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Abstract

This thesis is a part of the Artifex research project at SINTEF Ocean AS. The project aims at
developing a general-purpose system used for remote operations at fish farms in order to reduce
the need for onsite personnel. The operations include remote inspection, maintenance, and
repair operations. To achieve the remote operation ability, a method for observing the physical
terrain needs to be developed. This study presents a method for mapping the terrain from digital
images taken from air.

To enable these visual capabilities of the remote inspection system a UAV is used. The UAV is
taking visual, internal, and GPS measurements. The visual measurements are acquired from the
camera mounted at the bottom of the UAV, perceiving the location in a bird’s eye view. Based
on these measurements there is developed a computer vision based approach to create a digital
map of the aquaculture production site.

The digital map can be then used to, for instance, analyze the structural integrity of the farm
and to define safe operational areas on the surface as well as underwater for the Artifex USV
and the ROV, respectively. This work proposes a method to define such safe operational zones
for the USV.

To achieve this, a grid map representation method to model the sea surface is used, where the
grid consists of 2-dimensional cells indicating if the cell is traversable or not. To keep this map
of safe sones up to date, the map is continuously updated during operation.

The method proposed is based on dividing the problem into three parts. Firstly the objects of
interest are detected based on known attributes. Second, the detected image points are projected
down on to the water surface. Thirdly the world coordinates are used to generate a safety line,
and in turn, updating the map.







Sammendrag

Denne oppgaven er en del av et forskningsprosjekt kalt Artifex, pa SINTEF Ocean AS. Pros-
jektet tar sikte pa a utvikle et generelt system som brukes til fjernoperasjoner pa fiskeanlegg for
a redusere behovet for tilstedevarende personell. Operasjonene inkluderer fjern-observasjoner,
vedlikehold og reparasjoner. For a oppna den fjerne operasjonsevnen ma en metode for a ob-
servere det fysiske terrenget utvikles. Denne studien presenterer en metode for a kartlegge
terrenget fra digitale bilder tatt fra luften.

For a aktivere disse visuelle evner i det fjernstyrte inspeksjonssystemet, brukes en UAV (fjern-
styrt, ubemannet farkost). UAVen bruker visuelle, interne og GPS-malinger. De visuelle malinger
er anskaffet fra kameraet montert nederst pa UAVen som senser stedet i fugleperspektiv. Basert
pa disse malingene er det gjort en datasynbasert tilnrming for a lage dette digitale kartet over
akvakulturproduksjonsstedet.

Det digitale kartet kan brukes til a analysere anleggets strukturelle integritet og a definere sikre
driftsomrader bade pa overflaten og undervann for henholdsvis Artifex USV og ROV. Dette
arbeidet foreslar en metode for a definere slike sikre driftssoner for USVen.

For & oppna dette benyttes et rutekart som representasjonsmetode for a modellere havflaten. Der
rutenettet bestar av 2-dimensjonale celler som indikerer om cellen er traversabel eller ikke. For
a holde dette kartet over sikre soner oppdatert, oppdateres kartet kontinuerlig under drift.

Metoden som foreslas er basert pa a dele problemet i tre deler. Fgrst oppdages gjenstandene
av interesse basert pa Kkjente attributter. Sa projiseres de oppdagede bildepunktene ned til van-
noverflaten. Til slutt brukes verdens koordinatene til & generere en sikkerhetslinje, og kartet blir
oppdatert.
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Chapter 1

Introduction

1.1 Aim of study and ARTIFEX

The ARTIFEX project is developing game changing technologies for future remote operations
at fish farms where the main objective is to develop robots for regular remote inspection, main-
tenance and repair operations without onsite personnel. An Unmanned Surface Vehicle (USV)
is used as a platform for carrying a Remotely Operated Vehicle (ROV) for underwater opera-
tions as well as a Remotely Piloted Aircraft Systems (RPAS) for airborne inspection tasks (see
Fig 1.1). The USV will travel between different aquaculture sites and its land base. The project
results will yield new and ground-breaking products and services that will unlock unmanned
operations in aquaculture hence minimizing the risk for personnel. This will also expand the
weather window for operations on remote and exposed sites. The various subsystems are cur-

Figure 1.1: llustration of the ARTIFEX concept ( A.M. Lien, SINTEF Ocean AS)

rently integrated into a prototype for full scale testing and validation. The project partners are:
Maritime Robotics AS, Argus Remote Systems AS, Lerow AS, NTNU and WavEC.

This study is part of ARTIFEX and its main purpose is to generate a static map of the fish
farm where the ARTIFEX USV is operating, by means of processing the images and videos
obtained by the RPAS system. The overall goal of the visual system of the ARTIFEX project
is to map the safe zones where the USV, the RPAS and the ROV can operate without the risk
of collision or tethering. Therefore, the developed algorithm shall determine the georeferenced
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coordinates of the key structures of the fish farm such as the buoys and the cages, that can be
used for determining the position of the mooring lines underwater. The tasks of the project
are closely coupled with activity 3.3 of the ARTIFEX project where the goal is to generate a
high-resolution dynamic of 3 panorama picture and detect the objects of interest of the fish farm
under inspection. A preloaded map is to be given to the USV prior to the commencement of the
ARTIFEX operation describing the last known status of the geometry. The map is then updated
upon arrival at the location and before the mission starts.

Figure 1.2: Rataren fish farm, SINTEF ACE full scale laboratory, picture taken from RPAS

In this context, the study is aimed at furthering development of the vision system of the AR-
TIFEX project. Based on the data recordings done at Korsneset 2018 (Fig 1.3). The study is
aimed at enhancing understanding and enabling the visual capabilities of the system and builds
on experience acquired from the specialization project done in fall 2018 [1].

Figure 1.3: Korsneset fish farm, west location, picture taken from ground
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1.2 Structural geometry

To define the structural geometry of an aquaculture production site it can be convenient to look
at the words making up the phrase. The geometrical shape is the geometrical information of an
object that remains when location, scale, orientation, and reflection are removed from the de-
scription of geometric objects. While a structure is defined as the arrangement and organization
of connected elements in a material object or system. Therefore it can be said that the struc-
tural geometry of an object or system is the structure of these geometrical objects. To obtain
an understanding of the structural geometry of the relevant system it would be advantageous to
investigate how a standardized fish cage system is structured. In Figure 1.4 a common way to
structure the production site system can be viewed.

Mooring rope

Bottom weights

Figure 1.4: Structural cross section of the agricultural system

However, the objects found at one agricultural growing facility are vastly various. One cannot
expect the geometries making up the structure of the system to explicitly be found at an arbitrary
site, there might be several objects distorting the one’s view of the structural scene. These types
of objects can be maintenance boats (Fig 1.5) and the belonging personnel, birds or other objects
floating in the sea. Hence there is a need to define what structures are of importance to the visual
system. The objects omitted from this section will be considered to not belong to the scene. If
present in the scene, it will be viewed as an unwanted disturbance to the vision system.

Figure 1.5: Korsneset fish farm, west location, picture taken from RPAS
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There are mainly four structures that a given site consistently contains one considers the view
from above. That is the buoy, cage, feeding pipe and feeding station as seen depicted in Figure
1.6. To further investigate what objects can be of importance we would need to define some
define their characteristics. The objects can be divided into groups. Being objects containing
the property of rigid bodies, and objects that deform with respect to time. This distinction is
vital when choosing what structures to model in the map.

Figure 1.6: Objects commonly found at the site perceived from an aerial view

The rigid body is a solid body in which deformation is zero or so small it can be neglected.
The distance between a pair of two points in the body remains constant when external forces
are exerted. This cannot be said for the feeding pipe, so we define it to be non-rigid. The
deformation happening on the feeding pipe itself will make for a very challenging mapping
problem. Thus, this object can be said to not be of interest in mapping of the scene.

The remaining three objects are considered to be of the rigid body type. The rigid body property
can be argued to be approximately true for the purpose of this report. However, the assumptions
are quite strong. The motivation for making these assumptions will be discussed in more detail
in Chapter 2.

Moreover, the transformative behavior with respect to the world frame on the rigid bodies them-
selves needs to be considered. As seen from Figure 1.4 the cage and buoy are anchored. If we
furthermore consider good weather conditions and small variations in the water currents we get
small variations in the transformative behavior of the three remaining objects.

Having quantified properties of the objects the scene is inheriting. It is important to consider
what topologies that the given set of objects has. From looking at different agricultural sites
on Norgeskart [2] it can be seen that the buoys and cages have a topological order that occurs
often. That is the four buoys line creates a rectangle with the cage in the middle. This structure
is often extrapolated to form a collection of cages with a set distance relating to each other (Fig
1.7).
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L ® ® ® ]
B ® . * .
Figure 1.7: Model of the structural geometrical shape

The feeding station is hard to generalize in the same topological sense. Moreover, the feed-
ing station is not of immediate importance to the remote operation system described earlier.
Thus, we are not only omitting the feeding pipe as an object of interests but also the feeding
station.

Until now it has been considered four objects that are redundantly perceived by at an aerial
vehicle overseeing an aquacultural growing facility. Though these are four objects that are
important to the daily operation at the site. It has been argued that they are only a subset of
the objects that are of importance to the structural geometry of the fish caging system and the
remote operation. These are the buoys and the cage. Furthermore, the uniqueness of this subset
is that objects can be approximated as rigid body structures and having a static motion for the
purpose of this study.
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1.3 Safe zone mapping

The main idea behind the vision system outputting a map of the safe zones is to be able to
communicate the world referenced map to the other vehicles involved in the operation. For this
information to be useful, the aerial system needs to obtain a priori information of the terrain.
This is done by making the UAV hover a distance in front of the USV and UAV. With the proper
field of view and the proper operation altitude, the vision system can communicate a priori
information of the farm’s structure and its estimated zones of safety, so that the risk of collision
is minimized.

Having identified objects making up the main structural geometry and their corresponding lo-
cation, a map is to be constructed. Together with the safe zones of operation there exists an
additional constraint in the perspective of the autonomous vehicles remotely operating. This
is the power/ communication line. The constant being defined by the length of its cable. In
Figure 1.8 both the cable constraint (painted in green for the AUV) can be seen together with
the safe zone map. Combining these two constraints defines the set of the traversable cells that
the vehicle is able to move freely within.

Figure 1.8: Model the real-time mapping

Considerable complications are involved in outputting such a map of high accuracy to the un-
derwater vehicle, it can be argued that it may be impossible for the RPAS system to obtain such
information with satisfactory confidence. However, there exists a possibility of constructing the
underwater geometry by assuming some static model for the underwater geometry. Though, the
practice is not standardized to the extent that could be viewed useful for the autonomous opera-
tional system [3] without loosing generally. However, there can be found a mooring line report
that is available for every single aquaculture site, this would help in generalizing the underwater
mapping system.

With that said, underwater geometry is not the focus of this study. The emphasis is aimed
at getting georeferenced "anchor points" of the structures perceived. As pointed out before,

6



1.3 Safe zone mapping

having this digitalized map, there exists a number of possible ways to build systems on top of
this information structural georeferenced data.
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1.4 Equipment and sensors

This section describes what equipment and sensors that were used for recording data at Ko-
rsneset aquacultural growing facility. The data set may differ from what is meant for the final
version of the remote operation system, as the full system described in section 1.1 is in proto-
typing and not ready for full scale testing. The equipment specifications are obtained from the
official DJI site, that contains comprehensive documentation [4, 5].

The equipment made it possible for the drone to move freely without the constraint given by
a data/power line. The altitude of the drone could be set in the software during the flight,
controlling the vehicle with considerable accuracy according to the sensor data. To control its
longitude and latitude the drone operator was able to input velocity references in the direction
of travel. Before the start of the recording, the drone was set to a fixed altitude and where
approximately moving in the plane of the height specified.

Model name MATRICE 600PRO
Max Pitch Angle 25°
Max Wind Resistance 8 m/s

. . 525 mm x 480 mm
Package Dimensions <640 mm
Weight 9.5kg
Hovering Time 32-38 min

Figure 1.9: Drone used Korsneset 08/11/2018

The drone was equipped with a gimbal that was controlling the orientation of the camera in the
three Euclidean rotational degrees of freedom. The gimbal was set to the direction aligning its
z-axis. There where no change of setpoint of the gimbal during the time of flight. The visual

Model Zenmuse X3
Controllable pitch range  -90° to +30°
Controllable yaw range +320°

Figure 1.10: Gimbal used Korsneset 08/11/2018

data recorded was obtained by using the FC350 listed in Fig. 1.11. The device was set to video
recording mode and data was outputted to an SD card of the format MOV (H.264). While the
video data was being serialized, the drone continuously kept a full log of internal and GPS
measurements made from the start to the end of the flight.

Previous to gathering the visual data the camera was set to log footage at its maximum capacity
in regards to a resolution. This allowed for figuring out the optimal resolution with regards to
resolution at a later stage.
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B

Model FC350
CMOS Sony EXMOR 1/2.3
Resolution 4096x2160
FOV 94 deg

Lens 20mm

Vocal length 3.6mm

Figure 1.11: Camera used Korsneset 08/11/2018

The GNSS used was provided by DJI and it is of the RTK-GNSS. A system DJI is calling
D-RTK high precision navigation and positioning system. The D-RTK is made customized
and tuned for the DJI drones. This D-RTK positioning system is said to have centimeter-level
positioning accuracy compared to a more standard GPS, IMU and barometer solution.

By its dual antennas design, its heading reference can be more accurate than a compass sen-
sor. By providing a solution more robust to withstand magnetic interference from metal struc-
tures.

Horizontal: 1 cm + 1 ppm
Vertical: 2 cm + 1 ppm
(0.2/R)° R is the baseline distance

Positioning Accuracy

Orientation Accuracy

in meters.
Root Mean Square (RMS) 0.03 m/s
Frequency Used GPS L1&L2, GLONASS F1&F2
Operating Temperature 0° to 45°C

Figure 1.12: GNSS system used Korsneset 08/11/2018

Moreover, barometers commonly found in UAV systems may suffer from altitude discrepancies
when faced with fluctuations in airflow, such as braking, or after extended flying. The position-
ing system omits many of these discrepancies, by calculating high precision position estimates
of its position.
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1.5 Software

There is no shortage of libraries that contain an assortment of useful image processing algo-
rithms. For processing the images there was a consideration of using the utilities and the con-
venience of these. It can save implementation time at the cost of not having full control of the
implementation of how the algorithm runs. Therese libraries are quite extensive and are con-
taining most of the most common algorithms. However, some specifics algorithms are not yet
added. For these cases, the work Matlab has been used for its excellent debugging mode and
ease of use, and later ported to either C++ or Python.

O

Figure 1.13: Image processing software, scimage and opencv respectively

G,

OpenCV is an abbreviation for open computer vision . OpenCV is an open-source computer
vision and machine learning software library. Officially launched in 1999, the OpenCV project
has a long development history and is highly optimized in many aspects. Being originally
developed in the C/C++, language, it has since release been opting for support in programming
languages like Python and Java.

Skimage shorthand for Scikit-image, providing a library for image processing written for Python.
The library is a part of the collection Scikit. Witch again is short for SciPy Toolkits holding li-
braries like Matplotlib, NumPy and other well-known libraries accessible within the Python
environment.

In addition to these, a library for getting the GNNS readings and translate them into the global
frame where used, called geoutilities [6]. This translation can be done through some simple
equations but the convenience of using a library that has been under testing for some time
seemed like a good way to go. In addition to this, there was a library that allowed for interaction
between C++ and Gnuplot for real-time plotting during testing.

OpenCV has an extra repository (called OpenCV contrib) that contains extra modules. Con-
taining modules that are quite new and often because of its age, has not undergone thorough
testing. However, as the module matures and gains popularity it will often be moved over the
main repository. Within the OpenCV contrib repository, the aruco marker library is found. This
library was shown to be useful for building up the test environment. With using a single aruco
marker the library was able to output an estimate of the cameras position and orientation.

Eigen, a library in C++ handling vectors and matrices was also used. While OpenCV has its
version of many of the functionalities found in Eigen it made sense to not include any image
processing library dependencies in the mapping module.
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1.6 Dataset

1.6 Dataset

There where done several recordings of data throughout the process of gathering data. Where it
was tested flying at multiple different altitudes, both capturing photos at a set time interval and
ones using the video recording setting on the camera system of the drone.

There where one flight of particular interest, found in the fourth flight made (flight 108). In this
flight the drone was set to capture the structure of the site at an altitude of 100m. The altitude
gave an satisfactory view of the fish farm cage structure while preserving the details. Making
for several objects of interest being exposed fully to the camera lens at most times. Moreover,
to shrink the amount of data available for testing reasons it was decided to only do an outtake
of the data recorded. This was the data gathered while flying over the four first cages of the
west end of the location. This flight is depicted in Figure 1.14, showing the location at large
and displaying the path the drone took while capturing the set processed in this thesis.

Full flight log
Outtake flight log
Start/ end point O

Figure 1.14: Korsneset fish farm, picture taken from aerial vertical (photo by Norgeskart), plotted lines
of the fourth flight of the drone, marking the path interest with respect to processing

The run was recorded in 4096x2160p at 24 frames per second with the encoding of MOV (H.264).
The video file was converted to .png image files and downsampled to the resolution of 320x700.

For the convenience of further processing, these images were converted to a grayscale represen-

tation as all the image processing algorithms reviewed uses the grayscale representation of the

input image.

The corresponding internal measurement and GPS serialized to a CSV-file, containing data
points corresponding to the time start of the flight. While the logging of the video, of course,
started at the time of recording. Doing some hand calibration these data sets were synchro-
nized.
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Chapter 1. Introduction

Figure 1.15: Korsneset fish farm, north location, picture taken from ground

Figure 1.16: Korsneset fish farm, west location, picture taken from RPAS

12



1.7 Outline

1.7 Outline

As this specific case of safe-zone mapping is not widely researched as of today there is an
emphasis on the surveying aspect. This would be trying to approach the problem with methods
that agree with the problem description and run several tests capturing what might be worth
looking into carrying out work in the future. This surveying aspect is especially true in the
space of image processing as this is an inherently hard problem, thus needing attention. There
are other aspects of this report that can be considered solved in a sense, within the reduced space
where the assumptions are made.

In the background and theory chapter, there will be looking at the fields that are involved in
solving the problem description. Brushing over some theory and background that are related to
all the subfields.

The next chapter is about detecting the objects of interest. That is recognizing the objects that
make of for the cage structural geometry seen from the aerial view. There will be looked at
ways of both detecting the cage and buoy.

In Chapter 4 the problem of perceiving the 3D world will be looked at. This problem of per-
ceiving the world through a lens might not intuitively seem hard, but this is one area that much
research has gone into. The understanding of the extent of the problem arises when the loss of
one dimension is considered. As going from the world to a digital image one loses the scale
parameter. The world can be looked at as being infinite complex and capturing that from a
finite-dimensional set of images is not a simple task [7]. Inferring the model of a scene would
be impossible without imposing additional constraints on the problem. These methods will be
looked at.

Chapter 5 is transferring the 3D landmarks observed to a grid map like structure. This encoded
information is then used to generate what one may refer to as a "safety line", using this, and
some extra readings the grid map utility are able to label safe zones.
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Chapter

Background and Theory

There are several fields of study involved in solving the task of obtaining the objects of interest
and constructing a map holding the safe zones of operation. To construct the map, mainly three
topics of study are involved:

First, the classical field of digital image processing. There are no clear cut boundaries in the
curriculum from image processing at the one end and computer vision on the other. However, a
useful paradigm is to consider three types of image processing: Low-level processes that involve
primitive operations such as reducing noise in an image or enhancing edges where both input
and output can be characterized as being an image. Mid-level processing on images involves
tasks such as segmentation (dividing the image up into regions or objects), description of those
objects, and classification (recognition). Finally higher-level processing, "making sense" of an
ensemble of recognized objects, here is normally where the field of computer vision starts, the
same distinction will be made in this theory section.

Second, the wide field of computer vision. Within this field of study there are different subfields.
An area that is of particular interest is the field of geometric Computer Vision. This includes
the description of the way the appearance of objects changes viewed from different viewpoints
as a function of camera parameters and the shape of the object (defined by [8]). The complexity
of the world is infinitely superior to the measurements of its images. We cannot simply invert
the image formation process and reconstruct the "true" scene from several images. We can
reconstruct our best model, an "internal representation". This requires introducing assumptions,
or hypotheses, on some unknowns about the environment, to infer the others. There are arbitrary
no right or wrong way of doing so, modeling is a form of engineering art, which depends on the
task at hand.

Third, the topic of building a Grid Map Ultility, has become more and more relevant as the
field of robotics is increasing in sophistication. A grid mapping utility is software that has
the capacity for online surface reconstruction and terrain interpretation. When it comes to the
navigation of areal and underwater robotics the third dimension, hight must be considered.
Mobile ground robots are traditionally designed to move on flat terrain and their mapping,
planning, and control algorithms are typically developed for a two-dimensional abstraction of
the environment. The most popular approach is to build an elevation map of the environment,
where each coordinate on the horizontal plane is associated with an elevation/height value. For
simplicity, elevation maps are often stored and handled as grid maps. This will be the case for
this study as well.
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Chapter 2. Background and Theory

2.1 Camera motion and notation

The motion of the camera poses are related by the rigid body motion S E(3), in many application
of visual reconstctuions the notation is defined as the follwing

Rigp—1 trr1
Tipr1 = ’ ' 2.1
k1 { ot @.1)
where Tj, ;1 € R**4 is the motion relating the two camera poses in the set 7}.,, = {Tho,. .. Thn-1}
The set of camera poses Cy.,, = {Cy,...,C,} are the poses with respect to the initial cori-

nate frame. The poses and transformations are related by the following relationship C,, =
CnTh.

Figure 2.1: Camera motion

However, for the convenience of this work, there will be used a adjusted notation. In the image
series of size N, the images is denoted by: {I* = I (t')} ,i € [1, N]. The related pose at a time
t' is denoted by T}y, The 3D landmarks are denoted with X* = {x(p)Vp € P'}, z (p}) being
the 3D landmark associated with each keypoint pi.

Figure 2.2: Notation defined corresponding
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2.2 Modeling objects of interest

Having defined the notation of the cameras movement and its corresponding images in the
discrete time ¢. There is a need for defining the objects perceived by the aerial system. As
discussed in section 1.2 there are several objects to be expected at a site where the objects of
interest for defining the underlying geometry of the overall structure is a subset of these objects.
Namely buoys and cages. In many methods of detection, there has been assumed a model of
what the vision system is expected to see and processing the image based on those assumptions.
For making assumptions about the objects we need to consider the geometry of the real world
object, their material characteristics and how they are perceived by the vision system.

2.2 Modeling objects of interest

As mentioned in the introduction the characteristics of both objects can be assumed to be of
the rigid type. The type of plastic mostly used making the cages and buoys are High-density
polyethylene [3]. Although the cage of the structure can be seen to be exposed for mechanical
deformations these are small and can be considered to be zero. The buoy because of its typical
nonhollow body it can be assumed to be rigid with high confidence.

Some further assumptions relating to the structures perceived by the camera. Considering the
cage, it has a circular geometry while perceiving it from above the waterline. Although there
exist growing facilities that make use of a cage geometry of the noncylindrical type, namely
the rectangular steel cage, though this has not seen wide use. Therefore, for the purpose of this
report, it is assumed that the site uses circular shapes for cages. Interpreting the cage object as a
circle there are a few properties that it can be said at inherit. A point of origin and an associated
circumference, which also can be described by its radius.

It is tougher to make strong assumptions about the buoy. In some cases, it can be resembling
a cubical shape with curved edges. Other instances where the structure is more of a circular
shape, within these it can be in some cases be conical or even spherical, more details can be
found in the field handbook "Aquaculture operations in floating HDPE cages" [3].

Furthermore, floating objects perceived from the lens can be said to have a strong illumina-
tion. This is because of their surroundings. The sea surrounding the objects holds the property
of absorbing the light hitting it. More precisely absorbing a wide specter of electromagnetic
waves where their visible range lies. Thus making the contrast perceived by the image sensor
large. Moreover, the objects can be said to have a reflective behavior by its design, making the
structure more prone to being observed.

Objects can also be perceived by the lens in a deformed manner described by projective geom-
etry. In a picture, we may see a square that is not a square or a circle that is not a circle. If
the pose of the camera is not perpendicular to the plane of the object or the object somehow is
rotated with respect to the pose this effect can be seen. However, for the purpose of the image
processing detection algorithms, we will assume no to very small divinations from the pose
aligning with the surface.
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Chapter 2. Background and Theory

(a) (b)

Figure 2.3: Reference model the two main objects for the image processing algorithms seen at the site
from aerial photo view

Figure 2.3 is showing the model to be used for the image processing algorithms. Marking black
as the intensity and white as low. Now that there exists a model of the objects of interest and
how the UAV is moving. A further investigation on how to obtain these modeled objects can
begin.

18



Chapter

Detecting Objects of Interest

There are several approaches to processing an image depending on what information one wants
to acquire and also what properties of the image series are expected to look like. In this section,
there will be proposed a total of 5 methods of obtaining the shapes of interest. The methods
will be described and later in the results section the outcome of the algorithms will be reviewed,
tested and discussed.

Figure 3.1 is showing aforementioned algorithms. The rounded nodes are representations of
the original RBG image, while the rectangular boxes are indicating algorithms. In outer right,
it is shown what these algorithms are aimed at detecting. HiR made to be shorthand for High
intensity Regions. Also, DoH made out to be the Difference of Hessian.

ﬂ | Gad.] | Circle detection
@:7{ Canny — Edged];
Dot

* HiR detection

Figure 3.1: Proposed way of benchmarking the image processing algorithms

There will be proposed a way to obtain the structure in the image based on edge detection
techniques. From the edged image, algorithms detecting objects of interests based on known
attributes about their shape will be reviewed. Lastly, using the grayscale image a method of uti-
lizing scale space will be looked at. The regions of interest are found by looking for large con-
tinuous intensity regions. The algorithms used are listed in Figure 3.1. The detection algorithms
will be looked at in the order that starts from the outer right and in descending order.

3.1 Getting shapes: Edge Detection

Edge detection serves to simplify the analysis of the image, drastically lowering the amount
to be processed, while at the same time preserving useful structural information in the image
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Chapter 3. Detecting Objects of Interest

boundaries. An edge in an image is defined by a point in which there has occurred noticeable
change in intensity.

Local changes in intensity can be obtained by using derivatives, namely first and second order
derivatives, which are particularly well suited for this purpose. This is illustrated in Figure 3.2
by the horizontal response of intensity.

f(z)

f'(=)

1o ) N
VAR

Figure 3.2: Motivation for deriving the discrete derivation in the discrete domain

Now, if we take this horizontal intensity and investigate what we get by taking the derivative of
the function in a mathematical sense. The function f(x) can be viewed as a continuous one, as
being the function mapping image coordinates of a given row in the image to its corresponding
intensity. However, the image is encoded as a collection of sampled signals along the horizontal
lines. Thus, the function needs to be defined with respect to the noncontinuous samples u, in
the case of the horizontal line.

L (UR B { U VI {UR S VI (U o

W W E ) — o) 2

The equation above is approximating the derivative of the smooth function f(x). Dividing the
domain of the function into discrete time steps u, the derivative of the discretized function is
approximated. The equation (3.1) can be implemented by the linear horizontal filter

HY=[-05 0 05]=05-][ -1 0 1] 3.2)
where the operations are applied in the horizontal neighborhood /(v — 1,v) and I(u + 1,v),
weighting positive 0.5 and negative 0.5 respectively.

The same type of reasoning can be done to obtain the vertical gradient vertically, with the
resulting filter

—0.5 ~1
H) = 0]=05-] 0 (3.3)
0.5 1

Now that the derivation operator is defined. The convolution of this filter across all the horizon-
tal and vertical lines of the image can be defined by the operator . With this operator, we can
define the image derivative in both x, and y-direction.
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3.1 Getting shapes: Edge Detection

IL,=I+H, and I,=TIxH, (3.4)

With these directive derivatives, it is possible to go further in analyzing the illumination re-
sponse of the image. By taking the magnitude at each position of u, v we can get a measure of
how strong the edge is in an absolute fashion.

E(u,v) = \/[g(u,v) + 12(u,v) (3.5)

It can also be calculated in which direction the gradient of the pixel pair u, v is pointing by
applying the ArcTan over the image gradients /, and I,,.

—Iy(u,v) = Arctan ([, (u,v w. v
Ix(u,v)> = Arctan (I (u, v), Iy(u, v)) (3.6)

®(u,v) = tan™" (
These operations stem from deriving and taking the directional derivatives the image. However,
there are many different ways to obtain such an x,y derivative of the image /. There has man
much research into the the optimal derivative filter, namely Prewitt [9] and Sobel [10] stands
out. These works by expanding the neighborhood by using a matrix. These filters are said to
counteract the noise sensitivity of the simple gradient operators. The Prewitt operator uses the
filter kernels

-1 0 1 -1 -1 -1
H =|-10 1 and H =| 0 0 0 (3.7)
-1 0 1 11 1

The filters for the Sobel operator are almost identical. However, emphasizing the current center
inline.

-1 0 1 -1 -2 -1
H}=1]-2 0 2 and H)=| 0 0 0 (3.8)
-1 0 1 1 2 1

Canny

The operator proposed by Canny [11] is in wide use and is considered "state of the art" in edge
detection. The method is opting to tackle three problems: Minimizing the number of false
edges, achieve the good location of the edges and delivering a single line of where the curve
contour is marked. These properties are not usually not achieved by the more simple edge
detectors like Sobel or Pewit.

The pseudocode below will present the method in some detail. Depending on the impregnation
there might be some deviations, but the concepts are still the same.
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Chapter 3. Detecting Objects of Interest

Algorithm 3.1 Canny edge detector for grayscale images

1:
2
3
4.
5:
6.
7
8
9

10:
11:
12:
13:

14:
15:
16:
17:
18:
19:

20:
21:
22:
23:

procedure PROCESSFRAME

I « IxHG°
I, < I%[-0.500.5]
I, I+[-0.500.5]
(M,N) < S1zg(I)
Createmaps :
Emag: M x N — R
Epms : M X N+— R
Eyinn : M x N — 0,1
for all image coordinates (u,v) € M x N do
Emag(u,v) < [I2(u,v) + I_yZ(u, v)]'/?
Epms(u,v) <0
Epin(u,v) <0
for u<+1,....M —2 do
for v+ 1,....N—2zdo
dy < Lp(u,v), dy < I(u,v)
sg <~ GETORIENTATIONSECTOR(d,;, d;;)
if ISLOCALMAX(E a9, u,v, 59, 1t1,) then
Epms(u,v) <= Epqq(u, v)
for u+1,... M —2 do
forv+1,..,N—2do
if (Enms(u,v) > thi) A (Epin(u,v) = 0) then

TRACEANDTHRESHOLD(E s, Epin, U, v, to)

return Ey;,

> blur with Gaussian of width o
> x-gradient
> y-gradient

> gradient magnitude
> maximum magnitude
> binary edge pixels

> only keep local maxima

(©) Enms

Figure 3.3: Original image
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3.1 Getting shapes: Edge Detection

In Figure 3.3 the different steps throughout the process can be seen. The Gaussian filtered image
1 (a) is not present, but the sigma was set to 3 for this particular run. The filtered image is then
taken the gradient x and y derivative. From this, the magnitude gradients can be calculated (b).
Also, noting the direction (sector) of decent from the derivative direction. Based on these two
entities a thinning process can be conducted (c). Finally, a thresholding step is used to conserve
the strong 8-connected edge responses, conserving the edge either on its own intensity response
or its 8-connected neighborhood response (d).

Note to the reader. In this section, a method of mapping the grayscale image to a binary rep-
resentation was reviewed. In the Figure 3.3 the edge pixels are rendered as white and the
background as black. For the readability of the following text, this mapping is inverted making
for clearer figures.

23



Chapter 3. Detecting Objects of Interest

3.2 Matching linear stuctures

Finding simple shapes, such as lines and circles in images may look like a simple task but
computational issues coupled with noise and occlusions require some nonnative solutions. In
spite of the apparent diversity of lines and areas, it turns out that common approaches to the
detection of linear structures can be seen as an efficient implementation of matched filters.
The section describes how to compute salient image discontinuities and how simple shapes
embedded in the resulting map can be located with the Hough transform [12].

3.2.1 Generialised Hough transform

The Hough transform has been around for a long time [13]. In the formal analysis, there is
a way to generalize the transform into arbitrary shapes. To start with, one can consider the
parameterization the curve described in the plane:

v(0) = 2(60) H +y(0) m (3.9)

Generalizing the transform with the equation

w(d,b,\, p) = b+ AR(p)v(6) (3.10)

where the parameters b = (¢, o) is the location, A scale factor and R(p) rotation matrix.
Thus, making it possible to capture the shape in the plane by considering the shapes translation,
rotation, and change of scale relative to the image at hand.

Ellipse Hough transform

As discussed earlier, the detection method is reliant on modeling the shape of the cage as a
circle. Yet depending on the angle of view or structural deformation, it might not precisely be a
perfect circle. In fact, it is more like an ellipse. However, matching ellipses is a non-trivial task.
The shape described by its parameter space of a high magnitude. The parameter space is made
up of observing the equation (3.11). The equation has 5 unknowns: X,y scale .S, orientation by
p and translation by (t,,1,).

R R 1 3 2 e ) I

Although there has been made effort into reducing the time complexity of the ellipse detection,
these methods will not be considered.

3.2.2 Classical Hough circle transfrom

Using the parametsarion of an circle for z(#) and y(#). Then rearegning (3.10) and solving for

Zo, Yo gives

xo| |z —rcos(f)

{yo] - [y — rsin(ﬁ)] (3.12)
With this equation, one is able to describe every circle in the plane. The intuition behind why
the Hough circle transform is iterating through a large set of the set of possible circles in the
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3.2 Matching linear stuctures

image. Limiting the translation x,y by the edge pixels in the image and radius by fixing it
to the radius of the radius by the edged image. Denoting where the pixels in the image each
circle is passing through. This will result in the accumulation of values in the center of the true
circle.

To clarify, we can consider Figure 3.4. Taking the three different edge pixels pq, ps, ps and
their corresponding x, y. Furthermore, assuming r to be fixed. Then (3.12) leaves one unknown
0, this is the free parameter and it defines the trace of the curve. Collecting the accumulated
values generated by the traces ('}, Cy, C5 it is clear that one would see a max accumulation in
the center of the circle.

Image space Hough space

C P1
D2

b3

Yy Yo

Figure 3.4: Hough circle transform

If r is not known we can make the transform include a third dimension to the parameter space.
Making the search space not only to include xg, vy, but also a r (visualized in Fig. 3.5). By
searching the 3D space for the highest value we obtain the center. By denoting where in the r
space the maxima were detecting we obtain the circles corresponding radius.

Yo

Zo

Figure 3.5: The three dimentional accumulator space for the classical Hough Circle Transform

The accumulator space grows big in this brute force manner, especially for large images.
Throughout the years there have been works on how to reduce the time complexity of this
technique. The next sections will present two ways of tackling this time complexity.
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Chapter 3. Detecting Objects of Interest

3.2.3 Classical Hough circle arameter reduction

The Hough transform gives the same (optimal) result as template matching and even though it
is faster, it still requires significant computational resources [14]. One way to reduce the com-
putation time is by looking at the gradient information in the edged image. In this section, the
technique of parameter space reduction will be reviewed. There are several ways of using gra-
dient information to reduce computational time. Using the gradient information in the detection
of circles goes back to as early as 1975 [15].

In this section, the parameter space of the Hough circle transform is reduced utilizing the rela-
tionship between points of the circle and its derivatives.

By considering the parameterized definition of the circle
2(0) = zo +rcos(0);  y(0) = yo + rsin(0) (3.13)

One can find its derivatives

2'(0) = —rsin(0); y'(0) = rcos(h)

2"(0) = —r cos(0); y"(0) = —rsin(6) (3.14)

Figure 3.6 shows the geometrical interpretation of these derivatives

v'(6)

(iUo, Z/o)

Figure 3.6: First secound derivative of the parametarized circle

The behavior of this directional trigonometry is the one the gradient-based the approach tries to
exploit. It is dependent on the following reasoning:

By considering the directional derivatives and its properties:

o Y (0) vy Y0 1
O e e w0 e O

Overserving the (3.13) we notice that —r sin(f) = y(0) — yo and —r cos(#) = x(6) — xg

v L0 10t
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3.2 Matching linear stuctures

rearranging the equation
y(0) = ¢"(0) (x(0) — xo) + yo (3.17)

Using the earlier definition of ¢”(6) we get

x(0) —x
yo = y(0) + —<¢),(9) 0 (3.18)
By looking at Figure 3.6, we observe that the derviative of the circle can be approximated by
taking a pair of two close points along the the circle v(#). In (3.19) we use this two point
approximation and then the relation of ¢”(6) in equation (3.15) to obtain

¢(6) = 22 ¢'(0) = ——=— (3.19)
Ty — T Y2 — U
Inserting the approximated ¢’(#) into the equation (3.16), we obtain
) — _
o = y(6) + L) 22 =) (3.20)

(Y2 —y1)
Figure 3.7 the line of the equation 3.20 is illustrated.

(1,91)

(332,y2)

Figure 3.7: Estiamted geometric gradient of the circle

However, x(0), y(#) cannot exactly be known, this must be approximated. This being the inter-
section point, of the two lines of Figure 3.7, obtained by simply taking the mean of the (z;, y;)
i € {1,2} pair. Now, (3.20) having two unknown variables, iterating one of the variables
X0, Yo the other can be calculated and the position in the accumulator space can be found and
incremented.

For this algorithm to work, its clear that edge points (x2, y-) and (x1, y; ) need to be found. This
can be done, iteration through the edge points of the binarized image and start the accumulative
process if there are found edge points in the corner of the window.

The gradient-based Hough circle algorithm is various in this implementation. But they are often
based on the same principals shown in this section. Moreover, these implementations often add
a step where the radius is extracted after accumulating the candidates for the center. Because
of the loss of the radius dimension while using this technique, there is often used a histogram
where each pixel close to the candidate centers length is calculated, based on the histogram the
associated radius can be determined.
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Chapter 3. Detecting Objects of Interest

3.2.4 Randomized circle detection

The technique described in this section depends on gathering evidence and is a quite recent find
taking into account the history of circle matching methods. The method has its roots in the
popular method of randomized Hough transform [16]. Where the main idea is to pick three
random edge pixels from a given binarized image and computing the circle’s properties, then
denoting it in an accumulator space. Given a sufficiently large number of these circle candidates,
it can be determined by voting where the true circle is most likely to have appeared.

The theory in this section builds on this technique of finding a circle given three edge pixels.
However, suggests a fourth edge pixel to be picked [17]. Making this new pixel responsible for
an evidence collection step in the process. The method can mathematically be described by first
considering the equation of the circle:

(x —20)” + (y —wo)* =17 (3.21)

If we take the equation (3.21), adding in the circle a = zy and b = yq
27ra + 2yb+d = 2* + y? (3.22)

The distance d = r? — a® — b? and then the three randomly picked edge pixels in the image can
be written v; = (24, ;) ,7 = 1,2, 3.

V2

U3

(%1

Figure 3.8: Three points sadifiying and defining the equation of the circle

The constraint on v; can be written into

21‘1'@123 + Qyiblgg + d123 == 11712 + y?, (’L = 1, 27 3) (323)

These can be arranged to matrix from

25171 2y1 1 a123 SL’% + y%
2wy 2yp 1 bios | = | 25+ (3.24)
2[E3 2y3 1 dlgg I% + y§

By rearranging by Gaussian elimination and applying Cramer’s rule for linear system it can be
obtained that
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3.2 Matching linear stuctures

w3+yi— (23 +v) 2(vo—w) ‘
w3+yi— (21 +yd) 2(ys— 1)

Qroa = 3.25
25 = (a2~ 20) (s — 00) — (23 — 1) (v — 1)) 522
and
2(xy —x1) 23 +y; — (27 + i)
bios = (x?» 1‘1) T3 TY;3 (% yl) (3.26)

4((z2 — 1) (Y3 — v1) — (23 — 1) (Y2 — ¥1))

Now that the radius of the circle is determined, the radius can be found by picking an (x;, ;)
pair and computing 93 = \/ (x; — a123)? + (y; — b1as)?. If the center of the circle is inside of
the width and height of the image, the last step can be performed and the evidence collation step
can be calculated. If we take this pair and apply (3.27), the measurement of the last pixel to the
circle can be found. Based on the distance d, there is a possibility of determining if the circle
is likely to have appeared in the image .

dy—y123 = ‘\/(m - 61123)2 + (ya — 5123)2 — 123 (3.27)

3.2.5 Accumulator space non-maximum suppression

The methods of matching the linear structures described above will accumulate circle center
candidates in one way or another. There is a need for suppression of these candidates if there
exists more than one local maxima. This can be done with a simple 2D windowed maxima
finding. By dividing up the image/ accumulator space in several regions it is possible to obtain
the local absolute maxima of each region. For this simple approach, there needs to be a distance
check wherever there has been a bad cut in the window operation. For example, it can be
considered that one extrema region has been divided into two or more regions. One way of
catching these cases is to perform a distance check wherever there are many absolute regional
maxima located in the same area in the image/ accumulator space.
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3.3 Detecting high interisity regions

3.3.1 Contour selection by topological structural analysis

There are several methods of obtaining structural information in a binary image. A simple ap-
proach may be the connected components labeling and decide on the connectivity. Fortunately,
OpenCV provides a sophisticated method of extracting regions not only based on the interme-
diate connectivity but also provides the hierarchy of structures in the binarized image. This
method is based on border following.

Border following is one of the fundamental techniques in the processing of binarized image im-
ages. It requires a sequence of coordinates or chain codes from the border between a connected
component of a 1-valued pixel (component) and a connected component of the 0-value (back-
ground). In [18] it was shown that one could efficiently extract the full topological structure of
an image. Later, this method has been implemented in OpenCV, making it possible to extract
the topological structure of a binary image, preserving the hierarchy in a treelike structure with
a corresponding set of coordinates. This kind of topological extraction is desirable, allowing for
the structure of the shapes to be extracted and further analyzed. The goal is to divide regions
into segments with a unique label to it while preserving information about their hierarchy. This
can be viewed as a more sophisticated connected components algorithm for the purposes of
this report. OpenCV returns the structure in the following manner running the algorithm on the
black and white image:

[Next, Previous, First_Child, Parent] <~ COMPUTECONTOURS(/)

-1 -1 1 -1
3 -1 2 0
-1 -1 -1 1
-1 -1 -1 3

() (b)

Figure 3.9: Showing the full structure hierarchy of the binarized image. (a), displaying the hierarchy
found in the image (b), where every row representing a border with this corresponding child and parent,
these combined makes up regions within the image.

In Figure 3.9 there are in total 5 borders where the borders of the second hierarchy are the ones
that are describing the lines in black. The fourth and fifth (3,4 array indexed) are the nodes of
the inner contours, with no corresponding child.

Computing region properties

Given that the regional topological structure and its relating contours it is possible to compute
properties of the regions surrounded by the contours. This enables for further analysis of the
image.

But first, we need need to use the moments of the contour (node). The moment can be used to
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3.3 Detecting high interisity regions

compute the properties.

Mi; =) 'y I(x,y) (3.28)
T oy

In particular, for this application we are interested in the center of mass of the contours, denoted
by (u., v.) and is given by the 1st moments of the object:

Mo Mn }

Ucy Vey = EVEER YA (329)
{ } {MOU MOO

The other properties of the contour are listed below with their corresponding calculation, given
in the table:

Centre = {ue, ve}
Circularity = o
Aspect Ratio = K%%
Solidity = Comees fal e
Mean intensity = = g oonour Area

Table 3.1: Common shape features

Testing contours

Having the structure of the binarized image, and the regions corresponding properties. There
can be made some assumptions of what is to be expected to see.

Several observations can be made by looking at the edged image set in (Appendix A.2). Begin-
ning with the hierarchy. Considering the hierarchy given by the algorithm and it can be of value
to preserve only the outermost border. One can see that the region of interest almost always lies
within the lowest hierarchy. This property tells us that the contour containing the pixels of the
buoy is most likely to appear in the lowest hierarchy. Thus, the node of the contour should not
have any child .

Furthermore, by inspecting the grayscale images in (Appendix A.1), one can find that the in-
tensity of the buoys is object to little change of intensity. Also, they tend to be the most illumi-
native. Based on this fact it is possible to set a threshold of the illumination in the given pixel
region.

Some other properties that can be filtered on are area and circularity, with the same thresholding
method used when filtering contours based on illumination.

Figure 3.10 showes the filtered contours of the binarized image.
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b

by

b2\
Figure 3.10: Showing the contours candidates in the canny filtered image

Table 3.2 showes the computed properties of the filtered contours.

Table 3.2: Computed properties of b; in Figure 3.10

b1 ba bs
Mean intensity 234.9 2332 200.7

Circularity 0.85 084 0.85
Area 69.5 66.0 775
Hierarchy Oth Oth Oth

The splash from the fishes may be very similar to the canny obtained buoys. By knowing the
hierarchy of the contour it can be performed a check to see if it has an outer border/ contour
surrounding it. Ideally, this would give a good indication. However, the cage is almost never
outputted from the canny algorithm as one long connected edge, making this process not possi-
ble. Yet the splashes in the cage may be subject to several edges entangled making filtering on
the inner edge advantageous.
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3.3 Detecting high interisity regions

3.3.2 'Trajectories of critical points in scale-space
Background and the Hessian matrix

The method is taken from the technique of finding corresponding patches in two images [19].
Borrowing from the concept of how two images correlate it can be used to see how an image is
correlated to itself. To obtain this autocorrelation the one first needs to consider the equation of
correlation between two images.

E(u) = Z w (%) [I (x5 4 u) — Iy (x;)]° (3.30)

The same concept can be used, by comparing the image patch to itself, also known as the
autocorrelation

EMxAuy:E:uw%)mmmr+Au)—memz (3.31)

Now the image function /; (x; + Awu) can be approximated using the first Taylor series expan-
sion [y (x;) + VI (x;), making it possible to approximate the auto-correlation surface as

Eac(Au) = Z w () [T (z; + Aw) — I ()]

~ w (x;) [l () + VI (x;) - Au — I ()]
; (i) [Lo (z:) + Vo () (z:)] .

— Zw (i) [VIo (z:) - Aul?
= AulTAAu

Then the autocorrelation at the point x;, y; can be computed by taking the derivatives and gen-
eralizing for the image I, we get

I? I ) ( a b )
A=wx R ) (3.33)
( Ly I} b ¢

where w is the filter kernel used. Pixelwise will the determinant of the autocorrelation A respond
strongly at edges of the image.

det A = ac — b? = M\ s (3.34)

In the next section, the convolutional filter w will be discussed.

Gaussian scale space

Conspicuously this is motivated by real-world observations. Considering waking up without the
glasses one can argue that only the largest contours of the objects surrounding us are available
for our perceiving. This "blurring" factor is what introduces the scale in the image. Dividing
the image into several scales, thus making the image not contain only 2d coordinates but a third
one, making it a 3D structure. This concept is known as the scale space [20].
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In particular, we can have the Gaussian scale space, with its associated m levels of filter-
ing.
G = I« HGom (3.35)

The representation of scale space is advantageous for getting interested points at multiple scales.
We define the discrete Gaussian scale space representation of an image [ as a vector of M
images, one for each scale level m:

G = (Go,Gr,...,Gu) (3.36)

Associated with each level (G, is a corresponding o,,,. This amounts to the image I being con-
verted into a series of (G, each representing a blurred version of the original image. Therefore
the scale representation could be thought of as a three-dimensional representation of the image.
The scale ratio between the different images are defined as

A, = Imtl (3.37)

Om

And can be considered is set to ba a constant in this study. The base scale is defined as oy which
is defined as the point of the start of the linspace. In Figure 3.11 it is shown how a scale space
image seires might look like. With base scale at 0y = 1 and incrementions of A, = 1

Gn

Figure 3.11: The gausian scale space of two intensity regions

Regional local maxima

Having defined the images scale space of an image and the hessian operation. These two can
operations can be combined, taking the hessian of each image in the scale space. Effectively
turning the image into a cube-like representation of the hessian with each of its own corre-
sponding sigma. It has been shown that interest points, being high-intensity regions do exert a
strong response in the cube. These strong responses can be found by non-maximum suppres-
sion. There are several implementations of this technique, the one popular method is looking at
the 3x3x3 neighborhood of the cubed image [21] .

Testing gausian scale space

To test the scale space method a simple script was comprised toghter. applying a Gaussian
filter. Then the gradient was taken in both directions, obtaining the Hessian of the filtered
image. Lastly, there was applied a simple smoothing of the Hessian matrix. Then the max value
is found to seek out the strongest response of each image. The of calculating the hessian is
found in the pseudocode below:
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3.3 Detecting high interisity regions

Algorithm 3.2 Computing determinant

1: procedure DOH >
2: (G, Gy]=GRAD(G,,)

3: [G22» Guyl=GRAD(GX)

4: [Gxy, Gyy]=GRAD(Gy)

5

2
Hger < Gy % Gy — G2,

The values of sigma were fined tuned to be in the area where the determinant got the highest
response. From these tests, it was concluded that the buoy’s make of the highest intensity most
condense regions in the image. Although the splashes from the fish cages seemed to have some
quite large responses as well, they were not at the same magnitude of the buoys.

oc=4 o=95 oc=6 oc=7

o ----
Hdet --_-

max(Hget)

I+ HG?

Hdet

max(Hget)

Figure 3.13: Gaussian and Hessian response of the scale space

In Figure 3.12 and 3.13 one can see the simple three-stage process described in the previous
paragraph. Where it tends to be strong response surroundings the large connected regions of
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high intensity. The figures are also picking up in the scale-invariant property of the scale space,
making for multiple regions of different sizes being pickup up in the same space.
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Geometric Computer Vision

Geometric computer vision comes in to play when we have the points of interest (keypoints)
obtained by the image processing module. In this section, there will be a review of how the
camera is chosen to be modeled. There will also be proposed methods of solving the problem
of how to recover the detected pixel points in 3D space. Going from 2D points in the image
plane, one can think of the operation as rays being projected into the world. The scale is what
defines the position of the detected object in the world frame. There are two main methods
proposed for doing this. Firstly, by assuming the world perceived world as a plane and then
finding where the point of the ray cast is intersecting the plane. This makes for solving for
the unknown in the rays projectile, the scale. Secondly, there will be a review of how to use
point correspondence from two separate images and triangulating these to obtain the final point.
This method, in particular, is estimating the point of intersection of the two rays cast from each
image.

4.1 Pinhole model

The camera can be approximated by a projective model, often called the pinhole projection
model. Which considers a planar imaging plane or focal plane z = f that the light is hitting.
The simplest representation of a camera is a light sensible surface (sensor): an image plane, a
lens (the projective projection) at a given position and orientation in space. This representation
can be seen in Figure 4.1.

Figure 4.1: The pinhole camera model
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This model uses a camera Matrix, often referred to as the projection matrix is written as

f * ku Cy, tx
P3><4 = K[R|t] = f % kv Cy R3><3 ty (41)
1 t,

The pinhole camera geometry models the projective camera with two sub-parametrizations, in-
trinsic and extrinsic. The optic component is described by the intrinsic denoted by K below and
the extrinsic as the orientation in space. 3D points is projected in an image with the following
formula:

r; = PX; = K[R|t]X; 4.2)
u; fxky Cu ty )él
v | = f*ky c Rsxs  ty ZZ 4.3)

However, solving this equation for X;, one still lacks the scale parameter, this will be looked
into in the following sections.

4.2 One view geometry

In this section, a method of projecting the observed point in the camera on to the ground plane
will be reviewed. This method is dependent on having a planar model of the scene. In the
case of the mapping of the fish farm scene, we can define the plane as aligning with the world
coordinate system.

Line-plane intersection

The line-plane intersection is a simple solution. This depends on having a model of the plane.
Also, having a line which passes through two points P;, ;. In the case of the camera, this will
be the line starting from the optical center and intersecting the keypoint the distance f from the
optical center .

The two points are denoted P, (z1,y1, 21) , P2 (%2, Y2, 22). With P(z,y, z) being point on the
plane, illustrated in Figure 4.2.

NT P

Py

Figure 4.2: Line intersection with plane
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4.2 One view geometry

Firstly the plane can be described by the equation:

Ar+By+Cz+D =0 4.4)

substituting for the parameterized line passing through the points P = P, + t(P, — P))

T z1 +at
P=ly|l=|y1+0bt 4.5)
z z1+ct

the substituting P back into the plane equation and solving for t gives

(AZL‘l + By1 -+ CZl + D)

t = — 4.6
Aa+ Bb+ Ce (4.6)
Finally inserting back into the equation of P
'x B a(Azy + By, + ¢z + D)
! Aa+ Bb+ Ce
b(Axqy + By, +cz + D
Py= |y = bAZLE Bin + 21+ D) (4.7
Aa+ Bb+ Ce
L c¢(Azy + By, + ¢z + D)
|7 Aa+Bb+Cc

Making this relevant for our case we know that the plane (equation (4.4)), in the world frame is
described by z+ D = 0 depending on where the world coordinate frame is defined. Simplifying
the point F, to

_ DY
_— a(cz + D)
c
Py = b(cz1 + D) (4.8)
Yi————————
c
- D -

Relating this equation to the flight at Korsneset, we can know that D is dependent on where the
world coordinate system is defined to be. If it is defined to be at zero altitude we get D = 0,
Simplifying the equation even more. Also we see that one can obtain a,b with the simple
matrix operation K ;. Lastly, the point P is interpreted as the translation vector of the UAV
corrected for the camera.
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4.3 Two view geometry

Triangualtion

Given the two camera matrices P and P’ with two points identified = and x’. There is a line (ray)
that can be cast starting at the optical center of the camera and intersecting the corresponding
point z in the image plane. These points identified satisfies the relation x = PX, x' = P'X.
But because of noise related to the camera and the image processing algorithm, these relations
will not hold exact. In fact, even if the ground truth of the poses are known, there is some the
error associated by the feature extraction algorithms and camera model that result in imperfectly
measured x, 2. Thus, the world coordinate X and the image plane x needs to be estimated and
the equation R R

x =PX x'=P'X 4.9)
can be used to describe this relation. X is tried estimated from the measurements z and z’. In
Figure 4.3 this estimation is visually illustrated.

Figure 4.3: Ray intersection

There is a need for solving for the landmark, given the two equations in (4.9). There are several
methods solving this equation, in the next section there is a way of composing the equations into
a system om linear equations and solving by minimizing the algebraic least-squares error.

Linear triangulation

Trying to solve the two equations of the unknown X. The homogeneous scale factor is elimi-
nated by a cross product to give three equations for each image point, of which two are linearly
independent. For the first equation, this gives x x (PX) = 0. Writing this out gives

. (p3TX) _ (plTX) 0
y (p*'x) — (p*'x) =0 (4.10)
T (pﬂx) —y (p x) 0
Where p’’ are the rows of P.

These equations can be combined into a system which is linear around X, making for the
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equation AX = 0. Written out this becomes

Upg—Pg
vp3 — P
A=l pT T (4.11)
1 0T /T
UP3 —Po

In the ideal case, one would expect this equation to hold exactly. But due to image noise and
error in the camera matrices, there will not be an exact solution to the system that can be solved

by SVD to get a least squares estimate of the 3D point.
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4.4 Projection geometry validation

Before the computer vision module can be carried out and be applied to them from the data
from the site there was a need to validate the method in a smaller environment where more
information about the scene was known. Such as the measurable distance from the origin to a
given keypoint. This also provides the opportunity to have several, inexpensive, data gathering
stages. The test environment had no internal sensors to directly get an estimate of the pose
of the camera such as on the UAV of the ARTIFEX project. So the pose is be estimated with
the use of an aruco marker [22, 23] . A program was written that could retrieve the transform
of the camera with respect to the world frame. The program noted down the picture with its
corresponding position and orientation received from the aruco module. Originally the aruco
module will define the coordinate frame of the marker as pointing upwards, this was modified
to the pointing down making it resemble NED. The test environment is depicted in Figure
4.4.

Figure 4.4: Picture of the test environment taken from above

In the first stage, the poses were read in with its belonging image. The Viz module of OpenCV
was to create a visual debugging environment [24] and to evaluate the methods used. Further-
more, the buoy closes to the origin were hand-labeled and added in the code. This allowed a
ray to be cased out from optical center projecting it on to the image plane and further outwards
into the scene, this can be seen in Figure 4.5.
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4.4 Projection geometry validation

Figure 4.5: Screen capture of the poses and their poses (blue), with each related image projected onto
the image focal plane of the camera. The green line showing the ray coming from the optical center
intersecting the same keypoint in each image.

This was a validation of the intrinsic parameters of the calibration process. An interesting
observation that was made in this stage was that the intrinsic parameters obtained from running
OpenCV own calibration program found at its repository online yielded better projection error
making the parameters representing the principal point half of the image size.

To validate that the estimation of the position and orientation given by the aruco markers was
useable the rays were projected further and observed that they meet. The rays are not expected
to meet exactly but somewhat in the same area would give a good indicator of the validation of
the aruco module.

Figure 4.6: Rays projected down to the plane of the wold cordinate system, grid cell size 25mm

Having observed the correctness up until now, testing of the methods described in section 4.3
and 4.2 could be carried out.
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4.4.1 Line-plane intersection

In order to test this functionality there were made an image processing function for the program
to call automatically detecting every single keypoint in the images. This allowed for the hand-
labeled keypoints to be gone. All these were projected onto the plane seen in Figure 4.7.

Figure 4.7: Rays projected from the opical centere, line-plane intersection method used to obtained the
points on the plane

To see how the method compared to the real world scene, the measured ground through, it was
measured the distance to the object of interest in milli meters. To get an understand of the spread
size the a circle added was added with a radius of 30mm. There was also added A4 paper that
enclosed all the objects.

Figure 4.8: Rays projected on to the plane, centere of the circle representing the object

In Figure 4.8 we can see a type of uniform distribution, giving a somewhat of a peak in the
center of where the object is expected to be in world coordinates.

44



4.4 Projection geometry validation

4.4.2 Tiangulation

This section is testing the triangulation method described in section 4.3. The implementation
of the method is based on two camera poses capturing the same keypoint. Projecting the point
onto the focal plane by the the inverse of the calibration matrix. From these poses and points on
the focal plane, there are constructed a set of 4 equations, that is solved with the singular value
decomposition method.

Lo

Figure 4.9: Rays triangulated using the SVD method, pose 2 and 4 used

In Figure 4.9 it can be seen that the method is giving out points that coincide with what is
expected of such a method. The figure shows rays projected out of hand-picked poses that
might have a high-quality estimate for their pose.
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Figure 4.10: Rays from triangulated using the SVD method, pose 2 and 4 used

Taking the birds view of the scene into account ( Fig. 4.10), it can be argued that the linear
triangulation method is providing good estimates of the object observed. This is of course with
a handpicked pair of poses, in Figure 4.11 it can be seen what can happen if one is not cautious
having a good estimate on the poses, this error in the an estimate of the pose can propagate onto
the estimate of the world coordinate outputted by the triangulation method.

193

=

Figure 4.11: Rays projected down to the plane of the wold cordinate system, grid cell size 25mm
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Grid Mapping

Grid mapping is a common way of mapping in robotics, where the one is dividing the world into
cells, each containing information of traversability. This, in turn, can be used by autonomous
vehicles interpreting this map, for the purpose of traversing them in an optimal manner based
on their goal.

For simplicity, the map was constructed as a rectangular matrix centered around the world frame
with the properties defining the count of total cells and the size of each cell in meters.

The grid map can be seen at its own coordinate system. The need for converting observations
made in the world frame to the grid map frame is present. The implementation method used is
simply mapping one interval in the world frame in each cell in the grid map. This technique
comes at the cost of a loss of accuracy when converting from a grid map frame to the world
frame if the cell size is small. Figure 5.1 is displaying the grid map and its internal indexing

E

A

0,0Y0,1)0,2) - -

(1,1)|(1,1)(1,2) - --

Figure 5.1: Gridmap defined with respect to NED

used. To the top left, it can be seen the traditional matrix indexing. And the inner right indexing
can be described as the indexes of the grid map, making it easier to go from the grid mapping
frame to NED.

Grid map data structure

There was a need to make the grid map its own class with its own data structure and utility
functions. The map was decided to consist of three different layers as seen in Figure 5.2. The
first grid was accumulating the raw landmark measurements of the object detection algorithm.
The readings of the buoys were counted as negative values and the cages as positive. If enough
measurements have come in, the measurements were possessed in two stages, first for the pos-
itive values, and finding local maximas, then for the negative values of the matrix. With this
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operation, we have an estimate of where the structures lie. Then a series of utility functions can
run to generate the safety line and in turn updating the map.

Safe zones

7 Structural objects

Safe line check |

\
~

% Observations

Minmax ,
\

Figure 5.2: Grid map structure

Utilities and the gridmap update step

The software utility must be able to do the handling of map data by providing several helper
functions. For example, a min-max based voting system, polygonal generative algorithms,
and coordinate system transformation function to make for the interaction of the grid map in
software.

Based on these utility functions the map can be able to update the map in the following man-
ner:

1. Accumulate all observations
. Find local maximas
. Define outer points of buoys

2
3
4. Define outer points of circles
5. Generate safety line

6

. Run ray casting algorithm

5.1 Safety line generation

For this problem, it can be introduced to a new idea. The idea of a safety line. The purpose of
the line is to give some kind of encapsulation of the structures that can cause a collision. Ideally
these lines would make up an collection of lines making up a polygon that fully captures the
site seen in Figure 5.3. But for the real-time considerations the lines would rather have to
make up a polyline, spanning from where the visual system initialized to the current region of
operation.
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Figure 5.3: The geometric problem of defining a safety line

The construction of such a collection of lines there are some geometrical relations to consider.
Constructing such an entity will be addressed in the following subsections.

5.1.1 Obtaining outerpoints

To generate the polyline the sequence of points (vertices of the line) needs to be found. For
the buoys, the position of the vessel can be used. By Estimated its position by the GNSS
signals being broadcasted. Defining the distance to the USV to the buoy one can determine by
thresholding which side of the cage structure the buoy is located on.

5.1.2 Outer point of the circular shape

Knowing the location of the three points listed in 5.3 it can be investigated how to obtain the
distance closest to the point /. The problem is depicted in Figure 5.4. As in the figure above
the three points are described by Fy, Py, P».

Py

P

P

Figure 5.4: Distance from point to line

The general line passing through points is given as y — y; = £2=2(z — z,) is on the from

To—T1
ax + by + ¢ = 0 where
a:_yQ_yl b—1 =y2_y1x1—y1
To — X1 Ty — T1
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From literature, it is known that finding the distance from the point F, to a given line ax + by +
¢ = 0 can be found by the equation (5.1) [25].

lazo + byo + |
D(az + by + ¢ = 0, (20, 4o)) = . 5.1
(ax +by +c (20, Y0)) o (5.1)

Accounting for the fact that we are interested in finding the closest distance to the circle. We
can write P on the parametric from as

[xs } _ [wo+r cost } 52)

Ys Yo + 1 sint

Is possible to insert the parametric form of the shape into the Figure 5.2 and find the lowest
function value of D.

awg + by, + |

D<m87ys) - \/m (53)

At first sight, this seems like there can be quite a simple derived analytical solution with some
simple calculus, doing the derivation of D(¢) and setting the function to zero, and obtaining the
minimal solution. This approach fast becomes out of hand, and then there can be implemented
a simple minimization algorithm to find the minimum of the function with self-defined finite
domain ¢.

min (D(t)) (5.4)

te(0,27]

2

Finally, the minimal solution ¢* can be found and changed into cartesian coordinates x;, v, thus
making the following polyline possible to be drawn:

P,

Figure 5.5: Segment of polyline connected with geometrical shape

5.2 Labeling grid cells

Assuming there exists a safety line (polyline) it can be investigated techniques of labeling the
grid with respect to this line. The labeling of cells requires some concepts borrowed from
computer science, these will be revised and converted to fit the problem of labeling.
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Ray casting algorithm and line segment intersection

In computer graphics literature we find the similar problems of the one at hand. Where one is
concerned about labeling a specific point in a region to be inside or outside a polyline [26]. The
ray casting algorithm is a popular choice and have seen use in graphical software like .svg and
postscript.

Suppose the(P,, P, ..., P,) make up a polygon. Considering a polygon with vertices vy =
P —F,vi=PFP —PF,..,vi = F — P, Take PP, the inward egde is defined as positive
and negative as Xv; and — X v; respectively.

It can be done a test whenever a point in the plane interior or exterior of a polygon. This is
done by casting a ray from the point at hand in any direction. By finding all intersections of
the ray with the polygon edges, and classify each as either entering (if the ray vector and the
outward edge has a positive inner product ) or leaving (negative inner product). The difference
between the leaving and entering intersections is called a winding number of polygon about the
point.

P

Py
2 A\

v Q

P,
4 Py

Figure 5.6: Illustion of intersection ray casting

In Figure 5.6 () has a total of three intersections. With two inner products being negative and
one positive. Leaving the sum to be a negative one, means that the ray is leaving the polygon.
This is, of course, a good method if one is given a polygon, but in the real-time operation, we
have a polyline (the safety line). Thus the technique requires some tweaking.

There exists a technique for deciding whether a region is said to be inside or outside a region of
line segments. If we consider the situation of the operation many of the same principles can be
applied. The safety line does not make up its own polygon, making it impossible to cast rays at
random. However, if we consider the rays to be cast in the direction of the USV one can expect
some results. Also, taking lines of no intersection to be defined as being traversable. With this
the visual system can get a good estimate of traversability for the USV, assuming the UAV is
operating far from the USV, thus sitting on enough a priori information. Figure 5.7 is showing
this concept of casting rays in the direction of the USV.
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Chapter 5. Grid Mapping

Figure 5.7: Example of showing line intersection algorithm in in practice

Although, the line intersection algorithm is a good starting point, it is missing the ability to
make conservative judgments of what is safe (in the mapped regions). These shortcomings is
seen in the Figure 5.8. It is clear that some of the cells are marked as safe when not being so.
Also for this particular implementation, the intersection is undefined for a point starting on the
line.

Figure 5.8: Example showing the lack of comprehensive filling of unsafe zones when applying the line
intersection algorithm

In the following section, we look to increase the systems conservative when it comes to marking
cells in the grid as safe.

Bresenham’s algorithm

Bresenham algorithm is defined as "An efficient algorithm to render a line with pixels. The
long dimension is incremented for each pixel, and the fractional slope is accumulated." by
The National Institute of Standards and Technology [27]. It was named after J. E. Bresenham
who developed it in 1963 and was first published in 1965 [28]. Originally, the algorithm was
designed to draw lines on plotters.

The algorithm fills pixels from point p; to p, in the 2-d space, choosing the pixels that most
closely fits the real line. This process is called rasterization [29].
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5.2 Labeling grid cells

Figure 5.9: Bresenham’s algorithm

In a nutshell, the algorithm is going along the x-axis, incrementing in each step by one and
looking at an error then decides to within what way to move the y component.

In recent years there has been a modification to the algorithm, making it possible to specify the
thickness of the line drawn [30]. The algorithm can be seen with a thickness equal to 1 in Figure
5.10

Figure 5.10: Murphy’s modification to Bresenham’s algorithm

Combining these two techniques, we first draw the safety line from the geometrical calculation
and apply the intersection check. Then to get the more conservative guess we apply the line
drawing step. By this sequence of operations, we now how a better and more conservative
estimate of where the safe zones of operation are for the USV.

Other vehicles

There are not only surface vehicles operating the site. As mentioned in the introduction, this
study is pointed towards mapping the safe zone for the USV. However, the static map of the
objects, found in the inner layer in the of the grid map structure ( shown in Fig. 5.2). It can be
used to extrapolate this into accounting for the underwater vehicles as well.
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Chapter 5. Grid Mapping

5.3 Testing grid map utility

This test was done with the same aruco markers used for the 3D recovering methods tested in
the prevoius chapter about computer vision geometry. However, the method used for obtaining
the 3D landmark is not of interest in this section. The focus is on proving the concept of the
grid mapping utility. To start off, we can consider the raw measurements made by the computer
vision module. These are represented as pink spheres in Figure 5.11.

Figure 5.11: Accumulated landmark measurements

These measurements are accumulated into "buckets" corresponding to the cells of the grid map.
This is the first layer of the grid map data-structure. These buckets accumulate all the measure-
ments within its area.

Later, when a satisfactory number of measurements are accumulated. The min-max step can
take place. This determines where the structures most likely have appeared (assuming Gaussian
distributed measurements). This step is illustrated in Figure 5.12
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Figure 5.12: Local min-max
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5.3 Testing grid map utility

Lastly, the third and last layer of the grid map is filled. This was done by iterating through the
grid casting rays in the direction of the USV. Figure 5.13 displays the results of this intersection
step, where the white is representing traversability and red not.

Figure 5.13: Ray intersection step

The method had some good characteristics, although there are some problems with how conser-
vative the labeling of the grid zones is made to be. The labeling of the safe zones was done by
the ray intersection algorithm in this test, as the modified version of the modified Bresenham’s
algorithm was not ready for implementation.
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Chapter

Results

This chapter strictly contains results from the data gathered at Korsneset. Using methods de-
scribed in previous chapters. First, the performance of each image processing algorithm will be
tested on a sampled dataset from the video recording. Later on, some experimental results will
be shown mapping the scene from Korsneset, using the projection method.

6.1 Detecting objects of interest

This section is looking at and comparing the algorithms reviewed for detecting the objects of
interest. The objects being the cage and the buoy. There was used a series of 100 images in
order to get a good sample size. The results of the image detection algorithms can be found, in
this section, as plots or in the appendix as images.

Labeled set

For comparing each algorithm described in the previous theory, the ground truth need to be
labeled. For the whole video section spanning over the four farms that would be many images
to label, therefore the video were subsampled to an image sequence of 100 images. Each image
is 1 second apart from each other. These images were then marked by the location of the
buoy and cages with pixel values. Each image was hand labeled with the center of each object
denoted in a .csv file. The circle was considered to exist in the image if 50 percent or more was
visible. The buoys were defined to be in the image depending on if the whole structure was
visible.

Preformance metrics

To quantify the performance of the object detection algorithm some metrics are needed. These
metrics need to provide information about how well each algorithm is performing. Enabling a
comparison to be done. From the literature of statistics have the confusion matrix metric, also
known as the error matrix (Fig. 6.1).

There need to be some conventions in the field of image processing how to interpret this matrix.
In [31] we find one definition of the confusion matrix:

* TP: true positives, i.e., number of correct matches;
» FN: false negatives, matches that were not correctly detected;
» FP: false positives, proposed matches that are incorrect;

* TN: true negatives, non-matches that were correctly rejected
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Chapter 6. Results

Prediction outcome

p n
, True False ,
P L. . P
positive negative
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, False True
n .. . N/
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Figure 6.1: Confution matrix

Making some clarification for the application of the detection of objects in this section we have:
TP (True Positive) accounting for the algorithm guessing that there is an object and there is.
FP (False Positive), when the algorithm has no outputs in the location of the object. FN (False
Negative), when there is an object that is not detected. TN (True Negative), when there exists
no object and there are no outputs that there exists one. However, the true negative will not
be considered in this result section. As it does not apply to the image processing algorithms
developed.

The correct guess is defined by its Euclidean distance to the center of where the object is labeled
to exist. By setting a distance threshold around the labeled point. This gives the metric some
slack, and it does not need to output the exact pixel where the object is defined to exist. Guesses
falling outside this Euclidean distance of the center are considered as being wrong.

Also, some useful derivations from the confusion matrix have been done. Where the concepts
false positive rate (FNR) and the false discovery rate (FDR) especially useful metrics for the
application at hand. These are defined as

FN
FNR =5 77p ©.1)

and Fp
FDR = ——— 2
R FP +TP 62)

respectively. These metrics are aimed at quantifying the performance of a given prediction in
the interval of zero to one. Where the predictive performance of the algorithm is high these
values are close to zero and close to one when it’s low. Therefore, these metrics are defined to
be zero when all components of the equation are zero, effectively yielding zero when there are
no false predictions or false discoveries being made.
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6.1 Detecting objects of interest

6.1.1 Circle detection

This section is looking at the results of circle detection. The same error metric as described
above is used. The circle is defined to exist in the image if more or half of the circle is present.
The same Non-maximal suppression operation is used for all the methods below. That is if
one of the methods is outputting the same circle in a considerably close distance to each other
this will be tackled by the same Non-maximal suppression operation for all the circle finding
methods. The parameters are set with some in thought behind, but truly not done by finetuning.
The fact that the parameters are not tuned in a tireless process, can be a good indicator of the
robustness of the algorithms.

The following are the results of the three methods used to detect cages in the edged image series
found in Appendix A. False positive rate and false discovery rate respectively:
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Chapter 6. Results

Classical Hough circle detection

As expected the classical approach is performing extremely well. As this method is analyzing
the edged image in the most thorough way of these methods, iterating a large number of times.
In total there is only 1 circle missed, with a corresponding reasonably low FP rate.

3 — TP i
—— Labeled GT

0.5 .

60



6.1 Detecting objects of interest

Gradient Hough circle detection

The gradient method showed considerable worse performance. This might have accrued for a
number of reasons. One reason might have been dependent on how the ground truth was defined.
The method depends on lines that intersect in the middle of the circle. Recalling that the circle
is defined to exist in the image if 50 percent or more of the circle is visible. Thus, making the
algorithm prone to the noise of the circle is deformed in a way the accumulated center point
might have ended outside the image, making for a circle that is not detected. Secondly, the
gradient line was accumulated across the whole image making for some maxima might that has
had contributions from several circles.
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Chapter 6. Results

Randomized circle detection

This method was the most impressive performer taking runtime into account. However, in
the long run, the randomized approach will have some extremes where there it is proposed a
circle where there absolutely is not a circle present, this is in the nature of nondeterministic
approaches. Also, worth noting. This is not an exact metric of how the algorithm is performing,
acknowledging the randomized circle detection is not a deterministic one. Although this is a
quite large dataset, the overall performance will vary. Thus, one needs to be careful interpreting

the results.
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6.1 Detecting objects of interest

6.1.2 Buoy detection

Displays the results of the algorithms used in detecting the buoys. Described as high-intensity
regions in the previous section about object detection. Contrary to the previous section, these
results were obtained with the use of software libraries. The parameters used were inspired by
the hand-coded tests.

The following are the results of the three methods used for buoy detection, obtained by pro-
cessing the image series of Appendix A. False positive rate and false discovery rate respec-
tively:
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Chapter 6. Results

Difference of hessian

The sigma of the Gaussian filter was set to start at 3 and end at 7. The scale space was set to
be incremented in a linear fashion at an interval of 10. This approach is impressive considering
the constant splashes inside the fish cages. Also, the result is possible to have suffered from
the way the ground truth was defined. In the images, it can be observed that the method is
very aggressive towards the regions that are exerting strong illumination at the edges of the

image.
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6.1 Detecting objects of interest

Filtering of controus

The contours were set to filter at levels seen at similar levels at the previous section about
contours. The contours where fileted on hierarchy, area, circularity and intensity.

There were done some iterations regarding the parameter setting. The problems with the
splashes from the fish cage seem to be present. The illumination levels are similar to the buoys
considering the whole set of images. One consideration could be to have an adaptive threshold
set within the processing of each image, because of the changing lighting situation.
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Chapter 6. Results

6.2 Experimental results from korsneset

In this section, there are some experimental results projecting the keypoints found by object
detection. As one will see, these results had not satisfactory accuracy, making the problem of
creating the grid map tough. The accuracy grid mapping resolution needed for the min-max step
was too large, making it hard to estimate where the buoy was located on the grid map.

The error seen in the following results may have originated from a few sources. However, the
main problem could be that the internal measurements made by the drone were not coupled
with the gimbal. There was no data on the rotation of the gimbal. This might have caused
the problems. The best estimate for the actual rotation of the gimbal was the internal drone
measurements. Having a poor estimation of the camera rotation at an altitude of 100 meters
could be the reason for the large drift that accrued.

In the following figures, the rotation of the camera (gimbal) was estimated using the internal
measurements of the drone. The image processing module was set to do conservative object
detection, making for some of the smaller buoys (often confused with splashes in the fish farm)
not being projected and displayed.

Figure 6.2: UAV projecting visual measurements

Figure 6.2 is depicting the UAV projecting the visual measurements down on the sea surface.
As one can see, the divination of the measurements is quite large.
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6.2 Experimental results from korsneset

Figure 6.3: UAV projecting visual measurements

In this method, there is a certain consistency of the measurements that were obtained. Figure 6.3
shows that the visual system is able to track the buoys and represent the geometrical structure
of the changing system with some clarity.

Another approach

If one considers that the gimbal truly was set to be planar with the sea surface at the start of the
flight. Also, the control system of the gimbal was fast enough. This could give indications that
one could approximate the change in pitch and roll to be zero. This was experimented with.
Figure 6.4 shows that the system is able to get a better estimate early on in the flight. In fact,
both the first and third buoys are more consistently perceived.

Figure 6.4: UAV projecting visual measurements
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However, in Fig. 6.5 is it possible to see that this assumption does not hold. Later on in
the flight, the UAV was carrying out rapid maneuvers, where it can be thought that the gimbal
control system fails to track. Thus making the assumption of no pitch and roll a weak one.

Figure 6.5: UAV projecting visual measurements

In both the tests, there were seen drift associated with the location of the structures. These
structures are expected to have a static placement with small divinations, because of their anchor
and the good weather considerations at the time of flight. Dift of this magnitue is unlikely to
have originated from the currents in the ocean. The possible error sources are discussed in more
detail in the proceeding chapter.
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Chapter

Discussion

This study can be been seen as a step in the direction of mapping the safe zones of operation
at aquacultural growing facilities. Methods of detecting objects of interest based on simplis-
tic models were reviewed and tested. Furthermore, methods of retrieving the 3D landmarks
have been studied, the methods tested on two independent data sets. Techniques of extracting
the structures based on the 3D landmark measurements have been proposed. Based on these
structures, a way of carrying out mapping the safe zones has also been proposed.

The techniques used for object detection has been largely satisfactory. There has been a quite
high accuracy for namely for the classical Hough circle transform to detect cages and the dif-
ference of hessian technique for detection of buoys. Although they both showed good results in
detecting nearly all objects when present, there is an argument to be made that the parameters
of the algorithm should be tuned to make somewhat more conservative guesses while carrying
out object detection in real-time. In the sense that one is trading lower frequency of visual
measurements obtained in the return of having fewer faulty readings.

In addition to this, two ways of retrieving the 3D landmark were tested. The technique based
on the assumption that the sea surface can be thought of as falt seemed good in the sense of
low complexity. Although, one should be aware that there exist highly sophisticated methods
of building systems that take more views into account when estimating the 3D landmark. These
techniques were not tested and may have yielded good results.

One way of building the grid map infrastructure was proposed. However, the implementation
was not done in time for the deadline of the assignment. The grid map as of now has a class
like structure where it is incorporating the three levels of the grid structure. Where the first one
is storing raw 3D landmark measurements, the second one is storing the local maxima giving
an absolute estimate of where the objects were detected. However the last one, the safe zone
map, still needs implementation. As of now, the grid gap has the utilities for filling the two first
levels. However, the utilities for creating the safe zone map is not complete. It still needs more
utilities such as checking the intersection and more.

Reflection and Future work

The data from the flights of Korsneset was at times problematic. It is not an intuitive task syn-
chronizing the video taken with the drone internal data. Also, there was no real way of exactly
knowing the position of the gimbal, at high altitudes, this becomes especially problematic. This
may indicate that the task was very challenging tackling in the timespan of one semester.

There have been efforts in recovering the pose of the camera to get a better understanding of
how the gimbal behaved during flight, but these techniques have yielded no immediate results
and were not included. Efforts such as deploying a visual odometry software [32] were tested,
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but the tracking was not robust enough, losing track every few minutes. These results were not
included.

With this in mind, it may be better to directly mount the camera on the bottom of the UAV
when carrying out future experiments. This is highly likely to yield better results. This kind
of mounting option would suggest one can use the internal drone measurements directly in
calculating the pose of the camera with respect to the world coordinate.

One can also consider in future work, in regard to helping pose estimation. Techniques of
directly applying the visual measurements of the UAV to enhance the cameras pose estimate.
These days the VO (visual pose estimation) is a hot topic and a truly wide one. The overall
performance of the system could have been positively impacted by a visual module helping
out the internal measurements. Examples of successful implementations relating to this can be
found [33] . Helping out the pose estimation can be useful for further improvements in mapping
the scene given the data gathered from Korsneset in 2018.

Also, while considering further improvements to the system. One topic that is left out and
could be of interest in future work, is the topic of deep learning. It is one of today’s highly
researched topics and its application in the field of computer vision is wide and diverse. The
techniques have shown to be highly effective compared to classical methods. This way of
recognizing objects, one would not need to include or specify a model of the objects of interest,
with back propagation the model is able to obtain this model of how to classify itself. There are
of course many things to specify in regards to what type of architecture the network will have.
Opposite some of the more classical methods, the system does not require an exact model of
the world.
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Chapter

Conclusion

In this thesis, objects making up the structural geometry of the fish farm where reviewed. The
subset accounting for the structural geometry of the cage system where considered and defined.
Assumitons made upon these objects, enabling some simple models to be dervied. The cage
was modeled as a circular shape and the buoy as a high-intensity region with circular proper-
ties.

Various methods of detecting these objects based on their assumed attributes where studied. A
total of 3 different methods was reviewed for detecting the modeled circle, methods heavily
or fully reliant by the Hough transform. Two methods of detecting the high-intensity region,
one based on computing properties of the regions in the binarized image the other inspired
by critical points in scale-space. The capabilities of the methods were tested on an image set
acquired from Korsneset aquacultural production site. The results were measured against each
other and analyzed.

To gain insight in recovering 3D coordinates, theory relating to the recovering of 3D landmarks
where investigated. These methods where tested and the techniques validated. Method that
showed the best result where picked. From these tests, it was concluded that the projection of
image points was most promising to be carried out in the mapping of the structural geometry.
This method was dependent on modeling the seafloor and projecting down the detected image
points to the plane. This teqniuge was used testing the grid mapping utility and for acquiring
experimental results from the dataset of Korsneset.

Methods and functionalities of the grid mapping utility where explored in some detail. Some
of the functionalities where tested, such as accumulating the 3D landmark measurements in the
grid map coordinate frame and determining the static location of the objects perceived. Also,
based on this static digital map a simple method for obtaining an estimate for the safe zone of
traveral where tested.

The accumulated experience was at last tested on the dataset from Korsneset. This ended up in
some experimental results, recognizing that the drift seen is highly likely to have accured form
the decoupled dynamics of the UAV and the gimbal.
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APPENDIX A.1

Figure 8.1: Images 1-50 graysacle originals
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Figure 8.2: Images 50-100 graysacle originals
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APPENDIX A.2
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Images 1-50 canny edge filtered

Figure 8.3
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Figure 8.4: Images 50-100 canny edge filtered
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Figure 8.5: Images 1-50 circle detection | classical method
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Figure 8.6: Images 50-100 circle detection | classical method
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Figure 8.7: Images 1-50 circle detection | gradient method
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Figure 8.8: Images 50-100 circle detection | gradient method
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Figure 8.9:

Images 1-50 circle detection | randomized method
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Figure 8.10: Images 50-100 circle detection | randomized method
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Figure 8.11: Images 1-50 buoy detection | filtering contours method
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Figure 8.12: Images 50-100 buoy detection | filtering contours method
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Figure 8.13: Images 1-50 buoy detection | DoH method
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Figure 8.14: Images 50-100 buoy detection | DoH method
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APPENDIX D - Cordinate systems
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Figure 8.15: Birds view showing the different frames with respect to each other (z pointing down in all
cases)
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Figure 8.16: Motion of the UAV in 6 degrees of freedom
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