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Preface

This report is a result of a project thesis in Cybernetics and robotics at the Nor-

wegian University of Science and Technology. Mature oil fields that have passed

plateau production often have a complex bottleneck structure, which makes it hard

to decide which well to produce from at any time. Furthermore uncertainty of

reservoir characteristics and equipment capacities makes model-based optimiza-

tion challenging. The motivation of this thesis is to investigate whether the mod-

ifier adaptation approach to real-time optimization can be a solution to the men-

tioned challenges.

The thesis is done with the support from my teaching supervisor Lars Imsland.

I am grateful for his help and optimism during this work, and would like to thank

him for it.



Summary

The report starts with an introduction of the problem, where the challenges are

described. In the following section the Modifier adaptation approach in real-time

optimization is described. Further a static optimization problem in a two-well sys-

tem is presented. In this chapter the details around the system, which is being

investigated, is modelled and described in detail. Moreover the static optimiza-

tion problem is solved in an ideal situation. In other words the problem is solved

in a situation where the mentioned challenges do not take place. This section is

followed by the results and discussion of the obtained solution. Finally in chapter

4 the modifier adaptation approach for the two-well system is presented. To put

it differently in this chapter the modifier adaptation approach, which is presented

in chapter 2, is applied to the two-well system. Different from chapter 3, in this

chapter the uncertainty of reservoir characteristics is taken into account.

The techniques used in this thesis is based on the methods proposed by (Marchetti

et al. 2016). To the writers best knowledge, applying similar methods to handle

model uncertainty in oil production optimization is reported in the literature once,

by (Matias et al. 2018). On the other hand this was done on a completely different

oil production facility structure.
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Chapter 1
Introduction

As oil and gas reserves are getting more expensive and hard to explore it is im-

portant that we ensure best utilization of the resources. These projects are quite

complex, thus there are many decisions which have to be taken carefully. Develop-

ment of these fields involve multibillion investments with huge expecting returns.

Therefore, the industry has been forced to come up with innovative strategies to

obtain optimal operation of the production. To optimize there are many factors

that have to be taken into consideration as in example increased water depths, en-

vironmental conditions, reserve structure and the ratio between gas and oil.

Since the oil is the most valuable product in the reserves the optimal production

in oil fields involves maximizing oil production. When producing oil there will

also be produced gas and water, but the amount of the different fluids varies from

well to well. The production facilities have gas handling capacities, which is the

maximum amount of gas the field can handle. Therefore, in oil production the

ratio between gas and oil in each well, gas-oil ratio (GOR), is an important factor

when deciding how to produce the oil. In other words it is essential that the oil
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Chapter 1. Introduction

production is from the wells with lowest GOR at all times, for optimal production

with respect to the gas handling capacity constraint.

At the moment there exist simulators which can predict the GOR for different

wells. Combining these simulators with model-based optimization, as for example

Real-time Optimization(RTO), is a powerful approach to optimize large scale pro-

duction problems. However, if there are disturbances, sudden changes in GOR or

reservoir pressures between the RTO iterations the GOR simulators will not be ac-

curate enough. Hence the optimal operation calculated by the RTO will not be the

actual optimal operation point for the plant. This problem, called plant-model mis-

match, is researched a lot by the process engineering community and several RTO

variants have arose. In this thesis I will investigate if this plant-model mismatch

problem can be solved by a RTO method called Modifier Adaptation(MA).
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Chapter 2
Modifier adaptation approach in

real-time optimization

2.1 Real-time optimization

As mentioned in chapter 1 RTO, real-time optimization, arose to cope with difficul-

ties associated with plant-model mismatch. RTO methods are typically structured

with three main steps. First of all the process optimization contain a model of the

process, also known as process modeling, followed by a numerical optimization of

the obtained process model. Then an application of the optimal inputs, obtained

from the numerical optimization, on the plant. If the models were a perfect repre-

sentation of the plants it would be this easy, but unfortunately in the real world it

is more challenging. The model-based optimal inputs are indeed optimal for the

model, but as long as the model is not a perfect representation the inputs often

are sub-optimal for the plant. However, RTO has showed its power to converge

to optimal inputs, even when there exists mismatches between the plant and the

model.
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2.2 Modifier adaptation approach

In section 2.1 the challenge of making an accurate model of the plant was intro-

duced. These inaccuracies, called plant-model mismatches, are mainly caused by

one of the following reasons or a combination of multiple of them:

• Parametric uncertainty - when the model parameters do not correspond to

the real process

• Structural plant-model mismatch - when there is mismatch in the structure of

model, in example due to simplified/neglected dynamics or unknown char-

acteristics of the process.

• Process disturbances

When choosing RTO-method there are some important properties that have to be

considered. Guaranteed plant optimality upon convergence is one of the desired

properties. In addition to that fast convergence and feasible-side convergence are

two ideal properties too. In fact the latter two properties often oppose each other.

As an illustration fast convergence often require large steps, while feasible-side

convergence often call for small steps. Hence to satisfy these two requirements

there must be a compromise between large and small step sizes. The key charac-

teristic of modifier adaptation is that it satisfies the first-mentioned property. In

other words it guarantees convergence to plant optimum even if there exist struc-

tural plant-model mismatches.

Modifier adaptation is a RTO method that uses the process measurements to im-

prove cost and constraint functions. In general it uses correction terms for the

cost and constraint function to update the plant model, instead of estimating the

plant parameters, which is a more common strategy. More precisely it estimates
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2.2 Modifier adaptation approach

the plant gradients, from the measurements, which are used as gradient correction

term in the model to modify both cost and constraint functions in the optimization

problem. The use of gradients is justified by the necessary conditions of optimality

that include constraints with sensitivity conditions. By enforcing the plant’s and

model’s necessary conditions of optimality to match, the modified model will be a

likely candidate to solve the plant optimization problem.

Regarding that the plant gradients cannot be measured directly, implementing MA

in real situations can be difficult. Especially obtaining reliable estimates of the

gradients from noisy measurements can be quite challenging. Estimating gradi-

ents can be done by dynamic perturbation methods, that uses transient data, or

steady-state perturbation methods, which is simpler since they only use stationary

data.

Finite difference approximation is the simplest steady-state method to estimate

the gradients. First each input is perturbed around the operating point at the cur-

rent step. Secondly the corresponding gradient elements get measured when the

process reaches steady state. Finite difference approximation is sufficient for pro-

cesses without noise and with few inputs. However, most realistic processes have

noise and the method can lead to constraint violation when it operates near a con-

straint.

A more robust alternative to finite difference approximation is a quadratic approx-

imation. The quadratic model obtains a local quadratic approximation of the cost

and constrain functions, using the current and past operating points. Further the

model calculates the plant gradient. In view of that higher order of approximation

captures more precise information of the process it consequently decreases the in-
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Chapter 2. Modifier adaptation approach in real-time optimization

fluence of the noise. Hence this is a more accurate alternative to finite-difference

approximation, but is indeed more complex.
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Chapter 3

Static optimization in a two-well

system

In this section a simple static optimization problem for oil production in a two-well

system with gas capacity is presented. Figure 3.1 shows a sketch of the system.

As can be seen from the figure the system consists of three submodels. One for

reservoir inflow, a model for pressure drop through vertical pipe and a final one

for the flow across a valve. The three submodels are described and modeled in the

following three sections.
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Chapter 3. Static optimization in a two-well system

 

Figure 3.1: Static two-well system
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3.1 Reservoir inflow

3.1 Reservoir inflow

The reservoir inflow are assumed to follow Fetkowichs(1973) quadratic deliver-

ability equation as following:

ṁo = ko(p
2
r − p2wf ) (3.1)

ṁw = kw(p2r − p2wf ) (3.2)

where ṁo denotes the mass flow of the oil production and ṁw is the mass flow

of water from production. ko and kw are the flow coefficients for oil and water,

respectively. pr is the reservoir pressure and pwf denotes the pressure in the pipe

orifice in the reservoir. Combining the oil mass flow with GOR, gas oil ratio, the

mass flow for gas production, ṁg, is obtained as following:

ṁg = GOR · ṁo (3.3)

3.2 Pressure drop across valve and through pipe

3.2.1 Modeling one phase pseudo fluid

Before modeling pressure drops, the three phased fluid has to be modeled. The

fluid from the reservoir consists of three parts, specifically oil, water and gas. To

simplify, the multiphased fluid will be approximated to one-phased pseudo fluid.

Accordingly no mixing volumes is assumed. Furthermore oil and water are in-

compressible and the gas is assumed to follow the ideal gas law, described by the

following equation:

ρigg =
pMg

RT
(3.4)
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Chapter 3. Static optimization in a two-well system

Where ρigg is the density, p is the pressure, Mg molar weight of gas, R is the ideal

gas constant and T is the Temperature. Further the one phased pseudofluid is

approimated by its volumetric average:

ρmix(p) =
ṁo + ṁg + ṁw

ṁo
ρo

+ ṁw
ρw

+
ṁg

105ρigg (p)

(3.5)

where ρo and ρw are the densities of the oil and water, respectively. The 105 term is

used to scale up, since bar is used as unit for the pressure and Pascal is the standard

unit in equation 3.4.

3.2.2 Pressure drop across valve

The mass flow across a valve is given by the following valve equation:

ṁo + ṁw + ṁg = f(z)CdA
√
ρavg(p2 − p1) (3.6)

where f(z) is describing the valve characteristics, with z between 0, when fully

closed, and 1, when fully open. Cd is the valve constant, A is the cross section

area of the pipe and the pressure on each side is denoted by p1 and p2. Hence the

pressure drop across the valve is given by ∆p = p2− p1. From equation 3.5 it can

be observed that the density for the one-phase fluid is dependent of the pressure.

Therefore, ρavg in equation 3.6 is approximated by the average of the density on

each side of the valve, given by the following equation:

ρavg =
1

2
(ρmix(p1) + ρmix(p2)) (3.7)
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3.2 Pressure drop across valve and through pipe

 

Figure 3.2: Pressure drop across valve

Regarding that the manifold pressure, pm, is set by the designer the pressure on

the upper side, p1 of the valve can easily be calculated. Further the pressure on the

downside of the valve, p2, will be an equation with respect to the massflows and

f(z). In this model the valve characteristics are assumed to be linear as following:

f(z) = z , z ∈ [0, 1] (3.8)

Combining equations 3.6, 3.7 and 3.8 with some manipulations the following sec-

ond order equation for p2 is obtained:

p22(ρmix,1β + ṁtot) + p2(ρmix,1α− p1(ρmix,1β + ṁtot)−
2 · 106

γ
ṁ2
totβ)

−(p1ρmix,1α+
2 · 106

γ
ṁ2
totα) = 0

(3.9)
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Chapter 3. Static optimization in a two-well system

α =
RTṁg

105 ·Mg
(3.10)

β =
ṁo

ρo
+
ṁw

ρw
(3.11)

ṁtot = ṁo + ṁw + ṁg (3.12)

ρmix,1 =
ṁtot
α
p1

+ β
(3.13)

γ = (f(z)CdA)2 (3.14)

As can be seen the valve pressure drop is obtained by solving equation 3.9.

3.2.3 Pressure drop through vertical pipe

To estimate the pressure drop through a vertical pipe the stationary mechanical

energy balance is used. No slip between phases and no friction are assumed. In

addition to that work and kinetic energy are neglected. Hence the mechanical

energy balance is as following:

dp = ρmixgdh (3.15)

where g is the gravitation acceleration. Combining 3.5, 3.10, 3.11 and 3.12 the

following equation is obtained:

dp =
ṁtot
α
p + β

gdh (3.16)

Integrating 3.16 from (p1, h1) to (p2, h2) the relation becomes

β(p2 − p1) + αln(
p2
p1

) = ṁtotg(h2 − h1) (3.17)
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3.3 Formulating the optimization problem

As can be observed equation 3.17 cannot be solved exactly for p2, due to the

logarithm. For this reason a serial expansion of the natural logarithm is used:

ln(
p2
p1

) = ln(1 +
p2 − p1
p1

) ≈ p2 − p1
p1

(3.18)

Combining 3.17 and 3.18, and using ∆h = h2 − h1, the pressure p2 can be ex-

pressed as

p2 = p1 +
ṁtotgp1∆h

α+ βp1
(3.19)

 

Figure 3.3: Pressure drop across vertical pipe

3.3 Formulating the optimization problem

As the dynamics of the system is modeled the optimization problem can be for-

mulated. First of all the decision variables have to be determined. Further the

13



Chapter 3. Static optimization in a two-well system

objective function and constraints have to be formulated.

In this problem it is desired to maximize the oil production with respect to gas

capacity constraints. Therefore, the massflow of oil, ṁo, and gas, ṁg, have to be

described by the decision variables. Since the massflows are dependent of the well

inflow pressure, pwf , and the valve pressure,pwh, these will also be described by

the decision variables. From equation 3.6 it can be observed that the massflow is

dependent of the valve opening function f(z) = z. Therefore, the problem has

one degree of freedom for each well, f(z) = z. Accordingly the valve openings

for the the well will be one of the decision variables. Hence there is one decision

variable,z , for each well. Regarding that the production is from two wells the

optimization problem will in total consist of two decision variables. Furthermore

it is assumed that there is no limit on how much water, from the production, the

system can handle.

Regarding that the objective is to maximize oil production the objective function

will be so simple as: maximize ˙mo,1 + ˙mo,2

Prior to formulating the problem there are some restriction that have to be con-

sidered. Equation 3.1 and 3.3 are two of the constraints that have to be respected.

In addition to that the system has a gas capacity constraint, from here will be de-

noted as ṁg,max, which set an upper limit on how much gas that can be produced.

Finally the optimization problem can be formulated:

xT =
[
x1 x2

]
=

[
z1 z2

]
14



3.3 Formulating the optimization problem

where the subscripts in z denotes which well the variables belong to. Before for-

mulating the problem, the massflows and other variables will be presented with

respect to x1 and x2.

ṁo,i = Ko,i(Pr
2 −P2

wfi
(xi)) i = [1, 2]

ṁw,i = Kw,i(Pr
2 −P2

wfi
(xi))) i = [1, 2]

ṁg,i = GORiKo,i(Pr
2 −P2

wfi
(xi))) i = [1, 2]

ṁtot,i = ṁo,i + ṁw,i + ṁg,i i = [1, 2]

αi =
RTṁg,i

105 ·Mg
i = [1, 2]

βi =
ṁo,i

ρo
+
ṁw,i

ρw
i = [1, 2]

ρavg,i =
1

2
(
ṁtot,i
αi
pm

+ βi
+

ṁtot,i
αi

Pwh,i
+ βi

) i = [1, 2]

Where P2
wfi

(xi) denotes the inflow pressure as a function of the valve opening, xi.

Ultimately the final optimization problem can be formulated:

maximize Ko1(Pr
2 −P2

wf1(x1)) +Ko2(Pr
2 −P2

wf2(x2)) (3.20)

15



Chapter 3. Static optimization in a two-well system

s.t.

Pwh1 = pm +
106 · ṁ2

tot,1

ρavg,1 · (x1CdA)2

Pwf1 = Pwh1 +
10−5 · ṁtot,2 · gh ·Pwh1

α1 + β1 ·Pwh1

Pwh2 = pm +
106 · ṁ2

tot,2

ρavg,2 · (x2CdA)2

Pwf2 = Pwh2 +
10−5 · ṁtot,2 · gh ·Pwh2

α2 + β2 ·Pwh2

ṁg,1 + ṁg,2 ≤ ṁg,max

3.3.1 Problem set-up

In the problem formulation, from previous section, it can be observed that the oil

production is dependent on various constants. Among others it is dependent on the

GOR and the manifold pressure, Pm, which is given by the separator pressure, Ps,

together with the facility specifications. To illustrate which impact these values

have I solved the static optimization problem for various GOR and Ps. For sim-

plicity only the values for well 2 was changed, while keeping the values for well 1

constant. The values for the other constants, determined by the facility character-

istics, can be found in section 5.2. The optimization problem was solved using the

”fmincon”-function from the optimization toolbox in MATLAB, which uses the

”interior-point” - method.

3.4 Results and discussion

As we can see from figure 3.4 the oil production is low for relative high GOR and

high separator pressure. High GOR means that the production of gas is relatively

high. Hence the oil production will reduce, since the production facility only can

16



3.4 Results and discussion

Figure 3.4: Produced oil for varying GOR and separator pressures

handle a certain amount of gas. On the other hand the results shows that the oil

production also will reduce for high separator pressures. This also makes sense,

since the pressure difference between the separator and the reservoir will reduce.

Consequently the production flow will also reduce, which means that less oil will

be produced. As we can observe from figure 3.4 the gas-oil ratio makes the biggest

impact on production. When GOR is high the oil production is relatively low even

for low separator pressures. Contrary when the GOR is low the oil production is

relatively high even for high separator pressures . However, the oil production is

significantly higher when both GOR and the separatory pressure is low.

The two-well static optimization problem has two degrees of freedom. One from

each of the two valve openings. The lower flow pressure, Pwf which is explic-

itly in the oil production equation, is dependent on the valve openings. In fact the

17



Chapter 3. Static optimization in a two-well system

more open the valve is the less will the lower flow pressure be. The following

figure show the contour lines of the oil production with respect to the lower flow

pressures in both wells.
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Figure 3.5: Oil produciton contour lines w.r.t. lower flow pressures

Not surprisingly it can be observed from figure 3.5 the lower Pwf1 and Pwf2 are

the more is the oil production. This can also be verified from the objective function

in equation 3.20. There are several reasons for why we cannot drive the lower

flow pressures towards zero. One of them is simply the physics of the system,

which we cannot do anything about. On the other hand the other constraint, which

is interesting when solving this problem, is the gas-capacity constraint, which is

visualized by the blue line in figure 3.5. Figure 3.6 shows a closer look of this

constraint.
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Figure 3.6: Oil produciton contour lines w.r.t. lower flow pressures

As can be seen from figure 3.6, the constraint pushes the lower flow pressures

up. In other words the higher gas capacity there is the lower will the blue line

parallel shift. In addition to that the gas-oil ratios will decide the slope of the

constraint. The steepness is determined by the ratio between the GORs in both

wells. For instance in this case it can be observed that the GOR in well 1 is higher

than i well 2, since the slope is higher than 1, with respect to Pwf1 .
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Chapter 4
MA-RTO of a two-well system to

handle uncertain parameters

As mentioned in the introduction GOR is a very important parameter when solv-

ing the optimization problem. GOR can be modeled as a function of reservoir

pressures and lower flow pressure. Thus GOR uncertainty can be a result of dis-

turbances in measurements of the pressures. Disturbances in the process, sudden

changes in GOR or reservoir pressures will also cause wrong GOR in the model,

which can result in a suboptimal optimum for the plant when solving the optimiza-

tion problem. As described earlier this uncertainty is called plant-model mismatch.

In this section we will try to solve this problem using the Modifier Adaptation ap-

proach, which is described in section 2.

The Modifier Adaptation approach which has been used in this section is described

in detail in ”Marchetti et al. 2016”. First of all two models have to be developed

in order to study the plant-model mismatch. One model for the plant is needed,

which will be updated by the measurements, referred as plant. Further one model

20



4.1 Formulating the optimization problem

for the optimization layer, using the modifier adaptation framework, referred as

the model. Moreover by applying zeroth and first order modifiers in the cost- and

constraint functions the model-based optimization is supposed to reach the plant

optimum.

First the zeroth order correction modifier is added as the difference between the

plant and model values in each iteration. In other words the difference between

the most recent plant measurement and model values are used in the optimization.

Similarly the difference between the plant gradients and the gradients of the model

are applied as the first order modifiers.

4.1 Formulating the optimization problem

In this thesis the focus is to study the plant-model mismatch. Therefore, it is

assumed that both cost functions and constraint functions are measured without

noise. Hence the plant-model mismatch only comes from the parametric uncer-

tainty of the gas-oil ratios.

Finally the modified problem formulation becomes:

x∗k+1 = argmax
x

Ko1(Pr
2−P2

wf1(x1))+Ko2(Pr
2−P2

wf2(x2))+λ
J
k

 x1 − xk1

x2 − xk2


(4.1)
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Chapter 4. MA-RTO of a two-well system to handle uncertain parameters

s.t.

Pwh1 = pm +
106 · ṁ2

tot,1

ρavg(Pwh1) · (x1CdA)2
+ (Cp,1(xk1)−C1(xk1)) + λC1

k

 x1 − xk1

x2 − xk2


Pwf1 = Pwh1 +

10−5 · ṁtot,2 · gh · Pwh1
α1 + β1 · Pwh1

+ (Cp,2(xk1)−C2(xk1)) + λC2
k

 x1 − xk1

x2 − xk2


Pwh2 = pm +

106 · ṁ2
tot,2

ρavg(Pwh2 · (x2CdA)2
+ (Cp,3(xk2)−C3(xk2)) + λC3

k

 x1 − xk1

x2 − xk2


Pwf2 = Pwh2 +

10−5 · ṁtot,2 · gh · Pwh2
α2 + β2 · Pwh2

+ (Cp,4(xk2)−C4(xk2)) + λC4
k

 x1 − xk1

x2 − xk2


ṁg,1 + ṁg,2 + (Cp,5(xk1, x

k
2)−C5(xk1, x

k
2)) + λC1

k

 x1 − xk1

x2 − xk2

 ≤ ṁg,max

where the modifiers are defined as following:

λJk = (1−KJ)λJk−1 +KJ(ÔJp,k − ÔJk)

λCi
k = (1−KCi)λCi

k−1 +KCi(ÔCi,p,k − ÔCi,k) i = [1, 2, 3, 4, 5]

Cp,i(x
k) is the constraint measurements from the plant model. Thus the plant con-

straints Cp,i(x
k) for i=1 to i=5 are the plant measurements of Pwh1 , Pwf1 , Pwh2 ,

Pwf2 and ṁg,1 + ṁg,2, respectively. Similarly Ci(x
k) are the model values for the

same constraints. Moreover using these values the derivatives of the model con-

straints, ÔCi,k, and plant constraint gradients, ÔCi,p,k, are estimated. In addition

to that the plant cost gradient, ÔJi,p,k, is also estimated from the measurements.
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4.2 Problem set-up

4.1.1 Gradient estimation using FDA with past RTO points

As mentioned in the previous section the plant gradients have to be estimated. The

biggest challenge when estimating these are noise, due to the fact the the gradi-

ents cannot be measured directly. In ”Marchetti et al. 2016” multiple methods

are presented. One of these are finite-difference approximation using past RTO

points. Initialization of this technique requires number of operating points equal

to the number of inputs, in the problem, plus one in order to estimate the gradients.

Hence it will require 3 operating points in this case, regarding that this problem

has 2 inputs. One can obtain these points by perturbating each input around the

current operating point two times. Thus the following matrices can be constructed

Uk =

x1k − x1k−1 x1k − x1k−2

x2k − x2k−1 x2k − x2k−2


δJ̃p,k

T
=

[
J̃p,k − J̃p,k−1 J̃p,k − J̃p,k−2

]
δC̃p,i,k

T
=

[
C̃p,i,k − C̃p,i,k−1 C̃p,i,k − C̃p,i,k−2

]
Finally the plant gradients become

ÔJp,k = δJ̃p,k
T

(Uk)
−1

ÔCp,i,k = δC̃p,i,k
T

(Uk)
−1 i = [1, 2, 3, 4, 5]

where k indicates which time instant the values belong to.

4.2 Problem set-up

Now as the modifier adaptation approach for this two-well static optimization

problem is described, the algorithm can be presented. The optimization problem
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Chapter 4. MA-RTO of a two-well system to handle uncertain parameters

was solved using the ”fmincon”-function from the optimization toolbox in MAT-

LAB, which uses the ”interior-point” - method. For the interested readers, the

MATLAB-code can be found in section 5.1.

4.2.1 The algorithm

1. Choose an initial point [x10 x20]

2. Perturbate x(0) two times to get enough data points for initialization.

3. Obtain the gradients with FDA using the recent three data points.

4. Calculate the current Modifiers: λJk , λCi
k

5. Solve the static optimization problem in 4.1 and find the next optimal input,

zk+1.

6. Apply the new input , zk+1, and measure the outputs.

7. Return to point 3.

From the algorithm one can observe that the pertrubation is only used in the finite-

difference approximation in order to estimate the initial gradient. Further it is

solving a static optimization problem in every iteration. Accordingly it is applying

the new valve input after each iteration and solving the problem with the most re-

cent data points. Hence the modifiers are also updated after each input, using the

new gradient estimations from the finite-difference approximation.

In this example the actual GORs of the plant were 0.6 and 0.4 for well 1 and well

2, respectively. On the other hand the modelled GORs were 0.45 and 0.4 for well

1 and well 2, respectively. In other words the modelled GOR for well 2 is correct,
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4.3 Results and discussion

but for well 1 is too low. Hence the model is underestimating the produced gas in

well 1.

4.3 Results and discussion
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Figure 4.1: Solving the optimal production in a two-well system with Modifier Adaptation
method

The result using the MA approach is presented in figure 4.1. The plant-model

mismatch can be observed from the gas capacity constraints. As the model is un-

dervaluing the GOR in well 1, the constraint is more steep and shifted more to the

left compared to the actual gas constraint of the plant. Important to realize is that

the area between the plant’s- and model’s constraint is infeasible for the plant. In

fact all points below the plant’s gas capacity constraint are infeasible for the plant.

Moreover the red point indicates the optimal data-point for the plant. To empha-

size this point represent the point where the oil production is maximized and is

the point where the MA algorithm should converge to, if it works as desired. Ob-
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Chapter 4. MA-RTO of a two-well system to handle uncertain parameters

viously, from the figure, this is not the case. The MA approach converged to the

blue point, which is quite far from the plant optimum. By all means this is at least

a feasible solution, which would not be the case if the optimization problem were

solved only based on the model.

Unfortunately I did not get the desired results using the MA approach. To in-

vestigate this several things were inspected. In a complex and huge problem as

this many things can go south. First of all these methods rely on many approxi-

mations and simplifications. In addition to that a good initial point is important.

Hence the problem can be that the initial points, which were examined, were not

sufficient. The initial perturbation were done to obtain an approximation of the

gradient, but if they were not independent enough they would not span the whole

feasible area of the plant. Thus a solution can be to explore more of the area be-

fore exploiting, but exploring too much would be inefficient regarding time, also

known as the explore/exploit-dilemma.

Another important key point is the estimation method which were used to estimate

the gradient. As described in section 4.1.1 the estimation method which were used

was FDA with past RTO points. First thing to remember is that this is the simplest

steady-state method to estimate the gradients. With this in mind if the deviation

between the plant and the FDA is too big, the FDA representation of the plant

will not be sufficient. Thus obtaining reliable estimates can be a challenge. There

are more robust and precise, but more complex, alternatives to FDA. In example

quadratic approximation, which also uses past RTO-points, could be used for a

more precise estimation. Of course even higher order estimators can be used, but

the increasing complexity must also be taken in mind.
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4.4 Conclusion

4.4 Conclusion

The motivation for this project was to investigate whether the modifier adaptation

approach to real-time optimization could be a solution to cope with parameter

uncertainty in a static oil production system. As discussed in the section above, I

was not able to solve the problem with the modifier adaptation approach to real-

time optimization. However, the result were at least better than the model optimum

without MA, as the model optimum was not feasible. After all we discussed things

that can be improved, which may improve the solution. In fact this problem may

also be too complex to solve with this method. To sum up there are several things

that could have been done differently in order to get a better result, but in view

of the big infeasible area of the model the method at least drew the solution to a

feasible point.

Future work

All things considered this project was very educational and interesting. Especially

applying theory I have learned in previous courses on an actual problem was edu-

cational. There were lot of unexpected challenges that showed up during the work,

and things I took for granted was not that trivial in reality. In example model sim-

plifications and making the algorithm work were challenging at times. All these

challenges made me undoubtly more motivated to work further with this problem.

Obviously I did not get the desired results, but as mentioned in section 4.3 there

were several things that could had been done differently. Thus in my future work

I will investigate if other techniques, that has been discussed in section 4.3, will

give the desired solution. Moreover I want to investigate if I can use some machine
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Chapter 4. MA-RTO of a two-well system to handle uncertain parameters

learning techniques, on all the measured data, to give an accurate estimate of the

plant GOR.

28



4.4 Conclusion

Bibliography
1. Nocedal, J. (2006). Numerical Optimization. New York: Springer.

2. Marchetti, A., Francois, G., Faulwasser, T., and Bonvin, D. (2016). Mod-

ifier Adaptation for Real-Time Optimization - Methods and Applications.

Processes, 4(4), 55.

3. Matias, A., Roux, G., Jschke, J. (2018). Modifier adaptation for real-rime

optimization of a gas lifted well network. IFAC PapersOnLine, 51(8): 31-

36.

4. Urbanczyktl, C., Wattenbargert, R. (1994). Optimization of Well Rates un-

der Gas Coning Conditions. SPE Advanced Technology Series, 2(2): 61-68.

5. Mjaavatten, A., Aasheim, R., Saelid, S., Gronning, O. (2008). A Model

for Gas Coning and Rate-Dependent Gas/Oil Ratio in an Oil-Rim Reservoir.

SPE, 11(5): 842-847.

6. Ferreira, T., Shukla, H., Faulwasser, T., Jones, C., Bonvin, D. (2018). Real-

Time optimization of Uncertain Process Systems via Modifier Adaptation

and Gaussian Processes. IEEE, 2018 ECC: 465-470.

7. Fetkovich, M. (1973). The isochronal testing of oil wells. Society of Petroleum

Engineers, In Fall Meeting of the Society of Petroleum Engineers of AIME:

137142.

29



Chapter 5
Appendix

5.1 Optimization with Modifier Adaptation - MATLAB

code

5.1.1 Static optimization

1 f u n c t i o n [ x , f v a l ] = o p t ( x0 )

2 e v a l i n ( ’ ba se ’ , ’ s ave myvars . mat ’ ) ;

3 l o a d myvars . mat ; % Loader v a r i a b l e r f r a workspace

4

5 fun = @( x ) −(Ko ( 1 ) ∗ ( Pr ( 1 ) ˆ2 − x ( 1 ) ˆ 2 ) + Ko ( 2 ) ∗ ( Pr ( 2 ) ˆ2

− x ( 2 ) ˆ 2 ) − Lamb J k ∗ [ x ( 5 )−x k ( 1 ) ; x ( 6 )−x k ( 2 ) ] )

;

6

7 A = [ ] ;

8 b = [ ] ;

9 Aeq = [ ] ;
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5.1 Optimization with Modifier Adaptation - MATLAB code

10 beq = [ ] ;

11

12

13 l b = [Pm( 1 ) Pm( 1 ) Pm( 1 ) Pm( 1 ) 0 0 ] ;

14 ub = [ Pr ( 1 ) Pr ( 2 ) Pr ( 1 ) Pr ( 2 ) 1 1 ] ’ ;

15

16 non lcon = @ i n e q C o n s t r a i n t ;

17 [ x , f v a l ] = fmincon ( fun , x0 , A, b , Aeq , beq , lb , ub , non lcon ) ;

18 end

5.1.2 Implementation of the Modifier adaptation approach

1 i n i t ;

2

3 I t e r a t i o n s = 1 0 ;

4 x k = [ 0 . 2 0 1 8 1 ] ;

5 x k1 = [ 0 . 3 0 1 8 0 . 8 ] ;

6 x k2 = [ 0 . 3 5 0 . 6 ] ;

7

8

9 GOR real = [ 0 . 6 , 0 . 4 ] ;

10 GOR est = [ 0 . 4 5 , 0 . 4 ] ;

11 x0 = [0 0 0 0 0 0 ] ;

12

13

14 Lamb J k1 = [0 0 ] ;

15 Lamb C k1 = [0 0 ; 0 0 ; 0 0 ; 0 0 ; 0 0 ] ;

16
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Chapter 5. Appendix

17 K J = 0 . 5 ;

18 K C = 0 . 5 ;

19 R e s u l t = z e r o s ( I t e r a t i o n s , 7 ) ;

20

21 f o r j = 1 : I t e r a t o n s

22 [ P l a n t c o s t g r a d , P l a n t c o n g r a d ] = P l a n t G r a d i e n t (

x k2 , x k1 , x k , GOR real ) ;

23 [ m o d c o s t g r a d , mod con grad ] = P l a n t G r a d i e n t ( x k2

, x k1 , x k , GOR est ) ;

24

25 Lamb J k = (1−K J ) ∗Lamb J k1 + K J ∗ (

P l a n t c o s t g r a d − m o d c o s t g r a d ) ;

26 Lamb C k = (1−K C ) ∗Lamb C k1 + K C∗ ( P l a n t c o n g r a d

− mod con grad ) ;

27

28 d i g i t s O l d = d i g i t s ( 1 0 0 ) ; %I n c r e s e p r e c i s i o n o f t h e

c a s t i n g

29 Lamb J k = do ub l e ( Lamb J k ) ;

30 Lamb C k = do ub le ( Lamb C k ) ;

31 d i g i t s ( d i g i t s O l d ) ; % r e s e t t o d e f a u l t p r e c i s i o n

s e t t i n g

32

33 [ x0 ( 1 ) , x0 ( 3 ) ] = M e a s u r e P r e s s u r e ( x k , GOR est , 1 ) ;

34 [ x0 ( 2 ) , x0 ( 4 ) ] = M e a s u r e P r e s s u r e ( x k , GOR est , 2 ) ;

35 x0 ( 5 ) = x k ( 1 ) ;

36 x0 ( 6 ) = x k ( 2 ) ;

37
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38 [ x , f v a l ] = o p t ( x0 ) ;

39 R e s u l t ( j , 1 : 6 ) = x ;

40 R e s u l t ( j , 7 ) = f v a l ;

41

42 x k2 = x k1 ;

43 x k1 = x k ;

44 x k = [ x ( 5 ) , x ( 6 ) ] ;

45 Lamb J k1 = Lamb J k ;

46 Lamb C k1 = Lamb C k ;

47 x0 = x ;

48 c l e a r x ;

49 end
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Chapter 5. Appendix

5.2 Units

Table 5.1: Table

Lift-gas Unit
p bar
h m 1000

Cd

√
kg

mbarday2
84600

Mg
kg
mol 16.04

R J
kmol·Kelvin 8314

T Kelvin 373
ko1

Tonn
bar2

6.576 · 10−3

kg1
Tonn
bar4

8.239 · 10−7

kw1
Tonn
bar2

3.344 · 10−3

ko2
Tonn
bar2

5.462 · 10−3

kg2
Tonn
bar4

5.373 · 10−7

kw2
Tonn
bar2

1.031 · 10−2

ρo
kg
m3 800

ρw
kg
m3 1000

g m
s2

9.81
KJ 0.5
KCi i = [1, 2, 3, 4, 5] 0.5
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