. Notably they are employing the NNs with the most
nodes. It is clear that this would be unsuitable for implementation in any system where failure can
cause damages.
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PPO, when applied to the same CartPole problem achieved far more promising results. There is
a clear progression of learning, and a mostly consistent policy is quickly achieved, often within
one- to two-hundred episodes. The same intermittent drops in performance are present with less
intensity and frequency, and the collapses without recovery do not happen. After a longer than usual
series of low-performance by the agent employing an NN of three hidden layers of 24 nodes, there
is a reaction in the actor and critic loss calculations. Interestingly, the actor loss is positive in this
instance, unlike the earlier changes, which where for all runs an approximately smooth graph going
from some negative number linearly up to zero. The reason for the linear effect is due to the clipping
function that prevents any too large change is policy that is perceived to cause a better result. From
Table 4.18 there is a trend that larger, more complex NNs have a noticeable impact on computation
time, even when accounting for the differing length of episodes.

5.2 Manipulator Control

For the other manipulator problems PPO were applied too, the agents were in all runs unable to get
any feedback from the exploration, as it never stumbled upon anything that led it closer to the goal.
This could potentially be solved through an extremely long training session, until it stumbles upon a
reward, but this would still not guarantee that it will learn anything useful. A recommendation from
the creators of the problem is to use Hindsight Experience Replay (HER), (Andrychowicz et al.,
2017). This is used to let the agent pretend that whatever it just did, was the actual goal, and learn
how those action, if that was the actual goal, would give a reward. Through careful use, this may
allow the agent to infer the workings of the system and what actions are lead to a reward. Another,
simpler, technique would be to let the robot start closer to a beneficial position for every other
episode during early training, drastically increasing the chance that it will stumble upon a reward.
A third possibility would be to separate the problem into multiple parts, locating and moving the
manipulator to the block, grasping the block and finally moving the block.

For all runs on the same problem, the only variation in configuration of the agent have been in the
size of the NN. Further attempts could see improvements in performance on the FetchReach problem
by adjusting other parameters, such as the activation function of the nodes and the hyperparameters
of the PPO agent. These adjustments are unlikely to affect the success on the problems where the
agent never found an action that changed the reward received, but may improve performance when
such an action is discovered.
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Conclusions

This project have introduced, implemented and looked at the results for various methods of control
through RL. From the simple tabular methods PI and VI and the temporal difference method Q-
learning solving the FrozenLake problem, to the more complex REINFORCE and PPO solving
the CartPole problem and finally the PPO method employed for control of a simulated robotic
manipulator.

PI and VI are very simple methods that demonstrate the basics of RL. They require complete
knowledge of the system, including the transition function and the reward function, which makes
them unsuitable for most real world control applications. They are limited to discrete state-space
and action-space, further invalidating their usability. Q-learning expands on the theory of RL by
introducing exploration and exploitation, but remains bound by discrete state- and action-space. The
method’s exploration strategy does not avoid failures, putting any real world application controlled
using this method at risk. REINFORCE is the first method explored in this project that fulfill the
basic requirements for controlling an RM. It works for continuous state- and action-spaces and is an
on-policy method. It introduces the policy estimator, in form of an NN circumventing the issue of
storing values for each of the possible states. It manages to reach the maximal score for the CartPole
problem, but is notably unstable. Training is highly dependent on the parameters used, for which
there are no clear optimal values.

These methods where explored as tools for introducing the development and methods of RL, leading
up to PPO. PPO showed clear advantages over REINFORCE when applied to the CartPole problem,
as well as being fully capable of solving the FetchReach problem. This showed an ability to handle
the large state-space required, and to infer the dynamics of the system. For more complex tasks,
however, where the reward functions feedback was dependent on reaching some specific part of the
state-space before giving any change in feedback, a naive application of the agent was not enough
to solve the problem. This showed that the design of the reward function is a critical part of a RL
problem alongside the choice and training of the agent. Additionally, training aids such as controlling
the initial state, sub goals and otherwise aiding the agent in discovering the solution may be required
for complicated tasks where the true goal is hidden behind some preparatory action. Future work
will involve designing a reward function that will allow the agent to solve more complex tasks, and



42

further investigation of the effect of changing various hyperparameters of the PPO agent. In my
master thesis building upon the research of this project I will connect the PPO agent to a simulation
of a more complex task, the turning of a valve. Initial research will begin with the valve grasped,
and the reward being directly linked to the angle of the valve. Even further development will include
locating and grasping the valve from a randomized initial position in the vicinity, with the aid of a
visual module for image recognition.
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Appendix A

Code

A.1 Policy Iteration

1 import numpy as np
2 import my_logger as log

3

4 def policy_evaluation(env, policy, gamma=1, theta=le—8):

0 3 N W

11
12
13
14

15
16
17
18
19
20

21
22
23
24

def

V = np.zeros(env.nS)
iterations = 0

delta = theta+l
while delta >= theta:
iterations += 1

delta = 0
for s in range(env.nS):
Vs = 0

for prob, next_state , reward, done in env.P[s][policy|[
s]]:
Vs += prob = (reward + gamma % V[next_state])
delta = max(delta, np.abs(V[s]—Vs))
V[s] = Vs
return V, iterations

policy_iteration (env, initial_policy = None, gamma=1, theta=le
—5):
policy = np.zeros(env.nS)

if initial_policy is not None:
policy = initial_policy
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A.2. Value Iteration

iterations = 0
evaluations = []

f = log.log_init("PIL.txt")
while True:
iterations += 1

V, i = policy_evaluation(env, policy , gamma, theta)

evaluations .append (i)
log.log(f, policy, V)

convergence = True
for s in range(env.nS):
a_vals = np.zeros(env.nA)

for a in range(env.nA):

for prob, next_state , reward,

in env.P[s][a]:

a_vals[a] += prob = (reward + gamma * V][

next_state ])

if policy[s] != np.argmax(a_vals):
policy[s] = np.argmax(a_vals)
convergence = False

if convergence:
log.log(f, policy, V)
log.log_close(f)
break ;

return policy, V, iterations , evaluations

A.2 Value Iteration

import numpy as np

def value_iteration(env, gamma = 1, theta
V = np.zeros(env.nS)
delta = theta+l
iterations = 0
while delta > theta#*(l—gamma)/gamma:
iterations += 1

delta = 0
for s in range(env.nS):
a_vals = np.zeros(env.nA)

for a in range(env.nA):
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for prob, next_state , reward, done in env.P[s][a]:
a_vals[a] += probs(reward + gammaxV[next_state

D

v_new gammasxnp.max(a_vals)
delta = max(abs(v_new — V[s]), delta)

V[s] = v_new
pi = np.zeros(env.nS)
for s in range(env.nS):
a_vals = np.zeros(env.nA)

for a in range(env.nA):
for prob, next_state , reward, done in env.P[s][a]:
a_vals[a] += prob = (reward + gamma * V[next_state
1)

pils] = np.argmax(a_vals)

return pi, V, iterations

A.3 Q-learning

import numpy as np
import time
from os import system

epislon = 0.5
def choose_greedy(q,nEps, greed):
global epislon
epislon #= 0.9999
if np.random.uniform () < max(epislon ,0) and not greed:
return (np.random.randint (0,4))
return np.argmax(q)

def q_learning(env, episodes = 100, rate=0.5, discount=0.9):
q = np.random.rand(env.nS, env.nA)
#Set the value of any terminal action to 0.
for s in range(env.nS):
for a in range(env.nA):
for outcome in env.P[s][a]:
if outcome[3]:
q[s,a] =0
nEps = 0
while nEps < episodes:
nEps += 1
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52 A.3. Q-learning
env.reset ()
done = False
while not done:
S = env.s
a = choose_greedy(q[s],nEps, False)
s_new, r, done, _ = env.step(a)
qls, al] = q[s, a] + rate=(r + discountxq[s_new,
choose_greedy (q[s_new], nEps, True)]—qls, a])
return q




	Preface
	Abstract
	Contents
	Abbreviations
	List of Figures
	List of Tables
	List of Algorithms
	Introduction
	History of Robotic Manipulator Control
	1970–80
	1980–90
	1990–2000

	Robotic Manipulator Control Using Reinforcement Learning: State of the Art

	Theory
	The Basics of Reinforcement Learning
	Fundamental Theory
	Introductory Methods in RL
	Policy and Value Iteration
	Q-learning
	REINFORCE


	Modern RL
	Deep Learning and Neural Networks
	Trust Region
	Proximal Policy Optimization


	Implementation
	Tools
	FrozenLake
	Policy and Value Iteration
	Q-learning

	CartPole
	REINFORCE
	Proximal Policy Optimization

	Manipulator

	Results
	FrozenLake
	Policy Iteration
	Value Iteration
	Q-learning

	CartPole
	REINFORCE
	Proximal Policy Optimization

	Manipulator

	Discussions
	Methods in Reinforcement Learning
	Manipulator Control

	Conclusions
	Bibliography
	Appendices
	Code
	Policy Iteration
	Value Iteration
	Q-learning


