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Abstract

The concept of inductive power transfer (IPT) has become an essential technology in nu-
merous applications, varying from low-power transcutaneous charging of biomedical im-
plants to high-power wireless charging of electric vehicles (EVs). In recent years, the
emerging interest for EVs has resulted in significant progress in the field of wireless bat-
tery charging for high-power application.

This work will present a nonlinear state-space representation of a series-series (SS) com-
pensated IPT-system with constant voltage load (CVL). This model is expressed by direct-
quadrature (dq)-axis variables in a synchronous reference frame (SRF) and is linearizable
at any feasible steady-state operating point, allowing for small-signal analysis for assessing
stability and sensitivity properties in a variety of operating conditions. The small-signal
investigation has been performed considering resonant as well as off-resonant operation,
thus revealing how the system dynamics and stability properties change during the whole
expected range of varying operating conditions. From this analysis, markedly slower dy-
namics is observed in the case with low magnetic coupling compared to high.

A simulation framework for the IPT-circuit, the nonlinear state-space model and the small-
signal state-space model has been developed in the MATLAB/Simulink/Simscape environ-
ment, enabling for model verification by time-domain simulation. It is seen that the pre-
sented state-space models accurately represent the amplitudes and phase angles of the first
harmonic voltages and currents of the IPT-system in numerous operating conditions. The
simulations have also shown that the current waveforms get increasingly distorted as the
coupling factor and off-resonant conditions increases, making the fundamental frequency
approximation less accurate and thus causing some slight deviation. In addition, it is seen
that the state-space models are relatively sensitive to changes in the operating frequency.

Reduced-order modeling is investigated and a lower-order model is developed and val-
idated by time-domain simulations, which confirms that the obtained model preserves
important dynamics of the system. Furthermore, small-signal analysis has been utilized
to develop control loops based solely on sending side power feedback. Subsequently,
frequency responses are examined to support the design of a simple PI-controller ensur-
ing robust closed-loop response over the whole expected operating range. The resulting
closed-loop performance shows that the controller response coincides with the results ob-
tained in the steady-state analysis.
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Sammendrag

Konseptet induktiv kraftoverføring har blitt en verdifull teknologi i mange applikasjoner,
alt fra fra laveffekts transkutan ladning av biomedisinske implantater til høyeffekts trådløs
lading av elektriske fremkomstmidler. I de senere år har den fremvoksende interessen
for elektriske kjøretøy resultert i betydelige framskritt innen trådløs batteriladning for
høyeffektsapplikasjoner.

I denne oppgaven presenteres en ulineær tilstandsrommodell av et serie-serie-kompensert
induktivt kraftoverføringssystem med konstant lastspenning. Denne modellen er uttrykt
med direkte-kvadratur-aksevariabler i en synkron referanseramme og er lineariserbar ved
alle mulige praktiske driftspunkt, noe som muliggjør småsignalanalyse for å kunne vurdere
stabilitet- og sensitivitetsegenskaper ved en rekke ulike driftsforhold. Denne småsignal-
analysen har blitt utført både med tanke på drift i resonans så vel som utenfor resonans,
og har avslørt hvordan dynamikken og stabilitetsegenskapene i systemet endrer seg gjen-
nom hele det forventede driftsområdet. Fra denne analysen observeres markant tregere
dynamikk i tilfellet med lav magnetisk kobling sammenlignet med høy.

Et simuleringsrammeverk for kretsen, den ulineære tilstandsrommodellen og småsignal-
tilstandsrommodellen er implementert i MATLAB/Simulink/Simscape, noe som legger til
rette for modellverifisering ved tidssimuleringer. Det ses at de presenterte tilstandsrom-
modellene nøyaktig representerer amplituden og fasevinkelen av de førsteharmoniske str-
ømmene og spenningene i det induktive kraftoverføringssystemet i flerfoldige driftspunkt.
Simuleringene har også vist at bølgeformen på strømmene blir stadig mer forvrengt etter-
som koblingsfaktoren øker og driftsfrekvensen beveger seg lenger fort fra resonans, noe
som gjør grunnfrekvensentilnærmingen mindre nøyaktig og dermed forårsaker noen små
avvik. I tillegg ses det at tilstandsrommodellene er relativt sensitive for endringer i drifts-
frekvensen.

Redusert orden-modellering er undersøkt, og en lavere ordens modell er blitt utviklet og
deretter validert ved tidssimuleringer, noe som bekrefter at den bevarer viktig systemdy-
namikk. Videre har småsignalanalyse blitt brukt til å utarbeide regleringssløyfer basert
på tilbakekobling fra sendesiden. Deretter er frekvensresponser undersøkt for å kunne
designe en enkel PI-regulator for å garantere robust lukket-sløyfe-respons over hele det
forventede driftsområdet. Lukket-sløyfe-ytelsen viser at regulatorresponsen sammenfaller
med resultatene oppnådd i den stasjonære analysen.
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Preface

This thesis was written during the spring semester of 2019 and concluded my 5-year inte-
grated Master of Science degree at the Norwegian University of Science and Technology,
Department of Engineering Cybernetics.

The work in this dissertation is mainly accomplished with numerical computing and simu-
lation environments such as Maple and MATLAB/Simulink/Simscape, and I have indepen-
dently developed and implemented all Maple and MATLAB code as well as all Simulink
diagrams.

The general nonlinear state-space model used in this thesis was developed by G. Guidi
and J. A. Suul in ”Modelling techniques for designing high-performance on-road dynamic
charging systems for electric vehicles”. In this article, the nonlinear model was linearized
assuming a system tuned for a single resonance frequency. Herein I have generalized and
adapted the small-signal state-space model to any feasible operating conditions. Further-
more, the procedure outlined in Chapter 3 is based on work done in ”Minimizing converter
requirements of inductive power transfer systems with constant voltage load and variable
coupling conditions”, also written by G. Guidi and J. A. Suul. However, I have derived the
state-space models and the steady-state expressions utilized throughout this thesis on my
own.

In my specialization project carried out during the Autumn semester of 2018, which this
treatise is a continuation of, stability and controllability properties of the small-signal state-
space model intended solely for resonant operation was studied. Some of the introductory
text, background theory and results presented in the project are included here, as I believe
this material is essential for the reader to perceive. However, they only coincide to a minor
extent, as they are modified, generalized and expanded in this work.

A paper based on some of the results achieved in this thesis was submitted to the 20th IEEE
Workshop on Control and Modeling of Power Electronics, IEEE COMPEL 2019, held in
Toronto, Canada from June 17th to June 20th, 2019. This workshop brought together
researchers, engineers, and students from academia and industry all over the world for
interactive discussions on the latest advances in modeling, analysis, and control of power
electronic systems. I attended this conference and presented the paper, which is titled
”Small-Signal State Space Analysis of Inductive Battery Charging System in Off-Resonant
Operation.” The paper is attached in Appendix E.
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Chapter 1
Introduction and Motivation

The concept of inductive power transfer (IPT) has been subject to significant enhance-
ment in recent years. IPT is a technology which transfers electrical energy from a power
source to an electrical device without any wires or other kinds of conductors as a physi-
cal link and is being increasingly utilized in a variety of applications, such as consumer
electronics, industrial automation, charging of electrical vehicles (EVs) and in the field of
medicine. Considerable progress is currently being made regarding dynamic IPT, which
is a promising idea that could offer significant benefits regarding electric mobility in the
years to come[1][2].

EVs are becoming more popular for every day that passes, and the interest for electric mo-
bility is not likely to fall anytime soon. Some obvious reasons for this are technological
advances such as the development of electrical energy storage systems with high energy
and power densities, which reduces limitations in aspects surrounding driving range per
recharge, and the fact that EVs are getting more high-technological and advanced[3]. The
gap between EVs and fossil-fueled cars in terms of driving comfort and safety is decreas-
ing, and the rising media attention for climate changes and global warming makes people
more environmentally conscious. Electricity-based transportation has an environmental
advantage on cars with engines fueled by gasoline or diesel, which contributes signifi-
cantly to greenhouse gasses. Especially since there is much ongoing work in the field of
renewable energy sources. Moreover, advancements in technology reduce the production
costs of EVs, and they are therefore more accessible to the general public[1][2]. As well as
being economical to drive due to electricity being less expensive than fossil-fuel, several
governments propose incentives such as exemption from road taxes, reduced yearly fees
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and free public charging stations[4], thus making EVs more attractive. Today’s EVs are on
the same level as vehicles with internal combustion engines in almost all aspects, such as,
e.g., driving comfort and acceleration. They are even more efficient, more accurate, and
have faster torque response[3]. Another advantage of EVs is their low noise output, both
in idle as well as in motion. However, this emission-free transportation method has some
limitations that need to be addressed. The need for an expensive and large energy storage
system onboard the vehicle in order to increase the mileage range per recharge is one of
those drawbacks.

IPT is a battery charging concept that could significantly reduce barriers, such as limited
driving range. This technology could mitigate the need for large energy storage systems
onboard, which would make the EVs lighter and even more efficient. To transfer wire-
less power from a charging system integrated into the road surface to a receiver mounted
underneath the EV, thus charging the onboard batteries without any physical contact, con-
siderably simplifies the charging process and reduces safety issues, such as handling of the
charging equipment[3]. The overall recharging process gets, in addition, more comfort-
able and more convenient due to its automated capabilities. IPT-technology could make
it possible to transfer power and to charge EVs even while they are in motion. Likewise,
for marine applications, transferring wireless power from a dock-mounted inductive cou-
pler to a marine vessel could provide many of the same advantages[5]. Also, IPT is clean
and unaffected by dirt and other external influences like chemicals and weather, making
the charging process more robust and tolerant in rough environments[1]. However, there
are still numerous improvements required in order to reduce and eliminate challenges that
prevent this technology from a large and worldwide application.

1.1 Historical background

The idea of wireless power transfer as a possible alternative of the standard transmission
line-based power distribution started in the late 19th century with J. C. Maxwell and H. R.
Hertz. Maxwell proposed in ”Treatise on Electricity and Magnetism,” published in 1873,
that there indeed exist possibilities of transferring power from one point to another in the
free space by electromagnetic waves. Hertz later validated Maxwell’s proposition through
his experiments performed between the period of 1885-1889. N. Tesla undertook the job of
developing wireless power transfer further between 1899 and 1910 and did several exper-
iments using resonant inductive coupling, i.e., where the receiving side inductor-capacitor
circuit is tuned to resonance with the sending side inductor-capacitor circuit. This resonant
transformer is more familiar known as the renowned ”Tesla coil.” Despite Tesla’s efforts to
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commercialize wireless power transfer, he ran out of funding and the research on wireless
power transfer went dry. However, all these attempts of making wireless power transfer
systems led to significant breakthroughs in communication systems[6]. Although Tesla
may arguably be the most famous name in the field of wireless power transfer, the concept
of dynamic-powered EVs came first from M. Hutin and M. Leblanc in 1894 with their
patent on transformer systems for electric railways[7].

More recently, a helicopter flight powered by microwaves was experimented at the Spencer
Laboratory of the Raytheon Company in 1964 and was internationally broadcasted. Res-
onant wireless power transfer was also successfully experimented in biomedical applica-
tions in the 1960s[8]. Inductive roadway power was proposed by D. V. Otto and J. G.
Bolger in the 70s. In 1972, Otto proposed a vehicle that was powered inductively at 10
kHz by a force commutated sinusoidal silicon controlled rectifier inverter. It was not until
the late 1970s that IPT-powered EVs began to fetch academic interest when Bolger and
others began to publish papers on electric highway-systems. Through the 1980s, a project
organized by The Partner for Advanced Transit and Highways in California made an IPT-
powered vehicle with 60% efficiency when operating under variable coupling conditions.
In 1986, Kelly and Owens proposed an aircraft entertainment system wirelessly powered
by the use of wires hidden underneath the carpet. A power supply generating current at
38 kHz was used to energize the wires, and pickup coils under the seats coupled 8 watts
for each passenger. In 1991, Boys and Green at the University of Auckland developed
an IPT-system which was suitable for materials handling systems. This development was
the first IPT-system where the individual components could be identified and improved
separately, making it a foundation for much of the work done regarding wireless power
transfer over the past couple of decades[1].

Due to rapid technological advances and development in the last decades, wireless power
transfer has become an essential technology in a variety of applications, offering signifi-
cant benefits in modern automation systems. Remarkable development concerning static
IPT with short air gap and stable coupling conditions have been made, and now the main
focus has been aimed at dynamic IPT. Here, there are still many challenges to overcome,
as system conditions such as magnetic coupling and load may change notably during op-
eration, thus requiring the need for more robust systems tolerant to misalignment and
parameter variation.
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1.2 Problem description

The main objective of this thesis is to derive, analyze, implement and validate a nonlinear
and small-signal state-space model representing the envelope of the first harmonic cur-
rents and voltages of an IPT-system with constant voltage load (CVL) in a wide range
of operating conditions. This analysis should form the basis for the design of a suitable
power control scheme, preferably without depending on communication across the air gap
between the sending and receiving side of the IPT-system.

1.3 Contributions

The main contributions of this work can be compactly summarized as follows:

• The development of a method to linearize the nonlinear state-space model, repre-
senting the envelope of the fundamental frequency currents and voltages of a series-
series (SS)-compensated IPT-system with CVL, in any feasible operating point.

• Model verification of the resulting generalized small-signal state-space model and
the nonlinear state-space model by numerous time-domain simulations in the MAT-
LAB/Simulink/Simscape environment.

• All stability analysis, such as eigenvalues trajectories, performed in off-resonant
conditions, as well as all analysis regarding parametric sensitivities, participation
factors, and Gramians, both in resonant and off-resonant operation.

• Investigation of frequency responses in order to obtain a reduced-order model, ef-
fectively removing six states without altering the most dominating dynamics of the
system, as revealed by time-domain simulations.

• The design of control loops based only on sending side power feedback by using
small-signal input-output frequency characteristics, thus eliminating the need for
communication across the air gap of the IPT-system. The resulting PI-controller is
implemented in the MATLAB/Simulink/Simscape environment and the closed-loop
performance is evaluated by several time-domain simulations.

• The design, implementation and time-domain simulations of a gain-scheduled con-
troller, which adapts to the highly nonlinear operating range, thus providing fast and
damped response over the whole expected range of operation.

4



1.4 Outline

The remaining of this thesis is structured as follows:

• Chapter 2 – Theory gives an introduction to IPT-technology and on what challenges
this technology faces, as well as a brief presentation on modeling and analysis meth-
ods and background theory.

• Chapter 3 – Nonlinear and Small-Signal Model describes the derivation and lin-
earization procedure of a nonlinear state-space model representing the dynamics
of an SS-compensated IPT-system with CVL. It also presents a small-signal state-
space model assuming constant resistive load (CRL).

• Chapter 4 – Frequency Characteristics explains the procedure for deriving impor-
tant general circuit expressions. Furthermore, it provides design techniques utilized
to obtain and shape the frequency characteristics in order to establish a system suit-
able for power control by regulating the operating frequency.

• Chapter 5 – Model Verification presents numerous time-domain simulation to con-
firm the validity of the presented state-space models in several different realistic
operating conditions.

• Chapter 6 – Sensitivity and Stability Analysis provides comprehensive small-signal
stability and sensitivity analysis in order to assess the dynamic behavior of the sys-
tem under variable load and coupling conditions. Moreover, control properties such
as controllability and observability are studied with a variety of input-output config-
urations and operating conditions.

• Chapter 7 – Frequency Domain Analysis and Power Control gives insight into
model order reduction techniques and provides a reduced-order model validated
through time-domain simulations. Subsequently, small-signal frequency responses
are utilized to design control loops with a simple PI-controller for providing the
necessary operating frequency in order to maintain constant output power under
variable coupling conditions.

• Chapter 8 – Closing Remarks issues concluding remarks and suggestions for future
work.
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Chapter 2
Theory

This chapter provides some basic theory of IPT-systems as well as describing some crucial
concepts and mathematical tools used throughout this work. Some of the material provided
here is also presented in the specialization project.

2.1 Basic principles of inductive power transfer systems

A block scheme of a simplified IPT-model is shown in Figure 2.1. It consists of a high-
frequency DC/AC switching converter on the transmitting side, two magnetically coupled
coils – the transmitter and receiver – and an AC/DC rectifier on the receiving side. Several
types of topologies are possible, depending on e.g., control strategy, application, desired
level of complexity, and cost.

High	frequency
DC/AC
converter

AC/DC
rectifier

DC	power
Input	DC
	voltage

Transmitter Receiver

Mutual	coupling

Figure 2.1: Simpel model of an IPT-system.

The main idea of an IPT-system is the same as for the more familiar transformers and
can be summarized as follows: An input voltage is converted to high-frequency ac-voltage
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which excites the transmitting side and generates an alternating current. Then, by Am-
pere’s circuital law, the alternating current through the coil generates a magnetic field,
which oscillates with the same frequency as the power source. IPT-systems usually oper-
ate in the kHz – GHz range, depending on application. By Faraday’s law of induction, an
alternating electromotive force is then induced in the receiving coil which in turn gener-
ates an alternating current. The alternating current at the receiving side is converted into
a dc-signal required for charging the given device. This procedure may happen when the
receiving coil is within the required range of the transmitting coil for the given application
[9][10].

2.1.1 Magnetically coupled circuit

As mentioned, the main idea of an IPT-system is based on a magnetic field linking the
coupled circuits – the sending and the receiving side. In literature, the sending side cir-
cuit of the IPT-system is also sometimes called primary or transmitter circuit, whereas
the receiving side circuit is sometimes called secondary or pickup circuit. The circuit in
Figure 2.2 represents two magnetically coupled coils. The mutual inductance is labeled
M and the self-inductance’s of the coils are labeled L1 and L2.

I1 I2

V1 V2L1 L2

M

Figure 2.2: Mutually coupled coils.

The voltage induced in the receiving side circuit can be related to the current flowing in
the sending side circuit by the mutual inductance M . A current is present only if the
output terminals are connected to a load. Even if this is conceptually the same idea as
for transformers, due to the absence of a solid magnetic core between the primary and
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secondary side, the magnetic coupling is in general significantly weaker for IPT-systems.

The magnetic coupling coefficient is related to the mutual inductance through:

k =
M√
L1L2

, 0 ≤ k ≤ 1 (2.1)

The coupling factor k is a dimensionless parameter describing the strength of the mutual
coupling between the coils. The higher the separation between the coils, the lower mag-
netic coupling, and vice verse. Moreover, lateral and longitudinal displacement and the
relative orientation of the coils also cause variation in the magnetic coupling. Variation in
the coupling conditions is a common issue in the field of IPT.

Depending on their application, IPT-systems can be subdivided into two main groups:
dynamic and static IPT. Dynamic IPT refers to in-motion charging of EVs, whereas static
IPT refers to stationary charging of EVs. The main challenges that arise in static wireless
charging also arise in dynamic wireless charging. However, the latter is subject to some
more difficulties, and a summary of the challenges in both cases are presented below.

A considerable challenge in design for dynamic power transfer is the large, and possibly
varying, air gap between the sending coil and receiver coil, as well as the almost inevitable
misalignment. In IPT-systems for roadway-powered EVs, the air gap between the road-
side transmitter and the vehicle side receiver is quite high compared to more static systems
using the same functionality, especially such as transformers. This considerable air gap
significantly lowers the magnetic coupling and efficiency. Moreover, the track system in
the ground has to be covered with a layer of bitumen or some other kind of material used
in road construction, making an already large air gap even more substantial. Additionally,
a ship docked at the harbor is exposed to waves and tide and will therefore drift and move
relative to a transmitter mounted on the dock. Subsequently, the loading or unloading of
ship cargo will affect the displacement and buoyancy of the vessel – and, therefore, the air
draft[5]. This results in more movement of the ship relative to the dock-mounted trans-
mitter. Due to this, the weak magnetic coupling becomes a problem for IPT-systems. The
main focus in the designing of IPT-systems is, therefore, to enhance the tolerance to mis-
alignment and the resulting variation of the magnetic coupling by improving the magnetic
design and control of power[1]. As explained above, an IPT-system has several parame-
ters which could vary during in-motion dynamic charging, such as the coupling factor. In
order to deal with such parameter variation, good controllability is needed[11]. The use of
larger coils can also attenuate the variation in the magnetic coupling conditions, however,
this increases expenses and counteracts the realization of compact systems, which could
limit the scope of IPT-applications.
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2.1.2 Compansation topologies

Wireless charging of marine vessels and land-based EVs entails a significant and vary-
ing air gap between the sending and pickup coil due to, e.g., waves, tide, unevenness in
the road structure and the need for adequate clearance between the road surface and the
EV. Also, a marine vessel or an electric vehicle in motion will almost always cause some
misalignment. These constraints weaken the mutual coupling and cause a high leakage
inductance, which leads to reduced efficiency. It is, therefore, crucial to choose a suit-
able compensation scheme when designing an IPT-system. Conditions such as maximum
efficiency and output power independent of both load and coupling coefficient need to
be considered[12]. To cope with these challenges requires the introduction of capacitive
compensation in both sending- and pickup coil[13], which enhances the power transfer
capability and reduces the voltage and current ratings of the sending side converter[14].

The different topologies can be very complicated, but four basic compensation schemes
are usually studied, namely series-series, series-parallel, parallel-series, parallel-parallel.
Out of these, the most used compensation schemes are series-series and series-parallel.
The different topologies offer separate advantages and downsides, and one needs to care-
fully choose, depending on the application, the appropriate compensation scheme. The
compensation topology considered in this report is the SS-compensation, that is, both pri-
mary and secondary coils are series compensated. With this topology, the compensation
capacitance’s are independent of both the magnetic coupling and the load, making the de-
sign more convenient. Besides, this topology can act as a constant current source, which
is desirable when charging a battery. Moreover, the resonant frequency of this structure
is only subject to minor variations due to varying load and magnetic coupling conditions
under operation[15], which is a significant advantage. It is also very effective when there
is no misalignment[16][17].

2.1.3 Series-series compensated inductive power transfer system

The IPT-system studied in this thesis is displayed in Figure 2.3[18]. As can be seen, the
topology is an SS-compensated IPT-system with an H-bridge converter on the sending
side and a diode rectifier on the receiving side, connected directly to a CVL representing
a battery. The sending side coil is energized by the output voltage v1 of the H-bridge
converter, and the diode bridge rectifies the ac signals v2 and i2 in the receiving coil.
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   H-Bridge RectifierResonant Coils

Sending Coil   Receiving Coil
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,dc inI
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


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2C


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Figure 2.3: SS-compensated IPT-system with CVL.

The sending and receiving side’s resonance frequencies are defined, respectively, accord-
ing to:

ω0,1 =
1√
C1L1

, ω0,2 =
1√
C2L2

(2.2)

In order for the system to operate in resonance, the compensation capacitances are tuned
so that these two expressions are equal. When the excitation frequency of the voltage
source exciting the sending coil equals this frequency, the system is said to be operating in
resonance.

Assuming that all currents and voltages in the system are sinusoidal waveforms, a first
harmonic approximation can be deduced, which is a modeling technique where only the
fundamental frequency components of the voltages and currents in the system are assumed
to contribute to the power transfer. This modeling technique provides decent accuracy as
long as the voltage and current waveforms are close to sinusoidal.

With the use of Kirchoff’s voltage law (KVL) and applying the first harmonic approxima-
tion, the differential equations describing the dynamics of the circuit can be found in the
time-domain as:

v1(t) = R1i1(t) + L1
di1(t)

dt
−M di2(t)

dt
+ vC1(t) (2.3a)

v2(t) = −R2i2(t)− L2
di2(t)

dt
+M

di1(t)

dt
− vC2(t) (2.3b)

dvC1
(t)

dt
=

1

C1
i1(t) (2.3c)

dvC2
(t)

dt
=

1

C2
i2(t) (2.3d)
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The time-dependency notation is omitted for ease of use in the remaining of this thesis.

2.1.4 Constant voltage load

CVL resulting from battery charging is characteristic where the output voltage of the sys-
tem on the load resistance is modeled as constant, regardless of the value of the load.
Hence, the receiving side voltage v2 in Figure 2.3 will remain constant despite changes in
the receiving side current due to variable operating conditions. Studies have shown that the
dynamics of IPT-systems modeled with a CRL are not accurately capturing the dynamic
behavior CVL-conditions impose on the system[15][18]. Thus, CVL load modeling ap-
proach will be the main focus of this work.

The action of the diode rectifier in Figure 2.3 implies that the phase of the receiving side
voltage v2 must be equal to the phase of the receiving side current i2. Furthermore, the
amplitude of the receiving side voltage will also be dependent on the load voltage Vdc,out.
Therefore, the CVL-characteristics resulting from battery charging can be modeled by:

v2 =
i2
I2
· 4

π
· Vdc,out (2.4)

where I2 is the amplitude of the receiving side current i2. Thus, the fraction i2
I2

determines
the phase and the term 4

πVdc,out determines the amplitude of the voltage at the receiving
side. The scaling factor 4

π is a result of Fourier analysis as the fundamental component
of a square wave has a peak amplitude of 4

π times the dc-voltage. This equation is an
important relationship since the diode rectifier together with the constant voltage source
inflicts nonlinear behavior on the system[18].

2.1.5 Constant resistive load

Load modeling with a CRL instead of a CVL results in a fundamentally different dynamic
behavior of the system, as this modeling approach does not impose any nonlinearity. Under
this assumption, the relationship between the receiving side voltage and current is:

v2 = Req · i2 (2.5)

Req is the equivalent load resistance. Here, the receiving side voltage will change in re-
sponse to changes in the receiving side current due to variation in the operating conditions,
in contrast to the case with CVL.
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2.1.6 Bifurcation

The H-bridge converter in Figure 2.3 may operate with constant or variable operating
frequency, depending on e.g., the application, desired control strategy, and commutation
requirements. When the phase angle of the impedance seen by the converter crosses zero
during operation, i.e., switches from inductive to capacitive, or vice verse, the behavior
of the converter changes accordingly. This phenomenon is called bifurcation, playing
an essential role regarding converter switching losses. A slightly inductive operation of
the sending side converter is advantageous, as this ensures soft-switching[19][20]. It is,
therefore, essential to assess the impedance phase characteristics of the system under the
intended operation.

2.2 Modeling and analysis methods

2.2.1 Phasor modeling

By representing the currents and voltages as complex phasor variables, an equivalent har-
monic circuit as in Figure 2.4 can be derived.

�1

�1 �1 �1 �1

����2 �2

�2�2�2�1

−����2

Figure 2.4: Harmonic equivalent circuit with CVL.

Again by utilizing KVL, the relationship between the voltages and currents in the fre-
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quency domain can be found to be:

V̂1 = R1Î1 + jωL1Î1 − jωMÎ2 + V̂C1 (2.6a)

V̂2 = −R1Î2 − jωL1Î2 + jωMÎ1 − V̂C2 (2.6b)

V̂C1 =
1

jωC1
Î1 (2.6c)

V̂C2 =
1

jωC2
Î2 (2.6d)

With this approach, sinusoidal currents and voltages can be represented as complex vectors
which is advantageous for stationary analysis.

2.2.2 General state-space representation

Writing a dynamical system in a state-space form is a systematic and convenient way of
representing higher-order systems. It is a common approach for representing time-varying,
time-invariant, nonlinear as well as linear systems and can be utilized in a majority of
different domains, such as e.g., mechanical, electrical, biological, and economic.

The dynamics of a nonlinear system represented in a state-space formulation are described
by:

ẋ(t) = f(x(t),u(t))

y(t) = g(x(t),u(t))
(2.7)

where x(t) ∈ Rn are the states, u(t) ∈ Rm are the control inputs and y(t) ∈ Rq are the
outputs of the model. The vectors f ∈ Rn and g ∈ Rq contains the functions describing
the nonlinear model.

The dynamics of a linear and time-invariant system represented in state-space formulation
are given by:

ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t) +Du(t)
(2.8)

14



where, as above, x(t) ∈ Rn are the states, u(t) ∈ Rm are the control inputs and y(t) ∈ Rq

are the outputs. The state matrix A ∈ Rn×n, input matrix B ∈ Rn×m, output matrix
C ∈ Rq×n and the feedthrough matrix D ∈ Rq×m are constant matrices, meaning that
they do not change with time.

2.2.3 Linearization and equilibrium points

Linearization of nonlinear models is desired because linear models are significantly easier
to analyze than nonlinear models. Mathematical tools such as e.g., Laplace transformation
and stability analysis by investigating eigenvalues and eigenvectors as well as many control
design methods are based on linear models. A system is linear if the two functions f and
g in Equation 2.7 are linear in the variables x and u.

The linearization procedure of a nonlinear model can be described as follows. Given the
nonlinear state-space model in Equation 2.7. The i-th differential equation can be written
as:

dxi
dt

= fi(x1, . . . , xn, u1, . . . , um) (2.9)

The linearization procedure is based upon Taylor series. When linearizing a dynamical
system, the Taylor series expansion is terminated after the first order term. It is assumed
that the nonlinear system is continuous and has continuous first order derivatives. By
linearizing around an operating point defined by p, that is (xp1, . . . , x

p
n, u

p
1, . . . , u

p
m),

with a small perturbation ∆xi and ∆ui away from the operating point, Equation 2.9 can
be rewritten:

d

dt
(xpi + ∆xi) = fi(x

p
i + ∆x1, . . . , x

p
n + ∆xn, u

p
1 + ∆u1, . . . , u

p
m + ∆um) (2.10)

Taylor-expansion and assuming small enough variation in ∆xi and ∆ui such that all
higher-order terms of the Taylor-expansion can be neglected, results in:

ẋpi + ∆ẋi ≈ fi(xpi , . . . , xpn, up1, . . . , upm) +

∂fi
∂x1

∣∣∣∣
p

∆x1 + . . . +
∂fi
∂xn

∣∣∣∣
p

∆xn +
∂fi
∂u1

∣∣∣∣
p

∆u1 + . . .+
∂fi
∂un

∣∣∣∣
p

∆um

(2.11)
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where p denotes the operating point (x = xp, u = up). Equation 2.9 in the operating point
can be written:

ẋpi = fi(x
p
i , . . . , x

p
n, u

p
1, . . . , u

p
m) (2.12)

By substituting this result in Equation 2.11, the term cancels out, and a model for small
perturbations around the operating point arises:

∆ẋi =
∂fi
∂x1

∣∣∣∣
p

∆x1 + . . . +
∂fi
∂xn

∣∣∣∣
p

∆xn +
∂fi
∂u1

∣∣∣∣
p

∆u1 + . . .+
∂fi
∂um

∣∣∣∣
p

∆um (2.13)

which can be written in more compact form by collecting all the linearized differential
equations in one single linear vector equation:

∆ẋ = A(xp,up) ·∆x+B(xp,up) ·∆u (2.14)

where the matricesA(xp,up) andB(xp,up) are given by:

A(xp,up) =




∂f1
∂x1

∂f1
∂x2

· · · ∂f1
∂xn

∂f2
∂x1

∂f2
∂x2

· · · ∂f2
∂xn

...
...

. . .
...

∂fn
∂x1

∂fn
∂x2

· · · ∂fn
∂xn




∣∣∣∣∣∣∣∣∣∣
xp,up

∈ Rn×n (2.15)

B(xp,up) =




∂f1
∂u1

∂f1
∂u2

· · · ∂f1
∂um

∂f2
∂u1

∂f2
∂u2

· · · ∂f2
∂um

...
...

. . .
...

∂fn
∂u1

∂fn
∂u2

· · · ∂fn
∂um




∣∣∣∣∣∣∣∣∣∣
xp,up

∈ Rn×m (2.16)

or more compactly:

A(xp,up) =
∂fi
∂x

∣∣∣∣
xp,up

B(xp,up) =
∂fi
∂u

∣∣∣∣
xp,up

(2.17)

Similar procedure for the nonlinear output equation in 2.7, i.e. Taylor-expansion and ne-
glecting higher-order terms, ultimately results in:
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∆y = C(xp,up) ·∆x+D(xp,up) ·∆u (2.18)

with matrices:

C(xp,up) =




∂g1
∂x1

∂g1
∂x2

· · · ∂g1
∂xn

∂g2
∂x1

∂g2
∂x2

· · · ∂g2
∂xn

...
...

. . .
...

∂gq
∂x1

∂gq
∂x2

· · · ∂gq
∂xn




∣∣∣∣∣∣∣∣∣∣
xp,up

∈ Rq×n (2.19)

D(xp,up) =




∂g1
∂u1

∂g1
∂u2

· · · ∂g1
∂um

∂g2
∂u1

∂g2
∂u2

· · · ∂g2
∂um

...
...

. . .
...

∂gq
∂u1

∂gq
∂u2

· · · ∂gq
∂um




∣∣∣∣∣∣∣∣∣∣
xp,up

∈ Rq×m (2.20)

or more compactly:

C(xp,up) =
∂gi
∂x

∣∣∣∣
xp,up

D(xp,up) =
∂gi
∂u

∣∣∣∣
xp,up

(2.21)

The linearized model is expressed in terms of deviation variables, indicated by the ∆-
notation. This notation is typically suppressed for ease of use. It is, however, vital to
be aware of that, as the linearization point needs to be considered when converting from
deviation variables to real variables.

Equilibrium points

Consider again the differential equations describing the nonlinear dynamics in Equation 2.7.
The operating point (xp,up) in the linearization procedure explained above is usually an
equilibrium point. A point xp ∈ Rn is called an equilibrium point if the input up ∈ Rm is
of such kind so that:

ẋ(t) = f(xp,up) = 0, ∀t (2.22)

Linearizing around the equilibrium point is necessary in order to assess the system’s sta-
bility properties, and a linearized model around the equilibrium point is very effective for
analyzing the dynamic behavior of the system. Thus, the studied model must have a de-
fined equilibrium point for a given input, and in order to assess the stability properties, all
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states of the system must settle to a constant value in steady-state. From Equation 2.22 it
can be seen that all state variables have a zero derivative in the equilibrium point.

General methods for assessing important properties such as e.g., stability and sensitivity
analysis of a dynamic system are not applicable if any of the state-variables are time-
periodic in steady-state. Therefore, traditional stability analysis cannot be applied to in-
vestigate electrical systems where the state variables are sinusoidal voltages and currents.
Thus, approaches such as phasor modeling or modeling in a synchronously rotating dq-
reference frame may be utilized[21].

2.2.4 Eigenvectors and eigenvalues

Consider the linear state-space representation in Equation 2.8. The eigenvalues of the
square n× n state matrixA, which coincides with the poles of the overall system, are the
n roots λi, i = 1, . . . , n of the characteristic polynomial:

det(A− λI) = 0 (2.23)

This equation is a monic polynomial of degree n, i.e., there will be equally many eigen-
values as there are states in the system. The eigenvalues are either single real poles or
complex conjugate poles, that is, λi = a+ jb.

Knowledge of the rightmost and least damped eigenvalues of a dynamical system is crucial
in the small-signal analysis of power systems. In short:

• If all eigenvalues are located in the open left-hand plane, i.e. all eigenvalues have
negative real parts, the system is asymptotically stable: <{λi(A)} < 0, ∀i.

• If there exists at least one eigenvalue which is located in the open right-hand plane,
the system is unstable: ∀i, ∃λi : <{λi(A)} > 0.

• If there exists at least one eigenvalue which is is located at the imaginary axis, i.e.
have zero real part, and all others are located in the left-hand plane, the system
is marginally stable and it is not possible to asses the small-signal stability of the
linearized system: ∀i, ∃λi : <{λi(A)} = 0.

The right eigenvector ri corresponding to the eigenvalue λi is the column vector satisfying
the following equation:

(A− λiI)ri = 0⇔ Ari = λiri (2.24)
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The left eigenvector li corresponding to the eigenvalue λi is the column vector satisfying
the following equation:

lHi (A− λiI) = 0⇔ lHi A = λil
H
i (2.25)

In this equation, the H-superscript denotes the conjugate transpose. All eigenvectors cor-
responding to distinct eigenvalues are always linearly independent. For distinct eigenval-
ues, the left and right eigenvectors are mutually orthogonal and are usually scaled such
that they, in addition, are mutually orthonormal:

lHi rj =





1 if i = j

0 if i 6= j
(2.26)

Collecting the right eigenvectors as columns in a matrix R, the left eigenvectors as rows
in a matrix L and the eigenvalues as diagonal elements in a matrix Λ results in:

R =
[
r1 r2 . . . rn

]
(2.27)

L =
[
l1 l2 . . . ln

]H
(2.28)

Λ =




λ1 0 . . . 0

0 λ2 . . . 0
...

...
. . .

...
0 0 . . . λn




(2.29)

From this, assuming linearly independent eigenvectors, the following identities may be
defined:

AR = RΛ⇒ R−1AR = Λ (2.30a)

LR = I ⇒ LAR = Λ (2.30b)

By considering the linear state-space representation in Equation 2.8 and defining a new
state vector z(t) = T−1x(t), i.e., x(t) = Tz(t), the system can be defined on diagonal
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form as:

Rż(t) = ARz(t) +Bu(t)⇔ ż(t) = Λz(t) + T−1Bu(t) (2.31)

This equation is, due to the diagonal form, a set of uncoupled differential equations in
terms of the new states z(t). Thus, the zero-input solutions for each new states are zi(t) =

zi(0)eλit, where zi(0) is the initial state value at t = 0. As can be seen, the mode is stable
if and only if the eigenvalues λi lies in the open left-hand plane. Backsubstituting so that
the system is represented in terms of the original states, results in:

x(t) = Rz(t) =

n∑

i=1

rilix(0)eλit (2.32)

From this equation, it is possible to find a measure of the relative participation of the state
k in the i-th mode and vice versa, as described in the next subsection[21].

2.2.5 Parametric sensitivity and participation factors

The participation factor is a tool for analyzing the level of interaction between the states
and the modes of a linear time-invariant system. It is a method of quantifying the degree of
connection a system variable has in a system mode, which makes it possible to determine
which state variables that are most relevant for a particular mode. That is, the participation
factor is a measure of eigenvalue sensitivity. This approach could simplify the analysis of
the system, since, instead of looking into the entire model, the main focus could lie on the
state variables which interact most with the critical modes[22].

There exist several different approaches to the participation factors for a linear time-
invariant system. In this report, four methods have been explored, and the different for-
mulas for calculating the participation factor pki of the state xk in the i-th mode are as
follows[22][23]:

Method I:

pki = likr
i
k (2.33)

Method II:
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pki =
(<{lik})2

<{li}(<{li})T
(2.34)

Method III:

pki =
|lik|2∑n
j=1 |lij |

(2.35)

Method IV:

pki = 2<{likrik}) (2.36)

where li and ri are respectively the left and right eigenvectors of the matrix A in Equa-
tion 2.8 associated with the eigenvalues λi for i ∈ 1 . . . n, and lik and rik are the k-th index
of the i-th eigenvector.

Parametric sensitivity

Parametric sensitivity analysis is a tool for assessing how the parameters of the dynamic
system affect the eigenvalues of the state matrix A. The sensitivity of an eigenvalue to
a parameter of the system can be found by taking the derivative of the eigenvalues with
respect to that specific parameter. By considering a system with n states and k changeable
parameters, the complex-valued parametric sensitivity matrix can be expressed as:

S =




s1,1 s1,2 . . . s1,k

s2,1 s2,2 . . . s2,k
...

...
. . .

...
sn,1 sn,2 . . . sn,k



∈ Rn×k (2.37)

The matrix elements can be found according to:

si,k =
dλi
dρk

=

rHi
∂A

∂ρk
li

rHi li
(2.38)

where ρk is a parameter of the system.

The real part of the elements indicates how much an eigenvalue moves along the real axis
for a change in the corresponding parameter, whereas the imaginary part of the elements
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indicates how much the eigenvalue moves along the imaginary axis for a change in the
corresponding parameter. This procedure is a useful tool for establishing which parameters
to focus on in order to improve the dynamic response of the system.

As explained, eigenvalue analysis of electrical power systems is a helpful tool for analyz-
ing small-signal stability and dynamic behavior. Linear system theory can be applied to
improve performance and prevent instability. Parametric sensitivity analysis can be uti-
lized in order to study the impacts of parameter variations on the dynamic behavior, which
can be used to find the most appropriate controller gain to modify in order to improve the
dynamic response of the system. Poorly damped and oscillating modes can be identified
and analyzed, and participation factors can be exploited to find the states involved in the
poorly damped modes, which can be used to design damping controllers[21].

2.2.6 Controllability

Controllability refers to the ability of a controller to alter the functionality of a system and
is an important property in control theory – playing a major role in control problems such
as feedback stabilization and optimal control.

Theorem Controllability:

The state-space representation in Equation 2.8 or the pair (A,B) is said to be control-
lable if for any initial state x(0) = x0 and any final state x1, there exists and input
u(·) that transfer x0 to x1 in a finite time. Otherwise, the pair (A,B) is said to be
uncontrollable[24]. Kalman’s controllability matrix reads:

C = [B AB A2B . . . An−1B] (2.39)

Kalman’s rank criterion states that the rank of the controllability matrix needs to be n, i.e.
have full row rank, for the system to be controllable. This is a binary rank condition which
only states whether the system is completely controllable or not, and do not say anything
about in what way the system is or is not controllable or how much input energy which
is required to steer the system around in the state-space. It provides no information on
how the system behaves from its inital state to its final state or on how easy it is to control
the different states. Moreover, some states may also be of no practical importance for the
system, indicating that these states could be less emphasized in controller design consid-
erations. It is therefore relevant to consider more quantitative measures of controllability.
The controllability Gramian handles this matter.

Controllability Gramian
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The symmetric positive semidefinite matrix:

W c(t) =

∫ t

0

eAτBBT eA
T τdτ ∈ Rn×n (2.40)

is called the controllability Gramian at time t. The eigenvectors and eigenvalues of this
matrix are the vectors ξ and the roots λ of the characteristic polynomial of W c(t) such
that:

W cξ = λξ (2.41)

The eigenvectors corresponding to the largest eigenvalues of the Gramian are the most
controllable directions in the state-space x(t) ∈ Rn. This means that it is possible to go
further in the directions of the eigenvectors corresponding to larger eigenvalues than it is
possible in the directions spanned by eigenvectors with a corresponding smaller eigenvalue
– using the same amount of input energy. Thus, this matrix provides an energy-related
quantification of controllability; it describes how much energy is required to move the
system around in the state-space[25].

For stable systems, there exists a finite positive definite Gramian defined by:

W c =

∫ ∞

0

eAτBBT eA
T τdτ ∈ Rn×n (2.42)

which can easily be found by solving the Lyapunov equation:

AW c +W cA
T = −BBT (2.43)

The controllable directions, i.e., the eigenvectors, and the eigenvalues of this matrix defines
an energy ellipsoid in Rn which describes the surface of how far in any direction it is
possible to steer the system with a unit or less of input energy, i.e.:

Emin = {x ∈ Rn | xTW−1
c x ≤ 1} (2.44)

From the controllability Gramian, there exist several different ways to quantify and inter-
pret the controllability:

1) The trace of the Gramian, tr(W c). It can be interpreted as the average controllability in
all of the directions in the state-space, as it is inversely related to the average energy needed
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to move the system around. If the system is uncontrollable, the average controllability
would be zero because there exists at least one direction of which it is impossible to drive
the system using the control inputs.

2) The determinant of the Gramian, det(W c). It is related to the volume enclosed by the
ellipsis the Gramian defines:

V (Emin) =
π
n
2

Γ(n2 + 1)
n
√
det(W c) (2.45)

where Γ is the gamma function. That is, the determinant is a measure of the set of states
that can be reached with one unit or less of input energy. However, computing the de-
terminant could be problematic when the states n grows large, so for large systems, it is
more common to consider the logarithm of the determinant instead, log(det(W c)). If the
system is uncontrollable, the volume of the ellipsis would be zero.

3) The smallest eigenvalue of the Gramian, min{λ1 . . . λn}. As described earlier, this
measure is inversely related to the amount of energy required to move the system in the
direction of the state-space that is most difficult to control. That is, the smaller the eigen-
value, the more energy needed.

4) The eigenvector corresponding to the smallest eigenvalue. This eigenvector is the direc-
tion that requires the most input energy to steer the system, compared to all other directions
in the n-dimensional state-space. The eigenvectors span the controllable subspace, and the
corresponding eigenvalues can be interpreted as the length of the axes.

5) The rank of the Gramian, rank(W c). This rank is the dimension of the controllable
subspace[25].

2.2.7 Observability

Observability refers to the ability of estimating any state x(t) from the measurement y(t).

Theorem Observability:

The state-space representation in Equation 2.8 is said to be controllable if for any unknown
initial state x(0), there exists a finite t1 > 0 such that knowledge of the input u and the
output y over [0, t1] suffices to determine uniquely the initial state x(0). Otherwise the
system is said to be unobservable[24]. Kalman’s observability matrix reads:

O = [C CA CA2 . . . CAn−1]T (2.46)
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Kalman’s rank criterion states that the rank of this observability matrix needs to be n, i.e.,
have full column rank, for the system to be observable. Similarly, as for the controllability
property, this is also a binary rank condition and does not say anything in what way the
system is or is not observable. Some states could i.e. be observable through higher-order
derivatives and thus more exposed to e.g. noise corruption, limiting observability in a
practical sense. Therefore, the more quantitative observability Gramian matrix has been
introduced to handle this matter as well.

Observability Gramian

The symmetric positive semidefinite matrix can be expressed as:

W o(t) =

∫ t

0

eAτCTCeA
T τdτ ∈ Rn×n (2.47)

This matrix called the observability Gramian at time t. The eigenvectors and eigenvalues
of this matrix are the vectors ξ and the roots λ of the characteristic polynomial of W o(t)

such that:

W oξ = λξ (2.48)

For stable systems, there exists a finite positive definite Gramian defined by:

W o =

∫ ∞

0

eAτCTCeA
T τdτ ∈ Rn×n (2.49)

which can easily be found by solving the Lyapunov equation:

AW o +W oA
T = −CTC (2.50)

Controllability and observability are dual properties. Thus, all measures and interpreta-
tions of the controllability Gramian hold for the observability Gramian as well – albeit
describing the degree of observability in the latter case.

2.3 Chapter summary

In this chapter, some key topics and circuit theory of IPT-systems were presented. The
concept of mutual coupling and how it relates to a coupling factor was introduced, as
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well as some challenges IPT-technology face. The essential relationship for establish-
ing the nonlinear CVL-conditions is given, as well as the corresponding relationship for
CRL-modeling. Furthermore, important background theory, mathematical tools, and their
application are explained.
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Chapter 3
Frequency Characteristics

This chapter explains the procedure of achieving an expression for the output power in
the IPT-system, both with CVL and CRL. Furthermore, frequency characteristics are pre-
sented, as well as some methods for modifying and shaping these characteristics in order
to obtain a system suitable for frequency control to maintain constant power transfer under
variable coupling conditions.

3.1 Power transfer

3.1.1 Constant voltage load

The harmonic equivalent circuit of the IPT-system is shown in Figure 3.1

�1

�1 �1 �1 �1

����2 �2

�2�2�2�1

−����2

Figure 3.1: Harmonic equivalent circuit with CVL.

27



With conventional phasor circuit theory, the relationship between the currents and voltages
in the circuit can be expressed in the frequency domain as:

V̂1 = R1Î1 + jωL1Î1 − jωMÎ2 + V̂C1 (3.1a)

V̂2 = −R1Î2 − jωL1Î2 + jωMÎ1 − V̂C2 (3.1b)

V̂C1 =
1

jωC1
Î1 (3.1c)

V̂C2 =
1

jωC2
Î2 (3.1d)

Substituting Equation 3.1c and Equation 3.1d in Equation 3.1a and Equation 3.1b, respec-
tively, gives the following:

V̂1 = R1Î1 + jωL1Î1 − jωMÎ2 +
1

jωC1
Î1 (3.2a)

V̂2 = −R1Î2 − jωL1Î2 + jωMÎ1 −
1

jωC1
Î2 (3.2b)

Solving these equations for the currents Î1 and Î2 results in rather long and complicated
expressions and are not displayed here. The are, however, reported in Appendix D. As-
suming operation in resonance, ω = ω0 = 1√

L1C1
= 1√

L2C2
, a more simple solution

arises:

Î1 = −j ·M · V̂2 · ω0 −R2 · V̂1
M2 · ω2

0 +R1 ·R2
(3.3a)

Î2 =
j ·M · V̂1 · ω0 −R1 · V̂2
M2 · ω2

0 +R1 ·R2
(3.3b)

In general, the phase of the sending side voltage can be chosen to be zero, i.e. ∠V̂1 = 0◦

and, thus, V̂1 = V1 . Furthermore, since the system is operating in resonance, the phase of
the sending side voltage and current has to be equal, i.e., ∠V̂1 = ∠Î1 = 0◦, which means
that Î1 = I1. Moreover, the phase of the receiving side current needs to be equal to the
phase of the receiving side voltage due to the combined action of the diode rectifier and
the CVL, that is, ∠Î2 = ∠V̂2. With these constraints, it is possible to treat the obtained
solutions for the currents further.
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Since it can be assumed that the phase of the sending side voltage and thus the sending
side current is zero, it can be seen from Equation 3.3a that V̂2 needs to have a phase of 90◦

relative to the current Î1 in order for the expression to become real, i.e., V̂2 = V2∠90◦ =

jV2. Imposing this constraint results in a receiving side current of:

Î2 =
j(·M · V1 · ω0 −R1 · V2)

M2 · ω2
0 +R1 ·R2

(3.4)

Since the phase of Î2, as stated above, needs to have equal phase as V̂2, i.e. Î2 = I2∠90◦ =

jI2, the resulting currents is real quantities and can be expressed as:

Î1 = I1 =
M · V2 · ω0 +R2 · V2
M2 · ω2

0 +R1 ·R2
(3.5a)

Î2 = I2 =
M · V1 · ω0 −R1 · V2
M2 · ω2

0 +R1 ·R2
(3.5b)

Thus, in an ideal lossless case with R1 = R2 = 0, the currents are:

I1 =
V2

M · ω0
(3.6a)

I2 =
V1

M · ω0
(3.6b)

Interestingly, when operating in resonance, an increase in the sending side voltage will
mainly increase the receiving side current almost without affecting the sending side cur-
rent, and vice verse.

From these results, the ideal steady-state power flow in resonance can be expressed as:

Pideal = P0(knom) = V1 · I1 = V2 · I2 =
V1 · V2
M · ω0

=
V1 · V2

knom
√
L1 · L2 · ω0

(3.7)

To obtain a general solution for the power dissipated to the load, CVL-behavior needs to be
addressed. The fundamental relationship between the current and voltage at the receiving
side can be expressed with Ohm’s law as:

v2 = Req · i2 (3.8)
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However, in order to represent the CVL-condition, the equivalent load resistance cannot be
modeled as a constant. It must be considered that the amplitude of the voltage will remain
constant during operation. In addition, the phase of the current and voltage is equal due to
the constraints imposed by the diode rectifier, meaning that the quantity Req will be real.

Thus, performing the phasor equivalent substitution V̂2 = Req · Î2 and solving the follow-
ing equations for the currents:

V̂1 = R1Î1 + jωL1Î1 − jωMÎ2 +
1

jωC1
Î1

Req Î2 = −R1Î2 − jωL1Î2 + jωMÎ1 −
1

jωC1
Î2

(3.9)

results in current expressions dependent on Req . By again exploiting the identity in Equa-
tion 3.8, i.e. multiplying the obtained result for the receiving side current Î2(Req) with
Req , results in a general complex expression for the receiving side voltage V̂2. Now a
general solution for the real quantity Req can be found by solving the obtained complex
expression V̂2 = Î2(Req) · Req for the equivalent resistance. However, in order to obtain
the correct real solution of the equivalent load resistance, the magnitude of the voltage
expression needs to be considered, since V̂2 is complex valued.

Thus, the power delivered to the load can be found by:

Pout = V 2
2 /Req(ω, V1, V2) (3.10)

In this equation, the quantity Req will be dependent on, e.g., operating frequency ω, send-
ing side voltage V1 and receiving side voltage V2, meaning it will change during operation
and is thus no CRL. The general solution for this complex expression is not shown here
for brevity but also reported in Appendix D.

From the simplified expression in Equation 3.7, it can easily be seen that the steady-state
power flow will change as the magnetic coupling varies. This is illustrated in Figure 3.2.
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Figure 3.2: Power transferred to load under varying coupling conditions without any control strat-
egy. Power normalized to P0(knom).

Similarly, the power flow will also change when the load conditions vary.

3.1.2 Constant resistive load

With the assumption of a constant equivalent load resistance, the situation is quite differ-
ent. In that case, the steady-state currents assuming resonant operation are:

I1 =
V1,0 · (R2 +Req)

R1 · (R2 +Req) + ω2
0 ·M2

≈
V1,0 ·Req
ω2
0 ·M2

(3.11a)

I2 =
ω0 ·M · V1,0

R1 · (R2 +Req) + ω2
0 ·M2

≈
V1,0

ω0 ·M
(3.11b)

The real power transferred to the load is given by:

Pout = |I2|2 ·Req (3.12)

where the general expression for I2 can be found by solving Equation 3.9 for the currents.
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3.2 Steady-state frequency characteristics

The nominal parameters of the IPT-system are expressed in Table 3.1.

Table 3.1: PARAMETERS OF ANALYZED IPT-SYSTEM

Nominal power, P0 10 kW

Nominal operating frequency, f0 85 kHz

Nominal coupling factor, k 0.2

Primary coil
Nominal voltage, V1 380 V

Self-inductance, L1 176 µH

Leakage inductance, Lα1 39.36 µH

Quality factor, Q1 310

Resonant capacitance, C1 19.92 nF

Resistance, R1 0.3032 Ω

Secondary coil
Nominal voltage, V2 235 V

Self-inductance, L2 41 µH

Leakage inductance, Lα2 39.36 µH

Quality factor, Q2 270

Resonant capacitance, C2 85.51 nF

Resistance, R2 0.0811 Ω

The resonant frequency is defined according to:

ω = ω0 =
1√
C1L1

=
1√
C2L2

= 2π · f0 = 5.3407 · 105 rad/s (3.13)

3.2.1 Control strategies

In order to keep the output power constant when operating under different coupling con-
ditions, a control strategy could be to regulate the excitation frequency accordingly. How-
ever, keeping the output power constant with frequency control is no straightforward task,
and some considerations need to be taken in order for that to happen.

Figure 3.3 shows the frequency characteristics, i.e., the power transfer as a function of
operating frequency, of the CVL IPT-system under variable operating conditions. The
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system is nominally configured with the parameters reported in Table 3.1.

Figure 3.3a illustrates the frequency characteristics under variable coupling conditions,
and it can be observed that the possible output power is well below the power reference
when the magnetic coupling increases. At low coupling, wanted power transfer can only
happen close to the limit frequencies, which is undesired, as a small change in the oper-
ating frequency will significantly affect the power transfer. Furthermore, it can be seen
that the frequency range where non-zero power transfer can take place widens as the cou-
pling conditions increases. The shape of the curves, however, is quite similar for all four
conditions.

The characteristics displayed in Figure 3.3b shows the power transfer capabilities with
varying load voltage. It can be seen that the shape of the curves is significantly altered
when the load voltage is varied. At low load, two pronounced power peaks close to the
limit frequencies can be observed, whereas, at higher load, the number of power peaks
is reduced to one, taking place at the resonance frequency. Thus, wanted output power
can only take place close to the limit frequencies in the case for high load conditions.
Moreover, the range of possible power transfer gets more narrow as the load increases.
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(a) Variable coupling conditions.
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(b) Variable load conditions.

Figure 3.3: Frequency characteristics showing power transfer under varying operating conditions.
Power normalized to P0 = P0(knom, V2,nom) for both cases.

Lowering the sending side voltage will shift these curves down, and vice verse, as well
as modifying their shape. In the case with varying load conditions, frequency control is
maybe not the best choice of control strategy. As can be seen, in an operating condition
corresponding to one single peak in the power transfer characteristics, either lowering or
increasing the operating frequency will decrease the power. However, if the load condition
drops below a certain voltage, two peaks will appear, and the characteristics will have a
local minimum at the resonant frequency. Thus, in that case, both lowering and increasing
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the frequency will increase the power transfer. Operating in resonance and shifting the
observed curves up or down by changing the sending side voltage could be a more suitable
choice.

In the case with low coupling factor, k = 0.5knom, the voltage needs to be reduced in order
for wanted power transfer to take place away from the limit frequencies. With higher
coupling conditions, however, it is possible to take advantage of the curve shapes and
the increasing frequency range by introducing some design techniques, making frequency
control an appropriate choice. Thus, a combined voltage/frequency control can ideally be
applied to the system to keep wanted output power, and whether to change the frequency or
voltage depends on the current operating conditions. Indeed, solely controlling the sending
side voltage in order to maintain constant power flow is possible. The sending side current
will, however, change accordingly, thus possibly increasing the volt-ampere requirements
of the supply. An off-resonant frequency control strategy could reduce this problem.

It should be noted that the IPT-parameters used in this thesis initially was intended for
an IPT-system operating in resonance with voltage control to regulate the output power.
In general, when designing an IPT-system, the intended control strategy and the desired
application should be carefully considered, as parameters such as, e.g., input/output volt-
age and self-inductance’s have a significant impact on the frequency characteristics of the
system, as indicated above. Thus, the nominal parameters used here may not be optimal
for the planned control scheme, and there are, therefore, some matters which need extra
attention.

In the following, frequency control to maintain constant power under variable coupling
conditions will be explored, considering the range knom ≤ k ≤ 3knom.

3.2.2 Coil unbalancing

By introducing an unbalance factor defined according to:

xu =

√
L1

L2

V2
V1

(3.14)

and utilizing a design rule as follows:

V1 =

√
L1

L2

V2
xu

(3.15)

it is possible to shape the frequency characteristics of the IPT-system[15].
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The effect of unbalancing is shown in Figure 3.4.
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(a) Power transferred to the load.
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(b) Argument of impedance seen by the source.

Figure 3.4: Frequency characteristics showing the effect of unbalancing, coupling factor k = 0.4.

The argument of the impedance seen by the source is found from the expression:

∠Zsend = arctan
(
v1,d,0 + jv1,q,0
i1,d,0 + ji1,q,0

)
(3.16)

As Figure 3.4 illustrates, introducing some unbalance has a significant impact on the
steady-state frequency characteristics of the system. Figure 3.4a shows that the range of
power regulation increases as the unbalance factor decreases, and the power peaks close
to the limit frequencies get more prominent.

Figure 3.4b shows how the unbalancing affects the phase characteristics of the equivalent
impedance seen by the sending side converter. Monotonous phase characteristics appear
when the unbalance factor is higher than 1.00, while the phase characteristics cross zero
phase angle three times with an unbalance factor lower than that, i.e., the sign of the
derivative changes along the curve. This phenomenon is called bifurcation; the impedance
switches from inductive to capacitive or vice verse, thus changing the behavior of the
H-bridge converter.

3.2.3 Coil detuning

It is possible to shape the frequency characteristics further by introducing a detuning factor
defined according to:
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xc =
C1 · L1

C2 · L2
> 1 or xc =

C1 · L1

C2 · L2
< 1 (3.17)

This detuning factor ensures different resonant frequencies at the sending and receiving
side of the IPT-system. The effect of detuning is illustrated in Figure 3.5.
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(a) Power transferred to the load.
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(b) Argument of impedance seen by the source.

Figure 3.5: Frequency characteristics showing the effect of detuning, coupling factor k = 0.4, un-
balance factor xu = 0.98.

As seen from Figure 3.5a, a detuning factor of xc > 1 increases the range of possible
power transfer at frequencies lower than the resonant frequency. The sub-resonant power
peak close to the limit frequency is significantly enhanced. In contrast, a factor of xc <
1 increases the range of possible power transfer at higher frequencies, emphasizing the
super-resonant power peak.

Figure 3.5b shows how the detuning affects the phase characteristics, and it can be seen
that a detuning factor of xc > 1 provides a positive phase angle over the whole frequency
range of particular interest, which means that the equivalent impedance seen by the sending
side converter is inductive. A factor of xc < 1 provides in contrast a negative phase angle,
meaning that the equivalent impedance is capacitive. Operation with unity detuning factor
corresponds to having the same resonant frequency at either side of the link, and the phase
characteristics imply that the impedance will be close to pure resistive over the whole range
of interest. An inductive impedance is preferable as this will lead to zero voltage switching
with a low current of all semiconductor devices and thereby limiting the switching losses,
thus favoring sub-resonant operation[15]. Both methods are, however, explored in the
following.

A detuning factor of xc > 1 corresponds to a higher resonant frequency at the receiving
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side compared to the sending side, whereas a detuning factor of xc < 1 corresponds to a
lower resonant frequency at the receiving side, since the IPT-system is detuned according
to:

C1 = xc ·
C2 · L2

L1
(3.18)

3.2.4 Comparison with different load modeling

Figure 3.6 shows the differences in the frequency characteristics between CRL and CVL
with a perfectly tuned system xc = xu = 1.00.
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(a) Power transferred to the load.
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(b) Argument of impedance seen by the source.

Figure 3.6: Frequency characteristics comparing CVL and CRL, coupling factor k = 0.4, detuning
factor xc = 1, unbalance factor xu = 1, (l) denotes a lossless system.

As evident from Figure 3.6, significant discrepancies between the characteristics with CVL
and CRL can be observed when considering off-resonant operation. In the lossless case
with CVL, the power peaks near the limit frequencies approach infinity, whereas in the
case with CRL, the power flow is always bounded. It can also be seen that losses in
the system profoundly affects the CVL-characteristics, as the power flow, in this case, is
bounded from above, whereas in the case with CRL, losses do not have any significant
effect. Moreover, the equivalent sending side impedance with CVL is always zero in the
feasible frequency range with an ideal lossless case and close to zero taking losses into
account. In the CRL case, notably more variation in the impedance phase angle with the
frequency can be observed.

In Figure 3.7, differences in the two load modeling approaches with detuning is illustrated.
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Figure 3.7: Frequency characteristics comparing CVL and CRL, coupling factor k = 0.4, unbalance
factor xu = 1.

As seen, coil detuning has a significant more influence on both the phase and power charac-
teristics with CVL compared to CRL. It is possible to take advantage of these differences,
which is seen in the following.

The characteristics are drawn with an equivalent resistance of Req = ω0 · k · L2.

Coil unbalancing will only shift the curves with CRL upwards or downwards. Thus, they
will perfectly coincide when normalized to their respective values of xu. Comparison
between CVL and CRL with unbalancing is, therefore, omitted.

3.2.5 Constant power transfer in sub-resonant operation

Adding an appropriate amount of unbalancing and detuning can ensure that there indeed
exists a combination of coupling factor and operating frequency such that maintaining
constant power flow is possible through frequency control.

Due to the nominal parameters originally being designed for a system intended for a dif-
ferent strategy, in particular, with xu,nom ≈ 1.28, the following inequality arose:

Pout(ω0, knom, xu = 0.98, xc = 1.03) > P0(knom) (3.19)

Therefore, normalization to P0(knom) would make it impossible to obtain 1 pu power
transfer at low coupling conditions with frequency control, i.e. without changing the send-
ing side voltage accordingly, so normalization to Pout(ω0, knom, xu, xc) is done instead.
The main idea is equivalent, regardless.
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Figure 3.8 shows the frequency characteristics for three different coupling conditions
where a sub-resonant operation is emphasized.
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Figure 3.8: Frequency characteristics with variable coupling conditions in sub-resonant operation.
Power normalized to Pout(ω0, knom, xu, xc), unbalance factor xu = 0.98, detuning factor xc = 1.03.
Operating points marked with a circle.

It can be seen from Figure 3.8a that, by adding an unbalance factor of xu = 0.98 and
a detuning factor of xc = 1.03, power transfer can be maintained at 1 pu by regulat-
ing the frequency in sub-resonant range when the coupling condition varies. Figure 3.8b
shows the phase characteristics for the same conditions and indicates that the sending side
impedance will remain slightly inductive during the intended operation. Figure 3.9 shows
the frequency trajectory as a function of the coupling factor k needed to maintain con-
stant power, as well as the corresponding output power as a function of both the operating
frequency ω and coupling factor k. Same coil design and power normalization as above.
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Figure 3.9: Frequency trajectory for maintaining constant power in sub-resonant range under vari-
able coupling condition and the corresponding power transfer.
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Clearly, the output power calculated as a function of the coupling factor and operating
frequency is maintained at the reference with the intended strategy.

Figure 3.10 shows the value of the sending side current and equivalent sending side impe-
dance phase angle during the proposed operation. As suggested, the impedance stays
slightly inductive during the intended control method, illustrated i Figure 3.10b. Further-
more, the value is monotonously decreasing, meaning there are no sign change of the
derivative. Thus, problems with bifurcation are avoided. Since the sending side voltage is
kept constant, the sending side current is expected to be close to constant as well. From
Figure 3.10a, a slight reduction of the current can be observed. This reduction can be ex-
pected due to the change in reactive power at the sending side as the excitation frequency
drops far from resonance.
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(b) Impedance seen by the source.

Figure 3.10: Sending side current and phase angle of the input impedance seen by the source during
sub-resonant operation under variable coupling conditions.

The sending side current is normalized to:

I1,0 =
Pout(ω0, knom, xu, xc)

V1,nom
(3.20)

3.2.6 Constant power transfer in super-resonant operation

Similarly, as above, an appropriate amount of unbalancing and detuning can also ensure
that constant output power can be maintained with super-resonant frequency control under
variable coupling conditions. Figure 3.8 shows the frequency characteristics for three
different coupling conditions where super-resonant frequency range is emphasized.
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Figure 3.11: Frequency characteristics with variable coupling conditions in super-resonant opera-
tion. Power normalized to Pout(ω0, knom, xu, xc), unbalance factor xu = 0.95, detuning factor xc

= 0.97. Operating points marked with a circle.

As can be seen from Figure 3.11a, by adding some unbalance and detuning, in this case, an
unbalance factor of xu = 0.95 and detuning factor of xc = 0.97, power transfer can also be
maintained at 1 pu by regulating the frequency in super-resonant range with different mag-
netic coupling. Figure 3.11b shows the phase characteristics for the same conditions, and,
as opposed to sub-resonant frequency control, indicates that the sending side equivalent
impedance will remain slightly capacitive during the entire operating range. Figure 3.12
shows the excitation frequency as a function of the coupling factor k needed to maintain
constant output power, together with the corresponding output power – with same coil
design and power normalization as for the case above.
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Figure 3.12: Frequency trajectory for maintaining constant power in super-resonant operation under
variable coupling condition and the corresponding power transfer.
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As expected, the output power as a function of the coupling factor and the operating fre-
quency is kept at the reference here as well.

Figure 3.13 shows the sending side current and sending side impedance phase angle during
the super-resonant frequency control. As opposed to sub-resonant frequency control, the
impedance remains slightly capacitive during the intended control method, as illustrated
in Figure 3.13b. The sending side current is shown in Figure 3.13a, and it can be seen that
the current is only subject to minor variations.
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Figure 3.13: Sending side current and phase angle of the input impedance seen by the source during
super-resonant operation under variable coupling conditions.

The sending side current is normalized to the same base value as earlier:

I1,0 =
Pout(ω0, knom, xu, xc)

V1,nom
(3.21)

As earlier mentioned, controlling the output power by regulating the voltage in resonance
or by regulating the operating frequency will impose contrasting stress on the sending side
converter. Figure 3.14 illustrates how the sending side voltage and current will change as a
function of the coupling conditions under the two mentioned control strategies. The volt-
ampere-requirements of the H-bridge converter is clearly higher in the case with voltage
control in resonance compared to off-resonant frequency control, as the current is inversely
related to the voltage and will increase as the coupling conditions decreases due to the
reduced voltage. In the case with varying frequency, the sending side voltage is kept
constant, and, therefore, the current will remain close to constant as well.
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Figure 3.14: Variation of sending side voltage and current for maintaining constant power transfer
under variable coupling conditions.

A similar result as in Figure 3.14b can be obtained in the case for sub-resonant operation
as well, albeit with a decreasing frequency trajectory curve and a slightly different sending
side current.

3.3 Chapter summary

In this chapter, a method for obtaining an expression for the output power for an SS-
compensated IPT-system with CVL as well as CRL have been described. Moreover, power
transfer capabilities and the equivalent sending side impedance characteristics have been
explored and shaped by introducing coil unbalancing and detuning in order to achieve
a system suitable for frequency control to keep the power flow constant under variable
coupling conditions. It is seen that both sub- and super-resonant operations can provide
similar results. However, the latter case will imply capacitive operation of the sending side
converter, whereas inductive operation is ensured when operating in a sub-resonant range.
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Chapter 4
Nonlinear and Small-Signal
State-Space Models

This chapter presents the derivation procedure of a nonlinear state-space model repre-
senting the current and voltage envelopes of an SS-compensated IPT-system with CVL.
The nonlinear model is expressed with direct-quadrature (dq)-axis state variables in a syn-
chronous reference frame (SRF). Furthermore, a linearized model suitable for small-signal
analysis in any feasible operating condition will be derived and presented as well as the
linearization procedure for obtaining this model, both with CVL and CRL.
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4.1 State-space model in synchronous reference frame

The differential equations describing the dynamics of the system in Figure 2.1 can be
obtained by applying KVL around the sending- and pickup coil:

v1 = R1i1 + L1
di1
dt
−M di2

dt
+ vC1 (4.1a)

v2 = −R2i2 − L2
di2
dt

+M
di1
dt
− vC2 (4.1b)

dvC1

dt
=

1

C1
i1 (4.1c)

dvC2

dt
=

1

C2
i2 (4.1d)

All variables of this model will be time-periodic when reached steady-state. These time-
periodic variables obstruct the model to be represented in a state-space formulation where
the state variables arrive at a constant value when evaluated at the equilibrium point. In
order to assess a variety of stability properties and control theory measures, a steady-state
time-invariant state-space representation is required. This time-invariant representation
can be achieved by considering modeling approaches such as dynamic phasors or repre-
senting the time-periodic variables in a synchronously rotating dq-reference frame[26],
which have been widely utilized in litterature[27][28][29][30].

Rearranging the equations of the model obtained above and expressing the model with the
derivatives of the state variables on the left-hand side, i.e., solving equations Equation 4.1a
and Equation 4.1b for the derivatives of the current, results in:

di1
dt

=
1

L1
(v1 −R1i1 − vC1 +M

di2
dt

) (4.2a)

di2
dt

=
1

L2
(−v2 −R2i2 − vC2 +M

di1
dt

) (4.2b)

These two equations are connected due to the mutual coupling between the coils, that is,
the derivative of the current in the sending coil shows up in the equation describing the dy-
namics of the pickup coil, and vice verse. Therefore, substituting equation Equation 4.2b
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in Equation 4.2a, gives:

di1
dt

=
1

L1
(v1 −R1i1 − vC1 +

M

L2
(−v2 −R2i2 − vC2 +M

di1
dt

))

⇒ di1
dt

(1− M2

L1L2
) =

1

L1
(v1 −R1i1 − vC1 −

M

L2
v2 −

MR2

L2
i2 −

M

L2
vC2)

⇒ di1
dt

=
1

L1 − M2

L2

(v1 −R1i1 − vC1 −
M

L2
v2 −

MR2

L2
i2 −

M

L2
vC2)

⇒ di1
dt

= − R1

Lα1
i1 −

MR2

Lα1L2
i2 −

1

Lα1
vC1 −

M

Lα1L2
vC2 +

1

Lα1
v1 −

M

Lα1L2
v2

(4.3a)

Applying the same procedure for equation Equation 4.2b, i.e. substituting equation Equa-
tion 4.2a in equation Equation 4.2b, gives:

di2
dt

= − MR1

Lα2L1
i1 −

R2

Lα2
i2 −

M

Lα2L1
vC1 −

1

Lα2
vC2 +

M

Lα2L1
v1 −

1

Lα2
v2 (4.4)

with the leakage factors defined according to:

Lα1 = L1 −
M2

L2

Lα2 = L2 −
M2

L1

(4.5)

4.1.1 Synchronous reference frame

Expressing the model by dq-axis state variables, the phase angle and amplitude of the first
harmonic frequency components of the currents and voltages in the IPT-system can be
accurately represented. The d- and q-axis state variables are equivalent to the real and
imaginary parts of dynamic phasor models. In a dq-frame, time-periodic ac-signals appear
as dc-signals, thus allowing for linearization. This procedure of changing the reference
frame is called the Park-transformation and is commonly applied to electrical systems with
time-periodic signals so that, e.g., a proportional-integral controller can be implemented
to achieve zero steady-state error.
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Since Park-transformation requires two orthogonal signals, it is not directly applicable to
single-phase systems. Therefore, a set of fictive orthogonal quantities phase-shifted from
the real quantities by a quarter of the fundamental period can be assumed, such that they
together form a stationary frame, thus allowing for Park-transformation[31][32]. These
quantities are indicated with arrow notation in the following.

The systems operating frequency is defined by ω, which is related to the angle θ through
the equality θ = ωt.

Thus, applying a transformation such that the model is represented in an SRF according to
xdq = ~x · e−jθ, by multiplying both sides of Equation 4.3a with the term e−jθ, results in:

d~i1
dt
· e−jθ = − R1

Lα1
~i1 · e−jθ︸ ︷︷ ︸

i1,dq

− MR2

Lα1L2

~i2 · e−jθ︸ ︷︷ ︸
i2,dq

− 1

Lα1
~vC1 · e−jθ︸ ︷︷ ︸
vC1,dq

− M

Lα1L2
~vC2 · e−jθ︸ ︷︷ ︸
vC2,dq

+
1

Lα1
~v1 · e−jθ︸ ︷︷ ︸
v1,dq

− M

Lα1L2
~v2 · e−jθ︸ ︷︷ ︸
v2,dq

(4.6)

By noting that xdq = ~x · e−jθ ⇐⇒ ~x = xdq · ejθ and using the relationship θ = ωt, it is
possible to treat the derivative term on the left hand side:

d~i1
dt
· e−jθ = (

d

dt
(i1,dq · ejωt))e−jωt

= (
di1,dq
dt

ejωt + jω · i1,dq · ejωt)e−jωt

=
di1,dq
dt

+ jω · i1,dq

(4.7)

This result is valid when assuming a time-invariant operating frequency. Furthermore, it
is an accurate approximation as long as the frequency is slowly varying and do not change
notably within one period[26]. In this case, the assumption of ω(t) ≈ ω provides a precise
result. If very rapid variations of the frequency were present, i.e. ω = ω(t), the time
derivative of the term jω(t) · t resulting from the chain rule would be jω(t) + j dω(t)dt t.
This above concerns will, however, not limit the intended application in this work, as
variations in the frequency will be slow and thus not violate the assumption.

By combining these above results, a differential vector equation describing the current at
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the sending side arises:

di1,dq
dt

=− jω · i1,dq −
R1

Lα1
· i1,dq −

MR2

Lα1L2
· i2,dq −

1

Lα1
· vC1,dq

− M

Lα1L2
· vC2,dq +

1

Lα1
· v1,dq −

M

Lα1L2
· v2,dq

(4.8)

A similar procedure for Equation 4.2b, i.e., applying the Park transformation, results in a
differential vector equation describing the current at the receiving side:

di2,dq
dt

=− jω · i2,dq −
MR1

Lα2L1
· i1,dq −

R2

Lα2
· i2,dq −

M

Lα2L1
· vC1,dq

− 1

Lα2
· vC2,dq +

M

Lα2L1
· v1,dq −

1

Lα2
· v2,dq

(4.9)

Furthermore, applying the dq-transformation on the last two equations of the model, Equa-
tion 4.1c and Equation 4.1d, results in:

d~vC1

dt
· e−jθ =

1

C1

~i1 · e−jθ (4.10a)

d~vC2

dt
· e−jθ =

1

C2

~i2 · e−jθ (4.10b)

By treating the derivative terms as before, the following is obtained:

d~vC1

dt
· e−jθ = (

d

dt
(vC1,dq · ejωt))e−jωt

= (
dvC1,dq

dt
· ejωt + jω · vC1,dq · ejωt)e−jωt

=
dvC1,dq

dt
+ jω · vC1,dq

(4.11)

and:
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d~vC2

dt
· e−jθ = (

d

dt
(vC2,dq · ejωt))e−jωt

= (
dvC2,dq

dt
· ejωt + jω · vC2,dq · ejωt)e−jωt

=
dvC2,dq

dt
+ jω · vC2,dq

(4.12)

Thus, the two differential vector equations describing the voltages across the capacitors at
both sending- and pickup coil arises:

dvC1,dq

dt
= −jω · vC1,dq +

1

C1
· i1,dq (4.13a)

dvC2,dq

dt
= −jω · vC2,dq +

1

C2
· i2,dq (4.13b)

The time-varying ac-signals in Equation 4.1a-4.1d can now be represented as dc-signals
from the real and complex terms of the dq-axis state variables, similarly to dynamic
phasor-based modeling. However, the cross-coupling terms jω · xdq resulting from Park-
transformation, where xdq represents an arbitrary dq-axis state variable, impose a nonlin-
earity to the state-space representation.

4.1.2 Constant voltage load and nonlinearity

In order to represent the CVL-characteristic of the model, the voltage at the receiving side
should be expressed in terms of the output voltage Vdc,out and receiving coil current i2 due
to the action of the diode rectifier. Imposing the constraints described in Section 2.1.4, the
fundamental frequency component of the voltage v2 can be expressed as[18]:

v2 =
i2
I2
· 4

π
· Vdc,out (4.14)

where I2 is the amplitude of i2. In the dq-reference frame, the amplitude I2 is the euclidean
norm of the complex vector i2,dq , i.e. |i2,dq| =

√
i22,d + i22,q . Thus, the voltage at the

receiving side is expressed in dq-components as:

v2,dq =
i2,dq√
i22,d + i22,q

· 4

π
· Vdc,out (4.15)
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As can be seen from the expression above, some state variables now appear both squared
and under square roots, as well as multiplied by the input signal Vdc,out. Therefore, more
nonlinearity is introduced to the system.

The overall model is now described in dq-coordinates by four nonlinear complex vector
equations of the form:

di1,dq
dt

=− jω · i1,dq −
R1

Lα1
· i1,dq −

MR2

Lα1L2
· i2,dq −

1

Lα1
· vC1,dq −

M

Lα1L2
· vC2,dq

+
1

Lα1
· v1,dq −

M

Lα1L2
· i2,dq√

i22,d + i22,q

· 4

π
· Vdc,out

(4.16)

di2,dq
dt

=− jω · i2,dq −
MR1

Lα2L1
· i1,dq −

R2

Lα2
· i2,dq −

M

Lα2L1
· vC1,dq −

1

Lα2
· vC2,dq

+
M

Lα2L1
· v1,dq −

1

Lα2
· i2,dq√

i22,d + i22,q

· 4

π
· Vdc,out

(4.17)

dvC1,dq

dt
= −jω · vC1,dq +

1

C1
· i1,dq (4.18)

dvC2,dq

dt
= −jω · vC2,dq +

1

C2
· i2,dq (4.19)

4.1.3 General nonlinear state-space representation

Decomposing these above equations into real and complex terms by representing them on
dq-form with xdq = xd + jxq , a nonlinear state-space model is obtained, expressed in the
general from ẋ = f(x, u) with the state- and input variables x and u defined as:

x =
[
i1,d i1,q i2,d i2,q vC1,d vC1,q vC2,d vC2,q

]T
(4.20)

u =
[
v1,d v1,q ω Vdc,out

]T
(4.21)
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The resulting nonlinear model of the system from Figure 2.1 is therefore given by:

di1,d
dt

=ω · i1,q −
R1

Lα1
· i1,d −

MR2

Lα1L2
· i2,d −

1

Lα1
· vC1,d −

M

Lα1L2
· vC2,d

+
1

Lα1
· v1,d −

M

Lα1L2
· i2,d√

i22,d + i22,q

· 4

π
· Vdc,out

(4.22)

di1,q
dt

=− ω · i1,d −
R1

Lα1
· i1,q −

MR2

Lα1L2
· i2,q −

1

Lα1
· vC1,q −

M

Lα1L2
· vC2,q

+
1

Lα1
· v1,q −

M

Lα1L2
· i2,q√

i22,d + i22,q

· 4

π
· Vdc,out

(4.23)

di2,d
dt

=ω · i2,q −
MR1

Lα2L1
· i1,d −

R2

Lα2
· i2,d −

M

Lα2L1
· vC1,d −

1

Lα2
· vC2,d

+
M

Lα2L1
· v1,d −

1

Lα2
· i2,d√

i22,d + i22,q

· 4

π
· Vdc,out

(4.24)

di2,q
dt

=− ω · i2,d −
MR1

Lα2L1
· i1,q −

R2

Lα2
· i2,q −

M

Lα2L1
· vC1,q −

1

Lα2
· vC2,q

+
M

Lα2L1
· v1,q −

1

Lα2
· i2,q√

i22,d + i22,q

· 4

π
· Vdc,out

(4.25)

dvC1,d

dt
= ω · vC1,q +

1

C1
· i1,d (4.26)

dvC1,q

dt
= −ω · vC1,d +

1

C1
· i1,q (4.27)

dvC2,d

dt
= ω · vC2,q +

1

C2
· i2,d (4.28)

dvC2,q

dt
= −ω · vC2,d +

1

C2
· i2,q (4.29)
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This model can be used for simulating and analyzing the IPT-system and accurately cap-
ture the envelope of the fundamental frequency currents and voltages at any possible oper-
ating point, as long as the first harmonic approximation is valid and as long as the operating
frequency ω is constant or slowly varying[26].

4.2 Steady-state solutions in resonant operation

In order to perform eigenvalue analysis and to study stabilization properties like controlla-
bility and observability, it is necessary to linearize the model at an operating point defined
by f(x,u) = 0.

The reference frame of the dq-model can be chosen arbitrary, and for convenience it is
defined to be synchronized with the peak amplitude of v1. Therefore, the operating q-axis
voltage component at the sending side is zero, v1,q,0 = 0, and the operating d-axis voltage
component is equal to the peak amplitude of v1, v1,d,0 = V1,0[18].

Solving the equation f(x,u) = 0 results in the following steady-state values for the dq-
current components:

i1,d,0 =
V1,0 ·R2 +

4

π
· Vdc,out,0 · ω0 ·M

R1 ·R2 + ω2
0 ·M2

≈
4

π
·
Vdc,out,0

ω0 ·M
(4.30a)

i1,q,0 = 0 (4.30b)

i2,d,0 = 0 (4.30c)

i2,q,0 =
ω0 ·M · V1,0 −R1 ·

4

π
· Vdc,out,0

R1 ·R2 + ω2
0 ·M2

≈
V1,0

ω0 ·M
(4.30d)

Here, the approximations are made by assuming an ideal lossless case, R1 = R2 = 0.

Inserting these components into the steady-state equations of 4.26-4.29, i.e. with zero

53



derivative, the steady-state solutions for the voltages are found to be:

vC1,d,0 =
1

C1 · ω0
· i1,q,0 = 0 (4.31a)

vC1,q,0 = −
1

C1 · ω0
· i1,d,0

= −
V1,0 ·R2 +

4

π
· Vdc,out,0 · ω0 ·M

C1 · ω0 · (R1 ·R2 + ω2
0 ·M2)

≈ −
4

π
·
Vdc,out,0

C1 · ω2
0 ·M

(4.31b)

vC2,d,0 =
1

C2 · ω0
· i2,q,0

=
ω0 ·M · V1,0 −R1 ·

4

π
· Vdc,out,0

C2 · ω0 · (R1 ·R2 + ω2
0 ·M2)

≈
V1,0

C2 · ω2
0 ·M

(4.31c)

vC2,q,0 = −
1

C2 · ω0
· i2,d,0 = 0 (4.31d)

Where again the approximations are made by assuming an ideal lossless case. These
steady-state solutions are only valid when assuming a perfectly tuned system with a single
resonant frequency ω = ω0 = 1√

L1C1
= 1√

L2C2
. The general steady-state solutions, i.e.,

solutions valid in off-resonant operation and with potentially different resonance frequen-
cies at either side of the link are amazingly complicated and not reported here.

4.3 Small-signal model with constant voltage load

The linearized model describing the small-signal dynamics can be written in compact form
as:

∆ẋ = A(xp,up) ·∆x+B(xp,up) ·∆u (4.32)

where the matrices can be found according to:

A(xp,up) =
∂fi
∂x

∣∣∣∣
xp,up

B(xp,up) =
∂fi
∂u

∣∣∣∣
xp,up

(4.33)
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Computing the elements of these matrices is quite uncomplicated, except some trouble-
some entries:

A1,3 =
∂f1
∂i2,d

∣∣∣∣
x=xp

u=up

= − MR2

Lα1L2
− 4

π

MVdc,out,0
Lα1L2

i22,q,0
(i22,d,0 + i22,q,0)3/2

res
= − MR2

Lα1L2
− 4

π

MVdc,out,0
Lα1L2

1

|i2,q,0|

res
= − MR2

Lα1L2
−

4
πVdc,out,0(R1R2 + ω2

0M
2)M

Lα1L2|ω0MV1,0 −R1
4
πVdc,out,0|

≈
4
πVdc,out,0 · ω0M

2

Lα1L2V1,0

(4.34)

A1,4 =
∂f1
∂i2,q

∣∣∣∣
x=xp

u=up

= − 4

π

MVdc,out,0
Lα1L2

i2,d,0 · i2,q,0
(i22,d,0 + i22,q,0)3/2

res
= 0 (4.35)

A2,3 =
∂f2
∂i2,d

∣∣∣∣
x=xp

u=up

= − 4

π

MVdc,out,0
Lα1L2

i2,d,0 · i2,q,0
(i22,d,0 + i22,q,0)3/2

res
= 0 (4.36)

A2,4 =
∂f2
∂i2,q

∣∣∣∣
x=xp

u=up

= − MR2

Lα1L2
− 4

π

MVdc,out,0
Lα1L2

i22,d,0
(i22,d,0 + i22,q,0)3/2

res
=

MR2

Lα1L2
≈ 0

(4.37)

A3,3 =
∂f3
∂i2,d

∣∣∣∣
x=xp

u=up

= − R2

Lα2
− 4

π

Vdc,out,0
Lα2

i22,q,0
(i22,d,0 + i22,q,0)3/2

res
= − R2

Lα2
− 4

π

Vdc,out,0
Lα2

1

|i2,q,0|

res
= − R2

Lα2
−

4
πVdc,out,0(R1R2 + ω2

0M
2)

Lα2|ω0MV1,0 −R1
4
πVdc,out,0|

≈ −
4
πVdc,out,0 · ω0M

Lα2V1,0

(4.38)
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A3,4 =
∂f3
∂i2,q

∣∣∣∣
x=xp

u=up

= ω0 −
4

π

Vdc,out,0
Lα2

i2,d,0 · i2,q,0
(i22,d,0 + i22,q,0)3/2

res
= ω0 (4.39)

A4,3 =
∂f4
∂i2,d

∣∣∣∣
x=xp

u=up

= −ω0 −
4

π

Vdc,out,0
Lα2

i2,d,0 · i2,q,0
(i22,d,0 + i22,q,0)3/2

res
= −ω0 (4.40)

A4,4 =
∂f4
∂i2,q

∣∣∣∣
x=xp

u=up

= − R2

Lα2
− 4

π

Vdc,out,0
Lα2

i22,d,0
(i22,d,0 + i22,q,0)3/2

res
= − R2

Lα2
≈ 0

(4.41)

B1,4 =
∂f1

∂Vdc,out

∣∣∣∣
x=xp

u=up

= − 4

π

M

Lα1L2

i2,d,0√
i22,d,0 + i22,d,0

res
= 0 (4.42)

B2,4 =
∂f2

∂Vdc,out

∣∣∣∣
x=xp

u=up

= − 4

π

M

Lα1L2

i2,q,0√
i22,d,0 + i22,d,0

res
= − 4

π

M

Lα1L2
sgn(i2,q,0)

(4.43)

B3,4 =
∂f3

∂Vdc,out

∣∣∣∣
x=xp

u=up

= − 4

π

1

Lα2

i2,d,0√
i22,d,0 + i22,q,0

res
= 0 (4.44)

B4,4 =
∂f4

∂Vdc,out

∣∣∣∣
x=xp

u=up

= − 4

π

1

Lα2

i2,q,0√
i22,d,0 + i22,q,0

res
= − 4

π

1

Lα2
sgn(i2,q,0) (4.45)

Here, the ”res”-notation above the equality sign indicates that the following calculations
are done with the assumption of a perfectly tuned system and operation in resonance,
ω = ω0 = 1√

L1C1
= 1√

L2C2
, and the approximations are made by assuming an ideal
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lossless resonant case. The sgn-notation denotes the signum function. All other elements
can be easily found by straightforward derivation. However, these calculations are not
shown here for brevity. By inserting the obtained results in Equation 4.33, the resulting
A- andB-matrices are found to be:

A =




− R1

Lα1
ω0 A1,3 A1,4 − 1

Lα1
0 − M

Lα1L2
0

−ω0 − R1

Lα1
A2,3 A2,4 0 − 1

Lα1
0 − M

Lα1L2

− MR1

Lα2L1
0 A3,3 A3,4 − M

Lα2L1
0 − 1

Lα2
0

0 − MR1

Lα2L1
A4,3 A4,4 0 − M

Lα2L1
0 − 1

Lα2

1
C1

0 0 0 0 ω0 0 0

0 1
C1

0 0 −ω0 0 0 0

0 0 1
C2

0 0 0 0 ω0

0 0 0 1
C2

0 0 −ω0 0




(4.46)

B =




1
Lα1

0 i1,q,0 B1,4

0 1
Lα1

−i1,d,0 B2,4

M
Lα2L1

0 i2,q,0 B3,4

0 M
Lα2L1

−i2,d,0 B4,4

0 0 vC1,q,0 0

0 0 −vC1,d,0 0

0 0 vC2,q,0 0

0 0 −vC2,d,0 0




(4.47)

Where A1,3, A1,4, A2,3, A2,3, A3,3, A3,4, A4,3, A4,4, B1,4, B2,4, B3,4, B4,4 are the re-
sults obtained above. Considering operation in resonance, the analytic expressions for the
steady-state solutions and matrix elements are used. Assuming an ideal lossless resonant
case, the approximations are used, and the value of the matrix elements A1,1, A2,2, A2,4,
A3,1 are, in addition, all zero due to the assumption negligible losses.

Thus, the complete linearized model is described in state-space representation as:
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∆ẋ = A(xp,up) ·∆x+B(xp,up) ·∆u (4.48)

where the matrices A and B are reported in equation Equation 4.46 and Equation 4.47,
respectively, and the state vector ∆x and input vector ∆u are defined as follows:

∆x =
[
∆i1,d ∆i1,q ∆i2,d ∆i2,q ∆vC1,d ∆vC1,q ∆vC2,d ∆vC2,q

]T

(4.49)

∆u =
[
∆v1,d ∆v1,q ∆ω ∆Vdc,out

]T
(4.50)

where ∆x = x− xp and ∆u = u− up. xp is the steady-state solution corresponding to
the operating input up.

4.4 Small-signal model with constant resistive load

Modeling the load as a CRL would alter the system. In this case, the the receiving side
voltage v2 in Figure 2.3 would be determined by the equivalent resistance Req and the
receiving side current i2. Thus, in the derivation procedure of the dq-model, the following
simplification is applied:

1√
i22,d + i22,q

· 4

π
· Vdc,out = Req (4.51)

Similar as in the case with CVL, applying the above substitution and solving the equation
f(x,u) = 0, results in the following steady-state values for the dq-currents assuming
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resonant operation:

i1,d,0 =
V1,0 · (R2 +Req)

R1 · (R2 +Req) + ω2
0 ·M2

≈
V1,0 ·Req
ω2
0 ·M2

(4.52a)

i1,q,0 = 0 (4.52b)

i2,d,0 = 0 (4.52c)

i2,q,0 =
ω0 ·M · V1,0

R1 · (R2 +Req) + ω2
0 ·M2

≈
V1,0

ω0 ·M
(4.52d)

(4.52e)

Moreover, inserting these expressions in the steady-state capacitor voltage equations re-
sults in:

vC1,d,0 =
1

C1 · ω0
· i1,q,0 = 0 (4.53a)

vC1,q,0 = −
1

C1 · ω0
· i1,d,0

= −
V1,0 · (R2 +Req)

C1 · ω0 · (R1 · (R2 +Req) + ω2
0 ·M2)

≈ −
V1,0 ·Req
C1 · ω3

0 ·M2
(4.53b)

vC2,d,0 =
1

C2 · ω0
· i2,q,0

=
ω0 ·M · V1,0

C2 · ω0 · (R1 · (R2 +Req) + ω2
0 ·M2)

≈
V1,0

C2 · ω2
0 ·M

(4.53c)

vC2,q,0 = −
1

C2 · ω0
· i2,d,0 = 0 (4.53d)

With these expressions, it is possible to derive a linearized model according to:

∆ẋ = ACRL(xp,up) ·∆x+BCRL(xp,up) ·∆u (4.54)

where the state and input matrices are defined as:

ACRL(xp,up) =
∂fi
∂x

∣∣∣∣
xp,up

BCRL(xp,up) =
∂fi
∂u

∣∣∣∣
xp,up

(4.55)
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Performing these calculations, the resulting matrices arise:

ACRL =




− R1

Lα1
ω0

M(R2+Req)
−Lα1L2

0 − 1
Lα1

0 M
Lα1L2

0

−ω0 − R1

Lα1
0

M(R2+Req)
−Lα1L2

0 − 1
Lα1

0 − M
Lα1L2

− MR1

Lα2L1
0

R2+Req
−Lα2

0 − M
Lα2L1

0 − 1
Lα2

0

0 − MR1

Lα2L1
0

R2+Req
−Lα2

0 − M
Lα2L1

0 − 1
Lα2

1
C1

0 0 0 0 ω0 0 0

0 1
C1

0 0 −ω0 0 0 0

0 0 1
C2

0 0 0 0 ω0

0 0 0 1
C2

0 0 −ω0 0




(4.56)

BCRL =




1
Lα1

0 i1,q,0

0 1
Lα1

−i1,d,0
M

Lα2L1
0 i2,q,0

0 M
Lα2L1

−i2,d,0
0 0 vC1,q,0

0 0 −vC1,d,0

0 0 vC2,q,0

0 0 −vC2,d,0




(4.57)

It can be seen that the only model nonlinearity affecting the A-matrix, in this case, is
the operating frequency of ω0, which will change according to the operating point. The
steady-state currents do not imply any changes of the state matrix in the case with CRL as
opposed to CVL, only the input matrix is affected.

Thus the linearized model assuming a CRL is described in state-space representation as:

∆ẋ = ACRL(xp,up) ·∆x+BCRL(xp,up) ·∆u (4.58)

where the matrices A and B are reported in equation Equation 4.56 and Equation 4.57,
respectively, and the state vector ∆x and input vector ∆u are as follows:

60



∆x =
[
∆i1,d ∆i1,q ∆i2,d ∆i2,q ∆vC1,d ∆vC1,q ∆vC2,d ∆vC2,q

]T

(4.59)

∆u =
[
∆v1,d ∆v1,q ∆ω

]T
(4.60)

Again, ∆x = x− xp and ∆u = u− up. xp are the steady-state solution corresponding
to the operating input up.

4.5 Chapter summary

In this chapter, the derivation procedure of a nonlinear state-space model expressed in
dq-axis state variables, representing an SS-compensated IPT-system with CVL, has been
explained, together with the required assumptions imposed in order to establish its range
of validity. Moreover, the linearization method has been applied to the nonlinear repre-
sentation, assuming both CRL and CVL, thus resulting in small-signal state-space models
suitable for extensive analysis in the full range of intended operation.
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Chapter 5
Model Verification

Both the nonlinear and linearized dq-model should be simulated in order to assess their va-
lidity. Therefore, the two state-space models have been implemented, as well as the circuit
describing the IPT-system in Figure 2.3, in the MATLAB/Simulink/Simscape environment.
The presented dq-model has been thoroughly processed in order to be able to linearize it
at any feasible operating condition, allowing for various time-domain simulations to be
performed. The developed Simulink diagrams are shown in Appendix C.

This chapter presents several simulations in numerous operating conditions, thus docu-
menting the robustness and validity of the state-space models. All simulations are per-
formed with a two-level square waveform as the input voltage, expect from the simula-
tions which consider step changes in the operating frequency. For these simulations, a
sinusoidal input is utilized.

5.1 Simulation in resonant operation

The models in this section have been simulated with the parameters displayed in Table 3.1.
Figure 5.1b and Figure 5.1c illustrates the dynamic response of the current at the sending
and receiving side when a sequence of step changes in the input voltages as shown in
Figure 5.1a is applied.
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(a) Voltage at sending and receiving side.
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(b) Sending side current for the three simulated models.
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(c) Receiving side current for the three simulated models.

Figure 5.1: Model verification by simulation of the circuit, the linearized dq-model and the nonlin-
ear dq-model in resonant operation.

In the simulations illustrated in Figure 5.1, the small-signal model has been obtained with
a sending side voltage of v1 = V1,0 and a receiving side dc-voltage of Vdc,out = Vdc,out,0.
For the presented simulations, the system is at first in steady-state condition at the oper-
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ating point, until a step change of v1 = 1.1V1,0 is applied at t = 2 ms. At t = 2.8 ms, the
system is brought further away from the operating point of the small-signal model with
a step change of Vdc,out = 1.1Vdc,out,0. At t = 3.6 ms, both v1 and Vdc,out are stepped
down to their nominal values and the system is brought back to the linearization point.
This sequence is shown in Figure 5.1a.

The dynamic response of the sending- and receiving side currents is shown in Figure 5.1b
and Figure 5.1c, respectively. It can be seen that the nonlinear dq-model is capturing the
dynamic response to the input steps of the simulated IPT-model with good accuracy, both
at the sending and receiving side. Furthermore, the small-signal model exhibits seemingly
identical behavior as the nonlinear model, thus precisely capturing the current amplitude
at both sides of the IPT-system as well.

An additional demonstration of the state-space models is presented in Figure 5.2, illustrat-
ing the dynamics of a step change in the operating frequency. For the presented simulation,
the small-signal model is obtained with the same operating inputs as above. However, for
this case, the system is first operating at steady-state with an operating frequency of 14
954 rad/s higher than the linearization frequency, before a step back to the linearization
point is applied at t = 4 ms.
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(a) Comparison of the sending side current for the three simulated models.
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(b) Comparison of the receiving side current for the three simulated models.

Figure 5.2: Model verification by simulation of the circuit, the linearized dq-model and the nonlin-
ear dq-model in resonant operation. Coupling factor k = 1.5knom

A slight deviation in the damping can be seen, indicating that the small-signal model
is sensitive to perturbations in the operating frequency. This could also be seen from
the frequency characteristics derived in Chapter 3, as a small change in the operating
frequency could significantly influence the power flow. However, the oscillations and
settling time of the current dynamics are still quite accurately captured. These above
results show that the small-signal model is a good approximation when not operating far
from the linearization point.

5.1.1 Variable load conditions

Since dynamic parameters such as load voltage and magnetic coupling may change during
operation of the system, it is crucial that the developed state-space models represent the
dynamic behavior of the actual IPT-system under those circumstances. Therefore, simula-
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tions with different load- and coupling conditions have been performed in order to provide
additional verification of the state-space models.

In Figure 5.3 and Figure 5.4, the three models have been simulated with respectively low
and high load conditions and illustrates how the system reacts to steps in the input voltage.
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(a) Comparison of the sending side current for the three simulated models.
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(b) Comparison of the receiving side current for the three simulated models.

Figure 5.3: Model verification by simulation of the circuit, the linearized dq-model and the nonlin-
ear dq-model in resonant operation and with low load conditions, V2 = 0.5V2,nom.
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(a) Comparison of the sending side current for the three simulated models.
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(b) Comparison of the receiving side current for the three simulated models.

Figure 5.4: Model verification by simulation of the circuit, the linearized dq-model and the nonlin-
ear dq-model in resonant operation and with high load conditions, V2 = 2V2,nom.

For these simulations, a step change of v1 = 1.1V1,0, taking the system away from the op-
erating point of the small-small signal model, is applied after t = 3.6 ms. When steady-state
operation has been reached in the case with high load conditions, the system is brought
back to the linearization point at t = 5 ms. As seen, the envelope of the current dynamics
is accurately captured in both cases. The simulation sequence is equal for both conditions
in order to more easily make a direct comparison of the oscillations and damping.

5.1.2 Variable coupling conditions

In Figure 5.5 and Figure 5.6, the three models have been simulated with respectively low
and high coupling factor and shows the dynamic response on both sending and receiving
side to a step in the input voltage.
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(a) Comparison of the sending side current for the three simulated models.
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(b) Comparison of the receiving side current for the three simulated models.

Figure 5.5: Model verification by simulation of the circuit, the linearized dq-model and the nonlin-
ear dq-model in resonant operation and with low coupling conditions, k = 0.5knom.
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(a) Comparison of the sending side current for the three simulated models.
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(b) Comparison of the receiving side current for the three simulated models.

Figure 5.6: Model verification by simulation of the circuit, the linearized dq-model and the nonlin-
ear dq-model in resonant operation and with high coupling conditions, k = 3knom.

Quite similar as for above, a step change of v1 = 1.1V1,0 is applied after 6 ms, taking the
models away from the linearization point of the small-signal model. After a steady-state
operation has been reached at this point, emphasizing the case with low coupling factor,
the models are brought back to the linearization point at t = 8 ms. As can be seen from Fig-
ure 5.5, the current amplitudes are accurately captured throughout the sequence of input
steps in the case with a low coupling factor of k = 0.5knom. In the case with high coupling
conditions, however, it can be observed that the nonlinear and linear state-space models are
having some trouble of accurately capturing the envelope of the current waveforms. The
oscillating modes and damping are well represented, but there is indeed a deviation from
the current amplitude. This deviation arises due to the current waveforms are becoming
increasingly distorted as the coupling factor increases, making the harmonic approxima-
tion less accurate, but still a reasonable assumption. The distorted current waveform is
displayed in Figure 5.7.
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It can also be observed that the system is significantly faster and more damped with high
coupling conditions compared to low coupling conditions. The simulation sequence is
equal for both cases here as well, making the comparison of the oscillations and damping
easier.

9.62 9.63 9.64 9.65 9.66 9.67 9.68 9.69 9.7

Time [s] 10
-3

-20

-10

0

10

20

R
e

c
e

iv
in

g
 c

o
il 

c
u

rr
e

n
t 

[A
]

Figure 5.7: Enlarged view of current waveforms with coupling factor k = 3knom.

5.1.3 Comparison between constant voltage and constant resistive load

In order to evaluate the differences in the dynamic behavior of CVL and CRL, the resistive
loaded model is also implemented in the MATLAB/Simulink/Simscape environment. In
Figure 5.8, the response of the linearized CRL-model is plotted on top of the CVL-models.
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(a) Sending side currents.
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(b) Receiving side currents.

Figure 5.8: Comparison between CVL- and CRL-modeling.

The sequence of step changes is similar to the above simulations, i.e., a step change in the
sending side voltage is applied after t = 2 ms and a step back to the linearization point is
applied after t = 3 ms. As can be seen, the CRL-model is significantly faster and more
damped than the CVL-model, indicating that such load modeling should not be used in
design and analysis of IPT-system, as the system seems more damped and robust than it
is. The deviation in the sending side current after the step change at t = 2 ms is due to
the fundamental different behavior a CRL possess compared to a CVL. The response seen
is confirmed correct in Figure 5.9, which shows the sending side current of the circuit
model with CRL and the corresponding linearized model. This behavior could also be
anticipated by comparing the steady-state solutions obtained in 3.5a and Equation 3.11a.
In the CVL-case, the current in the sending side coil is mainly dependent on the voltage in
the receiving coil, and vice verse, whereas in the CRL-case, the situation is quite different,
thus causing the observed deviation.
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Figure 5.9: Model verification by simulation of the linearized model and circuit with CRL.

For the above simulations, the value of the CRL is equal to the equivalent steady-state
resistance Req = V2,0/I2,0.

5.2 Simulation in off-resonant operation

In order to evaluate the validity of the results obtained when considering sub- and super-
resonant operation, i.e., how the nonlinear dq-model and small-signal model behave in
off-resonant conditions corresponding to 1 pu power transfer, time-domain simulations
are also here performed, emphasizing operating points where the power transfer is kept
at the reference. Figure 5.10 illustrates two points along the frequency trajectories for
maintaining constant power for which the following simulations are performed, in both
sub- and super-resonant frequency range.
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(a) Sub-resonant frequency control.
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(b) Super-resonant frequency control.

Figure 5.10: Frequency trajectory for maintaining constant output power – marked with simulation
points.

5.2.1 Sub-resonant operation

The simulation results for comparing the dynamic response of the models in sub-resonant
operation are presented in Figure 5.11 and Figure 5.12.
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(a) Voltage at sending and receiving side.
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(b) Comparison of the sending side current for the three simulated models.
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(c) Comparison of the receiving side current for the three simulated models.

Figure 5.11: Model verification by simulation of the circuit, the linearized dq-model and the non-
linear dq-model in sub-resonant operation for maintaining constant output power. Operating fre-
quency ω = 0.910ω0, coupling factor k = 1.5knom, unbalance factor xu = 0.98, detuning factor
xc = 1.03.

Here, the operating point of the small-signal model has been obtained with an unbalance
factor of xu = 0.98, detuning factor xc = 1.03, operating frequency ω = 0.910ω0 and a
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coupling coefficient of k = 1.5knom. Similar to the case with resonant operation, a step
change in the sending side voltage of v1 = 1.1V1,0 is applied at t = 2 ms, and when steady-
state operation is achieved at this point, a step change in the load voltage of Vdc,out =

1.1Vdc,out,0 is applied at 2.4 ms. When steady-state condition again is reached with these
input voltages, a step back to the linearization point of the small-signal model is executed
at t = 2.8 ms. This sequence of input steps is illustrated in Figure 5.11a.

The same sequence is repeated for another point corresponding to nominal power transfer,
this time at high coupling factor k = 2.6knom and correspondingly reduced operating
frequency with ω = 0.824ω0. Apart from that, similar conditions as for the simulations
presented above. The dynamic response of the sending- and receiving side currents for
this case is presented in Figure 5.12.
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(a) Comparison of the sending side current for the three simulated models.
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(b) Comparison of the receiving side current for the three simulated models.

Figure 5.12: Model verification by simulation of the circuit, the linearized dq-model and the non-
linear dq-model in sub-resonant operation for maintaining constant output power. Operating fre-
quency ω = 0.824ω0, coupling factor k = 2.6knom, unbalance factor xu = 0.98, detuning factor
xc = 1.03.
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As can be seen, the nonlinear model, as well as the small-signal model, quite accurately
captures the current amplitudes of the circuit model along the constant power frequency
trajectory. However, some slight deviation of the current amplitudes can be observed, es-
pecially in the case of high coupling. This deviation is also due to the current waveforms
becoming slightly distorted when the coupling conditions are high and with operation far
from resonance. The distortion is shown in Figure 5.13 and it can be seen that the current
waveform do not represent a perfect sine wave under these conditions, as the observed
waveform is more V-shaped and edged. In any case, the oscillating modes are still accu-
rately captured, and the settling- and rise time are virtually identical. Thus, the state-space
models represent the dynamic behavior of the circuit very well.
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Figure 5.13: Enlarged view of current waveforms in simulation point k = 2.6knom, ω = 0.824ω0.

5.2.2 Super-resonant operation

The simulation results for comparing the dynamic response of the models in super-resonant
operation are presented in Figure 5.14 and Figure 5.15.
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(a) Comparison of the sending side current for the three simulated models.
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(b) Comparison of the receiving side current for the three simulated models.

Figure 5.14: Model verification by simulation of the circuit, the linearized dq-model and the non-
linear dq-model in super-resonant operation for maintaining constant output power. Operating fre-
quency ω = 1.149ω0, coupling factor k = 1.5knom, unbalance factor xu = 0.95, detuning factor
xc = 0.97.

For these simulation results, the small-signal model has been obtained with an unbalance
factor of xu = 0.95, detuning factor xc = 0.97, operating frequency ω = 1.149ω0 and
a coupling coefficient of k = 1.5knom. The simulation sequence is identical as for the
sub-resonant case.

Similar to before, the very same procedure is repeated for the case with high coupling,
k = 2.6knom, and with correspondingly increased operating frequency, ω = 1.410ω0.
These simulation results are presented in Figure 5.15.
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(a) Comparison of the sending side current for the three simulated models.
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(b) Comparison of the receiving side current for the three simulated models.

Figure 5.15: Model verification by simulation of the circuit, the linearized dq-model and the non-
linear dq-model in super-resonant operation for maintaining constant output power. Operating fre-
quency ω = 1.410ω0, coupling factor k = 2.6knom, unbalance factor xu = 0.95, detuning factor
xc = 0.97.

As can be observed, the state-space models are having some trouble with capturing the cur-
rent amplitudes of the circuit when operating in a super-resonant frequency range along the
constant power frequency trajectory displayed in Figure 5.10b. In the case with the lowest
coupling, illustrated in Figure 5.14, the frequency of the oscillations and damping are of
similar behavior for the three models, indicating that the dynamics of the first harmonic
frequency components are well represented. In the case with the highest coupling, how-
ever, as shown in Figure 5.15, in addition to the deviation of the current amplitudes, some
odd performance regarding the dynamic behavior emerges as well. When the step back to
the linearization point of the small-signal model is applied at t = 2.8 ms, it can be seen that
there is a fundamentally different behavior of the circuit model compared to state-space
models. The current amplitude of the circuit model decreases, whereas an increase can be
observed for the state-space models. It can also be seen that the linearized model in this
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operating point is more sensitive to perturbations. When the first input step is applied at t
= 2 ms, taking the system away from the linearization point, the small-signal model is not
accurately following the nonlinear model. The system dynamics are, however, preserved.

These issues may arise due to the increasing harmonic distortion of the current wave-
forms when the magnetic coupling is high, combined with operating conditions far from
resonance. Furthermore, nonlinearities of the system may be more exposed to these off-
resonant conditions, making the system more sensitive to perturbations and changes.

5.3 Chapter summary

Comprehensive time-domain simulations are provided to determine the validity of the de-
rived state-space models, emphasizing realistic operating conditions, as well as the in-
tended range of operation under the proposed frequency control strategy. The models have
been verified to accurately capture the envelopes of the fundamental frequency currents of
the IPT-system in any sensible operating point. Some harmonic distortion is observed in
the case with high coupling factor and strongly off-resonant operation, reducing the ac-
curacy of the first harmonic approximation. The current dynamics are, however, captured
with reasonable accuracy in almost any case. Furthermore, simulations comparing CVL
and CRL modeling have demonstrated that the latter approach results in a much more
damped response.
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Chapter 6
Stability and Sensitivity Analysis

Eigenvalues and eigenvectors of the state matrix A in the linearized model can be uti-
lized to investigate various stability and sensitivity properties describing the small-signal
behavior of the system. This chapter presents several eigenvalue-based analyses such as
eigenvalue trajectories in order to, e.g., assess the impact of varying operating conditions
of the system, and to provide understanding in how the system dynamics change when
maintaining constant power transfer under variable coupling conditions by changing the
operating frequency. Furthermore, participation factors and parametric sensitivities are
inspected to determine the system’s sensitivity traits. Subsequently, controllability and
observability Gramians are analyzed to ascertain important control properties. Some re-
sults an discussion regarding sensitivity analysis in resonant operation provided in this
chapter are also presented in the specialization project.

The nominal parameters used in the analysis of the system are expressed in Table 3.1 and
the eigenvalues of the A-matrix configured with the nominal parameters are reported in
Table 6.1.

Table 6.1: NOMINAL EIGENVALUES

eig(A)

λ1,2 −2.2594 · 104 ± i1.1264 · 106

λ3,4 −1.5567 · 104 ± i1.0233 · 106

λ5,6 −2.9017 · 103 ± i5.3558 · 104

λ7,8 −3.5600 · 104 ± i4.2457 · 104
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As can be noticed, mode 3, i.e., λ5,6 has markedly lower real part than the others. It can,
therefore, be expected that this particular mode will dominate the system dynamics.

6.1 Parametric sensitivity

As previously stated, parametric sensitivity analysis is a tool for investigating how the
changeable parameters of a system affect the eigenvalues of the state matrix A, and can
be found according to the formula:

si,k =
dλi
dρk

=

rHi
∂A

∂ρk
li

rHi li
(6.1)

In the following tables, parametric sensitivities to all eigenvalues of every parameter of the
system is shown, in addition to sensitivities to the steady-state currents.

Table 6.2: SENSITIVITY TO PARAMETERS 1-4

eig(A) R1 R2 L1 L2

λ1,2 −4072± i152 −6477± i2815 −4.2e7± i2.8e7 2.2e8∓ i1.4e8
λ3,4 −1413± i330 −6286∓ i1822 −5.2e7∓ i9.5e6 2.5e8± 3.6e7

λ5,6 −1107± i652 −6134∓ i187 9.5e6∓ i8.8e6 −2.5e7± 3.4e7

λ7,8 −4465± i195 −6772∓ i6148 −1.1e8± i1.0e8 5.1e8∓ i4.5e8

Table 6.3: SENSITIVITY TO PARAMETERS 5-7

eig(A) C1 C2 k

λ1,2 2.1e16± i5.2e16 −2.6e14∓ i6.5e14 −1.0e5± i5.5e4
λ3,4 −2.1e16∓ i6.5e16 2.6e14∓ i8.4e14 −9.1e4∓ i1.8e4
λ5,6 −3.5e16± i1.1e15 −4.2e14± i3.0e14 1.5e4∓ i6201

λ7,8 3.4e16± i1.6e16 4.2e14∓ i1.7e14 −2.2e5± i1.8e5
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Table 6.4: SENSITIVITY TO PARAMETERS 8-10

eig(A) V1,0 Vdc,out,0 ω0

λ1,2 47.37∓ i26.26 −97.52± i54.06 −0.032± i1.020

λ3,4 49.07± i9.420 −101.0∓ i19.40 −0.034± i0.995

λ5,6 −6.676± i4.827 13.74∓ i9.937 −0.507± i0.084

λ7,8 105.9∓ i91.82 −218.0± i189.0 0.439∓ i0.043

Table 6.5: SENSITIVITY TO STEADY-STATE-SOLUTIONS

eig(A) i2,d,0 i2,q,0

λ1,2 11.18± i0.094 −429.9± i238.3

λ3,4 −12.72± i0.113 −445.4∓ i85.50

λ5,6 8.669± i247.6 60.59∓ i43.81

λ7,8 −7.130∓ i320.7 −961.0± i833.4

For the above calculations, only resonant operation is considered. Indeed, parametric sen-
sitivity to the eigenvalues can theoretically be found at any operating point. However, the
complexity of the symbolic steady-state solutions of the dq-current components skyrockets
when considering off-resonant operation, thus increasing the computational demand.

As can be observed from the presented tables, a small change in particularly the capac-
itor values significantly affects the eigenvalues, whereas a small change in the operating
frequency have relatively low impact. This may seem to contradict the conclusion drawn
from the simulations in Figure 5.2. However, the step change considered in the presented
simulations is comparatively high, as the changes considered in the parametric sensitivity
tables are infinitesimal.

6.2 Participation factors

As earlier described, the participation factor is a tool for analyzing the level of interaction
between the states and the modes of a system. According to Table 6.1, the eigenvalues of
the A-matrix are all complex conjugate pairs. In order to take care of this issue, the first
method has been adjusted to include the absolute value of the eigenvector entries. Four
different participation factors have been investigated in the following:
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pki = |likrik| (6.2)

Method II:

pki =
(<{lik})2

<{li}(<{li})T
(6.3)

Method III:

pki =
|lik|2∑n
j=1 |lij |

(6.4)

Method IV:

pki = 2<{likrik}) (6.5)

The respective results are shown in Table 6.6, 6.7, 6.8 and 6.9.

Table 6.6: PARTICIPATION FACTORS METHOD I

State Mode 1 Mode 2 Mode 3 Mode 4

i1,d 0.1323 0.1308 0.2660 0.0170

i1,q 0.1334 0.1319 0.0202 0.3449

i2,d 0.1322 0.1332 0.0217 0.3526

i2,q 0.1321 0.1336 0.2595 0.0107

vC1,d 0.1325 0.1310 0.0173 0.3441

vC1,q 0.1332 0.1316 0.2633 0.0138

vC2,d 0.1318 0.1332 0.2741 0.0282

vC2,q 0.1323 0.1337 0.0195 0.3457

The critical mode of the system according to Table 6.1 is labeled as Mode 3. It can be
observed that the states which participates most in the dominating mode according to this
method are i1,d, i2,q , vC1,q and vC2,d. The reason may be that i1,d and i2,q are the states
that determine the steady-state power flow of the system, and that vC1,q and vC2,d are
connected to i1,d and i2,q through the general capacitor voltage formula vc(s) = −jω

C ic(s).
That is, the voltage across the capacitor is phase shifted by 90 degrees compared to the
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capacitor current and it is therefore a connection between the q-axis capacitor voltage and
d-axis current in both coils.

Mode 4 of this table is the pole-pair with the lowest real part, and it can be seen that the
set of states which participates most in this mode is the complement of the set of states
that participates most in the critical mode. These states have the least effect on the overall
model response and system dynamics and their contribution to the dynamics will quickly
vanish. Mode 1 and 2 are the most oscillating modes, i.e., the eigenvalue pairs with highest
imaginary part in terms of absolute value, and all the states participate almost equally in
these, which are probably describing high-frequency inductor-capacitor-oscillations.

Table 6.7: PARTICIPATION FACTORS METHOD II

State Mode 1 Mode 2 Mode 3 Mode 4

i1,d 0.6480 0.6899 0.9544 0.0356

i1,q 0.1675 0.1202 0.1202 0.9596

i2,d 0.1838 0.1893 0.0100 1.3252 · 10−4

i2,q 6.7051 · 10−5 1.7255 · 10−5 1.5038 · 10−5 0.0045

vC1,d 1.8746 · 10−5 1.3158 · 10−5 4.0442 · 10−6 1.0868 · 10−4

vC1,q 9.3431 · 10−5 6.3781 · 10−5 1.0673 · 10−4 4.1201 · 10−6

vC2,d 2.9534 · 10−7 2.7875 · 10−8 8.5123 · 10−8 9.0091 · 10−7

vC2,q 4.7722 · 10−4 3.4115 · 10−4 6.0590 · 10−6 8.6470 · 10−8

Table 6.8: PARTICIPATION FACTORS METHOD III

State Mode 1 Mode 2 Mode 3 Mode 4

i1,d 0.4055 0.4033 0.7813 0.0272

i1,q 0.4068 0.4041 0.0316 0.7804

i2,d 0.0942 0.0963 0.0144 0.1906

i2,q 0.0929 0.0958 0.1722 0.0013

vC1,d 5.5935 · 10−5 3.8426 · 10−5 3.4773 · 10−6 9.1180 · 10−5

vC1,q 5.6409 · 10−5 3.8704 · 10−5 8.7375 · 10−5 1.3561 · 10−6

vC2,d 2.3766 · 10−4 1.6955 · 10−4 3.9006 · 10−4 2.1957 · 10−5

vC2,q 2.3918 · 10−4 1.7068 · 10−4 1.7983 · 10−5 3.9207 · 10−4
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These two above methods seem to emphasize that the states describing the voltages across
the capacitors are the integral of the corresponding currents, i.e., they do not provide any
additional information of the system.

Table 6.9: PARTICIPATION FACTORS METHOD IV

State Mode 1 Mode 2 Mode 3 Mode 4

i1,d 0.240 0.2508 0.5316 0.0017

i1,q 0.2458 0.2544 0.0296 0.5460

i2,d 0.2558 0.2469 0.0339 0.5630

i2,q 0.2543 0.2455 0.5188 0.0047

vC1,d 0.2502 0.2474 0.0347 0.5328

vC1,q 0.2515 0.2485 0.5266 0.0213

vC2,d 0.2488 0.2514 0.5481 0.0437

vC2,q 0.2498 0.2525 0.0390 0.5353

This fourth method gives the same information as the first method, and the same conclu-
sion can be drawn.

For the presented tables above, only resonant operation is considered. The participation
factors can, however, easily be found in any operating point of the system.

6.3 Eigenvalue trajectories in resonant operation

Eigenvalue trajectories can be found by plotting the eigenvalues of the system while vary-
ing one or more parameters. A stable system has all the eigenvalues located in the left-
hand plane. Eigenvalues located closest to the imaginary axis are the slowest modes of the
system; those eigenvalues dominate the others and will have a substantial impact on the
system dynamics. Poorly damped oscillations could also be identified, since eigenvalues
with low damping ratio, i.e., eigenvalues close to the imaginary axis with a high imaginary
part, will inflict such behavior on the system. Any eigenvalues located in the right-half
plane would cause instability. Thus, important information regarding stability properties
and the dynamic response of the system could be identified by examining the trajectory of
the eigenvalues while varying dynamic parameters of the model.
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6.3.1 Variable load conditions

As the load may change during operation, it is of interest to determine how this will impact
the system dynamics. In the following, CVL and CRL is compared.

The eigenvalue trajectories when the load voltage is varied in the range 0.5V2,nom ≤ V2 ≤
2V2,nom and all other parameters are kept constant are shown in Figure 6.1.
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(a) Model with CVL.
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(b) Model with CRL.

Figure 6.1: Eigenvalue trajectories when the load voltage is varied. Points marked with a blue
circle corresponds to V2 = 0.5V2,nom, whereas points marked with a red triangle corresponds to
V2 = 2V2,nom.

As can be seen, a system with CVL has a dominating mode with notably slower dynamics
than the system with CRL. Moreover, the rightmost pole-pair in the case with CVL is
approaching the imaginary axis as the load voltage is increased, making the system slower,
whereas the opposite happens with CRL. At the same time, an increasing real part of
the most oscillating modes can be observed in both cases, thus reducing their impact on
the system dynamics. The observed trajectories agree with simulation results obtained in
Section 5.1.1, as the simulations show that the oscillating dynamics are attenuated faster
in the case with low load conditions compared to the case with high load conditions.

6.3.2 Variable coupling conditions

Similarly, the magnetic coupling may also change during operation of the system, and it
is therefore of interest to observe how this will impact the dynamic behavior of the system
as well.
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The eigenvalue trajectories when the coupling factor is varied in the range 0.5knom ≤ k ≤
3knom and all other parameters are kept constant are shown in Figure 6.2.
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(a) Model with CVL.
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(b) Model with CRL.

Figure 6.2: Eigenvalue trajectories when the coupling coefficient is varied. Points marked with a
blue circle corresponds to k = 0.5knom, whereas points marked with a red triangle corresponds to
k = 3knom.

As for the above case, the dominating pole-pair with CVL is much closer to the imaginary
axis than with CRL, imposing a significant difference in the dynamics of the two systems.
The real part of every eigenvalue increases when the coupling factor rises, thus making
both systems significantly faster and more damped. This also coincides with the simulation
result obtained in Section 5.1.2, since the simulation confirms that the system dynamics
indeed are significantly faster and more damped in the case with high coupling factor
compared to the case with low coupling factor.

6.3.3 Varying the steady-state solutions

Due to CVL-conditions, which makes the overall system significantly more nonlinear, the
steady-state values of i2,d and i2,q appear in the A-matrix, in contrast to the CRL-case.
Thus, it could be of interest to observe how a change in these steady-state values affects
the dynamics of the small-signal model in order to assess the degree of nonlinearity of the
system, to some extent

The eigenvalue trajectories when the steady-state value of i2,d,0 is varied in the range of
0 < i2,d,0 < 60 A are illustrated in Figure 6.3a and the trajectories when the steady-state
value of i2,q,0 is varied in the range of 15 < i2,q,0 < 55 A are illustrated in Figure 6.3b. All
other parameters are kept constant, and the linearized model is obtained with the nominal
parameters reported in Table 3.1.
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(a) Varying i2,d,0.
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(b) Varying i2,q,0.

Figure 6.3: Eigenvalue trajectories when the steady-state solutions i2,d,0 and i2,q,0 are varied.
Points marked with a blue circle corresponds to the lowest steady-state current, whereas points
marked with a red triangle corresponds to the highest steady-state current.

The ranges are not chosen arbitrarily. As derived in Section 4.2, the steady-state solution
of i2,d,0 equals zero when operating in resonance. It is, however, not zero in off-resonant
operation, and, depending on the resonant frequencies of the coils and whether the ex-
citation frequency is sub- or super-resonant, usually varies between -60 and 60 for the
operation strategy intended. The impact on the eigenvalues is however symmetric; vary-
ing the d-axis steady-state current from 0 to 60 A or from 0 to -60 A gives the same result.
As can be seen from Figure 6.3a, a change in the steady-state current shifts the eigenvalues
along the real axis. The direction depends upon the direction of the change in the current,
but it can be observed that the most dominant poles move in the opposite direction as the
others. In any case, a change in the steady-state d-axis current can cause the system to
become slower or faster, an effect that would not be apparent in a CRL-modeled system.

The range is not chosen arbitrarily for i2,q,0 either. The q-axis steady-state current usually
varies between 15 and 55 A and is never observed to be positive in any intended operating
condition. Since all parameters are kept constant, and the resonant steady-state solutions
are considered (i.e., i2,d,0 = 0 A), it can be seen that the eigenvalue trajectories are quite
similar to the ones observed when varying the load voltage. This behavior is no surprise
when considering the entries of the resonantA-matrix where i2,q,0 shows up, as the q-axis
steady-state value only appears multiplied with the load voltage. In any case, a change in
the steady-state q-axis current could also have an impact on the system dynamics.
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6.4 Eigenvalue trajectories with unbalancing and detun-
ing

As outlined in Chapter 3, the introduction of unbalancing and detuning are necessary in or-
der to modify the steady-state characteristics to obtain a system suitable for power control
with varying magnetic coupling by regulating the operating frequency. Eigenvalue trajec-
tories when changing the unbalancing and detuning factor can reveal how the dynamics of
the system is affected. Figure 6.4 shows the impact of unbalancing and detuning, respec-
tively, on the eigenvalues of the system.
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(a) Unbalancing, 0.90 ≤ xu ≤ 1.00.
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(b) Detuning, 0.97 ≤ xc ≤ 1.03.

Figure 6.4: Eigenvalue trajectory with unbalancing and detuning. Points marked with a blue circle
corresponds to the lowest value, whereas points marked with a red triangle corresponds to the highest
value.

The eigenvalue trajectories in Figure 6.4a is drawn in the range 0.90 ≤ xu ≤ 1.00 and with
a detuning factor of xc = 1.03. All other parameters are kept constant and equal to the
ones reported in Table 3.1. As can be seen, the most dominating mode do not noticeably
move, and the dominating dynamics of the system can be expected to remain constant over
the whole range of xu.

The trajectories illustrated in Figure 6.4b are drawn in the range 0.97 ≤ xu ≤ 1.03 and
with an unbalance factor of xu = 0.98. All other parameters are kept constant. It can be
seen that the real part of the dominating mode increases, making the systems slower as the
detuning factor is increased.
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6.5 Eigenvalue trajectories in off-resonant operation

The developed nonlinear model is linearizable at any operating point as long as the oper-
ating condition of the system is feasible, i.e., as long as the system is operating in continu-
ous conduction mode. It is, therefore, possible to evaluate how the small-signal dynamics
change under varying coupling conditions with frequency control to maintain constant
power transfer.

The impact on the eigenvalues of the A-matrix when the frequency is changed according
to Figure 3.9a and Figure 3.12a, respectively, for keeping constant power transfer under
variable coupling conditions is shown in Figure 6.5.
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(a) Super-resonant frequency range.
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(b) Sub-resonant frequency range.

Figure 6.5: Eigenvalue trajectory under variable coupling conditions in the range knom ≤ k ≤
3knom with off-resonant frequency control for maintaining constant output power. Points marked
with a blue circle corresponds to k = knom, whereas points marked with a red triangle corresponds
to k = 3knom.

As seen from Figure 6.5a, with super-resonant operation, initially a dominant mode occurs
with relatively long settling time. As the coupling factor and correspondingly the operating
frequency increases, the real part of the dominating mode decreases and the system gets
faster. However, only until a point where the movement of the dominating poles changes,
making the system slightly slower and less damped for increased coupling factor beyond
this point. Some deviation and odd behavior regarding time-domain simulations with high
super-resonant operating frequency have been observed in Chapter 5, and the obtained
trajectories may not completely represent the actual system dynamics.

For the case with sub-resonant operation, illustrated in Figure 6.5b, it can be observed that
initially there exists a dominating pole-pair with a significantly higher real part than the
rest. The real part of this mode is, however, quickly decreasing, making the system faster,
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before a fundamental change suddenly happens. Two of the modes change direction in
an apparently extreme but continuous manner at approximately the operating point with
coupling factor k = 1.04knom and operating frequency ω = 0.98ω0. Increasing coupling
conditions after this point makes the overall system to some extent slower again, but more
damped, since the imaginary part of the critical modes is decreasing. Still, the observed
behavior seems odd, so in order to confirm the validity of these results, time-domain sim-
ulations are again performed, emphasizing points before the sudden change occurs.

Figure 6.6 illustrates the same eigenvalue trajectories as before, but this time with two
operating points marked with yellow and green circles. Four of the green circles, however,
are almost entirely covered by yellow circles, as these corresponding eigenvalues are less
sensitive to perturbations compared to the four others in this operating region.
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Figure 6.6: Eigenvalue trajectory under variable coupling condition in the range knom ≤ k ≤
3knom with sub-resonant frequency control for maintaining constant power. Simulation points
marked with yellow and green circles.

Figure 6.7 shows the dynamic response to a step in the input voltage in the operating point
corresponding to the yellow circles in Figure 6.6, whereas Figure 6.8 shows the model
response in the operating point marked with green circles. For the presented simulations,
steady-state operation is obtained at the linearization point, before a step change of V1 =

1.1V1,nom is applied after t = 5 ms.
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(a) Comparison of the sending side current for the three simulated models.
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(b) Comparison of the receiving side current for the three simulated models.

Figure 6.7: Model verification by simulation of the circuit, the linearized dq-model and the nonlin-
ear dq-model in the point ω = ω0, coupling factor k = knom, unbalance factor xu = 0.98, detuning
factor xc = 1.03.
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(a) Comparison of the sending side current for the three simulated models.
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(b) Comparison of the receiving side current for the three simulated models.

Figure 6.8: Model verification by simulation of the circuit, the linearized dq-model and the non-
linear dq-model in the point ω = 0.988ω0, coupling factor k = 1.02knom, unbalance factor
xu = 0.98, detuning factor xc = 1.03.

The above simulations show that the state-space models exhibit the same dynamics as
the circuit model, accurately capturing the current envelope. Furthermore, a significantly
faster attenuation of the oscillations can be observed when simulating in the operating
point marked with green circles compared to the case with yellow circles. These dynamics
are expected as the critical mode is much further away from the imaginary axis for the
operating point indicated by green circles, according to the observed trajectories. This
validation means that the eigenvalue trajectories obtained in Figure 6.5b must be correct.

Simulations in operating points after the sudden change occurs are presented and validated
in Chapter 5.
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6.6 Controllability Gramian in resonant operation

As outlined in Chapter 2, there are several ways of measuring and interpreting the degree
of controllability by analyzing the controllability Gramian:

1) tr(W c), the average controllability in all directions.

2) V (Emin), the set of states that can be reached with a unit or less of input energy.

3) λmin(W c), corresponds to the least controllable direction.

4) eigenvectors, the state-space directions.

5) rank(W c), the controllable subspace.

The state-space model in Equation 4.48 is described by eight state variables and four input
variables. However, it is possible to have several different input configurations, e.g., one
where the input voltages on both sending and receiving side are controlled, one where only
the input voltage on the sending side is controlled and one where only the input voltage on
the receiving side is controlled. Moreover, by assuming resonant operation and thereby a
constant operating frequency ω, this input variable could in that particular case be treated
as a constant parameter. Also, by considering the synchronization of the dq-reference
frame, v1,q = 0 in steady-state and this input variable could, therefore, be neglected.
These assumptions and modifications result in several different variants of the B-matrix
in the linearized model. When an input variable is disregarded from the input vector u,
the corresponding column of the input matrix B is eliminated. The resulting input vector
and matrix are, however, not shown here for brevity.

6.6.1 Considering all input variables

In this section, both q-axis sending side voltage and operating frequency are treated as
input signals. The controllability measures, in this case, are as follows:

1) Input voltages on both the sending and receiving side

λmin(W c) = 251.4753 (6.6a)

tr(W c) = 8.3450 · 107 (6.6b)

V (Emin) = 1.3813 · 103 (6.6c)
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2) Input voltage on only the sending side

λmin(W c) = 134.2109 (6.7a)

tr(W c) = 1.4012 · 107 (6.7b)

V (Emin) = 703.3867 (6.7c)

3) Input voltage on only the receiving side

λmin(W c) = 75.5097 (6.8a)

tr(W c) = 6.9438 · 107 (6.8b)

V (Emin) = 1.0148 · 103 (6.8c)

6.6.2 Disregarding the q-axis input voltage

Now, v1,q are considered to be zero, thus removed from the input vector u, and the corre-
sponding column in theB-matrix is eliminated. The controllability measures, in this case,
reads:

1) Input voltages on both the sending and receiving side

λmin(W c) = 79.9368 (6.9a)

tr(W c) = 7.9773 · 107 (6.9b)

V (Emin) = 1.1068 · 103 (6.9c)

2) Input voltage on only the sending side

λmin(W c) = 2.2953 (6.10a)

tr(W c) = 1.0335 · 107 (6.10b)

V (Emin) = 374.6536 (6.10c)
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3) Input voltage on only the receiving side

This configuration gives the same results as obtained in the corresponding case where the
q-axis voltage component is considered. The results are repeated, regardless:

λmin(W c) = 75.5097 (6.11a)

tr(W c) = 6.9438 · 107 (6.11b)

V (Emin) = 1.0148 · 103 (6.11c)

The eigenvectors corresponding to the smallest eigenvalue in these cases are reported be-
low, ordered by rows.

ξ1,1 =




−0.2017

0.8452

−0.4943

0.0028

0.0072

2.2857 · 10−4

−0.0059

0.0224




ξ2,1 =




0.3180

−0.8488

0.4155

−0.0723

−0.0046

0.0012

0.0081

−0.0214




ξ3,1 =




0.2075

−0.9716

0.0963

−0.0589

−0.0094

0.0018

2.0853 · 10−4

−0..0044




(6.12)

ξ1,2 =




−0.1596

0.9214

−0.3519

0.0362

0.0094

8.3344 · 10−4

−0.0033

0.0165




ξ2,2 =




−0.1708

0.9234

−0.3416

0.0332

0.0100

0.0011

−0.0031

0.0153




ξ3,2 =




0.1547

−0.8998

0.4062

−0.0301

−0.0092

−6.4202 · 10−4

0.0040

−0.0190




(6.13)

6.6.3 Assuming constant operating frequency

Six different cases arise with this assumption, as well. In the following, the calculations
are made with the same configurations as above, i.e., with input voltages on both sides,
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only on the sending side and only on the receiving side, both considering and disregarding
v1,q . The only difference from above is the elimination of ω and corresponding column
in the B-matrix. The case with only having control of the receiving side will be equal for
both, but the results are nonetheless repeated.

1) Considering the q-axis input voltage

1) Input on both sides:

λmin(W c) = 251.4676 (6.14a)

tr(W c) = 8.3450 · 107 (6.14b)

V (Emin) = 1.1813 · 103 (6.14c)

2) Input on only the sending side:

λmin(W c) = 134.2043 (6.15a)

tr(W c) = 1.4012 · 107 (6.15b)

V (Emin) = 703.3792 (6.15c)

3) Input on only the receiving side:

λmin(W c) = 73.4969 (6.16a)

tr(W c) = 6.9438 · 107 (6.16b)

V (Emin) = 1.0147 · 103 (6.16c)

2) Neglecting the q-axis input voltage

1) Input on both sides:

λmin(W c) = 79.9300 (6.17a)

tr(W c) = 7.9773 · 107 (6.17b)

V (Emin) = 1.1067 · 103 (6.17c)
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2) Input on only the sending side:

λmin(W c) = 2.2915 (6.18a)

tr(W c) = 1.0335 · 107 (6.18b)

V (Emin) = 374.5748 (6.18c)

3) Input on only the receiving side:

λmin(W c) = 73.4969 (6.19a)

tr(W c) = 6.9438 · 107 (6.19b)

V (Emin) = 1.0147 · 103 (6.19c)

.

The eigenvectors corresponding to the smallest eigenvalue in all six configurations are,
sorted by rows, respectively:

ξ1,1 =




−0.2017

0.8452

−0.4943

−0.0028

0.0072

2.2853 · 10−4

−0.0059

0.0224




ξ2,1 =




0.3180

−0.8488

0.4156

−0.0732

−0.0046

0.0012

0.0081

−0.0214




ξ3,1 =




0.2008

−0.8406

0.5024

0.0042

−0.0069

−1.1477 · 10−4

0.0059

−0.0225




(6.20)

ξ1,2 =




0.2055

−0.9565

0.2023

−0.0413

−0.0094

−0.0016

0.0017

−0.0094




ξ2,2 =




−0.2130

0.9146

−0.3430

0.0122

0.0099

0.0015

−0.0036

0.0153




ξ3,2 =




0.2075

−0.9717

0.0960

−0.0590

−0.0094

−0.0018

2.0424 · 10−4

−0.0044




(6.21)

In every case presented above, the controllable subspace is full, i.e. rank(W c) = n.
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6.6.4 Summary of controllability Gramian measures

Table 6.10: SUMMARY OF CONTROLLABILITY GRAMIAN MEASURES

Base input Possibilities λmin(W c) tr(W c) V (Emin)

Considering ω

and v1,q

1) Both 251.4753 8.3450 · 107 1.3813 · 103

2) Sending 134.2109 1.4012 · 107 703.3867

3) Receiving 75.5097 6.9438 · 107 1.0148 · 103

Neglecting v1,q

1) Both 79.9368 7.9773 · 107 1.0168 · 103

2) Sending 2.2953 1.0335 · 107 374.6536

3) Receiving 75.5097 6.9438 · 107 1.0148 · 103

Neglecting ω,

considering v1,q

1) Both 251.4676 8.3450 · 107 1.1813 · 103

2) Sending 134.2043 1.4012 · 107 703.3792

3) Receiving 73.4969 6.9438 · 107 1.0147 · 103

Neglecting ω

and v1,q

1) Both 79.9300 7.9773 · 107 1.1067 · 103

2) Sending 2.2915 1.0335 · 107 374.5748

3) Receiving 73.4969 6.9438 · 107 1.0147 · 103

As seen from Table 6.10, highest controllability is achieved when having the possibility of
controlling the voltages on both sides in every case. However, an interesting result arises
in the case where both ω and v1,q are considered. It can be observed that the smallest
eigenvalue is obtained when eliminating the control on the sending side, which means
that it gets harder to control the system in a particular direction in the state-space. The
average controllability, the trace of the Gramian, is however higher for the very same case,
meaning that it is on average easier to control the whole system around in the state-space.

In the case where v1,q is neglected, a severe drop in controllability is obtained. It can
also be observed that eliminating the possibility of actuating on the receiving side sig-
nificantly decreases the controllability. The smallest eigenvalue is reduced by a factor of
approximately 35, and both trace and ellipsoid-volume are subject to a notable decrease.
However, reviving the possibility of actuating on the receiving side and at the same time
eliminating the input control on the sending side significantly increase all controllability
measures compared to the case with an input signal only on the sending side. Compared
to the case with the possibility of controlling the voltage on both sides, it can be seen that
the controllability measures are not reduced by very much, meaning that having control on
the receiving side is the main contributor to overall controllability in this particular case.
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When the operating frequency ω is treated as a constant parameter and thereby eliminated,
it could be seen, by comparing the obtained measures with the corresponding results where
ω is considered, that there is only a minor difference. The average controllability, i.e., the
trace of the Gramian, in every case seems identical with the analogous results where the
small-signal frequency is considered as an input. This result is, however, due to the use of
a precision of five significant figures. Using a precision of six significant figures or more,
a slightly higher average controllability in the cases with ω as an input variable is visi-
ble. These differences could more easily be seen by investigating the trace of the inverse
Gramian, which relates to the average energy needed to steer the system around in the
state-space, as this measure appears more sensitive to perturbations. The following only
displays the trace of the inverse Gramian for the case without v1,q . The same conclusion
can, however, be drawn for the case with the q-axis voltage as well:

1) Input on both sides with and without ω0, respectively:

tr(W−1
c,1) = 0.0169 (6.22a)

tr(W−1
c,2) = 0.0170 (6.22b)

2) Input on sending side with and without ω0, respectively:

tr(W−1
c,1) = 0.4554 (6.23a)

tr(W−1
c,2) = 0.4561 (6.23b)

3) Input on receiving side with and without ω0, respectively:

tr(W−1
c,1) = 0.0200 (6.24a)

tr(W−1
c,2) = 0.0201 (6.24b)

From this, it is evident that slightly more energy is needed to move the system around in
the state-space without ω as an input variable. However, the differences are minor and
show that the frequency input variable does not contribute a lot to overall controllability in
resonant operation.

By examining the vectors defining the least controllable directions, the eigenvectors, in
the above sections, it can be noted that the absolute values of the entries, in general, do
not differ much. However, some eigenvectors point in the opposite direction compared to
the others. i.e., every entry has changed sign. This result is no surprise since the energy
ellipsoid defining the surface of how far in any direction it is possible to steer the system is
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symmetric about all axes. Thus, the opposite direction of the eigenvectors will always be
just as little controllable as the direction of the eigenvector itself. Since the eigenvectors
are quite similar, it means that the least controllable direction does not change much for
the different cases.

6.7 Controllability Gramian in off-resonant operation

All the above results regarding controllability are only obtained assuming operation in
resonance. Observing how the controllability Gramian behave when the frequency is
changed in response to variable coupling could provide valuable information regarding
control strategies. In the following, only the full input matrixB is considered.

6.7.1 Sub-resonant frequency range

Figure 6.9 shows the minimum eigenvalue of the controllability Gramian as the operating
frequency is changed in response to variable coupling conditions to maintain constant
output power.
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Figure 6.9: Minimum eigenvalue of the controllability Gramian under variable coupling condition
in the range knom ≤ k ≤ 3knom with sub-resonant frequency control for maintaining constant
output power.
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As can be seen, the least controllable direction initially gets easier to control as the oper-
ating frequency is reduced, with a local maximum at approximately ω = 0.93ω0. Beyond
this point, the controllability is decreasing, however, not below the initial measure obtained
at a nominal coupling.

Figure 6.10 shows the average controllability and the ellipsoid volume defining the bound-
ary of the reachable states as a function of the coupling factor and operating frequency.
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(a) Trace of Gramian.
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Figure 6.10: Trace and volume of ellipsoid of the controllability Gramian under variable coupling
condition in the range knom ≤ k ≤ 3knom with sub-resonant frequency control for maintaining
constant output power.

It can be seen that both the average controllability and the ellipsoid volume is highest at
nominal conditions and quickly decreases as the frequency is reduced. A slight increase
can be observed beyond the local minima at approximately the same point as the local
maxima in Figure 6.9.

6.7.2 Super-resonant frequency range

Similar to above, Figure 6.11 and Figure 6.12 shows the minimum eigenvalue, trace and
ellipsoid volume of the controllability Gramian, this time while considering super-resonant
operation.
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Figure 6.11: Minimum eigenvalue of the controllability Gramian under variable coupling condition
in the range knom ≤ k ≤ 3knom with super-resonant frequency control for maintaining constant
output power.
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(a) Trace of Gramian.
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Figure 6.12: Trace and volume of ellipsoid of the controllability Gramian under variable coupling
condition in the range knom ≤ k ≤ 3knom with super-resonant frequency control for maintaining
constant output power.

The curves are quite similar to the ones obtained with sub-resonant operation. However,
a monotonous increase in controllability with increasing frequency can be seen in Fig-
ure 6.11, in addition to a slightly higher value for all three measures.
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6.8 Observability Gramian in resonant operation

Similar as for the controllability, there are several ways of measuring and to interpret the
level of observability as well, by analyzing the observability Gramian. Depending on the
complexity, cost, and safety, different output configurations are possible, i.e., which states
to measure. In the following, six different output configurations are investigated. The
different output matrices C of the linearized model are not shown, as it will simply have
a one on the diagonal corresponding to the measured states. Moreover, the eigenvectors
corresponding to the smallest eigenvalues are also omitted in the following.

1) Measuring all currents

A possible output configuration is to measure all currents flowing in the system, which
gives the following observability numbers:

λmin(W o) = 3.3694 · 10−9 (6.25a)

tr(W o) = 2.3262 · 10−4 (6.25b)

V (Emin) = 0.0031 (6.25c)

2) Measuring the sending side currents

It is also interesting to evaluate the case when having measurement only on the sending
side currents:

λmin(W o) = 4.8756 · 10−10 (6.26a)

tr(W o) = 4.9114 · 10−5 (6.26b)

V (Emin) = 0.0013 (6.26c)
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3) Measuring the receiving side currents

Measuring only the receiving side currents:

λmin(W o) = 2.3243 · 10−9 (6.27a)

tr(W o) = 1.8350 · 10−4 (6.27b)

V (Emin) = 0.0027 (6.27c)

4) Measuring the sending side states

Measuring all sending side currents and voltages:

λmin(W o) = 4.0861 · 10−6 (6.28a)

tr(W o) = 0.4332 (6.28b)

V (Emin) = 0.1209 (6.28c)

5) Measuring the receiving side states

Measuring all receiving side currents and voltages:

λmin(W o) = 1.0995 · 10−6 (6.29a)

tr(W o) = 0.0913 (6.29b)

V (Emin) = 0.0589 (6.29c)
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6) Measuring every states

Measuring all currents and voltages in the system:

λmin(W o) = 6.3140 · 10−6 (6.30a)

tr(W o) = 0.5245 (6.30b)

V (Emin) = 0.1376 (6.30c)

6.8.1 Summary of observability Gramian measures

A summary of the obtained observability numbers is reported in Table 6.11.

Table 6.11: SUMMARY OF OBSERVABILITY GRAMIAN MEASURES

Measurement λmin(W o) tr(W o) V (Emin)

Currents 3.3694 · 10−9 2.3262 · 10−4 0.0031

Sen. currents 4.8756 · 10−10 4.9114 · 10−5 0.0013

Rec. currents 2.3243 · 10−9 1.8350 · 10−4 0.0027

Sending side 4.0861 · 10−6 0.4332 0.1209

Receiving side 1.0995 · 10−6 0.0913 0.0589

Every state 6.3140 · 10−6 0.5245 0.1376

Not surprisingly, measuring all state variables results in highest overall observability,
whereas having measurements only on the sending currents result in the worst observ-
ability measures. It can also be noted that observing all sending side states results in better
overall observability than observing the receiving side states, whereas measuring the re-
ceiving side currents gives better observability than measuring the sending side currents.

In the specialization project, numerous resonant analysis of the controllability and ob-
servability Gramians were performed with varying load- and coupling conditions. These
results are not included here.
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6.9 Observability Gramian in off-resonant operation

Similar to the controllability measures, all the above results regarding observability are
only obtained assuming operation in resonance. Therefore, off-resonant Gramian analysis
is provided here as well. In the following, only measurements of all currents are consid-
ered.

6.9.1 Sub-resonant frequency range

Figure 6.13 shows the minimum eigenvalue of the observability Gramian along the con-
stant power frequency trajectory and Figure 6.14 shows the average controllability and the
ellipsoid volume.
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Figure 6.13: Minimum eigenvalue of the observability Gramian under variable coupling condition
in the range knom ≤ k ≤ 3knom with sub-resonant frequency control for maintaining constant
output power.
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(a) Trace of Gramian.
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Figure 6.14: Trace and volume of ellipsoid of the observability Gramian under variable coupling
condition in the range knom ≤ k ≤ 3knom with sub-resonant frequency control for maintaining
constant output power.

As can be seen, the least observable direction gets easier to observe with reduced operating
frequency, whereas the opposite happens to the average controllability and the set of states
reachable with one unit or less of input energy.

6.9.2 Super-resonant frequency range

Similar to above, Figure 6.15 and Figure 6.16 shows the minimum eigenvalue, trace and
ellipsoid volume of the observability Gramian, this time while considering super-resonant
operation.
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Figure 6.15: Minimum eigenvalue of the observability Gramian under variable coupling condition
in the range knom ≤ k ≤ 3knom with super-resonant frequency control for maintaining constant
output power.
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Figure 6.16: Trace and volume of ellipsoid of the observability Gramian under variable coupling
condition in the range knom ≤ k ≤ 3knom with super-resonant frequency control for maintaining
constant output power.

Quite similar curves as for the sub-resonant case can be seen here as well, albeit with a
slightly higher trace and ellipsoid volume. The minimum eigenvalue, however, is marginally
lower.
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6.10 Chapter summary

Small-signal stability and sensitivity analysis in a wide range of operating conditions have
been investigated in this chapter, revealing how the system dynamics change under pro-
posed control strategies and variable load and coupling conditions. The analysis has dis-
covered that there exists a pole-pair that significantly dominates the system dynamics in
the case for resonant operation and which states that participate the most in these modes.
Two dominating pole-pairs have been observed in the case with an off-resonant operation
and with medium to high coupling conditions. Eigenvalue-based comparison between the
two load modeling approaches CRL and CVL has uncovered that the dominating modes of
the former are significantly more damped, indicating that such load modeling is deceiving
when examining the system dynamics. Moreover, controllability and observability Grami-
ans are analyzed, providing insight into how the control properties change with different
input-output configurations and how they change over the range intended for frequency
control.
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Chapter 7
Frequency Domain Analysis and
Power Control

In this chapter, a model order reduction procedure is presented, along with the result-
ing reduced-order approximation. The obtained reduced-order model is implemented
in MATLAB/Simulink/Simscape environment and validated through time-domain simula-
tions. Furthermore, small-signal frequency characteristics are used to design control loops.
A simple PI-controller is utilized for providing the necessary input frequency to keep con-
stant output power under variable coupling conditions, and simulations are performed in
order to assess the closed-loop performance.

7.1 Model order reduction

Lower-order systems are well recognized and easy to understand in terms of characteristics
such as settling time, damping, time constants, and oscillations. Higher-order systems are
more complex and harder to manipulate and work with relative to lower-order models
regarding, e.g., analysis and design of controllers. Therefore, model order reduction could
prove very useful when dealing with higher-order systems. Techniques such as dominant
pole approximation and discarding states that do not influence the dynamic behavior of
the system could be applied in order to obtain such reduction. It is, however, important
that the reduced-order model conserves the dynamic properties and characteristics of the
original model that is important for the application of the system. Thus, verification of the
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behavior of the reduced-order model in, e.g., frequency- and time-domain is crucial

A technique for obtaining a lower-order model that preserves the dynamics of interest is
the balanced truncation model reduction strategy. There are two methods of the balanced
truncation realization: The matched-dc-gain method and the direction-deletion method.
The matched dc-gain strategy discards states that have the least effect on the system be-
havior and alters the remaining states to enforce a dc-gain match between the approxi-
mated lower-order and the original full-order model. This technique ensures an accurate
steady-state response in the time-domain, at the expense of accurate transient behavior.
The direction-deletion strategy discards states with low energy contributions without al-
tering the remaining states and tends to provide a more exact match in fast transients, at
the expense of steady-state behavior[33].

7.1.1 Bode frequency response

The linearized model consists of four input signals and potential of eight output signals,
i.e., there exists up to thirty-two input-output transfer functions. In the following, the pre-
ferred output signal would be the receiving side power. Thus, the input-output pair mainly
contributing to power transfer under the proposed voltage control strategy in resonant op-
eration could be investigated.

The power at the receiving side can be expressed in dq-components as:

Pout = v2,d · i2,d + v2,q · i2,q

=
i22,d√

i22,d + i22,q

· 4

π
· Vdc,out +

i22,q√
i22,d + i22,q

· 4

π
· Vdc,out (7.1)

As earlier outlined, the linearized output equation can be written:

∆y = C(xp,up) ·∆x+D(xp,up) ·∆u (7.2)

where the matrices are defined as follows:

C(xp,up) =
∂gi
∂x

∣∣∣∣
xp,up

D(xp,up) =
∂gi
∂u

∣∣∣∣
xp,up

(7.3)
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Thus, with y = Pout, there are no feedforward term in the output equation and the D-
matrix is zero. The only two non-zero entries of the output matrix C can be found as:

C1,3 =
∂y

∂i2,d

∣∣∣∣
x=xp

u=up

=
i2,d,0√

i22,d,0 + i22,q,0

· 4

π
· Vdc,out,0

C1,4 =
∂y

∂i2,q

∣∣∣∣
x=xp

u=up

=
i2,q,0√

i22,d,0 + i22,q,0

· 4

π
· Vdc,out,0

(7.4)

and the output matrix in this case is therefore the vector:

C =
[
0 0 C1,3 C1,4 0 0 0 0

]
(7.5)

Where C1,3 and C1,4 are the results from Equation 7.4. The frequency and step response
of the eight-order transfer function from v1,d to y = Pout is displayed in Figure 7.1;
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Figure 7.1: Frequency and step response for transfer function from v1.d to Pout.

Since the system is oscillating due to complex poles, a first-order approximation is im-
possible. However, a fourth-order or even a second-order approximation could provide
consistent results.

When utilizing methods for model order reduction, it is crucial to verify that the lower-
order approximation does not present inaccuracies at important frequencies for the desired
application. Therefore, frequency and time-domain responses are presented. In the fol-
lowing, only the matched dc-gain method is examined.

Figure 7.2 shows the frequency response of the original system compared to both a fourth-
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and second-order approximation.
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Figure 7.2: Frequency response of the original and reduced-order models.

It can be seen that the fourth-order transfer function gives a reasonable approximation
around both resonance peaks in addition to a perfect match at lower frequencies. The
second-order approximation, however, does not capture the dynamics of the original sys-
tem at high frequencies but provides a good match at lower frequencies. Thus, in order to
verify the reduced models, step-responses are presented in the following.

Figure 7.3 illustrates the dynamic behavior of the models to a step in the sending side
voltage. Clearly, at these frequencies, both reduced-order models capture the response of
the original system to an input step seemingly equally good.

Figure 7.3: Step response of the original and reduced-order models.

For the second-order approximation, the poles are found as:

eig(h2nd(s)) = −2728± i53840 (7.6)
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The most dominant pole-pair, i.e., the poles with the lowest real part in terms of absolute
value, of the original model is found in Table 6.1 as −2902 ± i53558. Comparing the
poles of the second-order system to the dominant pole-pair of the original eight-order
system reveals that they are almost the same, meaning that this pole-pair significantly
dominates the response of the original model and that it does not exist any zeros nearby
that reduces the influence of these poles. Therefore, the most influencing dynamics can be
well represented by a second-order model.

In the presented reduction strategy, only one channel of the multiple-input multiple-output
system was emphasized. For multivariable systems, the Bode frequency response does not
provide all necessary information as there are interactions between the input-output pairs.
Furthermore, the input and output signals are vectors, meaning they do have directions
associated with them, and the gain of such system depends on the direction of the input
signals. Singular value decomposition is a generalization of the Bode frequency response
and is applicable for multivariable systems as well. The maximum gain as the direction
of the input signal is varied is the maximum singular value of the system, whereas the
minimum gain is the minimum singular value. For single-input single-output systems,
however, the singular value frequency response equals the Bode magnitude plot[34].

7.1.2 Singular value frequency response

For this purpose, the power at both sides of the link is considered. The power at the sending
side can be describes in dq-components as:

Pin = v1,d · i1,d + v1,q · i1,q (7.7)

The only non-zero element can be found as:

C1,1 =
∂Pin
∂i1,d

∣∣∣∣
x=xp

u=up

= v1,d,0 = V1,0 (7.8)

Thus, with y = [Pin Pout]
T , the augumented output matrix becomes:

C =

[
V1,0 0 0 0 0 0 0 0

0 0
4·i2,d,0·Vdc,out,0
π
√
i22,d,0+i

2
2,q,0

4·i2,q,0·Vdc,out,0
π
√
i22,d,0+i

2
2,q,0

0 0 0 0

]
(7.9)
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Figure 7.4 and Figure 7.5 shows the corresponding singular value frequency plot of the
original eight-order system compared to a fourth- and second-order approximation. Both
the matched dc-gain and direction-deletion method are examined and compared, labeled
”MatchDC” and ”Truncate,” respectively.

103 104 105 106 107
-20

-10

0

10

20

30

40

50

60

Original system

2nd order approximation (MatchDC)

Singular Values

Frequency (rad/s)

S
in

g
u
la

r 
V

a
lu

e
s
 (

d
B

)

103 104 105 106 107
-20

-10

0

10

20

30

40

50

60

Original system

2nd order approximation (Truncate)

Singular Values

Frequency (rad/s)

S
in

g
u
la

r 
V

a
lu

e
s
 (

d
B

)

Figure 7.4: Singular value frequency response, 2nd order approximation.
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Figure 7.5: Singular value frequency response, 4th order approximation.

As expected, it can be seen that the direction-deletion method provides a better match
at high frequencies compared to the matched dc-gain method, but a slight deviation in
the steady-state gain can be observed. Moreover, similar as with the Bode frequency
response, the fourth-order methods provides a better match around the second resonance
peak compared to the second-order approximations.

To further demonstrate the accuracy of the lower-order approximations, time-domain re-
sponses are examined. In the following, only the results obtained with the direction-
deletion method are considered. Figure 7.6 illustrates the behavior of the receiving side
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power to a step in the sending side voltage and operating frequency, respectively, compar-
ing both the lower-order models to the full-order original system.

Figure 7.6: Step response from inputs v1,d and ω to y = Pout, respectively.

It can be seen that both of the reduced-order models quite accurately captures the dy-
namics of the original system. However, a slight steady-state error occur, as expected
with the direction-deletion method. To further extend the validity of the lower-order-
approximation, the second-order model is implemented in the Simulink environment.

In state-space representation, the second-order model reads:

ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t) +Du(t)
(7.10)

where theA- andB-matrices are reduced to simply:

A =

(
14000 60950

−51790 −19750

)
B =

(
753.3 −215.7 0.1033 1072

−562.4 34.3 −1.349 1456

)
(7.11)

The output matrices for the approximated model reads:

C =

(
1017 −640.6

−1206 −1757

)
D =

(
0
)

(7.12)

Figure 7.7 compares the dynamic response of the models, similar to the simulations in
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Chapter 5. However, the original eight-order small-signal model is swapped with the
second-order model obtained above.
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Figure 7.7: Verification of the reduced-order approximated model by simulation of the circuit, the
reduced-order model and the nonlinear dq-model in resonant operation.

In order to acquire the current dynamics, both the sending and receiving side output power
is divided by the respective voltages. The simulation sequence is identical to the one
outlined in Section 5.1. As can be seen, the reduced model does not exhibit any noticeable
deviation from the slowly-varying oscillations of the nonlinear dq-model apart from a
slight steady-state-error, thus seemingly capturing the envelope of the current amplitudes
almost equally good as the full-order linear model obtained in Section 4.3. This behavior
is expected since the system is dominated by one eigenvalue-pair in resonant operation,
as explained in Chapter 6. However, potential high-frequency oscillations on top of the
oscillations observed in Figure 7.7 cannot be captured by a second-order approximated
method. In any case, these above steps show that there exist suitable reduced-order models
preserving essential dynamics of the full-order model.
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7.2 Power control

The small-signal model can be used to analyze frequency domain characteristics along the
constant power frequency trajectory obtained in the stationary analysis in Chapter 3. From
these frequency responses, it is possible to investigate and utilize the internal stability
margins of the input-output pairs of interest to design suitable control loops.

7.2.1 Sub-resonant operation

Figure 7.8 shows the frequency response for three different coupling factors of the transfer
function from the small-signal frequency input ω toPin andPout, respectively, considering
sub-resonant operation.
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Figure 7.8: Frequency response from ω to y = Pin and y = Pout, respectively.

A simple PI-controller can provide the necessary operating frequency in response to vari-
able coupling conditions to control the power transfer according to the trajectory obtained
in the stationary analysis in Chapter 3.

In order to directly control the power transferred to the load, it would be necessary to use
the output power Pout as the feedback signal of the control loop. Thus, a wireless feedback
path would be required to avoid communication wires across the air gap of the IPT-system.
However, closing the feedback loop around only the sending side would be advantageous,
as the whole control system could be realized in the transmitter with no communication
across the link.

The open loop transfer functions from the reference signal to respectively the input and
output power can be expressed as:
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Pin
Pref

(s) = hr(s)hp1(s)hf (s) = Kp
1 + Tis

Tis
hp1(s)

1

1 + Tfs

Pout
Pref

(s) = hr(s)hp2(s)hf (s) = Kp
1 + Tis

Tis
hp2(s)

1

1 + Tfs

(7.13)

In these equations, hp1(s) and hp2(s) are the plant transfer functions from the input fre-
quency ω to Pin and Pout, respectively. The transfer function hr(s) is the PI-controller
and hf (s) is a low-pass filter for providing the average value of the output power. The
time-constant of the filter is chosen as Tf = 100/2πf0.

In order to achieve robust closed-loop performance over the whole variation range knom ≤
k ≤ 3knom, the general frequency characteristics in Figure 7.8 are utilized to design the
PI-controller parameters such that no overshoot or oscillations occur at operating condi-
tions where the system dynamics are fast, as a damped response is desired over the whole
intended operating range. Considering this restriction, the controller parameters are tuned
for the worst-case scenario to Kp = −0.65057 and Ti = 1/2846.

The frequency response of the transfer functions in Equation 7.13 for three different cou-
pling conditions along the constant power frequency trajectory is shown in Figure 7.9 with
the corresponding phase- and gain margins indicated by circles. It has been established
through time-domain simulations and stability analysis that the dynamics over the ana-
lyzed range of sub-resonant frequency control are slowest at the lowest coupling. Thus,
the design for damped response at high coupling factor conditions implies a relatively slow
response at a low coupling factor.

Figure 7.9: Frequency response from Pref to y = Pin and y = Pout, respectively.

For the receiving side frequency response, it can be noted that the gain margin is not
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limited by the resonance peak, as the blue circle is indicated slightly beneath the peak,
making this particular condition having the largest gain margin. This is in contrast to the
frequency response of the sending side, where a sufficient increase in the controller gain
would first lead to instability for the case with low coupling factor.

The intended closed-loop block scheme is shown in Figure 7.10.
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Figure 7.10: Block diagram of sending side power feedback control.

To illustrate the performance when using only sending side power feedback for the con-
trol, a sequence of steps is applied in the coupling factor, as shown in Figure 7.11a, and
Figure 7.11b shows the resulting output power. The operating frequency resulting as out-
put from the PI-controller is shown in Figure 7.12. As can be seen, the response is much
faster in the case of a high coupling coefficient, which is expected when considering the
eigenvalue trajectories obtained in Figure 6.5b and the frequency characteristics in Fig-
ure 7.9. By comparing the steady-state frequency trajectory obtained in Figure 3.9a with
the closed-loop controller output in Figure 7.12, it can be confirmed that the operation with
closed-loop power control follows the sub-resonant frequency trajectory for maintaining
1 pu power obtained from the steady-state analysis. It can also be seen that there is no
significant difference in the dynamics of the input and output power, only a deviation due
to practical losses – the efficiency of the system – is observed.
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Figure 7.11: Closed-loop response to steps in the coupling factor with sub-resonant control based
solely on sending side feedback. Power normalized to P0 = P (knom, ω0, xu = 0.98, xc = 1.03).
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Figure 7.12: Closed-loop controller response to steps in the coupling factor.

An additional demonstration of the closed-loop control performance is shown in Fig-
ure 7.13. In this case, the system is initially operating at the secondary side resonance
frequency according to the red curve in Figure 3.8a with k = 3kknom and a correspond-
ingly low power reference of 0.32 pu. A step in the sending side power reference to 0.66
pu is applied at t = 5 ms, and a second step in the power reference is applied at t = 32
ms, bringing the system to the operating point corresponding to nominal power transfer
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indicated by the red circle in Figure 3.8a. The operating frequency resulting from the PI-
controller is shown in Figure 7.13b, clearly illustrating how the response is stable and well
damped over the entire operating region, but much faster when approaching operation at
rated power at a high coupling factor.
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Figure 7.13: Closed-loop response to steps in the power reference with control based solely on
sending side feedback. Power normalized to P0 = P (knom, ω0, xu = 0.98, xc = 1.03).

From the small-signal analysis and the above closed-loop responses, it is seen that the
nonlinear system exhibits very different dynamics over the variation range knom ≤ k ≤
3knom, i.e., the dynamics are markedly changing from one operating condition to another.
A PI-controller with a single set of controller parameters was implemented above, and the
closed-loop response revealed significant slower dynamics at conditions with low coupling
compared to high. Therefore, a gain-scheduled controller could provide better results,
which is a controller that adapts to any number of operating conditions chosen. With this
controller scheme, the gain and integral time of the PI-controller are changed based on
the values of a scheduling variable[35]. In order to implement a proper gain-scheduled
PI-controller, the nonlinear model is linearized at five operating points corresponding to
1 pu power transfer, namely at every step change of the coupling factor k illustrated in
Figure 7.11a. The PI-controller is then tuned for all five steady-state operating points of
the plant, thus providing different controller parameters, and the coupling factor is used as
the scheduling variable. For this purpose, a parallel PI-controller i utilized, of which the
transfer function reads:

hr(s) = Kp +
1

Tis
(7.14)

The controller parameters for each value of the scheduled variable k is reported in Ta-
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ble 7.1.

Table 7.1: GAIN-SCHEDULED CONTROLLER PARAMTERS

k Kp Ti

1.0knom 0 - 1
142000

1.5knom -6.41 - 1
38800

2.0knom -2.82 - 1
14000

2.5knom -1.84 - 1
7620

3.0knom -1.57 - 1
5080

Figure 7.14 illustrates the closed-loop response with the gain-scheduled controller.
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Figure 7.14: Response to steps in the power reference with gain-scheduled control based solely on
sending side feedback. Power normalized to P0 = P (knom, ω0, xu = 0.98, xc = 1.03).

Indeed, a significantly faster closed-loop response can be observed, especially for the case
with low coupling conditions. The closed-loop dynamics are still damped and stable over
the entire operating region.

7.2.2 Super-resonant operation

As illustrated and explained in Chapter 3, super-resonant frequency control could also
provide a constant output power under variable coupling conditions. Figure 7.15 shows
the frequency response of the transfer function from the small-signal frequency input ω to
Pin and Pout, respectively, considering super-resonant operation.
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Figure 7.15: Frequency response from ω to y = Pin and Pout, respectively.

The open loop transfer functions from the reference signal to the input and output power
can be described in the same way as for the case with sub-resonant frequency control. For
this situation, the controller parameters are selected asKp = 2.759 and Ti = 1/5126. The
frequency response for three different coupling conditions is shown in Figure 7.16, with
the corresponding gain- and phase margins marked with circles.

Figure 7.16: Frequency response from Pref to y = Pin and y = Pout, respectively.

Notice how the gain margin in the case with lowest coupling for the sending side is in-
dicated at a significant higher frequency than the first resonance peak due to the positive
phase contribution at the frequencies around that particular peak.

Furthermore, similar as above, utilizing sending side power feedback for the control gives
the closed-loop performance illustrated in Figure 7.17. The sequence of steps in the cou-
pling factor is identical as in Figure 7.11a.
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Figure 7.17: Closed-loop response to steps in the coupling factor with super-resonant control based
solely on sending side feedback. Power normalized to P0 = P (knom, ω0, xu = 0.95, xc = 0.97).

As can be observed, the output of the controller for maintaining constant output power
accurately follows the steady-state frequency trajectory obtained in Figure 3.12a. It can
also be seen that a more fast response over the whole variation range knom ≤ k ≤ 3knom

is achieved with super-resonant frequency control.

7.3 Chapter summary

This chapter has explained a strategy for obtaining a reduced-order model based on bal-
anced truncation realization, and the resulting model has been validated through time-
domain simulations. The lower-order approximated model is observed to accurately cap-
ture the dominating modes of the full-order model, albeit exhibiting some slight steady-
state deviation. Subsequently, frequency domain characteristics have been exploited in
order to design a robust PI-controller for ensuring a damped closed-loop response over the
whole intended operating range. Time-domain simulations with a closed feedback path
have confirmed that the operating frequency provided by the PI-controller quite accurately
follows the constant power frequency trajectory obtained in the stationary analysis. Fur-
thermore, closing the feedback path around the sending side, thus indirectly controlling
the output power, has revealed no significant change in the closed-loop performance.
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Chapter 8
Closing Remarks

8.1 Conclusion

This work has provided a thorough investigation of an SS-compensated IPT-system with
CVL, intended for both resonant and off-resonant operation. A nonlinear state-space rep-
resentation of the IPT-system has been derived, expressed in dq-axis variables in an SRF.
Furthermore, a general small-signal state-space model is presented, valid in the full range
of expected operating conditions. Through the model derivation and linearization proce-
dure, it is seen that the complexity of the equations describing the system dynamics and
the steady-state solutions vastly increases in off-resonant conditions compared to resonant.

Phasor modeling has been utilized to find the necessary operating frequency in order to
keep the output power constant under variable coupling conditions, and small-signal sta-
bility properties have been investigated along this frequency curve to assess the impact on
the system dynamics. These analyses have shown that the system is significantly slower
with low coupling factor compared to high. Furthermore, some odd behavior of the eigen-
value trajectories is observed during the intended sub-resonant power control strategy, thus
causing notable variation in the system dynamics along the constant power frequency tra-
jectory.

Numerous time-domain simulations have confirmed the validity of the presented state-
space models, which are verified to accurately capture the envelopes of the fundamental
frequency currents in the IPT-system in several different operating points. Simulations
with high coupling factor in off-resonant frequency range have revealed that the state-
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space models exhibit some slight deviations due to the waveform distortions occurring at
these conditions, thus decreasing the accuracy of the small-signal analysis performed in
the vicinity of these operating points. Especially operation in super-resonant frequency
range far from resonance has shown a relatively large deviation.

Input-output frequency characteristics have proven valuable in order to obtain a reduced-
order approximated model capturing important dynamics of the full-order model. A small
steady-state error is obtained as the reduction method used for this realization ensures
good transient match at the expense of steady-state behavior. Additionally, small-signal
frequency responses are utilized to design a simple PI-controller to provide the operating
frequency necessary for maintaining constant output power under variable coupling con-
ditions, and the controller response is analogous to the results achieved in the steady-state
analysis. Time-domain simulations have shown that relying solely on sending side power
feedback does not noticeably alter the output power dynamics, thus eliminating the need
for communication across the air gap of the sending and receiving side of the IPT-system.

8.2 Future work

There are several paths of future work to pursue leading from this. As a general linearized
multiple-input multiple-output state-space-representation has been presented, valid in any
feasible operating point, extensive study of multivariable control design and performance
issues can be investigated. Frequency responses such as singular value decomposition can
be assessed to gain insight into the directional of the system, as well as frequency domain
performance and robustness, i.e., how effective feedback control is. If the control scheme
design designed in this work is to be used in practical systems, experimental tests and ver-
ification in real-time should be performed, with power measurements from actual sensors.
Moreover, the control scheme includes a low-pass filter, making the feedback control slow.
Other options of providing a dc-value of the power should be investigated, which could
increase the closed-loop performance. In a practical IPT-system, further requirements for
the control strategy arise from e.g., parameter uncertainties and disturbances, which would
also need to be considered. The main future goal would be to design and implement a dual
frequency/voltage control scheme and experimentally test and verify the results.
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Appendix A
Matlab Code

Overview of the most important MATLAB files used in this report is presented in Table A.1.
The table includes a short description of the files, and the dependency column state which
scripts the particular MATLAB file uses. Indeed, numerous other scripts were written and
used in this work but are not reported here.
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Table A.1: OVERVIEW OF MATLAB-FILES

Filename Description Dependency

steadyState Initialize CVL nonlinear model for fsolve None
getSteadyState Returns CVL steady-state by fsolve steadyState
getStateSpace Returns CVL state-space by fsolve getSteadyState
steadyState Req Initialize CRL nonlinear model for fsolve None
getSteadyState Req Returns CRL steady-state by fsolve steadyState Req
getStateSpace Req Returns CRL state-space by fsolve getSteadyState Req
solveForOmega Initialize power equation for fsolve None
getOmega constP subres Returns sub-res. omega for const. power solveForOmega
getOmega constP supres Returns sup-res. omega for const. power solveForOmega
getPower Returns the output power with CVL None
getPower Req Returns the output power with CRL None
getPower Vdc Returns the output power with varying load None

IPTCharacteristics subres
Finds sub-res. IPT-characteristics for three
different coupling conditions

getPower, getSteadyState

IPTCharacteristics supres
Finds sup-res. IPT-characteristics for three
different coupling conditions

getPower, getSteadyState

IPTCharacteristics xu
Finds IPT-characteristics for three different
unbalance factors

getPower, getSteadyState

IPTCharacteristics xc
Finds IPT-characteristics for three different
detuning factors

getPower, getSteadyState

IPTCharacteristics nom
Finds nominal IPT-characteristics for four
different coupling factors

getPower

IPTCharacteristics Vdc
Finds IPT-characteristics for four different
load voltages

getPower Vdc

sweepEig constP subres
Finds sub-res. eigenvalue-, frequency-, impe-
dance-, current-, and Gramian trajectories

getPower, getStateSpace
getOmega constP subres

sweepEig constP supres
Finds sup-res. eigenvalue-, frequency-, impe-
dance-, current-, and Gramian trajectories

getPower, getStateSpace
getOmega constP supres

freqResp subres
Finds sub-res. frequency respons for three
different coupling factors

getPower, getStateSpace
getOmega constP subres

freqResp supres
Finds sup-res. frequency respons for three
different coupling factors

getPower, getStateSpace
getOmega constP supres

getSymSteadyState Returns symbolic CVL steady-state None
getSymStateSpace Returns symbolic CVL state-space getSymSteadyState
getSymSteadyState Req Returns symbolic CRL steady-state None
getSymStateSpace Req Returns symbolic CRL state-space getSymSteadyState Req
getEigen Returns eigenvectors of A-matrix getStateSpace
parametricSensitivity Finds parametric sensitivity to eigenvalues getSymStateSpace, getEigen
parametricSensitivity SS Finds parametric sensitivity to ss-currents getSymStateSpace, getEigen
participationFactor Finds participation factors getStateSpace
modelReduction Finds lower-order models getStateSpace
sweepEig (1-6) Finds eigenvalue trajectories getSymStateSpace
sweepSSCurrent (1-2) Finds current trajectories getSymStateSpace
simulation Simulates the models and plots the currents getPower, getStateSpace
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Appendix B
Maple Code

Overview of the most important Maple files used in this report is presented in Table B.1.
The table includes a short description of the files. Several other scripts were written and
used in this work but are not reported here.

Table B.1: OVERVIEW OF MAPLE-FILES

Filename Description

coilCurrents Res CVL Finds the steady-state coil currents assuming resonance and CVL

coilCurrents Res CRL Finds the steady-state coil currents assuming resonance and CRL

coilCurrents General CVL Finds the general steady-state coil currents and Req

coilCurrentsDQ Res CVL Finds the steady-state dq coil currents assuming resonance and CVL

coilCurrentsDQ Res CRL Finds the steady-state dq coil currents assuming resonance and CRL

coilCurrentsDQ General CVL Finds the general steady-state dq coil currents

equivalentImpedance CRL Finds the equivalent sending side impedance
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Appendix C
Simulink Diagrams

This appendix displays some of the most important Simulink diagrams developed in this
work. Figure C.1 shows the simulation model for the overall IPT-system displayed in
Figure 2.3, and Figure C.2 shows the contents of the subsystem. The detached sine wave
scheme is utilized when simulating steps in the operating frequency. Configuration param-
eters such as solver type and max step size have been carefully chosen in order to make
this model work properly. Simscape-blocks are colored cyan, subsystem-blocks are col-
ored blue, to workspace-blocks are colored magenta, step-blocks are colored yellow and
all other normal Simulink-blocks are white. Indeed, this model is augmented with power
feedback and low-pass filtering for the case with power control, but the resulting model is
not displayed here.
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C.1 Circuit model
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Figure C.2: Subsystem of the circuit model.

C.2 Nonlinear state-space model

The Simulink diagram of the nonlinear dq-model is shown in Figure C.3, along with its
subsystems in Figure C.4.
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Figure C.5 shows another implementation of the nonlinear dq-model, this time with a
MATLAB-function block. This was done in an early stage in order to validate the model
obtained in Figure C.3. Both models exhibits the exact same dynamic behaviour.
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C.3 Small-signal state-space model

Figure C.6 shows the small-signal simulation model.
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Figure C.6: Small-signal model.
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Appendix D
General Expressions

This appendix presents the general complicated expression for the steady-state coil cur-
rents Î1 and Î2 and the equvalent resistance Req in the CVL IPT-system.
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> > 

> > 
V2*((-omega^8*V2^2*C1^4*(C2*L2*omega^2-1)^2*L1^4+2*V2^2*C1^3*
omega^6*(C2*L2*omega^2-1)*(C1*C2*M^2*omega^4+2*C2*L2*omega^2-2)*
L1^3-C1^2*omega^4*(C1^2*C2^2*M^4*omega^8*V2^2-C1*omega^4*
(omega^4*C1*C2^2*L2^2*V1^2-6*(C2*V2^2+1/3*C1*V1^2)*C2*omega^2*
L2+6*C2*V2^2+C1*V1^2*(C2^2*R2^2*omega^2+1))*M^2+2*V2^2*(C2*L2*
omega^2-1)^2*(C1^2*R1^2*omega^2+3))*L1^2-2*(omega^8*C1^2*C2*(C1*
C2*L2*V1^2*omega^2-C1*V1^2-C2*V2^2)*M^4-C1*omega^4*(-omega^4*C1*
C2^2*L2^2*V1^2+C2*(C2*(C1^2*R1^2*omega^2+3)*V2^2+2*C1*V1^2)*
omega^2*L2+(-C1^2*R1^2*omega^2-3)*C2*V2^2-C1*V1^2*(C2^2*R2^2*
omega^2+1))*M^2-2*V2^2*(C2*L2*omega^2-1)^2*(C1^2*R1^2*omega^2+1)
)*C1*omega^2*L1+C1^4*C2^2*M^6*V1^2*omega^12+2*C2*C1^2*omega^8*
(omega^2*C1*C2*L2*V1^2-1/2*C2*V2^2+C1*V1^2*(C1*C2*R1*R2*omega^2
-1))*M^4+(omega^4*C1*C2^2*L2^2*V1^2-2*omega^2*C2*(C1*V1^2+C2*
V2^2)*L2+2*C2*V2^2+C1*V1^2*(C2^2*R2^2*omega^2+1))*(C1^2*R1^2*
omega^2+1)*C1*omega^4*M^2-V2^2*(C2*L2*omega^2-1)^2*(C1^2*R1^2*
omega^2+1)^2)^(1/2)+(C1^2*(L1^2*R2+M^2*R1)*omega^4+C1*R2*(C1*
R1^2-2*L1)*omega^2+R2)*V2*C2*omega)/C2/((-C1^2*L1^2*V2^2+C1^2*
M^2*V1^2)*omega^4-V2^2*C1*(C1*R1^2-2*L1)*omega^2-V2^2)/omega:
  nothing known about this object

((-omega^8*V2^2*C1^4*(C2*L2*omega^2-1)^2*L1^4+2*V2^2*C1^3*
omega^6*(C2*L2*omega^2-1)*(C1*C2*M^2*omega^4+2*C2*L2*omega^2-2)*
L1^3-C1^2*omega^4*(C1^2*C2^2*M^4*omega^8*V2^2-C1*omega^4*
(omega^4*C1*C2^2*L2^2*V1^2-6*(C2*V2^2+1/3*C1*V1^2)*C2*omega^2*
L2+6*C2*V2^2+C1*V1^2*(C2^2*R2^2*omega^2+1))*M^2+2*V2^2*(C2*L2*
omega^2-1)^2*(C1^2*R1^2*omega^2+3))*L1^2-2*(omega^8*C1^2*C2*(C1*
C2*L2*V1^2*omega^2-C1*V1^2-C2*V2^2)*M^4-C1*omega^4*(-omega^4*C1*
C2^2*L2^2*V1^2+C2*(C2*(C1^2*R1^2*omega^2+3)*V2^2+2*C1*V1^2)*
omega^2*L2+(-C1^2*R1^2*omega^2-3)*C2*V2^2-C1*V1^2*(C2^2*R2^2*
omega^2+1))*M^2-2*V2^2*(C2*L2*omega^2-1)^2*(C1^2*R1^2*omega^2+1)
)*C1*omega^2*L1+C1^4*C2^2*M^6*V1^2*omega^12+2*C2*C1^2*omega^8*
(omega^2*C1*C2*L2*V1^2-1/2*C2*V2^2+C1*V1^2*(C1*C2*R1*R2*omega^2
-1))*M^4+(omega^4*C1*C2^2*L2^2*V1^2-2*omega^2*C2*(C1*V1^2+C2*
V2^2)*L2+2*C2*V2^2+C1*V1^2*(C2^2*R2^2*omega^2+1))*(C1^2*R1^2*
omega^2+1)*C1*omega^4*M^2-V2^2*(C2*L2*omega^2-1)^2*(C1^2*R1^2*
omega^2+1)^2)^(1/2)*V2+(I*C2*L2*M^2*V1^2-I*C2*L1^2*L2*V2^2)*
C1^2*omega^6+M^2*C1^2*C2*(R1*V2^2+R2*V1^2)*omega^5-I*C1*(((C2*
L2*R1^2-L1^2)*V2^2+M^2*V1^2)*C1-2*V2^2*C2*L1*L2)*omega^4+I*V2^2*
(C1^2*R1^2-2*C1*L1-C2*L2)*omega^2+I*V2^2)*C1*omega*V1/(V2*(I*
omega^2*C1*L1+C1*R1*omega-I)*(-omega^8*V2^2*C1^4*(C2*L2*omega^2
-1)^2*L1^4+2*V2^2*C1^3*omega^6*(C2*L2*omega^2-1)*(C1*C2*M^2*
omega^4+2*C2*L2*omega^2-2)*L1^3-C1^2*omega^4*(C1^2*C2^2*M^4*
omega^8*V2^2-C1*omega^4*(omega^4*C1*C2^2*L2^2*V1^2-6*(C2*
V2^2+1/3*C1*V1^2)*C2*omega^2*L2+6*C2*V2^2+C1*V1^2*(C2^2*R2^2*
omega^2+1))*M^2+2*V2^2*(C2*L2*omega^2-1)^2*(C1^2*R1^2*omega^2+3)
)*L1^2-2*(omega^8*C1^2*C2*(C1*C2*L2*V1^2*omega^2-C1*V1^2-C2*
V2^2)*M^4-C1*omega^4*(-omega^4*C1*C2^2*L2^2*V1^2+C2*(C2*(C1^2*
R1^2*omega^2+3)*V2^2+2*C1*V1^2)*omega^2*L2+(-C1^2*R1^2*omega^2
-3)*C2*V2^2-C1*V1^2*(C2^2*R2^2*omega^2+1))*M^2-2*V2^2*(C2*L2*
omega^2-1)^2*(C1^2*R1^2*omega^2+1))*C1*omega^2*L1+C1^4*C2^2*M^6*
V1^2*omega^12+2*C2*C1^2*omega^8*(omega^2*C1*C2*L2*V1^2-1/2*C2*
V2^2+C1*V1^2*(C1*C2*R1*R2*omega^2-1))*M^4+(omega^4*C1*C2^2*L2^2*
V1^2-2*omega^2*C2*(C1*V1^2+C2*V2^2)*L2+2*C2*V2^2+C1*V1^2*(C2^2*
R2^2*omega^2+1))*(C1^2*R1^2*omega^2+1)*C1*omega^4*M^2-V2^2*(C2*
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> > 

> > 

L2*omega^2-1)^2*(C1^2*R1^2*omega^2+1)^2)^(1/2)+C1^3*C2*(-L1*V2+
M*V1)*(L1*V2+M*V1)*(-L1*L2+M^2)*omega^8+I*C2*C1^3*(L1*R1*(-L1*
L2+M^2)*V2^2+M^2*V1^2*(L1*R2+L2*R1))*omega^7+2*((1/2*L1*(C2*L2*
R1^2-L1^2)*V2^2+1/2*M^2*V1^2*(C2*R1*R2+L1))*C1+C2*((L1*M^2-3/2*
L1^2*L2)*V2^2+1/2*M^2*L2*V1^2))*C1^2*omega^6-I*C1^2*(((C2*L2*
R1^2-L1^2)*V2^2+M^2*V1^2)*R1*C1+(R1*(-2*L1*L2+M^2)*V2^2+M^2*R2*
V1^2)*C2)*omega^5-(V2^2*L1*R1^2*C1^2+((C2*L2*R1^2-3*L1^2)*V2^2+
M^2*V1^2)*C1+V2^2*C2*(-3*L1*L2+M^2))*C1*omega^4+I*V2^2*C1*(C1^2*
R1^2-2*C1*L1-C2*L2)*R1*omega^3+V2^2*(C1^2*R1^2-3*C1*L1-C2*L2)*
omega^2+I*C1*R1*V2^2*omega+V2^2):
  nothing known about this object

I*C2*(C1^2*(-L1^2*V2^2+M^2*V1^2)*omega^4-V2^2*C1*(C1*R1^2-2*L1)*
omega^2-V2^2)*M*C1*omega^3*V1/(V2*(I*omega^2*C1*L1+C1*R1*omega-
I)*(-omega^8*V2^2*C1^4*(C2*L2*omega^2-1)^2*L1^4+2*V2^2*C1^3*
omega^6*(C2*L2*omega^2-1)*(C1*C2*M^2*omega^4+2*C2*L2*omega^2-2)*
L1^3-C1^2*omega^4*(C1^2*C2^2*M^4*omega^8*V2^2-C1*omega^4*
(omega^4*C1*C2^2*L2^2*V1^2-6*(C2*V2^2+1/3*C1*V1^2)*C2*omega^2*
L2+6*C2*V2^2+C1*V1^2*(C2^2*R2^2*omega^2+1))*M^2+2*V2^2*(C2*L2*
omega^2-1)^2*(C1^2*R1^2*omega^2+3))*L1^2-2*(omega^8*C1^2*C2*(C1*
C2*L2*V1^2*omega^2-C1*V1^2-C2*V2^2)*M^4-C1*omega^4*(-omega^4*C1*
C2^2*L2^2*V1^2+C2*(C2*(C1^2*R1^2*omega^2+3)*V2^2+2*C1*V1^2)*
omega^2*L2+(-C1^2*R1^2*omega^2-3)*C2*V2^2-C1*V1^2*(C2^2*R2^2*
omega^2+1))*M^2-2*V2^2*(C2*L2*omega^2-1)^2*(C1^2*R1^2*omega^2+1)
)*C1*omega^2*L1+C1^4*C2^2*M^6*V1^2*omega^12+2*C2*C1^2*omega^8*
(omega^2*C1*C2*L2*V1^2-1/2*C2*V2^2+C1*V1^2*(C1*C2*R1*R2*omega^2
-1))*M^4+(omega^4*C1*C2^2*L2^2*V1^2-2*omega^2*C2*(C1*V1^2+C2*
V2^2)*L2+2*C2*V2^2+C1*V1^2*(C2^2*R2^2*omega^2+1))*(C1^2*R1^2*
omega^2+1)*C1*omega^4*M^2-V2^2*(C2*L2*omega^2-1)^2*(C1^2*R1^2*
omega^2+1)^2)^(1/2)+C1^3*C2*(-L1*V2+M*V1)*(L1*V2+M*V1)*(-L1*L2+
M^2)*omega^8+I*C2*C1^3*(L1*R1*(-L1*L2+M^2)*V2^2+M^2*V1^2*(L1*R2+
L2*R1))*omega^7+2*((1/2*L1*(C2*L2*R1^2-L1^2)*V2^2+1/2*M^2*V1^2*
(C2*R1*R2+L1))*C1+C2*((L1*M^2-3/2*L1^2*L2)*V2^2+1/2*M^2*L2*V1^2)
)*C1^2*omega^6-I*C1^2*(((C2*L2*R1^2-L1^2)*V2^2+M^2*V1^2)*R1*C1+
(R1*(-2*L1*L2+M^2)*V2^2+M^2*R2*V1^2)*C2)*omega^5-(V2^2*L1*R1^2*
C1^2+((C2*L2*R1^2-3*L1^2)*V2^2+M^2*V1^2)*C1+V2^2*C2*(-3*L1*L2+
M^2))*C1*omega^4+I*V2^2*C1*(C1^2*R1^2-2*C1*L1-C2*L2)*R1*omega^3+
V2^2*(C1^2*R1^2-3*C1*L1-C2*L2)*omega^2+I*C1*R1*V2^2*omega+V2^2):
  nothing known about this object
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Conference Paper

This appendix presents the paper submitted to the 20th IEEE Workshop on Control and
Modeling of Power Electronics, IEEE COMPEL 2019, held in Toronto, Canada from June
17th to June 20th, 2019.
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Abstract—This paper analyses the small-signal dynamics of a
series-series compensated inductive charging system with a pas-
sive diode rectifier interfaced directly to a battery on the receiving
side. The analyzed system is designed for utilizing the constant
voltage load (CVL) characteristics of the battery to enable power
flow control at constant input/output voltages by changing the
frequency in response to variations in coupling conditions. A
linearizable state-space model, including the nonlinear CVL
characteristics, is presented and utilized to evaluate the small-
signal dynamics of the studied system. Eigenvalue trajectories
and frequency characteristics are presented to show how the
small-signal dynamics vary with the coupling conditions and how
this will influence controller tuning requirements. Time-domain
simulations are presented to verify the validity of the small-signal
modelling and to demonstrate the performance of sub-resonant
frequency control by a simple PI-controller regulating the power
flow in response to variations in the coupling conditions.

Index Terms—Eigenvalue Analysis, Inductive Power Transfer,
Nonlinear Time-Invariant State-Space Model, Off-Resonant Op-
eration of Inductive Charging System, Small-Signal Analysis

I. INTRODUCTION

Inductive power transfer (IPT) technology is currently being
widely studied for wireless battery charging of electric vehicles
(EVs) [1], [2], [3]. The functionality and operating frequency
of such systems are currently being standardized for resonant
operation within a narrow frequency band [4]. However, IPT
system designs and control strategies relying on variable
frequency control have also been proposed [5], and can still
be relevant for applications that are not standardized for
operation in a narrow frequency range. In addition to specially
engineered or customized systems, variable frequency control
can, for instance, be relevant for subsea charging systems, [6]
or marine transport applications [7], [8].

Most proposed strategies for frequency control of resonant
IPT systems are based on increasing the operating frequency
when the magnetic coupling is reduced [5]. The system
must then be designed so that the power flow at a constant

The work of SINTEF Energy Research in this paper was supported by
the Internal Strategic Institute Project ”Innovative Power Transfer Transfer
Technology for Electric Transportation (IPT-ElTra) financed by the national
Basic Funding Scheme of Norway.

input voltage amplitude is decreased when the frequency is
increased beyond the resonance frequency. Thus, such systems
are typically designed to operate at resonance with maximum
sending side voltage at the highest expected coupling. Fre-
quency control, or dual voltage-frequency control, in the super-
resonant region can then be applied for regulating the power
flow at lower coupling [5].

A different approach for design and control of series-
series (SS) compensated IPT systems intended for off-resonant
operation was introduced in [7], [9], [10]. By this approach, the
system should be designed for resonant operation with rated
input voltage at the minimum coupling condition. The design
approach takes advantage of the constant voltage load (CVL)
characteristics resulting from a diode rectifier directly inter-
faced to a battery for enhancing the off-resonant power transfer
capability. Thus, the system is operated in the bifurcated
region when the magnetic coupling is above the minimum
value where the system is designed for rated power flow. This
design approach can enable off-resonant control for regulating
the power flow over a wide range of coupling conditions
with constant input and output voltages, ensuring minimized
current rating requirements for the system components [10].
As discussed in [9], [10] designs for power control by sub-
resonant operation should be preferred, since this can ensure
slightly inductive operation and minimized switching losses
for the sending side converter. However, the design approach
and the analysis presented in [10] were only based on the
steady-state frequency characteristics of the system.

This paper presents a linearizable state-space model of an
SS compensated IPT system designed according to the ap-
proach from [9], [10], for analyzing the small-signal dynamics
and the controller tuning for variable frequency operation. The
presented model includes the nonlinearity due to the CVL
characteristics of battery charging and allows for accurate
assessment of the small-signal dynamics at off-resonant op-
eration over a defined range of variations in the operating
conditions. The accuracy of the presented model is verified
by time-domain simulations. Furthermore, the eigenvalues and
frequency-domain characteristics of the small-signal model
are evaluated along the trajectory corresponding to a constant
rated power transfer over the full range of expected coupling
conditions. The results are utilized to design a simple PI-978-1-7281-1842-0/19/$31.00 c©2019 IEEE
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Fig. 1. Series-series compensated IPT system with constant voltage load

controller for regulating the power transfer for battery charging
in response to variations in operating conditions.

II. DESIGN OF SS COMPENSATED IPT SYSTEMS FOR
OFF-RESONANT OPERATION WITH CVL

The studied configuration is an SS compensated IPT system,
as shown in Fig. 1, with an H-bridge converter on the sending
side and a diode rectifier interfaced directly to a battery on
the receiving side, as represented by a voltage source.

A. Dynamic model with time-periodic variables

The state equations for the configuration in Fig. 1 can be
expressed directly from the circuit diagram as:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

v1 = vC1 +R1i1 + L1
di1
dt

−M
di2
dt

v2 = M
di1
dt

− L2
di2
dt

−R2i2 − vC2

dvC1

dt
=

1

C1
i1

dvC2

dt
=

1

C2
i2

(1)

Assuming sinusoidal currents and introducing a first harmonic
approximation of the voltage v2 at the terminals of the diode
rectifier, the CVL characteristics can be modelled by:

v2 =
i2
I2

· 4
π
· Vdc,out (2)

In this equation I2 represents the amplitude of i2. Thus, the
amplitude of the first harmonic voltage component at the
receiving side is determined by the dc output voltage while
the characteristics of the diode rectifier impose that the voltage
will be in phase with the receiving side current. As will be
shown in the following, the nonlinearity introduced by the
constant dc voltage in combination with the diode rectifier
significantly influences the frequency characteristics and the
small-signal dynamics of the system.

B. Frequency characteristics of CVL IPT systems with impact
of unbalancing and detuning

Representing the fundamental frequency currents and volt-
ages in (1) and (2) by phasor variables, it is possible to derive
the steady-state frequency characteristics (i.e. with d/dt = jω)
of the power transfer capability of the studied system with
CVL characteristics, as explained in [10]. The power transfer
capability and phase angle of the equivalent impedance for
an ideal lossless case is given by the black curves in Fig. 2.
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Fig. 2. Effect of unbalancing: ”L” denotes a lossless system , coils with
coupling factor k = M√

L1L2
= 0.4, ω0 = 1√

C1L1
= 1√

C2L2
, Q1 = 310

and Q2 = 270. Power is normalized to P0 = P (k, xu, xc, ω0).

These curves show that the power transfer capability with CVL
characteristics are ideally approaching infinite when reducing
or increasing the frequency from the resonance frequency,
while the phase angle of the equivalent impedance is zero in
the full range of feasible operating conditions. In a practical
circuit, the losses will limit the maximum power transfer
capability as shown by the blue curve in Fig. 2a. Still, the
figure shows how the CVL characteristics will cause two
pronounced peaks in the power transfer and Fig. 2b shows
that the phase angle of the equivalent impedance will be close
to zero in a large share of the frequency range between these
two peaks.

In [9] and [10], it is shown how the off-resonant peaks
in the power transfer characteristics of a system with CVL
characteristics can be enhanced by introducing an unbalance
factor xu defined by:

x2
u · L2

L1
=

(
V2

V1

)2

, 0 < xu ≤ 1 (3)

The result of reducing xu is shown by the green and red curves
in in Fig. 2. As demonstrated by Fig. 2a, unbalancing of the
voltage or inductance ratios can be utilized to enhance the off-
resonant peaks in the power transfer capability. The curves in
Fig. 2b also show how unbalancing enhances the bifurcation
in the phase characteristics.

To further shape the frequency characteristics, a detuning
factor xc, [10], can be introduced as given by (4):
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Fig. 3. Effect of detuning and comparison between CVL and CRL. Coils
with coupling factor k = 0.4 as in Fig. 2 and unbalance factor xu = 0.98.
Power is normalized to P0 = P (k, xu, xc, ω0).

xc =
C1 · L1

C2 · L2
(4)

As a result of such detuning, the system will no longer have a
single defined resonance frequency, i.e. ω0 = ω2,0 = 1√

C2L2
�=

1√
C1L1

= ω1,0. By selecting values for xc above or below
1.0, either the sub- or super-resonant peak in power transfer
characteristics, respectively, can be enhanced. Fig. 3 shows
how this affects the frequency characteristics of a system
with CVL compared to a case with a constant resistive load
(CRL). Clearly, a small amount of detuning will more strongly
enhance the sub- or super-resonant power peaks in the CVL
case than for the CRL case. Furthermore, the effect of detuning
on the phase characteristics is shown in Fig. 3b. This figure
shows how a detuning factor of xc > 1 ensures a slightly
inductive sending side impedance over the whole frequency
range of interest, whereas a factor of xc < 1 implies a slightly
capacitive impedance. The figure also shows that the CVL
leads to an almost constant phase angle close to zero in a
much wider frequency range than for the CRL.

C. Off-resonant operation for power flow control

The introduction of unbalancing and detuning of the SS IPT
system with CVL allows for maintaining high power transfer
capability in a wide range of coupling conditions by utilizing
off-resonant operation. Thus, the power transfer can be kept
constant by regulating the operating frequency in response
to changes in the coupling conditions [10]. An example of
such operation is illustrated by the frequency characteristics
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Fig. 4. Operation with constant power transfer at variable coupling: operating
points marked with a circle. Coils with unbalance factor xu = 0.98, detuning
factor xc = 1.03, nominal coupling factor knom = 0.2. Power normalized
to P0 = P (knom, xu, xc, ω0).
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Fig. 5. Required operating frequency as function of coupling factor for
maintaining constant power transfer with sub-resonant frequency control.

of the IPT system for three different values of k in Fig. 4. As
indicated by Fig. 4b, the equivalent sending side impedance
will remain slightly inductive over the whole frequency range,
which will help to minimize switching losses of the sending
side H-bridge converter. Since the operating strategy given by
Fig. 4 is obtained with constant input and output voltage and a
phase angle of the sending side equivalent impedance close to
zero, the current amplitude will also remain almost constant
over the full range of expected operating conditions. Thus,
contrary to systems operating at the resonance frequency, IPT
systems designed and controlled according to the approach
from [9], [10] avoids the need for increasing the current rating
of components proportionally to the expected variations in the
coupling coefficient.

The required variations in the frequency as a function of
the coupling conditions are shown in Fig. 5. It can be noticed
from Fig. 4a and Fig. 5 that the sensitivity of the power flow
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to the frequency will change significantly with the coupling
conditions. Thus, it will be important to evaluate the small-
signal dynamics of the system for designing a suitable control
loop to regulate the power flow by changing the frequency.

III. TIME-INVARIANT STATE-SPACE MODELLING OF SS
COMPENSATED ITP SYSTEMS WITH CVL

For utilizing state-space modelling techniques to analyze
the small-signal characteristics of the studied system, a time-
invariant and linearizable model is needed. Such models can
be obtained by dq-frame representation or dynamic phasor-
based modeling [11]. Such modelling approaches have been
studied for various IPT systems, for instance by [12], [13],
[14], [15]. However, the following analysis will specifically
address the nonlinearity of CVL characteristics and the off-
resonant operation according to Fig. 4 and Fig. 5.

A. Nonlinear state-space model

As mentioned, CVL characteristics introduce nonlinearity
in the receiving side. Assuming a dq-frame representation
of the state variables in a first harmonic approximation, the
nonlinearity from (2) can be represented by (5) [16]:

v2,dq =
i2,dq
|i2,dq|

· 4
π
· Vdc,out =

i2,dq√
i22,d + i22,q

· 4
π
· Vdc,out (5)

Thus, a nonlinear model can be derived by dq-frame repre-
sentation of all state variables from (1), and can be expressed
on the general state-space form given by:

ẋ = f(x, u), y = g(x, u) (6)

with the states x, input signals u and output y defined by:

x =
[
i1,d i1,q i2,d i2,q vC1,d vC1,q vC2,d vC2,q

]T

u =
[
v1,d v1,q ω Vdc,out

]T

y =

[
Pin

Pout

]
=

[
v1,d · i1,d + v1,q · i1,q
v2,d · i2,d + v2,q · i2,q

]
(7)

Introducing the leakage factors Lα1 = L1 − M2/L2 and
Lα2 = L2−M2/L1, the resulting nonlinear state-space model
can be derived as given by (8). This model can be linearized
at any equilibrium point corresponding to a feasible oper-
ating condition of the system. Accordingly, the small-signal
dynamics around the steady-state operating point defined by
f(x0, u0) = 0 can be studied by evaluating the eigenvalues
of the A-matrix when the system is expressed on the general
linearized state-space form according to (9). The A,B and
C matrices resulting from linearization of the studied system
can be expressed by (10), (11) and (12), respectively. The
elements Ai,j and Bi,j in (10) and (11) are given by (13). For
these expressions, dq-subscripts indicate that i2,d,0 and i2,q,0
should be used in the first and second element, respectively,
and the ±-sign indicates a positive and negative value for the
corresponding first and second matrix entry.

di1,d
dt

= ω · i1,q −
R1

Lα1
· i1,d −

MR2

Lα1L2
· i2,d −

1

Lα1
· vC1,d

− M

Lα1L2
· vC2,d +

1

Lα1
· v1,d −

M

Lα1L2
· i2,d√

i22,d + i22,q

· 4
π
· Vdc,out

di1,q
dt

= −ω · i1,d −
R1

Lα1
· i1,q −

MR2

Lα1L2
· i2,q −

1

Lα1
· vC1,q

− M

Lα1L2
· vC2,q +

1

Lα1
· v1,q −

M

Lα1L2
· i2,q√

i22,d + i22,q

· 4
π
· Vdc,out

di2,d
dt

= ω · i2,q −
MR1

Lα2L1
· i1,d −

R2

Lα2
· i2,d −

M

Lα2L1
· vC1,d

− 1

Lα2
· vC2,d +

M

Lα2L1
· v1,d −

1

Lα2
· i2,d√

i22,d + i22,q

· 4
π
· Vdc,out

di2,q
dt

= −ω · i2,d −
MR1

Lα2L1
· i1,q −

R2

Lα2
· i2,q −

M

Lα2L1
· vC1,q

− 1

Lα2
· vC2,q +

M

Lα2L1
· v1,q −

1

Lα2
· i2,q√

i22,d + i22,q

· 4
π
· Vdc,out

dvC1,d

dt
= ω · vC1,q +

1

C1
· i1,d

dvC1,q

dt
= −ω · vC1,d +

1

C1
· i1,q

dvC2,d

dt
= ω · vC2,q +

1

C2
· i2,d

dvC2,q

dt
= −ω · vC2,d +

1

C2
· i2,q

(8)

Δẋ = A(x0,u0) ·Δx+B(x0,u0) ·Δu

Δy = C(x0,u0) ·Δx
(9)

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−R1

Lα1
ω0 A1,3 A1,4

−1
Lα1

0 −M
Lα1L2

0

−ω0
−R1

Lα1
A2,3 A2,4 0 −1

Lα1
0 −M

Lα1L2

−MR1

Lα2L1
0 A3,3 A3,4

−M
Lα2L1

0 −1
Lα2

0

0 −MR1

Lα2L1
A4,3 A4,4 0 −M

Lα2L1
0 −1

Lα2

1
C1

0 0 0 0 ω0 0 0

0 1
C1

0 0 −ω0 0 0 0

0 0 1
C2

0 0 0 0 ω0

0 0 0 1
C2

0 0 −ω0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(10)

B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
Lα1

0 i1,q,0 B1,4

0 1
Lα1

−i1,d,0 B2,4

M
Lα2L1

0 i2,q,0 B3,4

0 M
Lα2L1

−i2,d,0 B4,4

0 0 vC1,q,0 0

0 0 −vC1,d,0 0

0 0 vC2,q,0 0

0 0 −vC2,d,0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(11)

C =

[
v1,d,0 v1,q,0 0 0 0 0 0 0

0 0
4·i2,d,0·Vdc,out,0

π
√

i22,d,0+i22,q,0

4·i2,q,0·Vdc,out,0

π
√

i22,d,0+i22,q,0
0 0 0 0

]

(12)
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TABLE I
PARAMETERS OF SIMULATED IPT-SYSTEM

Nominal power, P0 10 kW
Nominal operating frequency, f0 85 kHz
Nominal coupling factor, k 0.2

Primary coil
Nominal voltage, V1 380 V
Self-inductance, L1 176 μH
Quality factor, Q1 310

Secondary coil
Nominal voltage, V2 235 V
Self-inductance, L2 41 μH
Quality factor, Q2 270

A2,4 = A1,3 = − M

Lα1L2

(
R2 +

4 · i22,dq,0 · Vdc,out,0

π(i22,d,0 + i22,q,0)
3/2

)

A1,4 = A2,3 = −4MVdc,out,0

πLα1L2

i2,d,0 · i2,q,0
(i22,d,0 + i22,q,0)

3/2

A3,3 = A4,4 = − 1

Lα2

(
R2 +

4 · i22,dq,0 · Vdc,out,0

π(i22,d,0 + i22,q,0)
3/2

)

A3,4 = A4,3 = ±ω0 −
4Vdc,out,0

πLα2

i2,d,0 · i2,q,0
(i22,d,0 + i22,q,0)

3/2

B1,4 = B2,4 = − 4M

πLα1L2

i2,dq,0√
i22,d,0 + i22,d,0

B3,4 = B3,4 = − 4

πLα2

i2,dq,0√
i22,d,0 + i22,q,0

(13)

B. Model verification

The validity and accuracy of the nonlinear state-space
model defined by (8) and the corresponding linearized model
defined by (9)-(13) is validated by time-domain simulations
in the MATLAB/Simulink/Simscape environment, using the
parameters in Table I. As the validity of a similar model
representing a system operated at its resonance frequency is
demonstrated in [16], only examples with off-resonant opera-
tion are presented in the following. For the simulations shown
in Fig. 6, the system is first linearized at steady-state operation
in a condition close to the nominal coupling, with slightly sub-
resonant frequency for maintaining nominal power transfer. A
step change of 10% in the input voltage is applied at t = 2
ms, and after steady-state operation is achieved, a similar step
change in the receiving side voltage is applied at t = 2.4 ms.
After reaching steady-state operation with these conditions,
the system is brought back to the linearization point at t =
2.8 ms. The dynamic responses of the sending and receiving
side currents resulting from the circuit model in Fig. 1, the
nonlinear state-space model from (8) and the corresponding
linearized model, are shown in the same plots for comparison.
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(a) Sending side currents.
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(b) Receiving side currents.

Fig. 6. Comparison of the current dynamics for the simulated models
along the constant power trajectory. Simulation point k = 1.02knom,
ω = 0.988ω0.
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(a) Sending side currents.
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(b) Receiving side currents.

Fig. 7. Comparison of the current dynamics for the simulated models along
the constant power trajectory. Simulation point k = 2.6knom, ω = 0.827ω0.

The same sequence is repeated for a relatively high coupling
coefficient and a correspondingly reduced frequency in Fig. 7.
The results show that both the nonlinear and linearized state-
space models accurately capture the dynamics of the system
along the constant power trajectory illustrated in Fig. 5.

To further document the validity of the presented state-space
models, additional time-domain simulations are presented in
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Fig. 8. Comparison of the current dynamics for the simulated models
along the constant power trajectory. Simulation point k = 1.02knom,
ω = 0.988ω0.
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Fig. 9. Comparison of the current dynamics for the simulated models along
the constant power trajectory. Simulation point k = 2knom, ω = 0.866ω0.

Fig. 8 and Fig. 9, illustrating how the system behaves in
response to a step change in the operating frequency. For
the simulations presented in Fig. 8, the small-signal model is
obtained at the same operating point as in Fig. 6. The system
is first at steady-state conditions with an operating frequency
of 10 700 rad/s higher than the frequency where the system
is linearized, before a step back to the linearization point is
applied at t = 6 ms. A similar sequence is repeated in another
point along the frequency trajectory in Fig. 5 and the results
are shown in Fig. 9, this time with a step change of 5 350 rad/s.
From 8a, a slight deviation can be observed, indicating that
the accuracy of the small-signal model is sensitive to changes
in the operating frequency. However, the oscillation frequency
and settling time are virtually identical, demonstrating that the
small-signal model provides accurate results as long as it is
operated close to the linearization point.

IV. ANALYSIS OF SYSTEM DYNAMICS AND CONTROL

The linearized model from (9)-(13) can be utilized to
evaluate the small-signal dynamics of the system and to design
suitable control loops for regulating the power transfer.

A. Eigenvalue analysis

The change in the eigenvalues of the A-matrix when the
coupling conditions are changed in the range of knom ≤ k ≤
3knom while ensuring constant power transfer by operating
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Fig. 10. Eigenvalue trajectory for variation of k in the range knom ≤ k ≤
3knom with frequency control for maintaining constant power: points market
with blue circles correspond to k = knom and points marked with red
triangles corresponds to k = 3knom. Operating points in Fig. 6 and Fig.
7 are marked with green and yellow circles, respectively.

on the frequency trajectory from Fig. 5 is shown in Fig. 10.
The figure also shows the operating points used for the time-
domain simulations in Fig. 6 and Fig. 7, which are marked
with green and yellow circles, respectively. As seen from
the figure, the system will have a dominant pole-pair with
relatively low oscillation frequency and long settling time
when operating close to the nominal coupling. The corre-
sponding oscillation mode is clearly seen in the time-domain
results in Fig. 6 and Fig. 8. The real part of this dominating
pole-pair rapidly decreases when the operating frequency is
moved away from the resonance frequency along the trajectory
from Fig. 5. However, a sudden change in the movement
of these eigenvalues appears around an operating condition
with coupling factor k ≈ 1.04knom and operating frequency
ω ≈ 0.98ω0. For an increased coupling coefficient beyond
this point, the imaginary part of the dominant eigenvalues
decreases while the real part increases when the operating
frequency is reduced, making the system more damped but
slower. The corresponding differences in system dynamics
for close to nominal coupling compared to high coupling
conditions are also clearly seen from the simulated responses
in Fig. 6 and Fig. 7 or Fig. 8 and Fig. 9, respectively.

B. Power controller design

The small-signal state-space model from (9)-(13) can also
be utilized to extract the input-output frequency domain char-
acteristics of the system and to support frequency domain
design of control loops. In order to regulate the power transfer
in response to variations in the coupling conditions according
to the strategy defined by Fig. 4 and Fig. 5, a simple PI-
controller can be utilized to change the operating frequency
[9]. For explicit regulation of the power provided to the load,
it would be necessary to use the received power Pout as
the feedback signal. However, this would imply the need for
feedback across the air gap of the wireless power transfer.
Thus, it would be preferable to use only feedback signals from
the sending side to regulate the power transfer.

Assuming power control by a PI-controller, the open loop
transfer functions for control loops based on feedback from
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Fig. 11. Frequency response of open loop transfer function from Pref to
Pin for three different coupling conditions.

Fig. 12. Frequency response of open loop transfer function from Pref to
Pout for three different coupling conditions.

either the sending side power Pin or the receiving side power
Pout can be expressed as:

Pin

Pref
(s) = hrhp1hf (s) = kp

1 + Tis

Tis
hp1(s)

1

1 + Tfs
(14)

Pout

Pref
(s) = hrhp2hf (s) = kp

1 + Tis

Tis
hp2(s)

1

1 + Tfs
(15)

In these equations, hp1(s) and hp2(s) are the transfer func-
tions from the small-signal frequency input to Pin and Pout,
respectively. Additionally, the open loop transfer functions
include the assumed PI-controller hr(s) and a low-pass filter
hf (s) with time constant Tf = 100/2πf0 for extracting the
average value of the single-phase power flow. The frequency
characteristics of the two open loop transfer functions in (14)
and (15) are shown for three different coupling conditions in
Fig. 11 and Fig. 12, respectively.

In order to achieve robust closed-loop performance over
the whole variation range knom ≤ k ≤ 3knom, the general

Fig. 13. Power controller for off-resonant operation by sending side feedback.
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Fig. 14. Closed-loop response to step changes in coupling factor with
feedback of sending side power. The sending side power reference is adjusted
to compensate for the efficiency of the system.

frequency characteristics in Fig. 11 and Fig. 12 are utilized
to design the PI-controller parameters such that no overshoot
or oscillations occur at operating conditions where the system
dynamics are fast. The resulting parameters are selected to
be kp = −0.65057 and Ti = 1/2846, and the corresponding
amplitude- and phase-margins with the different feedback
signals are indicated in Fig. 11 and Fig. 12. However, the
design for damped response in all coupling conditions implies
a relative slow response close to the nominal coupling.

To illustrate the performance when using only sending side
power feedback for the control, results from operating the
system with the simple control loop in Fig. 13 is shown in
Fig. 14. The sequence of ideal steps applied in the coupling
factor is shown in Fig. 14a while Fig. 14b shows the resulting
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Fig. 15. Response to steps in the power reference with control based only
on sending side feedback.

output power. As indicated by the figure, the power reference
is increased slightly above 1.0 to compensate for the losses in
the system. The operating frequency resulting as output from
the PI-controller in Fig. 13 is shown in Fig. 14c. As can be
seen, the response is much faster in the case of high coupling
coefficient, which is expected when considering the frequency
trajectory in Fig. 5 and the frequency characteristics in Fig. 12.
The results also confirm how the operating frequency resulting
from the closed-loop controller corresponds to the trajectory
for maintaining nominal power according to 5.

Another example of the closed-loop power control per-
formance is shown in Fig. 15. In this case, the system is
initially operating at the secondary side resonance frequency
according to the red curve in Fig. 4a with k = 3kknom and a
correspondingly low power reference of 0.32 pu. A step in the
sending side power reference to 0.66 pu is applied at t = 5 ms,
and a second step in the power reference is applied at t = 32
ms, bringing the system to the operating point corresponding
to nominal power transfer indicated by the red circle in Fig.
4a. The operating frequency resulting from the PI-controller
is shown in Fig. 15b. The results clearly illustrate how the
response is stable and well damped over the entire operating
region, although much faster when approaching operation at
rated power at high coupling.

V. CONCLUSION

This paper has presented a time-invariant state-space model
of a Series-Series (SS) compensated Inductive Power Transfer
(IPT) system designed for battery charging with minimized
component ratings. The evaluated system is intended for power
flow control by off-resonant operation during variations in
the coupling conditions, which is obtained by utilizing the

bifurcated characteristics of the IPT system to allow for
frequency control with constant input and output voltages.
The presented model accurately represents the influence of
the Constant Voltage Load (CVL) characteristics resulting
from a receiving side diode rectifier directly interfaced to the
battery. The linearized state-space model is utilized to evaluate
the small-signal dynamics over the full range of expected
operating conditions. This small-signal analysis is also utilized
to design a simple but robust PI-controller, which can operate
with only sending side feedback for regulating the power flow
in response to variations in the coupling conditions.
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