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Summary

In this report Multivariate Analysis methods are explored and evaluated for use on motion
data sets from preterm infants. The goal is to use these methods to classify which infants
have Cerebral Palsy through locating fidgety movements in the time series. A subset of
the motion data is analyzed and evaluated through both time and frequency domain. Us-
ing Fourier Transform on the motion time series gives a 93, 1% accuracy when applying
Quadratic LDA on PCA scores. Other features are extracted from the time series using the
HCTSA-framework [14] and Wavelet Transform, step detection and autocorrelation are
found to be interesting features that can be used in further research.
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Chapter 1
Introduction

1.1 Background and motivation

1.1.1 Cerebral Palsy

Cerebral Palsy (CP) is a syndrome of motor impairment that results from a lesion occurring
in the developing brain. The syndrome affects everyone differently and several classifica-
tion systems exists to assess the type and form of CP that an individual has. These classifi-
cations are defined according to the anatomical site of the brain lesion, clinical symptoms
and signs, topographical involvement of extremities and classification of degree of muscle
tone [2].

With advances in neonatal intensive care, the survival of very preterm (born 32 weeks
of gestation) and very low-birth-weight (VLBW) (weighing 1500 g) children has improved
considerably [23]. Cerebral Palsy has a prevalence of 2.0-3.5 per 1000 live-births [37], but
multiple studies demonstrate an increasing prevalence of CP with decreasing birthweight
and gestational age. In a report from Sweden, the prevalence of cerebral palsy was 6.7 per
1000 live births for children born at 32 to 36 weeks of gestation, 40.4 per 1000 live births
for children born at 28 to 31 weeks of gestation, and as high as 76.6 per 1000 live births
for children born before 28 weeks of gestation [20]. There was a similar increase when
looking at birth weight.

Because of the different classifications of Cerebral Palsy, prediction at an early age
is a challenge. About 85% of children with CP show an abnormal MRI scan, which can
provide an estimate of the timing of the lesion and whether it causes a motoric impairment.
However, MRI scans are not optimal for children. It requires them to lie still for 30 to 60
minutes, and the hollow tube is easily considered scary.

In a clinical report from 2013 [16], the American Academy of Pediatrics writes about
the importance of early diagnosis of Cerebral Palsy. In the report the Academy stresses
the importance of early diagnosis as a way to receive interventions that will help the child
master everyday tasks, increase mobility and improve their quality of life. Early diagnosis
can also address the ongoing anxiety parents have about their childs health condition [7].
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Chapter 1. Introduction

1.1.2 General Movement Assessment and Fidgety Movements

After birth, infants have a spontaneous movement pattern with a writhing character. At
the age of 6 to 9 weeks post term the form and character of the general movements change
from the writhing type into a fidgety pattern. These fidgety movements are defined as
an ongoing stream of small, circular and elegant movements of neck, trunk and limbs.
Fidgety movements in a healthy infant is a transient phenomenon; they emerge gradually
at 6 weeks, come to full expression between 9 and 13 weeks post term and taper off again
between the age of 14 to 20 weeks post term [17].

In 1997 Prechtl et al. presented a tool to predict motoric dysfunction in infants based on
their movement pattern [18]. The tool, known as General Movement Assessment (GMA),
uses fidgety movements as a marker for a normal neurological outcome. In [18], the 60
infants with abnormal and absent fidgety movements included 57 infants with an abnormal
outcome. 49 of the ones with abnormal FM had cerebral palsy and eight had developmen-
tal retardation or minor neurological signs. Only three were diagnosed as normal at age 2
years [18].

GMA provides a method to predict CP at an earlier age. GMA is also non-invasive,
cost-efficient and easy to learn for physicians [9]. A disadvantage is the subjectivity of the
physicians, but either way Prechtl et al. found this method to have a higher specificity and
sensitivity than ultrasound, where their method had a specificity of 96% and sensitivity
95% and ultrasound only 83% and 80%.

1.1.3 Related work

The study of fidgety movements in relation with CP is done is several studies [9] [34]
[18] [17] [1]. In some, physicians analyze the movements visually [9] [34] and in others
they use sensors like pressure sensitive mats, Kinect cameras and motion sensors [27]. In
2010, Adde et. al. [1] did a feasibility study on computer-based video analysis of general
movements and found it to be an objective and feasible tool for early prediction of CP in
high-risk infants.

The study of movements through data analysis is an active field of research. In [3],
Principal Components Analysis (PCA) and Probabilistic PCA are used for segmenting
motion capture data, only unordered sets of poses are analyzed and no information about
temporal dynamics is taken into account. In [22] Hidden Markov Model’s are applied to
discover groupings of similar objects motions observed in a video collection. [6] analyzes
movements and classifies them through Support Vector Machines. [24] estimates person-
independent head poses using Random Forest regression.

1.2 Goal and hypothesis

The main goal for this project is to develop a model that can evaluate and separate move-
ments from babies with CP from those without. This model will be trained on motion data
from a video database recorded as part of a large research project driven by Lars Adde and
his research group at St. Olav’s Hospital in Trondheim, Norway.
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1.3 Outline of this work

The hypothesis is that fidgety movements is recognizable as repeating movements in
the healthy babies. In this project, frequency of the motion data will be investigated with
the belief that the babies may do the fidgety movements at a certain frequency or frequency
range. Other features that finds repeating patterns in time series will also be investigated
closely. The field of computer learning algorithms has gained large success over the previ-
ous years, and the hypothesis is that a computer based model can obtain an accuracy that
is just as good, or better, as gestalt perception used by the physicians.

1.3 Outline of this work
This project and in the master thesis to come will analyze motion data from babies and
use multivariate methods to classify whether the movements indicate CP or not. The in-
put will be raw coordinate time series and suitable transforms thereof, and by means of
feature extraction, dimension reduction and classification I will investigate ways to get
the classification accuracy as high as possible and at the same time provide interpretable
results.

The report is structured as follows: Section 1 presents the background for the project
and motivation for the task, Section 2 looks into theory and methods for pre-processing
of the data and data analysis methods, Section 4 summarizes the results that are gained so
far and Section 5 briefly discusses the work that is going to be done in the master thesis
during spring 2019.
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Chapter 2
Theory and methods

Data mining is the process of discovering patterns in large data sets [11]. The full pro-
cess from raw data to classification can be divided into four parts, which are shown in
Figure 2.1. This analysis will go through the full process and find the best methods and
combinations of them.

2.1 Pre-processing
In computer science there is a saying: ”garbage in, garbage out” (GIGO) [15], which
describes the concept that bad input data can’t give good results, and instead produces
nonsense or ”garbage”. In order to avoid this it is needed to do some pre-processing of the
data before running the learning algorithms to produce good models.

One aspect of pre-processing is data cleansing, which is about detecting and correcting
corrupt or inaccurate parts of the data. This report will look into outlier detection and
removal through use of a Hampel filter.

Other aspects are centering and scaling. Centering of the data is done to remove the
constant levels[4], while scaling may be needed to account for differences in the measure-
ments that are known prior to the analysis.

2.1.1 Hampel filter
Hampel Filters is in the decision-based filter class, and is closely related to a standard
median filter as it uses the local median and median absolute deviation (MAD) to detect
outliers.

Given a sequence of data points, x1, x2, . . . , xn, and a sliding-window of length k, the
Hampel filter calculates the local median mi and standard deviation σi for each window.

mi = median(xi−k, xi−k+1, . . . , xi+k−1, xi+k) (2.1)

σi = κmedian(|xi−k −mi|, |xi−k+1 −mi|, . . . , |xi+k−1 −mi|, |xi+k −mi|) (2.2)

5



Chapter 2. Theory and methods

Figure 2.1: Overview of full classification system.
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2.2 Feature Extraction and Feature Selection

where κ = 1√
2erfc1 1

2

≈ 1.4826

A sample xi is declared an outlier if it is such that

|xi −mi| > nσσi (2.3)

for a given threshold nσ . If the point is marked as an outlier it is replaced with mi.
The Hampel filter has the advantage that it doesn’t introduce distortion into the signal.

A standard median filter replaces every point with the median of the window which can
lead to information getting lost, which makes the Hampel Filter better.

2.1.2 Centering

Given a vector, X , the centered vectorXc is obtained by calculating the mean of the series
and substracting this from every entry in the original vector.

Xc = X −mean(X) (2.4)

2.1.3 Scaling and normalizing

Scaling of data sets can be done in various ways. A common way is to standardize the data
set by making them unit-variant:

Xsc =
X −mean(X)

standard deviation(X)
=

Xc

σ
(2.5)

Another method is the min-max-normalization (or min-max scaling) which scales all
features to be within a given range:

Xsc =
X −min(X)

max(X)−min(X)
(2.6)

2.2 Feature Extraction and Feature Selection

In order to build a good predictor, good features are needed. Features are measurable prop-
erties or characteristics of the phenomenon being observed, and usually the term ”features”
for variables constructed from the input variables is used while the raw input variables are
called ”variables” [21]. There are thousands and thousands of features that can be cal-
culated from a time series data set [14], and in order to build a computationally effective
model one should select the best subset of them to use in developing a model. There
are many benefits of feature selection: simplification of the model to make it easier to
understand and interpret, reducing the measurement and storage requirements, reducing
training and utilization times, defying the curse of dimensionality to improve prediction
performance and enhanced generalization as it reduces overfitting [12] [21].
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Chapter 2. Theory and methods

2.2.1 Feature extraction
There are several ways to extract features from the variables [21], including: clustering,
basic linear transformation of the input variables (e.g. PCA/SVD, LDA), more sophis-
ticated linear transforms like spectral transforms (e.g. Fourier), wavelet transforms or
convolutions of kernels.

Fourier Transform

To gain insight in the frequencies present in the signal one can perform Fourier Analysis
to do a transformation from time domain to the frequency domain. The definition of the
Discrete Fourier Transform for a given signal X is given as

X̂FT (k) =

N−1∑
j=0

X(j)W jk
n (2.7)

where Wn = exp (−2πi)/N .

Wavelet transform

The Wavelet Transform is in principle the same as a Fourier Transform, but instead of
decomposing the signal into infinite waves (sinusoids) the signal is decomposed using
wavelets using a wavelet analyzing function ψ∗jk(t).

The signal is divided into shorter segments and a Wavelet transform is calculated on
each segment. Each segment varies in size, which gives a flexible resolution in both time-
and frequency-domains. In contrast with sinusoids, wavelets are localized in both the time
and frequency domains, so wavelet signal processing is more suitable for nonstationary
signals than the Fourier Transform.

When using Wavelet transform for decomposing of a signal an iterative procedure is
followed. Starting with the signal s one computes two sets of coefficients at each iteration:
the approximation coefficients and detail coefficients.

First, s is sent in parallel through a low-pass filter F and a high-pass filter G, both
followed by downsampling. This produces the approximation coefficient cA1 and detail
coefficient cD1. See Figure 2.2. The approximation coefficient cA1 is then sent through
the filters again to produce the next set of coefficients. This proceeds until the given
number of levels is reached.

EMD

The Empirical Mode Decomposition (EMD) is a method to decompose a signal into a fi-
nite set of components which can be described as intrinsic mode functions (IMFs) [19].
Finding the IMFs is done by a process called sifting, which iteratively improves the esti-
mate of the IMF. The iterative sifting process is repeated until the IF fulfills the following
criteria[8]:

1. The number of extrema and number of zero crossings must either be equal or siffer
by at most one.

8



2.2 Feature Extraction and Feature Selection

Figure 2.2: Discrete Wavelet Analysis through filter banks.

2. The mean value of the upper and lower envelope is zero at any point.

The method is comparable to a Fourier Transform as it breaks the signal down into its
components, but since the decomposition is based on the local characteristic time scale of
the data, it can be applied to nonlinear and nonstationary processes[19].

Cross-correlation

Cross-correlation is a measurement of similarity between two signals.
Cross-correlation for discrete signals is defined as

(f ? g)[n]
def
=

∞∑
m=−∞

f∗[m] g[m+ n] (2.8)

where f∗ denotes the complex conjugate of f . The cross-correlation of the two signals,
f(t) and g(t), is equivalent to the convolution between f(−t) and g(t).

One property of cross-correlation that is often used in implementations is that

F {f ? g} = F {f}∗ · F {g} (2.9)

where F denotes the Fourier transform, and an asterisk indicates the complex conjugate.
Using fast Fourier Transform algorithms for computing cross-correlation can give more
efficient computations [10].

Autocorrelation

Autocorrelation is cross-correlation between a signal yt and a lag of the same signal, yt+k,
where k = 0, . . . ,K.

Algorithms for computing autocorrelation is usually implemented using Fourier Trans-
form. Fourier Transform is used to compute the autocorrelation function in the frequency
domain, then converts back to time domain using an inverse Fourier Transform.

9



Chapter 2. Theory and methods

2.2.2 Feature selection
[21] stated that there are mainly three different ways of doing feature selection: wrappers,
filters and embedded methods. Wrappers utilize the learning algorithm of choice as a black
box and scores subsets of features according to their predictive power. Filters select subsets
as a pre-processing step, independently of the learning algorithm. Embedded methods
perform feature selection embedded in the training process and are usually specific to
given learning algorithms.

2.2.3 HCTSA
In 2017, Ben D. Fulcher and Nick S. Jones presented HCTSA (Highly Comparative Time-
Series Analysis): a computational framework for feature extraction from time-series. The
comparative feature-based approach to time-series classification was first introduced in
[13] and then the computational framework was presented in [14]. HCTSA includes an
architecture for computing over 7700 time-series features and a suite of analysis and vi-
sualization algorithms for use in selecting useful and interpretable features for a given
application. It includes classification algorithms and computes which features are most
important in this classification.

HCTSA is MATLAB-based, and in this analysis it’s used as a way of extracting multi-
ple features in a tidy manner and then analyze which features are worth looking into. The
features that shows most promise will then be analyzed further with PCA and PARAFAC.

2.3 Exploratory Data Analysis
From an early age people are told that the easiest way to investigate a problem is to do
it piece by piece. In mathematics this is done by changing one variable at a time to see
how the system reacts, only this is too simple for most complex real life systems. With
a large number of variables with unknown, complex relationships Multivariate Analysis
is needed. Multivariate Analysis is a way of investigation a large number of variables
simultaneously to understand the relationship that may exist between them [33]. For small
data sets with few variables it may be enough to present the data as disjointed graphs, but
for big data sets this will be too complex and it will be very hard to find the dependencies
manually.

Exploratory Data Analysis (EDA), or data mining, attempts to find the hidden structure
in large, complex data sets. EDA finds the structure that results from the influence of
all variables acting simultaneously, not just the influence of one variable. The two main
methods used in EDA are cluster analysis and Principal Component Analysis.

2.3.1 Principal Component Analysis
Principal Component Analysis (PCA) is a method that analyzes the variability in a data set.
It’s a mathematical procedure that transforms a number of variables into a smaller number
of orthogonal variables called principal components (PCs). PCA transforms the data using
an orthogonal linear transformation onto a new coordinate system, where the coordinates

10



2.3 Exploratory Data Analysis

Figure 2.3: PCA decomposition

are the principal components. The PCs are extracted so that the first PC explains a larger
part of the total variance than the next PC, and so on. This can be visualized in the terms
of the eigenvalues, often in a cumulative way.

Given a zero-mean data matrix X , with n rows containing data from a new repetition
of the experiment and p columns each gives a particular feature, the PCA splits X into a
structure part M and an error part E.

X = Structure+Noise = M +E (2.10)

The structure matrix M may be regarded as a sum of contributions from different
functions of the rows and columns

M = f(columns) · g(rows) (2.11)

where each function can be approximated by a linear model, which together forms

M = TP T (2.12)

The matrix T contains the scores and the matrix P T contains the loadings. The decompo-
sition is shown in Figure 2.3. The scores and loadings can be estimated in different ways,
e.g. through Singular Value Decomposition (SVD) or the NIPALS algorithm [28].

A non-trivial task when using PCA is choosing the number of dimensionality, aka the
number of principal componentsA. A model with a high percentage of explained variance
is wanted, but one does not want to include the noise in the scores and loadings. The
validation methods of Section 2.5 will be used to find A.

Singular Value Decomposition

Given the matrix X of size n× p, the singular value decomposition of X is

X = USV T (2.13)

where U is a n × n unitary matrix, S is a diagonal n × p matrix with non-negative real
numbers on the diagonal, and V is a p × p unitary matrix. In PCA, the matrix V defines
the loadings,

V = P (2.14)

and U and S together form the scores

T = US (2.15)

.
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Chapter 2. Theory and methods

Figure 2.4: PARAFAC decomposition

2.3.2 PARAFAC

Parallel Factor Analysis (PARAFAC) is a generalization of PCA to higher order arrays
[4]. An example of another method of higher order PCA is the Tucker3 decomposition.
A decomposition of the data is made into trilinear components, as shown for three-way
data in Figure 2.4. Instead of one score vector and one loading vector, as in PCA, each
component consists of one score vector and two loading vectors. A PARAFAC model of a
three-way array is given by the matrices A, B and C with elements aif , bjf and ckf such
that:

M =

F∑
f=1

af ⊗ bf ⊗ cf (2.16)

where ⊗ is the Kronecker product. The Kronecker product, also called the matrix
direct product, of a k × ` matrix A and a m× n matrix B is the km× `n matrix:

A⊗B :=


a1,1B a1,2B · · · a1,`B
a2,1B a2,2B · · · a2,`B

...
...

. . .
...

ak,1B ak,2B · · · ak,`B

 (2.17)

where ah,j denotes the element of A in row h and column j.

2.4 Classification

The problem of classification is to identify which category or class a new observation
belongs to [31].

There are numerous different classification algorithms. Some examples are: Linear
Discriminant Analysis, PLS-DA, Support Vector Machines, Random Forests, Neural Net-
works and Cluster analysis (e.g. K-means).

PLS-DA Partial Least Squares Discriminant Analysis (PLS-DA) is a variant of PLS re-
gression to use when Y is categorical, i.e. represents a class. PLS-DA is performed in
order to sharpen the separation between groups of observations, by hopefully rotating the
PCA components such that a maximum separation among classes is obtained, and to un-
derstand which variables carry the class separating information [5].
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2.4 Classification

SVM Support Vector Machines (SVM) separate a set of binary-labeled training data by
means of a hyperplane that is maximally distant from the two classes. The function that
maps the variables onto the new space is called a kernel function, and there is no theoretical
tool to find the best one. There are several options, such as a linear function, polynomial
function or the Radial Basis function [36]. In addition to being dependent on the choice of
kernel function, SVMs are in risk of overfitting.

SVMs are widely used in classification. [6] uses SVMs to classify motion from a set
of filtered images, [29] uses SVM for nonlinear prediction of chaotic time series, [30] uses
multi-class SVM for recognition of abnormal human activity and [26] uses a SVM-based
computer-aided diagnosis system for early detection of Alzheimer’s disease.

Random Forests Random Forests (RF) are built from individual decision trees, where
a random subset of variables is selected for each tree. Random Forest is unexcelled in
accuracy among current algorithms, and runs efficiently on large data bases [36]. An
advantage for the classification problem for this method is that it gives an estimate and
visuliazation of which variables that are important.

Random Forests has become a popular technique for both classification, prediction,
studying variable importance, variable selection and outlier detection. Examples of studies
where RF have been applied and compared are explored as a survey in [35].

2.4.1 Score vectors from PCA as input to classification methods

In traditional classification problems one extract and selects features from a data set and
applies the classification algorithm directly on these features. The feature selection step is
done in various ways (see Section 2.2), but this report will focus on using EDA-methods
to reduce the feature space. Both PCA and PARAFAC can reduce numerous features or
variables down to the most important ones and can be used to make the classification step
more efficient.

The way to do this is to use the score-vector from PCA or PARAFAC as input to the
SVM, as opposed to the features or variables directly. This leads to a smaller feature set,
and the SVM will be less in risk of overfitting and also the noise part of the input matrix
X is removed. In this context it is not so critical if one or two components ”too many” are
used as input to SVM. Note that validation of such a procedure must be done by dividing
the samples into calibration and test set before PCA is computed. The test set samples are
then projected onto the PCA based on the calibration set prior to classification with SVM
or another method of choice.

In [26] they have used kernel PCA and LDA as dimension reduction and feature extrac-
tion before training a SVM. This lead to a simpler classification line and a lower number
of support vectors to be evaluated. They also reduced the number of features necessary
to describe the data distributions sufficiently for a SVM classifier down to 4, solving the
small sample size problem of multivariate analysis.
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Figure 2.5: Test set validation.

2.5 Validation

In order to validate that a classification model is useful for new data and evaluate how
well it performs one needs validation methods. Conceptually it is distinguished between
external and internal validation; external validation concerns whether it is used correct
information in making of the model and validating that different models give the same
results, while internal validation is based on numerical validation. Some internal validation
methods are cross validation, test set validation and cross model validation.

2.5.1 Test set validation

For test set validation the full data set is split into two groups: test set and training set.
The model is built with the training samples and then the prediction error is computed by
predicting the outcome for the test samples.

A challenge with test set validation is how to split the data set. Splitting at random is
not sufficient, as it will be subgroups in the data due to underlying sources of variation.
In this context this could e.g. be ethnicity of the infants or age group. An algorithm
developed to split the data is the Kennard-Stone sampling algorithm (KS). It selects a
subset of samples that has an uniform distribution over the predictor space, and hence tries
to avoid the problem of subgroups in the two sample sets.

Kennard-Stone algorithm

KS iteratively selects the pair of points in the set that are farthest apart until the required
number of samples have been chosen. For each step it computes the distance d between
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Figure 2.6: Cross-validation.

each unassigned points i0 and selected points i and finds the point i0 for which:

dselected = max
i0

(min
i
(d(i0, i)) (2.18)

This selects point i0 which is the farthest apart from its closest neighbors i in the
calibration set. Measuring the distance can be done in several ways, but the distance
measurement used in the implementation in [32] is Euclidean distance:

d(i0, i) =
√

(i0 − i)2 (2.19)

2.5.2 Cross validation
In cross validation it is iteratively chosen a new subset of samples to be training and test
set.

The procedure is as follow: pick out k samples from the calibration set and build a
model with the remaining samples. Predict the outcome on the k left-out samples and
calculate the residual. Put these samples back into the calibration set, and repeat the pro-
cedure until all samples have been left out at least once. Combine the prediction residuals
for all iterations.

In cross validation, all samples are used in both training and testing. This avoids the
problem of subgroups in the sample set. It is also applicable to smaller data sets that doesnt
have sufficient number of samples to take out an independent test set.
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Chapter 3
Problem definition and dataset

3.1 Problem definition
The goal for this project is to use multivariate methods to analyze motion data and separate
healthy subjects from those with Cerebral Palsy. The goal is to find the fidgety movements
using computer based analysis and use those movements to separate.

The movements are not easy to recognize, and several steps will be taken towards
finding them. Feature extraction will be done by computing several numerical features for
each of the timeseries. Then a dimension reduction will be done on the features to find
the most significant ones. The classification algorithm will then take the reduced feature
space as input and separate the two classes.

To be able to use this model for CP-prediction, the results must be interpretable. The
model will be evaluated based on its classification accuracy, but an important step will also
be to look into what numerical features separates the groups the most. Feature extraction
will also focus on finding features that are physically interpretable. An example of a
physical interpretation of a numerical feature is that correlation between to timeseries will
tell us how two body parts move together (or independently).

The model must also be computationally efficient. The training process will evaluate
a big set of features and therefore needs a less stricter time limit, but the finished model
must be computationally inexpensive to use for classification of new subjects.

The model should also be as easy as possible. A good rule of thumb is that if two
algorithms gives the same result, choose the one that is less complex.

3.2 The data set
The data in this project comes from a database of 900 standardized video recordings at St.
Olav’s University Hospital of infants at risk of neurological dysfunctions from Norway,
USA and India. The video’s are analyzed using a tracker algorithm developed in a master
thesis in 2018 done for the InMotion project. The output of this tracker algorithm is
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Figure 3.1: Overview of collection of raw data.

timeseries for the x- and y-coordinates for 7 segments on the infants in the videos. This
tracking is done on 378 of the videos which gives 378 × 14 timeseries. These coordinate
timeseries are the input for the model developed through this project. In the future it is
hoped to expand this set by using the tracking algorithm on more of the videos, but this is
still a work in progress. An overview of this data collecting system is shown in Figure 3.1.

The coordinates are normalized so that the coordinate system is the same for every
frame. This is shown in Figure 3.2. Here it is shown that origo is set it the top left corner,
and max value for both x and y is 1. Normalizing the coordinates makes movement in the
x-direction seem bigger when looking at plots of the time-series. The amplitude change is
bigger, but this is simply due to the fact that the video’s are mainly filmed with a 9 : 16
ratio. A graphic representation of the data structure is shown in Figure 3.3, where, for the
time being, I = 378, K = 14 and J varies.

Plot of the data from two subjects is shown in Figure 3.4 and 3.5. Every subject has
14 time-series of the same length, but the length of the time-series vary with the subjects.
This is because the video’s are of varying length.

3.2.1 Errors from tracking
The time-series for the coordinates are made through analyzing video’s frame by frame.
There is no comparison of the tracking between frames, so if a segment is labeled wrong
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Figure 3.2: Coordinate system on video frames.

Figure 3.3: Data structure.
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Figure 3.4: Raw data from a subject with CP.
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Figure 3.5: Raw data from a healthy subject.
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Figure 3.6: Typical tracking error in original data.

the model does not correct it. The score for each labeling is not part of the dataset, but
some of the errors are still quite visible. One example is shown in Figure 3.6. Here it is
shown that the y-coordinate jumps from ∼ 0.3 to ∼ 0.7 for the right arm from one frame
to the next. One frame corresponds to ∼ 90cm in real life, which means that a change in
amplitude of 0.4 means that the baby would have to move ∼ 36cm back and forth in 1/24
second.

The pinpointing and removal of these points can be done in several ways. One way is
to use a Hampel filter (details in section 2.1.1) which detects and removes outliers. This
is a good method to use for this dataset because it keeps the temporal dynamics without
altering all points; only the ones that are marked as outliers. The result from using a
Hampel filter on our raw data is shown in Figure 3.7.
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Figure 3.7: Raw data pre-processed with a Hampel Filter.
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Chapter 4
Results

4.1 Initial testing of methods

As part of the subject ’TTK19 Structures and contexts in complex systems’ a subset of the
data was analyzed to start investigate the data and look for structures.

4.1.1 Method

A subset of 29 infants of which 10 have CP was used. Two of the original 14 variables
was chosen, hence only looking at the x- and y-coordinates from the right hand.

First a PCA was done on the coordinate data to see if there was some structure in the
original data. Then some features were extracted and analyzed. The features that were
extracted were Power Spectral Density and frequency (through a Fast Fourier Transform).

4.1.2 Results

Using PCA on the coordinates unfolded over time gave no results. This is expected as PCA
does not care about the ordering of columns and rows and only compare the coordinates
point by point [25]. As our hypothesis is that it’s the movements and movement qualities
that holds the information, only looking at the spatial information gives us nothing.

Power Spectral Entropy finds a little more structure than the coordinates themselves.
From Figure 4.1 it is shown that using a Quadratic Discriminant Analysis on the PSE
gives 86, 21% accuracy. The confusion matrix for this model is shown in Table 4.1.
The model has a sensitivity of true positives

true positives+false negatives = 9
9+1 = 90% and a specificity

of true negatives
true negatives+false positives = 16

16+3 = 84, 2%.
The frequency distribution given from FFT gives an even more satisfying results.

Quadratic LDA has an accuracy of 93, 1%. This shows that it may be possible to find
some structure in the frequencies of the motion that can separate the healthy babies from
the sick. The confusion matrix for this model in shown in Table 4.2. The model has a sensi-
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Figure 4.1: Quadratic LDA on PSE data. Accuracy: 86, 21%

Actual→ CP Healthy
Predicted ↓

CP 9 3
Healthy 1 16

Table 4.1: Confusion matrix for LDA on PSE
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Figure 4.2: Quadratic LDA on FFT data. Accuracy: 93, 1%

Actual→ CP Healthy
Predicted ↓

CP 10 2
Healthy 0 17

Table 4.2: Confusion matrix for LDA on FFT

tivity of true positives
true positives+false negatives = 10

10 = 100% and a specificity of true negatives
true negatives+false positives =

17
17+2 = 89, 5%.

4.1.3 Conclusion

Both Power Spectral Entropy and frequency distribution gives us satisfying results. Both
models have a higher sensitivity than specificity. This is better than the other way around,
as it is better to treat a patient as if it has CP a little while longer than it is to give false
hope.

Because of the small size of the subset chosen the resulting models obtained above
cannot be used without further research. The results show that even a quick test of feature
extraction where almost all parameters are chosen at random may lead to some interesting
findings. Further testing is needed in both frequency calculations and choice of classifica-
tion algorithm, but both features shows great promise.
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4.2 Feature extraction with HCTSA
A subset of 20 and 100 subjects from the data set is run through HCTSA. The data is
divided into groups using the labels ’CP status0’ for healthy and ’CP status1’ for those
with CP.

HCTSA uses ∼ 2 full days to compute 7873 features for 100 subjects. Computation
for one time series only takes ∼ 2 minutes, but because the data set consists of 14 time
series per subject this gives a total of 1400 time series. This is ok to do before feature
selection, but it is clear that one cannot do this full computation for all 900 subjects. This
computation is done to gain an insight into which features may be usable in classification.

HCTSA includes framework for comparing the performance of all the operations (fea-
tures) using different classification algorithms. By default it uses a linear classifier, but it
also supports evaluation using SVM. The top operations when evaluating using a linear
SVM are shown in 4.3. These operations are based on different numerical computations,
and they are based on a set of the same methods.

The top features (or operations) are given in a certain system. An overview of the
system is shown in Figure 4.3. The first parts tells which operation is done (in this case
the time-series is divided into segments of length l at random and for each some statistic is
calculated), then the parameters that are given to the operation is listed (here l = 50 is the
length of the segments and 100 is the number of segments to extract) and last the structure
of the output (here the feature is the standard deviation for the autocorrelation for each
segment with τ = 1).

Figure 4.3: Structure of operations given by HCTSA.

In Table 4.3 it is shown that the top features includes Wavelet Decompositions, dif-
ferent measures of autocorrelation, computations of stepdetections and much more. One
specially interesting feature is ’NL TSTL ReturnTime’, which is a nonlinear method. This
operations analyzes the histogram of return times. Return time is the time taken for the
time-series to return to a similar location in phase space for a given reference point. Strong
peaks in the histogram indicates periodicities in the time-series. Periodicities in the data
may be an indication of repeating movements, which is typical for fidgety movements.
This feature may help us locate these movements, and is worth looking further into.

Another tool in HCTSA is classification. HCTSA has built in support for investigating
how accurately a classifier can performing using all of the computed features. Given a
classification method and number of PCs it computes the classification results using a
principal components reduced version of the data matrix. The classification rate result of
a classification with SVM is shown in Figure 4.4. The total accuracy for this classification
was 73.45% using all features. The default validation method for the classification with
HCTSA is 10-fold cross validation.
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Name Accuracy
WL coeffs db3 2 wb99m (wavelet,lengthdep) 67.97%
WL coeffs db3 4 wb99m (wavelet,lengthdep) 67.94%
WL coeffs db3 5 wb99m (wavelet,lengthdep) 67.94%
CP ML StepDetect l1pwc 005 E (stepdetection) 65.57%
CP ML StepDetect l1pwc 10 minstepint (stepdetection) 65.10%
CP ML StepDetect l1pwc 005 minstepint (stepdetection,lengthdep) 65.10%
CP ML StepDetect l1pwc 02 minstepint (stepdetection) 65.05%
NL TSTL ReturnTime 5 1 40 n1 1 8 iqr (nonlinear,tstool) 64.70%
CP ML StepDetect l1pwc 10 medianstepint (stepdetection) 64.62%
EN rpde 3 ac H (entropy) 63.83%
SY SpreadRandomLocal 50 100 stdac2 (stationarity) 62.90%
SY SpreadRandomLocal 50 100 stdac1 (stationarity) 62.79%
SC FluctAnal 2 nothing 50 logi r1 alpha (scaling) 62.31%
EN rpde 3 ac H norm (entropy) 62.28%
CO Embed2 Shapes tau circle 1 hist ent (correlation,embedding) 62.22%
ST LocalExtrema n100 meanabsext (distribution,stationarity) 61.83%
ST LocalExtrema n100 medianabsext (distribution,stationarity) 61.68%
PH ForcePotential sine 1 1 1 tau (dynamicalSystem) 61.64%
SC FluctAnal 2 nothing 50 logi r1 se2 (scaling) 61.61%
SY SpreadRandomLocal 50 100 meanac1 (stationarity) 61.48%

Table 4.3: Top 20 operations for subset of 100 subjects classified using a linear SVM.
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Figure 4.4: Classification rate for PCs using SVM classification
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Chapter 5
Future Work

The work done in this report is mainly theoretical and focuses on exploring possible anal-
ysis methods. The implementation of the methods, analyzing the data and finding a good
model is work that needs to be done in the full master thesis.

The master thesis in the spring of 2019 will focus on using the features found by
HCTSA and look even further into which of these gives useful information about the data.
It will also check whether adding cross correlation and other features that compares the
time-series for a given subject can increase the classification accuracy.

It will look into the use of PARAFAC and PCA on the feature set to reduce the dimen-
sion. These methods will also be used when choosing the feature subset and comparing
which features provides the most information.

A classifier must also be trained using a well-chosen training set and validated against
a test set. This classifier will be chosen based on computational efficiency, physically
interpretable results and a high classification accuracy.
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