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Abstract

The company WellConnection Mongstad reports that a time-consuming welding process of rotating drill-
pipes causes a bottleneck within their production line. In order to remove this bottleneck, the company
desires to look in to the possibility of automating this process with the use of a welding robot. However,
if a robot is to perform such a task automatically, it needs to be provided information regarding the
geometry of the drill-pipes. Consequently, the focus of this thesis was to explore a method which can be
used to scan the rotating drill-pipes which supplies the data needed to calculate a positional reference.

The approach of the thesis has been to combine computer vision with a measurement of the pipe’s
orientation, such that the curvature of the pipe is known for any given orientation. With regards to
computer vision, this thesis specifically uses laser triangulation as a method for capturing the curvature.
This method composes a laser-projector and a camera, which is a vastly used method for expressing an
objects shape in three dimensional coordinates.

As the relationship between the laser projector and the camera is essential in laser triangulation, the
thesis has also explored a method for identifying this relationship. This was achieved by generating a
pointcloud of points located at the plane of the laser, from where the laserplane was estimated by using
different plane fitting methods. As the planes were estimated, they were tested in their accuracy by
calculating known dimensions of an object. Moreover, the best accuracy was achieved when weights was
applied to the points which corresponded to their positional uncertainty.

In order to provide an orientational measurement a rotary encoder was connected to an Arduino us-
ing an analog-digital converter. As the measurement of orientation was combined with the reading from
the laser triangulation, a 3D-printed cylindrical object was used as a test-subject for the scanning process.
The object was rotated in both a centric and non-centric fashion, from where the data of the scan was
presented in terms of point-clouds. The final representation illustrates the curvature of the object as a
function of its orientation. This representation was used in order to demonstrate how the welding robots
path could be estimated. When applied to one of the objects grooves, the estimated path demonstrated
a high degree of correspondence to the rotational offset of the object.
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Sammendrag

Bedriften WellConnection Monstad rapporterer at en tidskrevende sveise-prosess av roterende borerør
for̊arsaker en flaskehals i produksjonslinjen deres. Etter et ønske om å fjerne denne flaskehalsen, vil
bedriften undersøke muligheten for å f̊a denne prosessen automatisert ved å benytte en sveiserobot.
Dersom en robot skal kunne utføre en slik oppgave p̊a automatisert vis, m̊a den kunne forsynes med
informasjon relatert til borerørets geometri. Av denne grunn er fokuset til denne oppgaven å utforske en
metode som kan bli brukt til å skanne de roterende borerørene for å generere den nødvendige dataen som
videre kan bli brukt for å skape en posisjonsreferanse.

Tilnærmingen til denne oppgaven har vært å kombinere datasyn med en m̊aling av borerørets orien-
tasjon, slik at rørets kurvatur er kjent for enhver orientasjon. Innen datasyn har denne oppgaven brukt
lasertriangulering som en metode for å kunne m̊ale rørets kurvatur. Denne metoden best̊ar av en laser-
projektor og et kamera, og er en ofte brukt metode for å utrykke formen av et objekt i tredimensjonale
koordinater.

Ettersom forholdet mellom laserprojektoren og kameraet er meget viktig innen lasertriangulering, har
oppgaven ogs̊a tatt for seg en metode som identifiserer dette forholdet. Dette ble gjort ved å generere
en punktsky av punkter lokalisert i laserens plan, hvor laserplanet deretter ble estimert ved bruk av
forskjellige planestimerings-metoder. Resultatene fra de forskjellige metodene ble deretter testet i sin
nøyaktighet ved å m̊ale kjente dimensjoner langs et objekt. Det mest nøyaktige planet ble estimert ved
å bruke vekting av punktene i punktskyen, hvor vektene ble kalkulert etter hvor mye usikkerhet som var
knyttet til de forskjellige punktene.

For å f̊a tilgang til en orientasjonm̊aling ble det brukt en rotasjonsenkoder tilkoblet en Arduino via en
analog-digital konverter. N̊ar denne m̊alingen ble kombinert med m̊alingene fra lasertrianguleringen, ble
et 3D-printet sylindrisk objekt skannet. Objektet ble rotert b̊ade med og uten kast, hvor den resulterende
dataen videre ble illustrert ved å generere punktskyer. Den endelige representasjonen demonstrerte objek-
tets kurvatur som en funksjon av orientasjon, og ble brukt til å illustrere hvordan robotens bane kunne bli
kalkulert. Dette ble gjort for en av objektets seksjoner, og viste et høyt samsvar med objektets planlagte
kast.
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1. Introduction

1.1 Background

WellConnection Mongstad is a company located in Austrheim who specializes in inspection and repair of
equipment related to offshore oil-production. A part of their speciality is to inspect and repair drill-pipes
which has been used in deep-sea drilling. Due to impurities in the metal, some drill-pipes experience
accumulation of pores in the walls after being used in the drilling process. As these pores weaken the
integrity of the metal, the surface of the pipes are machined down such that the pores are removed.

As the metal containing the pores is removed, the cross-section of the pipe is reduced and needs to
be fill-welded in order to achieve the original dimension. WellConnection has stated that the welding is
performed using MIG arc welding, where the welding is preferred to be located at the top section of the
pipes, as this increases the quality of the weld.

The current method for this operation involves the drill-pipes being mounted on a rotary chuck and
rotated as a worker welds a series strings around the circumference of the machined section of the pipe.
This process is stated to be a time-consuming task which requires a large amount of man-hours. Conse-
quently, the company desires to automate this welding process with the use of a welding robot. However,
in order to automate such a process the robot requires geometric information of the drill-pipe that can
be used as positional reference for its welding gun.

Furthermore, some of the drill-pipes are reportedly rotating in a non-centric fashion due to wear and
tear. Consequently, the non-centric rotation should be taken into consideration if a robot is to be sup-
plemented with a positional reference.

1.1.1 Problem formulation and objectives

In order to generate a basis which can be used for calculating a path for the robots welding-gun, this
thesis will through experiments investigate if laser triangulation combined with an angular measurement
is a suited method. Laser triangulation is a common method within the field of 3D vision which is used to
provide three-dimensional readings of an objects shape [1]. As a laserline is projected onto the object, the
location of the laser is registered in the cameras image, which then can be expressed in three dimensional
coordinates. As the pipe is rotated, the orientation is to be measured such that each reading of the pipes
curvature can be directly related to the measured angle. However, in order to achieve reliable results from
the experiments – there are two additional key elements which needs to be addressed. The accuracy of
laser triangulation is heavily dependent on an accurate estimation of the translational and orientational
relationship between the laser projector and camera. As a result, a part of the thesis will be to identify
this relationship and quantify its accuracy to determine if it is sufficient for the use of a welding robot.
In addition, as the proposed system relies on an angular reading of the scanned object, a circuit which
provides the reading will be developed such that this reading is available during the scanning of the
object.

The main objectives of this thesis can therefore be stated with the following list.

• Ensure the availability of an orientational measurement

1



CHAPTER 1. INTRODUCTION 2

• Perform a laserplane calibration and study the accuracy of the estimated plane

• Perform a scan of an object which combines both the readings of curvature and orientation

• Process the data from the scan such that it can be used as a basis for positional reference

1.2 Approach

This thesis is written with a quantitative approach where most of the results are found by experiments
and processing of the acquired data. As the purpose of the thesis is to deliver a basis for positional
input to a welding robot, accuracy of the system has been weighted more opposed to other factors such
as computing speed and simplicity. The work presented in this thesis began with acquiring information
regarding the subject using both scientific literature found online and relevant books within the field
of computer vision. When possible, search engines such as IEEE and ScienceDirect was used in order
to refer to peer-reviewed articles which is regarded as a more reliable source of material. Additional
information was also found from other sources, such as manufacturers. However, as information directly
from the manufacturers can be biased, this information was treated with care. Moreover, since most of
the results are derived from physical experiments, the results are believed to be more resilient to biased
information.

Initially the experiments was planned to take place on-site at WellConnection, however due to the time
required to get the system operative – this was not feasible. Instead it was decided that the actual
scanning would be performed using a 3D-printed shape. However, since the staged experiments did not
reflect all the on-site conditions the results may not be directly transferable to the scanning of a drill-pipe.

In addition, since co-student Trym D. Hauglund was writing a similar thesis regarding laser triangu-
lation, Lars Tingelstad advised a cooperation in order to reduce the individual workload. As most of this
workload was based on writing the appropriate programs, some of the code used in this thesis is written
by Hauglund. Consequently, Hauglund is directly credited as his code is used in the different sections of
the thesis.

Throughout the thesis there are written various functions and programs which allows treatment of the
various data. A majority of this code is written in the high-level programming language Python. This is
one of the most popular programming languages [2], and allows the use of several libraries which enables
data-processing on a scientific level. The following libraries was utilized throughout the thesis and allowed
visualization and further processing of the data.

• Numpy : Simplifies data-array handling

• Matplotlib : For visualization of plots and figures

• PPTK : For processing dense point-clouds

• SciPy : Allows scientific data processing such as optimizing and curve-fitting

• OpenCV : For gaining access to functions related to computer vision
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1.3 Structure of the report

In chapter 2 the various theory which is used throughout the thesis is given an introduction. This chapter
is arranged in such a way that the elementary subjects are introduced first, which is then used in the
introduction of more intricate subjects. The next part of the thesis, chapter 3, introduces the equipment
and methods used in the experiments. The topics of this chapter includes an explanation of how the
camera operates, and how it was mounted on a rail with the laser. In chapter 4 the performed ex-
periments are given a description, in addition to the results from the different experiments. The results
are then discussed in chapter 5 from which a conclusion is drawn and further work suggested in chapter 6.

Additionally, the appendix contains the code which is generated throughout the thesis and will be referred
to as the different code becomes relevant. Files which is not attached in the appendix can be found in
the digital appendix.



2. Preliminaries

This chapter describes the theory which in used in computing, interpretation and processing of the data
of this thesis. Elementary subjects such as rotation matrices and translational vectors are first explained,
which is then used in explaining homogeneous transformations. Additional subjects such as robot welding,
laser triangulation and camera calibration are also given an introduction.

2.1 Rotation matrices

A rotation matrix is a representation which describes a rotation with respect to a given frame. Considering
the simple rotations about the x, y and z axes – the rotation matrices R ∈ R3x3 can be represented as
following [3].

Rx(φ) =


1 0 0

0 cosφ − sinφ

0 sinφ cosφ

 (2.1)

Ry(θ) =


cos θ 0 sin θ

0 1 0

− sin θ 0 cos θ

 (2.2)

Rz(ψ) =


cosψ − sinψ 0

sinψ cosψ 0

0 0 1

 (2.3)

A rotation from an arbitrary frame a to frame b can be expressed by combining the different simple
rotations, such that the desired orientation is achieved. A common way to describe such a rotation is
with the use of ZYZ Euler angles[3]. The rotation from frame a to frame b can be written as

Ra
b = RZY Z = Rz(ψ)Ry(θ)Rz(φ) (2.4)

By carrying out the matrix multiplication, the resulting rotation matrix is,

Ra
b =


cψcθcφ − sψsψ −cψcθsφ− sψcφ cψsθ

sψcθcφ + cψsψ −sψcθsφ− cψcφ sψsθ

−sθcφ sθsφ cθ

 (2.5)

Furthermore, the column-vectors of the matrix Ra
b can also be interpreted as the directions of the axes

of frame b with respect to frame a[4].

Ra
b =

[
x y z

]
(2.6)

4
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2.1.1 Properties of rotational matrices

By definition, a 3x3 matrix R is only a rotation matrix if and only if it is an element of the special
orthogonal group SO(3) [3]. Consequently, there are three conditions which needs to be fulfilled in order
for the matrix R to be a rotation matrix.

SO(3) = {R|R ∈ R3x3, RTR = I, and det R = 1} (2.7)

2.1.2 Angle-axis parameters

An arbitrary rotation can also be stated on angle-axis representation. This representation is based on a
rotation axis k and the angle of rotation θ [3]. By applying Rodrigues formula, this representation can
be presented as a rotation matrix as shown below.

R = I + sin θkx + (1− cos θ)kxkx , where kx =


0 −kz ky

kz 0 −kx
−ky kx 0


Furthermore, the angle-axis representation of an arbitrary rotation matrix R can be derived by the
following method [4]. If the 3x3 rotation matrix is given as,

R =


r11 r12 r13

r21 r22 r23

r31 r32 r33


The angle of rotation can be calculated as,

θ = cos−1

(
r11 + r22 + r33 − 1

2

)
(2.8)

And the axis of rotation can be computed as

k =
1

2 sin θ


r32 − r23
r13 − r31
r21 − r12

 , for sin θ 6= 0 (2.9)

2.2 Translational vectors

In order to represent relative position between two points in space, the translational vector is commonly
used. The displacement between a frame a and b can be described by the following vector.

raab =


rx

ry

rz

 (2.10)

The superscript describes which frame the vector is expressed with respect to, while the subscript de-
fines the direction. The vector (2.10) is then the vector from frame a to b, with respect to frame a.
Consequently, the following statement hold.

raab = −raba (2.11)
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2.3 Homogeneous Transformations

As the later stages of the thesis visualizes the acquired coordinates as a pointcloud in an external coor-
dinate system, the theory behind homogeneous transformation is to be covered in this section.

Suppose that two frames are defined, namely frame a and frame b as shown in Figure 2.1. More-
over, assume that Ra

b ∈ R3x3 is the rotation-matrix that denotes the rotation from frame a to frame b.
In addition, the displacement between the two origins can be denoted as raab ∈ R3. The notation of this
vector can be read as the distance from frame a to frame b, expressed in frame a [3]. The homogeneous
transformation from frame a to frame b can then be defined as

Ta
b =

[
Ra
b raab

0T 1

]
(2.12)

Figure 2.1: Frames a and b

Next, suppose there is a point defined in frame b, given as

pb =


x

y

z

 (2.13)

If it is required to express this point in frame a, the homogeneous transformation matrix can be directly
used to achieve this. The point expressed in frame a will be given by multiplying the homogeneous trans-
formation with the homogeneous coordinate of the point. This is achieved by expanding the coordinate
with a fourth dimension – where the value is set to one, as shown below.

p̃a = Ta
b p̃

b where p̃b =


x

y

z

1

 (2.14)

However, if the point p is given with respect to frame a as opposed to frame b - the homogeneous
transformation Tb

a has to be computed.

The inverse of the homogeneous transformation Ta
b can be stated as follows[3],

(Ta
b )−1 =

[
(Ra

b )T −(Ra
b )T raab

0T 1

]
=

[
Rb
a −Rb

ar
a
ab

0T 1

]
=

[
Rb
a −rbab

0T 1

]
(2.15)
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Since the relationship −rbab = rbba holds, (2.15) can be written as

(Ta
b )−1 =

[
Rb
a rbba

0T 1

]
= Tb

a (2.16)

As demonstrated, calculating inverse of the homogeneous transformation from frame a to frame b, yields
the transformation from frame b to frame a. The point pb, can then be expressed in frame a in same
fashion as in (2.14), namely

pb = Tb
ap

a (2.17)

Lastly, another frame is added to the system – frame c. Suppose frame c can be related through the
following transformation.

Tb
c =

[
Rb
c rbbc

0T 1

]
(2.18)

Figure 2.2: Frames a, b and c

Moreover, the homogeneous transformation from frame a to frame c can now be expressed as

Ta
c = Ta

bT
b
c (2.19)

As a result, points expressed in any of the given frames, can be transferred into the others using the
method shown.

2.4 From pixel-coordinates to homogeneous coordinates

In order to use the image of a camera to identify the spatial coordinates of a point on the drill-pipe,
transformations relating the pixels to metric homogeneous coordinates need to be derived. The informa-
tion in this section is collected from a previous report by the author with a similar subject [5].

Moreover, the homogeneous transformation between the camera frame and the object-/world-frame is
given by the following transformation

Tc
o =

[
Rc

o tcco

0T 1

]
=

[
R T

0T 1

]
(2.20)
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The world coordinate system can be set arbitrarily, which means the transformation is usually known.
Furthermore, it is a common convention that the z-axis of the camera frame is in the direction of where
the camera-lens is pointing [6]. First, assume a point p in the camera-frame being p = (X,Y, Z)T . Using
a pinhole model, all rays are assumed to go through the optical center of the camera, which translates to
the origin of the camera-frame [6]. By evaluating the Figure 2.3, the image coordinate x = (x, y)T can
be related to the point p by considering the the focal length (f) which is the distance from the cameras
origin to the image plane.

x = f
X

Z
and y = f

Y

Z
(2.21)

In the equations above, inversion of the image is cancelled by projecting the image to a plane in at z = f
according to Figure 2.3.

Figure 2.3: Point in the camera frame

Then, equation (2.21) is converted into homogeneous form by expanding its dimension and forming the
following system.


x

y

1

 =
1

Z


f 0 0 0

0 f 0 0

0 0 1 0



X

Y

Z

1

 =
1

Z


f 0 0

0 f 0

0 0 1




1 0 0 0

0 1 0 0

0 0 1 0



X

Y

Z

1

 (2.22)

Since the end goal is to actually find information about the geometry of a drill-pipe, it is not possible to
use known geometry in order to derive the depth Z using the image coordinates. This will be set to an
arbitrary positive constant λ. Combining equation (2.20) with (2.22), yields

λ


x

y

1

 =


f 0 0

0 f 0

0 0 1




1 0 0 0

0 1 0 0

0 0 1 0


[

R T

0T 1

]
Xo

Yo

Zo

1

 (2.23)

Furthermore, since images is captured in terms of pixels another transformation needs to be implemented
[7]. The relationship between normalized image coordinates and pixel coordinates is given by the following
transformation:

p̃ = Kx̃
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
u

v

1

 =


1

ρw
Sθ Ox

0
1

ρh
Oy

0 0 1



x

y

1

 (2.24)

The two factors on the diagonal corresponds to a scale factor in the x and y direction, where ρw and
ρh is the width and height of the pixels, respectively. For perfectly square pixels, these two factors will
be identical. The parameter Sθ is the skew of the pixel array, which for most modern cameras can be
assumed to be close to 0 [8]. The last two parameters, Ox and Oy are the coordinates of the principal
point – which ideally is located at the centre of the image. These are added in order to align the center
of the image to the camera’s axis of view (z-axis) since the pixel coordinate (0, 0) usually is set at the
top left of an image.

Combining (2.23) and (2.24) yields the final transformation between pixels-coordinates and the world
frame:

λ


u

v

1

 =


1

ρw
Sθ Ox

0
1

ρh
Oy

0 0 1



f 0 0

0 f 0

0 0 1




1 0 0 0

0 1 0 0

0 0 1 0


[

R T

0T 1

]
Xo

Yo

Zo

1



λ


u

v

1

 =


f

ρw
0 Ox

0
f

ρh
Oy

0 0 1




1 0 0 0

0 1 0 0

0 0 1 0


[

R T

0T 1

]
Xo

Yo

Zo

1

 (2.25)

The first matrix in the linear equation system 2.25 is called the intrinsic parameter matrix or calibration
matrix which is initially unknown [7]. In order to identify these parameters, a camera calibration needs
to be carried out, which will be described in the section 2.7.

2.5 Robot welding

In the request of having tasks completed in a more efficient and more consisted fashion, more and more
industries are implementing the use of robots in their production line. Although the robot can not replace
humans in all aspects of the production line, repetitive or mundane tasks such as assembling or quality
control are tasks well suited for a robot. Furthermore, as the technology keeps improving, the horizon
of tasks performable by a robot keeps expanding. Since the first welding robot was introduced in the
1960, the technology has seen large improvements in terms of quality and speed [9]. The advantages of
using a robot to perform a weld are not necessarily only connected to speed and quality, but to safety as
well. In some cases, welding fumes may cause harm to the workers – which is not desired. As a robot
is unaffected by the fumes, this danger is eliminated. However, due to potential malfunctioning of the
robot, precautions must be made to prevent injury to the workers. Studies show that workers have a
tendency to underestimate the reach of a robot, which can lead to accidents [10].

Furthermore, in order for a robot to perform a weld, it must be given the correct input. Some robots
performs the weld by a preprogrammed path [11], and is preferred in situations where the relationship
between the robot and object does not vary to a large extent. However, in situations where the condi-
tions can not be regarded as constant, additional data has to be provided to the robot. In this thesis,
the additional data will be provided using laser triangulation, which is the topic of the next section.
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Moreover, the required accuracy of the visual data depends on the type of welding. For spot-welding an
acceptable error is in the range of 1 mm. However, if the robot is to perform arc-welding, the accuracy
should be less than 0.5 mm [12]. As the welding relevant in this thesis is arc-welding, the distance of 0.5
mm will be used as a benchmark in which the systems accuracy will be compared to.

2.6 Laser triangulation

Since the use of robots in various production lines has increased in the last years [13], so has the request for
supplying the robots with visual inputs. Providing the robots with visual inputs, introduces a potential
of automation which is not achievable with preprogramming methods.

One of the most frequently used method for providing a robot with a visual input is laser triangulation.
This method relies mainly on two components, an emitter and a sensor. As the emitter projects light
upon the surface of an object - the sensor registers the distorted light pattern caused by objects curva-
ture. The pattern of the emitted light varies by its application. If the purpose of the scan is to make
a 3D-representation of a static object, a pattern which consist of several laserlines are commonly used
as this provide more spatial points for each pose of the object. However, if the object can be rotated or
translated through the projection of the laser, the same amount of reading can be achieved with a single
laserline [14], assuming the rotation or translation can be measured. As for the system of this thesis, the
object is rotated while the laserplane is intersecting its surface. For this reason, laser triangulation with
a single laserline is utilized in the experiments of this thesis.

Assuming the pixels which corresponds to the laser on the image can be identified, a sense of direc-
tion to the given point in space can be calculated as shown in Figure 2.4. However, as this direction
is not sufficient to determine the distance to the point, triangulation needs to be implemented. If the
position and orientation of the laserplane is known, the point of intersection between the line spanned
by the pixel and the plane of the laser can be calculated. This intersection yields the three dimensional
coordinate located at the surface of the object.

Figure 2.4: Laser triangulation

However, since the location and orientation of the laser with respect to the camera is not necessarily
trivial, and needs to be computed with care in order to achieve accurate results. For this reason, a
significant portion of this thesis is to estimate the relationship between the laserplane and the camera
with respect to position and orientation, also known as a laserplane calibration.
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Moreover, the triangulation process is in this regard only possible for pixels which represent the laser on
the image plane. Consequently, the pixels related to the laserline must be identified in terms of pixel-
coordinates, which is the purpose of the camera described in a later section.

2.7 Camera calibration

Due to imperfections in the camera, more specifically in the lens – pictures are bound to be distorted
to some extent [6]. When using a camera as an input for a system, these distortions can lead to errors
in the calculations of trajectories. This section describes how these imperfections can be identified by
using images of checkerboards. Some of the information in this section is collected from the authors
specialization report [5], where OpenCV’s toolbox was used for the camera calibration.

Moreover, there are mainly two types of distortion – namely radial and tangential distortion. The
radial distortion is a result of the curvature of the lens, and tangential distortion is the result of the lens
not being perfectly parallel to the imaging plane [6]. According to the book Computer Vision [15], radial
distortion can be modelled as a low-order polynomial:

x̂ = x(1 + κ1r
2 + κ2r

4) (2.26)

ŷ = y(1 + κ1r
2 + κ2r

4) (2.27)

Where κ1 and κ2 are called the radial distortion parameters - and r2 is equal to x2 + y2.

Furthermore, according to Robotics Vision and Control [6] the tangential distortion can be represented
using the following polynomial, where p1 and p2 are the tangential distortion coefficients,

x̂ = 2p1xy + p2(r2 + 2x2) (2.28)

ŷ = p1(r2 + 2y2) + 2p2xy (2.29)

Combining these two equations results in the total distortion.

x̂ = x(1 + κ1r
2 + κ2r

4) + [2p1xy + p2(r2 + 2x2)] (2.30)

ŷ = y(1 + κ1r
2 + κ2r

4) + [p1(r2 + 2y2) + 2p2xy] (2.31)

The unknown distortion coefficients of the equations above can be represented as the vector,

Dc =
[
κ1 κ2 p1 p2

]
(2.32)

By carrying out a camera calibration, these distortions-coefficients can be approximated in addition to
the intrinsic parameters of the camera which was mentioned in section 2.4. This process is usually only
required once, unless the camera experiences trauma that influences the lens, and hence changes the
intrinsic parameters. The software used in this thesis is the calibration app ”Camera Calibrator” of
Matlab, which is included in the Computer Vision package [16]. The calibration app offers a simple user-
interface, and includes visuals which may ease the process. In addition, the software allows expansion of
the polynomial of the radial distortion with a third element. However, as this is usually only required
for lenses with high distortion (e.g fisheye lenses) [17] – the third coefficient will not be utilized in this
thesis.

Moreover, in order to calibrate a camera, several pictures needs to be taken of a standardized pat-
tern. The algorithm uses the known geometry of the pattern, and estimate the parameters based on the
given images. This method is otherwise known as the plumb line method [15]. For the calibrations in this
thesis, different sizes of a 7x9 checkerboard is used, as shown in Figure 2.5. Note that the pattern size is
not determined by the number of squares, but the number of points centered in each 2x2.
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Figure 2.5: 10mm 7x9 checkerboard pattern

According to the documentation of the software, at least 10 - 20 different images should be used in order
to achieve a well posed system [17] with better estimation accuracy. The checkerboards in the images
should differ both in orientation and distance from the camera, and should contain all of the interest-
points of the pattern. Additionally, if the checkerboard is printed on paper as it was in this thesis, it is
important that the paper is attached to a straight and sturdy surface. If the pattern is curved due to
an uneven surface, the curvature will be interpreted as lens-curvature and yield inaccurate results. The
software also requires a measurement of the squares on the checkerboard. This measurement does not
effect the calculation of the intrinsic values (i.e K-matrix and distortions), but if the relative position of
the checkerboard with respect to the camera frame is needed, this dimension must be measured precisely.
The choice of the checkerboard metric size depends mainly on the focus of the camera (i.e the field of
view). For a larger FOV it is favorable to use a larger checkerboard, such that the points are more easily
detected by the camera.

2.7.1 Verification of a calibration

In order to identify if the calibration is successful, there are built-in visuals in the software that can be
analyzed to determine the quality of the calibration.

The first thing that can be verified is that the positions of the checkerboards are somewhat in line with
the expectations. As shown in Figure 2.6, the software offers a view that relates the checkerboards posi-
tion and orientation with respect to the camera frame. By inspecting the figure, it is possible to discover
obvious errors which might occur during the process. If one of the checkerboards were to be located
unrealistically far away from the others, or even behind the camera – the checkerboard can be removed
before initiating the calibration process once more. Note that the dimensions along the axis are only
correctly displayed if the square-size are correctly measured.

Additionally, the visualization can also be used to establish if the position and orientation between
the checkerboards differ enough to provide good input data for the calibration process.
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Figure 2.6: Checkerboards in camera frame

Furthermore, in order to determine a quantitative value for the calibrations accuracy the reprojection
errors can be analyzed. By inspection of Figure 2.7, the reprojection error is the distance in pixels
from the detected point, and the point reprojected by the software based on the estimated intrinsic and
extrinsic parameters [8].

Figure 2.7: Identified points on 10mm checkerboard

Figure 2.8 shows the average of the reprojection error corresponding to each image. If there are images
that contribute to a large mean reprojection error, they can be identified by the height of their corre-
sponding column before they are removed from the calibration. Generally, a mean reprojection error
below 1 pixel is accepted [18], but should be minimized when possible by removing the images with high
reprojection error from the calibration.
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Mean Reprojection Error per Image
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Figure 2.8: Reprojection error

2.7.2 Data from the calibration

After the process described above is completed, all the identified parameters are accessible through the
workspace of Matlab.
The intrinsic parameter matrix is given by the software to be,

K =


f

ρw
0 0

0
f

ρh
0

Ox Oy 1

 (2.33)

By comparing with the intrinsic matrix from (2.25), it can be seen that this matrix is the transpose of the
matrix earlier stated. This is due to the software using another formulation than the one derived in this
thesis. More specifically, the world coordinates are stated as a row-vector instead of the column vector
in 2.25. Due to this, the matrix is transposed before extracted to the corresponding text-file. Moreover,
the software does not provide an absolute value for neither the focal length f of the pixel-dimensions ρw
and ρh, as only the ratio between them is estimated. However, as most camera-manufacturers state the
dimensions of the pixels, the focal length can be explicitly calculated if needed.

Furthermore, the estimated distortion coefficients are stated separately as two 2x1-vectors containing
the coefficients stated in the distortion-vector 2.32. These are later combined in to one vector, as it is
required by the function which undistorts the pixels.

rdist =
[
κ1 κ2

]

tdist =
[
p1 p2

]
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In addition, extrinsic parameters related to the orientation and position of the checkerboards is given by
the software. This is the data which is used by the software in order to illustrate the Figure 2.6 shown
previously. These are not key elements of a standard camera calibration, but may in some instances prove
to be useful. In this thesis both the translational vectors and rotation matrices are directly used in order
to generate a pointcloud of different points on the laserline as a part of the laserplane calibration. More
specifically, the data was used to express the checkerboards as planes by using point-normal notation,
which is the subject of section 2.8.

2.7.2.1 Translational vectors

The given translational vector for each checkerboard yields the distance from the cameras origin to the
checkerboards origin, where the latter is shown in Figure 2.7 as a yellow square in the top-left corner.
The unit of the elements in this vector depends on which unit the square size of the checkerboard is given
in.

tcamchecker =


tx

ty

tz

 (2.34)

2.7.2.2 Rotation matrices

In addition to the translation of the checkerboards, the software also calculates the relative orientation
between the checkerboard and the camera frame. Due to notation used by Matlab, the rotation is
expressed as the rotation from the calibration object (i.e the frame of checkerboard) to the frame of the
camera. The orientational relationship between the frame of the camera and the checkerboard is stated
as the following rotation matrix.

Rchecker
cam =


R11 R12 R13

R21 R22 R23

R31 R32 R33

 (2.35)

However, as stated in section 2.1.1 the rotation matrix is a member of SO(3). As the relationship
RTR = I holds, the checkerboards orientation expressed with respect to the camera frame can be simply
retrieved by transposing the matrix.

Rcam
checker = (Rchecker

cam )T =


R11 R21 R31

R12 R22 R32

R13 R23 R33

 (2.36)

If the matrix is compared to the image shown in Figure 2.7, the direction of the three axes of the
checkerboard can be identified by inspecting the column-vectors of the matrix.

Rcam
checker =

[
x y z

]
(2.37)

Additionally, by applying the right hand rule to the x- and y-axis of the checkerboard in Figure 2.7, the
z-axis is defined to be in the direction opposite of the camera.
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2.7.2.3 Rotation errors

The software also provides the error of the checkerboards apparent orientation. This parameter is given
as a vector, which represents the uncertainty of the rotation stated on axis-angle form. Moreover, the
uncertainty can be quantified by the length of the error-vector. The greater the length of the vector is,
the more uncertainty is associated with the given orientation.

2.7.2.4 Translational errors

Similar to the estimated orientations of the checkerboards, the translational vectors also has uncertainties.
This error is given in the same units as the translational vector, and contains three different values
corresponding to the uncertainty in the x, y and z-direction.

2.7.3 Python accessibility

As it was necessary to access the identified parameters through Python at later stages of the thesis, the
parameters had to be extracted from Matlab. After the images has been processed by the calibration
software, the identified parameters were exported to Matlab’s workspace as variables. The variables were
then saved individually as text-files, which was a file type compatible with Python. A function in Python
was then written in collaboration with Trym D. Hauglund in order to access these files from an arbitrary
Python-script. The function was called loadCaliParam and enabled a clean and efficient way of accessing
the calibration parameters from external scripts. The function is shown in appendix 1, and is able to
read and supply the values from the text-file of the parameters.

2.8 Plane representation

As a major part of this thesis is to represent the plane spanned by the laser projector in the frame of the
camera, some of the theory behind planes and their different representations are to be presented in this
section.

The standard notation of representing a plane in R3 is given by

Ax+By + Cz +D = 0 (2.38)

The coefficients A,B,C describes the slope of the plane in the directions x,y and z, respectively. The
constant D describes the Euclidean distance from the origin of the coordinate system to the plane.

Moreover, in some cases it is more applicable to use point-normal notation instead, as shown in the next
section. The point-normal representation consist of two elements, namely the normal of the plane in
addition to a point present on the plane. The normal of the plane can be computed by the coefficients of
the variables in (2.38) as follows.

n =


A

B

C

 (2.39)

Furthermore, the point which is used in this representation can be an arbitrary point on the plane.
Depending on the representation, the simplest point to calculate is the intersection of one of the axes.
For the intersection of the z-axis, both x and y is set to zero. The remainder of (2.38) is Cz + D = 0,
where the point on the plane can be expressed with,

d =


0

0

−D
C

 (2.40)
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For simplicity, a function was written in Python which converted from one representation to the other.
The function detects which representation it is given, and converts to the other. The function was called
planeify and is found in appendix 14.

2.9 Line-plane intersection

As the theory of line-plane intersection was to be used both in the laser triangulation and the laserplane
calibration, the theory behind it will be briefly explained in this section.

As shown in the previous section, a plane can be represented as a point in addition to a vector normal
to the plane like such

(p− p0) · n = 0 (2.41)

Where p is an arbitrary point on the plane, p0 is a known point on a the plane and n is the vector normal
to the plane. Furthermore, if a line has a known point and direction, it can be written in the following
form

p = dl + l0 (2.42)

Where p is an arbitrary point on the line, l is the direction of the line and l0 is a point known to be on
the line. The real numbered scalar d will in this context be the distance from the point on the line to
the plane - given that l has a length equal to 1 (i.e normalized).

Moreover, if (2.42) is inserted into (2.41), the following equation yields

(dl + l0 − p0) · n = 0 (2.43)

Solving (2.43) for the scalar d, the equation becomes

d =
(p0 − l0) · n

l · n
(2.44)

Lastly, as equation (2.44) gives a value for d, (2.42) can be used to determine the intersection point in
spatial coordinates.

2.10 Plane fitting

During the process of the laserplane calibration, the plane spanned by the laser will be represented in
the shape of a pointcloud. However, as the parameters of the laserplane needs to be estimated, this
pointcloud needs to be further processed in order to be used in the triangulation process. By using plane
fitting methods, the parameters of the laserplane can be estimated based on the shape of the pointcloud,
which has the following form.

P =


x1 y1 z1

x2 y2 z2
...

xn yn zn

 =


p1

p2
...

pn

 (2.45)
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2.10.1 Least squares

The first method that was used, was to estimate the plane-parameters was a least squares-method.
The method involves representing the pointcloud as a over-determined linear system Ax = b. In this
representation, the matrix A contains the x and y coordinates, x is the parameters of the plane- and b
will be the corresponding z-values.

Furthermore, the pseudo-inverse of the system-matrix is then used in order to estimate the plane in which
the points lie. According to Lieven Vandenberghe [19], this method optimizes the least squares problem

min ||(Ax− b)||2 (2.46)

In other words, the plane is placed such that it minimizes the sum of errors between the estimated planes
z-values and the pointcloud as illustrated in Figure 2.9.

Figure 2.9: Least squares of z-value

Moreover, since the laser projector forms a plane it can be assumed it can be expressed using the standard
notation, namely

Ax+By + Cz +D = 0 (2.47)

This can be rewritten as

Ãx+ B̃y + D̃ = −z (2.48)

Where,

Ã =
A

C
, B̃ =

B

C
, D̃ =

D

C

Furthermore, since 
x1 y1 1
...

...
...

xn yn 1



Ã

B̃

D̃

 =


−z1

...

−zn

 , Ax = b (2.49)

As the system (4.6) is over-determined, the vector x can not be simply derived by performing a left-sided
inverse multiplication of the A−1-matrix. However, by doing a left-sided multiplication of AT , we get the
following expression.

ATAx = ATb
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As the A-matrix is of the dimension nx3, and its transpose AT is 3xn, the product of ATA will be a 3x3
matrix. Assuming full rank, the resulting matrix can be inverted – and we reach the final expression.

x = (ATA)−1ATb = M b (2.50)

The matrix M is called the left pseudo matrix, but is more commonly called the Moore-Penrose inverse
[20]. Using this expression, the plane can be estimated by evaluating the values of x.

2.10.2 Optimization using orthogonal distances

As the method in the previous section was a least squares solution to the difference in function value,
the author wanted to derive a solution for the distances normal to the plane. Moreover, the problem of
fitting a plane to the extracted coordinates, could be seen as a optimization problem where the goal is
to determine a plane in which the orthogonal distance between the plane and the points is at its lowest.

Given the pointcloud (2.45), its centroid can be calculated as

c =
1

N

N∑
i=1

pi (2.51)

The shortest distance between any given point and a plane is the distance in the normal direction of the
plane, as shown in Figure 2.10. If it is assumed that the centroid of the plane lies on the plane that is to
be estimated, the distance between an arbitrary point and the plane will be given by

d = (pi − c)T · n (2.52)

Figure 2.10: Distance in normal direction

Using (2.52), the cost function can then be defined. As the desired plane is placed such that the sum of
all distances between the points and the plane is at its minimum, the cost function becomes

min
n

N∑
i=1

((pi − c)T · n)2 (2.53)

Naturally, the distances are squared to avoid negative values.
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Moreover, without any constraints the sum of the cost function 2.53 would show as zero, and the solution
would be stated as

n =


0

0

0


In order to prevent the zero-vector of being the solution of the optimization problem, an equality-
constraint must be defined which forces the vector of having an actual direction. This can be done by
applying the following constraint to the optimization-problem, which requires the length of the normal-
vector to be 1.

n2x + n2y + n2z = 1 (2.54)

In turn, the normal-vector is constrained to the surface a unit-sphere where the length is equal to one for
any arbitrary orientation.

The optimization problem can then be stated as

min
n

N∑
i=1

((pi − c)T · n)2

s.t n2x + n2y + n2z = 1



3. Experimental setup

As the purpose of the thesis is to combine an angular measurement of an object with its corresponding
curvature along a laserline, the experiments can be divided into three main parts.

• Acquiring an angular measurement

• Laserplane calibration with accuracy verification

• Combining the two measurements and performing a rotary scan

This chapter will describe the various equipment and software that was needed to perform the experiments
of this thesis. In this regard, the camera that was used in the extraction of pixel-coordinates will be given
a thorough explanation in terms of its functionality and algorithms. In addition, the configuration
between the camera and laser projector will be given a description together with the formula regarding
its theoretical resolution.

3.1 Camera

In order to locate the pixels related to the laserline on the image a suitable camera had to be used. The
camera used in the experiments of this thesis is the C4-2040-GigE camera manufactured by Automation
Technology (AT), and is shown in Figure 3.1. The camera has a resolution of 2048x1088 pixels, and is
designed specifically for 3D measurement purposes. Furthermore, the camera comes pre-installed with
software tailored for pixel-coordinate extractions. This section will explain how the camera operates,
some of its functions, and how it is able to provide pixel-coordinates of a laser located in the image. The
information in this section is mainly collected from the manual of the camera [21], and the images shown
is with the courtesy of AT.

Figure 3.1: C4-2040 GigE, Source : AT

21
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By analyzing the different columns of pixels and reading the intensity of each individual pixel, the camera
is able to pin-point the location of a laserline present in its image. Naturally, this builds on the assumption
that the highest intensity for each column is due to the laser and not external light-sources. If the intensity
of pixel-column N is analyzed, and the center of the laserline is located at pixel number M the extracted
pixel coordinate will be [N,M ]. As shown in Figure 3.2, the intensity along the pixel-column marked
with red is analyzed. The software used in the figure is AT’s CXExplorer, which enables interactive
analysis of the reading. This software was used for illustrative purposes and is not used explicitly in the
experiments in this thesis.

Figure 3.2: Screenshot from CXExplorer

Moreover, as seen from Figure 3.2 the intensities along the pixel-column are plotted below the image in
LinePlot 2. As the image captured by the camera is an 8-bit gray scaled image, the intensity value ranges
from 0 (black) to 255 (white). The peak of intensity in the plot corresponds to the laser, and can be
approximately read as pixel number 232.

Naturally, as it is not desirable to manually read out the pixel-coordinates of the laser – the camera
is equipped with algorithms which automatically outputs the pixel-coordinates. These algorithms are
explained in later sections.

3.1.1 Finite Impulse Response Filter

The camera had also an integrated FIR filter in the form of Savitzky-Golay filter with up to 9 coefficients
[22]. The filter is used to smooth out the intensity profile, which can improve the accuracy of the
algorithms explained in the following sections. By using the following formula each intensity-reading is
recalculated based on the adjacent values of intensities [23].
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Yj =

M∑
n=−M

biyj+i (3.1)

The neighbourhood of values used in the filter depends on the value M , whereas 2M + 1 is the number
of points evaluated in each iteration. For M = 4, each point is recalculated based on itself, the four pre-
vious and the four next values in the data set. Each of these values are multiplied with its corresponding
coefficient.
As a result, the point is recalculated based in the trend of the neighbouring intensities, such that sudden
changes of values is suppressed. The intended effect of the filter is illustrated in Figure 3.3.

Figure 3.3: Smoothing the curve

Furthermore, the coefficients of the filter can be set in such a manner that instead of smoothing the curve,
it approximates the slope of the curve. These coefficients are used in the FIR-Peak algorithm, which is
one of the algorithms that will be briefly explained in the next sections.

In this regard, AT was contacted in order to gain the exact values for the different filters. AT replied
saying that these were confidential, and a core part of their know-how. However, they where able to
provide the following image which shows a crude representation of how the coefficients are set.

Figure 3.4: FIR coefficients
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There are four different main algorithms which calculates the pixel-coordinates based on the array of
intensity-values shown in Figure 3.2.

3.1.2 Threshold (TRSH)

By using the TRSH algorithm, the two points PL and PR are registered, which are shown in Figure
3.5. The intensity threshold AOI TRSH can be set as desired, and the algorithm will ignore intensity
values that are lower than the set value. The extracted pixel-coordinate for the given pixel-column is
then calculated by

PTRSH =
PL + PR

2
(3.2)

As seen from (3.2), the algorithm assumes that the center of the laser is directly in the middle of the
pixel PL and PR. Furthermore, as both PL and PR are integers, resolution of this algorithm will be half
a pixel.

Figure 3.5: TRSH-algorithm



CHAPTER 3. EXPERIMENTAL SETUP 25

3.1.3 Maximum intensity (MAX)

Next, there is the MAX algorithm which select the pixel corresponding to the highest intensity value
in the pixel-column as demonstrated in Figure 3.6. This is the simplest of the algorithms as this does
not require any further computation. Furthermore, as the pixel-coordinate is directly collected from the
intensity array, the resolution of this algorithm is one pixel.

Figure 3.6: MAX-algorithm
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However, if the optical sensors of the camera becomes saturated there is a risk for several maximums as
illustrated in Figure 3.7. This poses a challenge as the algorithm automatically reads the first point of
saturation as PMAX , which often will result in an inaccurate reading of the lasers position. However, the
camera has software to handle problems regarding saturation – which will be briefly explained in a later
section.

Figure 3.7: Saturation of optical sensor
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3.1.4 Center of Gravity (CoG)

Compared to the previously mentioned algorithms, the CoG-algorithm is more intricate. The area be-
tween the curve and a set threshold is calculated by taking the sum of all the intensities Ip according
to

Is =
∑

Ip (3.3)

Furthermore, the sum of first order moment is calculated by multiplying the intensities Ip with the
corresponding pixel-coordinates P

Ms =
∑

IpP (3.4)

The pixel-coordinate corresponding to PCOG in Figure 3.8 can then be calculated by

PCOG = PL +
Ms

Is
(3.5)

Figure 3.8: CoG-algorithm

By using this method, the camera can provide a resolution of up to 6 subpixel bits, which implies a

resolution of
1

26
≈ 0.0156 pixels.
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3.1.5 FIR-Peak

The last algorithm is FIR-Peak, which directly uses the FIR-filter with differential coefficients. The
derivative of the intensity-curve is analyzed, where the extracted pixel-coordinate corresponds to where
the derivative crosses the zero-value as shown in Figure 3.9. The resolution of this algorithm is the same
as of the CoG-algorithm, providing a resolution of 6 subpixel bits.

Figure 3.9: FIR-Peak Algorithm

As demonstrated in the previous sections, the camera has several available algorithms which is able to
calculate the pixel-coordinate of the laser. However, based on the results of a previous report by the
author [5], it was found that for high resolution reading with a smaller field of view – CoG mode is best
suited. This is due to the fact that the width of the laser appear thicker on the image, which implies
that the center of the width is a more accurate estimation of the laser position in the image. Based on
the results of the stated report, CoG-mode is the algorithm used in the experiments of this thesis.

3.1.6 Multiple Slope Function

An additional feature of the C4-2040 GigE camera is the multiple slope function. By using this function
it is possible to prevent saturation of the optical sensors. This may occur if the surface of the object is
highly reflective. During the exposure time of the camera, the intensity-values of the pixels are monitored.
If one of the cameras pixels reaches a set threshold of intensity within a certain fraction of the exposure
time, the intensity of the pixel is restricted to rise for a set amount of time. As a result, pixels that would
likely saturate within the exposure time are restricted from doing so.

This function would most likely be relevant if the experiments was carried out on an actual drill-pipe,
as machined metal tend to be highly reflective. As the experiments in this thesis was restricted to 3D-
printed objects, this function was not utilized. However, as it may be a deciding factor if the system is
to be used on machined drill-pipes – the author decided to draw attention to this function such that it
could be mentioned in the discussion.

3.1.7 Camera communication via Python

As it was desired to configure and communicate with the camera in real-time using Python, additional
software had to be acquired. In this regard, the manufacturer of the camera was contacted and they were
able to provide a standalone Python software development kit (SDK). This kit included the functions
needed to communicate with the camera, and made it possible to both configure the camera and extract
its readings of pixel-coordinates in real time by the use of Python programming. However, since the SDK
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contained several functions which was not needed in this context, the necessary functions gathered in
a common Python-script by Trym D. Hauglund. By using this script, the functions could be imported
from a single file instead of several. For later reference, the function called snap(hDev) was the function
which retrieved the image or pixel-coordinates, depending on the configuration of the camera. Due to
the sheer size of the script, it is not attached in the appendix.

3.1.8 Lens

The lens mounted on the camera during the experiments was a Fujinon CF12.5HA-1 shown in Figure
3.10. The lens was advertised as a low-distortion lens designed for high resolution images. Additionally,
the iris was equipped with locking knobs which reduced the chance of accidentally altering the intrinsic
parameters after camera calibration.

Figure 3.10: Fujinon Lens,

Source: BHphotovideo

3.2 Laser

The laserline used in the experiments of this thesis was a 25mW Z-LASER Z25M18S3-F-640-LP45 with
a wavelength of 640 nm. The laser was equipped with a Powell lens which delivers a uniform intensity
along the laserline [24]. Another option would be the Gaussian lens, which intensifies the beam in the
center of the laserline – this was however not required in the experiments. Additionally, the fan-angle
of the laser was 45°, and contributed with a long laserline even on short distances from the object. The
laser had the safety class 2M which meant that it was not required to use goggles while operating the
laser. However, protective eye-wear were used as a precaution while operating the laser.

3.3 Triangulation configuration

In order to set the camera and laser projector in a permanent configuration, they were mounted on a
rail as shown in Figure 3.11. The rail was designed by Trym D. Hauglund, and was configured in a
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fashion that could be used in both of our theses. The configuration shown in the figure is referred to as
”Standard geometry”, and is one of the most commonly utilized configurations due to its accuracy and
simplicity [25]. By using this configuration it is implied that the laser is aligned with the object that is
to be scanned, and the camera views from an angle. Note that in the experiments the setup in Figure
3.11 was in a standing position, where the laser was positioned at the top and emitted a horizontal line.

Figure 3.11: Camera/Laser configuration

Moreover, the distance between the laser projector and the camera was crudely measured to be approxi-
mately 20 cm, whereas the angle between them was measured using a goniometer to be in the region of
20°.

The resolution of the configuration depends mainly on two parameters, the field of view of the camera
and the angle between the camera and the laser. As the laser appears as a horizontal line in the camera
frame, it is the horizontal FOV which is relevant in this context. The horizontal FOV of the camera can
be calculated using the following formula, which is stated by the manufacturer of the lens [26]

FOV = Y
′ L

f
(3.6)

The parameter L is the distance to the object in focus, and f is the focal length of the camera. Moreover,
the parameter Y

′
is the metric size of the image. This can be calculated by multiplying the number of

pixels on the horizontal direction of the camera, with the size of the pixel. For the camera used in this
thesis, the pixel-size was stated by the manufacturer to be 5.5µm [21], both vertical and horizontally. In
addition, since there are 2048 pixels located in the cameras horizontal direction, the metric image size is
calculated as

Y
′

= ρN = 5.5µm× 2048 = 11.264mm
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Figure 3.12: Camera/Laser configuration, Source : AT

From figure 3.12, the following resolution in the x-direction is stated by AT,

∆x =
FOV

N

By inserting (3.6), the resolution in x-direction becomes,

∆x =
Y
′
L

Nf

∆x =
ρNL

Nf

Which results in,

∆x =
ρL

f
(3.7)

Furthermore, the resolution in the z-direction is given to be

∆z =
∆x

sinα
(3.8)

As the equation states, the resolution in the z-direction is directly affected by the triangulation angle. One
might argue that a large angle is preferred in order to achieve a high resolution. However, by increasing
the angle also increases the risk of the laserline being hidden behind the geometry of the object. This
effect is called occlusion and is highly undesired as it makes the camera unable to locate the position of
the laserline. Furthermore, the resolution for both directions results in a metric value that represent how
small of a change the camera is able to detect in the given direction. Consequently, a smaller number is
preferred over a large one.

3.4 Laserplane calibration

In order to triangulate the pixels into spatial coordinates, the laserplane had to be represented as a
plane in the camera frame. There are established methods of doing so, some of which includes scan-
ning objects of known geometry [27]. However, in order to use the software and equipment already
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at hand – another method was used in the laserplane calibration of this thesis. The method was found
in an article on a related subject, which required only a calibration pattern mounted on a flat surface [28].

The proposed method was to capture images of a calibration pattern which allowed both its position
and orientation to be calculated. If both the position and orientation of the pattern is known, the surface
of the pattern can be expressed as a plane using point-normal notation. Furthermore, if the calibration
pattern is positioned such that the laserline intersects the pattern, the pixel-coordinates coordinates of
the laser can be triangulated with the plane of the calibration pattern. As this process results in three
dimensional points located on the laserplane, a pointcloud can be generated by repeating this process us-
ing different positions and orientations of the calibration pattern. Assuming that the pointcloud consists
of sufficient points, the parameters of the plane can be estimated by applying plane-fitting methods to
the pointcloud. In this regard, it is preferred to capture images where the calibration pattern varies in
the direction of the laser, as illustrated in Figure 3.13. The varying depth results in a better estimation,
as the points yields a better representation of the span of the plane.

Figure 3.13: Laser intersecting calibration pattern

3.5 Angular measurement

As the intended scanning system relies on a real-time measurement of the pipe’s orientation, a system had
to be designed in order to extract these measurements during the experiments. First, a suitable sensor
was to be acquired, which then would set the basis for the rest of the system in terms of requirements.

The sensors which was considered was two types of rotary encoders, absolute and incremental. In-
cremental encoders usually tend to be cheaper, but depending on their design, they only are able to
tell the changes of orientation. A typical optical incremental encoder consists of a encoder-disk and two
optical receivers [29]. The disk consist of a series of holes on its periphery, which enables light to pass to
the optical receivers. Since the pulse generated by the receivers are 90 degrees out of phase, a sense of
direction of the rotation can be derived. Furthermore, some of these encoders are equipped with a third
sensor, which is dedicated for the index pulse. This pulse is generated once for each full rotation of the
encoder-disk, and can be used as a reference to calculate an absolute angle measurement. However, as
the encoder is powered, the encoder needs to locate the orientation which produces the index-pulse in
order to provide an absolute reading.

An absolute encoder on the other hand, does not require to be rotated on start-up in order to provide
the absolute angle. Depending on the resolution, each angle produces an unique signal produced by the
sensory system. As a result, the encoder is able to produce an absolute angular reading the instant it
is connected to power. In order to make the system more robust and suited for real-time application, it
was decided that an absolute rotary encoder was more appropriate for providing the measurement.
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3.5.1 Rotary encoder

Figure 3.14: Rotary encoder,

Source: Contelec

The acquired sensor was a Vert-X 28 rotary encoder manufactured by Contelec. The encoder allowed for
an absolute measurement of the orientation by utilizing the magnetic Hall effect [30]. According to the
documentation of the sensor [31], it required an input voltage of 5±0.5V, which would yield an analog
output signal ranging from 10%-90% of the input voltage. Ideally, this would imply the sensor output
ranging between 0.5-4.5 V for an input voltage of 5 V.

As the resolution of the encoder was stated to be 12 bits, one revolution of 360° would be divided into
212 counts, which would imply that the sensor had a resolution of

360°
212 counts

=
360°

4096 counts
= 0.0878° per count ≈ 0.0015324 rad per count

3.5.2 Arduino Uno

The Arduino Uno is an open-source development board which enable the users to design and build cir-
cuits based on inputs and outputs. In addition to being low-cost, the Uno is an easy-to-use alternative
opposed to manually programming microcontrollers [32]. The board is equipped with an I/O interface in
the form of both analog and digital input and output pins. Due to the product being open-source, there
is a wide span of available libraries developed by the community which further expands the compatibility
of the device.
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Figure 3.15: Arduino Uno,

Source: Arduino.cc

As the Arduino allowed for real-time communication via an USB-cable, the reading from the rotary
encoder would be directly available during the scanning process. In addition, as the board was equipped
with a 5V power supply, the rotary encoder could be directly supplied its required voltage without any
additional circuitry.

3.5.3 Arduino programming

The programming of the Arduino was performed by using the Arduino integrated development environ-
ment (IDE), which allows programs to be written, compiled and uploaded to the Arduino. As seen in
Figure 3.16, there are two main parts of the IDE, namely the setup, and the loop. The setup is run only
once by the Arduino and defines which pins are used as input and output and/or which libraries are
utilized. The loop on the other hand, is repeated as long as the Arduino is connected to power. This
will contain the code which calculates the orientation of the encoder and transmits the information to
the computer.

Figure 3.16: Arduino IDE
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3.5.4 Arduino-Python communication

Since the camera used in the scanning process was communicating through Python, code was needed to
be written in order to grant Python access to the angular reading from the Arduino. To achieve this,
the scripts was supplied with the PySerial-module [33], which enabled direct communication to the port
in which the Arduino was connected. As the Arduino was sending data through USB-port, this data
could then be interpreted by the PySerial-module and further processed. Much time was spent trying
to provide real-time reading of the angle, but did not result in a reliable solution. With the use of the
Pyserial-module and a simple for-loop which read from the serial-port, Python was able to collect the
angle seemingly without any problems. However, when a delay was added into the for-loop to simulate
computation time, a large latency between the angular readings and the actual orientation occurred.
This was later identified as a buffer problem, where the Arduino filled the serial buffer with readings at
a higher rate then they were read by Python. This caused the buffer to be filled with outdated values,
and Python would collect the oldest value in the buffer for each iteration.

However, after searching online for a potential solution, a post on the Arduino forums was found which
solved the exact issue. A user by the name ”Robin2” had solved the issue by using some clever coding
[34]. Instead of making the Arduino produce the readings in a continuous loop, the Arduino only sent the
reading when the function CollectAngle was called in Python (Appendix 7, line 50). When the function
was called, a string on the format <’String’> was sent to the Arduino via the serial-port established
by Pyserial. The Arduino remained idle until it received the start marker ”<” of the string followed by
the end marker ”>”. As seen in appendix 6 on line 23, when the end marker is received, the boolean
newData is set to True. This initializes the function replyToPython on line 35 which sends the string
back to Python containing the angular measurement.

Moreover, immediately after Python sends the string requesting the reading to the Arduino, the function
recvLikeArduino starts reading the serial-port for the reply. The reply is again identified with the start
marker ”<”, in which each received character is appended to a string until the character ”>” is read.
As the string is completed, the value of the reading is collected by a split of the string with spaces as
the separator. As the string sent from the Arduino has the format ”Angular reading: 99.61”, the split of
the string will be a list on the form [Angular,reading:,99.61]. The angular reading will then be the third
element of the list, which corresponds to the index two as shown line 56 in appendix 7. Unlike Matlab,
in Python the first element in a list or array has index 0, hence index two for the third element. The
code found was mainly used as is, but slightly modified in order to read the angle of the encoder.

3.6 Dedicated triangulation function

In order to more easily triangulate the readings from the camera during the experiments, a function was
written which triangulated the given pixels based on the given plane. This function composed of three
sections, where the first two is preparing the pixel-coordinates for the triangulation process. First, the
array of pixels were cleaned of pixel-coordinates that had a y-value equal to zero. These coordinates
represented the pixel-columns where the laser was not present, and since they would be undistorted in
the same fashion as the others, these coordinates had to be removed prior to the triangulation. This
was simply done by iterating through the y-values of the pixel-array, and generating a new array with
pixel-coordinates which had a non-zero y-value. Next, the pixel-coordinates had to be undistorted and
transferred to the camera-frame. This was done by using OpenCV’s undistortPoints-function, which
undistorted pixel-coordinates according to (2.30) and (2.31). The undistorted pixel-coordinates were
then transformed to metric coordinates in the camera frame by using (2.25).

In order to perform this operation, the function needed access to the camera-matrix and the distortion
coefficients which was explained in section 2.7. These parameters were loaded by calling the loadCali-
Param-function described in section 2.7.3.

Lastly, the undistorted coordinates are triangulated with the desired plane using the theory of line-
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plane intersection from section 2.9. As the estimated planes were to be saved locally as .npy-files (Numpy
array file), the desired plane was used by loading the corresponding file containing its point-normal rep-
resentation. Moreover, the triangulated points were appended to an array called ext points, which was
the output of the function. The finished function is shown in appendix 13.

3.7 Scanning program

As the readings of the camera needed to be related to a specific orientation of the object, a program was
written which combined the two. where By establishing contact with both the camera and the Arduino,
both the extracted pixels and angular reading was available for the program. Furthermore, the program
was designed with a while-loop which was not terminated until the key ’q’ was hit on the keyboard.
For each iteration of the loop, a CoG-reading was performed by the camera as the snap(hDev)-function
was called. In the same iteration, the function CollectAngle() from section 3.5.4 was called, which sent
a request to the Arduino for the encoders orientation. The pixel-coordinates from the camera and the
orientation from the Arduino was then arranged in a dictionary generated by the program. The dictionary
was appended by using the angle as key and the pixels-coordinates as the corresponding value – generating
a dictionary on the following form.

Dictionary : [Angle1 : Pixel-coordinates1,Angle2 : Pixel-coordinates2 . . .Anglen : Pixel-coordinatesn]

Initially, the pixels were triangulated into spatial coordinates before it was appended to the dictionary
with its corresponding angle. However, this resulted in that one iteration of the function took approxi-
mately 0.2 seconds to complete. In order to achieve a higher frequency of readings, it was decided that
the pixel-coordinates provided from the camera would not be triangulated during the scan. Instead, the
pixel-coordinates was stored as is, such that they could be triangulated after the scanning was finished.
This modification reduced the elapsed time of one iteration to approximately 0.1 seconds. Furthermore,
as the ’q’-button was pressed to terminate the scanning process – the dictionary from the process was
saved as a .npy-file in a desired folder.



4. Experimental results

In this chapter, all the experiments throughout the thesis are explained together with their result. In
order to perform a scan of an object which relates its curvature to the angle of orientation, a method of
measuring its orientation must be made available. As a result, the first part of this chapter is to design
a system which ensures an accurate measurement of the angular orientation of the object as it is being
scanned.

Next, a laserplane calibration is to be performed such that the relationship between the camera and
laserplane can be accurately estimated. In this thesis, this relationship is estimated by generating a
pointcloud of points located on the laserplane. The laserplane is then estimated from the pointcloud
using three plane fitting methods. A test is then carried out in order to determine the accuracy of the
three different plane-estimations.

Lastly, a 3D-printed cylindrical shape is scanned in a manner that combines the angular measurements
with the pixel-coordinates from the camera. This information is then presented in two different ways.
First, the readings are used to reconstruct the shape of the scanned object. Next, the readings are
represented as a function of the objects orientation which is considered to be a better representation
with regards to supplying a welding robot with positional input. The chapter is then concluded with a
suggestion to how the data can be treated to calculate the path of a robot which will follow the curvature
of the rotating object.

4.1 Angle measurement

In order to relate the readings from the camera to the different orientations of the object, the angle of
the object had to be precisely measured. Initially, the circuit which was supposed to provide the angular
readings was put together as simply as possible. As the Arduino was able to provide the voltage required
by the rotary encoder, the encoder was simply connected to Arduino according to Figure 4.1. The analog
output of the sensor was connected to analog port ”A0” on the board, and simple code-snippet was
written in the Arduino IDE which allowed easy reading of the analog input.

37
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Figure 4.1: Arduino with directly connected rotary encoder

When inspecting the value of the analog port, it was noticed that the registered value only ranging from
104 to 921 as the encoder was rotated a full revolution. As the values 101 and 902 represented the span
of angles between 0° and 360°, this implied that the resolution of the angle was approximately

360°
921− 104

=
360°
817

≈ 0.44°

As the resolution of the encoder was stated to be 12-bit (i.e 4096 counts), the span of the counts was
expected to be larger. Upon further investigation and reading the Arduino’s manual, it was discovered
that the Arduino Uno’s internal analog/digital converter (ADC) only had 10 bits (i.e 1024 counts) dis-
tributed over a 5V range. Since the loss of resolution between the sensor and Arduino was substantial,
further improvements had to be made to the circuit.

4.1.1 Analog/Digital converter

There are several other Arduino-boards available that supports 12-bit resolution on their on-board ADC’s
[35]. However, it was not desired to acquire a second Arduino for this purpose. Instead, in order to increase
the resolution of the readings, an external 12-bit ADC was purchased which could provide the Arduino
with a digital signal. The acquired ADC was an ADS1015 by Adafruit, which was directly compatible
with Arduino programming, as it included a library with all the functions needed for it to operate.
Furthermore, the ADC was able to operate on both 3.3V or 5V and supported up to four separate analog
input-signals (A0 - A3). Moreover, the voltage of the input-signals was required to be within the ground
potential and input voltage (VDD).
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Figure 4.2: ADS1015 Analog/Digital converter,

Source: Elfa Distrelec

As seen in image 4.2 the ADC has 4 input-pins named A0 to A3.

In reality, the ADS1015 has an 11-bit resolution – but with an additional sign-bit [36]. As the 11 bits are
able to produce 2048 counts, the sign-bit allows the same amount of negative counts, resulting in a total
of 4096 bits, or 12-bit resolution.

Moreover, there was two different connection modes supported by the ADS1015, namely Single Ended -
and Differential -mode.

4.1.1.1 Single Ended Mode

As the name might suggest, this mode only requires one of the input pins of the ADS1015 which allows
more sensors connected to one single ADC. Using this mode, the difference between the input-pin and
ground is evaluated and converted, according to (4.1).

∆V = VGround − Vinput (4.1)

However, as the ADC did not allow negative input-voltages the difference between the two was restricted
to only positive values, assuming ground is zero volts. As a result, the counts located in the negative
interval is not utilized – which limited the resolution to only half.

4.1.1.2 Differential Mode

In comparison to single ended mode, differential mode occupies two input-pins per sensor. Instead of
comparing the signal from the sensor to ground, the signal is compared to a reference voltage instead,
given by (4.2).

∆V = Vref − Vinput (4.2)

By choosing the reference voltage with thought, this mode can utilize the negative counts as well. In-
stances where Vinput >Vref will result in a negative difference, which would be mapped to the negative
signed bits. Additionally, since it is the difference between the two pins that is considered – the differential
mode is more robust towards common noise than the single ended mode.

4.1.1.3 Input Gain

The ADC had the possibility to amplify the input signal, in order to set the appropriate scaling of
counts. Depending on the amplitude of the a connected sensor, it is possible to adjust the gain of the
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ADC accordingly. The default gain of the ADS1015 was 2/3, which would distribute the 4096 counts on
a interval of ± 6.144V where each count represent a change of 3mV. Table 4.1 shows the different gains
supported by the ADS1015, in addition to the different voltage intervals and count values.

Suppose a sensor has a output from 0-1V and is connected to the ADC in differential mode with a
reference-voltage of 0.5V. The difference between the two would range between ±0.5V, which with the
default would use the 3mV per count scaling. As a result, the interval from -0.5V to 0.5V would be
distributed over approximately 333 counts. The appropriate scaling would for this example be 8, which
would divide the 1V interval in segments of 0.25mV for a total of 4000 counts.

Table 4.1: Gain parameters

Gain Voltage Interval Count value

2/3 ±6.144V 3mV

1 ±4.096V 2mV

2 ±2.048V 1mV

4 ±1.024V 0.5mV

8 ±0.512V 0.25mV

16 ±0.256 0.125mV

4.1.2 Circuit design

Due to the restriction of input-voltage to the ADC, the ADC was connected to the 5V supply on the
Arduino. This ensured that the analog input from the encoder, which was in between 0.5-4.5V, would not
exceed input-voltage of the ADC. Furthermore, as the purpose of the ADC was to increase the resolution
of the readings – it was decided that the encoder would be connected in differential-mode with the use
of a reference voltage. As the encoder voltage spanned 4V, the reference voltage was decided to be 2.5V.
According to (4.2), the voltage difference would be

∆V =

{
−2, if Vinput = 4.5V

2, if Vinput = 0.5V
, ∆V ∈ [−2, 2] (4.3)

Furthermore, the gain had to be adjusted accordingly to the expected voltage difference. As using the
standard gain would result in loss of resolution, the appropriate gain was decided to be 2. Choosing this
gain distributed the counts over the voltage interval ±2.048, as shown in table 4.1.

4.1.2.1 Reference voltage

In order to generate a reference voltage a simple voltage divider was designed by using a 10k trimpotmeter.
The trimpotmeter was connected between the Arduino’s 5V port and ground, as shown by Figure 4.3.
Despite the figure, the trimpotmeter is a single component with a variable resistance. The right setting
of the trimpotmeter was found by probing the output with an oscilloscope, and adjusting the resistance
until the desired voltage was achieved.
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Figure 4.3: 2.5V reference voltage using trimpotmeter

Furthermore, to allow for easy connection of the ADC to the breadboard – header pins was soldered onto
the chip.

Figure 4.4: Headers on ADS1015

The finished schematic of the circuit is shown in Figure 4.5, followed by an image of the actual circuit
in Figure 4.6. Note that the color of the wires between Figure 4.5 and Figure 4.6 does not necessarily
match.
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Figure 4.5: Schematic of Arduino circuit

Figure 4.6: Photo of Arduino circuit

As previously done with only the sensor connected, a simple code-snippet was written in order to see
which values the Arduino received from the ADS1015. As the encoder was turned a full revolution, the
counts ranged between -1963 to 1970 for a total of 3933 counts. From these values, the resolution of the
angle per count was estimated to be

360°
1970− (−1963)

=
360°
3933

≈ 0.0915°



CHAPTER 4. EXPERIMENTAL RESULTS 43

Compared to the previous test where the smallest change in the angle that was detectable by the Ar-
duino was close to 0.44°, the angle could now be determined with an accuracy of 0.0915°. However, it
was noticed that the full potential of the resolution was still not reached. As the gain used corresponded
to a 1mV span of each count, a voltage interval of 4V would ideally result in a total count of 4000. This
was a due to the Arduino’s inability to provide exactly 5V. The voltage of the port was measured to
be approximately 4.915V, which was a 0.085V deviation from the expected voltage. However, as the
deviation in voltage only resulted in a loss of resolution of about 0.0015 °, additional changes was not
done to the circuit.

Furthermore, a test was carried out where both the analog signal from the sensor and the digital signal
from the ADC was logged during rotation of the encoder. By using the function map in the Arduino IDE,
the range of counts for the two signals were mapped to values between 0 and 359.99 which represented
the angles. As this function was only to map one range of integers to another, the angle 359.99 was
written as 35999 and later divided by 100. The code which was used is shown in appendix 4.

Figure 4.7 shows the values registered by both signals during and arbitrary rotation of the encoder, and
it demonstrates that both readings tends toward the same angle.
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Figure 4.7: Comparison between analog and digital reading

However, if the figure is enhanced, the difference between the readings becomes more apparent. Figure
4.8 demonstrates that the analog signal changes its value in a much cruder fashion than the one from the
ADS1015. This is naturally a direct result of the difference in resolution.
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Figure 4.8: Closer comparison between the analog and digital reading

4.2 Laserplane calibration

In order to triangulate the pixel-coordinates of the camera into spatial coordinates during the scanning
process, the relationship between the laser and camera had to be determined. Following the proposed
method described in section 3.4, images had to be taken of the checkerboard from which the orientation
and position of the checkerboards could be calculated using the calibration software of Matlab. Further-
more, with the laserline being present on the checkerboard – the pixel-coordinates of the laserline could
be identified by performing a intensity reading of the same checkerboard with the same orientation and
position. Combining this information would make it possible to triangulate the pixel-coordinates of the
laserline to the checkerboards plane, which would result in spatial coordinates in the camera frame. With
enough spatial coordinates which was located on the laserplane, a pointcloud could be formed from where
further analysis would estimate the parameters of the plane.

4.2.1 Data generation

In order to generate a pointcloud of the points located on the laserplane, sufficient points from the
laserplane needed to be gathered. As mentioned in the introduction of this section, the data consisted
of images of the laserline being present on the checkerboards with a corresponding intensity-reading.
In order to collect both the images and intensity readings from a checkerboards pose, a program was
written in collaboration with Trym D. Hauglund. For each pose, the program configured the camera
into CoG-mode and performed an intensity reading. The intensity reading was formatted as an array of
size (2048,2) which contained the pixel-coordinates of the laserline. The array was then saved as a .npy
file, and the program proceeded to configure the camera to image-mode and an image was taken of the
checkerboard. The captured image was saved as a .png file in the same folder as the array. However,
as these two operations where asynchronous, the checkerboard was required to remain stationary while
the program finished. If the checkerboard was relocated between the two operations, the readings would
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result in a disparity and yield inaccurate results when the laserplane was to be estimated. Moreover,
as there was no live videofeed, placing the checkerboards correctly in the cameraframe proved to be a
time-consuming task. Many of the images taken had to be redone as parts of the checkerboard was not
properly captured by the camera.

As the pose of the checkerboard had been captured using CoG- and image-mode, the checkerboard
could be re-positioned and reoriented for another iteration of the program. Moreover, as it was necessary
to relate the images to the corresponding array-files, the files had to be saved in a systematic manner.
The images was named numerically, starting with the filename ”1.png”. Consequently, the corresponding
array-file would be named ”pixcoord 1.npy”, and so on. The code for this program can be found in
appendix 3.

For a total of 10 iterations, each pose of the checkerboard was analyzed first with the CoG-mode activated,
followed by image-mode as described by the program. The captured images was then analyzed using the
calibration software of Matlab in order to identify the checkerboards location and orientation in the
camera frame as shown in Figure 4.9.

Figure 4.9: Checkerboard poses

Moreover, the checkerboard used had a pattern of 7x9 with square-size of 20mm. The size allowed the
laserline to be present on the checkerboards for a larger variation of distances from the camera. This
was desired as more readings from different distances gave more information regarding the direction of
the laserplane. The square-size of the checkerboard was confirmed using a caliper, as a deviation would
result in errors of the extrinsic values. In order to accommodate the size of the checkerboard, the focus
of the lens was set to approximately 700 mm.

In addition, a proper camera calibration without the laser was carried out prior to this experiment –
as the laserline could influence the estimation of the intrinsic parameters (i.e the camera-matrix and
distortion coefficients).

An example of the analyzed images is shown in Figure 4.10, where the laserline can be seen present on
the checkerboard. The checkerboard corresponds to number 4 in Figure 4.9.
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Figure 4.10: Laser on checkerboard

The rotation matrix and translational vector corresponding to the checkerboard in Figure 4.10 was given
to be

Rcamchecker =


0.9716 0.1248 0.2009

−0.1079 0.9898 −0.09300

−0.2105 0.0687 0.9752

 t =


−52.78

−66.5694

720.931

 (4.4)

Furthermore, the extracted pixel-coordinates from the corresponding iteration is shown in Figure 4.11.
If compared to the actual image, Figure 4.10, the resemblance between the position of the laserline and
extracted pixel coordinates are apparent.

Figure 4.11: Extracted pixel-coordinates

It was noticed that the bright spot on the bottom right of Figure 4.10 was registered by the camera,
which also can be seen from Figure 4.11. As these pixels where not a part of the laserline, they had to be
removed from the data set to ensure correct estimation of the laserplane. As the camera was stationary
during the imaging-process, the bright-spot had the same location throughout the images which meant
the last pixels could simply be removed from the arrays.
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4.2.2 Point cloud generation

By using the data collected in the previous section, it was possible to express the surface of the checker-
board as a plane in the camera-frame. Using point-normal notation, the translational vector which was
the position of the checkerboards origin, represented a point on the plane. Furthermore, as each of the
columns in the rotational matrix represented the unit directions of the checkerboards axes – the vector
normal to the checkerboard could be directly extracted as being the last column of the matrix.

As shown in appendix 8, each of the .npy-files containing the extracted pixel-coordinates were loaded into
the script. In addition, the function loadCaliParam from section 2.7.3 was called in order to gain access
to the values gathered from the camera calibration. Due to systematic naming, the first .npy file that was
treated corresponded to the first rotation matrix and translational vector collected by the loadCaliParam
function. First, the function removed the faulty pixels-coordinates registered by the camera. Some of the
valid data points was lost during this process, however this was preferred over having incorrect readings
which was not located on the plane of the checkerboard. Furthermore, OpenCV’s function undistortPoints
was utilized in order to undistort the pixels in the array. The function is based on (2.30) and (2.31), and
calculated the undistorted pixel-coordinates according to the given distortion-coefficients. Furthermore,
by using (2.24), the function transforms the undistorted pixel-coordinates into metric coordinates in the
camera-frame. The homogeneous transformation is assumed to be 4x4 identity matrix as an external
coordinate system is not relevant in this context.

As the pixel-coordinates now was expressed in the camera-frame, they were converted to homogeneous
form by adding a third dimension which had length 1, as shown in line 31 in appendix 8. As location and
orientation was already expressed in the camera-frame, no transformation between frames was needed,
which implied that the theory behind line-plane intersection from section 2.9 could then be directly ap-
plied.

From (2.44), p0 could be set to be the origin of the checkerboard, and l0 could set to be the origin
of the cameras frame, n was the normal of the checkerboard and l was the unit direction of the normal-
ized pixel-coordinate. The resulting value for d, was then the distance from the camera to the point on
the checkerboard, in the direction l. The spatial coordinate was then calculated by (2.42) and appended
to an array dedicated for the extracted coordinates. Following the previous shown sample from Figure
4.10, with the values of (4.4) – the point-normal representation of the checkerboard was given by

n =


0.2009

−0.09300

0.9752

 d =


52.78

−66.5694

720.931

 (4.5)

When the pixel-coordinates of Figure 4.11 was triangulated to the plane, the spatial coordinates of the
laserline were calculated. The extracted coordinates for the laser on this checkerboard is shown in Figure
4.12.
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Figure 4.12: Spatial points of laserline

The procedure was repeated for all 10 images and corresponding .npy files, resulting in a pointcloud of
8818 individual points. These points formed the shape shown in Figure 4.13a. By inspecting Figure
4.13b, the shape of a plane is more apparent.

(a) Pointcloud front view (b) Pointcloud side view

Figure 4.13: Generated pointcloud

4.2.3 Plane fitting

As the triangulation process in this thesis relied on the laserplane being expressed in the cameras frame
– the pointcloud spanning the plane of the laser had to be further processed.

Three different methods where used in order to express the plane in the camera-frame. First a plane is
estimated by expressing the plane as a linear system from which the parameters of the plane are estimated
using matrix algebra. The two other methods is based on defining a cost function in which a optimization
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problem is solved. The difference between the two latter methods is the use of weights. The weights was
applied in an attempt to differentiate the uncertainty related to each of the points in the pointcloud.

4.2.3.1 Least squares plane estimation

As the pointcloud was available from the procedure in the previous section, this method of plane fitting
required small amounts of coding in order to achieve a representation of the plane. The code is shown in
appendix 9, and demonstrates the methods simplicity, as very few lines of code are needed. By applying
the theory from section 2.10.1, the matrix A and vector b could be formed. By arranging the x, y and
z-coordinates of the pointcloud, the system which expressed the plane could be formed.


x1 y1 1
...

...
...

xn yn 1



Ã

B̃

D̃

 =


−z1

...

−zn

 , Ax = b

The A-matrix was then evaluated to calculate the Moore-Penrose matrix.

M = (ATA)−1AT (4.6)

By multiplying the M -matrix with the z-coordinates, the resulting b-vector containing the estimated
coefficients was given as

x = Mb =


Ã

B̃

D̃

 =


−0.04915

−2.60167

−588.64971

 (4.7)

By inserting the values of Ã,B̃ and D̃ into (2.48), the equation of the estimated plane became

−0.04915x− 2.60167y − 588.64971 = −z (4.8)

Or on standard form,

0.04915x+ 2.60167y − z + 588.64971 = 0 (4.9)

Moreover, since it was the point-normal representation that was going to be used in the triangulation
process – the representation in 4.9 needed to be converted. By applying the theory from section 2.8, (4.9)
was transformed to point-normal representation using the planeify-function described in section 2.8.
The point-normal representation of the plane was then given by,

n =


0.04915

2.601567

−1

 , d =


0

0

588.64971

 (4.10)

The estimated plane was plotted with the pointcloud to illustrate its fit. As shown in Figure 4.14, the
plane was fitted to the apparent plane spanned by the pointcloud.
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(a) LS-plane (b) Side view

Figure 4.14: Least squares plane representation

4.2.3.2 Optimization using orthogonal distances

As described in section 2.10.2, the plane could be fitted to the pointcloud by considering the orthogonal
distances between the points and the fitted plane by evaluating the following cost-function.

min
n

N∑
i=1

((pi − c)T · n)2

s.t n2x + n2y + n2z = 1

(4.11)

In the given function, pi is an arbitrary point in the pointcloud defined in (2.45) containing N points. The
centroid of the pointcloud is given by c, and the normal vector of the fitted plane is n The optimization
problem was solved using the Python library SciPy which contained solvers for this type of problem.
A program was written which was able solve the problem shown in (4.11), but was also able to utilize
weights as this was the intention of the method in the next section. To solve the optimization problem,
the SciPy function minimize was used which needed three different inputs in order to render a optimal
solution. First, the cost function needed to be defined such that the minimize-function could evaluate
the cost associated with the given iteration of the normal-vector. This was done by defining a function
which corresponded to the cost-function (4.11), and is shown as cost func on line 31 in appendix 10.

Next, the minimize-function needed to be provided an initial guess for the solution of n. The code
was tested using different values for the initial guess and it did not alter the solution of the problem.
However, the normal vector outputted as the solution would change directions based on the initial guess.
As they both spanned the same plane, this was not of concern. Moreover, depending on the initial guess,
the convergence time would differ as the number of iterations would increase for initial guesses that were
located far from the solution. For simplicity, the initial guess was set to an arbitrary vector on the
unit-sphere.

Lastly, the constraint of the vectors length had to be defined. Following the documentation of SciPy, the
constraint was defined as a dictionary [37]. The dictionary contained information about what type of
constraint was used (i.e equality-constraint), and a function which allowed the optimizer to calculate the
value of the constraint. The function of the constraint can be seen on line 38 of appendix 10, and the
dictionary describing the constrain is defined on line 40.

Furthermore, the method applied to the minimize-function was SLSQP – which was a suited method
for solving a scalar cost-function with a nonlinear equality constraint [38]. As seen from the written code,
the optimization solver had two inputs, dictio and W. This was mainly due to compatibility with weight
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assignment and will be explained in detail in the next section. Furthermore, the output of the function
was the point-normal representation of the laserplane. The estimated n-vector was the corresponding
normal-vector and the centroid of the pointcloud was given as a point on the plane.

The finished function, called opt solver, calculated the plane based on the pointcloud and the defined cost-
function, which resulted in the following point-normal representation. The plot of the plane is illustrated
with the pointcloud in Figure 4.15a-b.

n ≈


0.01725

0.9335

−0.3581

 c = [19.95, 47.94, 714.65] (4.12)

(a) Optimized plane (b) Side view

Figure 4.15: Optimization plane representation

To supplement the solution given by the optimizer, another program was written that iterated through
vectors on the unit-sphere and evaluated the cost-function. The program used spherical coordinates, and
evaluated the cost corresponding to a total of 788768 different vectors on the unit-sphere.

The data was then illustrated using a Python package called PPTK (Point processing toolkit) [39] which
allowed plotting of a large number of points. Figure 4.16 illustrates the unit-sphere where the constraint
is active. The cost for the given vector is represented by the color of the point, where red represent
high cost and blue is low cost. As seen from the figure, there are two high-cost regions and two low-cost
regions. As explained previously the normal-vector tended to switch directions based on initial guess.
The two solutions are represented by the center of the two low-cost areas illustrated in Figure 4.16.
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Figure 4.16: Cost illustrated on a unit-sphere

Furthermore, the normal-vector recovered from the optimizer was added to the sphere in order to identify
the location of the sphere. Naturally, the point was located in the middle of low-cost area, marked with
a red dot in Figure 4.17.

Figure 4.17: Marked solution from optimizer

4.2.3.3 Optimization with weights

As described in section 2.7.2, the rotational matrices and the translational vectors gathered from Matlab
contained a certain amount of error. These errors translate to errors in the pointcloud, as both the
rotation-matrix and translational-vector is directly used in the calculation of the points. As a result, the
errors may cause the estimated plane to deviate from the actual laserplane. In an attempt to improve
the estimation of the laserplane, this error was now to be taken into consideration.
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Some of the images taken posed higher uncertainty than others. The goal was to force the estimated
plane towards the points with less associated error in the pointcloud. This meant that the deviation
from the more certain points (with less error) had to be penalized with a higher cost as well as it allowed
to deviate from uncertain points. However, this meant that the points extracted from the pointcloud
generation had to be labeled with which image it corresponded such that the correct weights could be
assigned. Due to this, the previously mentioned code which generated the pointcloud (appendix 8) had to
be modified. Instead of simply producing an array of spatial coordinates, it produced a dictionary which
labeled the extracted points with the name of the corresponding .npy file. As the different .npy-files was
through systematic naming directly linked to a corresponding image, the error to each extracted point
could be accessed using their assigned label. This modification is shown in appendix 11.

Furthermore, a function was written which calculated the weights of the points based on the error of
their corresponding checkerboard. Since both the errors in rotation and translation was given as vectors,
the magnitude of error was calculated as the magnitude of the vector. The function used the following
relationship in order to calculate the weights associated with each of the images.

Wj =
1

||erj ||+ ||etj ||
(4.13)

From (4.13) it can be seen that if the error related to one of the checkerboards is large - the weight will
tend towards a small number. Inversely, a small error will result in a larger weight.

The function, which is shown in appendix 12, used the error-vectors as input and calculated the weights
of each checkerboard and saved the weights in a dictionary with their corresponding label. For the 10
images used in section 4.2.1, the dictionary had the following format, where Wj is the weight to the given
checkerboard calculated by (4.13).

Wj =


”1” : W1

”2” : W2

...

”10” : W10


Moreover, as the dictionary containing the labeled pointcloud was provided to the opt solver -function,
coordinates of the points are recalculated as the distance between each point and the centroid. Note
that the number n is not necessarily the same of each of the labels as the different images had different
amount of extracted points.

Dj =


”1” : p1, ..., pn

”2” : p1, ..., pn
...

”10” : p1, ..., pn

→


”1” : p1 − c, ..., pn − c
”2” : p1 − c, ..., pn − c

...

”10” : p1 − c, ..., pn − c

 (4.14)

Furthermore, a cost-function was added to the optimizer-function described in the previous section. The
function was called sum func W and is shown in line 25 in appendix 10. The function iterated through
the distances stated in Dj , calculated the square of the distances and multiplied the previously defined
cost with the corresponding weight.

10∑
j=1

N∑
i=1

Wj [(pj,i − c) · n)]2 (4.15)

Where j corresponds to the label, and i is the iteration of the j th entry in Dj and Wj .
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From the 10 images of checkerboards used in generating the pointcloud, the error corresponding the
rotation is shown in Figure 4.18a-b.

(a) Error in rotation (b) Error in translation

Figure 4.18: Calculated error

Furthermore, based on the errors related to each image of the checkerboard – the following weights was
calculated and applied to the optimizer.

Figure 4.19: Calculated weights

Given the pointcloud and the weights shown in Figure 4.13, the optimizer calculated the following plane as
the optimal solution. As the centroid of the pointcloud is calculate in the same manner, the c-component
remained the same as the previously estimated plane.

n ≈


0.01785

0.9327

−0.3600

 c = [19.95, 47.95, 714.65] (4.16)
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(a) Weighted plane (b) Side view

Figure 4.20: Weighted optimization, plane representation

4.3 Estimated laser-planes

In order to compare the estimated planes numerically, all three of the estimated planes needed to be
expressed in standard representation. As the two planes estimated in section 4.2.3.2 and 4.2.3.3 were
expressed with point-normal notation, they were converted to the standard plane representation using
the function planeify.

Written in standard form, the estimated planes were as following.

Least Squares: 0.04915x+ 2.60167y − z + 588.64971 = 0 (4.17)

Optimizer without weights: 0.04818x+ 2.60709y − z + 588.70779 = 0 (4.18)

Optimizer with weights: 0.04801x+ 2.59103y − z + 589.48137 = 0 (4.19)

As shown in the three equations, there was only small differences separating the estimated planes.
Furthermore, in order to compare the plane representations with the actual setup, the angle between the
different laser-planes and camera was calculated. Using an online calculator [40], the angle between the
laserplane and the cameras plane where y = 0, was calculated.
The calculated angles were given as being,

Least Squares: 21.05°
Optimizer without weights: 21.00°

Optimizer with weights: 21.12°

As the angle between the camera and the laser was previously measured with a goniometer to be approx-
imately 20°, these values were in compliance with the actual setup. Furthermore, the angles were used to
calculate the distance between the camera and laser. As the constant values in the equations 4.17-4.19
corresponded to the distance in the cameras z-axis to the intersection of the laserplane – simple geometry
could be utilized. However, due to the similar values the average of both the angles and the constant
values was used.

d = sin(21.0566°) · 588.9463mm = 211.6mm

Compared to the distance on the actual setup that was measured to be in the region of 20 cm, the
distance of 21.16 cm was considered to be a realistic value.
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4.3.1 Accuracy of the estimated laser-planes

As it was difficult to distinguish the most accurate plane from the different plane-equations, an experiment
was carried out to determine the accuracy of the different laser-plane estimations.

In preparation of this experiment, the cameras focus was readjusted for a smaller field of view. This
was to increase the accuracy of the readings, as described by the resolutions in section 3.3. The focus
of the lens was manually set to a distance of approximately 500mm. Using a 10mm checkerboard and
following the calibration procedure described in section 2.7, several images was captured and provided
to the camera-calibration software. As the purpose of this calibration was only to identify the intrinsic
properties of the camera, the extrinsic parameters (e.g rotational matrices and translational vectors) was
not saved.

Moreover, as the adjustments done to the focus of the camera would not affect the relationship between
the camera and the laser – the estimated parameters of the laserplane was unaltered.

The identified camera-matrix and distortion-coefficients was identified as being

K =


2997.5 0 1020.3

0 2999.2 583.34

0 0 1

 Dc =
[
−0.0807 0.3690 −0.0041 0.0065

]
(4.20)

The new camera-matrix and distortion coefficients were saved locally, such that the dedicated triangula-
tion function could access them by loading the loadCaliParam-function. Furthermore, in order to decide
which of the estimated laser-planes to use in the scanning-process, an object with known dimensions
was 3D printed. The shape and relevant dimensions of the 3D-printed object is shown in Figure 4.22.
The different planes were tested in its accuracy along two different directions of the laser, namely the
x-direction and the z-direction according to Figure 4.21.

Figure 4.21: Directions of the laserline

Instead scanning the object once for each of the estimated laserplane, the object was scanned once and
the pixel-coordinates was stored locally as a .npy file. This assured that the three different laser planes
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were triangulated using the same pixels-coordinates as input, making the results more comparable.

Figure 4.22: 3D-printed test object

4.3.2 Accuracy in x-direction

In order to determine the accuracy in the x-direction, one of the distances on the object was scanned
as shown in Figure 4.23. The distance d, between the two points P1 and P2 was calculated using the
following expression, where Pi is the spatial coordinate with respect to the camera frame.

d =
√

(P2,x −P1,x)2 + (P2,y −P1,y)2 + (P2,z −P1,z)2 (4.21)
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Figure 4.23: Laserline on 3D printed object

Based on the FOV and focal length of the camera, the estimated resolution in this direction is given by
(3.7). The focal length of the camera can be estimated by analyzing the elements in the camera-matrix
retrieved from the calibration, which is stated in (4.20). Furthermore, as seen in the definition of the
camera-matrix in (2.33), the two elements 2997.5 and 2999.2 is the relationship between the focal length
and pixel-size. By using this definition, the focal length can be estimated by the following calculation.

f ≈ 2997.5 + 2999.2

2
· 5.5µm ≈ 16.49mm (4.22)

The average of the two elements are used under the assumption that the pixels are square.

Moreover, as the focus of the camera was set to a distance of approximately 500 mm, the resolution could
be calculated as

∆x =
5.5µm · 500mm

16.49mm
≈ 0.1667mm (4.23)

With the resulting theoretical resolution, the estimated laser-planes should be able to measure the dis-
tance from P1 and P2 with a deviation no larger than two times the theoretical resolution. This was
the result of the resolution being applied to both points, which in a worst case scenario may cause the
measured distances to deviate 0.3334 mm from the true value.

Furthermore, the object was scanned using the CoG-mode on the camera, which resulted in the pixel-
coordinates shown in Figure 4.24. The laserline on the wall in the background of Figure 4.23 was not
detected by the camera, which resulted in that the first and last pixel-coordinate in the array corresponded
to P1 and P2, respectively.
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Figure 4.24: Extracted pixel coordinates, x-direction

The pixel-coordinates shown in Figure 4.24 was triangulated with the function described in section 3.6,
with the three different planes that were estimated. From the design of the figure, the distance was
expected to be 60 mm, which was confirmed with a caliper.

4.3.2.1 Least squares

As the different pixels were triangulated using the plane from section 4.2.3.1, the coordinates of P1 and
P2 was calculated to be

P1 =
[
−29.4678 −32.3495 503.0382

]
P2 =

[
30.2890 −33.4016 503.2381

]
The distance between the two points were then calculated by (4.21) to be approximately 59.76 mm.

4.3.2.2 Optimized plane

The plane which was defined in the triangulation function was changed to the one calculated by the
optimizer without weights. Point P1 and P2 was given to be

P1 =
[
−29.4633 −32.3446 502.9625

]
P2 =

[
30.2812 −33.3930 503.1078

]
These points resulted in a distance of 59.75 mm.

4.3.2.3 Optimized plane with weights

Lastly, the plane calculated with adding weights to the optimizer was used to triangulate the pixels.
Using the same method as before, the resulting points was given to be

P1 =
[
−29.5283 −32.4160 504.0725

]
P2 =

[
30.3484 −33.4671 504.2241

]
The distance between the two points where calculated to be 59.88 mm.
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The following table could then be formed, where the deviation is the difference between the calculated
distance and the measured distance of 60 mm.

Table 4.2: Accuracy x-direction

Plane Calculated distance Deviation

Least squares 59.76 mm 0.24 mm

Optimizer 59.75 mm 0.25 mm

Optimizer with weights 59.88 mm 0.12 mm

4.3.3 Accuracy in z-direction

In this part of the experiment, the object was translated on the table such that the pixels corresponding
to both P1 and P2 of Figure 4.25 was present in the frame of the camera. As seen from Figure 4.22, the
distance between P1 and P2 should be approximately 40 mm. However, when the distance was measured
with a caliper, the actual distance was 40.5 mm. This was due to misprinting of the object, and might
be the result of thermal expansion of the material. However, as this deviation was identified – this did
not pose a challenge for the experiment.

Figure 4.25: Laserline on object
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Figure 4.26: Extracted pixel coordinates, z-direction

As previously, the distance between the two points was calculated using equation 4.21. However, the
points P1 and P2 could not be as easily extracted as previously. By analyzing the triangulated coordi-
nates, the different triangulated points were identified by the sudden drop in its z-component.

As the resolution in the x-direction was calculated to be approximately 0.1667 mm, the resolution in the
z-direction could be acquired by evaluating the following relationship.

∆z =
∆x

sinα
(4.24)

The triangulation-angle α was previously found by analyzing the estimated planes, which averaged to
approximately 21.0566°.

The resolution in the z-direction for the configuration could then be calculated as,

∆z =
0.1667mm

sin (21.0566°)
≈ 0.464mm (4.25)

Similarly to the previous section, this value represents the smallest change in height that is detectable
for the given configuration. The estimated laser-planes should ideally be able to determine the distance
between P1 and P2 with a deviation no larger than 0.928 mm.

The pixel-coordinates shown in 4.26 was triangulated using the different plane-representations, and the
points P1 and P2 were identified from the array of coordinates.

4.3.3.1 Least squares

By triangulating the points to the plane estimated by the least squares method, the following points were
identified.

P1 =
[
33.6354 −50.1306 459.8793

]
P2 =

[
42.0033 −35.9719 497.1269

]
Applying these points to (4.21), the distance between the two points were calculated to be roughly 40.73
mm.
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4.3.3.2 Optimized plane

Next, the pixel-coordinates was triangulated with the plane from the optimizer without weights. The
points P1 and P2 were identified to be

P1 =
[
33.6213 −50.1096 459.6869

]
P2 =

[
41.9906 −35.9611 496.9768

]
Again, by using (4.21), the distance was calculated to be 40.74 mm.

4.3.3.3 Optimized plane with weights

Lastly, the plane resulting from the optimizer with the use of weights was

The points were identified as being,

P1 =
[
33.7113 −50.2437 460.9169

]
P2 =

[
42.0866 −36.0433 498.1128

]
The resulting distance between the points were calculated to be 40.68mm.

The following table was then formed, where the deviation is the difference between the calculated distance,
and the measured distance of 40.5 mm.

Table 4.3: Accuracy z-direction

Plane Calculated distance Deviation

Least squares 40.73 mm 0.23 mm

Optimizer 40.74 mm 0.24 mm

Optimizer with weights 40.68 mm 0.18 mm

4.4 Rotary scan of cylindrical object

Due to time restrictions, it was not possible to travel to WellConnection such that an on-site experiment
could be performed. Instead, the combined system were tested using a 3D-printed cylindrical shape, as
shown in Figure 4.27. The object which was fitted with two holes, one to fit the shaft of the rotary encoder,
and a hole on the opposite side for support. In addition, the object was designed with another set of holes
10 mm off the center in order to simulate non-centric rotation. In turn, the 10 mm offset from the center
would imply that the distance between the object and laser would vary in the range of approximately 20
mm during one rotation. This was of interest as some of the drill-pipes at WellConnection’s facility was
reportedly rotating in a non-centric fashion.
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Figure 4.27: 3D-printed cylindrical object

As the program described in section 3.7 was initialized, the object was rotated one full rotation by hand.
The rotation was done with caution, not to obstruct the path of the laserline. Furthermore, as the object
had been rotated a full rotation, the scanning was terminated.

Figure 4.28 shows a sample of the generated dictionary, where this specific extraction corresponds to
the angle 306.71°.
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Figure 4.28: Sample of extracted pixel-coordinates at angle 306.71°

This process was then repeated with the support and encoder mounted in the off-center holes of the object
which invoked a non-centric rotation. The resulting .npy-files containing both the angular readings and
the pixel-extraction were saved locally such the data could be further processed.

However, upon inspection the files did not contain as many readings which was expected. The scan
from the centric rotation contained pixel-extractions from 878 different angles, and the non-centric con-
tained 1112. This was later identified to be caused by the cameras connection through USB, which heavily
influenced the rate in which readings could be acquired from the camera. Moreover, as the laptop that
was used in the experiments did not feature a connection port for the cameras communication cable, the
readings were accepted as grounds for further processing.

4.5 Visualization of the data

In order to visualize the readings in a more apparent manner, the reading extracted in the previous section
where transformed to an external coordinate system. In practice this would be a coordinate system which
could be related to both the camera and the welding robot. However, in order to visualize the geometry
which the readings represented – the homogeneous transformation to the rotary encoder was estimated.
By capturing an image of a checkerboard approximately at the location of the encoder, the calibration-
software of Matlab was once again utilized. The software returned the following rotation-matrix and
translational vector corresponding to the checkerboard.

Rcam
checker =


0.9993 −0.0091 0.0359

0.0203 0.9454 −0.3252

−0.0310 0.3257 0.9450

 tcamchecker =


−63.13

−69.66

541.81

 (4.26)
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From the theory regarding homogeneous transformation in section 2.3, the following transformation could
be defined from the camera to the checkerboard.

Tcam
checker =

[
Rcam
checker tcamchecker

0 1

]
=


0.9993 −0.0091 0.0359 −63.13

0.0203 0.9454 −0.3252 −69.66

−0.0310 0.3257 0.9450 541.81

0 0 0 1

 (4.27)

However, the position of the encoder was not located at the origin of the checkerboard. The offset from the
checkerboards origin to the encoder was approximately three squares in the checkerboards y-direction. As
the checkerboard used had 10mm squares, this distance was roughly 30 mm. Furthermore, by assigning
the encoders axis of rotation to be the x-axis, the rotation of the encoders coordinate system was included
in the transformation. The angle θ would then represent the angular reading of the rotary encoder.

Tchecker
enc =


1 0 0 0

0 cos(θ) − sin(θ) 30

0 sin(θ) cos(θ) 0

0 0 0 1

 (4.28)

The total transformation from the camera-frame to the encoder, was then given as

Tenc
cam = Tcam

checkerT
checker
enc (4.29)

As the pixel-coordinates were being triangulated into spatial coordinates with respect to the cameras
frame, they could be transformed into the encoders frame using (4.29).

p̃enc = Tcam
enc p̃cam = Tenc−1

cam p̃cam (4.30)

Moreover, as the pixel-coordinates got triangulated they were expressed as coordinates in the cameras
frame. As the experiments in section 4.3.2 and 4.3.3 indicated that the plane estimated with weights
had better accuracy, the pixel-coordinates from the scanning process were triangulated using this plane.
Furthermore, by applying the transformation 4.30, each of the points could be expressed in the encoders
frame. Additionally, since the key of the dictionaries entry was the rotation – the points where rotated
around the frames x-axis. By doing this transformation for all the triangulated points, a pointcloud
was generated which represented the shape of the object. The pointcloud was then illustrated by the
Python-package PPTK, where each point was coloured according to its distance from the encoders x-axis.

4.5.1 Centric readings

As seen in the Figure 4.29, the system was able to give a satisfactory representation of the objects shape
by applying the transformation (4.30). The difference in color relates to the distance from the frames
x-axis to the point – where a red color indicated a longer distance. The color is in that sense a reading
of the radius at a given point. Moreover, the figure illustrates the centric motion during the scan by an
even color around the cross-section of the representation.
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Figure 4.29: Centric representation - Sideview

Additionally, if the figure is seen from the front the centric motion becomes even more apparent. However,
the figure demonstrates the consequence of the reduced number of readings, as some of the angles did
not have a registered pixel-reading which is shown by the gaps around the figure.

Figure 4.30: Centric representation - Frontview

4.5.2 Non-centric readings

The same transformation was applied to the readings acquired from the non-centric scan. Figure 4.31a-b
illustrates the two sides of the figure which corresponds to the extremes of the distance between the object
and the camera. Figure 4.31a corresponds to the readings where the object was closest to the camera,
and the readings from 4.31b corresponds to the reading that was furthest away.

If the figure is seen from the front, the effects of the non-centric rotation is more easily noticed. Figure 4.32
demonstrates that as the object was rotated, the different readings where located at different distances
from the camera.
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(a) Extreme : Close (b) Extreme : Far

Figure 4.31: Non-centric representation

Figure 4.32: Non-centric representation - Frontview

4.5.3 Transformation to the laserplane

As the visualizations above does not directly contribute to information which can be utilized by a welding
robot, a different homogeneous transformation is proposed. If the laserliner scans the object in an angle
which represent a desired welding angle, the movement of robots end-effector can be locked in this plane.
As a result, the coordinates can be expressed as 2D-coordinates in the laserplane consisting only of
the x and z coordinates. As the coordinates corresponding to the objects curvature only occupies two
dimensions, the third dimension can be used to relate the objects curvature to its orientation.

The desired transformation is illustrated in Figure 4.33, where the steps of the transformation is as
follows.

1. Tc
1 : Translate the frame in the positive z-direction a distance of d1

2. T1
2 : Rotate the frame about the x-axis with the angle α (negative rotation)

3. T2
L : Translate the frame in the negative z-direction a distance of d2
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Figure 4.33: Transformation between camera and laser

In order to identify the dimensions d1, d2 and α – the information gathered from the analysis of the
laserplane in section 4.3 was utilized. As the points were triangulated using the weighted optimized
plane, the representation of this plane was used as basis in order to identify the dimensions. The distance
d1 corresponds to the constant in the representation in (4.19), which was 589.48mm. Furthermore, the
rotation required to align the z-axis with the laserplane corresponds to the triangulation angle, which
was calculated to be 21.12°. Lastly, the translation of a distance d2 in the negative z direction can be
computed with simple trigonometry where d2 = d1 cos (21.12°) ≈ 549.88mm.

Moreover, in order to implement the angular reading into the representation - the coordinates are trans-
lated in the y-direction of the laser-frame according to the angular reading.

Following the theory from homogeneous transformation in section 2.3, the required transformation were
formed.

Tc
1 =


1 0 0 0

0 1 0 0

0 0 1 d1

0 0 0 1

T1
2 =


1 0 0 0

0 cos(−α) − sin(−α) 0

0 sin(−α) cos(−α) 0

0 0 0 1

T2
L =


1 0 0 0

0 1 0 0

0 0 1 −d2
0 0 0 1

 (4.31)

With the inserted values for d1,d2 and α, the transformation Tc
L was calculated by performing the

following multiplication of the matrices.

Tc
L = Tc

1T
1
2T

2
L =


1 0 0 0

0 0.9328 0.3603 −198.1357

0 −0.3603 0.9328 76.5337

0 0 0 1

 (4.32)

In order to transfer the coordinates defined in the frame of the camera to this plane, the inverse TL
c was

computed.
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Tp
L =


1 0 0 0

0 0.9328 −0.3603 212.4033

0 0.3603 0.9328 0

0 0 0 1

 (4.33)

Such that,

p̃L = TL
c p̃c (4.34)

On this form, a fourth transformation was applied. This transformation translated the points in the
y-direction based on the angular measurement that they corresponded to.

TL
p =


1 0 0 0

0 1 0 θ

0 0 1 0

0 0 0 1

 (4.35)

The code which was written for the homogeneous transformation to the frame of the encoder and the
laserplane is stated in appendix 17 and 18, respectively.

4.5.3.1 Centric scan

Applying the stated transformations to the readings recovered from the centric scan, the shape in Figure
4.34 is given. The distance from the laser-frame to the points are coloured depending on their z-value,
where blue and red corresponds to shorter and longer distances, respectively. The coordinates are span-
ning the y-axis with their corresponding angle measurement θ, making the figure a function of curvature
with respect to orientation.

Figure 4.34: Centric : 2D data translated in angle dimension

Since the rotation of the object was centric while these readings where extracted, it can be seen that
the distance from the laser to the different sections of the object does not vary much as the object is
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rotated. Consequently, if the robot was to weld the leftmost groove, which corresponds to the red area,
the robot could place its welding gun with the corresponding x-coordinate and z-value. Due to the lack
of colour changes in the θ direction, the end-effector would not have to compensate for major changes in
the z-direction.

4.5.3.2 Non-centric scan

The same transformation was done with the readings from the non-centric scan. As seen in Figure 4.35,
the distance to the different sections of the object varies as it is rotated. This was however expected as
the distance from the laser to the object changed due to off-center rotation. If a robot were in this case
to weld the leftmost groove, it would have to compensate for the distance change in order to follow the
curvature of the object.

Figure 4.35: Non-centric : 2D data translated in angle dimension

4.6 Path estimation

Initially, the experiments and processing of data was concluded with the representations shown in the
previous sections. As an additional experiment, the path along the leftmost groove of the non-centric
readings is to be found. By inspection of the pointcloud shown in Figure 4.35, it was found that the
x-coordinate corresponding to the leftmost groove was approximately −7.0901. In theory, by collecting all
of the points with the same x-coordinate – the path formed in the theta direction should be extracted as
demonstrated in Figure 4.36. However, as the intensity-readings with the CoG-method uses 6 sub pixels,
it is highly unlikely that all the different readings along the θ-direction has a point which corresponds to
this exact x-coordinate. In fact, after iterating through all the points in the pointcloud – no other points
was found with precisely this x-coordinate.
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Figure 4.36: Desired path

However, by implementing slack in the point-extraction, neighbouring points of the original x-coordinate
can be included. Assuming the slack is sufficiently small, the additional points should result in inaccurate
results. The neighbourhood of points was defined as

Xn ∈ [x− ε, x+ ε] (4.36)

First, the slack-parameter ε was set to be 0.01 mm, meaning that neighbourhood of points Xn was given
by

Xn ∈ [−7.1001,−7.0801] (4.37)

The points in this interval is shown in Figure 4.37a. As illustrated by the figure, the slack of 0.01
mm resulted in points being added to the path. However, due to the large spaces between the readings,
ε was increased further. As the slack parameter was set to 0.05, additional points where introduced to
the path. As seen from Figure 4.37b the spaces between the readings was reduced.
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(a) ε = 0.01 mm
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(b) ε = 0.05 mm

Figure 4.37: z-coordinate and angle, ε = 0.01mm and 0.05mm
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Lastly, ε was set to 0.075mm. As shown in Figure 4.38, the path from 0 to 360 degrees has sufficient
z-coordinates from which a path can be recognized. Naturally, the top portion of the curve corresponds
to the read area in Figure 4.36 where distance is the furthers from the previously defined laser-frame.
Moreover, as it is not preferred to change the position of the end-effector in terms of discrete points –
this data was further processed used to calculate a continuous curve.
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Figure 4.38: z-coordinate and angle, ε = 0.075 mm

For demonstrative purposes the points were further treated using SciPy’s function polyfit in order to
retrieve a continuous curve representing the varying z-coordinate. Using the datapoints as input, the
datapoints are fitted to a polynomial of the desired degree [41]. The curve is fitted according to the least
squares problem

E =

k∑
j=0

|p(xj)− yj |2 (4.38)

After experimenting with different degrees of the function, the polynomial with a degree of 8 was found
to be the most resembling to the data given. The average error between the curve and the data-points
was stated to be approximately 0.081 mm. The estimated curve is illustrated in Figure 4.39, and the
code is stated in appendix 16.
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Figure 4.39: PolyFit processed path, ε = 0.075 mm, deg = 8



5. Discussion

In this chapter both the results and the methods performed to acquire them are discussed. In this regard,
some weaknesses related to the methods are mentioned, in which potential improvements are suggested.
Additionally, limitations of the performed experiments are discussed since they were not performed with
on-site conditions.

5.1 Laserplane calibration

From the laser/camera-configuration used in this thesis, the theoretical resolution is considered sufficient
when compared to the recommended accuracy when providing an input to a MIG-welding robot. The
results from the test performed on the three different laserplane-estimations indicated that their accuracy
was within the expected value with the given configuration. However, the plane that was estimated with
the use of weights proved to be more accurate when compared to the actual distances measured on the
object. This indicates that there are benefits associated with considering the magnitude of error corre-
sponding to the points in the pointcloud, compared to treating the points equally. However, the function
which calculates the weights corresponding to the errors can be further improved. As the translational
error tends to have a larger magnitude than the error of rotation, simply adding them is generally not
the best solution. For a more accurate weight system, the error in rotation specifically with respect to
the checkerboards x- and y-axis should be more heavily punished. This is reasoned from the fact that
the error of these two axes directly influence the orientation of the plane which the pixel-coordinates of
the laser are being triangulated with. In addition, when the pointcloud of the laser was being generated
– there was a potential for disparities between the extracted pixel-coordinates and the position of the
checkerboard. This was due to the image- and intensity-reading being asynchronous operations, and the
checkerboard was held by hand. If the checkerboard did not remain stationary between the two opera-
tions, the extracted pixel-coordinates would not be correctly related to the image of the checkerboard. To
minimize this effect, it is recommended to mount the checkerboard to a stand such that the checkerboard
remains completely stationary between the two operations.

Furthermore, as the final frame was transformed to the plane of the laser, this was done under the
assumption that the laser was perfectly aligned with the cameras horizontal direction. As seen from the
equations of estimated planes, the coefficient corresponding the the x-variable is non-zero. This coef-
ficient reflects the fact that a perfect alignment was not accomplished between the laser and camera.
In turn, this translates to that the coordinates which was stated to be only in two dimensions, have a
slight contribution in the third dimension. Since the third dimension was dedicated for the orientation
measurement, this contribution should be minimized. As it can prove to be difficult to perfectly align
the laser and camera, the simpler solution will be to add an additional rotation to the transformation
corresponding to the misalignment.

5.2 Path estimation

As seen in the estimated path from the results, the path demonstrates an accurate compensation for the
non-centric rotation. As the object was scanned during the non-centric rotation, the distance between
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the laser and object would vary 20 mm according to the 10 mm offset. This distance is reflected by the
estimated path of the z-coordinate, as it varies from roughly 398 mm to 418.5 mm for a total of 20.5
mm. As the value indicates, there is a deviation of 0.5 mm from the expected value of 20 mm. This
deviation can be justified by considering the theoretical resolution in the z-direction. As the resolution
was calculated to be approximately 0.464 mm, this could potentially result in a deviation of 0.928 mm
between the far and close side of the object. In addition, misprinting of the object might also cause some
deviation, but this was not considered as the deviation was within the theoretical resolution.

5.3 Limitations of the experiments

Since the results of the experiments are based on staged conditions, there are some aspects which needs
to be addressed. As the intended use of the system is to extract readings from machined drill-pipes,
there are challenges in terms of reflections which are not covered in this thesis. Since the surface of the
machined metal is to be considered reflective, the intensity of the reflected laser might cause pixels in
the camera to saturate. This effect may introduce inaccurate pixel-readings from the camera, which in
turn will result in inaccurate reading of the curvature. The implications of reflections may be controlled
with the use of a multiple slope-function, but since the object used in the experiments did not have a
surface comparable to metal, the effect of this was not documented. Additionally, during the experiments
the orientation of the object was acquired by simply connecting the encoder into a fitted socket. For an
on-site application, this manner of mounting the encoder is not as feasible. A potential solution would
be to mount the encoder to a surface that rotates in the same fashion as the pipes, such as the rotary
chuck that drives the pipes rotation. In that sense, a direct measurement from the axis of rotation is
recommended, as it does not rely on knowing the exact dimension of the pipe.

5.4 Compliance with the optimal welding position

It was stated by WellConnection that the optimal weld was achieved by placing the welding gun on the
top portion of the drill-pipe. To accommodate this, the top section of the pipe can be scanned such that
the laserline corresponds to the desired position of the welding gun. Consequently, the extracted readings
will correspond to the desired location of the welding gun as the drill-pipe is rotated. Furthermore, if the
end-effector is locked in the plane which was spanned by the laser during scanning, the only compensation
of movement required are the distance given by the varying height-function.



6. Conclusion and further work

6.1 Conclusion

This thesis demonstrates how the combination of angular measurement and laser triangulation can be
utilized to provide a positional reference for a potential welding robot. The calculated path of the
welding robot demonstrated a clear correspondence to the 20mm distance variation caused by the non-
centric rotation. Additionally, the theoretical resolution of the laser/camera-configuration is regarded
sufficient to be utilized as input for a MIG-welding robot. The most accurate estimation of the laserplane
was found by considering the individual errors corresponding to the points of the pointcloud. When this
plane was used to measure distances in the x- and z-direction, the deviation from the actual distances
were 0.12mm and 0.18mm, respectively. However, due to the nature of the experiments, there is an
underlying uncertainty related to the performance of the laser triangulation on the metal surface of the
drill-pipes. As this effect was not covered in the experiments, the author is unable to conclude with an
absolute conclusion in regards to feasibility. If the use of functions such as multiple-slope can ensure a
reliable extraction of pixel-coordinates despite the reflection, the proposed method should be a suitable
method of supplying a positional reference to a welding robot in terms of accuracy.

6.2 Further work

In order to determine if the proposed system can be utilized for machined drill-pipes, a study has to be
performed in order to identify how the the pixel-coordinates are extracted from the reflective surface on
machined metal. If the reflections result in the camera being unable to provide accurate pixel-coordinates,
a different method should be considered.

Additionally, throughout the thesis it has been assumed that the frame of the camera could be related to
the frame of the robot. This relationship needs to be identified if a robot is to utilize the points extracted
from the camera. In practice, this is achieved by performing hand-eye calibration, but as explicit use of
a robot was not part of this thesis – this type of calibration was not covered.

Lastly, the data presented in this thesis needs to be further processed. In this regard, a robust method
which can compute the path of the robot needs to be derived. In addition, logic needs to be implemented
such that the robot recognizes where to perform the weld.
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1 import numpy as np
2 import os
3 import glob
4

5 def loadCaliParam():
6 #path to the folder where the parameters are saved
7 caliParam_folder = "C:/Users/espen/OneDrive/Master/Laserplankalibrering

/Bilder_og_koordinater/Matlab" # home pc
8 os.chdir(caliParam_folder)
9

10 #Mean Reprojection Error
11 ret = np.loadtxt(’MeanReprojectionError.txt’)
12

13 #All Reprojection Errors
14 rets = np.loadtxt(’ReprojectionErrors.txt’)
15

16 #The Intrisinc Matrix
17 mtx = np.loadtxt(’./CalibrationConstants/calibratedCameraMatrix.txt’)
18

19 #Rotation Matrices and translation vectors between the scene and the
camera

20 tvecs = np.loadtxt(’TranslationVectors.txt’)
21 rMats = np.loadtxt(’RotationMatrices.txt’) # Note: this file contains

all the scene/camera rotationmatrices for each picture. It needs to
be reshaped from (#,3) into (#/3,3,3)

22 shp = rMats.shape
23 C = int(shp[0]/3)
24 rMats = rMats.reshape(C,3,3)
25 #Radial and tangential distortion coeffecients, dist = [k_1,k_2,p_1,p_2

[,k_3[,k_4,k_5,k_6]]]
26 dist = []
27 rDist = np.loadtxt(’./CalibrationConstants/calibratedRaddist.txt’) #k_1

and k_2, => k_3 = 0, this leads to dist = [k_1,k_2,p_1,p_2]
28 tDist = np.loadtxt(’./CalibrationConstants/calibratedTangdist.txt’) #

p_1 and p_2
29 dist.append(rDist)
30 dist.append(tDist)
31 dist = np.asarray(dist).reshape(1,4)
32

33 #Load rotational and translational errors
34 rotVecError = np.loadtxt(’rotVecError.txt’)
35 transVecError = np.loadtxt(’transVecError.txt’)
36

37 return ret,rets,mtx,tvecs,rMats,dist,rotVecError,transVecError

A 1: Import Matlab-generated text-files to Python
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1 import numpy as np
2 from loadCali import loadCaliParam
3 import cv2 as cv2
4 import time
5 def triang(pix):
6 t = time.time()
7 ret,rets,K,tvecs,rMats,dist,rotVecError,transVecError = loadCaliParam()
8 laser = np.load(’C:/Users/espen/OneDrive/Master/Laserplankalibrering/

Bilder_og_koordinater/laserplaneQP_W.npy’)
9

10 #1 Undistort the pixels
11 pix = pix.reshape(-2, 1, 2)
12 undistorted_pixels = cv2.undistortPoints(pix, K, dist).reshape(-1,2)
13

14 #2 Triangulate
15 ext_points = np.array([])
16

17 #Define lasernormal and laserpoint
18 ln = laser[0:3]
19 lp = laser[3:6]
20

21 l_0 = np.array([0,0,0])
22

23 for coord in undistorted_pixels:
24 coord = np.append(coord,1)
25 l = coord/np.linalg.norm(coord)
26 num = np.dot((lp - l_0), ln)
27 deno = np.dot(l,ln)
28 d = num/deno
29 fullcoord = np.array([l * d]) + l_0
30 ext_points = np.append(ext_points,fullcoord)
31 elapsed = time.time() - t
32

33 return np.reshape(ext_points,(-1,3))

A 2: Code for triangulation
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1 from AT_cx_functions import*
2 import cx.cx_cam as cam
3 import cx.cx_base as base
4 import time
5 from matplotlib import pyplot as plt
6 import cv2
7 import os
8 import glob
9

10 #Find and configure the device
11 hDev = getDevice()
12 cogConfig(hDev)
13

14 wd = getCurrentWD()
15 laserimage_folder = wd + "/laserimage"
16 if not os.path.exists(laserimage_folder):
17 os.makedirs(laserimage_folder)
18 print("Path made")
19 os.chdir(laserimage_folder)
20 #Snap an image of the scene in COG mode and save the output.
21 laserlinepixels = snap(hDev)
22 laserpixel = pixCoordify(laserlinepixels.ravel() / 64 , 2048) #reshape the

COG-image from (2048,) to (2048,2)
23 laserPixelList = os.getcwd().replace("\\","/") + "/*.npy"
24 laserImageList = os.getcwd().replace("\\","/") + "/*.png"
25 laserPixelList = glob.glob(laserPixelList)
26 laserImageList = glob.glob(laserImageList)
27 num_img = len(laserImageList)
28 img_thresh = 10 #number of images needed for a good calibration, n < 10
29 if laserPixelList == []:
30 save_name = wd + "/laserimage/pixcoord_1.npy"
31 np.save(save_name,laserpixel)
32 else:
33 n = len(laserPixelList) + 1
34 save_name = wd + "/laserimage/pixcoord_" + str(n) + ".npy"
35 np.save(save_name,laserpixel)
36 #Snap an image in image mode and save it
37 if cam.cx_getParam(hDev,"CameraMode")[1] != "Image":
38 imageConfig(hDev)
39 time.sleep(5)
40 if laserImageList == []:
41 save_name = laserimage_folder + "/1.png"
42 image = snap(hDev)
43 print("Image taken")
44 cv2.imwrite(save_name,image)
45 elif num_img < img_thresh:
46 print("\nNeed "+ str((img_thresh-num_img)) + " more pictures of

chessboard")
47 #copy the images already in the folder to a list
48 images = []
49 for fname in laserImageList:
50 images.append(cv2.imread(fname))
51 image = snap(hDev)
52 images.append(image)
53 n = 1
54 for img in images:
55 save_name = laserimage_folder + "/" + str(n) + ".png"
56 cv2.imwrite(save_name, img)
57 n = n + 1
58 if cam.cx_getParam(hDev,"CameraMode")[1] != "CenterOfGravity":
59 cogConfig(hDev)

A 3: Code for image and CoG-scan
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1 #include <Adafruit_ADS1015.h>
2 #include <Wire.h>
3 Adafruit_ADS1015 ads1015;
4 int analogInput = 0;
5 int val;
6 int16_t res;
7 float angle_analog;
8 float angle_digital;
9 void setup(){

10 pinMode(analogInput, INPUT); //assigning the input port
11 Serial.begin(9600); //BaudRate
12 ads1015.setGain(GAIN_TWO); //Set appropriate gain
13 ads1015.begin(); //Initiate the ADC
14 }
15 void loop(){
16 res = ads1015.readADC_Differential_0_1(); //Differential mode between A0

and A1
17 val = analogRead(analogInput);//reads the analog input
18 angle_analog = map(val, 104,921 , 0, 35999);
19 angle_digital = map(res, 1970,-1963 , 0, 35999);
20

21 Serial.print("Analog angle ");
22 Serial.print(angle_analog/100);
23 Serial.println(" ");
24 Serial.print("Digital angle ");
25 Serial.print(angle_digital/100);
26

27 delay(20);
28 }

A 4: Arduino code for comparison
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1

2

3 // This is very similar to Example 3 - Receive with start- and end-markers
4 // in Serial Input Basics http://forum.arduino.cc/index.php?topic

=396450.0
5 #include <Adafruit_ADS1015.h>
6 #include <Wire.h>
7 int analogInput = 0;
8 float angle;
9 const byte numChars = 64;

10 char receivedChars[numChars];
11 int16_t results;
12 boolean newData = false;
13 Adafruit_ADS1015 ads1015;
14 byte ledPin = 13; // the onboard LED
15

16 //===============
17

18 void setup() {
19 Serial.begin(115200);
20 ads1015.setGain(GAIN_TWO);
21 pinMode(ledPin, OUTPUT);
22 digitalWrite(ledPin, HIGH);
23 delay(200);
24 digitalWrite(ledPin, LOW);
25 delay(200);
26 digitalWrite(ledPin, HIGH);
27 ads1015.begin();
28 Serial.println("<Arduino is ready>");
29

30 }
31

32 //===============
33

34 void loop() {
35 recvWithStartEndMarkers();
36 replyToPython();
37 }
38

39 //===============
40

41

42 //===============

A 5: Robin2 Arduino code: Part 1
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1 void recvWithStartEndMarkers() {
2 static boolean recvInProgress = false;
3 static byte ndx = 0;
4 char startMarker = ’<’;
5 char endMarker = ’>’;
6 char rc;
7

8 while (Serial.available() > 0 && newData == false) {
9 rc = Serial.read();

10

11 if (recvInProgress == true) {
12 if (rc != endMarker) {
13 receivedChars[ndx] = rc;
14 ndx++;
15 if (ndx >= numChars) {
16 ndx = numChars - 1;
17 }
18 }
19 else {
20 receivedChars[ndx] = ’\0’; // terminate the string
21 recvInProgress = false;
22 ndx = 0;
23 newData = true;
24 }
25 }
26

27 else if (rc == startMarker) {
28 recvInProgress = true;
29 }
30 }
31 }
32

33 //===============
34

35 void replyToPython() {
36 results = ads1015.readADC_Differential_0_1(); //Differential mode

between port A0 and A1
37 angle = map(results, 1970, -1963, 0, 35999); // Map the counts to

values between 0 and 35999
38

39

40 if (newData == true) {
41 Serial.print("<Angular reading:");
42 Serial.print(" ");
43 Serial.print(angle/100);
44 Serial.print(" ");
45 Serial.print(’>’);
46 digitalWrite(ledPin, ! digitalRead(ledPin));
47 newData = false;
48 }
49 }

A 6: Robin2 Arduino code: Part 2



87

1 import serial
2 import time
3

4 startMarker = ’<’
5 endMarker = ’>’
6 dataStarted = False
7 dataBuf = ""
8 messageComplete = False
9

10 def setupSerial(baudRate, serialPortName):
11 global serialPort
12 serialPort = serial.Serial(port= serialPortName, baudrate = baudRate,

timeout=0, rtscts=True)
13 print("Serial port " + serialPortName + " opened Baudrate " + str(

baudRate))
14 waitForArduino()
15 def sendToArduino(stringToSend):
16 # this adds the start- and end-markers before sending
17 global startMarker, endMarker, serialPort
18

19 stringWithMarkers = (startMarker)
20 stringWithMarkers += stringToSend
21 stringWithMarkers += (endMarker)
22

23 serialPort.write(stringWithMarkers.encode(’utf-8’)) # encode needed for
Python3

24 def recvLikeArduino():
25 global startMarker, endMarker, serialPort, dataStarted, dataBuf,

messageComplete
26 if serialPort.inWaiting() > 0 and messageComplete == False:
27 x = serialPort.read().decode("utf-8") # decode needed for Python3
28 if dataStarted == True:
29 if x != endMarker:
30 dataBuf = dataBuf + x
31 else:
32 dataStarted = False
33 messageComplete = True
34 elif x == startMarker:
35 dataBuf = ’’
36 dataStarted = True
37

38 if (messageComplete == True):
39 messageComplete = False
40 return dataBuf
41 else:
42 return "XXX"
43 def waitForArduino():
44 print("Waiting for Arduino to reset")
45 msg = ""
46 while msg.find("Arduino is ready") == -1:
47 msg = recvLikeArduino()
48 if not (msg == ’XXX’):
49 print(msg)
50 def CollectAngle():
51 sendToArduino("Reqesting reading")
52 arduinoReply = recvLikeArduino()
53 while (arduinoReply == ’XXX’):
54 arduinoReply = recvLikeArduino()
55 if arduinoReply != ’XXX’:
56 return (arduinoReply.split(" ")[2])

A 7: Robin2 Python code
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1 ret,rets,K,tvecs,rMats,dist,rotVecError,transVecError = loadCaliParam()
2 os.chdir(’C:/Users/espen/OneDrive/Master/Laserplankalibrering/

Bilder_og_koordinater/LaserAndNpys’)
3 laser_npy = os.getcwd().replace("\\","/") + "/*.npy"
4 laser_npy = glob.glob(laser_npy)
5 number_of_laserfiles = len(laser_npy)
6 ext_points = np.array([])
7 j = 0
8 for i in range(1,len(laser_npy)+1):
9

10 RotM = rMats[j]
11 print(i)
12 tVec = tvecs[j]
13 n = RotM[2,:]
14 p_0 = tVec
15 l_0 = np.array([0,0,0])
16 filename = ’pixcoord_’ + str(i) + ’.npy’
17 pix_coord = np.load(filename)
18 k = 0
19 pure_coords = np.array([])
20 for reading in pix_coord:
21 if reading[1] != 0 and 650<=k<=1700 : #Remove pixels due to

interference, the second condition can be removed if the images
are clean

22 pix = [reading[0],reading[1]]
23 pure_coords = np.append(pure_coords,pix)
24

25 k += 1
26 pix_coord = pure_coords.reshape(-2, 1, 2)
27

28 undistorted_point = cv2.undistortPoints(pix_coord, K, dist).reshape
(-1,2)

29

30 for coord in undistorted_point:
31 coord = np.append(coord,1)
32 l = coord/np.linalg.norm(coord)
33 num = np.dot((p_0 - l_0), n)
34 deno = np.dot(l,n)
35 d = num/deno
36 fullcoord = np.array([l * d]) + l_0
37 ext_points = np.append(ext_points,fullcoord)
38

39 j = j + 1
40

41 ext_points = np.reshape(ext_points,(-1,3))

A 8: Generation of point cloud
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1 x = ext_points[:,0]
2 y = ext_points[:,1]
3 z = ext_points[:,2]
4

5 A = np.empty((len(x),3))
6 b = np.empty((len(x),1))
7

8 b[:,0] = -z
9 A[:,0] = x

10 A[:,1] = y
11 A[:,2] = 1
12

13

14 solution = np.linalg.inv((np.transpose(A) @ A)) @ np.transpose(A) @ b
15 print(’sol’,solution)
16

17 plane_vec = [float(solution[0]), float(solution[1]), 1]
18 norm_plane_vec = plane_vec
19 point_on_plane = [0,0,-float(solution[2])]
20

21 plane_representation = [norm_plane_vec[0],norm_plane_vec[1],norm_plane_vec
[2],point_on_plane[0],point_on_plane[1],point_on_plane[2]]

A 9: Least squares
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1 import numpy as np
2 import os
3 import glob
4 from scipy.optimize import minimize
5 from weightAssigner import weights
6

7 def opt_solver(dictio,W):
8 #Define Centroid of pointcloud
9 x_values = np.array([])

10 y_values = np.array([])
11 z_values = np.array([])
12 for key,val in dictio.items():
13 x_values = np.append(x_values,val[0::3])
14 y_values = np.append(y_values,val[1::3])
15 z_values = np.append(z_values,val[2::3])
16

17 [cx_, cy_, cz_] = np.array([sum(x_values)/len(x_values),sum(y_values)/
len(y_values),sum(z_values)/len(z_values)])

18

19 #Distance from each point to centroid
20 centroid_vectors = {}
21 for key,val in dictio.items():
22 centroid_vectors[key] = np.array([(val[0::3]-cx_),(val[1::3]-cy_),(

val[2::3]-cz_)])
23

24 def cost_func_W(n):
25 summ = 0
26 for key,val in centroid_vectors.items():
27 for k in range(len(val[1,:])):
28

29 summ += W[key]*(val[0,k]*n[0] + val[1,k]*n[1] + val[2,k]*n
[2])**2

30 return summ
31 def cost_func(n):
32 summ = 0
33 for key,val in centroid_vectors.items():
34 for k in range(len(val[1,:])):
35

36 summ += (val[0,k]*n[0] + val[1,k]*n[1] + val[2,k]*n[2])**2
37 return summ
38 def constraint(n):
39 return 1 - n[0]**2 - n[1]**2 - n[2]**2 #Vectorlength = 1
40 const = ({’type’: ’eq’, ’fun’:constraint})
41

42 n0 = np.array([1,1,1])/np.sqrt(3) #Initial guess of n-vector
43 if W:
44 sol = minimize(cost_func_W,n0,method=’SLSQP’,constraints=const,

options={’disp’:True})
45 print("Solving with weights")
46 else:
47 sol = minimize(cost_func,n0,method=’SLSQP’,constraints=const,

options={’disp’:True})
48 print("Solving without weights")
49

50 return sol,cx_,cy_,cz_

A 10: Optimization solver
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1 #Import values from calibration process
2 ret,rets,K,tvecs,rMats,dist,rotVecError,transVecError = loadCaliParam()
3

4 K_inv = np.linalg.inv(K)
5 os.chdir(’C:/Users/espen/OneDrive/Master/Laserplankalibrering/

Bilder_og_koordinater/LaserAndNpys’)
6 laser_npy = os.getcwd().replace("\\","/") + "/*.npy"
7 laser_npy = glob.glob(laser_npy)
8 number_of_laserfiles = len(laser_npy)
9 #print(number_of_laserfiles)

10 ext_points = np.array([])
11 j = 0
12 pixel_dict = {} #Sorts each extracted point in a dictionary based on image

such that weights can be correctly assigned
13 for i in range(1,len(laser_npy)+1):
14 pixel_dict.update({str(i):np.array([])})
15 RotM = rMats[j]
16 tVec = tvecs[j]
17 n = RotM[2,:]
18 p_0 = tVec
19 l_0 = np.array([0,0,0])
20 filename = ’pixcoord_’ + str(i) + ’.npy’
21 pix_coord = np.load(filename)
22 k = 0
23 pure_coords = np.array([])
24 for reading in pix_coord:
25 if reading[1] != 0 and 650<=k<=1700 : #Remove pixels due to faulty

points
26 pix = [reading[0],reading[1]]
27 pure_coords = np.append(pure_coords,pix)
28 k += 1
29

30 pix_coord = pure_coords.reshape(-2, 1, 2)
31 #Undistort the pixels from the file
32 undistorted_point = cv2.undistortPoints(pix_coord, K, dist).reshape

(-1,2)
33 for coord in undistorted_point:
34 coord = np.append(coord,1)
35 l = coord/np.linalg.norm(coord)
36 num = np.dot((p_0 - l_0), n)
37 deno = np.dot(l,n)
38 d = num/deno
39 fullcoord = np.array([l * d]) + l_0
40 ext_points = np.append(ext_points,fullcoord)
41 pixel_dict[str(i)] = np.append(pixel_dict[str(i)],fullcoord)
42 j = j + 1

A 11: Pointcloud with dictionary
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1

2 import numpy as np
3

4 def weights(Errors1,Errors2):
5 NumberOfImages = int(len(Errors1[:,0]))
6 temp_weights = {}
7 weights = {}
8 for i in range(len(Errors2[:,0])):
9 error = np.sqrt(Errors1[i,0]**2 + Errors1[i,1]**2 + Errors1[i

,2]**2)
10 temp_weights[str(i+1)] = error
11

12

13 for i in range(len(Errors2[:,0])):
14 t_error = np.sqrt(Errors2[i,0]**2 + Errors2[i,1]**2 + Errors2[i

,2]**2)
15 temp_weights[str(i+1)] += t_error
16

17 for key,val in temp_weights.items():
18 weights[key] = 1 / (val)
19 return weights

A 12: Function for calculating weights
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1 import numpy as np
2 from loadCali import loadCaliParam
3 import cv2 as cv2
4

5 def triang(pix):
6 ret,rets,K,tvecs,rMats,dist,rotVecError,transVecError = loadCaliParam()
7

8

9 #Switch between the different estimated laserplanes , point-normal
notation

10 laser = np.load(’C:/Users/espen/OneDrive/Master/Laserplankalibrering/
Bilder_og_koordinater/laserplane_QP.npy’)

11 #laser = np.load(’C:/Users/espen/OneDrive/Master/Laserplankalibrering/
Bilder_og_koordinater/laserplane_QPNW.npy’)

12 #laser = np.load(’C:/Users/espen/OneDrive/Master/Laserplankalibrering/
Bilder_og_koordinater/laserplane_LS.npy’)

13

14

15 #1 Remove pixels without any registered laser
16 coords = np.array([])
17

18 for pixel_coord in pix:
19 if pixel_coord[1] != 0:
20 coords = np.append(coords,[pixel_coord])
21

22 coords = coords.reshape(-1,2)
23 pix = coords
24

25 #2 Undistort the pixels
26 pix = pix.reshape(-2, 1, 2)
27 undistorted_pixels = cv2.undistortPoints(pix, K, dist).reshape(-1,2)
28 #3 Triangulate
29 ext_points = np.array([])
30

31 #Define lasernormal and laserpoint
32 ln = laser[0:3] #Laser normal
33 lp = laser[3:6] #Laser point
34

35 l_0 = np.array([0,0,0])
36

37 for coord in undistorted_pixels:
38 coord = np.append(coord,1)
39 l = coord/np.linalg.norm(coord)
40 num = np.dot((lp - l_0), ln)
41 deno = np.dot(l,ln)
42 d = num/deno
43 fullcoord = np.array([l * d]) + l_0
44 ext_points = np.append(ext_points,fullcoord)
45

46 return np.reshape(ext_points,(-1,3))

A 13: Triangulation-function for scanning
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1 def planeify(vector_plane):
2 if len(vector_plane) == 6: #For input [nx,ny,nz,cx,cy,cz]
3 #[A,B,C,D] from Ax + By + Cz + D = 0
4 plane = [vector_plane[0],vector_plane[1],vector_plane[2],-

vector_plane[0]*(vector_plane[3])-vector_plane[1]*(vector_plane
[4])-vector_plane[2]*(vector_plane[5])]

5 #Or on form [Ax + By + D] = z
6 plane_s = [-plane[0]/plane[2],-plane[1]/plane[2],-plane[3]/plane

[2]]
7 return plane,plane_s
8 if len(vector_plane) == 4: #For input [A,B,C,D]
9 n = [vector_plane[0],vector_plane[1],vector_plane[2]]

10 d = [0,0,-vector_plane[3]/vector_plane[2]]
11 return n,d
12 else:
13 print("Unknown representation. Check input.")

A 14: Converting from point-normal to standard plane representation
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1 from AT_cx_functions import*
2 from TriangulateReading import triang
3 import cv2 as cv2
4 import serial
5 import time
6 import numpy as np
7 import os
8 from arduinoComm import *
9 import serial

10 import msvcrt
11

12 #Find and configure the camera
13 hDev = getDevice()
14 cogConfig(hDev)
15

16 #Establish connection with Arduino
17 setupSerial(115200, "COM3")
18 #COMX depends on which USB-port the Arduino is connected to
19

20 #Create dictionary with angles as key and pixels as values
21 data = {}
22 #Variable for terminating the scanning process
23 k = ’dummy’
24

25 while True:
26 t1 = time.time()
27 #Snap an image of the scene in COG mode.
28 laserlinepixels = snap(hDev)
29 #reshape the COG-image from (2048,) to (2048,2)
30 laserpixel = pixCoordify(laserlinepixels.ravel() / 64 , 2048)
31

32 dict_key = CollectAngle()
33 data[dict_key] = laserpixel
34 t = time.time() - t1
35

36 #These conditions enabled manual termination of the scan
37 if msvcrt.kbhit():
38 k = str(msvcrt.getch()).replace("b’","").replace("’","")
39 if k == ’q’:
40 print("Scanning ended")
41 break
42

43 os.chdir(’C:/Users/espen/OneDrive/Master/Laserplankalibrering/
Bilder_og_koordinater/Extracted Readings’)

44 np.save(’angleandlaserreading.npy’,data)
45 print(’Readings saved’)

A 15: Program for scanning object
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1 import numpy as np
2 import os
3 from scipy import polyfit
4 import numpy as np
5 from matplotlib import pyplot as plt
6

7 os.chdir(’C:/Users/espen/OneDrive/Master/Laserplankalibrering/
Bilder_og_koordinater’)

8 data = np.load(’pcOffsetPlaneTrans.npy’)
9

10 epsi = 0.075
11 groove = -7.0901
12 dist_min = groove - epsi
13 dist_max = groove + epsi
14

15 path1 = np.empty((50000000,3))
16

17 k = 0
18

19 for points in data:
20 if points[0] >= dist_min and points[0] <= dist_max:
21 path1[k,:] = points
22 k += 1
23 path = path1[0:k,:]
24 avgX = sum(path[:,0])/len(path[:,0])
25 print(avgX)
26

27 np.delete(path,path[k:,:])
28 x = path[:,1]
29 y = path[:,2]
30 plt.scatter(x,y, label=’Datapoints’)
31 plt.ylabel("z-coordinate [mm]")
32 plt.xlabel("Angle [\xb0]")
33 plt.xticks(np.arange(0, 370, 30))
34 plt.yticks(np.arange(int(min(y)), int(max(y))+5, 2))
35

36

37

38 #Poly fit
39 number_of_points = len(x)
40 linsp = np.linspace(0, 360, 360)
41

42 [fit,resi,_,_,_] = np.polyfit(x, y, 8, rcond=None, full=True, w=None, cov=
False)

43 print(resi/number_of_points)
44 p = np.poly1d(fit)
45 print(p)
46

47 plt.plot(p(linsp),’-’,color=’r’, label=’Polyfit deg=8’)
48 plt.legend(loc=’upper right’)
49 plt.show()

A 16: Polyfit
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1 import numpy as np
2 from matplotlib import pyplot as plt
3 from mpl_toolkits.mplot3d import Axes3D
4 import os
5 from TriangulateReading import triang
6 import time
7 from decimal import Decimal
8

9

10 dir_path = os.path.dirname(os.path.realpath(__file__)).replace("\\", "/")
11 os.chdir(dir_path + ’/TestResults/Rotaryscan’)
12 #data = np.load(’angleandlaserreading.npy’).item() #Centric Test
13 data = np.load(’angleandlaserOffset.npy’).item() #Non-centric Test
14 keys = []
15 #Convert angle-strings to actual numbers
16 for key in data:
17 keys.append("{:.2f}".format(float(key)))
18

19 low_high_keys = sorted(keys)
20

21 #Construct uniform format to angular reading
22 for name in low_high_keys:
23 isShort = str(name).split(’.’)
24 if len(isShort[1]) == 1:
25 real_name = str(name) + str(0)
26 T_camChess = np.array([[0.9993,-0.0091,0.0359,-63.126109659696326],
27 [0.0203,0.9454,-0.3252,-69.662268476300030],
28 [-0.0310,0.3257,0.9450,541.8121286398493],
29 [0,0,0,1]])
30

31 cos = np.cos
32 sin = np.sin
33 #This function converts the points to the frame of the encoder
34 def convertPipe():
35 transPoints = np.empty([1525525,3])
36 cameraPoints = np.empty([1525525,3])
37 max_dist = 0
38 min_dist = 1000
39 count = 0
40

41 for key in low_high_keys:
42 rad = float(key) * np.pi/180
43 pixels = data[str(key)]
44 coord_points = triang(pixels)
45

46

47

48 T_chessEnc = np.array([[1,0,0,0],
49 [0,cos(rad),-sin(rad),30],
50 [0,sin(rad),cos(rad),0],
51 [0,0,0,1]])
52 T_camEnc = T_camChess @ T_chessEnc
53 T_encCam = np.linalg.inv(T_camEnc)
54

55 for point in coord_points:
56 transPoint = (T_encCam @ [point[0],point[1],point[2],1])[0:3]
57 if point[2] >= max_dist:
58 max_dist = point[2]
59 if point[2] <= min_dist:
60 min_dist = point[2]
61 transPoints[count,:] = [transPoint[0],transPoint[1],transPoint

[2]]
62

63

64 count += 1
65 return transPoints

A 17: Homogeneous transformation of pointcloud : Pipe
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1 #This function transforms the readings to a frame located approximately at
the plane of the laser

2 def convertPlane():
3 transPoints = np.empty([1525525,3])
4 count = 0
5 TransZ = np.array([[1,0,0,0],
6 [0,1,0,0],
7 [0,0,1,589.48137],
8 [0,0,0,1]])
9 RotX = np.array([[1,0,0,0],

10 [0,cos(-21.12 * np.pi/180),-sin(-21.12 * np.pi/180),0],
11 [0,sin(-21.12 * np.pi/180),cos(-21.12 * np.pi/180),0],
12 [0,0,0,1]])
13 TransZ2 = np.array([[1,0,0,0],
14 [0,1,0,0],
15 [0,0,1,-549.8846186],
16 [0,0,0,1]])
17 Trans = TransZ @ RotX @ TransZ2
18 T_plan = np.linalg.inv(Trans)
19 for key in low_high_keys:
20 rad = float(key)
21 pixels = data[str(key)]
22 coord_points = triang(pixels)
23 TransY = np.array([[1,0,0,0],
24 [0,1,0,rad],
25 [0,0,1,0],
26 [0,0,0,1]])
27 PointTrans = TransY @ T_plan
28

29 for point in coord_points:
30 transPoint = (PointTrans @ [point[0],point[1],point[2],1])[0:3]
31 transPoints[count,:] = [transPoint[0],transPoint[1],transPoint

[2]]
32 count += 1
33 return transPoints
34 clean_points = convertPlane()
35 #np.save(’pcOffsetPlaneTrans.npy’,clean_points)
36 print("File saved")

A 18: Homogeneous transformation of pointcloud : Laserplane
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