
N
TN

U
N

or
w

eg
ia

n 
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lt

y 
of

 In
fo

rm
at

io
n 

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ri
ca

l
En

gi
ne

er
in

g
D

ep
ar

tm
en

t o
f E

ng
in

ee
ri

ng
 C

yb
er

ne
tic

s

M
as

te
r’

s 
th

es
is

Marcus Aleksander Engebretsen
Kjetil Skogstrand Gjerden
Øystein Barth Utbjoe
Andreas Våge

Autonomous Navigation, Mapping, and
Exploration for Underwater Robots

Master’s thesis in Cybernetics and Robotics
Supervisor:
Annette Stahl
Edmund Førland Brekke
Kristin Ytterstad Pettersen
Marco Leonardi
Pål Liljebäck

June 2019





Marcus Aleksander Engebretsen
Kjetil Skogstrand Gjerden
Øystein Barth Utbjoe
Andreas Våge

Autonomous Navigation, Mapping, and
Exploration for Underwater Robots

Master’s thesis in Cybernetics and Robotics
Supervisor:
Annette Stahl
Edmund Førland Brekke
Kristin Ytterstad Pettersen
Marco Leonardi
Pål Liljebäck
June 2019

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Engineering Cybernetics





Abstract

This thesis proposes a system architecture for an autonomous system capable of context-
based reasoning when performing autonomous mapping and inspection tasks with un-
manned underwater vehicles. To simplify design and implementation, the system architec-
ture was divided into five submodules: hardware, simultaneous localization and mapping
(SLAM), classification, path planning, and control. Development of these modules went
through four main phases: performance specification, design, implementation, and testing.
Consequently, each submodule was verified, both individually and in pairs, to weed out
bugs and weaknesses that could impair the performance of the complete system.

A custom stereo-visual-inertial sensor was constructed to allow for precise testing
of state-of-the-art visual SLAM (VSLAM) methods underwater. Through the integration
of a VSLAM method and an advanced object detection algorithm, semantic maps were
generated for increased context-awareness in unknown environments. Using an informed,
asymptotically optimal sampling-based approach, the planning module produced feasible,
collision-free paths consistent with the C2 continuity constraint imposed by the control
system. By combining the planning module with an information-driven frontier exploration
strategy, an autonomous exploration method was implemented. The control module con-
sisted of a uniform global asymptotically stable cascaded guidance and kinematic control
algorithm, which achieved full body convergence on the 3D curves provided by the planning
module.

To solve the specific case of autonomous pipe inspection with an underwater swimming
manipulator, the classification and planning modules were designed to plan routes based on
semantic environment information, which, combined with the exploration module, could
handle cases where the pipe was lost.

i



ii



Sammendrag

Denne masteroppgaven legger frem, og implementerer, en arkitektur for et autonomt
system som er i stand til kontektsbasert resonnering under inspeksjonsoppdrag utført
med ubemannede undervannsfartøy. For å forenkle design- og implementasjonsprosessen
har arkitekturen blitt delt inn i fem undermoduler: maskinvare, simultan lokalisering og
kartlegging (SLAM), klassifisering, planlegging og kontroll. Utvikling av disse modulene
undergikk fire hovedfaser: ytelsesspesifikasjon, design, implementasjon og testing. Som
følge av dette har hver av undermodulene blitt verifisert, både individuelt og kombinert
med hverandre, for å luke ut software bugs og svakheter som kunne forringe totalsystemets
ytelse.

En tilpasset stereovisuell-treghetssensor ble konstruert slik at presis undervannstesting
av toppmoderne visuelle SLAM-metoder (VSLAM) kunne gjennomføres. Ved å kombinere
en moderne VSLAM-metode og en avansert objektgjenkjenningsalgoritme, ble seman-
tiske kart generert for å gi økt kontekstbevissthet i uutforskede omgivelser. Gjennom
bruk av en informert, asymptotisk optimal samplingbasert metode, produserer planleg-
gingsmodulen gjennomførbare, kollisjonsfrie baner som er i overensstemmelse med C2-
kontinuitetsrestriksjonene pålagt av kontrollsystemet. Ved å kombinere planleggingsmod-
ulen med en informasjonsdrevet randbasert utforskningsmetode, ble et system for autonom
utforskelse av ukjente omgivelser implementert. Kontrollmodulen bestod av et uniformt
globalt asymptotisk stabilt kaskadebasert styringssystem som oppnådde full konvergens på
3D-kurver forsynt fra planleggingsmodulen.

For å løse det spesifikke problemet med autonom rørinspeksjon med en svømmende
undervannsmanipulator ble klassifisering og planleggingsmodulene designet for å kombin-
ert kunne planlegge ruter basert på semantisk informasjon om omgivelsene som, sammen
med utforskningsmodulen, kunne håndtere situasjoner hvor sporet av røret gikk tapt under
operasjonen.

iii



iv



Preface

This thesis is submitted to the faculty of Information Technology and Electrical Engi-
neering at the Norwegian University of Science and Technology in partial fulfilment of
the requirements for the degree of Master of Science in the Department of Engineering
Cybernetics.

The times we find ourselves in are heavily influenced by robotics making an entrance
in all parts of society, and the maritime industry is no different. A common factor for
the authors is an interest in robotics and the different challenges such complex systems
presents. When the opportunity to work with Eelume AS - which develops snake robots
for the subsea industry - presented itself, we were delighted to get a chance to work on
such a unique robotic: the underwater swimming manipulator (USM). Using this robot as
a focus point allowed us to draw inspiration for specific operational problematics, while
also supporting our vision of a general autonomy framework. Developing such a system
provides a multitude of challenges that cover a broad spectrum of research areas, with
each sparking the individual authors’ interests. These central themes include simultaneous
location and mapping (SLAM), classification, path planning, and guidance and control. Our
team of supervisors consisted of Annette Stahl, Edmund F. Brekke, Kristin Y. Pettersen,
Marco Leonardi, and Pål Liljebäck; your combined knowledge helped us navigate through
the fog of academia, thank you!

Due to this being a collaboration thesis, each of the supervisors acted as the main
supervisor within their respective area. Annette Stahl helped with the development of
the classification system, Edmund F. Brekke aided with the SLAM algorithm and sensor
calibration, Marco Leonardi assisted with the planning and exploration modules as well
as the SLAM module, and Kristin Y. Pettersen oversaw the guidance and control system.
Additional thanks to Ida L. Borlaug, Marianna W. Kaminska, and Mathias H. Arbo, for
feedback on the control system design.

To further assist our work, we were provided with certain gadgets and software, as well
as economic support from the Department of Engineering Cybernetics at NTNU. Through
cooperation with Eelume, we were lucky enough to be given access to testing facilities
and equipment, not to mention the possibility to perform full-scale testing with on a USM.
Additionally, an in-house simulator was made available to simulate the interface of the
physical USM.

v



Seeing as the SLAM and classification modules are dependent on sensor input to do
much of anything, a high-quality sensor rig was constructed. This sensor setup consists
of a stereo camera, an IMU, and a pressure sensor, most of which were acquired through
department funding. Additionally, in order to handle the computational efficiency the
neural networks require, we were provided a Jetsson TX2 developer kit.

Finally, it is worth mentioning that a few parts of this thesis is inspired by some
of the authors’ previous works completed during the specialization project. Much of the
background theory, as well as the introductory literature review sections, in part V is inspired
by the work from TTK4550 [1] and is used as a stepping stone for the implementation of
the planning and exploration modules performed in this thesis. This is also the case for
some of the sections in part VI, based on the work by M. A. Engebretsen. In part IV some of
the work from [2] have been used. The choice of SLAM algorithm, as well as background
theory in part III, is inspired by the work from TTK4550 [3].

vi



Contents
Abstract i

Sammendrag iii

Preface v

List of Tables xi

Nomenclature xiii

I Introduction 1

1 Motivation 3
1.1 Project Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Preliminaries 7
2.1 Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.1 Homogeneous Transformations . . . . . . . . . . . . . . . . . . . . 7
2.1.2 D-H Convention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.1.3 Euler Convention . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3 System Overview 13
3.1 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.1.1 Perception . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.1.2 Planning and Control . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.2 State Machine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.3 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

II Hardware 19

4 Sensors 21
4.1 Hardware Platform Description . . . . . . . . . . . . . . . . . . . . . . . . 21
4.2 Inertial Measurement Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.2.1 Sensor Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

vii



4.2.2 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.2.3 Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.3 Pressure sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.3.1 Sensor Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.3.2 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.3.3 Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.4 Camera . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.4.1 Sensor Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.4.2 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.4.3 Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5 Electronic Design 41
5.1 Synchronization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.1.1 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.1.2 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

6 Mechanical Design 49
6.1 Water Tight Housing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
6.2 Mounting the Components . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

III SLAM 55

7 Background 57
7.1 SLAM Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
7.2 Front-end . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

7.2.1 Place Recognition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
7.3 Back-end . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

7.3.1 Bundle Adjustment . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
7.3.2 Factor graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

7.4 Batch BA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
7.4.1 Key-Frames . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
7.4.2 Windowed Optimization . . . . . . . . . . . . . . . . . . . . . . . . 62
7.4.3 Fixed-lag-Smoothing . . . . . . . . . . . . . . . . . . . . . . . . . . 62
7.4.4 Parallel Tracking and Mapping . . . . . . . . . . . . . . . . . . . . 62

7.5 Incremental BA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

8 SLAM Method 65
8.1 ORB-SLAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

8.1.1 Connectivity Graph . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
8.1.2 Place Recognition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
8.1.3 Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
8.1.4 Tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

viii



8.1.5 Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
8.1.6 Loop closure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

8.2 Visual Inertial ORB-SLAM . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
8.2.1 Tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
8.2.2 Mapping and Loop Closing . . . . . . . . . . . . . . . . . . . . . . . 69

8.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
8.3.1 IMU Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

9 Experiments 73
9.1 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

9.1.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
9.1.2 Computer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
9.1.3 Tracking Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . 74

9.2 Visual Odometry Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
9.2.1 Score System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
9.2.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
9.2.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
9.2.4 Dora Dock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
9.2.5 Tracking Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

9.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

IV Classification 83

10 Computer Vision 85
10.1 Deep Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

10.1.1 Creating the Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . 93
10.1.2 Evaluation of Results . . . . . . . . . . . . . . . . . . . . . . . . . . 98
10.1.3 Network Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
10.1.4 Training the Network . . . . . . . . . . . . . . . . . . . . . . . . . . 101

10.2 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

V Planning 117

11 Background Theory 119
11.1 Continuous-Space Path Planning . . . . . . . . . . . . . . . . . . . . . . . . 121

11.1.1 Optimal Path Planning . . . . . . . . . . . . . . . . . . . . . . . . . 122

12 Path Planning in 3D Space 125
12.1 Traditional Planning Methods . . . . . . . . . . . . . . . . . . . . . . . . . 126
12.2 Representing the Environment . . . . . . . . . . . . . . . . . . . . . . . . . 130

12.2.1 Occupancy Grids . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
12.2.2 Roadmaps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

ix



12.3 Combinatorial Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
12.3.1 Voronoi Diagrams in Path Planning . . . . . . . . . . . . . . . . . . 134

12.4 Sampling-based Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
12.4.1 The RRT Family . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

12.5 Clustering in the Context of Planning . . . . . . . . . . . . . . . . . . . . . 143
12.6 Path Criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
12.7 Context-aware Planning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
12.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

13 Autonomous Exploration 155
13.1 Exploration Strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

13.1.1 Frontier-based Exploration . . . . . . . . . . . . . . . . . . . . . . . 156
13.1.2 Next-Best-View Exploration . . . . . . . . . . . . . . . . . . . . . . 159

13.2 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

14 Planning & Exploration Method 163
14.1 Incremental Voronoi-based Path Planning . . . . . . . . . . . . . . . . . . . 163

14.1.1 3D Point Cloud Clustering . . . . . . . . . . . . . . . . . . . . . . . 164
14.1.2 Abstracting Obstacle Shapes Using Convex Hulls . . . . . . . . . . 168
14.1.3 Generalized Voronoi Generation From Convex Hulls . . . . . . . . 170

14.2 Sampling-based Planning With Kinematic Constraints . . . . . . . . . . . . 172
14.2.1 3D Dubins State Space . . . . . . . . . . . . . . . . . . . . . . . . . 174

14.3 Collision Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
14.4 Environment Exploration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
14.5 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

14.5.1 Voronoi-based Planning in Partially Known Environments . . . . . 183
14.5.2 BIT∗ and Collision Avoidance . . . . . . . . . . . . . . . . . . . . . 187
14.5.3 Autonomous Exploration . . . . . . . . . . . . . . . . . . . . . . . . 187

14.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

VI Control 197

15 Control System 199
15.1 Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200
15.2 Guidance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

15.2.1 Performance Specifications . . . . . . . . . . . . . . . . . . . . . . . 201
15.2.2 Existing Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202
15.2.3 Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

15.3 Kinematic Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208
15.3.1 Performance Specifications . . . . . . . . . . . . . . . . . . . . . . . 208
15.3.2 Existing Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209
15.3.3 Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209

x



15.4 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
15.4.1 Kinematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
15.4.2 Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215

VII Closing the Loop 225

16 Connecting the Modules 227
16.1 Combining Object Detection and Planning . . . . . . . . . . . . . . . . . . 227

16.1.1 Case: Context-driven Subsea Pipe Inspection . . . . . . . . . . . . . 229
16.2 Combining Object Detection and SLAM . . . . . . . . . . . . . . . . . . . . 235
16.3 Combining SLAM and Control . . . . . . . . . . . . . . . . . . . . . . . . . 240
16.4 Control and Planning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240

17 Conclusion 243
17.1 Further Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244

Bibliography 247

Appendices 262
A Simulator Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263
B Hardware Electronic schematics . . . . . . . . . . . . . . . . . . . . . . . . 267
C Proof: Path Curvature Criteria (for USM) . . . . . . . . . . . . . . . . . . . 270
D 3D Point Cloud Classification . . . . . . . . . . . . . . . . . . . . . . . . . . 272
E Path Projection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274

xi



List of Tables

4.1 Noise parameters of the STIM300 IMU specified by the manufacturer. De-
termined using the Allan Variance technique at 25 ◦ C. . . . . . . . . . . . 25

4.2 Estimated noise parameters of the STIM300 IMU. Determined using the
Allan Variance technique at 20 ◦ C. . . . . . . . . . . . . . . . . . . . . . . . 26

4.3 Pressure parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.4 Camera parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.5 Calibration result from representative environments. . . . . . . . . . . . . 38

9.1 Selected Dataset from the Eelume pool. . . . . . . . . . . . . . . . . . . . . 73
9.2 Visual odometry results from the Eelume pool. . . . . . . . . . . . . . . . . 75
9.3 Tracking time during different modes. . . . . . . . . . . . . . . . . . . . . . 82

14.1 Mean path lengths when exploring a small environment using three different
strategies for weighting, pure nearest frontier or information gain, or the
combined approach described in eq. (14.11). . . . . . . . . . . . . . . . . . . 188

1 Voltage levels for the power supply used. . . . . . . . . . . . . . . . . . . . 267

xii



Nomenclature

mP SLAM map represented as a 3D point cloud relative to
frame m (see chapter 7)

Fi Coordinate frame i (see chapter 2)
ηb/I Robot pose of frame b with respect to frame I (see

chapter 2)
®vb/I Linear velocity of frame b with respect to frame I (see

chapter 2)
®ωb/I Angular velocity of frame b with respect to frame I (see

chapter 2)
®ab/I Linear acceleration of frame b with respect to frame I

(see chapter 4)
A space occupied by the robot or vehicle (see chapter 11)
C configuration space (see chapter 11)
Cfree free configuration space (chapter 11)
Cobst obstacle-occupied configuration space (chapter 11)
O space occupied by obstacles (chapter 11)
U the set of all possible actions (chapter 11)
π path (section 11.1)
ϖ path parameter (section 11.1)
W robot workspace (chapter 11)

xiii



xiv



Part I

Introduction

1





1 | Motivation

Autonomous robots have seen considerable advancement in recent years due to the
escalating dependency of increasingly complex autonomous systems. An autonomous

system is a system capable of performing tasks with little to no human interaction by doing
intelligent reasoning based on sensory information. Such systems are then able to fulfil tasks
unaided, even with loosely defined goals in dynamic or unknown environments. This results
in a wide range of commercial, military and scientific applications, including underwater
inspections [4], [5], oceanographic mapping and pipeline inspection [6]; planetary explorers
[7], [8]; and aerial drone inspection [9].

To facilitate these kinds of autonomous operations, the robot itself needs to be able
to perceive its environment and from that information plan actions to fulfil a goal. Good
decision making requires sufficient knowledge of the environment, or workspace, the robot
operates in. With state-of-the-art sensor technology, more robust perception systems
are ever available, allowing progressively more potent motion estimation, tracking and
localisation, even in underwater environments — albeit still challenging, particularly with
underwater visual sensors [10]–[12].

Environments that require large effort and cost for human operators to reach are typical
harsh underwater environments. In these situations, it is favorable to deploy an autonomous
robot permanently on location. This is one of the main objectives of the underwater
swimming manipulator (USM) [13], allowing for autonomous inspection, maintenance and
repair (IMR) operations and thus reducing the need for costly IMR ship-based operations.
USMs benefit from being highly actuated, as well as from their shape-changing capabilities
and slim build, which facilitates operations in confined and unstructured spaces, contrasting
more conventional remotely operated vehicles (ROVs).

While beneficial, energy- and cost-wise, deployment of these types of submarine robots
results in strict robustness requirements. Possible tasks for such systems include au-
tonomous submarine pipe inspection based on visual sensors and object detection, while
simultaneously mapping the surroundings. Therefore, a complete system with well inter-
connected subsystems is vital, including subsystems such as computer vision, simultaneous
localization and planning (SLAM), path planning and control. Much of modern research
tend to focus singularly on a specific subsystem, e.g. concentrating on SLAM or control
separately. In some cases, however, it is advantageous to look into creating a more combined
system. On this front, modern literature and research is scarce, and this task will therefore
be the main focus of this thesis; creating a system pipeline from perception to mapping,

3



4 1. MOTIVATION

planning, and control.

1.1 Project Statement

The objective of this project is to implement underwater SLAM algorithms based on optical
cameras and using the SLAM map to plan missions that are then to be executed. The
aim is to implement this on an underwater robot, where an Eelume robot is considered
as the target platform. The Eelume vehicle is a particularly relevant platform for SLAM
since its long body allows for a good spatial distribution of the cameras and lights used for
mapping, thereby enabling cameras and lights from different angles. The overall objective
is to enable the robot to develop a 3D map of its environment (such as the seabed, structures
on the seabed, or floating structures), to enable the robot to continuously determine its
own location as it moves in the mapped environment and use this information to plan and
execute its mission. The project also wants to provide context to the map through computer
vision and/or machine learning techniques. The following are some examples of what a
mission may look like:

• station keeping.

• following a pipeline on the seabed.

• return to base station.

The main objective of this thesis is to implement a system capable of performing au-
tonomous context-based inspection tasks based on optical sensors, while simultaneously
developing a 3D map of the environment to enable further mission planning and execu-
tion. The aim is to implement this on an underwater robot, where an Eelume robot is
considered as the target platform. The Eelume vehicle is a particularly relevant platform for
SLAM, since its long body allows for a good spatial distribution of the cameras and lights
used for mapping, thereby enabling cameras and lights from different angles. This will
be accomplished through the implementation of an object detection network, a VSLAM
algorithm for underwater operation, a path planning module to provide flyable 3D paths,
an exploration module to guide autonomous environment exploration, and a cascaded
guidance and control system, as well as by proposing an overall system architecture and a
hierarchical state machine to keep track of the system status.

1.2 Contributions

This thesis is a collaboration between four students and does, therefore, cover a lot of
different concepts within robotics. To summarise this work, the main contributions are



1.3. THESIS OUTLINE 5

listed below.

• Design of a system architecture for a UUV capable of performing autonomous navi-
gation, mapping, and inspection tasks.

• Development of a hierarchical state machine to keep track of the overall state of the
total system.

• Development of an open source C++17 IMU communication driver.

• Design of a custom calibration boards for underwater camera calibration.

• Construction of a potent stereo-visual-inertial (stereo-VI) sensor capable of underwa-
ter operation.

• Gathering several datasets for testing underwater SLAM systems.

• Improving upon existing open source SLAM methods.

• Creation and labeling of a dataset to be used for training of neural networks for
underwater operations.

• Presenting a strategy for making the neural network increasingly robust over time.

• Implementation of a planning and exploration system capable of exhaustive environ-
ment exploration in unknown three-dimensional environments.

• Implementation of a cascaded, uniformly globally asymptotically stable (UGAS)
guidance and control system.

• Implementation of a C++11 simulation framework to verify correctness of the USM
kinematic control system.

• Integrate a open source SLAM method and classification network to generate a
semantic map.

• Several suggestions regarding future work to increase the robustness of the system,
as well as to achieve better operational performance.

1.3 Thesis Outline

This thesis is a collaboration of four students, and does, therefore, cover a wide array of
topics. To ease the reading flow and make for easier look-up, the text is divided into several
parts, each detailing one of the main aspects of the project. These parts are structured as
follows.

Part I introduces the main motivation behind this thesis as well as the essential prelimi-
naries in chapter 2. The first part is concluded with chapter 3, giving an overview of the
overarching architectural choices present in the system as a whole and its sub-modules,



6 1. MOTIVATION

and provides a brief description of the workflow organization for this project. In part II,
the work, theory, and design behind the applied hardware setup is presented. The theory,
implementation, and calibration details of the sensors used is treated in chapter 4. Chap-
ter 5 explains the electronic designs behind the hardware setup, whereas chapter 6 deals
with the mechanical design. Part III discusses the SLAM module. In chapter 7, the theory
behind SLAM is introduced. Then chapter 9 presents the experiments conducted and their
results. The work regarding classification and object detection is explained in part IV, with
chapter 10 presenting the theory behind neural networks for classification, as well as the
specifics regarding dataset creation, network training, and results. Part V discusses the
planning problem in 3D as well as strategies for autonomous exploration. In chapter 11,
a theoretical planning framework is introduced, before different planning methods, and
their related literature, are discussed in chapter 12. Chapter 13 treats the problem of au-
tonomous environment exploration and examines different exploration strategies. This part
is concluded with a description of the planning and exploration method, as well as their
evaluation through simulation tests. In part VI, aspects regarding kinematic control of the
USM are treated and a UGAS control law are described in chapter 15. Performance specifi-
cation, design, experiments, and results for each of the respective modules are presented in
their corresponding parts. However, part VII discusses some of the module connections in
more detail, with respect to interfacing and information flow in real-life inspired situations
through specific simulation cases. Simulations and results of these cases are presented in
chapter 16, before the thesis as a whole is concluded in chapter 17.



2 | Preliminaries

This chapter introduces notation that will be used across different parts and chapters
in this thesis. It is not uncommon that similar concepts are represented differently

across various disciplines. As this is the case for computer vision, SLAM, path planning,
and control systems theory, a coherent set of definitions are introduced. This chapter is
intended to be a look-up chapter and will, therefore, be referenced extensively.

2.1 Geometry

To represent transformations between rigid bodies in 3D, Lie algebra is used, see e.g. [14].
The notation follows a combination of the marine systems standard from [15] and the USM
literature, see e.g. [16].

2.1.1 Homogeneous Transformations

The homogeneous transformation between two frames of reference can be defined as follows

Definition 2.1. A homogeneous transformation from frame Fj to Fi will be represented by

Ti
j =

[
Ri
j ηi/j,1

01×3 1

]
, T : R3 → R3 , (2.1)

with inverse

Tj
i = (T

i
j)
−1 =

[
Rj
i −Rj

iηi/j,1

01×3 1

]
, (2.2)

where Ri
j ∈ SO(3) is a 3D rotation matrix, and ηi/j,1 ∈ R3 defines the position of the body

frame Fb relative to the inertial frame FI .

Remark 2.1.1. For all practical purposes Ti
j ∈ SE(3), i.e. Ti

j is a member of the group of rigid
body transformations on R3.

Remark 2.1.2. The origin of Fi with respect to Fj is denoted ηi/j,1

A useful result is that the composition of multiple homogeneous transformations is

Ti
j = T(j+1)j T(j+2)

(j+1) · · · T
i
(i−1) . (2.3)

7



8 2. PRELIMINARIES

The definitions presented here assume Ri
j = Ri

j(ϕ,θ ,ψ ) to be any composite 3D rotation
matrix, and operates on SE(3) which denotes the Special Euclidean Group of dimension
three, defined by [17]:

SE(3) B
{

Ti
j | Ti

j =

[
Ri
j(ϕ,θ ,ψ ) ηi/j,1

01×3 1

]
, Ri

j ∈ SO(3) , ηi/j,1 ∈ R3
}
, (2.4)

which defines the group of all 4 × 4 dimensional homogeneous transformation matrices.

2.1.2 D-H Convention

Following the framework defined in [18], the translations and rotations between the links
of an underwater multi-body robot can be described using the D-H convention, see e.g.
[19] for a description.

Definition 2.2. Assuming only revolute joints, the homogeneous transformation matrix
becomes

T(i+1)i (qi) =


s(qi) −s(qi)c(αi) s(qi)s(αi) aic(qi)

s(qi) c(qi)c(αi) −c(qi)s(αi) ai sin(qi)
0 s(αi) c(αi) 0
0 0 0 1


, (2.5)

where s(·) refers to sin(·).

The formulation in definition 2.2 simplifies the implementation between links of the
robot considerably, making it a suitable choice for this project.

2.1.3 Euler Convention

To represent the orientation of the robot relative to the inertial frame, Euler angles are used.
This is to simplify debugging, as they are practically much easier to comprehend than i.e.
quaternions. The ZYX convention was used, giving a representation of the form

Tb
I =


c(ψb/I )c(θb/I ) −s(ψb/I )c(ϕb/I )+c(ψb/I )s(θb/I )s(ϕb/I ) s(ψb/I )s(ϕb/I )+c(ψb/I )c(ϕb/I )s(θb/I )

s(ψb/I )c(θb/I ) c(ψb/I )c(ϕb/I )+s(ψb/I )s(θb/I )s(ϕb/I ) −c(ψb/I )s(ϕb/I )+s(ψb/I )c(ϕb/I )s(θb/I )

−s(θb/I ) c(θb/I )s(ϕb/I ) c(θb/I )c(ϕb/I )

 .
(2.6)

Definition 2.3. FI denotes the inertial frame.

Definition 2.4. ηb/I ,2 =
[
ϕb/I θb/I ϕb/I

]T
represents roll, pitch and yaw angles, respec-

tively, of the body frame, Fb , with respect to FI .



2.2. OPERATING CONDITIONS 9

It should be noted that the Euler angles introduce a singularity when mapping from
the body velocities of the rigid body to the time derivative of the position variables. From
chapter 3.3 in [14] it is derived that

Ûηb/I = Jb (ηb/I,2)®vb/I

=

[
Rb/I (ηb/I,2) 03×3

03×3 Jb/I,rot(ηb/I,2)

]
®vb/I

=



c(ψb/I )c(θb/I ) −s(ψb/I )c(ϕb/I )+c(ψb/I )s(θb/I )s(ϕb/I ) s(ψb/I )s(ϕb/I )+c(ψb/I )c(ϕb/I )s(θb/I )

s(ψb/I )c(θb/I ) c(ψb/I )c(ϕb/I )+s(ψb/I )s(θb/I )s(ϕb/I ) −c(ψb/I )s(ϕb/I )+s(ψb/I )c(ϕb/I )s(θb/I )

−s(θb/I ) c(θb/I )s(ϕb/I ) c(θb/I )c(ϕb/I )

0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0
1 s(ϕb/I )s(θb/I )

c(θb/I )
c(ϕb/I )s(θb/I )

c(θb/I )

0 c(ϕb/I ) s(ϕb/I )

0 s(ϕb/I )
c(θb/I )

c(ϕb/I )
c(θb/I )





ub/I

vb/I

wb/I

pb/I

qb/I

rb/I


.

(2.7)

Definition 2.5. ηb/I =
[
ηT
b/I ,1 ηT

b/I ,2

]T
=

[
xb/I yb/I zb/I ϕb/I θb/I ψb/I

]T
is the base

link pose.

Definition 2.6. ®vb/I =
[
ub/I vb/I wb/I

]T
, ®ωb/I =

[
pb/I qb/I rb/I

]T
are the linear and

angular velocities of Fb with respect to FI .

2.2 Operating Conditions

In this project there are three main conditions that are relevant for the system to operate
in. The first is a simulated environment that have been used to test the path planning
system. Figure 2.1a shows example conditions from the simulator. The simulator used is a
UUV simulator [20] based on Gazebo. This simulator includes the equations of motion for
underwater vehicles [15] and incorporates lift, drag, and current simulations, as well as a
range of sensor plugins. A closer description of the simulator is given in appendix A.

Although the ground is textured, the simulated condition lacks many of the complexities
that are present in underwater conditions — especially when it comes to how it looks
through the camera. The environment is highly controlled, the visibility is very good —
much better than can be expected from underwater condition — and the pipe is the only
object of a known colour. In short, the simulated conditions are not representative of real



10 2. PRELIMINARIES

(a) Example simulated camera data. (b) Image from the test setup.

(c) Example footage from an inspection mission.

Figure 2.1: Examples of each of the three main conditions relevant for this thesis.

operating conditions. Even though the simulated conditions deviate substantially from
the real conditions, it can be a valuable platform to test and draw information on the
performance of the system, so long as one is aware of its limitations.

To ensure that the system perform in an underwater environment, the second setting
is introduced. The second setting is the testing facilities at Eelume AS as can be seen
in fig. 2.1b. These conditions are a leap in complexity when compared to the simulated
conditions. Complexities such as light fracturing as the light move from the water to the
air in the camera housing are present. However, the conditions are highly controlled and
not sufficiently complex to be comparable with a real operations.

To have an idea of the performance of the system in actual operating conditions, a
third setting is introduced. This third scenario is comprised of video footage 1 from an
inspection operation. In operating conditions, there are several factors contributing to
making this scenario significantly more challenging. The biggest difference between the
operating and test situations is, perhaps, the fact that the pool background is light blue,

1This footage was provided by Marco Leonardi and the autonomy group at NTNU



2.2. OPERATING CONDITIONS 11

which sharply contrasts the pipe. This renders the detection problem in the lab nigh on
trivial when compared to the actual operating conditions. Other differences are also present,
among them are the lack of particles in the water that produce a backscattering effect
and interference in the image. In operating conditions, substantial biofouling is usually
present on any underwater structure [21]. This generally makes underwater objects harder
to detect, compared to many terrestrial scenarios, as how obscured the object is can vary
drastically. Examples of each of these conditions is shown in fig. 2.1.



12 2. PRELIMINARIES



3 | System Overview

To achieve the main goal of developing an interconnected autonomous pipeline solving
the problem described in section 1.1, the required hardware and software have to

be defined. To construct a scaleable architecture, the specific choice of components are
not exclusively tailored to the problem at hand, even though they solve it. Consequently,
this chapter presents an overall autonomous architecture that enables a USM to navigate
and explore its environment (section 3.1). Additionally, the specific architectural choices
towards underwater pipe following and exploration are specified to highlight the scalability.
A hierarchical state machine controlling the overall state of the USM is subsequently
described in section 3.2 to provide an overview of the control flow in the autonomous
architecture. Finally, the collaboration tools are presented in section 3.3.

3.1 Architecture

The autonomous architecture is defined as all software and hardware enabling autonomous
operation, see fig. 3.1. The most important hardware components used in this thesis includes
a stereo camera setup, an IMU, and the magnetic angular encoders on the revolute joints.
The stereo camera provides 2D images to the classification and SLAM modules to map
environmental features and perform localization. The IMU and rotary encoders supply
additional introceptive data to the SLAM module to enhance its performance. The overall
software system design follows the perceive-think-act principle. Sensory input is decoded
and contextualized to ensure that the robot knows its whereabouts and surroundings. With
semantic understanding of the sensory input, the path planning algorithm ensures that
the USM wants to move in a desirable direction depending on the task at hand. Finally, the
control algorithm ensures that the USM follows this planned path.

3.1.1 Perception

The perception pipeline begins with synchronized sensor data acquisition where a stereo
camera and an IMU synchronously sample measurements and transfer them to the SLAM
algorithm. To achieve this, and to allow for easy independent testing of the perception
system, a custom underwater stereo-VI sensor was built, including a micro-controller for
sensor synchronization.

At the core of the perception system lies the SLAM algorithm. From the sensor mea-

13



14 3. SYSTEM OVERVIEW

VI Sensor SLAM

Classi�cation

Path Planning

Exploration

Control USM Interface

�rusters

Joints

Figure 3.1: Block diagram of the overall autonomous architecture.

surements, it simultaneously creates a map of the observed environment and localizes itself
in that map by continuously setting up and solving a nonlinear optimization problem. It is
an advanced, yet general, algorithm which can incorporate information from any type of
sensor or model prediction. The map is represented as a point cloud, where each point has
a 3D position found by matching and triangulating oriented FAST and rotated BRIEF (ORB)
features [22] recognized in multiple images over time.

In order to interpret the environment this thesis will look into state-of-the-art solution
that can be used to finding objects in an image. The focus of this thesis was pipe detection,
but the proposed solution should have the capability to be expanded to detect multiple
other objects. The map points — the point cloud constituting the SLAM map — will be
labeled from this classification system to contextualize the map. The map points will be
visible from multiple key frames — frames chosen by the SLAM system that have a good
view of multiple map points — and will be classified by subjecting these key frames to the
classification system. The map points will be given a labeling score based on what the result
from the classification. This score will accumulate over time as the map point is observed
from multiple key frames and the map point will be labeled as the class with the highest
score.

3.1.2 Planning and Control

The planning module uses an asymptotically optimal informed sampling-based algorithm
to calculate optimal paths subject to a given optimization objective — path length in most
cases, but this can be extended to take additional objectives into account. Due to the large
varieties of underwater vehicles, and their different degree of manoeuvrability, the planning
sub-system was implemented with generality in mind, thus ensuring applicability to more
kinematically constrained robots. Collision-free paths that satisfy the stated constraints
and the optimization objective given the current state of the map, are then passed along to
the control system.



3.2. STATE MACHINE 15

To act as a layer above the path planner, an exploration module was implemented.
This exploration module is responsible for deciding where to go next based on the current
state of the robot, map, and mission objective. These mission objectives include exhaustive
environment exploration and specific exploration based on semantic data from classification,
among others. Exhaustive exploration refers to the act of mapping a given area until the
coverage is maximized, or no more safe locations are left to explore. To achieve specific
exploration, this module collaborates with the classification module. The idea behind this
is to allow the robot to perform context-driven exploration tasks, such as pipe-following
and -inspection in an unknown environment. To carry out this task, semantically labelled
map information is shared by the classification to the exploration sub-system, from which
new goals that further drive the inspection are calculated and passed to the path planner
module.

The basis for the control system is a guidance algorithm which generalizes to any robot
operating in 3D. In general, this is the part of the control system interfacing with the path,
provided by the path planning module, to ensure that the robot tracks it. The kinematic
controller, on the other hand, is specifically tailored to ensure convergence of a floating
base manipulator to a curved 3D path, i.e. a robot with a base and manipulators attached
to that base. Designing a generalizable system with the desired convergence and stability
properties would be tedious, and is consequently avoided in the more low-level parts of the
control system — meaning all abstraction layers below the guidance controller.

3.2 State Machine

As the autonomous architecture consists of a set of modules, all with a variety of operating
modes, a state machine is introduced to keep track of the overall state of the USM. At the
highest level, the state machine reflects the current task the USM performs. Example tasks
include booting, dynamic positioning (DP), and moving (MOVE), see fig. 3.2. To encapsulate
the internal behaviour of the software modules, and their interactions, task transitions
are triggered by specific events. Events represent the state transitions of the underlying
hierarchically layered state machine (HSM), see e.g. [23]. With a hierarchical ordering
comes the possibility of encapsulating the internal state machines of the main software
modules — i.e. SLAM, path planning and control — and at the top layer only handle their
influence on the task at hand. See the arrows in fig. 3.2 for an illustration of this concept.
This principle is similar to the Liskov substitution principle, see e.g. [24].

The tasks to be performed in this particular case is pipe-following and -inspection.
Actually following the pipe is covered by the state MOVE. If the SLAM module loses track,
the planning module detects a future collision, or the control system finds the current
objective to be unattainable, the USM is requested to stop by entering state DP. Depending



16 3. SYSTEM OVERVIEW

Figure 3.2: State diagram of high-level states of the autonomous architecture. The arrows
represent events/state transitions of underlying software module state machine machines
triggering a high-level state transition. For clarity, the booting procedure is divided into
several steps. Standard UML notation is avoided primarily to promote simplicity.

on the environment and the internal states of the software modules, the pipe following task
is either finished, or events are handled at a lower level to re-enter state MOVE.

The design favours modular development of the individual software components as
long as they have a clear interface with peripheral software. For example, SLAM broadcasts
its internal state such that the rest of the autonomous system knows whether pose and map
information can be trusted or not. The explicit content of the lower-level state machines
are presented in detail in part III, part V and part VI.

3.3 Organization

In any large project with multiple contributors, it is advantageous to work in a structured
manner — e.g. to increase effectiveness and simplify system integration between collabora-
tors. Coding in teams can quickly be challenging, as team members most likely develop on
different versions of the same project. If one is not careful, these versions may come into
conflict when trying to merge the work into a cohesive project. To solve this, the collabora-
tors decided to use GitHub, an open source versioning tool. This way, each collaborator
could work on features in their respective local branches and only merge the functionality
into a master branch when ready. By requiring that code merged to the master branch is
tested properly, the likelihood that the master branch is ready for operation at any given
time increases. Since the project consists of multiple modules, it was decided to structure
them in their own respective programs, or packages, within individual GitHub repositories
(repos.). The result of this decision was several rub-repositories connected through a master
repository, each with their own development history. As a consequence of this partitioning,
version testing of the different modules became much simpler and more efficient, although
at the cost of a slight increase in repository bookkeeping.



3.3. ORGANIZATION 17

Figure 3.3: Git submodule organization.

To keep the repositories organized, Git submodules was used. Git submodules introduce
a root repo. (usm_ros in fig. 3.3), which links up with a set of leaf repos. by tracking
their versions. The root repository can be updated to track any desired branch of all
the leaf repositories. In other words, any set of compatible versions can be maintained
simultaneously.



18 3. SYSTEM OVERVIEW



Part II

Hardware

VI Sensor SLAM

Classi�cation

Path Planning

Exploration

Control USM Interface

�rusters

Joints

19





4 | Sensors

When implementing algorithms for real world applications, one of the most important
factors for success is a lot of testing. However, underwater robots are expensive,

complicated, and at times dangerous for equipment or personell. Therefore, performing a lot
of testing is expensive and time consuming because it needs to follow safety protocols and
requires trained personnel. Furthermore, start-up companies typically have very limited
number of robots available for testing, and the trained personnel are extremely busy. Due
to this, it became apparent that a test rig for the perception system(s) needed to be designed
and constructed. The primary goal for the test rig was to provide the sensory input needed
for testing underwater SLAM algorithms. Additionally, certain design choices were made
to make the rig suitable for applications outside of the scope of this thesis. To accomplish
this, several criteria needed to be met. Thus, the rig had to:

• Consist of the correct set of sensors for the given use-case.

• Be accurate with respect to each of the sensors’ input quantity.

• Have sufficient waterproof rating to allow shallow-water operation.

• Support modular modifications, with the possibility to extend with additional sensors.

• Be small enough to be easily handled by one person.

• Allow for easy mounting onto robots or other objects.

In this chapter, the choice of sensors are briefly discussed before the individual sensors are
described, modelled and calibrated. The implementation and synchronization of the sensors
(chapter 5), as well as the mechanical design of the test rig (chapter 6), are described and
discussed in the two subsequent chapters.

4.1 Hardware Platform Description

A stereo-visual-inertial sensor (stereo-VI) was implemented using two monocular cameras
acting as one stereo camera, an IMU, and a pressure sensor. In order to discuss the choice
of sensors, a camera is assumed to be the main exteroceptive sensor, i.e. the sensor which
measures the external state and is used for mapping the environment — there are other
options such as sonars available, but the cost of high quality cameras are comparatively

21



22 4. SENSORS

low when compared to sonars One monocular camera does, in theory, provide enough
information for a SLAM algorithm to map the environment and localize the 6 DoF pose of
the camera up to scale. Up to scale means that the algorithm has no notion of the metrics, i.e
how many meters it has traveled or how many square meters the map covers. Simply put, it
can not detect if it is inside a miniature model of the environment or the actual environment.
As the scale is not measured, a common problem is scale drift, where the estimated scale
changes over time. Modern monocular visual SLAM algorithms overcome this problem by
including the scale in the optimization when performing loop closures. However, this does
not work during exploration when the robot is only detecting new areas, thus the scale
drift leads to significant overall drift. A stereo camera can estimate the metric 3D position
of the pixels relative to the camera, thus the scale is measured directly from each image pair.
Similarly, a monocular camera in combination with an IMU can estimate the scale, because
the acceleration and angular rate measured by the IMU is metrically correct. From this, the
velocity and position can be estimated which in turn gives the scale. One thing to note, is
that there have to be some acceleration or rotation for the IMU to give any measurements
which can be used to estimate the scale. The same principle exists for the combination of a
pressure sensor and a camera. The pressure sensor can estimate the scale directly, but the
robot has to move vertically in the water for this to work. By adding all four sensors, the rig
supports the testing of multiple sensor combinations, or with the full collection, creating a
more robust system.

In addition to this, support for lights and an acoustic underwater positioning system
were added. This allows for testing in dark environments, which is required for deep sea
exploration, and the ability to generate ground truth position measurements to be included
in the SLAM algorithm for increased robustness. However, due to time constrains, neither
of these options are tested in this thesis.

4.2 Inertial Measurement Unit

An inertial measurement unit (IMU) typically consists of a accelerometer and a angular
rate sensor. The accelerometer measures proper acceleration, that is acceleration in its own
instantaneous rest frame. That is the frame where the accelerometer is receiving no external
forces. For example, if the accelerometer is laying still on a table, one might think it would
measure zero, but in fact it measures 9.81 m/s2. This is due to the contact forces of the table
acting on the accelerometer, opposing the gravity and keeping it at rest in our inertial frame.
Thus to get the acceleration relative to the inertial frame, one would have estimate the
gravity and subtract it from the measurements. One could also use the estimated gravity
to determine the orientation of the accelerometer. The angular rate sensor measures the
angular rate of the sensor relative to a inertial frame. The NED frame is used as the inertial



4.2. INERTIAL MEASUREMENT UNIT 23

Figure 4.1: Allan (standard) Deviation plot recreated from [26]. Under the assumption that
noise sources are independent, one Allan Deviation Plot can be used to estimate several
sources of noise.

frame, which is, strictly speaking, incorrect as the NED frame is fixed on earth, while the
earth is rotating. However, for low-speed applications on the surface, this is a common and
justified simplification [15].

4.2.1 Sensor Model

The IMU is modeled using a linear model, as in [25], with two error sources:

• γ (t) - a random component modelled as white noise.

• b(t) - a slowly varying bias modelled as a Brownian motion process.

ω̃s
imu(t) = ωs

s/n(t) + bsgyro(t) +γ
s
gyro (4.1)

ãsimu(t) = Rs
n(θ )

(
Ûvns/n(t) − gn

)
+ bsacc(t) +γ

s
acc(t) (4.2)

Ûss(t) = ws(t) , (4.3)

where s represents the sensor frame, n represents the North-East-Down (NED) frame, and
γ (t) and w(t) represent white noise with standard deviation σγ and σw respectively. For
simplicity we assume the measurement frame of the IMU is equal to the body frame.

It is not trivial to estimate the values of the standard deviation σγ and the bias standard
deviation σw needed for our sensor model as they are difficult to tell apart. The most used
approach is to do Allan Variance experiments. Allan Variance is a time domain analysis
technique and can be applied to any signal to determine the character of the underlying



24 4. SENSORS

noise process. The reader is referred to "An introduction to inertial navigation" [27] and "An
overview of the Allan variance method of IFOG noise analysis" in appendix C of [26] for a
complete definition. The Allan Variance, AVAR(τ ), is basically the variance of the signal as
a function of averaging time. Figure 4.1 displays an example of a square root Allan Variance
plot, also called Allan Deviation AD(τ ). For small averaging times, AD(τ ) is dominated by
the random noise component of the signal. As the averaging time increases the effect from
the random noise decreases. While the effect from the slowly varying bias remains. The
bias instability parameter, σ̃instability, is the minimum of the Allan (standard) Deviation.

σ̃instability = min
τ

AD(τ ) = min
τ

√
AVAR(τ ) (4.4)

The bias instability is often used by manufacturers to describe the quality of the sensor, and
represents the best bias stability that could be achieved for a given signal (assuming that
the bias averaging takes place at the interval defined at the Allan Variance minimum).

The Angle- (Velocity- for accelerometer) Random Walk, σ̃γ , is the standard deviation of
the white noise γ in eq. (4.1). The notion of random walk comes from the fact the if the
white noise effecting the angle rate or acceleration it becomes a random walk in angle or
velocity. In [26] it is shown that the white noise effect on the Allan variance plot results in
a slope of -1/2. Further the angle random walk can be found by evaluate the value of a -1/2
slope fitted to the Allan deviation plot at τ = 1s.

The angle rate (acceleration for accelerometer) randomwalk σ̃w is the standard deviation
of the white noise driving the biases in eq. (4.1). Here the name is quite fitting as it describes
the random walk of the angle rate bias as a result of integrating the white noise in the
Brownian motion process. In [26] it is shown that the white noise effect on the Allan
variance plot results in a slope of +1/2. Further the angle random walk can be found by
evaluate the value of a +1/2 slope fitted to the Allan deviation plot at τ = 3s.

4.2.2 Implementation

The STIM300 IMU used consists of 3 high-accuracy MEMS-based gyros, 3 high stability
accelerometers, 3 high stability inclinometers, internal temperature sensors, and the possi-
bility for connecting a auxiliary sensor. It is factory calibrated and completely insensitive
to magnetic fields. The inclinometers are not utilizing, but the analog pressure sensor is
connected as a auxiliary sensor to the IMU. This allows the pressure measurements to be
pre-processed together with the inertial measurements internally in the IMU. Three internal
compensation and filtering modes were utilized:

• Low pass filtering of all measured signals with a low pass filter with the -3dB frequency
equal to 16 Hz (default is 262 Hz).



4.2. INERTIAL MEASUREMENT UNIT 25

• The angular rate sensor is internally compensated by the accelerometer to reduce the
effect of linear acceleration in the angular rate measurements.

• As measuring angular rate is faster than measuring acceleration, angular rate is
internally stored until the acceleration measurement is ready.

Having such a low cutoff frequency on the low pass filter adds 29 ms latency and will ignore
measurements at higher frequencies. However, fast movements are not very relevant, as
the robot will move underwater and, thus, moves very slowly. Furthermore, the inertial
measurements are to be fused in the SLAM system together with images. As the SLAM
algorithm only outputs new results after receiving a new image, there are no gains in having
a small delay on the inertial measurements, as long as it is less than the delay of the images
(see fig. 5.2b). If, in the future, the system is being used in a high speed setting with an
algorithm which updates the position for every inertial measurement, one could consider
using a higher cutoff frequency.

In this thesis, a novel open source driver1 for communicating with the IMU, using
modern C++17 techniques, was implemented. It includes interfaces for communicating
with the STIM300 directly, using the standard USB driver of Ubuntu, or through a micro
controller for better synchronization control. It is also supports easy addition of other
interfaces. The driver is wrapped in a ROS package, but the driver can act as a standalone
executable, or easily be integrated into other C++ projects.

Table 4.1: Noise parameters of the STIM300 IMU specified by the manufacturer. Determined
using the Allan Variance technique at 25 ◦ C.

Parameter Symbol: σ Value Unit
Angular random walk γgyro 1.2× e4 rad

s
1√
Hz

Velocity random walk γacc 9.2× e4 m
s2

1√
Hz

4.2.3 Calibration

To verify that the IMU is working properly, and to estimate the noise parameters of the IMU
model with respect to the IMU configured as described above, an Allan variance experiment
was performed. Better noise characteristics than what is presented in the data sheet is to be
expected, as the current operating cutoff frequency is lower on the internal low-pass filter.

The IMU was placed on a rigid surface for five hours. The first hour of readings was
ignored to ensure the IMU was in a steady state. The remaining four hours of measurement

1https://github.com/AndreasVaage/usm_stim300_driver

https://github.com/AndreasVaage/usm_stim300_driver


26 4. SENSORS

10
-1

10
0

10
1

10
2

10
3

10
4

 [sec]

10
-6

10
-5

10
-4

N
o

rm
a

l 
A

lla
n

 D
e

v
ia

ti
o

n
 [

ra
d

/s
]

x

y

z

average

(- 1/2)

(+1/2)

Figure 4.2: Allan (standard) Deviation plot of the angular rate sensor on the STIM300 IMU.

readings was collected at 125 Hz into a ROS bag, resulting in 1 802 442 readings. Then
the rosbag were converted into a .mat file and used a matlab script2 to calculate the Allan
Variance plot. See fig 4.2 and 4.3. By evaluating the +1/2 slope and the -1/2 slope fitted to
the Allan Plot at τ = 3s and τ = 1s respectively we can estimate the standard deviation for
the white noise components of the

Table 4.2: Estimated noise parameters of the STIM300 IMU. Determined using the Allan
Variance technique at 20 ◦ C.

Parameter Symbol: σ Value Unit
Angular rate random walk wgyro 1× e6 rad

s2
1√
Hz

Angular random walk γgyro 4× e5 rad
s

1√
Hz

Acceleration random walk wacc 3× e5 m
s3

1√
Hz

Velocity random walk γacc 4.7× e4 m
s2

1√
Hz

By comparing the estimated noise parameters with the ones from the data sheet, it
became apparent that all achieved noise parameters are lower. This is most likely due to
the fact that a lower cutoff frequency was used, at 16 Hz rather than the standard 262 Hz
used in the data sheet estimation.

2https://github.com/rpng/kalibr_allan

https://github.com/rpng/kalibr_allan


4.2. INERTIAL MEASUREMENT UNIT 27

10
0

10
2

10
4

 [sec]

10
-4

10
-3

N
o
rm

a
l 
A

lla
n
 D

e
v
ia

ti
o
n
 [
m

/s
2
]

x

y

z

average

(- 1/2)

(+1/2)

Figure 4.3: Allan (standard) Deviation plot of the acceleration sensor on the STIM300 IMU.
The standard deviation of the underlying white noise, σ



28 4. SENSORS

4.3 Pressure sensor

A pressure sensor measures the pressure difference between the measured volume and a
reference volume. Because of gravity the pressure of fluids or gasses generally increases
the closer to the earths core one gets. Thus one can utilize a pressure sensor to measure the
altitude above water or depth below water in a earth fixed frame such as NED.

4.3.1 Sensor Model

The measured pressure P is directly proportional to the depth D in the NED frame by the
following equation:

P = ρдD + νpressure (4.5)

Where ρ is the fluid density and д is the standard gravity and µpressure is white noise with
standard deviation σpressure.

4.3.2 Implementation

For this thesis, a Honeywell PX3 pressure sensor was used. The PX3 is a fully calibrated and
temperature compensated pressure sensor. It measures the pressure difference between the
outside water and the atmospheric internal pressure inside the watertight enclosure. The
sensor sends out an analog ratiometric voltage between 0.5 and 4.5 V. It is connected directly
to the STIM300 aux input and is converted using a 24 bit ADC, filtered using the same 16 Hz
lowpass filter as the IMU measurements, all inside the STIM300. Lastly the pre-processed
pressure measurements are transferred together with the inertial measurements to the
STIM300 driver. In table 4.3, Accuracy BFSL refers to the maximum deviation in output

Table 4.3: Pressure parameters

Parameter Value
Producer Honeywell
Product number PX3AN2BS050PAAAX
Range 50 psi ( 24 m)
Total error band ±1.0% FSS from −20 ◦C to 85 ◦C
Accuracy BFSL ±0.25% FSS
Ratiometric output 0.5 to 4.5 VDC
Current consumption 3.5 mA max

from a Best Fit Straight Line (BFSL) fitted to the output measured over the pressure range
at 25 ◦C. includes all errors due to pressure non-linearity, pressure hysteresis and pressure
non-repeatably. Additionally, the Total Error Band refers to the maximum deviation from



4.4. CAMERA 29

the ideal transfer function over the entire compensated temperature and pressure range.
In addition to the error sources of Accuracy BFSL, it include errors due thermal effect on
offset, thermal effect on span and thermal hysteresis.

4.3.3 Calibration

In order to estimate the depth from the voltage output of the pressure sensor, a linear
regression fit was performed, finding the best line to match the output from the pressure
sensor and the measured depth using a traditional meter (see fig. 4.4).

1.6 1.65 1.7 1.75 1.8 1.85

Measuered voltage [V]

0

0.5

1

1.5

2

2.5

M
ea

su
re

d 
de

pt
h 

[m
]

Sea water
Fresh water

Figure 4.4: Calibration of the depth measurement using linear least square regression to fit
the output from the pressure sensor to the actual depth in seawater.

The best fitted line had an r -square value of 0.9999 and is given by:

D = 8.86Poutput − 14.29

Where Poutput is the output from the pressure sensor given in volt and D is the depth in the
NED frame.

4.4 Camera

Image capturing is, essentially, the act of projecting 3D data into a 2D plane — in other words,
one dimension of information is lost. The dimension lost contains the depth information in
the image. Through the use of multiple measurements of the same object(s) from different



30 4. SENSORS

viewpoints, however, this information can be regained — given that the relative pose
between the measurements is known.

4.4.1 Sensor Model

Before one can utilize the cameras to their fullest potential, it is necessary to have some
sort of mathematical representation of the process of creating an image. As the USM is
more interested in the world the image depicts than the image itself, it is useful to know
how the process of capturing the 3D world in an image can be represented.

A common representation of a camera is the pinhole model. This representation views
the rays of light reflecting off the objects in the world to be filtered through a small opening
with a plane to capture the ray on the other side. See fig. 4.5 for a visualization.

Figure 4.5: Pinhole camera model

A common factor for themodel representation is how onemoves between the normalized
image plane, the pixel plane, and the 3D world. This can be represented as four composite
transformations:

• The 3D world to the normalized image plane.

• The normalized image plane to the pixel plane.

• The pixel plane to the normalized image plane.

• The normalized image plane to the 3D world.

These transformations are in fact two operations and their respective inverse. These
transformations are represented by the extrinsic and intrinsic matrix. The extrinsic matrix
projects the 3D world to the normalized image plane by using three rotational and three
translational parameters that can be described by a 4×4 homogeneous transformationmatrix
section 2.1.1. The intrinsic matrix projects the normalized image plane into the pixel plane.



4.4. CAMERA 31

The various models is determined by how the intrinsic matrix is structured. The calibration
of the cameras refers to the process of finding actual values for the intrinsic matrix. This
calibration is done by utilizing an easily recognized item with known dimensions in the
3D world. A common tool used for this, is a checkerboard pattern printed on a flat surface.
The dimensions of the checkerboard squares are known. The corner points at the junctions
between the white and black squares are easily detected. With the expected output known,
one can calculate how the camera has deviated from this expectation. In other words, one
can calculate how the camera renders the 3D world into the pixel plane. To perform camera
calibration, the calibration tool Kalibr 3 was utilized. Kalibr supports the following four
camera models: Pinhole, Omnidirectional, Double sphere and Extended unified camera
model.

The pinhole camera model is the simplest and most common used camera model. It is
the default camera model for most opens source SLAM methods, [28]–[30]. As the camera
lens has low distortion and the domed window is supposed to reduce distortion effects by
the water, the standard pinhole model is a natural choice. The pinhole model contain the
following intrinsic parameters in the intrinsic matrix, eq. (4.6).

Ki =


fu 0 pu

0 fv pv

0 0 1

 (4.6)

Radial and tangential distortion is added to handle the normal pinhole model-errors such
as the lens non-linearities and image-sensor miss-alignments [31]. As well as the additional
model misfits that will arise due to non-perfect alignment between camera and glass
dome and non-perfect water-glass-air distortion by the dome [32]. In order to represent
the distortion effect, Kalibr support the following distortion models: Radial-tangential,
Equidistant and FoV.

In the process of capturing the image the depth information is lost. For this thesis, a
stereo camera setup is chosen to recover this depth information. Reconstruction of the 3D
information usually consists of the steps: camera calibration, stereo rectification, stereo
matching and 3D reconstruction [33]. Camera calibration refers to computing the camera
parameters [33]. Stereo rectification refers to reducing the matching problem between the
left and right camera view from 2D to 1D by aligning the epipolar lines [33]. Stereo matching
refers to finding pixel-wise correspondence between the left and right camera view [33].
3D reconstruction refers to recovering 3D information from the disparity image [33]. With
a point located in both the left and right camera, the 3D position can be triangulated using
the camera parameters [34].

3https://github.com/ethz-asl/kalibr



32 4. SENSORS

Figure 4.6: Illustration of triangulating the 3D position with a stereo camera setup 4.

Figure 4.6 illustrates how the second view can be utilized to remove the ambiguity of
where on the line spanning from OL through XL the point X is located. The red line — i.e.
the epipolar line — denotes where in the right image one can expect to find the point X.
However, before trying to do any calculations the images are rectified remove distortion
and aligning the epipolar lines [33], an illustration of this can be seen from fig. 4.7.

Figure 4.7: Illustration of stereo rectification 5.

4This image is downloaded from https://www.digitalbridge.com/blog/
can-we-use-stereo-vision-with-arkit-to-estimate-floor-plans, stated to be courtesy of
https://commons.wikimedia.org/wiki/Main_Page

5This image is downloaded from https://www.wikiwand.com/en/Image_rectification

https://www.digitalbridge.com/blog/can-we-use-stereo-vision-with-arkit-to-estimate-floor-plans
https://www.digitalbridge.com/blog/can-we-use-stereo-vision-with-arkit-to-estimate-floor-plans
https://commons.wikimedia.org/wiki/Main_Page
https://www.wikiwand.com/en/Image_rectification


4.4. CAMERA 33

After the stereo rectification, the depth from OL and OR to the point X will be the same.
The distance between OL and OR is called the baseline and will be necessary to determine
the epipolar lines. This baseline will be determined when calibrating the stereo camera
setup.

Figure 4.8: Figure to clarify variables for eq. (4.7) through eq. (4.13).

XL

f
=

PL
ZL

(4.7)

XR

f
=

PR
ZR

(4.8)

ZL = ZR = Z (4.9)

PL = PR + b (4.10)

d = XL − XR (4.11)

d = f ·
PL − PR

Z
= f ·

(PR + b) − PR
Z

= f ·
b

Z
(4.12)

Z = f ·
b

d
(4.13)



34 4. SENSORS

When calculating the depth information from the rectified images, similar triangles
are used to establish eqs. (4.7) and (4.8). Equation (4.9) is a consequence of the rectified
images having the same depth away from the point X. The distance between the camera
positions are given by the baseline b, see eq. (4.10). Equation (4.11) show the difference in
pixels of X from the left and right camera image. Equation (4.12) shows the various steps of
substituting eq. (4.8) through eq. (4.10) into eq. (4.11), which culminates into a formula for
the depth information, see eq. (4.13).

The projection functions for monocular and rectified stereo vision are then given by
eqs. (4.14) and (4.15), respectively. These can be used to project a 3D point in the camera
coordinate system into the image plane. For stereo camera the depth is included.

Πm

©­­«

X

Y

Z


ª®®®¬ =

[
fx ·

X
Z + cx

fy ·
Y
Z + cy

]
(4.14)

Πs

©­­«

X

Y

Z


ª®®®¬ =


fx ·

X
Z + cx

fy ·
Y
Z + cy

fx ·
X−b
Z + cx

 (4.15)

4.4.2 Implementation

Two Pointgrey (now FLIR) Blackfly GigE cameras are used. They give complete control over
highly sensitive sensors with global shutter and possibility for external hardware triggering
or software triggering. They are connected directly to the Ethernet swithc through one
separate Ethernet cable each. On the computer the open source point-grey camera driver6

is used to process and foreword the images to the ROS network. The lens and camera
specifications are listed in table 4.4. The cameras are very customizable, with two GPIO pins
which can be used to trigger or synchronize the cameras. Further they have global shutter,
which means the entire image will be taken at once, unlike rolling shutter cameras, where
one line is captured at a time. They are equipped with some pretty special lenses, as they are
so called wide angle low distortion lenses. They promise 125◦ FoW, while maintaining less
than 3% distortion. The cameras and lenses are to be placed in a water thigh cylinder, with
a domed window. The domed window will remove most of the water-glass-air distortion,
and since the lens is also low distortion, the camera setup should be pretty close to a ideal
pinhole camera, even under water.

6https://github.com/ros-drivers/pointgrey_camera_driver

https://github.com/ros-drivers/pointgrey_camera_driver


4.4. CAMERA 35

Table 4.4: Camera parameters

Parameter Value
Product number BFLY-PGE-13S2C-CS
Resolution 1288x964
Frame rate 30
Readout Method Global shutter
Triggering External and Software
Synchronization GPIO pins
Meta-data Timestamp, img count, img parameters
Sensor Sony ICX445
Sensor Format 1/3"
Lens Focal Length [mm] 1.28
Field of View 125◦
Distortion [%] < 3

4.4.3 Calibration

There are several aspects to calibrating a camera. Firstly, the physical lens, as well as the
camera settings, can be tuned. The camera lenses have two physical adjustable knobs, one
for tuning the focus and one for tuning the aperture. In addition the choice of shutter time
of the camera is strongly dependent to the lens settings. If the shutter time is too long the
camera sensor will receive a lot of light, but if the camera is moving during this time there
will be motion blur as a result of the change in scenery being merged into one image. There
are also digital setting such as gain, which can be applied, but increasing these setting will
reduce the signal-to-noise ration in the image. The focus and aperture has to be set ones,
and can not be changed during run-time. A large aperture sends through a lot of light
thus allows for a shorter shutter time, which again allows for faster movements without
motion blur. However a larger aperture also results in a more blurry image, or at least
reduces the range in which the scene is in focus. Since the cameras are moving underwater,
the damping from the water reduces fast movements. Thus a bigger shutter time than for
example used in UAVs where there are a lot of shaking and rotation can be applied. After
some trial an error the shutter time was set to 5 ms. This shutter time was short enough to
not induce significant motion blur with the motions one could expect underwater. Then
the aperture and focus was tuned using an entropy based method7

To estimate the lens and sensor parameters, calibration boards were used. Calibration
boards for underwater use were custom designed and printed directly on aluminum frames
by a commercial manufacturer8. The printing was cheap, but there were no guarantee for

7https://github.com/ethz-asl/kalibr/wiki/camera-focus
8https://www.japanphoto.no/plakater-og-fotolerreter/alu-plate.html

https://github.com/ethz-asl/kalibr/wiki/camera-focus
https://www.japanphoto.no/plakater-og-fotolerreter/alu-plate.html


36 4. SENSORS

the print to handle water. However after several days of testing, where one of the boards
have been submerged underwater for approximately a total of 4-6 hours, there are no signs
of loose or deformed paint. Another problem with the commercial manufacturer was that
they cut the edges of the uploaded image and then scaled the image to the original size,
without knowing exactly how much they cut and scale. The calibration board images was
created by modifying a open source python/latex script9 to support custom sized white
edges around the calibration patterns and pre-scaling to account for the scaling during the
manufacturing. The resulting calibration boards can be seen in fig. 4.9. The used pre-scale
was an educated guess based on discussion with customer support, for creation of future
calibration boards the following settings were used:

• 6×4 Checkerboard printed on 60×80 cm aluminum frame with 5cm white space.
Wanted 10 cm squares. Used pre-scale factor of 0.984. Resulting squares: 10.1 cm.
Correct pre-scale factor 0.973.

• 5×5 April-grid printed on 60×60 cm aluminum frame with 2.28 cm white space.
Wanted 8 cm squares with 0.3 square-space ratio. Used pre-scale factor of 0.975.
Resulting squares: 8.03 cm. Correct pre-scale factor 0.971.

The standard checkerboard pattern is accepted bymost common camera calibration software,
but the entire board has to be visible in each image for it to be usable. The april-grid
calibration pattern is usable even if only a small portion of the board is visible in the image
because each square is unique. Another advantage is that the april-grid is asymmetric, thus
there is always only one solution when calculating the relative position between the board
and the camera, unlike the checkerboard where there will always be at least two solutions.
This is not important for camera calibration, as only the relative position between each pair
of camera-patterns are of interest. But it is critical if the board is used as a landmark during
a free run, as in chapter 9, because then one is interested in the camera pose relative to the
pattern over time.

During camera calibration the cameras were kept steady to reduce motion blur, while
the calibration board was moved around in front of the camera. Camera calibration is model
fitting, where the model is a lower dimension estimate of the reality. To ensure the a good
model fitting it is important to move the calibration board in the entire field of view (FoV)
of the camera in the selected distance range. As there are limited sight underwater, and the
test pool is quite shallow (1 m), a distance range of 0.2 to 3 meter was chosen. Images of
the calibration board where collected in the entire FoV over the distance range and with
angles. section 4.4.3 shows a illustration of the calibrated distortion model, and it is worth
noting just how little distortion there is. Considering the system is under water with a 125◦

9https://github.com/ethz-asl/kalibr/blob/master/aslam_offline_calibration/kalibr/
python/kalibr_create_target_pdf

https://github.com/ethz-asl/kalibr/blob/master/aslam_offline_calibration/kalibr/python/kalibr_create_target_pdf
https://github.com/ethz-asl/kalibr/blob/master/aslam_offline_calibration/kalibr/python/kalibr_create_target_pdf


4.4. CAMERA 37

Figure 4.9: New calibration boards printed directly on aluminum frames. Left 60x80 cm
standard checker board, right 60×60 cm april-grid. Banana for scale.

0 200 400 600 800 1000 1200

0

200

400

600

800

cam0

0 500 1000 1500

0

200

400

600

800

1000

cam0

Figure 4.10: Radial and tangential distortion for the left and right camera. The red squares
displays how much the blue squares would be distorted if they where captured by the
camera.



38 4. SENSORS

Table 4.5: Calibration result from representative environments.

Mean std
Left camera 0.90 pix 0.44 pix
Right camera 0.91 pix 0.37 pix

lens. It appears that the domed shape of the protection glass is effectively counteracting the
water-glass-air distortion, and that the wide angle low distortion truly has low distortion.

Resulting values after camera calibration using Kalibr for pinhole model with radial
and tangential distortion: reprojection error left camera: 0.22 pixels, right camera: 0.24
pixels. However these values are not representative for how the system performs because
the images where taken with a stationary camera, the camera model where optimized for
these exact images and outliers where removed. Thus a verification experiment where
created where the camera was moving fast, the camera model was fixed and no outliers
where removed. The results for the cameras can be seen in table 4.5.

These results includes partly bad lightening and a small degree of motion blur, and
are representative for the accuracy of the camera system and the camera model during
run-time.



4.4. CAMERA 39

Figure 4.11: Stereo camera calibration result.



40 4. SENSORS



5 | Electronic Design

Before implementing the hardware platform, certain aspects of the electronic design
needs to be examined.

5.1 Synchronization

In order to achieve accurate and robust sensor fusion, it is important that the sensors are
synchronized [35], [36]. There are two kinds of synchronization when talking about sensor
fusion.

• Time synchronization: Each measurement have a time-stamp to represent when the
measurement was taken. This time-stamp are given by a synchronized clock.

• Measurement synchronization: The measurements themselves are synchronized such
that the sensors performs measurements at the same time.

Time synchronization is most important, because every sensor fusion algorithm needs to be
able to compare the time-stamps from different sensors. Further the accuracy of the time-
stamps directly effect the accuracy of the fusion algorithm similarly to how the accuracy of
the measurements effect it. The difference is only that the effect of inaccurate time-stamps
are dependent on the rate of change in the measurements. The biggest source of inaccuracy
of a time-stamp is generally a unknown and varying time between the acquisition of the
measurement and when the time-stamp is set.

Each measurement goes trough several steps before it arrives to the sensor fusion algo-
rithm, see fig. 5.1. The time for each step varies slightly for each measurement, particularly
the transfer of the measurement data from the sensor to the sensor fusion algorithm can
vary a lot. For example there can be a buffering effect, where in order to save processing
time the system stack several small measurements together before they are transferred or
after they are transferred, but before they are read by the operating system. In such cases it
is important that the time-stamp is set before the measurement is transferred because the
transfer time can vary by several sampling periods and is generally unknown. To make the
time-stamps accurate they should be set as close to the acquisition as possible. For sensors
such as cameras where the acquisition time, called shutter time, can be quite long and often
vary based on the amount of light in the scene. In high speed systems such as UAVs, a
common approach to increase accuracy of the time-stamp is to set it to be in the middle of
the acquisition [36].

41



42 5. ELECTRONIC DESIGN

Acquistition Pre-processing Transfer

Acquistition Pre-processing Transfer

Total latency

Sample period

Figure 5.1: Measurement latency is composed of the time it takes to acquire themeasurement,
pre-processing and the time it takes to transfer it to the sensor fusion algorithm.

t

Sensor 1

Sensor 2

Combined latency

(a) Combined sensor latency for asynchronous measurements.

t

Sensor 1

Sensor 2

Combined latency

(b) Combined sensor latency for synchronous measurements.

Figure 5.2: Combined sensor latency for fusion algorithms who require both measurements
before they can give an output. The width of each sensor measurement represent its total
latency.



5.1. SYNCHRONIZATION 43

Measurement synchronization is not equally important, and there are many approaches
to deal with asynchronous measurements. For example, a basic Kalman filter handles
asynchronous measurements by default, as long as they arrive in the correct order. Often
this is not the case. One can easily imagine a simple inertial measurement being acquired
after a GPS measurement, but due to different latencies, it arrives first to the Kalman filter.
To overcome this, the measurements need to be sorted based on sampling time. The easiest
way to do this, is to store the last few inertial measurements in a buffer while waiting
for the GPS measurement to ensure the measurements are transferred to the Kalman
filter in the correct order. For asynchronous measurements, determining the required
length of this buffer can be challenging, especially if you do not know when the next GPS
measurement will arrive. Generally, the main advantages of operating with synchronous
measurements is simplicity and minimized delay [35], see section 5.1. There are exceptions
where measurement synchronization is crucial, however, for example when dealing with
stereo camera images. In this case, images from two cameras are directly compared to
estimate the depth of the scene.

5.1.1 Implementation

The pressure sensor is connected as an auxiliary sensor to the IMU, therefore, in the context
of synchronization, IMU or inertial measurements also includes the pressure sensor or
pressure measurements. Both the IMU and the cameras are equipped with digital pins for
sending and receiving trigger signals in the form of 5 or 3.3 V level shifting signals. As the
IMU has the highest measurement frequency, it runs in free running mode. In this mode
the internal controller of the STIM300 IMU outputs measurements at a chosen frequency.
The IMU runs in free running mode instead of being triggered externally, because in free
running mode, the STIM300 IMU use the trigger signal to inform when all data from a
measurement is sent, allowing for more robust data transfer.

The initial plan was to simply connect the output sync signal of the IMU directly to the
camera and let the camera take a picture at every new IMUmeasurement. Unfortunately, the
cameras were too old to have this ability, thus, a micro-controller was installed to register
the trigger signal from the IMU and trigger the camera every nth time. As shown in fig. 5.3.
By triggering the camera every nth inertial measurement, measurement-synchronization
is achieved. This system does, however, still have very poor time-synchronization. There
is no way of accurately synchronizing the internal clocks of the camera and IMU with
the computer clock. Thus, the only option is to set the time-stamps of the measurements
when they arrive at the computer. Unfortunately this is after being pre-processed and
transferred, which, for both the images and inertial measurement, introduces significant
latency variation. Another problem was that there was no way of communicating with the



44 5. ELECTRONIC DESIGN

Arduino
Nano

STIM 300
IMU

Blackfly
Camera

RS422
to

USB

Computer

Above water

Ethernet
Switch

Ethernet

RS422

Ethernet

USB

Trigger

Sync

x2

Figure 5.3: Data flow for the Visual-Inertial sensor.

micro-controller, thus the entire enclosure had to be opened if the triggering ratio between
the camera and the IMU needed to be adjusted.

To achieve more accurate time-synchronization, and allow for communication between
the micro-controller and the computer, the IMU data was redirected through the micro-
controller. At this time, partly due to hardware faults, Ethernet was decided used as
communication protocol between the IMU and the computern instead of the intended RS422.
This altered design is shown in fig. 5.4. The micro-controller clock is then synchronized
with the computer clock over the Ethernet connection. Thus the IMU time-stamp are set
directly by the micro-controller when it registers the sync signal. Resulting in a near perfect
time-synchronization for the inertial measurements.

The cameras can provide a time-stamp as meta-data for each image, however the
internal clock of the camera used to set these time-stamps needs to be synchronized with
the computer clock. To achieve this, a simple start-up routine was created. During start
up, after the micro-controller clock is synchronized with the computer clock, the micro-
controller triggers the camera with a 2 second period, and sends the trigger-time to the
computer. Assuming an image uses less than 1 second to transfer to the computer. If an
image and a trigger-time message from the micro-controller arrives within 1 second apart,
then they must be matching. After finding 10 such matches, the median time difference is
calculated and added to every future time-stamp. Thus the camera is synchronized with
the micro-controller clock, which again is synchronized with the main computer clock.



5.1. SYNCHRONIZATION 45

Arduino
Nano

STIM 300
IMU

Blackfly
Camera

Computer

Above water

Ethernet
Switch

Stamped Images

Ethernet

Sync

Sync

x2

IMU data
Stamped IMU data

Figure 5.4: Data flow for the Visual-Inertial sensor whit more accurate time-synchronization

Figure 5.5: Control module. Synchronizes sensors, adds timestamps to inertial and pressure
measurements, regulate voltage levels, control lights and watch over the leak sensors.



46 5. ELECTRONIC DESIGN

Figure 5.6: Buffering effect on inertial measurements. The figure displays two time lines,
where the blue lines represents time-stamps of the inertial measurements. Top shows the
time-stamps when set based on arrival time of the inertial data to the computer. Bottom
shows the time-stamps when set based on the triggering signal directly from the IMU.

5.1.2 Experiments

First a result of the buffering effect is presented, then time-synchronization experiments
are discussed, before lastly measurement synchronization is discussed.

In fig. 5.6, there is a clear display of the buffering effect. In both the timelines, the IMU
is sampling at 125 Hz. However, for the upper timeline, the time-stamp is set after the
measurement arrives to the sensor fusion algorithm according to fig. 5.3. While in the lower
timeline the time-stamp is set directly by the microcontroller once it receives a triggering
signal from the IMU as shown in fig. 5.4. One can clearly see that the time-stamps have
been clumped up into batches, due to the fact that the measurements themselves have been
stored in buffers during the transfer.

In order to estimate the time synchronization, a continues, spatial and temporal visual
inertial calibration method [37], [38] was used, it is implemented in the ROS Kalibr toolbox.
It uses the sensor model described in eq. (4.1) for the IMU, and supports the same sensor
models as discussed in chapter 4 for the camera models. The pinhole model with radial and
tangential distortion models is used. The sensor model parameters used are the ones found
during previous calibration of the cameras and the IMU.

The setup is quite similar to camera calibration, except the intrinsic and extrinsic
camera models, as well as the noise parameters for the IMU model, are known. The goal
is to estimate the temporal and spatial offset between the cameras and the IMU. Instead
of keeping the cameras still and moving a calibration board in front of the cameras, the
calibration board is kept still and the VI-sensor is moved in front of the calibration board.
This is so the IMU can measure the movements, and it is important to excite all the axes of
the IMU in order for the calibration algorithm to estimate the IMU biases correctly. Since
the cameras needs to be moving and rotating relatively fast during the calibration it is
crucially for the camera to be operating with a low shutter time and good lightening to
avoid motion blur. The calibration method uses the known camera model as well as the
known calibration pattern to estimate the relative position between the camera and the
calibration pattern. Splines are used to interpolate the pose between image measurements.
Thus it is important that the frame rate of the cameras are as high as possible to reduce the



5.1. SYNCHRONIZATION 47

1.0 1.5 2.0 2.5 3.0 3.5 4.0
+1.559339731e9

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Time shift prior camera-imu estimation

measured_raw

predicted
measured_corrected

Figure 5.7: Time synchronization between camera measurements and IMU measurements
during development and not working properly. The blue line represents the absolute
rotation rate in rad/s from the IMU measurements as a function of time. The green line
represents the predicted rotation rate estimated from the camera models and the calibration
boards. The red line represent the time-corrected IMU measurement.

distance between two images which again make it possible to fit splines more accurately.
The relative spatial placement can be seen in fig. 6.7. During the first implementation,

see fig. 5.3, the ROS node, running on the main computer, received the inertial measurements
directly from the IMU. The node pulled the USB buffer with a given frequency, when new
measurements arrived it read the datagram and parsed the raw values into structures and
converted them into SI units according to the data sheet, before it was published as a ROS
IMU topic. For some time it ran with the same frequency as the sampling frequency of the
IMU, but it turned out to be a slightly lower frequency, because the buffer increased over
time as new measurements arrived from the IMU faster than the node read them. Thus the
time offset between the camera measurements and the IMU measurements became very
large as seen in fig. 5.7. The temporal offset became close to 1 sec before the buffer was full.

After implementing the second synchronization design as seen in fig. 5.4, there was first
a constant temporal offset of 5.0 ms. After subtracting this offset the temporal offset was
measured to be ±0.1 ms over three calibrations. See fig. 5.8.

After verifying that the timestamps are accurate it is easy to verify the measurement
synchronization. Both the cameras are triggered simultaneously by the micro-controller
every 6th inertial measurement as seen in fig. 5.9.



48 5. ELECTRONIC DESIGN

0.2 0.4 0.6 0.8 1.0 1.2 1.4
+1.559344819e9

0.2

0.4

0.6

0.8

1.0

1.2

Time shift prior camera-imu estimation

measured_raw

predicted
measured_corrected

Figure 5.8: Resulting time synchronization between camera and IMU after accurate syn-
chronization.

Figure 5.9: Measurement synchronization between camera measurements and IMU mea-
surements.



6 | Mechanical Design

The hardware setup consists of multiple sensors, as described in chapter 4. However,
without a well planned assembly strategy, the sensor will not be able to provide a

good data foundation. In order for the sensor model to work well, it is important to know
where all the sensors are located in relation to each other. These relative positions will need
to be consistent so that the entire sensor package avoids the need for frequent re-calibration.
This will be achieved by having the modules rigidly attached. The sensors will also need to
be enclosed in water tight compartments. Where possible, it will be advantageous to find
commercial products, as this will free time for other work. Where there are no suitable
commercial option easily available, the components are custom produced at the institute of
Cybernetics mechanical department or 3D printed.

6.1 Water Tight Housing

Figure 6.1: Water housing IMU and preassure
sensor

For water tight housings, it was looked to-
wards Blue Robotics as they havemultitudes
of underwater housing products. After eval-
uating their various solutions, it was de-
cided to use their 2" watertight enclosures
with dome caps, with custom length for the
camera housing. This way the cameras can
be oriented freely regardless of what they
are mounted to. Additionally, there are no
out of the box product to mount the cam-
eras within the cylinders. It was therefore
necessary to design a 3D printed mounting
structure to fit within this housing, capable
of holding the camera in a manner which
ensured that the camera is rigidly attached,
as can be seen from figure 6.2a. This mount-
ing structure will enable the camera lens to
be place in the center position with regards to the dome cap, as seen in figure 6.2b. It was
also decided on using one of Blue Robotics 3" enclosures to house the synchronization
circuit. This extra size is meant to account for the size of the micro controller and cable

49



50 6. MECHANICAL DESIGN

management. The last components that needed to be protected from the water is the IMU
and the pressure sensor. There were no easily available commercial option for this, and
after some dialogue with the mechanical department of institute of Cybernetics at NTNU,
they manufactured the part shown in figure 6.1.

(a) Camera mount 3D design

(b) Lens centered

Figure 6.2: Mounting the cameras inside the water tight cylinders

6.2 Mounting the Components

For the bearing construction, AluFlex was contacted due to their products being found to
be flexible for a sensor rig that may be expanded in the future, or slightly adjusted as it is
created. After close dialogue with the manufacturers, the design settled on an aluminium
rail of dimensions 80 × 80 mm cross section and 320 mm length. The design can be found
in figure 6.3.

The last piece of the puzzle was then how to rigidly attached the camera cylinders to
the bearing construction. This was done by designing a two component mounting which
can be clamped together around the camera cylinder, while the bottom mounting part can
be screwed to the bearing structure interface. The top part can be seen in fig. 6.4a and the
bottom part in fig. 6.4b. Four sets of these constructions were then 3D printed, two for each
of the camera cylinder, as seen in figure 6.4c. This enabled two mounting points of the
cylinder that can be placed arbitrarily along the bearing constructions rails.

With all the components mounted to bearing constructions, the final hardware platform
provides two rigidly attached camera cylinder, a pressure sensor, an inertial measurement
unit, and a synchronization circuit. Additionally, there are attached some cable management
components and a connection point between the hardware platform and the USM, see fig. 6.5.
The connection point enable the hardware platform to be mounted at a small angle. The
complete system can be seen in figure 6.6.



6.2. MOUNTING THE COMPONENTS 51

Figure 6.3: Aluminium bearing structure



52 6. MECHANICAL DESIGN

(a) Top mounting part.
(b) Bottom mounting part.

(c) Mounted camera

Figure 6.4: Connecting the camera cylinders to the bearing structure.



6.2. MOUNTING THE COMPONENTS 53

Figure 6.5: Connection point between the hardware platform and other objects.

Figure 6.6: Complete hardware setup.



54 6. MECHANICAL DESIGN

Figure 6.7: Relative sensor placement found by calibration. Pyramids represents left and
right camera, with their respective coordinate frame, the middle coordinate frame belongs
to the IMU.



Part III

SLAM

VI Sensor SLAM

Classi�cation

Path Planning

Exploration

Control USM Interface

�rusters

Joints

55





7 | Background

Simultaneous localization and mapping is a very hot research topic, it is how we humans
navigate and it is now changing how robots are navigating. The underwater environ-

ment is a difficult, but interesting area for SLAM. Visual SLAM is a complicated, but useful
because of localization:

• Can work in gps denied environments.

• Without drift when not exploring.

• Cm precision.

And mapping:

• Localize relative to surroundings, not some distant coordinate system.

• Allows interaction with surroundings at good accuracy.

There have been a lot of land based SLAM methods, but few are tested underwater. In
this thesis we will take a popular open source land based SLAM method, integrate a

open source version with IMU measurements integrated and test it underwater as a center
peace in a larger autonomous pipeline. Then in section section 16.2 it is fused together with
a classification module to generate a semantic map.

This part will first introduce some background information regarding visual SLAM,
then quickly go through how the chosen visual method, ORB-SLAM operates, then intro-
duce modifications to incorporate IMU measurements, before lastly present and discuss
experiments.

7.1 SLAM Definition

From a very high level point of view there are three required components for SLAM:

• Exteroceptive sensor, that is a sensor which measure external state.

• Link between measurement and internal state.

• Link between individual measurements, or data association. Multiple measurement
observing the same landmarks. In other words there need to be a link between internal
state and external landmarks through the measurement.

57



58 7. BACKGROUND

Given enough such links and measurements one can simultaneously solve for both local-
ization and map representation. This can be done with different sensors. One of the most
used is LiDAR, another popular sensor for SLAM is camera which will be the focus of this
thesis. Then it is often referred to as visual SLAM. Cameras have very fast and accurate
place recognition capabilities. Both for finding data association between successive images
used for tracking, but also for long distance place recognition used for loop closures. Vision
based SLAM methods are generally divided by two dimensions.

• Sparse vs dense. Is simply the discussion on how dense the map should be. Dense
methods requires more computational power and needs to use assumptions such as
smoothness and colour conservation to simplify the problem. Sparse methods don’t
need to make assumptions and can run in real time on a relative small CPU, but the
resulting map is not directly usable for object avoidance or interactions.

• Direct vs indirect is the discussion on how to perform data association. The question
should one compare the image intensities directly or indirectly by first extracting
image features.

Definition 7.1. Given a stream Ij = {I0, . . . , Ij} of images up to time j , a setLj = {l0, . . . , li}

of landmarks and a set Zj = {zi,j} of observations of landmark li in image Ij . SLAM has
the goal of finding the optimal 3D positions P = {pi} of the landmarks and the 6D poses
ηj = {η0, . . . ,ηj} of the images in real time.

The total state Xj = {ηj ,P} is the union of the camera poses for all the images and the
positions for all the detected landmarks. Throughout the SLAM part we notate the pose as
ηj to simplify notations, the full notation is ηj

s/m
, that is the pose of frame s given relative

to framem, for each image Ij . Where s is the sensor frame. For stereo or mono SLAM, s is
equal to the rectified, undistorted, left camera frame c0. While for visual inertial SLAM, s is
equal to the IMU frame.

The map coordinate framem is, unless specified otherwise initialized to s at j = 0, that
is the time step of the first image I0 used to initialize the map.

7.2 Front-end

The front end of a SLAM system is mainly responsible for data association. For a complete
SLAM system there are two forms of data association, close and far. The close kind is used
during tracking, when the images are partly overlapping and the goal is to align them, or
extract and match features which can be used to align them. In order to estimate how the
camera is moving relatively to the environment, hence tracking the environment. The other
kind is used for loop closing, and is intuitively called place recognition.



7.3. BACK-END 59

7.2.1 Place Recognition

Place recognition typically consist of a smart way to compactly summarize a image and
store it in a structure which makes it very fast to compare a new image to the existing ones,
already in the structure. The most used place recognition methods for visual SLAM are
DBoW[39] and FAB-MAP[40]. FAB-MAP was long considered the golden standard of place
recognition, it represented images with a bag of words and uses a Chow-Lui tree to learn
the covisibility probability between words. DBoW was the first to introduce create bag of
words out of discrete descriptors (BRIEF). Thus reducing the feature extraction with an
entire order of magnitude.

Bag of words is a technique to discretize images into a set of visual words, thus the
entire image can be represented as a bag of such words. The words are created offline from
huge data sets, during run time each image is classified based on which words it contains.
By storing the combination of words in smart structures such as threes, a new image can
very quickly find other images which share many of the same visual words.

7.3 Back-end

The back-end handles all the optimization, it used to be filter based, but recently there was
a shift towards nonlinear optimization based methods[41]. This has to do with the success
of structure from motion.

7.3.1 Bundle Adjustment

Structure from motion (SfM) essentially solves the same problem as monocular visual SLAM.
Whereas SLAM comes from the robotic community, with focus on real time and localization,
SfM is a problem from the computer vision field with more focus on the mapping accuracy.
Given only a single monocular camera, the goal is to create a 3D representation of the
environment. If only one picture is available, this is mathematically impossible. However, if
the camera moves and takes pictures from several angles, the problem become solvable. This
movement of the camera is what gives the name structure from motion. Bundle adjustment
(BA) is the optimization problem at the core of most SfM and SLAM algorithms.

Definition 7.1 (Bundle adjustment). Given a set {Ij} of images, a set {li} of landmarks and
a set {zi,j} of observations of landmark li in image Ij . BA has the goal of finding the optimal
3D positions P = {pi} of the landmarks and the 6D poses η = {ηj} of the images. It is
formulated as:

min
P,η

∑
i,j

����zi,j − Π (
pi |ηj

) ����2
2 , (7.1)



60 7. BACKGROUND

where Π, defined in eq. (4.14) from chapter 4, projects the 3D point pi into the 2D image
coordinates of image Ij , given the pose ηj , assuming a calibrated camera model.

7.3.2 Factor graphs

Definition 7.2 (Factor graph, [42]). Suppose д(x1, . . . ,xn) factors into a product of several
local functions, ϕj each having some subsetX j ofX = {x1, ...,xn} as arguments; i.e., suppose
that

д(x1, . . . ,xn) =
∏
j∈J

ϕj(X j) (7.2)

A factor graph is a bipartite graph that expresses the structure of the factorization (7.2). A
factor graph has a variable node for each variable, a factor node for each local function, and
an edge-connecting variable node, xi to factor node ϕj if and only if xi is an argument of ϕj .

Factor graphs are a commonly used representation within the SLAM community. Their
ability to abstract a complex problem into visible nodes and edges while maintaining all the
structural information has proven very useful. There are several solvers which uses factor
graphs as a way of representing the optimization problem, effectively as a interface to the
solver, the open source g2o [43] and Google’s Ceres [44] being the most popular.

As an example we can show how a factor graph optimization problem can represent
the BA problem eq. (7.1). From eq. (7.2) we set up the factor graph optimization problem:

min
X

д(x1, . . . ,xn) = min
X

∏
k

ϕk(Xk)

= min
X

log
(∏

k

ϕk(Xk)

)
= min

X

∑
k

log (ϕk(Xk)) ,

by choosing X = {η,P}, Xk = {pi ,ηj}, ϕk = exp
(����zi,j − Π (

pi |ηj
) ����2

2

)
, we end up with the

BA problem in eq. (7.1). The resulting factor graph can be seen in fig. 7.1 for an example
with 3 camera poses and 9 landmarks.

7.4 Batch BA

The high complexity of BA makes it difficult to run in real time. The two main difficulties
are:

• BA is non-linear and requires accurate initialization.

• BA complexity increases with the cube of the sum of images and landmarks [45].



7.4. BATCH BA 61

Figure 7.1: Bundle adjustment represented as a factor graph. Green nodes represents the
pose ηj of the camera when a image I J was taken. Brown nodes represents the 3D position
pi of a landmark seen across multiple images. The small black circles represents factors
ϕk and are equal the exponential of the reprojection error. The result of BA is found by
minimizing the product of all the factors.

Thus current embedded hardware is not capable of solving the full BA in real-time. Instead
of developing fundamentally new methods for solving the full SLAM problem incrementally,
clever engineers and scientist have found ways to use the effective, accurate and established
BA solvers for SLAM by dividing the problem into smaller batches, and solving them one
by one.

7.4.1 Key-Frames

Key-frames are a subset of imagesIk ⊂ Ij with their poses, {ηk} ⊂ {ηj} chosen to summarize
the full SLAM problem by not including redundant information, see fig. 7.2. Choosing a

Key-frames

Regular frames

Landmarks

Figure 7.2: Key-frames is a subset of the regular frames chosen to summarize the SLAM
problem.

good key-frame selection policy is an interesting problem as one has to balance between
a sparse selection and dense selection. Too sparse selection, and there wont be enough
common landmarks and the problem will become ill-defined. Too dense selection and the
problem is too computationally expensive. Additionally, individually some images contains
more landmarks than others and are thus better suited to be chosen as a key-frame.



62 7. BACKGROUND

7.4.2 Windowed Optimization

Instead of performing BA over the entire state X or Xkey, only a small part of the problem is
solved at a time. This is achieved by splitting the states into three subsets, the statesXexcluded

which are excluded from the current optimization, the states Xincluded which are included in
the optimization, and the states Xfixed which connects the two subsets together. Xfixed is
included in the optimization, but is kept fixed to ensure a smooth connection between the
included and excluded states. See fig. 7.3.

Variable state

Fixed state

Excluded

Image factor

Figure 7.3: Windowed optimization. The yellow states are fixed during the optimization
and are only included to maintain a smooth connection between the included green states
and the excluded red states.

7.4.3 Fixed-lag-Smoothing

Fixed-lag-smoothing, also referred to as sliding window optimization, solves the full SLAM
problem, but only for the last τ time-steps. That is ηj = {ηj−τ−1, . . . ,ηj}. Old states are
marginalized out. Filtering within SLAM refers to the problem, where at every time-step j,
the goal is to estimate only the current pose ηj and corresponding map Pj . This is the same
as fixed-lag-smoothing with τ = 1.

7.4.4 Parallel Tracking and Mapping

First successfully applied in PTAM [45], they created a visual SLAM system which could
work in unknown environments. While competing well, in terms of robustness and accuracy,
against existing solutions which required a prior model of the environments. The trick
was splitting the SLAM problem into two parts, tracking and mapping, which could run in
parallel in two separate threads, utilizing the multi-threading capabilities of modern CPUs.



7.5. INCREMENTAL BA 63

Variable state

Fixed state

Marginalized

Measurment factor

Prior factor

Figure 7.4: Sliding windowed optimization with prior factors. For each optimization step,
priors are added as factors between last result and matching, current optimization variables.

Tracking run a fixed-lag-smoothing at frame rate, keeping the map fixed and only
including the current state as a variable (τ = 1), marginalizing old states except for a chosen
few, named key-frames. The mapping runs one of two windowed optimisations, first local
BA, where the included variable states are the most recent key-frame, its 4 closest neighbors
and all their map points. The fixed states are all the other key-frames which observes the
included map points. Ones the local BA has converged, the mapping thread runs global BA,
including all the map points and key-frames until a new key-frame arrives. This model of
splitting the problem has proven successful and are used in many state-of-the art SLAM
and VO methods [30], [46]–[48].

7.5 Incremental BA

The recent advancements in visual SLAM results from a leap from SfM to SLAM [41], where
excellent engineered implementations of BA run in real-time [49], as described above. These
batch BA methods represents most of today’s state-of-the-art visual SLAM methods [30],
[45], [46], [48], [50], [51]. However there are a lot of work on developing specialized SLAM
solvers. Current research has three main focuses:

• Incremental smoothing.

• Global optimal solutions.

• Estimated co-variance.

Within the robotics and state-estimation community BA is referred to as smoothing. Unlike
filtering smoothing referres to when one includes all the previous states in the optimization
problem. Incremental smoothing and mapping (iSAM) [52], and iSAM2 [53], uses a special
case of factor graphs named Bayes trees and QR-factorization of the measurement matrix



64 7. BACKGROUND

to reorder the variables so that only the states and their uncertainties that are effected
by new measurements are included in the optimization problem. SLAM++ [54] is a gen-
eral framework for incremental maximum likelihood estimation based on a sparse block
data-structure with focus on estimating the uncertainty in real-time by updating them
incrementally. Which uses information theory measures to integrate only informative and
non-redundant contributions to the state representation. ICE-BA [49] improves upon the
aforementioned incremental smoothing and mapping methods by, in their own words, "bet-
ter leveraging the specific block matrix structure in SLAM". Furthermore, they guarantee
the minimization of the re-projection function and inertial constraint function during loop
closure. With the controversial question "why bundle adjust?", it was proposed to replace
BA with a two step procedure[55]. First, the camera orientations are estimated, then, using
a quasiconvex formulation, the remaining problem can be solved efficiently and globally
optimally. Furthermore, the work by Mangelson [56] illustrates that the Pose-Graph SLAM
and Landmark SLAM can be formulated as polynomial optimization programs that are sum-
of-squares (SOS) convex. Using this representation, they demonstrate a method for solving
planar Pose-Graph SLAM that are globally optimal, thus not requiring any initialization.

However, these newer methods are still in a early stage, thus in this thesis the well
tested and popular ORB-SLAM will be used.



8 | SLAM Method

As argued in [3], for underwater visual slam, a indirect method is advantages, because they
are not equally dependent on accurate sensor models as direct methods. Sparse methods are
considered more accurate, and robust for the same computational power compared to dense
methods [29], [51]. Lastly ORB-SLAM is open source with many forks and improvements.
For further argumentation, the reader is refered to [3].

8.1 ORB-SLAM

ORB-SLAM is a open source, popular, indirect sparse SLAM method. It is based on PTAM
[45], where in addition to the tracking and mapping thread a loop closing thread is added.

8.1.1 Connectivity Graph

In order to keep track of the covisibility and connections, ORB-SLAM operates with three
graphs.

• Covisibility graph, each key-frame is a node, and they are connected by a undirected
edge if they share common map points. The weight of the graph is equal to the
number of common observations.

• Spanning three, this is a subset of the connectivity graph, and is a three with the root
at the first key-frame, connecting all the nodes with a minimal set of edges.

• Essential Graph, this is the union of the Spanning three, Covisibilty graph edges with
more than 100 observations and loop closure edges.

8.1.2 Place Recognition

ORB-SLAM uses DBoW2[39] for place recognition, it is a custom modification from DBoW,
and the words are built from ORB descriptors. In addition to utilizing the DBoW three to
quickly look up similar images, ORB-SLAM also uses the three as a speedway for searching
for ORB matches between current frame and last key-frame.

65



66 8. SLAM METHOD

Landmarks

Camera2

2

3

3

1

3

4

Spanning 
tree

Covisibility
Graph

Figure 8.1: Covisibility graph. The number represent how many common observations the
two key-frames share.

8.1.3 Initialization

For monocular SLAM, the map initialization is a difficult task. The way it is done is to
wait for the camera to move in a direction which is parallel to the image plan, so that two
images taken a little apart from each other can be used as one stereo pair. Then the same
geometry as explained in section 4.4.1 applies. However the transformation between the
cameras are not known in advanced. To get around this ORB-SLAM uses one of two models
to represent the problem. Either the Homogeneous matrix H , or the fundamental matrix F .
in order to use the Homogeneous matrix, the scene has to be a planar surface, while no
such requirements are needed for using the Fundamental matrix. After estimating both
matrices using RANSAC, one of them are chosen based on the reprojection error. If the
parallax is large enough (at least 1 degree) the chosen model is used to generate the initial
map. Lastly a global BA is ran over the newly created map.

8.1.4 Tracking

The tracking thread runs in real time at frame rate. During normal operation the map
is initialized and tracking was successful for last frame, then the tracking performs the
following operation on every frame: Detect FAST corners, trying to distribute the corners
evenly over the picture, by dividing the picture into grids and using the best corners from
each grid, instead of the best overall corners. Then ORB descriptors are computed on the



8.1. ORB-SLAM 67

FAST corners.
Estimate the pose ηj of the current frame in three steps:

1. First get a rough initial estimate η′j assuming a constant velocity motion model from
the last two poses ηj−1 and ηj−2.

2. Using η′j as initialization find a improved estimate η′′j by by performing windowed
motion only BA with the map points which where found in the last frame and the
current pose, keeping the map points fixed.

3. Finally, using η′′j as initialization, optimize the pose again using all the map points.

If the tracking is lost the frame is instead converted to a bag of words, then used to
search for matches among all the key-frames, using the DBoW2 library. If a match is found
the relative position between the matched key-frame and the current frame is calculated
and tracking continues.

The last step of the tracking thread is to decide if the current frame meets the necessary
criterias for becoming a key-frame:

1. More than 20 frames must have passed from the last global relocalization.

2. Local mapping is idle or more than 20 frames have passed from last key-frame
insertion.

3. Current frame tracks at least 50 points.

4. Current frame tracks less than 90% points than the Key-frame with the most shared
map points.

Many key-frames are initially inserted to handle fast turns and quick movements and then
later removed from the map.

8.1.5 Mapping

The mapping thread runs in close to real time. It runs in parallel to the tracking thread, so
that while the tracking thread is tracking the current map, the mapping thread is updating
and maintaining the map. While the tracking thread runs its routine on every frame,
the mapping thread only runs the routine on every key frame. The mapping thread is
interrupted by the tracking thread if there has been 20 or more new frames since last key
frame. Thus the mapping thread should not use more than 20*FpS s per key-frame.

For every new key frame Kj the mapping thread begins by inserting Kj into the covisi-
bility graph. Then potential outlier map points are filtered out by two criteria, where the
first only are checked during the first three key frames after the map point was created:



68 8. SLAM METHOD

• The tracking must find the point in more than 25 % of the frames in which it is
predicted to be visible.

• If more than one key-frame has passed from map point creation, it must be observed
from at least three key-frames.

Next new map points are created by finding and matching new key-points between the
current key-frame and the connected key-frames. Then the map is updated by running
widowed BA over all the connected key-frames Kc , and their map points. All neighboring
key-frames are included in the optimization, but remains fixed. The Levenberg-Marquadt
method implemented in g2o [43] and the Huber robust cost function are used. Lastly
redundant key frames are removed according to one criteria:

• 90% of the map points have been seen in at least three other key-frames in the same
or finer scale.

8.1.6 Loop closure

After the mapping thread is done with integrating the latest key-frame Ik to the map, the
loop closure thread start searching for loop closures. To ensure there are no false positive
a strict set of rules are followed. First the visual similarity between Ik and its neighbors
in the covisibilty graph are calculated and the lowest one is used as a minimal similarity
criteria. Thus any key-frames with a lower similarity than the least similar of the closest
neighbors are discarded. Further any candidates must be connected to at least two other
loop candidates in the covisibilty graph. For each candidate a similarity transformation,
that is a 7 DoF (including scale) transformation, is computed between the current key-frame
Ik and the loop candidate Il . If there are enough map point matches at the new location, the
loop closure is accepted. The error is distributed over the Essential Graph, by performing
a similarity transformation optimization over graph distributing the error and correcting
scale drift. Finally the map points are corrected by transforming them using the exact same
transformation that where used on their key-frames.

8.2 Visual Inertial ORB-SLAM

The creators of ORB-SLAM extended it to include inertial measurements, and thus published
the first paper describing a complete Visual Inertial SLAM system with loop closures,
localization, reusablemaps and pure localizationmode [28]. To integrate IMUmeasurements,
there were most changes in the tracking and mapping threads because two additional states;

• Linear velocity ®vs/m ∈ R3



8.2. VISUAL INERTIAL ORB-SLAM 69

• IMU biases ®b = {®bacc , ®bдyro} from the sensor model in eq. (4.1).

The state associated with each image Ij is expanded from only including the pose ηj to also
include the new states. This updated state is named the odometry state Ωs/m where s is the
sensor frame, which is fixed relative to the body frame b, andm is the map frame which
is fixed relative to the NED frame, which is simplified to assumed inertial. It is defined as
Ωj
s/m
= {ηj

s/m
, ®v j

s/m
,b jacc ,b

j
дyro} and throughout the SLAM part the notation is simplified to:

Ωj = {ηj , ®vj ,bj}.

8.2.1 Tracking

The constant velocity model is replaced by integrated inertial measurements, giving a much
more accurate initial pose estimate η′j . IMU factors are included in the local motion only
BA, which runs in two different modes dependent on if the map has been updated by the
mapping thread (Local BA) or the Loop closing thread (Loop closure). If the map was
recently updated, the local motion only BA includes the following states:

• variable states Xincluded = {Ωj},

• fixed states X f ixed = {Plocal ,Ωk}

where Ωk is the odometry state for the last key-frame.
If the map have not been updated since the last time the tracking ran, the local motion

only BA is implemented as a sliding window optimization with

• variable states Xincluded = {Ωj−1,Ωj},

• fixed states Xfixed = {Plocal ,Ω
′
j−1}

where Ω′j−1 is the solution from the prior optimization and is connected to Ω′j−1 via a prior
factor, as shown in fig. 7.3. The reader is referred to [28] for a detailed info in how the error
terms are defined.

8.2.2 Mapping and Loop Closing

The mapping also includes the extra IMU states in the local BA, where the last n key-frames
are included as variable states, to keep them IMU states connected to the excluded states,
a extra state Ωn+1 is included as a fixed state. Otherwise the mapping and Loop Closing
remains the same. During initialization, the pure visual SLAM part initializes first, then the
estimated trajectories are used to estimate the IMU states, one at a time, before the Loop
Closing thread runs a full global BA, with all states, to properly initialize the IMU states.



70 8. SLAM METHOD

IMU error

Reprj. error

Figure 8.2: Widowed optimization variables and error terms.

Algorithm 1 VI-Tracking (Ij , {®aIMU }j−1,j)
Input: New Image Ij , IMU measurements since last image {®aIMU }j−1,j
Output: Current estimated odometry state Ωj

1: ORB = ExtractORB(Ij)
2: Ω′j =PreIntegrate({®aIMU }j−1,j)
3: Xinit = GuidedSearch(Ω′j ,ORB)
4: if Map has changed then
5: Xincluded = {Ωj}

6: X f ixed = {Plocal ,Ωk}

7: else
8: Xincluded = {Ωj−1,Ωj}

9: X f ixed = {Plocal ,Ω
′
j−1}

Ωj = WindowedBA(Xincluded , X f ixed , Xinit )
return Ωj



8.3. IMPLEMENTATION 71

8.3 Implementation

ORB-SLAM and ORB-SLAM2 are both released as open source code, which is a huge factor
of why it have become so popular. There are many forks and modifications to ORB-SLAM,
and choosing which one to build upon is a critical step. One key factor to keep in mind is
to try to build upon and improve the work of other people in the open source community.
In this thesis we uses the only one with a ROS wiki page1, as it is recently created, are
being maintained by AppliedAI2 and have had several updates during the last months. It is
already loosely integrated with ROS.

The ROS node starts the tracking, thus the ROS node and the tracking module run in
the same thread, while the mapping and loop closure threads are spawned as individual
threads using c++11 thread functionality, see fig. 8.3. The ROS node subscribes to image

ROS 
comunication

Tracking

Loop closure

Mapping

Map, 
Keyframes, 

Etc.

Figure 8.3: ORB-SLAM implementation. ROS communication and tracking runs in the same
thread.

topics and when a new image Ij arrives it runs the tracking function. ORB-SLAM performs
tracking and returns the estimated pose ηj , and the current map point cloud Pj .

8.3.1 IMU Integration

The creators of ORB-SLAM published a paper [28] of how to integrate IMU measurements
into their visual SLAM system as described in section 8.2, but did not release the source
code. However there have been a couple attempts of implementing the method described
in the paper as open source code, with the most successful being the github repository
LearnVIORB3. The Visual Inertial SLAM implementation in this thesis is forked from
LearnVIORB with no new features and only three performance improvements:

1. Upgrade the included, outdated g2o version to the newest official version.

1http://wiki.ros.org/orb_slam2_ros
2https://appliedai.de/
3https://github.com/jingpang/LearnVIORB

http://wiki.ros.org/orb_slam2_ros
https://appliedai.de/
https://github.com/jingpang/LearnVIORB


72 8. SLAM METHOD

2. Replace several raw pointers with C++11 smart pointers and added null-pointer
checks.

3. Change from polling to callback based sensor data collection.

The first improvement being the most important as the included g2o version, when compiled
with newer C++ compilers, resulted to numerical errors and segfaults every time a new
map was initialized. But also the most time consuming as most of the optimization class
had to be updated to work with the new g2o API. Similarly the second improvement was
an attempt to reduce the number of segfaults occurring due to raw pointers pointing to
empty memory. The last improvement was more in style with the ROS guideline of how to
handle messaging between nodes.

Finally the visual inertial implementation where merged into the ROS integrated version
described above. Where the estimated velocity and pose where combined and published as
a odometry message.

Additionally a modular integration with the object classification module where imple-
mented as described in section 16.2. The map points where assigned a class and published
with a class and class score as a PointCloud2 ROS message.



9 | Experiments

9.1 Setup

9.1.1 Datasets

Several sequences have been collected as ROS bags with the visual sensor described in
part II. Each sequence contains the following synchronized measurements:

• Stereo camera 644x482 pix images at 20.83 Hz.

• 3 axes accelerometer measurements at 125 Hz.

• 3 axes angular rate measurments at 125 Hz.

• Pressure measurements mapped to depth [m] at 125 Hz.

Most sequences are from the pool at the Eelume lab, but there are also some from the Dora
dock, an old submarine dock. The Eelume pool is approximately 6 m by 3.5 m, and 1 m
deep. The datasets were gathered while walking in the pool holding the VI-sensor with a
stick. As the pool normally has very little contrast, several small, black metal objects where
distributed across the pool. In addition, an Aprilgrid was placed at the bottom in one end of
the pool. This was primarily to be used to calculate a ground truth, but also served as a
easy starting point for the SLAM algorithm to generate a good initialization. The chosen
sequences from the Eelume pool are listed in table 9.1. The first three (lin x) where recorded

Table 9.1: Selected Dataset from the Eelume pool.

Length [m] Time [s]
lin 1 19.2 58
lin 2 14.1 31
lin 3 13.9 33
rot 1 7.4 30
rot 2 8.3 27
rot 3 7.9 24
rot 4 8.1 23
map 1 53.1 271
map 2 41.3 235

while trying to mainly move in the XY plane, with as little rotations as possible, and with
increasing speed. The following four (rot x) where recorded in a similar manner, but with

73



74 9. EXPERIMENTS

one specific rotation where the rotation rate increased for each run. The last two where
long recordings where the VI-sensor was moved across the entire pool, in order to build a
complete map of the pool bottom.

9.1.2 Computer

All the results in this chapter where generated by running the ROS bags in real time speed
on a stationary computer with a Intel core i7 CPU.

9.1.3 Tracking Parameters

The following tracking parameters were used during the runs:

• Number of ORB features per image: 1000.

• Minimum FAST corner response: 15.

• Maximum FAST corner response: 25.

The biggest change being the increased requirements for the FAST corner response. This
means that the required contrast required for a corner to be used as a feature is increased.
The reason was to filter out corners detected at shadows caused by either the person walking
in the pool holding the camera, or shadows caused by waves in the surface distorting light,
which shows as moving shadows at the bottom.

9.2 Visual Odometry Accuracy

9.2.1 Score System

In order to numerically evaluate the SLAM system, the chosen sequences where started
and stopped above the April grid, which was laying at the bottom of the pool. For the
first and the last image of the sequence the poses, named ηo,ηдt respectively, of the camera
relative to the April grid where calculated based on the camera model, and the known
layout of the April grid using Kalibr. Then these two poses where rotated so the first pose
ηo became equal to the map coordinate framem from the SLAM results, asm is equal to
the pose of the first frame η0. After transforming ηo and ηдt , so that ηo = η0, assuming the
SLAM algorithm estimates the trajectory perfectly, the last estimated pose, ηslam from the
SLAM algorithm should be equal to the last pose ηдt estimated from the Aprilgrid. Then
the overall translation error tabs is calculated as the RMSE between translational parts of
etaslam and ηдt . As monocular SLAM do not estimate scale, the scale was estimated by first
extracting the ground truth pose from all the frames which observed the calibration board



9.2. VISUAL ODOMETRY ACCURACY 75

Figure 9.1: Aprilgrid detected and used to generate ground truth.

in the beginning of the sequence then performing a similarity transform optimization to
minimize the RMSE between the ground truth poses and the matching estimated poses. For
this test to be any interesting loop closure was turned off. With loop closure turned on,
the SLAM system recognized the April grid and performed a loop closure, distributing the
error across the entire trajectory, resulting in a near perfect score every time. Thus this test
essentially estimates the accuracy of the visual odometry part of the SLAM system; how
much error is accumulated over time.

9.2.2 Results

The calculated results using the scoring system described in section 9.2.1 from some selected
sequences are displayed in table 9.2.

Table 9.2: Visual odometry results from the Eelume pool.

Visual GT scaled VI VI GT scaled
lin 1 0.72 0.93 0.87
lin 2 0.63 0.69 0.65
lin 3 X X X
rot 1 0.33 0.30 0.27
rot 2 0.47 0.40 0.38
rot 3 X 0.58 0.54
rot 4 X X X

As the sequences are rather short, the IMU initialization was kick-started by supplying
the estimated IMU biases and gravity size from previous runs, thus the IMU initialization
completed only 5 seconds after the map were initialized.



76 9. EXPERIMENTS

Figure 9.2: Monocular SLAM. The blue frames represent key-frames, the green edges
represents the connectivity graph and the red points represents the map points.

fig. 9.2 shows one of the monocular runs from rot 3 sequence. If one looks closely to the
map points one can see the calibration board beneath the start and end poses. There has
been a slight scale drift during the run and as a result the calibration board near the end
has become larger than in the start.



9.2. VISUAL ODOMETRY ACCURACY 77

9.2.3 Discussion

Figure 9.3: ORB-SLAM monocular initialization. The
green line represents the tracked features used to cal-
culate the movement of the camera.

The first thing to note is that the
map initialization requires some
translational movement in paral-
lel to the image plane, so called
parallax, and rotational movement
is normally not enough. fig. 9.3
shows a image where ORB-SLAM
is unsuccessfully trying to initial-
ize with a rotational movement.
This makes sense as the system re-
quires parallax in order to get a
large enough baseline to initialize
the map.

In [29] the authors of SVO2
compare their result to ORB-
SLAM2 mono, running without loop closure in the ICL-NUIM dataset. There ORB-SLAM2
achieves a RMSE between 0.02 and 0.37 m, unfortunately they do not inform about the
length of the run, but the room used is a little smaller than the Eelume pool and with plenty
of features. Further they run in air, thus having very accurate camera models. Considering
these facts, the errors shown in table 9.2 are below what is achieved in-air, but not by
very much, particularly considering the difficulty of the sequences. Further it is worth
noting how the pure visual system performs better than the visual inertial system on the
lin 1 and 2 sequences. Including Inertial measurements seems to give worse results than
without. However in seq. rot 1-3 the VI-sensor outperforms the purely visual system. This is
expected, because the monocular camera system are not able to estimate its pose accurately
during pure rotations [55]. However the IMU is very good at estimating rotations, thus
this is a excellent result demonstrating the good fit between the two sensors. The reason
the pure visual SLAM is outperforming VI-SLAM in the linear sequences might be due
to the fact that the VI-SLAM system introduces extra states to estimate, thus more room
for error. Assuming good parallax, (linear movement parallel to image plane), and plenty
of good features, the visual system might have everything it needs, and thus the BA will
produce very accurate results. fig. 9.4 displays a little experiment to get a estimate of how
fast rotations the system can handle in ideal environments. The camera is moving far from
the bottom, thus keeping many high contrast corners in view, giving plenty of features to
track. The camera was moved into position looking another way, see fig. 9.6b, then suddenly
turned to look into the new scene. If it was turning to a already mapped scene, then even if



78 9. EXPERIMENTS

lost tracking it would immediately relocalise in the existing map. section 9.2.3 displays the
absolute angular rate from run rot 3 and 4, and the peaks represents the point when the
turn happened. Thus, in this particular setting the VI-sensor can handle up to around 2.3
rad/s. This is obviously highly dependent on the frame rate, scenery, shutter speed etc. But
it gives a rough estimate of how well the VI-sensor can perform in the Eelume pool.

The scale drift due to lack of parallax become very clear in fig. 9.5a, where after initializ-
ing a little later than the VI-SLAM system, the scale drift enormously during the turn in the
upper left corner. After that it keeps on going, but the scale is now much lower, resulting in
what appears to be almost no movements. On the other hand the VI-system handles the
turn very well.



9.2. VISUAL ODOMETRY ACCURACY 79

(a) Sharp turn in seq. rot 3. (b) Sharp turn in seq. rot 4, track lost.

(c) Angular rate during seq. rot 3 and 4.

Figure 9.4: Rotation experiment to get a estimate for maximum rotations before lost tracking.



80 9. EXPERIMENTS

(a) Monocular SLAM. (b) Monocular Inertial SLAM.

Figure 9.5: Running the map 2 sequence. The Monocular SLAM run initializes a little later
than the VI-SLAM and suffer from severe scale drift after a pure rotation in the top left
corner.

(a) Sequence rot 3.

(b) Sequence rot 2.

Figure 9.6: Dense key-frames selection during fast turns.



9.2. VISUAL ODOMETRY ACCURACY 81

9.2.4 Dora Dock

To get test the SLAM system in more realistic environments, several data sequences where
collected from Dora submarine dock. The environment is very large and under a half roof,
thus quite dark. It is a structured, man made, underwater environment, with pipes and
metal structures. From fig. 9.7a it can be seen an example of where the SLAM system
struggle to initialize in these difficult conditions. Even though the hardware platform have
the capabilities to mount a light source, due to time constraints there where not time to
incorporate them for this project. This resulted in the hardware platform being highly
dependant upon external light sources. The poor lighting conditions seem to be a significant
contribution to why the system struggled. After some tuning fig. 9.7b show an example of
where the SLAM module managed to initialize and maintain tracking while looking at the
same area.

(a) ORB-SLAM2 trying to initialize in very difficult
environments.

(b) Tracking in difficult environment. Green
squares represent tracked map points.

Figure 9.7: Examples from the testing done at the Dora Dock facilities.

9.2.5 Tracking Time

The tracking time determines the maximum frame rate of the SLAM system as well as in
combination with the image latency, determines the overall pose estimate latency. In table
table 9.3 the tracking times for different scenarios are displayed. During runs where there
are very many key-frames looking at the same area, the mono tracking could reach as high
as 41.4 ms over some time periods.



82 9. EXPERIMENTS

Table 9.3: Tracking time during different modes.

Mean [ms] Std [ms]
Init mono 61.3 5.1
Mono 26.4 4.2
Init VI 35.0 7.9
VI 30.0 7.2

Localisation 38.2 4.0

9.3 Summary

This part presented a monocular inertial SLAM system implemented to work in an underwa-
ter environment. The system was tested in the controlled environment of the test basin and
for a more complex case, the Dora Dock. The system performed well in test basin. However,
the system struggled in the more realistic environment and did not manage to complete any
of the datasets from the Dora Dock. From the test basin datasets it was determined that the
robustness of the monocular SLAM system is increased when augmenting it with an Inertial
sensor. This increase in robustness was especially noticable with respect to rotations and
scale drift.



Part IV

Classification

VI Sensor SLAM

Classi�cation

Path Planning

Exploration

Control USM Interface

�rusters

Joints

83





10 | Computer Vision

In order to provide contextual awareness about what is in the environment of the USM,
it is natural to look to computer vision. Computer vision explores how machines can

understandwhat is present in the environment in a similar manner to how humans do. When
a person sees an object, such as a house, this person would instantly recognise the object
as a house. This process is very complex, with many different proposed solutions, which
results in a large field of research. It is, therefore, necessary to reduce the scope somewhat.
Consequently, this thesis will mainly focus on the problem of finding an underwater pipe,
though it should ideally be able to provide a strategy to find other objects of interest as well.
Objects of interest will be referred to as separate classes.

This thesis will look at how several subsystems can work together to achieve an overar-
ching goal. With this in mind, the goal of the classification section is to find a solution that
can be deemed sufficient to solve the problem of finding pipes, rather than the best per-
forming solution. Once a sufficient solution has been found, the work will be concentrated
on integrating this solution with the other system components.

As described in section 2.2, there are three different scenarios that are relevant for this
system. These conditions are quite different and have their own purposes. The first scenario
was the simulator. This was used to test the system and see how it operated in known, highly
controlled environments. When testing in the simulated environment, a simple and robust
computer vision algorithm can be used to mimic a fully operational classification system.
For this reason, a computer vision algorithm that finds any instances of a specified color
range was developed (see algorithm 2). This algorithm is implemented in Python and utilizes
the open source library OpenCV, which is placed in a ROS wrapper. This algorithm receives
image messages defined in a ROS format, and transforms them into the required OpenCV
format using cv_bridge [57]. The image is then converted to the hue saturation value (HSV)
representation using the OpenCV function cvtColor [58]. The HSV representation can be
viewed as a cylinder, as seen in fig. 10.1, where the hue determine which color the pixel has
and is defined between 0 and 180 in OpenCV [58]. Saturation determine how where the
color is on a scale from gray — defined from 0 to 255 [58] — to purely — for lack of a better
word — the color specified by the hue. The value determines how the color is on a scale from
dark to light — defined from 0 to 255 [58]. By specifying upper (HSVupper = [22, 255, 255])
and lower (HSVlower = [18, 200, 30]) bounds for the accepted color values, the algorithm
accepts a section from the HSV color cylinder, and uses them to create a binary mask
image using the OpenCV function inRange [58]. The binary image is then subjected to the

85



86 10. COMPUTER VISION

morphological transformation dilation and erosion [58], in that order, to remove any holes
smaller than the specified kernel — a matrix of specified size. After removing small holes,
or specs, any contours was detected using the OpenCV function findContours [58]. Any
contours of a smaller pixel area than a specified minimum of 100, or larger than a maximum
of 100 000, are filtered out. The remaining contours are then enclosed with bounding boxes
using the OpenCV function boundingRect. These bounding boxes are then added to a
custom message, darknet_ros::BoundingBoxes, defined by the darknet_ros repository [59].
The bounding box message is then published to the ROS network.

Figure 10.1: The HSV color model mapped to a cylinder, from [60]

When working in a scenario more in line with the operational conditions, such as the
testing and operational conditions from section 2.2, it is not reasonable to assume that the
pipe can be represented by unique colors. Although the testing scenario may utilize the
bright blue bottom to simplify the problem, utilizing this known environment feature will
render any algorithm based on it useless for other scenarios. For these reasons, the color
segmentation based algorithm from algorithm 2 was not adjusted to solve the problem for
the testing conditions. In Utbjoes project assignment [2], an algorithm to detect pipes under
water was developed (see fig. 10.2). This algorithm only provided the orientation of the pipe
and not localization of the pipe in the image. A weakness of this scheme was its sensitivity
to parameter tuning, which proved only to be suitable for similar ranges close to the range
the algorithm was tuned for [2].



87

Algorithm 2 Color based pipe detection
1: Initialize class with subscribers publishers and color parameters
2: hsv_lower← lower bound of accepted colors
3: hsv_upper← upper bound of accepted colors
4: callback:
5: cv_image← image from camerea node
6: hsv_image← cv_image converted to HSV color representation
7: mask← hsv_image converted to binary based on hsv_lower and hsv_upper
8: mask← mask dilated
9: mask← mask eroded
10: contours← contours detected from mask
11: for contour in contours do
12: Filter out if area is too small
13: Define bounding box
14: Publish bounding boxes

Before starting any further development, it is important to be aware of the fact that
this system will need to interact with other components in the ROS environment. The first
step will, therefore, be to prime the existing code to be compatible with the framework and
structure outlined in section 3.3. As both the classification and SLAM components need
the camera frames to function, it is natural to have a separate node that feeds the frames
both to the classification and the SLAM module. To this end, a node was implemented that
received the camera stream before publishing the frame to the ROS network. This frame is
published on the topic that is read from the classification node. For development purposes,
the possibility of reading the image frames from a video file, instead of a camera, was also
implemented.

The improvement on the image classification was to spatially locate — this spatial
location refers to the pixel coordinates — the pipe in the image. This was done by creating
a similar histogram of lines based on their angles, as was done for the sorting of the angles.
Three parameters were stored for each location, the u and v pixel value, as well as the
cumulative line length. Each time a new line segment was located, it was added to the
average u and v pixel value at the correct angle in a manner that blended the average by
weighting the effect of this line based on the line length and the cumulative line length. It
was quickly identified that, for the case where the two sides constituting a pipe section
lined up so that one of them fell into one angle slot and the other in another angle slot, the
spatial location would be chosen only based on one of the sides. In order to get around this
issue, the estimation of where the pipe segment is located based its evaluation of both of
the neighboring angle slots to the angle slot chosen as the pipe section. This fixed the issue,
though the algorithm saw rapid changes in where it thought the spatial location was. This
was a similar issue to what was identified in Utbjoes project assignment [2], which was



88 10. COMPUTER VISION

Figure 10.2: Classification system scheme presented in [2]

solved by a sliding window memory. A similar solution was decided to be implemented,
however, instead of having multiple functions with a similar purpose, the sliding memory
was separated into its own class. This was to ensure that the vision of creating a reusable
codebase is upheld for potential future works. With the sliding window class implemented

Algorithm 3 Edge detection based algorithm
1: Initialize class with subscribers publishers and edge detection parameters
2: callback:
3: frame← image from camera node
4: frame← frame subjected to a gaussian blur
5: frame← frame converted to binary image through canny edge detection
6: frame← frame dilated
7: frame← frame eroded
8: lines← lines detected from frame
9: for line in lines do
10: Create and fill line length and line location (pixel coordinates) histograms
11: Update u_avg and v_avg based on a weighted sum operation
12: Calculate u and v for the primary and secondary pipe segment
13: Calculate average angle
14: Pass through sliding window function

it was used with the primary and secondary pipe section. The algorithm worked well in lab
conditions, but struggled when it came to the added complexities of real world conditions.
The main impact seems to be the varying distance of the camera to the pipe, as the tunable
parameters is highly dependant upon this distance. A solution may be variable tuning
based on the distance to the camera view. However, at this point the development of this
approach was abandoned and the focus shifted towards machine learning approaches to



10.1. DEEP LEARNING 89

see if they can prove to be a suitable solutions for the operational conditions.

10.1 Deep Learning

Figure 10.3: Neural net-
work layer illustration,
from [61].

Artificial neural networks are a part of the artificial intelli-
gence field inspired by biological neural networks [62]. A vari-
ant of such a network, is the multilayered perceptron network
[63]. Figure 10.3 shows how a one-layer network structure
may look. These networks accepts an input which are then
subjected to a hidden layer of perceptron nodes that provides
outputs used as input by — for the example in fig. 10.3 — the
output layer of two perceptrons. The arrows in fig. 10.3 repre-
sent outputs from the the previous layer that are used by the
next layer. These arrows also illustrate how the information
passes between the various nodes. Each node will sum up its
inputs after multiplying them with a weight value defined for
each input, in the sum there is also a bias term. These weight
biases are updated in the training process. The sum of the
weighted inputs and biases are then subjected to an activation function that determines the
output of the node. In a multilayered perceptron network there would be additional hidden
layers that accepts the output of the previous hidden layer as its input.

Deep neural networks refers to having a large number of hidden layers, in contrast to
their counterparts shallow neural networks. Figure 10.4 shows an illustration of how a
fully connected neural network is structured. Fully connected networks are categorised
by having their nodes connected to every node in the previous and next layer [63]. When
considering deep learning, there are a large number of hidden layers which each builds
on the previous. This means that the first layers may find simple features, whereas the
subsequent layers can be utilized to build more complex features, that can then be used
to extract meaningful information from, for example, an image. Figure 10.5 illustrates an
example of how this may look for a neural network trying to detect faces. These features
will be learned through the training process, in contrast to traditional computer vision
approaches where these features would need to be defined through feature engineering.
When considering lower level features, such as various lines, it stands to reason that these
can be found without much consideration of where in the image they are located. This
thesis will look at utilizing supervised learning. Supervised learning uses labeled data
enable using a learning algorithm [65] that after comparing the output of the network with
the labeled ground truth, the network is adjusted in accord to this learning algorithm.

Convolutional neural networks (CNNs), illustrated in fig. 10.6, are built up of several



90 10. COMPUTER VISION

Figure 10.4: Illustration of fully connected neural network, from [64].



10.1. DEEP LEARNING 91

convolutional layers and pooling layers. A convolutional layer is, essentially, a set of matrices
that traverses an image, multiplying the pixels they encompass at any given location to
compute the pixel value of the output. A pooling layer, on the other hand, is a matrix that
reduces the output dimension while preserving the information present in the input.

The convolutional layers subject the input to several filters — each filter is defined by
one of the matrices constituting the convolutional layer. Each of these filters are traversed
over the input and creates a layer in the output. This means that the output will have the
same depth as the number of filters. The values in these filters are the weights to be learned
in the convolutional layer. The same weights are used for the filter regardless of where on
the image the filter is moved. This setup makes CNNs easier to train without much loss of
performance as they have much fewer connections than a fully connected network [66].
With a large amount of filters, the output will often increase in dimensions when compared
to the input. To keep the information transported in the network to be unnecessarily large,
each of the convolutional layers are followed by a pooling layer. Pooling layers consolidates
the information from the convolutional layer into a representation of smaller dimension.
One type of pooling is max pooling, which looks at an area and only keeps the maximum
value. By doing this, the strongest outputs in from the filters in the convolutional layer are
preserved. However, when it comes to classify the high level features provided by the last
pooling layer, a fully connected network is often used as this network can draw upon each
of the high level feature when considering what the output should be.

Figure 10.5: Illustration of the feature extraction process, from [67].

There are several ways of finding classes in the image using deep learning network and
this thesis will consider classification, detection, localization, segmentation. Classification
refers to finding whether or not a class is present in the image. However, classification
does not provide any information about where in the image the class is. Figure 10.7a show
how the output of a classification network may look, it would say that there is a pipe in
the image, but it would not know where in the image the pipe is located. Additionally
classification is limited to classify the image as a single class.

Detection refers to finding which class is in the image as well as where in the image
the class is in the image, specified by a bounding box — four parameters that constitute



92 10. COMPUTER VISION

Figure 10.6: Illustration of a convolutional neural network, from [64].

a rectangle that enclose the class in the image, see fig. 10.7b. A object detection network
can handle multiple instances of various classes. The information provided by detection is
provided in pixel coordinates and not euclidean coordinates.

Localization is often used to refer to augmenting a classification network to be able to
locate where in the image the class is. For this thesis localization will refer to providing
the information about the classes in euclidean coordinates rather than pixel coordinates.
The localization of the objects will not be considered in the classification module since the
SLAM map is generated from a setup that can provide euclidean information with relation
to the key frames. It is therefore assumed that if the classification module can provide the
pixel location, the objects can be localized in euclidean coordinates when the system is
combined with the SLAM module.

Segmentation refers to labeling the image on a pixel-by-pixel basis, as can be seen in
fig. 10.7c. Rather than presenting the location of a class in the image as a bounding box — as
would be the case for detection— segmentationwill produce an image that have each its pixel
denoted as a specific class. There are twomain ways of segmentation: instance segmentation
and semantic segmentation. A network performing semantic segmentation will label all the
pixels based on which class it is a part of. The difference between instance and semantic
segmentation is that instance segmentation will also separate between different instances of
a class. For instance if one had an image with multiple persons, the instance segmentation
network will label them person 1, person 2, etc, while the semantic segmentation network
will label them as just person.

When looking at the problem of providing context to a point cloud representation of
the world, such as a SLAM map, the best suited solutions seem to be either segmentation or
detection. For pipe identification, it could be valuable to represent bends and intersections
as multiple pipes, and as such either detection or instance segmentation will be the best
choice. Rather than trying to develop the network from scratch, this report will look at
retraining an existing network to the new problem of underwater pipe detection. Both
detection and instance segmentation networks are able to handle several classes and thus



10.1. DEEP LEARNING 93

(a) Classification. (b) Detection. (c) Segmentation, from [68].

Figure 10.7: Illustration of the difference between classification, detection, and segmentation.

the solution should be able to handle additional classes as well.

10.1.1 Creating the Dataset

Prior to any dataset creation there need to be established a labeling scheme. Both instance
segmentation and object detection networks would need their training data labeled with
bounding boxes to represent the various instances of an object. Instance segmentation
networks would additionally need the images labeled on a pixel by pixel basis and thus
represent a significantly higher required amount of manual labor. Since both the networks
need the dataset labeled with bounding boxes, the object detection networks will be consid-
ered first. This is because any effort done here may be utilized later if the detection strategy
should be deemed insufficient and an instance segmentation network necessary. Another
reason to start with the object detection network is that it may be possible, by making
assumptions regarding the shape of the object of interest, to further narrow in where the
object is within the bounding box. The primary object that will be classified is underwater
pipes. A general feature of these pipes are that they the to be rather straight, when looked
at from close proximity. When using the classification system to label the map points of the
SLAM system, an approach to narrow in on which map points may fit along a straight line
could be a Random Sample Consensus (RANSAC) algorithm.

The exception to the heuristic of straight line pipes over short distances is naturally
where a pipe junction creates a sharp bend in the pipe, as shown in fig. 10.8a. In order
to preserve the heuristic of straight pipes, the pipe is represented as several instances of
straight pipe segments bound together by pipe junctions, as shown in fig. 10.8b. When
comparing the bounding box in fig. 10.8a to the boxes in fig. 10.8b, the latter would result
in a significantly reduced amount of falsely categorized map points as a larger percentage
of the various bounding boxes are filled with their respective class. Additionally, a class
that represents the docking station entrance is added, as this is present in the test basin.

With the labelling scheme established, the next objective is to find a way to label the
data in a accurate and efficient manner. The choice fell on the open source library LabelImg
by Tzutalin [69]. LabelImg creates xml-files that contain the information of what classes



94 10. COMPUTER VISION

(a) Labeling entire pipe as one pipe. (b) Labeling pipe as pipe segments and junctions

Figure 10.8: Two alternative strategies for labeling the pipe.

are present in the image, and where they are located in the image. The information in these
xml-files can then be adapted to suit the format required by the object detection network in
question.

Both the testing and operating setting are relevant platforms for the system to operate
using the hardware platform. These two cases are considered as the conditions that the
classification module needs to be able to solve. There are considerable differences between
the two cases, most notably that the ground is blue in the test basin, while it is textured by
rock, sand, etc. in the operational case. Since the cases deviate significantly and one would
not expect to encounter conditions close to the test basin in an actual operation and vice
versa, these cases will be handled by creating a separate dataset for each of the settings.
When creating a dataset it is important that the network is subjected to as many of the
conditions it will meet as possible in order for it to handle these cases later on. For instance,
if the network has only been subjected to vertical pipes one could not fault it for being
unable to recognize horizontal pipes later on. The dataset should be balanced and contain
pipes of different orientations and sizes. A way to improve the dataset is to use image
augmentations. Image augmentation could be used to get varying orientations from the
same image [70]. It will be important to preserve the labels in these image augmentations.
However, image augmentation will not be explored further in this thesis. This thesis would



10.1. DEEP LEARNING 95

like to see if a strategy for gradually improving the dataset can be established. In order
to isolate the impact of the gradual improvements to the dataset, it will not be tried in
parallel with techniques such as image augmentation. To achieve this gradual improvement,
the performance of the network will be observed and problematic conditions identified
through qualitative inspection. The dataset will the be augmented with images similar
to the problematic ones and the network retrained to observe the effect. This is not an
argument against image augmentation as this should be explored as well, but this thesis
will focus on how added images can impact the performance and propose a strategy to
make the network increasingly robust.

Test conditions

The hardware platform was constructed as a part of this project and thus not available at
the start. For this reason the first data gathered from the test basing was recorded using a
GoPro camera — the same recording that was used as ground truth in [2]. This video was
split into separate images which was then labeled and used for training the system. Once
the hardware platform was ready it presented a significant change in the conditions of the
data, see fig. 10.9. To have the network more attuned to the conditions from the hardware
platform there where gathered more data using the hardware platform. In order to get a
representation of different views of the pipe, the hardware platform was rotated various
ways while moving the camera around the test basin. When it comes to the scale of the
pipes there is not a great potential for varying depths in the test basin and the dataset will
therefore focus mainly on varying orientations of the pipe. Figure 10.10 shows an example
of neighboring images where the hardware platform being rotated to have various angles
of the pipe in the image.

(a) Recorded with the GoPro camera. (b) Recorded with the GoPro camera.



96 10. COMPUTER VISION

(c) Recorded with the hardware platform. (d) Recorded with the hardware platform.

(e) Recorded with the hardware platform. (f) Recorded with the hardware platform.

Figure 10.9: Images from the three recordings used for training data.

Figure 10.10: Rotating hardware platform to get a variety of pipe angles in the training data.



10.1. DEEP LEARNING 97

Operational conditions

The basis for the operational conditions are — as stated in section 2.2 — a video from an
actual underwater pipe. This video will act as both the basis for the training set as well as
gathering information about the performance of the network. In [2] the training data was
gathered from the entirety of the video by saving images at a set interval from the entire
video. For this thesis another approach is used. A section of the larger video where the
pipe is present, represented at various of orientations and distances is selected and split
into individual images. These images are then labeled manually. This will preserve parts of
the video with vastly different conditions from the selected video to see how the network
performs on previously unseen conditions. The dataset will then be expanded to see if the
performance may be improved significantly by adding a relatively small number of images
from these conditions. Figure 10.11 show some examples of the various pipes present in the
selected video at different orientations and distances.

Figure 10.11: Images from the selected part of the video.



98 10. COMPUTER VISION

10.1.2 Evaluation of Results

When comparing the lab condition to the operational conditions it is significantly easier to
imagine a network working in the lab conditions. Laboratory conditions are much easier
to test in and draw qualitative and quantitative results from. However, the operational
condition is arguably the most interesting case, as this will be closest to the conditions the
system will face in the ocean and hardest case. To gauge the performance of the network
on underwater conditions, it will be evaluated based on the operational conditions.

In order to get a reliable metric for the network performance, the operational case
dataset will be consisting of more than 10 000 images, all labeled manually. These images
will then be sectioned in to 10 subsets of around 1000 images each. These subsets will
then act together to cross validate the performance and reducing the impact from outlier
cases. The process for this will be to train the network using nine of the subsets and using
remaining one for validation. This will be repeated so that the network has 10 different
training foundations that are different from the remaining validation images. This cross
validation will provide a basis for evaluating the performance. The result from the training
session will be a graph illustrating the mean Average Precision (mAP) — mAP is the mean
value of the average precision (the precision being the overlapping area of the predicted
bounding box and the ground truth bounding box divided by the ground truth bounding
box area) for each of the classes — and the loss. The mAP value indicate how well the
network perform on the validation set, while the loss is calculated from from the training
set. In short, the loss should be as low as possible, while the mAP should be as high as
possible.

10.1.3 Network Selection

There are many existing network that are available to be evaluated. However, rather than
comparing a wide variety of networks to find which is the most suited for the task, this
thesis will focus on finding a network that perform sufficiently. Once a network has been
deemed sufficient the work of interfacing the modules will be prioritized over comparing
different networks.

One example of a object detection network, is the region-based CNN (R-CNN) which
divides the detection process into three main stages: region proposal, feature extraction,
and classification [71]. In the original R-CNN network the feature extraction where done
using a CNN network. The next improvement done upon R-CNN came with Fast R-CNN
[72], where the classification is achieved using a CNN. Another improvement was then
added with Faster R-CNN by adding a CNN to do the region proposal [73]. An extension
of this network is Mask R-CNN which combines a mask network on top of the bounding
boxes provided by faster R-CNN to produce the instance segmentation.



10.1. DEEP LEARNING 99

Another type of object detection network is the YOLO (You Only Look Once) network
[74] which is very fast by designing its structure for fast performance. It achieves this
speed by doing all the steps in one CNN. It was later released an improved version YOLOv2
[75], which improves the accuracy while preserving real time performance. Recently it was
further improved with YOLOv3 [76].

Figure 10.12: Network structure of the YOLOv3-tiny network.

Both the R-CNN and YOLO methods seem to be strong candidates. The Mask R-CNN
network also performs instance segmentation, which may be helpful when looking to
provide the best labeling of the point cloud map. YOLO on the other hand has the advantage
of being a fast network and could potentially operate in real time. YOLO has another
advantage in being built on darknet [77], which can easily be integrated into ROS, where
the rest of the system is implemented, by using the open source library darknet_ros [59].
Due to this ease of integration and since the dataset will first be labeled towards a object
detection network, YOLOv3 and its smaller cousin YOLOv3-tiny is selected as the networks
to try to apply to the problem of detecting underwater pipes. YOLOv3-tiny is a smaller
version of YOLOv3 and is thus faster, but not as complex. The layers of YOLOv3-tiny can
be seen in fig. 10.12, whilt the layers of YOLOv3 can be seen in fig. 10.13. If YOLOv3-tiny
proves to be sufficiently accurate when facing the complexities of the operational case, it
will be used as it will have the most rapid performance. Should YOLOv3-tiny be shown to
lack the complexity to handle operational conditions, it will be necessary to use YOLOv3.



100 10. COMPUTER VISION

Figure 10.13: Network structure of the YOLOv3 network.



10.1. DEEP LEARNING 101

10.1.4 Training the Network

In order to use the datasets created using LabelImg [69], they need to be adapted to match
the form required by the YOLO network. This was done by adapting the labelling script
from darknet [77]. With the annotations adapted to suit the YOLO format, it is necessary
to split the dataset into validation and training sets. In order to bolster the conclusions
that can be drawn from the training, the dataset have been split into subsets which will be
used to cross validate the results. The dataset is shuffled randomly before being assigned
evenly into ten subsets. In the training process, one of these subsets will be held back for
validation, while the remaining subsets will be used for training. This will be the basis for
the training and will be repeated for each of the subsets. The main indicator for how well
the network solves the training will be mAP value.

When training a network, it is important to make sure that the network generalize
the result and do not overfit — the process where the network starts to memorize the
training data and becomes poorer at predicting for previously unseen data [78] — on the
training data. More complex networks are more susceptible to overfitting when compared
to simpler, less flexible networks [78]. In order to detect the point where the network
starts to memorize the data the first training sequence will be run for 20 000 iterations
for both YOLOv3-tiny and YOLOv3. The results from this training will be evaluated to
see what will be a suitable number of iterations for the training process. Once this num-
ber has been detected the remaining sets will be trained with this amount of iterations.

Figure 10.14: Training results YOLOv3-tiny on the test
conditions.

Figure 10.14 shows the results
from training the YOLOv3-tiny
network on the dataset represent-
ing the test basin. The network
was able to operate well in the test
basin. However, as the operational
setting have the most interesting
conditions to evaluate the network
performance, the test basin set will
not be discussed further. The rea-
soning for training this set was to
have a network that can work in
combination with the SLAM mod-
ule. The result from this combina-
tion can be seen in section 16.2.



102 10. COMPUTER VISION

Figure 10.15: Training results YOLOv3-tiny using sub-
set 0 as validation data for 20 000 iterations.

Figure 10.15 shows the results
from the training sequence of
YOLOv3-tiny when it has been
trained for 20 000 iterations. Be-
low 4000 iterations there is a signif-
icant increase in accuracy, which
then starts to oscillate up to 100%
mAP. When the network starts to
improve on the edge cases and
starts to slightly increase this in-
dicates that it is overfitting. In-
deed, when testing some examples
on the weights at 4000 and 10 000,
there was no large improvement
between them. This indicates that
the point where the training have
been completed, and the network
starts overfitting, lies around 4000

iterations. This is the basis for the subsequent training sequences to be run for 6000 itera-
tions. It will then pass 2000 iterations more than what is indicated is necessary for it to start
overfitting, which will make it so that it becomes apparent in the results that the optimal
point is reached. At the same time this number of iterations will save a significant amount
of time in the training process that would likely just have been occupied by the network
overfitting.



10.1. DEEP LEARNING 103

Figure 10.16: Training YOLOv3-tiny on set 0 as training
data for 10 000 iterations.

After completing the training
for all the subsets as validation, it
seems that the YOLOv3-tiny net-
work are sufficiently complex to
learn the complexities of the real
condition, see fig. 10.17. From the
results it can be seen that the mAP
does not drop when the network
is overfitting, as one would expect.
This seems to be because the condi-
tions in the validation data is very
close to the images in the training
data. In order to combat this issue
it was tried to have the validation
set is much larger than the training
set by using one of the subsets as
training data while the remaining
subsets constitutes the validation
data. This leaves around 1000 images for training and around 9000 images for validation.
The training was then tried for 10 000 iterations to see how the performance develop. From
fig. 10.16 it can be seen that the YOLOv3-tiny network is able to learn to represent the
dataset on the limited training data of one subset. Figure 10.16 shows that the network is
able to learn well from the training process given only one of the subsets as training data.
Once the network reach around 5000 there are some sharp decreases in the mAP perfor-
mance indicating that the network has had sufficient time to train within 6000 iterations
for this case as well. Subsequent training sessions with similar amount of training data will
therefore be conducted over 6000 iterations as previously.



104 10. COMPUTER VISION

(a) Using subset 0 as validation data. (b) Using subset 1 as validation data.

(c) Using subset 2 as validation data. (d) Using subset 3 as validation data.

(e) Using subset 4 as validation data. (f) Using subset 5 as validation data.



10.1. DEEP LEARNING 105

(g) Using subset 6 as validation data. (h) Using subset 7 as validation data.

(i) Using subset 8 as validation data. (j) Using subset 9 as validation data.

Figure 10.17: Cross validation training of YOLOv3-tiny.

From fig. 10.17 it can be seen that the network YOLOv3-tiny consistently reach a mAP%
score of 90% or more. This result indicate that the network is sufficiently complex to handle
the conditions present in the real conditions of the training set. Another insight gained
from the training shown in fig. 10.17 came from subjecting the trained network to the
entirety of the video where the clip constituting the dataset is collected from. Some of
the challenges was when the lighting condition changed to include a green shear as seen
in fig. 10.18c, when the pipe was much thinner as seen in fig. 10.18a, when the pipe was
severely biofouled as seen in fig. 10.18b or when the pipe was predominantly covered by
sand rather than biofouling, as seen in fig. 10.18d. This revealed that the dataset is not
sufficiently representative of the conditions that are present in the video as the network
struggled on all parts that strayed far from the point where the dataset was collected from.



106 10. COMPUTER VISION

In order to combat this the dataset was enhanced by adding images that represented the
entirety of the video into the training data. These images was selected from the dataset
created in [2] which contained data spanning the entirety of the conditions present in the
video. From this dataset 668 images containing pipes was selected and labeled, additionally
it was added 250 images not containing pipes. These images was then added to the training
data. The goal behind this enhancement is to better represent the wide array of conditions
met on an underwater pipe inspection. As labeling a dataset in the same scale as the already
created dataset would be very labour intensive and time consuming, it was decided that
the effect of this enhancement would be evaluated qualitatively by observing it in action
on the varying conditions. This will of course not give the same certainty on the actual
performance metric, but it will give an indication on whether or not it moved the needle in
a positive manner.

(a) Thin pipe. (b) Severe biofouling.

(c) Green shear in the light condition. (d) Sand covered pipe.

Figure 10.18: Examples of challenging pipe conditions.

Figure 10.19a show the result of the training process on the expanded dataset. These
results indicate that the network are able to learn the features from these new added
conditions. In order to get an impression on the potential improvement, the network was
tried on the complete video. The impression from this test was a significant improvement
over the more homogeneous dataset. The network still struggled more when the pipe is
further away and where there was a green shear in the light conditions. Areas of the video
that the pipe was not identified at all previously, this network was able to find the pipes at
a much higher accuracy. The test indicate a need for more training data for some of the
conditions. Though before expanding the dataset further it will be trained with YOLOv3 to
see if the full version is able to generalize with this amount of data.



10.1. DEEP LEARNING 107

Figure 10.19b show the result when trying to train the full YOLOv3 network on the
expanded dataset. This shows that the network is able to learn the data in the training set
well. This is to be expected as YOLOv3-tiny was able to learn these conditions as well. The
most interesting results came from observing these weights on the complete video. This
test showed better performance than YOLOv3-tiny, though the network struggled with the
same conditions, green shear and pipe far away. This indicate that it is worth to augment
the dataset by adding more of these sort of images to see if this improves the performance
notably. It was therefore added 63 more images containing pipes in the difficult conditions.
After this second expansion the dataset was used to train the YOLOv3 network to see if the
performance is increased.

Figure 10.19c show the result from training the YOLOv3 network on the dataset with two
expansion. Due to an error the training was stopped short, but the 4000 iteration weights
was used to try and gain insights that might improve the next training. These weights was
then tried on the full video. In this test it was identified a significant improvement over the
case shown in fig. 10.19b, especially on the problematic images identified from the weights
of fig. 10.19b. These weights did struggle on some images still, mainly when the pipe was
very far away. Though the most interesting result was probably that it experienced false
positives when the camera was very close to the sea bed. In order to improve this it was
added a significant number of images without pipe so that the network can get a better
understanding of how the sea bed looks without pipes and thus reduce these false positives.
Upon further inspection it was found that the images not containing pipes from the first
expansion was labeled incorrectly. Thus the network had some images which convinced it
that the empty sea floor was part of a pipe. This is fixed for the next training session.

With the dataset expanded and error fixed this was decided to be the final version of the
dataset. In order to evaluate the performance both the YOLOv3 network and YOLOv3-tiny
network was trained for 20000 iterations. The results from this training can be found in
figs. 10.21 and 10.23. From the training results to seemed that both the networks trained
successfully. After the training process the best performing weights are automatically
chosen and saved with the suffix _final.weights. These weights were then tested on the
entire video to see how the two different networks performed.



108 10. COMPUTER VISION

(a) Training YOLOv3-tiny on set 1 with expansion
as training for 6000 iterations.

(b) Training YOLOv3 on set 1 with expansion as
training for 6000 iterations.

(c) Training YOLOv3 on set 1 with both expansions as training for 6000 iterations.

Figure 10.19: Training YOLOv3-tiny and YOLOv3 on expanded dataset.



10.1. DEEP LEARNING 109

(a) (b) (c)

Figure 10.20: Video of YOLOv3-tiny trained on the final dataset.

The QR-code in fig. 10.20a directs to a video of the final weights of the training sequence
in fig. 10.21. From this video one can see that the network consistently finds the pipe. Some
of the behaviour may be described as trigger happy, as the network often allocate several
bounding boxes to the same pipe. Several hits for the same pipe is not necessarily an issue
as the bounding boxes will later be used to classify what map points are of a certain class. In
this structure it should not be an issue if the pipe get more than one bounding box classifying
the same point as a pipe multiple times. There are still some false positives, though this is
to a much lesser extent than previously. In order to reduce the impact of false positives this
report proposes to use a sliding window technique used in the traditional computer vision
approach. This should be evaluated over the neighboring frames to increase the robustness.
It is also of note that these additional hits are presented with a significantly lower certainty.
This could be used to employ a threshold to determine which threshold should be accepted.



110 10. COMPUTER VISION

Figure 10.21: Training YOLOv3-tiny for 20000 iterations.



10.1. DEEP LEARNING 111

Figure 10.22: Video of
YOLOv3 trained on the final
dataset.

The QR-code in fig. 10.22 directs to a video of the final
weights of the training sequence in fig. 10.23. The YOLOv3
network worked well on the entire video, though it exhib-
ited fewer extra positives when compared to the YOLOv3-
tiny network from fig. 10.21. On the flip side it experienced
more false positives when compared with the network from
fig. 10.21. Since the performance of the full sized YOLOv3
network could not be considered superior to its smaller
counterpart YOLOv3-tiny. For this reason YOLOv3-tiny,
with its increased frame rate, seem to be the best choice.
YOLOv3-tiny is therefore proposed as the network of choice
for the system.

Figure 10.23: Training YOLOv3 for 20000 iterations.



112 10. COMPUTER VISION

Figure 10.24: Video of
YOLOv3 trained on the final
dataset for 100 000 iterations.

Lastly, the YOLOv3-tiny was trained for 100000 itera-
tions to see whether or not the extreme increase in training
time could give some insights into if the network overfitted
or if there where any improvements by training for a very
long time. The result of the training can be seen in fig. 10.25
and can be viewed with its final weights by following the
QR-code in fig. 10.24. The first thing of note is that the
network was much more conservative with the detections
and there was a significant decrease in extra detections and
false positives. Another interesting insight was that net-
work struggles when the pipe was at very close proximity
to the camera. All in all this seemed to be the best perform-
ing network. However, it is not certain if this is due to the

extra training time or a spot of luck in the training sequence. Figure 10.26 show a selection
of various weights tested on a shortened version of the operational video. The weights are
grouped in sections of four to compare how the network performed given various number
of iterations. Figure 10.26a show the weights at 2000, 4000 6000 and 8000 iterations. The
weights from 2000 iterations have very few detections and often misses the pipe. At 4000
iterations, the network starts to improve significantly in the detections, while still missing
a fair amount. The weights at 6000 iterations have much fewer misses, but the network is
very trigger happy. At 8000 iterations the network is less trigger happy than the weights
from 6000, while still having the increased amount of correct detections. Figure 10.26b
show the weights at 5000, 10 000, 15 000 and 20 000 iterations. There are some noticeable
improvement from 5000 to 10 000, though the weights 15 000 and 20 000 does not seem
to offer a significant improvement. This seem to be an indication that the network have
reached its most general performance around 5000 to 10 000 iterations. Figure 10.26c show
the weights at 25 000, 50 000, 75 000 and 100 000 iterations. This was to see if there could be
an improvement by letting the network train for a significantly increased time. From these
weights it seemed that the weights from 25 000 iterations performed better than the weights
that had trained for a larger number of iterations, indicating that a significant increase in
training time does not seem to be beneficial.



10.1. DEEP LEARNING 113

Figure 10.25: Training YOLOv3-tiny for 100000 iterations.



114 10. COMPUTER VISION

(a) Video of the YOLOv3-tiny
trained for 2000, 4000, 6000
and 8000 iterations.

(b) Video of the YOLOv3-tiny
trained for 5000, 10 000, 15 000
and 20 000 iterations.

(c) Video of the YOLOv3-tiny
trained for 25 000, 50 000, 75
000 and 100 000 iterations.

Figure 10.26: Videos of YOLOv3-tiny trained on the final dataset using weights from various
iterations.



10.2. SUMMARY 115

10.2 Summary

In this chapter two approaches for solving underwater pipe detections have been tried, one
using traditional computer vision techniques and the other machine learning based. After
working to make the traditional computer vision algorithm work adequately, this work was
abandoned to make time to see if the machine learning approach could solve the complex
situation of operational conditions. In section 10.1 the goal was to find a neural network
that could solve the complex operational setting. The chosen network was YOLOv3-tiny
and through training and observing the network, it was deemed a sufficiently good solution.
A strategy for gradually improving the dataset was presented and tried to be effective.
Before any autonomous inspection system can be implemented it would seem reasonable
that the system may be tested in parallel with an manual operation to see how it performs.
In this process the dataset can be expanded until it performs as needed.



116 10. COMPUTER VISION



Part V

Planning

VI Sensor SLAM

Classi�cation

Path Planning

Exploration

Control USM Interface

�rusters

Joints

117





11 | Background Theory

Solving the path planning problem requires the definition of an underlying mathematical
representation. This section is heavily based on the works of Latombe, LaValle and

Tsourdos et. al, see [79]–[82] for a more in-depth coverage of the topic at hand.
Similarly to many dynamical systems, the planning problem can be represented using a

state space representation. Each state x ∈ X contains information about the robot’s pose and
is part of a finite set of states, X . The state space then consists of all necessary information
needed to sufficiently solve the planning problem at hand, disregarding all non-relevant
information. The robot, or agent, transitions from one state to another specified by a state
transition function, f (·). This function describes the transition from state x to state x′ when
the agent executes the action u, calculated by the planner [80], [83]:

x′ = f (x ,u) . (11.1)

Furthermore, let U (x) denote all allowed actions for each state x . The set of all possible
actions over all states can then be defined as in [80]:

U =
⋃
x∈X

U (x) .

The path planning problem can be generalised to calculating a path from an initial pose
ηb/I ,0 to one or more goal poses, ηb/I ,д ∈ Xд ⊂ X , where Xд represents the set of goal
states.

The ultimate goal of a path planning algorithm can then be described as calculating a
sequence of actions, u, that transforms the initial state xi to a goal state xд ∈ Xд. In the
simplified case where the environment is assumed discrete and two-dimensional, the state
space X can be represented as a graph, with the vertices representing the states. In this
case, there exists a directed edge between x and x′ iff. there exists a u ∈ U (x) such that
x′ = f (x ,u). In the case of a continuous state space, the assumption of a finite state space
is no longer valid as X is no longer countably infinite [80] 1, and more care is needed when
modelling the state space.

To be able to relate the robot’s actions and state to its environment, the workspace
W = Rn it resides in, must be defined2. Let O ⊆ W be the obstacle region and A ⊆ W

1Countably infinite set: Any infinite set which can be put in a one-to-one correspondence with N (count-
able). Cardinality: ℵ0.

2For most cases: n = 2 (2D) or n = 3 (3D), but this may increase in the presence of joints, for example.

119



120 11. BACKGROUND THEORY

be the space inW occupied by the robot. The obstacle region is the part of the world
that is occupied by static bodies, such as an exterior wall, a fence or an underwater rock
formation, and will in most cases be fixed inW. The robot,A, will be modelled as a moving
rigid-body.

In rigid body kinematics, the act of coordinate transformation is essential. Two concepts
used to execute such transformations are coordinate rotation and translation. In the 3D case,
a robot A can be rotated around any of the three defined orthogonal axes. Such a rotation
about a given fixed axis is called a simple rotation. Furthermore, it can be shown that more
complex rotations can be described as a set of composite rotations around the respective
principal axes [17], such as shown in section 2.1.1.

The rotation matrices for each cardinal axis can be described as a three-dimensional
matrix performing a counterclockwise rotation around each axis. By combining the rotation
and translation of a rigid body, the subspace occupied by the transformed robot can be
defined as follows [79], [81]:

Definition 11.1. Let T : A →W be a rigid-body transformation, as defined in section 2.1.1,
that maps every point of A intoW, preserving the distance between any pair of points
p, q ∈ A as well as the cross-product of any two vectors. The subspace ofW occupied by
the transformed robot can the be defined by

T(A) = {T(a) ∈ W | a ∈ A} . (11.2)

Based on these definitions, the set of all allowable transformations can be defined.
This set is called the configuration space, C, also known as the C-space [79]. For a robot
moving in a three-dimensional environment, its configurations, ηIb ,3 can be represented as
η = (x ,y, z,w, ϵ1, ϵ2, ϵ3), where (w, ϵ1, ϵ2, ϵ3) describes a quaternion q = w+ϵ1i+ϵ2j+ϵ3k [15].
The Euler convention defined in section 2.1.3 is just as applicable here, but the quaternion
representation is used for sake of argument below.

Quaternions provide a double covering of SO(3), which means that two quaternions will
correspond to the exact same rotation [84]. More explicitly, this means that q ∼ −q with
respect to spatial rotation. To define the encompassed space, consider a homeomorphism
f : S3 7→ SO(3) [85] with a kernel f = {±1} equal to the centre of S3. Thus, the co-sets
of ker(f ) in S3 defines antipodal pairs, each pair further defining a line between them in
R4-space. From definition 11.2 it can be seen that this is similar to the definition of the real
projective space, RP3, in terms of the antipodal map π : S3 7→ RP3, indicating SO(3) = RP3

[86].

Definition 11.2. Let Sn ⊆ Rn+1 be an n-dimensional unit sphere defined by
Sn B

{
x ∈ Rn+1 | |x − y | = 1

}
. The real projective space of dimension n is then defined as

3In path planning literature, q is most often used to represent the robot configuration.



11.1. CONTINUOUS-SPACE PATH PLANNING 121

the quotient space [87], [88]:
RPn B Sn/{±} .

{±} here identifies the antipodal points ∈ Sn.

Using the definition of the RPn space, the configuration space for all 3D transformations
can be defined.

Definition 11.3. Configuration Space (C-space)
Let A be a rigid body capable of rotations and translations in 3D space. The set of all 3D
rotations is then defined by the antipodal subset RP3 ⊂ R4 (definition 11.2), with the set
of translations equal to R3. The resulting configuration space for all three-dimensional
transformations can the be defined as

C = R3 × RP3 . (11.3)

From definition 11.3 it is possible to define two other sets, namely the free configura-
tion space, Cfree, and the obstacle region of the configuration space, Cobst, simply being the
complementing set of Cfree [79]:

Cfree B { η ∈ C | A(η) ∩ O = � } (11.4a)

Cobst B { η ∈ C | η < Cfree } = C \ Cfree , (11.4b)

where A(η) ⊂ W is the closed set of points occupied by the robot when transformed to
configuration η.

11.1 Continuous-Space Path Planning

After defining these sets of transformations and representations, the path planning problem
can be defined as the search for a set of transformations, T , that transforms the robot from
an initial pose, ηi , to a goal pose, ηд:

T(A,ηi)
T
7−→ T(A,ηд) .

This formulation is more closely related to the act of motion planning. For the case of basic
path planning, this can be simplified to the problem of producing one or more flyable paths,
r (ϖ), connecting ηi and ηд such that [89]:

ηi
π (ϖ)
7−−−→ ηд

ηi(xi ,yi , zi ,ϕi ,θi ,ψi)
π (ϖ)
7−−−→ ηд(xд,yд, zд,ϕд,θд,ψд) , (11.5)



122 11. BACKGROUND THEORY

where ϖ represents the path parameter, e.g. a length variable. A flyable path here refers to
a path that satisfies the given vehicles kinodynamic constraints [82]. The path planning
problem can then be boiled down to generating a collision-free, continuous path, π (ϖ),
from ηi to ηд, defined as [79]:

π : [0, 1] 7→ Cfree , π (0) = ηi , π (1) = ηд , (11.6)

where Π f is the set of feasible paths defined as

Π f B {π (ϖ) ∈ Π | π (ϖ) ∈ Cfree, ∀ ϖ ∈ [0, 1] } .

A much used strategy for solving continuous-space problems is to transform the model
into a discrete-space model. The two main strategies of performing this transformation is
known as combinatorial- and sampling-based planning.

Combinatorial planning here refers to the branch of mathematics called combinatorics,
which focuses on the study of countable discrete structures, including the field of graph
theory. Combinatorial planning tries to capture the information in the state space by
partitioning the free space into an exact representation using discrete data structures.
By using exact representations — e.g. visibility graphs — they attain the property of
completeness, i.e. if the problem has a solution it will find it or correctly conclude that
no solution exist. The general approach of a combinatorial planner is to first compute a
representation of Cfree without approximating, then applying an optimal search algorithm
to find an optimal path.

Sampling-based planners, on the other hand, does not explicitly characterise the free
space or the occupied space. These methods lets a collision detection algorithm decide
whether or not a given configuration lies in Cfree. These planners then incrementally search
the free space for a path, gradually revealingmore using an obstacle detector. These planners
do not rely on building a complete map, meaning they don’t compute more than they have
to. This makes these planners more suitable for high-dimensional problems. Two popular
methods based on this scheme is the rapidly exploring random tree (RRT) and probabilistic
road map (PRM).

11.1.1 Optimal Path Planning

Finally, the act of path planning is usually focused on calculating the optimal path with
respect to path length. In many cases, however, it is favourable to incorporate more than
just path length into the optimization objective, such as travel time or obstacle clearance.
In general, these optimization objectives can be described as continuous and differentiable
cost functions c : C → R+, assigning a cost value to each configuration, or state, η ∈ C



11.1. CONTINUOUS-SPACE PATH PLANNING 123

[90]. Furthermore, if a monotonic and bounded path criteria function cp : Π f → R
+ can be

defined, the process of finding the optimal path π ∗ ∈ Π f w.r.t. cp results in finding the path
π satisfying

cp(π
∗) = min

{
cp(π ) | π ∈ Π f

}
. (11.7)

By using this formulation, optimal paths in relation to path length or any other definable
criteria satisfying the stated preconditions, can be found.



124 11. BACKGROUND THEORY



12 | Path Planning in 3D Space

In recent years, a considerable amount of research has been conducted on robotic path
planning, resulting in a multitude of proposed solutions. The earliest methods were

quite computationally expensive, like the one introduced by [91], solving the piano mover’s
problem in doubly-exponential time, making them unsuitable for online applications. These
early solutions were examples of so-called complete algorithms. A complete algorithm
either finds a solution or, correctly, states that no solution exists.

The algorithm proposed by Schwartz and Sharir in 1983 [91], using Collins decompo-
sition, is an example of what is often referred to as a combinatorial method [80]. These
methods solve the planning problem by calculating paths through the continuous config-
uration space. By doing certain approximations, i.e. relaxing the notion of completeness,
the more efficient sampling-based algorithms were developed. These methods reduces the
computational cost by avoiding explicitly constructing the obstacles in the configuration
space. Instead, these methods rely on collision detection-based sampling schemes, often
based on random sampling. Although this simplification means the loss of algorithmic
completeness, they manage to attain probabilistic completeness, as the probability that the
algorithm finds a solution converges to one as the number of samples increases.

Due to their efficiency, these sampling-based methods have become the go-to solution
for manymodern robotic applications. This has, in turn, lead to amyriad of different variants
being developed, each with specific advantages and disadvantages. Some methods obtain
computational efficiency even in cluttered environments or for robots with a high number
of DoF, while others are developed with the intention of obtaining faster convergence to
the optimal solution. More and more modern applications, however, push for the need
for efficient and safe three-dimensional planning systems. In three dimensions, many
established and computationally feasible methods become impractical without modifications
due to the expanded space. The specific vehicle dynamics, environment complexity, and
additional operation-specific constraints, then weigh heavily in on which methods are
viable.

Looking at autonomous underwater applications, the robot is ideally capable of per-
forming long-range missions without human interaction. Planning a new path in the case
of unforeseen events must happen quickly while still providing a guaranteed safe path. The
planning system is, therefore, required to be online, while also, preferably, taking energy
consumption into consideration — either directly as an additional objective, or through
minimizing path length and actuator strain. The underlying assumption for the path plan-

125



126 12. PATH PLANNING IN 3D SPACE

ning, in the context of this thesis, is a partial or fully autonomous underwater robot with a
SLAM system capable of creating a continuously expanding map. The main objective of
this chapter is then to create a short survey of some of the most promising state-of-the-art
methods in recent literature and, based on the constraints of the stated scenario, implement
a path planning system able to integrate with the SLAM algorithm and control system
treated in part III and part VI.

A secondary objective concerns the development of a sub-system to exhaustively explore
a map in conjunction with running SLAM and object detection systems. Therefore, different
strategies for autonomous environment exploration based on waypoint generation will be
discussed in chapter 13, with the implementation details and simulations results of both of
these modules presented in chapter 14.

This chapter is organised as follows. Section 12.1 gives an introduction to the traditional
path planning problem as well as some general planning strategies. In section 12.2, different
ways of representing the environment to allow for efficient planning are discussed. Several
well-established path planning methods, and their more recent state-of-the-art variants,
are treated in section 12.3 and section 12.4, focusing on combinatorial and sampling-based
methods, respectively. Clustering algorithms are made use of throughout this part and
their use-cases in the context of path planning, among others, are examined in section 12.5,
before the concept of path criteria is examined in section 12.6. Finally, this chapter ends
with discussing context-awareness and its relation to path planning in section 12.7, and a
short summary of the most important topics is provided in section 12.8.

12.1 Traditional Planning Methods

The path planning problem formulation for practical implementation on mobile robots was
traditionally rooted in two dimensions — largely due to the fact that robotic motion was
simpler and consisted of actuation in a strictly 2D environment. One of the main factors
contributing early in the field of path planning is the work put forth by Lozano-Perez and
Wesley in 1979 [92]. They presented a planning algorithm designed for generating collision-
free paths given a polyhedral object in a known, polyhedral environment. This method,
while possible to extend to 3D space, was relatively time inefficient, but helped spark interest
in the field, resulting in numerous planning methods being developed in the following
period [91], [93], [94]. Many of these methods were so-called complete methods1 and
many shared the common factor of planning using a retraction of C. Solving the planning
problem has, in general, been proven PSPACE-hard, with a complexity increasing doubly
exponentially with the robot’s number of DoF [95]–[97]. Such increases in complexity

1Planning algorithms are characterized as complete if they are able to find a solution or, correctly, conclude
that no solution exists



12.1. TRADITIONAL PLANNING METHODS 127

can quickly become troublesome in problems of higher orders, such as when planning for
multi-jointed robots or for applications where online performance is required. Especially if
one tries to solve it using a C representation that represents the environment as closely
as possible. The proposed solution to this was then to relax the notion of completeness,
resulting in what is often referred to as sampling-based methods [81], sampling C instead of
creating an exact representation or a retraction. This leads to the obvious loss of algorithmic
completeness. They do, however, keep the property of probabilistic completeness, meaning
that the solution converges to the optimal solution as the number of samples approaches
infinity.

Many different approaches have been proposed to solving the path planning problem,
therefore, only a subset of these will be more closely evaluated. Sampling-based methods,
especially, have been subject to much research and have seen a lot of use in practical
implementations and experiments in recent years. This is largely due to their relative
simplicity, ease of modification and applicability to different problems. Due to this, sampling-
based and combinatorial methods will be the main focus of this project.

Other methods that are worth briefly mentioning, for completeness, include artificial
potential field, numerical optimization, and more modern AI-inspired methods.

Artificial potential fields

Figure 12.1: Example 2D simu-
lation of a potential field plan-
ner getting stuck in a local
minimum, failing to reach the
goal.

This method was first introduced by Khatib and uses a
workspace representation in the form of an artificial force
field [98]. In this force field, obstacles exert repulsive forces,
while the goal exercises an attractive force. This attractive
potential can be represented in many different ways, where
the original formulation uses the straight forward potential
functionUa(x) = 1

2ρ(x−xg)
2, where xg is the goal pose and

ρ acts as a scaling factor.

The biggest advantage of this method is its computa-
tional efficiency, which allows for online implementations.
Their main drawback, however, is being susceptible to local
minima. This problem only becomes greater as the dimen-
sionality of the problem increases. Because of this, artificial
potential field planners are mainly used as local planners in modern literature [99] together
with a global planner such as a visibility graph-based method [100]. Therefore, artificial
potential fields will not be explored in more depth in this thesis.



128 12. PATH PLANNING IN 3D SPACE

Numerical optimization

Optimization methods are a natural choice for many applications when concerned with
calculating optimal paths with respect to some quantifiable measure — most often path
length. To solve the problem in this manner, specific cost functions are defined, for example
combining the running cost and the terminal cost [101]. Minimizing such a cost function
then results in a set of states and inputs based on some vehicle model. A big advantage
with these types of methods is that the optimization objective can be chosen such as to
minimize different quantities, such as resource management [102] and energy consumption
in presence of ocean currents [101], [103], [104]. The difficulties then becomes accurately
modelling the vehicle itself, as well as any environment effects that is to be considered. Of
course, problem simplifications can be made to make for a more general planning system
— which also reduce computation times — but this reduces the overall optimality of the
solutions, which is not ideal.

AI-inspired methods

Planning methods inspired by AI and deep learning are closely related to numerical op-
timization, and thus share most of their drawbacks. These types of methods are more
easily generalizable to a larger set of problems compared to pure optimization methods,
under the assumption that large enough datasets that capture the necessary information are
available. When applied to path planning problems, these networks are usually based on
visual sensors, and thus consists of CNNs. These methods have been successfully applied
to real-world UAV tasks, such as UAV navigation based on directly assessing monocular
images [105]. Specific approaches, such as theMotion Planning Netwrk (MPNet) [106] show
considerable promise, even outperforming certain state-of-the-art sampling-based methods
in simulations. It is worth mentioning that these published MPNet results compares the
network running on a powerful GPU versus the Python-implementations of the aforemen-
tioned state-of-the-art methods. However, evaluating such a network on underwater data
would be of great interest, but is left as future work for now. DL methods have further
potential use-cases related to planning through context awareness [107], which will be
discussed in some more detail in section 12.7.

Probabilistic roadmaps

Probabilistic roadmaps (PRM) is one of the most popular methods based on the sampling
planning paradigm, and was first introduced by Kavraki et. al. [108], [109]. This method
consists of two phases: a generation phase, and a query phase.

In the generation phase, a roadmap (definition 12.1) is created through random sampling
of C. These samples are then connected by means of a local planner — usually a straight line



12.1. TRADITIONAL PLANNING METHODS 129

connection, but these planners can vary, even using control-based feedback theory [110].
In the query phase, the initial and goal states are added before the generated roadmap is
searched. Being a sampling-based roadmap method it bridges the gap between the Voronoi
diagram and the RRT family of planners — both of which will be discussed more closely in
this chapter.

PRMs was deemed unsuitable for the case at hand due to three main drawbacks.

0 100 200 300 400 500 600 700 800 900

0

100

200

300

400

500

600

700

800

900

Figure 12.2: Probabilistic roadmap of an
almost-closed 2D environment with the re-
sulting solution path to the exist. Calculated
using Matlab’s robotics toolbox [111].

Firstly, the roadmap generated by PRMs
lack the clearance property of several other
roadmap methods. Additionally, probabilis-
tic roadmaps assume a static map, which
poses problems in an exploration setting,
where the map definitively is not static. Fi-
nally, and perhaps the main reason to dis-
qualify the PRM, is the fact that there are
scenarios where the generated graph fails
to completely cover the environment. An
example of this can be seen in fig. 12.2, es-
pecially with the subregion around (x ,y) =
(150,780). This is not just bad luck, as proofs
have been published guaranteeing failure
in certain cases [112], which is troublesome
when trying to guarantee a robust planning
system.

Although admittedly having their use-
cases, the last four methods will not be ex-
plored in much more depth in this thesis due to the reasons stated above. Instead, the
expansive set of combinatorial methods — due to their completeness and exact represen-
tations — and specific sampling-based planners — by virtue of their relative simplicity
and efficiency — will be in focus. However, the efficiency and solution quality of the path
planning method is heavily impacted by the chosen environment representation. Because
of this, the path planning problem can loosely be described as a two-part problem: (i)
modelling the environment, (ii) calculating a path through the constructed representation
subject to the given constraints of the problem. This chapter will introduce some of the
most used approaches for representing the environment, before delving deeper into specific
state-of-the-art planning methods that have obtained good results either theoretically and
in simulations or in various real-world applications.



130 12. PATH PLANNING IN 3D SPACE

12.2 Representing the Environment

Accurately describing the environment the robot operates in,W, is essential for the path
planning process. The performance of the system, as well as the quality of the calculated
path, is severely impacted by the manner in which the world is represented. Choosing
sparse representations will result in more time-efficient planning, but the path itself can
become more optimal if the representation better matches the actual surroundings. In
general, these representations can be categorised as topological or metric. A topological
representation describes the environment without explicit references to numeric data. I.e.
the environment is modeled as a set of nodes, possibly describing features, with edges
between them containing relational information. Metric mapping, on the other hand,
directly utilises a certain data structure in which waypoints can be explicitly stated based
on global data. Due to the nature of metric representations, they tend to favor optimal
planning methods, which in turn has lead this to being the most popular way to store
environment information.

Numerous representations exist, therefore the focus of this report will be on some of the
more popular and promising techniques. The next sections will briefly discuss the methods
most prominent in related literature, namely the occupancy grid and the roadmap.

12.2.1 Occupancy Grids

Occupancy grids [113], also known as occupancy maps, are perhaps the representation
most used in robot path planning to date, largely due to their simplicity. An occupancy
grid structures the workspace into a discrete grid with a specific resolution. The occupancy
information is usually stored in one of two ways: (i) binary (ii) probabilistic. Binary grids
store the occupancy information of each cell simply as true or false depending on whether
or not the cell is occupied by some obstacle. The probabilistic map is slightly more complex
and is the most common representation. Each cell in this grid is categorised as free, occupied
or unknown, depending on the estimated probability of obstacles occupying the specific cell.
Probability values sufficiently close to 1 indicate a high certainty for a cell being occupied,
whereas cells with probabilities in a neighbourhood around 0.5 are marked as unknown.
These occupancy probabilities can be initialised using a priori knowledge – e.g. from a
pre-built map – and then be updated online based on incoming sensor information. In an
online mapping setting, the probabilities are calculated as

p(mi | z1:t ,x1:t ) =
∏
i

p(mi | z1:t ,x1:t ) ,



12.2. REPRESENTING THE ENVIRONMENT 131

where p(mi) denotes the probability of a specific cell i being occupied, z1:t being the set of
measurements up until time t and x1:t is the set of robot configurations, or states, up to
time t .

Grid representations are not without disadvantages, however, with the main drawbacks
being the denseness of the representation and the fact that it suffers from digitisation bias
[114]. The denseness of the grid simply results in a larger number of nodes having to
be evaluated during a search compared to e.g. sparse graphs. Due to this, occupancy
maps structured as pure three-dimensional grids are better for smaller environments or
in applications where grid resolution is of less importance. Digitisation bias2 refers to the
information loss caused by quantising the real world into grids. In other words, grid cells
including just a sliver of an obstacle can be marked as either occupied or free — depending
on the probability threshold — neither of which is completely true. This means the the
optimality of the path, e.g. in respect to path length or obstacle clearance, is directly
dependent on the resolution of the grid used.

The digitisation bias problem can be largely overcome by the use of more sophisticated
data structures when generating the occupancy map. One data structure commonly used
for this — that also has seen extensive use in search and optimisation algorithms, as well
as in image processing — is the octree. Octrees are most easily explained through their
two-dimensional equivalent: the quadtree. Quadtrees structure the data by dividing a
square portion into four smaller squares, hence quadtrees, and recursively subdividing into
four quadrants. In this representation, more "interesting" parts of the environment have a
deeper subdivision. E.g. an image-based map with clustered obstacles can result in some
parts of the quadtree being very deep with each sub-cell representing one pixel, whereas
parts of the map with no obstacles might be represented by larger sub-cells of four pixels,
as illustrated in fig. 12.3. Quadtrees are mainly used to partition two-dimensional space,
e.g. to use as 2D navigation maps for marine surface vehicles (MSVs). To accommodate the
third dimension, the octree encoding was developed [115]. This data structure is analogous
to the quadtree, but partitions the space into octants instead of quadrants.

The main advantage of these structures compared to the regular grid, is that the problem
of too crude a quantization is reduced due to the increased resolution of areas in, or close
to, Cobst. As a result, the quad-/octrees generally consists of fewer cells than their grid
counterparts. A comparison between a 2D occupancy grid and a quadtree representation is
shown in fig. 12.3.

2Sometimes also referred to as resolution completeness, but this term will be reserved its original definition
by Latombe [79] to avoid any confusing and overlapping terminology.



132 12. PATH PLANNING IN 3D SPACE

Figure 12.3: Comparison between an occupancy grid and a visualization of
the correseponding quadtree representation. Empty areas results in larger
cells, giving a more compact representation wrt. storage. Left: Screenshot
from a 2D SLAM simulation based on a 2D occupancy grid. Right: Screenshot
of the same map represented using a quadtree. (The grid overlay in the left
image is not indicative of the occupancy grid resolution.)

12.2.2 Roadmaps

Graph-based roadmaps have seen much use in path planning literature. Different variants
exist, but all share the common concept of building a set of edges and nodes spanning
the workspaceW while circumventing polygonal obstacles. Roadmaps can be defined as
follows:

Definition 12.1. Roadmap
LetM be a graph mapping into Cfree and let S ⊂ Cfree represent the set of all reachable
points in the graph and η represent the robot configuration.3 M is said to be a roadmap if
the following conditions are satisfied:

• Accessibility - There exists a path π : [0, 1] 7→ Cfree from η ∈ Cfree to some s ∈ S
∀η, s

• Connectivity - If there exists a path π : [0, 1] 7→ Cfree s.t. π (0) = ηi and π (1) = ηд,
then there also exists a path π ′ : [0, 1] 7→ S s.t. π ′(0) = s1 and π ′(1) = s2.

From definition 12.1, the accessibility-condition implies that it is always possible to con-
nect some initial state and a goal state to s1, s2 ∈ S, respectively, whereas the connectivity-
condition ensures algorithmic completeness by assuring no missed connections. This
roadmap can be built in many different ways, with some of the most prominent methods
including cell decomposition, (reduced) visibility graphs, and Voronoi diagrams.

3This set of all reachable points in a graph is sometimes referred to as the swath.



12.2. REPRESENTING THE ENVIRONMENT 133

Cell decomposition methods divide the map into, mainly, vertical or horizontal cells. A
safe path can then be found by choosing waypoints that coincide with the cells’ centroid.
While being a straightforward representation, they pose certain problems, including combi-
natorial explosion, limited granularity and the possibility for infeasible solutions. These
complications results in methods based on cell decomposition not being discussed further in
this thesis; readers are referred to [116] for a more detailed run-through of these problems.

Another strategy is to generate a graph from the starting pose to the goal by representing
obstacles as polygons and adding all obstacle vertices to the graph that have visibility from
previous vertices. Such a graph is called a visibility graph [117]. The reduced variant
removes any edges that will never be used, i.e. edges that connects directly to obstacles.
This results in an increase in the efficiency of which the shortest path can be computed.
Visibility graphs do suffer one big drawback, however, namely that the vertices defining
the obstacles are directly present in the graph. This means that the calculated path touches
the obstacles and is in need of post processing. A roadmap method that circumvents this, is
the Voronoi diagram.

Voronoi diagrams

As mentioned, the main motivation behind using graph representations for path planning,
is that they reduce Cfree into a subset of connected vertices. A search through the resulting
subspace can then be performed to find an optimal path through the graph. Specific to the
Voronoi diagrams is that they partition the environment into convex regions, or Voronoi
cells. Each polygonal region as one generating point, pi , and every point inside a given cell
is always closest to that cell’s corresponding generator point than to any other generating
point. The general Voronoi diagram can be defined as in definition 12.2. In the case where
the metric d(·) is chosen as the Euclidean distance, and obstacles are used as generator
points, the Voronoi diagram becomes a maximum clearance roadmap 4.

Definition 12.2. Voronoi region [118]
Let

d(x ,A) = inf {d(x ,p) | p ∈ A}

denote the distance between the point x ∈ X and the subset A, where pi ∈ P ⊂ X is a
generator point. The Voronoi region is then defined as

Rk =
{
x ∈ X | d(x ,Pk) ≤ d(x ,Pj)∀ j , k

}
.

Using Voronoi diagrams in path planning to represent the environment provides a graph
4For readers versed in the field of computational geometry, it can be mentioned that the Voronoi diagram

is, in essence, the discrete form of the medial axis.



134 12. PATH PLANNING IN 3D SPACE

in which paths that are maximally distant from obstacles can be calculated. This results
in very safe paths, which can be preferable for autonomous operations. Algorithms have
been developed that generate d−dimensional Voronoi diagrams based on convex hulls in
O(n log r ) time for d ≤ 3 [119], where r is the number of already processed points in the
diagram. This allows efficient generation as long as n does not grow too large. For mapping
and exploration in three dimensions, however, the number of points can be expected to
grow quite large. Voronoi diagrams representing d−dimensional space require O(n

⌈
1
2d
⌉
)

storage space. This requirement is linear in the 2D case, but exhibit polynomial growth for
d ≥ 3.

Other methods of generation include skeletonization methods, for example through
signed distance fields [120]. Planning over the generated skeleton graph can result in
very efficient path planning [120], but requires efficiently processing sensor data and the
possibility of incremental graph generation, which is hard to generate online, especially for
larger, more complex environments.

As far as map representation goes, the main representation used in this particular
project is the occupancy grid. This is largely due to the ease of which frontier regions are
incorporated, as well as the fact that it needs little pre processing when combining point
clouds directly with OctoMap [121].

12.3 Combinatorial Methods

Combinatorial methods have the nice property that they explicitly construct a representation
of C which allows for optimal, deterministic path searches through Cfree. This allows the
method to either find an optimal path, or correctly conclude that no solution exists for the
current problem at hand.

Combinatorial methods rely on explicitly calculating a retraction of the environment,
most often represented as a roadmap, before performing the path search. Different methods
of doing this was briefly discussed in section 12.2.2. Seeing as safety is the main priority of
autonomous underwater operations, especially, an obstacle clearance-focused approach
was deemed the best fit. Due to this, the Voronoi diagram was deemed a good potential
planning method for underwater path planning.

12.3.1 Voronoi Diagrams in Path Planning

The Voronoi diagram has shown promising results in recent literature when applied to
marine environments [118], [122], as well as showcasing its feasibility when applied to
three-dimensional problems [123]. The method presented in [123] creates the Voronoi
representation using the quickhull algorithm [119] by choosing the points defining obstacle



12.3. COMBINATORIAL METHODS 135

bounding boxes as generator points. The diagram is further limited to a region of interest
by placing points at random along the edges of the chosen region. The Yen-modification
of Dijkstra [124] is then applied to find the k most optimal paths. Thus, if the optimal
path is found to be inaccessible, the next optimal path is chosen. The Euclidean distance is
used as the Voronoi metric, resulting in the roadmap and resulting paths being piece-wise
linear. This poses a problem for the control system, as further discussed in section 12.6.
Therefore, 3D Dubins paths are used to smooth the path further. For collision detection and
-avoidance, this paper suggests using a local Voronoi diagram calculated around the moving
obstacle. The local diagram generated in the replanning subspace connects to the global
roadmap, with the local bounding box being estimated based on the closest time of approach
and closest point of approach [123]. The process of replanning around moving obstacles is
not relevant to this thesis, however, as only SLAM is used for map updates, hence moving
obstacles will be ignored.

The applicability of a Voronoi-based planner in a 3D environment is showcased in [123],
but is implemented under a very important assumption: the entire map is assumed known
and static. For underwater exploration, this assumption will not hold. When obstacle
positions are unknown, it is necessary to estimate individual obstacle placements online
based on incoming sensor or SLAM data. This can be achieved by using a clustering
algorithm to estimate obstacle clusters from a point cloud, e.g. by using DBSCAN [125].
This concept is further discussed in section 12.5.

In the complete system, the intended input to the path planner is the SLAM-map.
This map is represented as a fairly sparse point cloud generated from possibly noisy data.
Directly generating a Voronoi diagram from this 3D point cloud could result in a number of
edges intersecting with Cobst, and would be in need of post-processing. Instead of directly
using points in the point cloud as generator points, the graph could be generated through
skeletonization techniques such as signed distance fields. A distance field describes the
inter-surface space, with each point containing the distance from that point to the closest
surface. Truncated signed distace fields (TSDF) are based on the relative distance between
the robot sensor and the obstacle along the sensor’s line-of-sight [126]. A simple example
illustration of a TSDF is shown in section 12.3.1. TSDFs are relatively efficient to calculate,
seeing as they only operates within a truncated area. They can therefore be used to further
estimate more complex distance fields, such as the euclidean signed distance field (ESDF),
more efficiently than calculating the ESDF directly. The ESDF is related to the Voronoi
diagram as they both can be used to estimate the medial axis, providing a maximum obstacle
clearance roadmap of a given environment. An approach to generating such a sparse graph
through the use of TSDFs and ESDFs is presented by Oleynikova et. al. [120], [127]. The
generalized Voronoi diagram (GVD) is calculated from the incrementally generated ESDF.
This GVD is then further thinned, before the skeleton is extracted, preserving the best nodes



136 12. PATH PLANNING IN 3D SPACE

and attempting to connect any unconnected subgraphs. The best nodes are chosen as the
nodes in each neighborhood that are maximally distant from obstacles, and are represented
using a k-D tree.

This method further demonstrates the efficiency of planning using a sparse graph
combined with a heuristic graph search algorithm. Experiments exemplified in [120] show
that A∗ combined with a sparse graph produced a path 800 times faster than the standard
RRT∗. The big drawback with this method lies in the graph generation. Generating the
sparse graph in the way put forth in the paper, while being relatively efficient, needs offline
generation of the sparse graph. A strategy to increase computational efficiency and allow for
unknown obstacles could be to use efficient clustering methods together with convex hull
algorithms to reduce the number of generator points in the resulting Voronoi diagram. This
approach, and its implementation, will be further discussed in section 12.5 and chapter 14.

Sensor Surface

Dmax

Dmin

Figure 12.4: Illustration of how the TSDF allocates dis-
tance values. Red cells indicate positive values whereas
cells on the blue side of the spectrum indicate negative
samples.

12.4 Sampling-based Methods

As briefly mentioned previously, the main motivation behind the development of sampling-
based methods was to solve the path planning problem more efficiently than the combinato-
rial methods were able to. Seeing as more and more applications required online planning,
which in turn meant having to deal with stricter hardware limitations, the C-space formula-
tion needed to be relaxed. The primary school of thought was then to accomplish this by
performing random sampling in the chosen environment representations. Hence the name
sampling-based methods. This set of methods has been of much interest in recent decades,



12.4. SAMPLING-BASED METHODS 137

and have thus been subject to many different approaches and seen many modifications. This
section treats different state-of-the-art variants of one of the most popular sampling-based
methods in literature and its variants and applicability to online, underwater path planning.

12.4.1 The RRT Family

The perhaps most popular sampling-based path planning approach to date is the rapidly ex-
ploring random tree (RRT) method. RRTs have seen extensive use and have been researched
heavily in recent literature. These types of algorithms build a tree structure by randomly
sampling leaf nodes from Cfree, favoring the expansion towards the larges Voronoi regions
currently in C [128]. The underlying concepts of the RRT are fairly simple, which has been
a major factor leading to a huge amount of offspring variants being developed, some of
which will be discussed in more detail later in this section.

The RRT algorithm starts by initialisizing the current pose xi ∈ Cfree = Xfree
5 as the

root node. After initialization, the tree expands by randomly sampling X , adding the new
nodes xnew ∈ X iff. xnew ∈ Xfree ⊆ X and the edge connecting xnew to the existing tree
is collision-free. Similarly to the PRM, the sampling can be performed through straight
line-sampling, or it can be steered. Such a steering function chooses an input u that results
in an xnew ∈ X that is closest to the randomly sampled state through evaluating eq. (11.1).
Using such a steering function results in a tree that gives both collision-free and dynamically
feasible paths according to the modelled vehicle dynamics. By nature of the performed
expansion, the RRT algorithm is biased towards unexplored parts of C [128]. To increase
the convergence to the specified goal state, a goal bias that forces the tree expansion
towards the goal at certain intervals can be included. A nice feature of the RRT tree is
that it is always connected as it always expands from the current tree. This results in a
less memory requirements as compared to the PRM, due to the fact that PRM computes
the complete graph before finding a path. This means that the method of choice is, of
course, dependent on the intended application. It is worth noting that, if looking at the
datastructures themselves, a tree structure is easier to maintain than a graph with respect
to memory requirements. As a side note, this argument also holds for the graph-version of
RRT, the rapidly-exploring random graph (RRG) [129]. Additionally, regarding the intended
application, RRTs are closely connected to environment exploration, as mentioned. This
will be further treated in section 13.1.

Furthermore, seeing as the RRT builds upon a state space formulation, it allows for the
inclusion of specific vehicle dynamics with relative ease, resulting in trees that conform to
kinodynamic constraints. RRTs suffer at least one drawback, however, namely that the ideal
metric ρ is not easily estimated [130]. This is not specific to the RRT-family, however, as

5It is worth noting that Cfree = Xfree for basic path planning



138 12. PATH PLANNING IN 3D SPACE

xnew

xrand

Figure 12.5: Illustration of the RRT expansion process. The random sample xrand (orange) is
found by following the steering function. The new node xnew (yellow) is found to be the
point along the steered line closest to the random sample. This node is then added to the
existing tree.

this is true for all randomised sampling algorithms. See [80] for a more in-depth discussion
of different metrics and their requirements.

As mentioned previously, the RRT method sparked numerous variants. These mainly
focused on the efficiency when applied to higher order problems, increasing the solution
convergence, and on fixing some of the introduced problems such as planning in narrow
passageways. The list of offspring algorithms have grown quite large, and as a result, only
a select few will be treated here. Several literature surveys have been published that treats
a large number of the variants published to date, thus the reader is referred to [131]–[133]
if an even broader overview is of interest.

One of the first extensions to the basic RRT algorithm was the bi-directional RRT. This
was developed mainly to overcome the problem of almost-closed environments — also
known as the bug-trap problem — and does so by starting two trees. One from the start state
and one from the goal state, before alternating the expansion from each of them. Although
being a simple extension, it has proven itself to often be more efficient in practice than the
base RRT [81]. The more interesting RRT variants, however, come from the endeavor of
trying to increase the optimality and convergence of the solution paths.

Sampling-based methods are known to be probabilistically complete, but they are not
guaranteed to converge towards the optimal path unless only one solution exists. The first
major RRT upgrade to guarantee asymptotic optimality, was the RRT∗. RRT∗ builds upon the
briefly mentioned RRG algorithm, but includes a near-neighbor search and tree-rewiring to



12.4. SAMPLING-BASED METHODS 139

guarantee asymptotic optimality [134]. The neighbor search is used to find the best parent
node within a spherical area with radius ρ from the new node. The radius is determined
by ρ = γ logn

n

1/d
, where n is the total number of nodes currently in the tree, d is the spatial

dimension of the problem, and γ is an environment-specific parameter [129]. This same
radius is used for tree-rewiring, updating the edges between the encompassed nodes to
minimize the edge weights between nodes. This procedure is illustrated in the first three
sub-figures in fig. 12.6. These two additions results in increased path quality compared to
RRT, due to the local optimizations performed underway. The main drawback of RRT∗ is the
increase in runtime introduced by the additional node evaluations. Through simulations,
this increase was roughly tripled, leading to a weighting between path optimality and
computational efficiency. Even though RRT∗ evaluates nodes for rewiring, it does not
revisit the already built tree to check for any new obstacles. In the case of a dynamic
environment, this can be a problem. In an attempt to address this, while also reducing the
linearly increasing memory usage of RRT∗, the RRT∗Fixed-Nodes (RRT∗FN) and its dynamic
extension (RRT∗FND) [135], [136] were introduced.

The name fixed-nodes refers to the fact that the total allowable number of nodes in the
tree is static and bounded. By doing this, the linearly increasing memory requirement of
RRT∗ is reduced. This algorithm grows the tree in the same manner until the maximum
allowed number of nodes is reached. At this point, leaf nodes are removed as long as the
leaf node in question is not the last node on the current solution path. The expansion
process is illustrated in fig. 12.6. To allow for dynamic environments, the algorithm will
restart if a collision is detected. Instead of restarting with an empty tree, however, the
algorithm removes the already visited nodes, as well as the collision nodes, before using
the rest in the new expansion process. The simulations performed in [136] indicate that
the RRT∗FN and RRT∗FND outperforms RRT∗ in both runtime and success rate in dynamic
environments. While RRT∗FND seem to give significant improvements in runtimes for
complex environments it does only obtain marginally faster runtimes for simpler scenarios
— even, at times, having a slower runtime than RRT ∗ due to the initial overhead. A drawback
that comes to mind with the fixed-node algorithms, is precisely the fact that the number of
nodes must be assigned. This requires some degree of knowledge about the environment
such as to have enough nodes to reach the goal. If the number is chosen too small, there is
a risk of never reaching the goal simply due to spatial distance.

Instead of focusing on the reduction of nodes to increase runtimes, another approach is
to increase the rate of convergence by guiding the search to more quickly obtain a solution.
One such example is the Informed RRT∗ [137] which makes use of informed sampling, as
opposed to the original stochastic sampling, to steer the state sampling. Informed refers to
the fact that, when a solution is found, little is gained from sampling a new state which
results in a less optimal path. Thus, information about the current solution is used to further



140 12. PATH PLANNING IN 3D SPACE

Figure 12.6: Illustration of the initial tree expansion of the RRT*FND
algorithm. 1) A circular area encompassing the new node is searched.
2) The new node is added to the existing tree. 3) & 4) The rewiring
is done by optimising the edges connecting the nodes, before any child
nodes connecting a path with a higher cumulative cost is removed.

drive the search. This sampling scheme works by exploiting the fact that, after an initial
solution is found, all possible improvements to that solution lie within an ellipse. As the
solution improves, the ellipse shrinks. This ellipse is called the informed subset [137], and
can be defined as

XI B {x ∈ X | c(x) ≤ cbest} , (12.1)

where c(x) is the cost from xinit to xgoal and cbest is the current best path cost. Obstacles
are not encompassed by this informed sampling definition, therefore all states inside XI

can be guaranteed to result in a lower cost. This is the case for informed sampling in the
real world, since obstacles are almost always present. However, even though lower costs
are not guaranteed for all states inside the informed set, this still allows for a much denser
expansion inside a subset of the complete state space. Overall, this results in a greatly
increased probability of finding more optimal paths. An example of the different trees
generated by RRT, RRT∗, and Informed RRT∗, is shown in fig. 12.8.

Another method that improves on the RRT∗ even more is the Batch Informed Tree (BIT∗).
This algorithm also makes use of informed sampling, but improves on Informed RRT∗ by
evaluating part of the state space in batches. BIT∗ divides the problem into j batches, each
with k samples. These batches implicitly define a random geometric graph on which a



12.4. SAMPLING-BASED METHODS 141

Figure 12.7: Example of how the informed set can evolve through the path searching
process. The current tree (green) samples the state space while avoiding obstacles
(gray) inside the current informed set (blue). As the process continues and the
paths converge closer to the optimum, the informed set shrinks (orange). In this
case, the final informed set would converge to the straight line connecting the
starting point and the goal (red).

heuristically driven search can be performed to find the optimal path from xinit to xgoal in
the given batch. When the first batch is processed and the current optimal path is found, a
new batch consisting of a denser selection of states is drawn before a new heuristic search
is initiated. This procedure continues until the solution stops improving or when no more
traversable edges exist. These informed samplers were the ones most closely investigated in
this thesis. Even more recent variants, such as RABIT∗ [138], combining local optimization
through covariant hamiltonian optimization for motion planning (CHOMP) [139] and BIT∗

for an even further increased convergence rate. Though promising, they were left as possible
future extensions.



142 12. PATH PLANNING IN 3D SPACE

5101520253035 −85 −80 −75 −70 −65 −60

−93
−92
−91
−90
−89
−88

z [m]
s

Edges

Path

Nodes

x [m]

y [m]

z [m]

5101520253035 −85 −80 −75 −70 −65 −60

−93
−92
−91
−90
−89
−88

z [m]
s

Edges

Path

Nodes

x [m]

y [m]

z [m]

5101520253035 −85 −80 −75 −70 −65 −60

−93
−92
−91
−90
−89
−88

z [m]
s

Edges

Path

Nodes

x [m]

y [m]

z [m]

Figure 12.8: Comparison between the resulting tree structure after running
RRT, RRT∗ and Informed RRT∗, respectively, in an environment without
obstacles (only a subset of the RRT and RRT∗ graphs are shown). In the same
case, due to graph pruning, the BIT∗ graph reduces to the straight line entirely
(not shown).



12.5. CLUSTERING IN THE CONTEXT OF PLANNING 143

12.5 Clustering in the Context of Planning

Clustering methods play an important role in many different fields of research, including
computer science and bioinformatics, for example, and has a wide variety of use-cases.
Clustering is probably nowadays most often associated with machine learning (ML) and falls
under the category of unsupervised learning. In this sense, clustering seeks to find a natural
structure in a set of unlabelled data, and then to use this to divide the data into clusters. This
dividing structure is extrapolated based on the algorithm’s sense of similarity. The notion
of similarity can have many interpretations, especially when analysing high-dimensional
data. In many cases this similarity measure is based purely on the distance measure, i.e.
the L2-distances between the data points; samples close to one another is then labelled as
members of the same class. Seeing as clustering methodology has been around for many
decades — see, for example, the work of Cattell from 1943 [140] for a related case from
psychology, or MacQueen’s [141] or Lloyd’s[142] paper for some of the original k-means
papers6 — it is of no surprise that the number of clustering methods rival that of the number
of path planning methods. The main reasoning behind this large number of methods is
that there is no one universal clustering algorithm that can solve any and all problems.
Clustering methods are divided into specific groups based on their method of clustering and
what assumptions they make. For example, k-means [141] is an example of a partitioning,
or squared error-based, clustering method that works by continuously updating a centroid
estimate under the assumption that the clusters are inherently spherical. There are obvious
drawbacks with this method, but it has still seen much use in literature and performs well
under the right circumstances [144], [145]. Due to the nature of these clustering methods,
several papers have been published surveying clustering algorithms, trying to answer the
question of which clustering algorithm is the most optimal one. The answer, however, is
always it depends [146]. This holds true for clustering methods, even more so than for path
planning methods. Therefore, the choice of algorithm requires good knowledge of the data
in question.

Seeing the numerous applications of clustering methods in literature, it comes as little
surprise that it also has its uses in path planning. One such example comes from the use of
clustering to approximate optimal, discrete paths for mobile robots [147]. This clustering is
based on an approached the authors named Γ-clustering and uses a graph to represent the
environment. The parameter Γ refers to a ratio variable defined by the ratio between the
minimum weighted edge leaving or entering the cluster and the maximum weighted edge
already inside the cluster. The practical notion of Γ the becomes a measure of separation

6To the authors’ best knowledge, the k-means algorithm was independently developed by different authors
in different fields, with the earliest documentation being the work of Steinhaus [143] (in French) in 1956, but
the name wasn’t coined until 1967, by MacQueen [141].



144 12. PATH PLANNING IN 3D SPACE

between the vertices in the cluster and the remaining vertices in the graph. While providing
a fascinating use of clustering and an interesting take on the path planning problem, this
procedure is deemed too computationally expensive in its current state to facilitate online
planning.

Another example, more akin to traditional path planning and some of the methods
discussed in ??, is the use of clustering to provide a model of the C-space [148]. The idea
behind this is to use clusters to calculate an abstract representation of the C-space which
acts as something in between combinatorial and sampling-based planning methods. This is
also the motivation behind one of the planning methods proposed throughout in this report
(see section 14.1), although using a slightly different approach which also takes inspiration
from the work of Candeloro and Lekkas [123].

As previously mentioned, different clustering methods work better in certain circum-
stances given certain assumptions. Under the working assumptions of this report, the
perception and SLAM systems provide a 3D point cloud representation of the environment.
Furthermore, while clustering methods such as k-means are simple and relatively efficient,
obstacles cannot be assumed to be spherical in shape. Due to this, density-based clustering
was deemed an appropriate clustering technique. Each of these clusters then represent a
single obstacle oi ⊆ O ⊆ W. Depending on the perception system and the environment,
these clusters can contain thousands of points. If, for example, a Voronoi diagram is calcu-
lated based on these clusters — which is essentially the same as just calculating the diagram
based on the input cloud directly — the resulting graph would become very dense and
extensive pruning would be necessary to be able to use the diagram. As proved in previous
research [123], a simpler diagram can be extracted by using boundary points as generator
points, simplifying the process immensely. Preceding works do, however, assume a priori
knowledge about obstacle positions and their bounding boxes. Therefore, this report seeks
to circumvent this assumption, and instead find boundary points incrementally as the robot
explores. This can be achieved by using the extracted clusters as input points for a convex
hull algorithm. An example of a calculated convex hull from a single point cloud cluster
using CGAL’s implementation of the quickhull algorithm [119] is shown in fig. 12.9. By
then using the points defining the convex polygon as the Voronoi generator points, much
fewer points will have to be processed. This strategy is tried illustrated in fig. 12.10 using
built-in MATLAB functions. In fig. 12.10a, the Voronoi diagram is generated using all points
present in the obstacles. This results in a larger number of evaluations as well as a larger
number of edges within the diagram, most of which is present inside the obstacle itself. This
would require much pruning to remove all unwanted edges. Instead, fig. 12.10b showcases
the Voronoi diagram generated when just evaluating the convex polygon points, and results
in a much lower number of edges overall. The added benefit of this is that the convex
hull directly represents the obstacle which makes the removal of unwanted edges fairly



12.5. CLUSTERING IN THE CONTEXT OF PLANNING 145

Figure 12.9: Convex hull of a single point cloud cluster calculated using the quickhull
algorithm.

straightforward.

(a) Voronoi diagram generated from all observed
points.

(b) Voronoi diagram generated based on the poly-
gon points.

Figure 12.10: Example roadmaps showing the 2D Voronoi diagram generated from two sets
of points representing the same environment.

It is worth noting, however, that when calculating the convex hull of the clusters,
the obstacle representation is simplified. This results in a loss of information and is, in
part, the reason behind why this method of planning would fall in between the realms
of combinatorial and sampling-based planning. Furthermore, the tuning of the clustering
algorithm must be addressed. The particular cluster used in fig. 12.9 was found using a
Euclidean distance-based clustering method. These types of clustering methods rely on a
user-defined tolerance value, which essentially states how far two samples can be apart
and still be considered part of the same cluster. As this parameter will depend on the given



146 12. PATH PLANNING IN 3D SPACE

application, it is necessary to perform practical tests to conclude with a reasonable value.
An example clustering using DBSCAN is shown in fig. 12.12.

Figure 12.11: Point cloud from a simulated underwater environment with the seafloor
filtered out.

With a roadmap generated, the path to the goal state can be found by applying an
optimal search algorithm, such as A∗. The resulting path will consist of piece-wise linear
segments, and is in need of post processing. Different ways this can be achieved, and their
pros and cons will be discussed in the following section.



12.5. CLUSTERING IN THE CONTEXT OF PLANNING 147

Figure 12.12: Example clustering of the point cloud shown in fig. 12.11 using DBSCAN.
Some of the information is counted as noise due to the more sparse point measurements in
the lower left corner, especially.



148 12. PATH PLANNING IN 3D SPACE

12.6 Path Criteria

Before discussing the details surrounding the implementation and testing of path planning
methods, the path itself needs to be discussed. In essence, the traditional outputs from a
path planning system is a set of piece-wise connected and a flyable path. A path is flyable
if it satisfies the vehicle kinematics and remains collision-free given the vehicle’s geometry.
Seeing as the path calculated by most planning methods consists of a set of waypoints
connected by straight lines, post processing is often needed to generate a smooth path. An
often used criteria for evaluating paths is their continuity. Generally, continuity is divided
into geometric (G) and parametric (C) continuity. Geometric continuity is based on the
geometric properties of the curve, thus, the first couple degrees of geometric continuity
can be defined as [89]:

• G0 : All curves are connected
• G1 : The path-tangential angle is continuous
• G2 : The center of curvature is continuous

Parametric continuity, on the other hand, takes a more analytic approach:

• C0 : All curves are connected
• C1 : The first derivatives (velocities) of the curve are continuous
• C2 : The second derivatives (accelerations & curvatures) are continuous
• Cn : The nth derivative of the curve is continuous

In chapter 11, the notion of continuity was implicitly stated in the path definition
(eq. (11.6)). To achieve feasible paths, different path smoothing techniques have been de-
veloped. One of the first method to handle this problem was the Dubins path [149] which
calculated the shortest path between two points by representing the path as a set of straight
lines and circular arcs, given a maximum curvature constraint. These resulting paths satis-
fies C1 continuity, but are not curvature-continuous (C2) due to the discontinuities at the
start and end of the circular arcs. If looking at the solution path from a control point of
view, the control system responsible for regulating the attitude of the robot will be subject
to a discontinuous reference signal due to it relying on second derivatives. This can lead to
unwanted behaviour, e.g. due to coupled dynamics in underactuated vehicles, and excessive
strain on the actuators. Therefore, curves satisfying at least C2 continuity is favoured [82],
[89].

To bypass the discontinuities present in Dubins paths, attempts have been made to
combine them with clothoids, which have linearly changing curvatures. While good in
theory, clothoids have no analytic solution [89], which can lead to longer computation
times. This lack of a closed form structure renders them unsuitable for online planning



12.6. PATH CRITERIA 149

and navigation. Additionally, this property makes clothoids difficult to use in the presence
of obstacles, as it can reduce the algorithmic completeness or optimality of the planning
system [150]. A much more promising interpolation method is the use of splines. A spline
is a piecewise-defined function consisting of a number of polynomials. Their piecewise
description allows for combining segments of lower-degree polynomials such that the
combined path appears smooth [151]. For three-dimensional curves, C2 continuity is
required, but C3 is often preferred. I.e. the curve needs to have continuous curvature,
while continuous torsion is preferable in certain cases. C3 curves can, for example, be
obtained by constructing a shape-preserving7 C1-G2 cubic spline with a correction term of
variable degree [152].

Other interesting interpolation techniques satisfying the C2 criteria, while being less
computationally heavy, include the Fermat spiral (FS) and the aptly named docking spi-
ral (DS). Fermat spirals were introduced in 1636 by Pierre de Fermat as a variant of the
Archimedean spiral. The original parametrization is based on the square root of the path
parameter:

r = a
√
θ︸   ︷︷   ︸

polar

T(r ,θ )
−−−−−−−−−⇀↽−−−−−−−−−

T(x ,y)

[
x

y

]
=

[
x0 + au cos(ρu2 + χ0)
y0 + au sin(ρu2 + χ0)

]
︸                                  ︷︷                                  ︸

cartesian

, (12.2)

where u =
√
θ ,u ∈ [0,θmax]

8, a is a parameter that defines the spiral turning (scaling factor
in Cartesian), ρ = {±1} is the turning direction and χ0 is the initial tangent angle [118]. The
transformation T(·) here indicate a transformation between polar and Cartesian coordinates
which allows different initial positions (x0,y0)⊤ and initial tangent angles χ0 [153].

This alternative parametrization is what guarantees the necessary C2 continuity, al-
though the tangential angle χ (θ ) suffers from discontinuities at θ = π/2. This is overcome,
however, by writing the tangential angle as

χ (θ ) = θ + arctan(2θ ) ,

which provides a continuous coverage of θ ∈ [0, π ]. To then obtain full 2π coverage, the
mirrored spiral curve is used. This use of a mirrored curve is what allows the spiral to have
segments with zero curvature at the start and end of the path. An example of such a spiral
curve is shown in fig. 12.13; here the parametrization in eq. (12.2) has been augmented by
including a z component as a function of the number of turns needed and a given maximum
slope value.

7A shape-preserving curve satisfies certain collinearity, convexity and coplanarity criteria.
8 dκ
dθ (θ ) =

∥ Ûr × Ür ∥

∥ Ûr ∥3
= 0 ⇒ θmax =

√√
7
2 −

5
4



150 12. PATH PLANNING IN 3D SPACE

20

10

Y

00

0.5

-30

1

-20 -10

1.5

X

Z

-10

2

0

2.5

10

3

-2020
30

Figure 12.13: Illustration of a simple z-
modification to Fermat’s spiral that con-
serve zero curvature wrt. the xy-axes,
but not for xz. The blue line is the Fer-
mat spiral and the purple is its mirror.
Red indicates the first point of maximum
curvature.

The docking spiral is essentially a combina-
tion of the Fermat spiral and a logarithmic spi-
ral. Combining these two spiral types allows the
curve to reach a designated goal with zero curva-
ture while having an approaching angle that is
limited by some θmax. This makes for safer dock-
ing of underwater robots, as the robot nears the
docking station straight wrt. the docking station
orientation. The main drawbacks of these two
spiral methods, however, is that a 3D generaliza-
tion that keeps their properties have yet to be
performed

When discussing path criteria, another prop-
erty that is useful to discuss — especially in sce-
narios where obstacles are present — is the path

allowance. The allowance, a, is a measure of how much the smoothed path differs from
the original connected path segments [89]. In 2D, this is analogous to the magnitude of
the cross-track error between the smoothed and the original path. Thus, if the smoothed
curve deviates too much from the calculated path, the robot run the risk of colliding with
obstacles. In light of this, it is favorable to use a smoothing method that produces curves
with small allowances. In general, Fermat’s spirals are found to have a smaller allowance
compared to clothoids, but larger than that of Dubins paths, hence

aDubins ≤ aFermat < aClothoid .

Hence the choice of smoothing method depends on how far the modified path is allowed to
stray from the calculated piece-wise linear segments.

More specific path requirements can be deduced from the specific kinematics of the
given robot, of course. In the case of a multi-jointed USM, the USM kinematics imposes
certain restrictions on the curvature and torsion. These can be defined as follows:

Definition 12.1. Kinematic Path Feasability
Let κπ ,τπ ∈ R be the curvature and torsion of the planned path, respectively; and kκ ,kτ ∈ R
and be the curvature and torsion limits imposed by the USM. If the constraints κπ ≤ kκ and
τπ ≤ kτ hold, then the path is considered kinematically feasible.

By evaluating a multi-jointed USM consisting of j joints, qj , with intermediate links of
length li wrapped around a circle in 2D space with a certain radius R centered at O , the
specific curvature criteria can be developed. Then, by defining the angle θi as the angle



12.7. CONTEXT-AWARE PLANNING 151

between two subsequent joints, i.e. θi = ∠qiOqi+1 as shown in fig. 12.14, the curvature can
be defined as

κi =
2 sin(qi)

li
.

From fig. 12.14, it is evident that there is an offset from the previous link that is equal to

Figure 12.14: To the left, a image of the links of the USM wrapped around a circle. To
the right, the joint angles qi (with front and rear end-effector q f ,qr ) inscribed to visually
demonstrate the propagated angular offset from the previous link.

the joint angle of that link. Thus, given a USM with a maximum joint angle qi,max, the path
curvature κπ must satisfy the following constraints:

q1 = arcsin
(
l1
2κ

)
+ q f ,

θ1
2 ≤ q1,max − q f

q2 = arcsin
(
l2
2κ

)
+
θ1
2 ,

θ2
2 ≤ q2,max −

θ1
2

·

·

qn = arcsin
(
ln
2κ

)
+
θn−1
2 ,

θn
2 ≤ qn,max −

θn−1
2 .

(12.3)

If any of these limits fails to be satisfied, it is kinematically impossible for the USM to follow
the circular path exactly. The proof of this is shown in appendix C.

As a consequence of this, the calculated path is required to be at least C2, with a
maximum curvature κπ satisfying the USM kinematics. How this is accomplished will be
further discussed in chapter 14.

12.7 Context-aware Planning

Most of modern path planning methods tend to focus specifically on generating a collision-
free path, lumping all perceived obstacles in Cobst. By doing this, any information regarding
the specific obstacle is completely neglected. In many situations it can instead be beneficial



152 12. PATH PLANNING IN 3D SPACE

to extract additional information regarding the specific obstacles. Consequently, the robot
can adapt to the environment at hand by performing actions based on the type of obstacle
encountered. Recent literature presents different means of performing context-segmentation
— as well as various ways of utilising it. One such method, based on a mobile robot in
the 2D plane, is presented in [154]. The authors’ main motivation behind this work was
focused on improving reasoning in service robots as well as the social aspect of navigation.
This essentially means improving the robot’s decision-making abilities in human-made
environments, as well as having the robot operate more orderly in areas where humans are
present. These core concepts can easily be transferred to submarine robots, with less focus
on the social aspects, however.

In submarine environments it can be valuable to distinguish between natural and
human-made structures. Human-made constructions might be of interest for inspection
or following, or their dimensions can be extrapolated from incomplete sensor data in an
exploration setting. These extrapolated obstacles can then be used to plan paths that avoids
the estimated obstacles which can make for safer and more efficient planning, as expensive
re-planning can possibly be avoided. Natural obstacles, on the other hand, might include
submarine vegetation which can interfere with actuators and cause damage, and might
therefore need additional clearing.

Accomplishing this type of context-aware planning is the main idea behind linking
together classification and path planning. This can be achieved object detection through
image or point cloud classification or segmentation. In the case of a USM performing IMR
operations, this context-aware planning can be used to help guide the robot along a pipe to
perform an inspection task, for example. This is especially useful in cases where the pipe is
covered by natural substances, or in the rare case where the pipe has drifted. By employing
an exploration driven inspection strategy, assisted by semantically labelled environment
information, these sort of problematic occurrences can be overcome. See section 16.1 for a
more detailed walk-through of the implementation specifics of connecting the planning
and classification modules — exemplified with a pipe inspection case — and ?? for results
from simulation tests.

In this thesis, the classification is performed based on images. Methods for classifying
and segmenting unstructured three-dimensional point cloud data exists, but are not thor-
oughly investigated in this project. If interested in this subject, the reader is referred to
appendix D for a brief introduction to the concepts and surrounding literature.

12.8 Summary

Path planning, and the overlying theme of task planning in general, is a central subject
in robotics going back to the dawn of modern mobile robotics. In turn, many different



12.8. SUMMARY 153

approaches of handling this problem. Some of these methods have been tried exemplified
here.

Combinatorial planning attempt to solve this problem by generating an, often, sparse
graph which efficiently store information on the environment. Efficient search algorithms
can then be applied to the generated graph, e.g. using A∗, for efficient planning. These
methods tend to suffer from a few drawbacks such as complex graph generation proce-
dures and the possible difficulty of handling the information of a continuously changing
environment.

Probabilistic, or sampling-based, planning have in recent years been the go-to approach
for online path planning in a variety of applications. This is in large part due to their relative
simplicity and efficiency. Examples from the RRT family have been put forward to cover
most of the apparent planning problems in robotics, with their applicability to so many
different scenarios being a result of their straightforward implementation and the relative
ease of which vehicle kinematics can be included. They are not without their problems,
however, as they are probabilistic in nature and lose some of their optimality in exchange
for performance.

Other approaches have also been briefly discussed, such as artificial potential fields and
optimization methods. With the advent of artificial intelligence and deep learning, it is only
logical to attempt to use this to solve planning tasks. So far, not much research have been
done directly on this, but very promising examples such as MPNet [106] exists. By basing
the planning on AI/DL, it is not unreasonable to imagine a network combining the task of
planning with additional objectives, such as possibly incorporating semantic information
directly.

Seeing as most planning algorithms result in a set of connected waypoints, post pro-
cessing is most often needed to ensure the feasibility of the path wrt. the guidance and
control systems. A set of path critera, including continuity and allowance, was therefore
discussed, and a couple of techniques for generating paths of a sufficient degree of continuity
introduced. Based on the evaluated literature, Fermat’s spiral seem a promising method if
generalized to three dimensions while preserving the properties of the 2D parametrization.
The same argument goes for methods such as the briefly touched upon docking spiral,
which have the additional nice property of providing straight curves towards the goal.
Seeing as these methods are only developed for 2D motion, the well established method of
cubic spline interpolation, and its variants, were studied in stead. An approach based on
natural cubic splines was used in the actual implementation (chapter 14), partly also due to
the way the control system was implemented.

Finally, the concept of introducing contextual information to the planning procedure
was briefly investigated. The idea behind the combination of the classification system
from part IV and the planning module was presented, which will be further illustrated in



154 12. PATH PLANNING IN 3D SPACE

chapter 16.
The question of how to dynamically set new goals remains, however. To shed some

light on this problem, the next chapter will discuss different approaches for autonomous
generation of goal states for continuous and exhaustive environment exploration.



13 | Autonomous Exploration

Modern robotics is in many ways driven by the goal of attaining robust, autonomous
systems. Key tasks that are essential in many such systems are exploration, local-

ization and mapping. Accomplishing this allows the robot to be able to estimate its pose
while simultaneously seeking to exhaustively explore and keep track of the environment.
This process is widely known as simultaneous localization and mapping, or SLAM for short
[10] (see chapter 7). Traditionally, this entails teleoperating the robot to build a map and
run localization, or even building the map first then attempting localization separately.
Performing such tasks this way introduces the need for a human operator which is not
ideal, especially for longer missions where communication delays might become signifi-
cant — planetary exploration is a case in point [7], [8]. Attempting to run these processes
autonomously, however, establishes a need for the system to, independently, decide where
to go next based on the current sensory information and map estimates. This problem of
deciding the best exploration goals, and in turn planning paths to reach them while, is often
referred to as Active SLAM [155].

There are many ways of deciding such exploration objectives, one such being focusing
on loop closures. Loop closing connects previously explored parts of the environment with
newly discovered ones and updates the map estimate with the combined information. This
is an important procedure in SLAM as it helps obtaining consistent environment maps and
reduces the uncertainty of the mapping, as it allows for the correction of any inevitable
drift that has occurred [10]. Thus, one exploration strategy could be to exhaustively explore
the environment while aiming to minimize the map uncertainty. Deciding a satisfactory
exploration goal then becomes the main problem.

This chapter will discuss different exploration strategies that has been put forth in
previous literature, as well as approaches proposed in recent theoretical and practical
research. Different strategies have been developed, each based different objectives and
methodologies, but they are often broadly categorized as either frontier-based or next-best-
view (NBV) planners. This is the overarching categorization that will be used in this chapter.
Each of these schools have their advantages and disadvantages, both of which will be
examined.

155



156 13. AUTONOMOUS EXPLORATION

13.1 Exploration Strategies

Path planning in combination with environment exploration entails having only partial
knowledge of the complete surroundings. Therefore, the system needs to be able to char-
acterize the unknown areas of the map and from that information calculate a suitable
exploration goal state. Early exploration methods were relatively primitive, such as those
based on wall-following [156], which continuously follows obstacle edges to complete the
map — similar in essence to how the BUG-family of planning algorithms work [157]. This
approach has some obvious difficulties arising when applied to larger and more open areas,
which can lead to large areas of the map being unexplored. Improved methods were quickly
developed, with the simplest being nearest frontier, which in turn has been extended with
cost-utility functions and behaviour-based and hybrid approaches.

13.1.1 Frontier-based Exploration

• •

•

Figure 13.1: Example from a 2D SLAM
simulation using an occupancy grid repre-
sentation with example frontiers marked
in red and the calculated path (pink) from
the current robot position to the closest
frontier (orange).

In 1997, Yamauchi presented the quintessential
exploration strategy, namely the nearest fron-
tier method [158]. This method works by divid-
ing the map into three distinct categories: ex-
plored space, unexplored space and frontier space.
This is similar to the occupancy grid represen-
tation, where the frontiers are characterized as
the boundary regions between the explored and
unexplored space. Based on the frontier regions,
centroids of sufficiently large frontier clusters
are calculated, before the centroid closest to the
robot’s current position is chosen as the next
exploration goal. The practical execution of this
method is illustrated in fig. 13.1, where the near-
est frontier exploration approach is applied on
a 2D exploration simulation using ROS and a
simulated differential-drive turtlebot [159].

This strategy has the obvious advantage of
being simple and its possibilities for modifications and improvements. Such examples
include the use of topological vision-based methods [160] and feature-based methods [161]
as search strategies. Although the method itself is pretty straight forward, it also allows
for exploration in narrow spaces [158]. The simplicity of this method is not only positive,
however.



13.1. EXPLORATION STRATEGIES 157

Seeing as the nearest frontier method always chooses the closest frontier, it ignores any
extra information that might help decide better goals. In some cases it might also be advan-
tageous to have a notion of safeness regarding the path towards the possible exploration
goal, partly to help lessen the effects of any environment and vehicle modelling errors.
In an attempt to circumvent this, an exploration method was developed which combines
the closest frontier approach [158] and a path cost evaluation based on the path transform
of [162]. This method, presented in [163] and dubbed the exploration transform, bases the
exploration on minimising both the path length and the path risk. This is formulated as

Ψ(x) = min
xд∈F

{
min
π∈Π

xд
x

{
l(π ) + α

∑
xi∈π

Cdanger(xi)

}}
, (13.1)

where F is the set of all frontier cells, Πxд
x is the set of all paths from x to xд, l(π ) is the

length of the path π , cdanger(xi) is the cost function for the risk of entering cell xi and α ≥ 0
is a weighting factor. Cdanger was originally stated in [162], but this formulation essentially
enforces a repulsive force on the robot from the obstacles no matter the distance between
them. To bypass this, the cost function was reformulated as

Cdanger =


∞, if d < dmin

(dopt − d)
2, else

, (13.2)

where dmin represents the closest allowable distance between the robot and obstacles and
dopt is an estimated optimal, or encouraged, clearing [163]. The main advantages of this
approach are that the path safety is taken into account and that it finds the most appropriate
path without the risk of running into local minima. In practical implementations, this has
shown good results for 2D mobile robots. If applied to a three-dimensional problem this
might not be the case due to the potentially large increase in evaluations needed. This
method can be considered a version of a cost-utility method, as it combines the frontier
search with cell and path costs. Another cost-utility based way of choosing the next
waypoint would be to estimate the utility, or information gain, of a candidate point.

Information gain, in this sense, represents the amount of information about the en-
vironment gained by reaching a certain point in space. The expected information gain
can be defined in terms of entropy [164]. The entropy can be approximated as the joint
entropy of the path π (ϖ) = xk = x1:k and the mapWm, given a series of control inputs
Uk = u0:k−1 ∈ U and a set of observationsZk = z1:k . The total entropy then becomes [165]

H (xk ,Wm | Uk ,Zk) ≈ H (xk | Uk ,Zk) + H (Wm | Uk ,Zk) , (13.3)



158 13. AUTONOMOUS EXPLORATION

where the individual entropies are defined as in [165]

H (xk | Uk ,Zk) ≈
1
k

k∑
i=1

ln
(
2π exp

[
n′

2

] )
|Σii | (13.4)

H (Wm | Uk ,Zk) = −w
2

∑
c∈Wm

{p(c) lnp(c) + [1 − p(c)] ln[1 − p(c)]} , (13.5)

where n is the size of the state vector and Σ represents the covariance matrix. This formula-
tion is based on pose-SLAM, i.e.Wm is represented as a pose graph (see ??). To find the
input, or action, that maximises the expected information gain one can instead find the
input that minimises the joint posterior entropy H (x′,Wm | Uk + U′,Zk +Z

′) [165]:

U′∗ = argmin {H (x′,Wm | Uk + U′,Zk +Z
′)} . (13.6)

Applicable actions U include exploration to specific waypoints, but can also combine actions
where the robot tries to perform loop closure.

The advantage of such an exploration method is that the resulting algorithm gives good
results regarding loop closure and frontier exploration, since actions can be chosen to either
reduce pose uncertainties by exploring the environment or to reduce path uncertainties by
looping back to known locations. This expected information gain can further be combined
with an evaluation of the path length to then be able to weigh the information gain against
travel cost. Related to this, focusing on minimising landmark uncertainty, is the method
presented in [166]. This method aims to plan towards minimising the uncertainty of
landmarks and robot location in the map by weighting the two uncertainties. I.e., if the
robot location has a high uncertainty, the next waypoint should be chosen based on nearby
landmarks with low uncertainty, and vice versa.

The majority of exploration strategies in modern literature have, similarly to path
planning techniques, been focused on two-dimensional problems. Only fairly recently
have research targeted the extension of frontier exploration to three dimensions. These
approaches often convert 3D point cloud data to an octree, fromwhich frontiers are extracted
[167], [168]. While being based on octrees, this shows the promise of real-time frontier
extraction in 3D exploration due to the efficient processing and look-up provided by, for
example, OctoMap [121]. The main problem of just extending the same methods to 3D, is
the fact that the number of frontiers and their possible scattering renders these methods
inefficient. To help reduce the problem of increased dimensionality, efficient clustering
algorithms can be used to select frontier candidates. One example of this is through the use
of k-means divisive clustering [169]. This method runs divisive — also known as hierarchical
clustering — within a specific sensor FOV to cluster the frontiers in chunks viewable by the
sensor. This, and the approach presented in [167], where new frontiers are added to the



13.1. EXPLORATION STRATEGIES 159

stored set only if they contain new information, show that simple extensions of traditional
approaches — by means of efficient point cloud clustering and frontier caching — results in
improved exploration strategies.

After a new waypoint has been set, for example using the nearest frontier approach,
there is the possibility of the robot having sufficiently explored the region associated with
the surrounding frontier. To account for this, the method of repetitive re-checking has been
proposed [170]. If the chosen frontier at any point during execution ceases to be a frontier
cell, it is dropped and a new waypoint is chosen. Results show that this addition does not
increase the computational burden given the constant-time look-up to determine if it is
still a valid frontier. This simple addition can, however, help decrease the over-all path
length and exploration duration by decreasing the time spent in already mapped terrain.
Another problem that can occur, if the explorations goals are not chosen optimally, is that
semi-closed parts of the map can be visited multiple times. In 2D, the analogy to this is that
a room the robot explores is left before being fully explored, due to a goal being set in the
adjacent room. The suggested solution is then to segment the environment based on the
Voronoi diagram. Frontier cells can then be associated with the nearest Voronoi region.
Frontier cells lying in another Voronoi region is then only chosen if the set of frontiers in
the current Voronoi region is empty. Thus, the robot will not leave its current enclosed
region until it is fully explored. In the case of exploring sparse underwater environments,
this is unlikely to be as big of a problem. If the robot is to be utilised in underwater caverns
or similar, however, this might need to be taken into consideration. Nevertheless, this
extension is very simple and can decrease the overall path length, and since it is based
on Voronoi diagrams, should be relatively easy to extend to 3D if using a Voronoi-based
planner.

13.1.2 Next-Best-View Exploration

Another strategy that is closely related to the frontier-based approach, but separated for
clarity, is next-best-view (NBV) exploration. NBV methods seek to find the minimal set of
sensor poses that covers a given scene. To appropriate this for online exploration, receding
horizon NBV methods (RH-NBV) have been developed [171]. RH-NBV creates a set of
voxels from the occupancy grid that are visible from the current configuration, but remain
unmapped. These voxels are also chosen such that the direct line-of-sight does not intersect
with Cobst. Given the initial configuration, RH-NBV then builds a tree using RRT. Hence, RH-
NBV combines planning and exploration by exploiting the RRT’s Voronoi bias, favouring
large Voronoi regions.

Each node in the tree is given a score based on the score of the parent node, s(xp) the
current information gain, д(x), and their cost of traversing to that configuration, c(x). This



160 13. AUTONOMOUS EXPLORATION

can be expressed as s(x) = s(xp)+д(x) exp[−λc(x)], where λ is a tuning parameter penalizing
long paths — i.e. a large λ makes the robot explore its close surroundings carefully before
moving on [171]. At each iteration, or replanning, the best path segment is chosen and
executed, before the remaining tree is used to initialize the next search. This method allows
for efficient inclusion of sensor dynamics which can result in good map coverage, even in
3D environments.

This method have two main drawbacks, however. The first is that it, as presented in
literature, relies on RRT. This means that the solution path is not guaranteed to be near the
optimal path, and is likely to stray further from the path as the exploration goals are chosen
further away from the current configuration. The second problem has to do with map scale.
If the map is very large, it is likely that exploration goals will stray further and further away
from the robot as time goes on. Due to the tuning factor λ, goals far away from the current
position may never be chosen if the score becomes low enough. This is because of how the
method terminates the exploration task, stopping if the best score becomes lower than a
specified threshold, which can result in premature termination.

The traditional frontier-based methods is not without problems either, with the biggest
drawback being the time it takes to give full coverage. Very recently, however, there was
presented a method that combines frontier-based exploration with RH-NBV exploration,
named the Autonomous Exploration Planner (AEP) [172]. This approach uses RH-NBV as
a local exploration strategy, while frontier exploration is used globally, ensuring more
efficient handling of large-scale environments. Through experiments, this has been shown
to outperform both frontier-based and RH-NBV exploration strategies. Being developed
mainly with UAVs/MAVs in mind, the resulting paths are not directly feasible for UUVs.
This could potentially be improved upon with modifications, however.

13.2 Summary

All the aforementioned exploration strategies are tried and tested in terrestrial or aerial
surroundings, where sensor information is much more reliable, and usually contains more
depth information. By virtue of noisier data and environmental disturbances — among other
complications — underwater exploration and mapping have been shown to be much more
challenging than its above-ground counterpart. Methods that have shown promising results
has been developed [173]. However, these are performing view-based exploration based
on both sonar and cameras. In this thesis, only visual sensors are available for gathering
environment information. In future research, however, it could be interesting to combine
sonar data with the camera(s) to give a larger spatial horizon in which the longer-ranging
sonar could be used to estimate potential camera views for increased map coverage — with
the added benefit of better collision avoidance.



13.2. SUMMARY 161

Seeing as many underwater robotic vehicles are fairly restricted in roll, pitch and also
yaw angles, view-based exploration strategies were deemed unsuitable, unless fundamen-
tally changed in the tree generation. This is fully doable, as the inclusion of vehicle dynamics
is supported by the RRT algorithm. However, the problem of preemptive termination, as
discussed briefly in section 13.1.2, poses a larger problem as the potential workspace can
grow quite large in underwater environments. This can, as mentioned, be circumvented us-
ing the method proposed in [172], combining RH-NBV and more traditional frontier-based
exploration. This could be a very interesting extension to look into in further work.

Autonomous exploration share the samemain drawback asmany path planningmethods,
namely that the problem complexity increases immensely as the problem dimension expands.
Due to this, frontier exploration in 3D environments suffer from the sheer amount of possible
frontier cells present in the map. This results in traditional nearest frontier methods
[158] being rather inefficient without efficient frontier detection [169] and storage in
between measurements. For this thesis, an exploration strategy that combines traditional
frontier-based methods with an altered frontier evaluation function and efficient point
cloud clustering was implemented. This is further discussed in section 14.4.



162 13. AUTONOMOUS EXPLORATION



14 | Planning & Exploration
Method

Different combinatorial and sampling-based planners, along with their applicability to
dynamic underwater mapping and exploration, have in previous chapters — as well as

in the work performed in [1] — been investigated. As previously mentioned, combinatorial
methods have the advantage of being algorithmically complete and, in most cases, optimal
with regard to the stated optimality conditions. Due to this, combinatorial methods are
often preferable if the method is applicable to the problem at hand. On the other side —
disregarding fuzzy methods and algorithms based on numerical optimization [7], [106],
[174]–[176] due to computational costs — sampling-basedmethods have proven very reliable
for online robot path planning [81], [130], [136], [137], [177]. To examine the applicability
of combinatorial and sampling-based methods for underwater mapping, inspection, and
exploration, both a Voronoi-based planner and a planning system based on an RRT-variant
and informed state sampling were implemented.

This chapter will delve more deeply into the implementations referred to in chapter 13
chapters 12 and 13. The next couple of sections discuss the implementation of a maximum
clearance path planner based on Voronoi diagrams and an asymptotically optimal informed
sampling-based planner, and discusses their suitability for use online in an autonomous
mapping and exploration operation.

14.1 Incremental Voronoi-based Path Planning

Previous research has indicated that the Voronoi diagram is a very useful concept in path
planning, especially when robot safety with respect to static obstacles is essential. Several
studies have shown its use in the 2D plane, both for terrestrial mobile robots [116] and for
marine surface vehicles [178]. These concepts have been tried applied in three-dimensional
environments in different ways, either through the calculations of signed distance fields
[120] or by bounding box-approximations of the obstacles present in the environment
[123], to name a couple. Both of these, however, include a number of assumptions or
simplifications which makes them infeasible for the goal of this work. In the work presented
by Oleynikova [120], for example, the signed distance field calculations are performed fairly
efficiently, but perform the graph generation offline. This can be a good solution in many
cases, e.g. in the case where the robot performs much work at a small area of operation

163



164 14. PLANNING & EXPLORATION METHOD

before moving on, giving it time to perform back-end graph calculations — which is not
necessarily the case for the problem at hand. Several previously published studies work
under the assumption that all static obstacle positions and shapes are known, and in some
cases also assume that the total workspace boundaries are known — which is the case with
the work presented in [123], among others. To try to alleviate the necessities of these kind
of assumptions, the work presented here tries to perform the obstacle discretization and
Voronoi diagram generation iteratively, to allow for continuous environment expansion
through exploration and mapping. The first steps in trying to accomplish this, was to
achieve a simplified obstacle shape estimation through the use of clustering techniques.
These simplified shapes can then be used as generator points for the Voronoi diagram.

14.1.1 3D Point Cloud Clustering

As touched upon in section 12.5, numerous clustering methods have been developed in
the last decades, each with concrete advantages and disadvantages. Choosing the right
clustering method is very dependent on the properties of the data at hand. Due to this, a
few different clustering methods were applied on environments simulated through Gazebo
[179] and the use of a UUV simulator [20] as mentioned in section 14.5. The simulated
environment consisted of a fairly uneven underwater submarine terrain, that to some degree
mimics an actual underwater environment. Due to the nature of the simulated point cloud
data, clustering methods assuming a static number of clusters, as well as algorithms based
on shape assumptions, were discarded. This includes algorithms such as k-means due to
the underlying assumption of spherical objects, even though there exist modifications that
estimate the number of clusters [180]. The methods most closely evaluated and tested were
Euclidean distance clustering — or density-based clustering (such as DBSCAN [125]) —
and the region growing segmentation technique. Clusters in this context can be defined as
follows.

Definition 14.1. Let δ define a specific similarity measure. Furthermore, let P be a given
point cloud model containing points p defining a number of obstacles O — or classes —
where a single cluster Ok ⊆ O contains a single obstacle. I.e. a single cluster can be defined
as

Ok B {pk ∈ P} ∀ p s.t. δ ,

where δ is dependent on the method and similarity measure used.



14.1. INCREMENTAL VORONOI-BASED PATH PLANNING 165

Density-based clustering

Clustering points based on density is a fairly straight-forward approach where the similarity
measure is based on a distance measure between points, with the Euclidean distance (L2-
norm) being used most often. The most used spatial distance-based clustering algorithm
— and probably the most used clustering algorithm overall — is the density-based spatial
clustering of applications with noise (DBSCAN). Two slightly different implementations were
tested, where the first one was based on the Point Cloud Library (PCL) and computes the
closeness of points using the L2-norm using the closeness definition stated as

δ : min ∥pi − pj ∥2 ≥ dth , (14.1)

where dth denotes a maximum distance threshold [181] with P stored as a k-d tree. Based
on this, all points around the query point pk is said to belong to cluster Ok if they fall
within the sphere with radius r = dth centered at pk . Based on this, the clustering works
by going through the points in P and, if the neighboring points fall within the threshold
radius, adding the neighbours to the same cluster. The simplified pseudocode is shown in
algorithm 4.

As with most clustering methods, slight tuning was needed to fit the simulated data.
Point cloud data was fed forward from the occupancy grid generated from the simulated
environment (fig. 12.11); the resulting clusters are shown in fig. 14.1.

Algorithm 4 DensityClustering (P, dth,M)
Input: Point cloud P, distance threshold dth, minimum cluster sizeM
Output: List of clusters C

1: T = PointCloudToBinaryTree (P) // Convert P for efficient neighbor look-up
2: C = � // List of clusters/obstacles
3: Q = � // Queue containing query points
4: for pk ∈ P do
5: Q = Q

⋃
pk

6: for p ∈ Q do
7: N = FindNeighbors (pk , dth)
8: if |N| < M then
9: continue
10: for each neighbor q ∈ N do
11: if not PointHasBeenProcessed (q) then
12: Q = Q

⋃
q

13: C = C
⋃

Q // All points in queue processed, add to C
14: Q = �

return C



166 14. PLANNING & EXPLORATION METHOD

Figure 14.1: Resulting obstacle clusters after running density-based clustering on the data
shown in fig. 12.11.

Figure 14.2: Resulting obstacle clusters after running density-based clustering on the
data shown in fig. 12.11 using the SciKit Python implementation with a different space
partitioning method.



14.1. INCREMENTAL VORONOI-BASED PATH PLANNING 167

The other density-based algorithm that was tested was Scikit-learn’s DBSCAN imple-
mentation [182] using a balltree1 [183] for space partitioning. Through multiple tests, all
with δ = L2-norm and the same minimum cluster size and density, it became evident that
the Scikit variant using balltrees was more sensitive to small clusters, whereas the PCL
implementation with k-d trees was more prone to write off smaller point collections as
noise. This slight difference can be seen in figs. 14.1 and 14.2.

Region-growing

Clustering by region-growing can be seen as a slight extension to pure distance-based
clustering. This method assumes that objects are differentiable based on other features
than just spatial closeness. These features might include surface smoothness, texture or
color. Color was deemed insufficient for distinguishing differences under water; object
smoothness was instead chosen as a possible similarity measure.

This implementation is present in PCL also, with the similarity chosen as the angle
between the surface normals of two points pi and pj :

δ : arccos
(
⟨ni ,nj⟩

)
≤ θth , (14.2)

where ⟨·, ·⟩ denotes the inner product, nk is the surface normal at the point pk , and θth
defines the maximum angle threshold [181]. By letting pk indicate the current seed point, if
the angle between the normal vectors of pk and the current query point pj is less than θth,
then pj can be included in Ok . This requires the estimation of the surface normal vectors
of the points p ∈ P. This is done through calculation of the normal vector of the tangent
plane S fitted to the point pk and its neighbors through least-squares optimization [184]. I.e.
fitting a plane S = nxx +nyy +nzz +d to the neighborhoodN (containingm neighbours as
well as p itself) by solving

min
b
∥[N 1m+1] b∥2 , (14.3)

where b =
[
n⊤ , d

]
. See [181], [184]–[186] for a more in-depth coverage of surface normal

estimation.
Additionally, as discussed in [181], the surface curvatures can be analyzed to guide

the region growth in directions of lower curvature before evaluating higher curvature
directions. The curvature can be estimated directly using the neighborhood around the
point pk , and a check similar to eq. (14.3) can be performed using a curvature threshold κth.
For a closer look at the implementation specifics, the reader is referred to [181].

1A geometric data structure similar to a k-d tree, but based on hyper-spheres as opposed to cubes, resulting
in a Voronoi-like partition of the data.



168 14. PLANNING & EXPLORATION METHOD

Figure 14.3: Point cloud clustering using the principles of region-growth applied to the
simulated terrain shown in fig. 12.11.

An example clustering of the environment shown in fig. 12.11 using region-growing
is presented in fig. 14.3. Region-growing has been shown to, in some cases, achieve a
higher accuracy when used for object segmentation than density-based clustering [187].
These differences are by no means extreme, and no major quantifiable differences were
apparent in simulated tests. Through simulations, however, visual inspection indicated
that region-growing was a suitable method and was therefore favored over pure Euclidean
clustering for simulation tests. This needs re-evaluation, and re-tuning of parameters, in
practical tests before deployment.

As mentioned, these algorithms were present in PCL and integrated using their open
source framework. After extracting the clusters, they were fed sequentially through a
convex hull algorithm.

14.1.2 Abstracting Obstacle Shapes Using Convex Hulls

Convex hull algorithmswork by encapsulating a set of input points using a convex polygonal
shape. A convex hull C of n points p ∈ P is the smallest convex set containing all points,
and can be defined as [117]

C B

{
n∑
i=1

λpi : λ ≥ 0∀ i ,
n∑
i=0

λ = 1
}
.



14.1. INCREMENTAL VORONOI-BASED PATH PLANNING 169

There exist numerous convex hull algorithms, but two algorithms was deemed more fitting
than others for the task at hand: i) Chan’s algorithm [188] and ii) the Quickhull algorithm
[119].

Chan’s algorithm

Chan’s algorithm is an example of an optimal output-sensitive convex hull algorithm based
on the divide-and-conquer concept [188]. Output-sensitivity refers to the algorithm’s
runtime being dependent on the output. This algorithm has a runtime of O(n logh), where
h is the number of vertices in the output hull. Chan’s algorithm was developed for 2D and
3D points and remains the theoretically optimal algorithm in these cases, with the original
author’s implementation apparent in its first publication [188].

An attempt was made to test this algorithm on the simulated test-case. While being a
relatively simple algorithm, conceptually, much work would have to be done to create a
robust implementation to handle degeneracies and the like. This was concluded outside
of the scope of this thesis. Due to this, the more robust implementation of the Quickhull
algorithm available through the Qhull library [119] was chosen.

Quickhull

The original Quickhull algorithm is conceptually similar to the Quicksort algorithm in the
way it utilizes the divide-and-conquer strategy. In the two-dimensional case, the algorithm
starts by finding the minimum and maximum x values pa,pb , and then uses the line between
them to partition the point set in two subsets. Points encapsulated by the triangle can
then safely be ignored in further processing. The algorithm then recursively checks lines
generated between the defining points of the new subset (e.g. using the line connecting p′

and pb) until all points are processed.
The extension of this algorithm to higher-dimensional problems, presented by Barber et.

al., is based on the 2D version together with the inclusion of the Beneath-Beyond algorithm
[189]. This facilitates the generation of convex hulls in d dimensions with a theoretical
runtime of O(n logn) [119]. The pseudocode shown in algorithm 5 is a slightly simplified
variant of the implementation presented in the Quickhull paper, and is based on the three-
dimensional case.

The Quickhull algorithm is readily available through the Qhull library [119]. While
providing robust and efficient implementations of several convex hull-related algorithms,
its C++ interface is still under heavy development. Because of this, the interface available
through the Computational Geometry Algorithms Library (CGAL) [190] was used instead.
An example of a resulting convex hull is shown in fig. 12.9. Even though this algorithm
has a slower runtime than Chan’s algorithm in the average case, the Quickhull algorithm



170 14. PLANNING & EXPLORATION METHOD

was used due to its robust implementations and it being well established in the field of
computational geometry.

Algorithm 5 Quickhull (P)
Input: Point cluster P
Output: Convex hull C
C = �
C = GetMaximalTetrahedron (P) // Based on max x ,y, z values
for f ∈ C.facets do

for each unassigned point p ∈ P do
if p outside f then f .AddToOutsideSet (p̃)

for f ∈ C with f .OutsideSet , � do
p′ = GetFurthestPoint (f .OutsideSet)
V = f // V is the current visible set
N = GetVisibleNeighbors (p′, V.facets)
V = V

⋃
N

H = GetBoundary(V) // Get horizon ridges
for ridge r ∈ H do

f ′ = GenerateFacet (r ,p′)
ConnectNewFacet (C, f ′) // Link this facet to its neighbors

for each new facet f ′ do
for each unassigned point q ∈ f .OutsideSet ∈ V do

if q outside f ′ then
f ′.AddToOutsideSet (q)

V = �
return C

14.1.3 Generalized Voronoi Generation From Convex Hulls

Having calculated a set of bounding polygons, the scene is set for generating the Voronoi
diagram. The convex hull vertices are passed as generator points, with the diagram genera-
tion itself being based on the Qhull library. The generator points was passed to the SciPy
wrapper of Qhull’s Delaunay-based Voronoi (qvoronoi) which allows for quick diagram
generation. An illustration of the process from which the diagram is calculated — which is
based on convex hulls and the lifting transform [191] — is shown in fig. 14.4.

As previously exemplified — see fig. 12.10 — the generated diagram can include edges
that lies within Cobst. Therefore, the generalized Voronoi variant is required, in which the
infeasible edges are pruned. To accomplish this, the edges were checked, and if found to be
within a convex hull, marked for removal by storing their indices. To check if points were
enclosed by a convex hull — or obstacle — ideas from optimization theory was used.

By assigning P to be the points constructing the convex hull and q to be the query point.



14.1. INCREMENTAL VORONOI-BASED PATH PLANNING 171

Figure 14.4: Illustration of the Voronoi diagram generation process. A: The generator points
are projected up one dimension onto a paraboloid using the lifting transform. B: The convex
hull is generated from the project points using the quickhull algorithm. C: The Delaunay
triangulation (DT) is calculated and projected down into the original plane using the inverse
lifting transform. D: The resulting DT in the original plane. E: The finished Voronoi diagram
is generated by calculating the dual of the DT. [Image credit: Candeloro et. al. [123].]

The in-hull check can then be formulated as an LP problem:

min c⊤x (14.4)

s.t. Ax = b ,

where

A =
[
PN×3 1N×1

]⊤
, (14.5)

b =
[
q 1

]
, c = 01×N .

The idea behind this is to check if the end points of the Voronoi edges can be expressed as a
convex combination of the points defining the convex hull. If a solution to this LP problem
exists, the point lies within the convex hull. Furthermore, some of the graph edges are what
is known as unbounded edges, meaning edges that extend from a vertex towards infinity.
These edges will only be evaluated if there exist no other path alternative. Therefore,
these can be safely removed, which helps memory requirements. An example diagram
calculated based on this method using the simulated environment shown in fig. 14.13, with
a simplified representation of the full Voronoi planning pipeline shown in fig. 14.5. Results
from simulations running this cluster-hulling approach is included in section 14.5.1.



172 14. PLANNING & EXPLORATION METHOD

SLAM Clustering ConvexHull
clusterspoint cloud

Voronoi
GeneratorA∗ Search

Voronoi edges convex hullspath

Figure 14.5: Crude overview of the process for planning based on
dynamic Voronoi diagram generation.

14.2 Sampling-based PlanningWith Kinematic Constraints

Implementations of path planning algorithms, especially when it comes to sampling-based
methods, are not scarce. Several tried and tested frameworks exist, including Search-Based
Planner Lab (SBPL), the Open Motion Planning Library (OMPL), and the MoveIt! Motion
Planning Framework. Due the ease of which it can be customized, added to, or otherwise
modified to suit different contexts and problems, OMPL [192] was used as a stepping
stone in this thesis for the implementation of a sampling-based path planning system.
Coincidentally, OMPL also includes implementations of a select few informed planners,
courtesy of the author behind the Informed RRT∗ and BIT∗ algorithms [137], [193], which
was the main basis of informed algorithms used. The choice of an informed planner is
largely based around the main task being pipe inspection. As this most often occurs in very
open environments, waypoints along the pipe are quite often placed fairly straight forwards
with respect to the previous waypoint and the current orientation. By nature of the informed
sampling scheme discussed in section 12.4, the sampled path then quickly converges to
the straight line connecting ηi and ηg. Example trees from solving a single-query planning
problem are shown in fig. 12.8.

For these tests — and planning in general going forward — the main path optimization
objective was minimum path length, i.e. finding the path π ∗(ϖ) ∈ Π f , as defined in eq. (11.7),
where cp(π ) is the length of the path π . This optimization objective is straight forward to
modify to a given scenario. For example, if the robot detects an imminent collision, the
planning module will tell the control system to halt before attempting to find a collision-free
path. In this specific replanning stage, the optimization objective is modified to include
obstacle clearance to help reduce the number of future collision states. This is done by by
modifying the objective function to evaluate the path length and the distance between the
collision model and the current known environment. The path cost then becomes

cp(π ) = wlS(π ) +wcC(π )

C(π ) = [min ∥A(x) − ξ ∥ ]−1 ,
(14.6)



14.2. SAMPLING-BASED PLANNING WITH KINEMATIC CONSTRAINTS 173

Figure 14.6: Illustration of the most noteworthy OMPL-modules that needed implementation
or modification and how they fit together. [Figure is essentially an excerpt of OMPL’s own
hierarchy illustration [192].]

where S(π ) denotes the path length, ξ the closest portion of the currently known environ-
ment and wl ,wc the relative weights on each of the cost values. ∥A(x) − ξ ∥ defines the
distance between the robot in state x and the surrounding obstacles, which is then inverted
such that paths that have low clearance become more costly. The calculated clearance is
also numerically capped such as to avoid paths with unnecessary large clearance, seeing
as much of the environment is potentially unknown. Just how the distances and collision
detection is performed is discussed further in section 14.3.

To solve the path planning problem, OMPL provides a modular interface which can be
adapted and expanded upon to meet application-specific requirements. How this interface
fits together is illustrated in fig. 14.6. During execution, the planner samples the state space
X = C and propagates the states x ∈ X according to a defined model. In the case of a 3D
environment with no specific constraints, the state space equals the three-dimensional
Euclidean space, i.e. X = R3, and states are sampled uniformly and interpolated using
straight-line interpolation. The resulting path is then comprised of a number of piece-wise
linear segments. Due to this, careful path smoothing is needed to obtain paths that satisfy the
continuity constraints — for this, natural cubic splines are used due to the implementation
specifics of the control system. This of course also holds for the case where rotations



174 14. PLANNING & EXPLORATION METHOD

around all axes are allowed, with the state space defined as X = SO(3) × R3 = SE(3). This
approach works well for fully actuated robots with free movement in all axes, such as UAVs.
Even though the USM is also manoeuvrable in 6 degrees of freedom, it is not necessarily
advantageous to always utilize all of these motions. An assumption made regarding the
control system, for example, is that roll is near-zero due to active roll stabilization. In
situations where mapping is performed based on visual sensors, large fluctuations in roll
(and to some degree pitch) is unwanted. Furthermore, since many underwater vehicles
are fairly restricted in roll and pitch motion, it is beneficial to allow for a higher or lower
number of DoF depending on the application.

In the case of a 6-DoF system, the state can be defined as η =
[
x y z ϕ θ ψ

]
,

consisting of the 3D position and orientation. The kinematic model can then be described
as

Ûη =

[
Rn
b
(ϕ,θ ,ψ ) 03×3
03×3 TΘ(ϕ,θ ,ψ )

]
η , (14.7)

where Rn
b
and TΘ are the BODY-to-NED rotation matrix and the angle rate transformation

matrix [15]. If one assumes a near-zero roll and pitch angles (ϕ = θ ≈ 0), the model
simplifies to a 3-DoF model:[

Ûx Ûy Ûψ
]⊤
=

[
v cos(ψ ) v sin(ψ ) w

]⊤
(14.8)

where v and w are the surge and turn rate, respectively. This is a much used model
and provides a simple, yet good approximation for most surface ships as well as many
underwater vehicles [15]. Keen-eyed readers might recognize this as nearly equivalent to
the kinematic car model used as the basis for Dubins path generation. As a result of this,
it was of interest to attempt state sampling directly in a Dubins path-based state space to
include yaw (and pitch) kinematics into the planning procedure such as to guarantee that
the maximum curvature constraint discussed in section 12.6 is upheld. To be used in 3D
path planning, however, an extension is needed.

14.2.1 3D Dubins State Space

In its original forumlation, a Dubins path refers to the shortest path connecting two points
in R2, consisting of a set of straight lines and circular arcs of bounded curvature [149].
Dubins path interpolation is a much researched and used tool in robotics.

The original approach was to calculate each of the path segments, and then compare
segments to obtain the shortest path. This is a time-consuming process, and it would be
preferable to instead extract the shortest path directly. An approach to achieve this, through



14.2. SAMPLING-BASED PLANNING WITH KINEMATIC CONSTRAINTS 175

the definition of the Dubins set and a logical classification scheme, was presented by Shkel
and Lumelsky [194]. This allows for the computation of only the segments that are present in
the final shortest path, which significantly reduces the computational time (see [194] for an
in-depth derivation of this classification approach). Reducing the Dubins calculations in this
way is the basis for how the Dubins state space has been implemented previously [192]. To
be used for planning in three-dimensional space, however, the dimensionality needs to be in-
creased.

-88

-70

-87

-86

-85

-72

-84

4

-83

-74
z

-82

2

-81

y

-76 0

-80

-79

x

-2

-78

-78

-4
-80

-6

-82 -8

-8 -6 -4 -2 0 2 4

x

-82

-80

-78

-76

-74

-72

-70

y

Figure 14.7: Simple solution path
from (x ,y, z,ψ ) = (0,−70,−88, 0) to
(−5,−75,−80,π/12) based on sampling and
interpolation in XD .

Extending a Dubins path to 3D space
is well known, and can be realized in dif-
ferent ways. One such method of incorpo-
rating the z-axis, motivated by fixed-wing
UAVs, first calculates the 2D Dubins path
between the start and goal configurations,
before performing ascending or descending
spiral motions to reach the desired height
[195]. This approach has been simulated and
implemented on fixed-wing UAVs [196], but
is deemed more appropriate for cases where
the vehicle can reach a certain cruising alti-
tude for large sections of the path, and for
situations where large parts of the environ-
ment is known. Instead, a similar approach
to the one in [197] was implemented. Again,
it is based on the 2D Dubins path, but allows
continuous changes in depth. This is done by
evaluating the depth of each sampled state
and assigning a change in depth based on
the observed depth and the sampled state’s
distance along the path:

z = zi +
s(x ,y)

s(xд,yд)
∆z , (14.9)

where s(x ,y) defines the arc length in the down-projected 2D space from the initial
position (xi ,yi) to a point (x ,y) along the path and ∆z is the difference in depth between the
initial state (xi , yi , zi) and the goal state (xд, yд, zд). This extended Dubins state space, XD ,
is then defined by the robot’s 3D position and its yaw angle: (x , y, z, ψ ) ∈ XD = R

3× SO(2).
The problem is then reduced to finding the collision-free path π (ϖ), disregarding roll and



176 14. PLANNING & EXPLORATION METHOD

pitch, such that
ηi(xi ,yi , zi ,ψi)

π (ϖ)
7−−−→ ηд(xд,yд, zд,ψд).

A simple example of such a path is shown in fig. 14.7.
Similar approaches can of course be done with more complex formulations, such as

basing the state space on clothoids or Fermat spirals, for example; this can further reduce
the need for path post processing. The Dubins approach was used in this work mostly
because of its computational efficiency due to fast path calculation. Furthermore, it is worth
noting that, if planning without constraints on the kinematics, the informed subset takes
the shape of an ellipsoid — as mentioned in section 12.4.1. With included constraints, this
subset can become much more complex, resulting in less efficient sampling. This can be
circumvented, however, by that the Euclidean distance between two states, s1 and s2, is
always shorter than, or equal to, that of the constrained distance between the same two
states. I.e.

∥s2 − s1∥2 ≤ ∥s2 − s1∥K ,

where ∥ · ∥K indicate the distance metric in some set K defining a constrained state space.
Thus, the informed subset contains the constrained subset, given that the optimization
objective is minimizing path length. By doing this under-approximation of the distance
metric, the state sampling can be performed more efficiently. This is also the reason for the
straight-line tree segments apparent in fig. 12.8 and fig. 14.16.

Finally, before being forwarded to the control system, the path is simplified — by
removing superfluous waypoints2 — and smoothed using natural cubic splines, ensuring
the required C2 continuity.

14.3 Collision Detection

In most robotic applications, path collision checks are essential. These checks are used to
determine if a state is collision-free, i.e. if (x ,y, z)⊤ ∈ W \ O. This is needed to determine
if a candidate state is acceptable as part of the solution path, e.g. when performing state
sampling. An underlying assumption for collision checking is that the environment is
known. In situations where the environment can change by courtesy of dynamic obstacles,
for example, or in exploration settings where the map is only partly known, this assumption
does not hold. As such, the entire path needs to be checked for collisions as new information
is gathered. To this end, it is also favorable to not just check that the state (x ,y, z), but
the whole configuration η stays collision-free, i.e. η ∈ Cfree. To be certain that a given
configuration η is indeed valid, a new set was defined. Namely the bounding volume of the

2Such as waypoints that are close and together add up to a straight line.



14.3. COLLISION DETECTION 177

robot, Ã, which encapsulates A with additional safety margins such that A ⊊ Ã. This
bounding volume is exemplified in fig. 14.8.

For performing such collision checks, the Flexible Collision Library (FCL) [198] was used.
FCL is a C++ library for collision and proximity queries, providing 3D collision checking
for the whole robot configuration with different map representations. Using this library,
the robot model was simplified as a rectangular box (in the case of ROV simulations) or a
cylinder (if simulating the snake robot), with the map being represented using FCL’s built-in
OctoMap support. Additionally, these models could also be implemented as multi-jointed if
planning for each link is favored.

When sampling the state space, OMPL requires a state validity checker to be imple-
mented. This was implemented as a function

bool isStateValid (η)
{
return isCollision( Ã(η) )

}
which determines if the sampled state results in a collision with the received SLAM map —
stored as an OctoMap OcTree — based on the state’s pose using FCL’s object-environment-
collision checking. Furthermore, FCL provides continuous collision detection (CCD), which
checks the robot object for collision when moving along a continuous path. This continuous
collision detection allows for determining if the robot collides at any point when traversing
the path given updated environment information, while also providing the time and point
of contact. OMPL, which was used as the underlying planning interface, allows for the
implementation of custom motion validity checkers — often referred to as local planners.
Using FCL, this was implemented as a custom class inheriting from OMPL’sMotionValidator
class. With FCL’s CCD, a member function

bool checkMotion (state1, state2, last_valid) { return is_collide }

which is called for each pair of states in the current path, was implemented. This function
transforms the robot’s calculated poses along the path and returns true if a collision happens,
as well as the time of collision and the last valid state along the path3. For increased safety,
Ã was chosen sufficiently larger than the actual robot dimensions. See fig. 14.8 for a
simple illustration of the concept. By checking for collisions using an expanded bounding
volume, the space around the path can be guaranteed safe. This allows for some deviations
in the path following while still assuring a collision-free path. For a more detailed run-
through of implementation specifics and documentation, see the published paper [198] or
the open-source GitHub repository4.

3The last_valid argument is stored as a pair of values, with the first being time of collision on the interval
[0, 1] and the second being the last valid path state before collision.

4FCL GitHub repository: https://github.com/flexible-collision-library/fcl

https://github.com/flexible-collision-library/fcl


178 14. PLANNING & EXPLORATION METHOD

Xb

Yb

Zb

Robot Model
Path Segment

Bounding Volume

Figure 14.8: Illustration of the added safety around the calculated path. For illustrative
purposes, the robot is modelled as a rectangular ROV-type vehicle, and the bounding volume
is modelled as a cylinder. The bounding volume is projected along the calculated path
segments and checked for intersections with the environment using the robot’s pose.

14.4 Environment Exploration

The chosen exploration strategy is a frontier-based one, used primarily due to its capability
of handling large environments without the risk of premature termination. The traditional
nearest frontier [158] was used as a starting point. Instead of continuously choosing
the nearest frontier, however, a cost function that incorporates path distance, change in
orientation, depth and potential information gain was used to evaluate frontier candidates.
To find the candidate frontiers, the current occupancy grid is searched. Cells that are not
occupied and has neighboring cells that are free and unknown are marked as frontier cells.
These cells are stored and converted to a point cloud. Candidate cells are then found through
clustering of the frontier point cloud, similarly to what was discussed in section 12.5 and
what was done in [167], [169]. After the frontier clusters are extracted, goal point candidates,
pc , needs to be calculated. The most used method is to use the cluster centroids as candidates.
This was tested, but due to the potential impact of outliers in the centroid calculation, the
geometric median was used instead. Calculating the geometric median was done using
Weiszfeld’s algorithm [199], which is an iterative procedure seeking to decrease the sum
of distances between samples. It essentially works as an iterative re-weighted least squares
algorithm, updating the guess pc based on weights calculated from the inverse distances,
and can be summarized as

pc,i+1 =

∑n
j=1

x j
∥x j−pc,i ∥∑n

j=1
1

∥x j−pc,i ∥

, (14.10)



14.4. ENVIRONMENT EXPLORATION 179

where xj are samples from the points in the evaluated cluster and pc,i is the estimated
geometric median at iteration i . This was implemented as a C++ function

void geometricMedian ( cluster, & candidate ) ,

with cluster being a vector of points — or more specifically octomap::OcTreeKey structures
— and candidate being the calculated median, or centroid if the algorithm does not converge.

While being a much used method for geometric median calculations, there are rare cases
where the algorithm fails to converge. In these cases the cluster centroid is used instead 5.
These candidate cells are then checked for proximity to obstacles, through neighboring cell
evaluation, and are dropped if they are found to be too close to an obstacle for the robot to
safely approach.

When choosing among the found frontier candidates, an evaluation function is used
that can be formulated as

c f = min {wl ∥pc − pr ∥2 +wd∆d +wθθ −wI I } , (14.11)

where P f is the position of the frontier candidate, pr is the current robot position, ∆d
is the depth difference between the robot and the frontier candidate, α is the change in
orientation between the current steering angle (ψ ) and the frontier candidate, I is the
potential information gain, and c f is the cost of the best frontier candidate. The values
wl ,wd ,wα , andwI , are used to weight spatial distance, orientation change, depth change
and potential information gain, respectively. These weights can be specified by the user, but
for the simulations discussed in section 14.5.3, the weights were set aswd < wl < wI ∼ wθ ,
slightly favoringwθ .

Using this frontier weighting scheme forces the robot to favor exploration routes that
increases the amount of known information in the map, while simultaneously keeping it
from deviating too much from the current depth level and keeping the exploration goal
in, or close to, its FOV, and keeping the paths at minimum length given the constraints.
This lessens energy consumption by reducing the amount of steering needed and results
in paths that are reminiscent of environment coverage-paths, favoring exploration that
maximizes new information before performing relatively costly descending or ascending
control actions. By favoring small changes in yaw, the assumption of straight pipes — at
least over relatively short distances — is implicitly built into the exploration strategy. How
this can be useful is more closely discussed in e.g. section 16.1.1.

To estimate the potential information gain, the number of unknown compared to known
cells inside a bounding volume centered at the frontier candidate is used. This gives a

5For potential future implementations, the algorithm presented by Cohen et. al. provides a rapidly
converging method for calculating the geometric median without this risk of failure to converge [200].



180 14. PLANNING & EXPLORATION METHOD

measure of how much is to be gained by visiting that specific frontier. Information gain and
relative angle change is also weighted higher than, for example, closeness due to the fact
that closer cells might be observed on the way to more rich candidate frontiers. A simplified
illustration of this is shown in fig. 14.9.

-ψ

C3

C2

C1

θ1θ2

Figure 14.9: Illustration of a very simplified exploration case. Gray indicate known parts
of the environment, whereas white indicate unknown. Given three candidate frontiers
(C1,C2,C3), their position relative to the robot as well as their relative orientation and
information gain is evaluated. In this specific case, the robot would choose C2 due to the
high increase in information and the small yaw change required, even though C1 is closer
and C3 is more straight ahead.

Furthermore, since the environment not necessarily consists of natural boundries, a
geofence was established to bound the exploration space. This limits the space in which
frontiers are examined and evaluated. To start the exploration procedure, an exploration
request is needed, consisting of a spatial definition of the geofence and a specified exploration
action. The exploration states are currently limited to

Idle Exploring Inspecting Returning Home

at this time, with actions received along the exploration request altering the exploration
states as illustrated in fig. 14.10. If frontiers are found, the best candidate is chosen and sent
as an exploration goal to the path planner ROS node.

It is worth mentioning that autonomous exploration was studied as a future extension



14.5. SIMULATIONS 181

Idle

Exploring

Returning

Inspecting

StartExploration

ReturnHome

Terminate

Finished

ExplorationGoal

ArrivedHome

InspectionGoalFound

TrackOK

LostTrack

InspectionFinished

Figure 14.10: Simplified state diagram of the exploration process. The exploration and
inspection goals are forwarded to the path planning module. Inspection goals are found
through evaluation of semantic point cloud information received from the classification
module — e.g. a pipe-labeled point cloud. A received Terminate command will return the
robot to Idle at any time, similarly with a received ReturnHome.

for the USM and as a tool for testing more complete autonomous systems by combining
different vehicles with different SLAM algorithms, such as autonomous mapping using an
inspection class ROV. As far as USM’s are concerned, autonomous and procedural goal
selection should be based on the immediate task at hand and the observed surroundings.
For the case of a pipe inspecting snake robot, equipped with a stereo setup, objective
goals should be set based on the estimated pipe position and direction, e.g. using semantic
information. Thus, waypoints could be set along the pipe found through object classification
(part IV) and forwarded to the path planning module. This will result in the robot being able
to autonomously perform pipe following/-inspection, as illustrated in fig. 14.11. Including
exploration can also be favorable in such a scenario, however. How this can be done,
and more specific details on how semantic information can be included in planning for
inspection tasks, is treated in section 16.1.

14.5 Simulations

To gather data and test implementations it was desirable to set up a simulation environment.
Many different types of simulation software exist, but seeing as ROS interfacing was the
primary concern, ROS-native environments were preferable. Simulations were therefore



182 14. PLANNING & EXPLORATION METHOD

xb

yb

zb

xiyi

zi

Robot
Path Segment

Bounding Volume

Figure 14.11: Illustration of a pipe following scenario showing the robot (A), the bounding
volume (Ã), part of the current path (π (ϖ)), as well as a pipe section (gray).

set up using the UUV Simulator [20], a Gazebo-based package with good ROS interfacing
[201] created to simulate unmanned underwater vehicles (UUVs). This simulator has built-
in plugins for different sensors, such as cameras, position sensors and Doppler velocity
logs, among others. (See appendix A for more details regarding the UUV simulator.)
The idea behind using this system was then to create/modify a setup consisting of an
underwater vehicle model with a range of sensors to produce RGB image and point cloud
output. Combining cameras and sonars, it should be possible to detect and distinguish
between simulated natural structures, such as outcroppings and mountains; and man-
made constructions, such as docking stations and pipelines such that this setup could also
potentially be used together with the classification module. One such sensor plugin was the
imaging sonar plugin made available on SMaRC’s open source Github repo.6, which was
used to setup a case with idealized SLAM input for map generation. Modifying the sensor
setup and robot model can easily be done by altering the xacro-files to obtain a composition
for the specific simulated case. An example setup is shown in fig. 14.12, in which the robot
was set to map a small underwater environment based on sonar input.

The simulated environment used was a rendering of an underwater setting with many
natural structures and a pipe running through parts of it. It is also worth mentioning that
the UUV simulator is still very much under development. Therefore, additional testing on a

6Swedish Maritime Robotics Centre. GitHub URL: https://github.com/smarc-project

https://github.com/smarc-project


14.5. SIMULATIONS 183

real-world setup should be performed before any actual tests is to be carried out.

Figure 14.12: Screenshot from running the simulator using multiple sonars to generate a
3D occupancy grid using OctoMap [121].

14.5.1 Voronoi-based Planning in Partially Known Environments

The Voronoi diagram generated using the convex hulls as generator points, as presented in
section 12.3.1, is shown in fig. 14.13, whereas the diagram generated with additional virtual
generator points is shown in fig. 14.14.

It is evident from fig. 14.13 that the resulting diagram gives sufficient clearing from
obstacles in the xy-plane. Some problems are noticeable when examining the side view,
however. The first problem that arises involves the overall path quality. Since the underwater
environment is very sparse, it has the undesirable effect of producing graphs in which
neighboring nodes have quite large jumps in z-values between them. This further demands
much more post processing to generate smooth paths that does not include unnecessary
large fluctuations in the desired trajectory, which in turn adds unwanted strain on the
actuators and the control system.

This was tried avoided by the addition of virtual generator points along certain depth
levels, akin to the region bounding performed in [123]. Adding such points forces the



184 14. PLANNING & EXPLORATION METHOD

generated diagram to give better paths over obstacles, as well as paths that have smaller
jumps in depth value between segments, while still preserving as much of the Voronoi
properties as possible. An example Voronoi diagram using these virtual generator points is
shown in fig. 14.14. Adding such points, however, is not to be done lightly, as their placement
would have to be correctly coordinated with the robot’s motion and the continuously
expanding map. The number of points added would also have to be chosen wisely, as
adding too many would quickly lead to a large increase in pruning time. The perhaps
biggest drawback of this type of augmentation, is that their depth is dependent on the
the environment at hand, and if points were added wrongly, the whole diagram would
require recalculation. Secondly, the addition of these kind of virtual generator points
fundamentally alters the maximum clearance guarantees provided by the Voronoi diagram.
These points could then affect the diagram in such away that the edges would not necessarily
be maximally distanced between obstacles. In most cases, however, they would still be
sufficiently far away, but without provable guarantees.

One last complication, which most heavily affects the practical implementation, is the
issue of computation time for the graph pruning. While the pre-computation of the convex
hulls results in easy in-hull checks, the sheer amount of edges and obstacles result in a
very time-consuming process. When running on a 3.2 GHz 12 core i7-8700 CPU, the time
average for pruning clocked in at 3 ± 0.2 minutes when running on a occupancy map
covering an area roughly 150m2. Although not fully optimized, this pruning process was
deemed too computationally expensive for a continuously expanding environment, even
when incrementally building the diagram.

Due to the mentioned drawbacks encountered through implementation and simulation
tests, as well as the fact that the assumption for this thesis is that the map is unknown and
procedurally built, the Voronoi diagram method was finally deemed unsuitable for practical
implementation on a robot.

Furthermore, since the environment is naturally unstructured, it can be argued that it
is not always valid to assume that the environment — or the obstacles therein — can be
approximated using convex hulls without the chance of encapsulating more than intended,
rendering the representation far from exact. This therefore adds another drawback to the
aforementioned method building on incremental Voronoi diagram generation, rendering it
unsuitable for autonomous exploration of unknown environments. These situations are
more often encountered in aerial and terrestrial applications, however, but is still a valid
point for consideration. Nonetheless, in cases where the diagram can be pre-computed, the
Voronoi diagram is an excellent choice of algorithm for safe and autonomous underwater
navigation.



14.5. SIMULATIONS 185

Figure 14.13: Top-down and side view of a Generalized 3D Voronoi diagram based on the
environment and convex hulls shown in fig. 14.3 and fig. 12.9. Voronoi edges are shown in
blue and Voronoi vertices are shown in orange.



186 14. PLANNING & EXPLORATION METHOD

Figure 14.14: Top-down and side view of a Generalized 3D Voronoi diagram based on the
same case as in fig. 14.13, but with added virtual generator points.



14.5. SIMULATIONS 187

14.5.2 BIT∗ and Collision Avoidance

After generating the occupancy map, the planner was given several starting and goal
states to test path generation that included easy cases, where the path was almost straight
with minor obstacles; to harder cases which included larger obstacles with more change
in depth needed for the final path. An example from a simulated planning query using
BIT∗ and the Dubins state space approach discussed in section 14.2 on an ROV in an
underwater environment is shown in fig. 14.15. Here, the empty parts of the map are
currently unobserved. The resulting path keeps sufficient clearance of the environment
while not including too steep changes in depth.

Figure 14.16 shows a similar but slightly easier case which includes the tree struc-
ture generated by the planner. This exemplifies the informed manner of the planner and
showcases its efficient sampling of XD .

The collision detection and avoidance part of the planner — while far from the most
advanced — was tested repeatedly during exploration simulations. To exemplify its func-
tionality, however, a simple test case was set up. The robot was assigned to plan a path in a
fairly empty environment, resulting in an almost-straight path due to the assigned starting
and ending orientations. After following the path for a brief time, the map was updated to
include a relatively large mountain-structure. The motion validator then reports a collision
at some point, indicated by the red dot and yellow rectangle in fig. 14.17, which in turn
activates the replanning. In the replanning stage, the planning objective is set to include
the path clearance, resulting in a path that weighs both path length and clearance. The
resulting paths from this collision test is given in fig. 14.17, with the initial path given in
blue, and the recalculated path given in red.

14.5.3 Autonomous Exploration

To test the exploration method, a few different scenarios were constructed. These were
set up to evaluate the resulting total path lengths, coverage rates7, and path quality of the
respective exploration strategies.

Firstly, the combined approach discussed in section 14.4 was tested up against the
nearest frontier approach, as well as exploration purely based on information gain. This test
was conducted in two slightly different environments. They were initially run in a fairly
small environment of 375 m2, without any large obstacles. The results of this is shown in
fig. 14.18. The resulting path and map from running nearest frontier is shown in fig. 14.18a.
Here it is evident that the frontiers chosen rarely is the best choice available. This results in
much backtracking initially and towards the end, especially, and much harder turns.

7Coverage rate, in this sense, refers to the time it takes to sufficiently map a given environment.



188 14. PLANNING & EXPLORATION METHOD

Comparing this to fig. 14.18b, it is apparent that the information gain approach provides
much more efficient coverage of the bounded environment. It is also interesting to note
that, through several tests, the information gain approach tended to give paths similar to
that of a lawn mower pattern. This is because this gives near-optimal coverage, with the
skewness of the resulting path being a result of the wide FOV of the sensor.

By combining the information of the environment and current pose of the robot when
choosing the next goal, the path ended up as shown in fig. 14.18c. The resulting path has
less sharp turns over all, and gives a higher total coverage overall due to longer straight
paths following regions close to the edge such that the sensors obtain information form
outside the stated geofence. Furthermore, by better covering the edges, the number of
smaller pockets of space that is left unexplored due to them being to small to be assigned
cluster status, is reduced, resulting in a better complete coverage, at the expense of a slightly
longer mean path length. It is worth noting that this combined approach gives a slightly
slower coverage rate than the information gain approach, but it does, in turn, result in a
path that imposes less strain on the actuators.

Something to note regarding fig. 14.18 is that the holes evident in the map that is within
the assigned bounds were in fact observed, but a minor bug in the sensor-to-occupancy grid
conversions using the simulator resulted in small patches being deleted. This is, however, not
the case for fig. 14.20, where the holes present are due to the respective frontier candidates
being deemed not safe enough to be approached closely enough to be fully observed.

When comparing just the paths, it is apparent that the path lengths vary quite a bit. The
nearest-frontier approach tend to give the longest paths, whereas the pure information gain
strategy gave the shortest paths by some margin. The path lengths from several tests are
summarized in table 14.1. This shows that the information gain variant gave the shortest
paths, with the combined method falling in between, but with the smallest variation in
length. Although these tests were conducted in a fairly small environment, running similar
tests in larger, more complex scenarios, made it clear that these results hold.

Table 14.1: Mean path lengths when exploring a small environment using three different
strategies for weighting, pure nearest frontier or information gain, or the combined approach
described in eq. (14.11).

Exploration Strategy Nearest Frontier Information Gain Combined Approach
Mean Path Length [m] 113.81 ± 21.88 99.68 ± 17.09 104.40 ± 15.22
Median Path Length [m] 116.34 99.39 109.83

Figure 14.19 compares the obtained coverages more directly. Here, the calculated map
coverage each of the three mentioned strategies are plotted against the total mission time.
From this, it is clear that, while gaining much ground quickly, the nearest-frontier approach
has a much slower convergence rate than the two others. This early increase is due to the



14.6. SUMMARY 189

excessive turning to accomodate for the close frontiers chosen. Focusing on information
gain does result in the fastest convergence. Although seeing as the combined approach
has an almost identical convergence rate, the fact that the resulting path is smoother wrt.
the turning angle, it was deemed the best approach. Running an exploration task with the
combined approach in a larger environment, including larger variations in the surroundings,
resulted in the map shown in fig. 14.20.

14.6 Summary

In this chapter, the implementation specifics regarding both a Voronoi-based and an in-
formed sampling-based planner, a simple collision detection scheme, and an autonomous
exploration strategy were discussed. These methods were then tested and evaluated on
various simulation cases in an underwater environment.

Seeing as the environment is naturally unstructured, the convex hull approximation
used for the generation of the Voronoi diagram is not always valid. If traversing an un-
derwater cavern, for example, this approach would not work. However, in cases where
this approximation holds, the Voronoi diagram can be a powerful tool for navigation in
mostly known environments. Using Voronoi diagrams for exploration tasks ended up being
discouraged due to the pruning time, the possible additional points needed on the z-axis, and
the fact that the maximum clearance property of the Voronoi diagram gives no guarantees
wrt. unexplored parts of the map. I.e. that paths that seem sufficiently safe in the known
map might cut short, or even collide, with unknown obstacles. In cases where a static map
is known beforehand, for example when traveling between known subsea structures, this
method shows promise. How to better handle the distance calculations based on depth
level to avoid overly oscillating graph edges is left as future work. Also, to better cluster
obstacle points, a robust implemetation of Chan’s optimal clustering algorithm [188] would
be preferred to the Quickhull algorithm, due to its better runtime.

The biggest benefits of using the sampling-based planner were its relative simplicity and
the ease of which additional constraints could be added. This resulted in a planning module
capable of producing nearly-optimal collision-free paths that coincided with the constraints
imposed by the control system. Included into this was a simple collision detection and
-avoidance scheme built around the FCL library which provided efficient collision detection
and validity checking when performing state sampling and path following.

A state-based exploration strategy for autonomous environment exploration was imple-
mented. This method used efficient point cloud clustering to group frontier cells from which
candidate goals could be extracted, which were optimal given the specific weighting of the
evaluation function while satisfying certain safety requirements wrt. obstacle proximity.
Through simulations this method provided fairly efficient map coverage while also easing



190 14. PLANNING & EXPLORATION METHOD

strain on rudders. A future extension to this could be to include sonar measurements with
the provided SLAM map to better estimate optimal view points for safer and more efficient
exploration.



14.6. SUMMARY 191

Figure 14.15: Top) Resulting calculated path from using BIT∗ with state sampling from the
3D Dubins state space (red) and its cubic spline-smoothed variant (blue). Bottom) Same
paths shown in a top-down view.



192 14. PLANNING & EXPLORATION METHOD

Figure 14.16: Example path and graph from planning a path in a mapped environment, as
further discussed in section 14.5.3 (fig. 14.20).



14.6. SUMMARY 193

Figure 14.17: Example path resulting in a collision. When collision is detected between the
robot and the environment along the original path (blue), replanning is initiated using the
previous safe state, resulting in a new safe path (red). The point of collision (red) is at the
center of the robot model (yellow) translated along the initial path. [The blue path would
never ocurr, this scenario was forced by suddenly inserting the mountain in front of the
robot.]



194 14. PLANNING & EXPLORATION METHOD

(a) Nearest-frontier path and map.

(b) Information gain-based path and map.

(c)

Figure 14.18: Example paths and maps from simulating exploration of a small area using
three exploration variants. (a) Nearest frontier. (b) Information gain. (c)Combined approach.



14.6. SUMMARY 195

 

Figure 14.19: Comparison of the obtained coverage using the three different exploration
variants when exploring a small environment covering 375 m2.



196 14. PLANNING & EXPLORATION METHOD

Figure 14.20: Example map from exploring the area within x ∈ [0, 50], y ∈ [−45,−90] seen
from the side and top-down.



Part VI

Control

VI Sensor SLAM

Classi�cation

Path Planning

Exploration

Control USM Interface

�rusters

Joints

197





15 | Control System

The main goal of a control system is to ensure that the robot is able to position and
maneuver in accordance with a set of specifications. In general, such specifications

may include path following, dynamic positioning, trajectory tracking, or specific steady
state maneuvers, see e.g. [15] for a presentation of these topics. With respect to the
overall autonomous architecture presented in section 3.1, an USM is presented with the
task of following pipes. Pipe following is a specific task that, in large, open, underwater
environments could be solved with straight line path following — because the pipes stretch
over large distances without bending too much. Such a solution, however, is hand-crafted
towards this particular application. When the environment turns increasingly cluttered by
objects, forcing the USM to exploit its articulated structure, this will fail. Consequently, 3D
curved path following exploiting the kinematics of the USM seems to be the more practical
approach.

Generally, 3D guidance algorithms have been developed to ensure convergence for
general continuously differentiable curves, see e.g. [202], [203]. In the specific context of
USMs however, no such algorithms exist to ensure full-body convergence for such curves
— i.e. that multiple links follow the desired curve in addition to the base link1. A solution
for 3D straight line path following is presented in [204], where the dynamic control and
thruster allocation algorithms by no means are restricted to the particular application. The
guidance and kinematic controllers, on the other hand, are restrictive in the sense that they
do not guarantee full-body convergence.

Finally, maximizing perceptual performance because of cluttered, unstructured, under-
water environments is necessary to ensure autonomous operation. With a limited FoV and
a lack of environmental features, high speed and accelerating maneuver degrade — and
possibly hinder — the USMs ability to navigate. Therefore, attitude and velocity control of
links with exteroceptive sensors such as cameras are desirable.

The control system presented in this chapter is designed to solve the above-mentioned
problems while providing convergence and stability guarantees from a kinematic perspec-
tive. Firstly, the interface between the control system and the rest of the autonomous
system is presented in section 15.1. A guidance controller providing the basis for kinematic
control is presented in section 15.2. A kinematic control methodology ensuring full-body
convergence is presented in section 15.3, with a constructive cascaded stability proof. Finally,
experimental results are provided and practical tuning of the controllers are discussed to

1A formal definition will be introduced in section 15.3

199



200 15. CONTROL SYSTEM

ensure robust operation.

15.1 Interface

To capture the top-level state of the autonomous system, communication lines with the
state machine have to be established. The control system implements an internal state
machine, see fig. 15.1, that handle events according to the Liskov substitution principle, see
e.g. [24]. That is, the state of the top-level state machine determines the state of the control
system state machine. State transitions in the SLAM and path planning state machines
are treated as events in the top-level state machine. If these events do not trigger a state
transition, they are handled explicitly in the lower level state machines. An example of such
a low level state machine is shown in fig. 15.1, where events are the named state transition
arrows.

Figure 15.1: Missions specification control system originating from top-level system events,
i.e the internal state of the SLAM and planning modules mapped to global events. Specified
camera tracking missions imply that the USM module with an attached camera is oriented
towards some setpoint while some other task is performed. Stopping is requested if the
current objective is infeasible.

The top-level states DP and move are of main interest for the current control system
design. These are reflected by the control system states DP full body andmove full body. To
demonstrate how the control system can aid the navigation module, a loosing track events
are introduced. Path following could then be turned off for the link with an exteroceptive
sensor, a camera in this case, such that the FoV could be directed towards previously seen
environmental features. This could be done with the framework presented in [205], for
example. However, this is not considered any further in this chapter, as 3D full body path
following is the main objective.

Further, it is assumed that the SLAM module provide pose and velocity estimates,
ηIb , ÛηIb respectively, for the base link. The path planning module provides a path, π (·), that
is assumed to be kinematically feasible, section 12.6, for the USM. Joint angles are measured



15.2. GUIDANCE 201

from magnetic angular joint encoders 2.
Finally, the control system is designed to compute desired body and joint velocities for

a lower level control system to interpret. This was chosen to limit the scope of the thesis to
allow for a rigorous kinematic control design. An overview of the above-mentioned input
and output interfaces is displayed in fig. 15.2.

Figure 15.2: Control system interface towards SLAM, planning, state machine and the USM.
All communication externally and internally are displayed.

15.2 Guidance

Path following along 3D curves firstly require a guidance law that computes a desired
homogeneous transform from the robots current pose towards the path, thus guiding the
robot in an appropriate direction. In the context of an articulated USM, it is required
that multiple links follow the path to avoid collisions, see section 12.6, making it a set
of homogeneous transforms. Finally, computation of initial linear and angular velocity
references that can be used for any of these links is also considered in this section.

15.2.1 Performance Specifications

Standard performance measures for guidance algorithms, from a practical perspective, are:

• Convergence: Deviation between the desired path centric target pose and the robot
pose.

• Overshoot: Measure of deviation after the robot pose cross the path after a transient
approach period.

2Considering the Eelume robot



202 15. CONTROL SYSTEM

• Velocity reference tracking: Feasibility of the velocity reference.

Convergence and overshoot are prioritized in this project since the path has an attached
safe-distance, see e.g. section 14.3, which constrain the allowed deviation from the path.
The maximum allowable path deviation ∆π , subsequently define the primary performance
measure along with convergence. It is assumed that the USM manages to track the velocity
requested by the guidance law, making the velocity reference tracking a given3.

15.2.2 Existing Solutions

A kinematic path following scheme for wheeled robots was treated in [206], where the
authors consider a strategy for projecting the position of the wheeled robot onto a desired
geometric path. A path tangential Frenet frame is computed at this point, effectively
representing the deviation between the robot and the path. The downside of this approach
is the singularity that arise at the center of every osculating circle along the path 4.

The guidance framework from [206] was extended in [203] and [207] with a singularity-
free path following scheme, in 2D and 3D respectively. This is done by introducing a
propagation law for the path parametrization variable, i.e. a way to push the path tangen-
tial Frenet frame along the path. The paper [207] also demonstrate closed-loop stability
properties of the guidance framework in cascade with an ISS backstepping controller for an
under-actuated 3-DoF unmanned surface vessel (USV). Note that this framework works
both for under- and fully-actuated robots.

The approach presented in [202] also propagate a Frenet frame along a desired 3D path,
and shows that the base of an under-actuated underwater vehicle converge towards it
with uniformly global asymptotic stability (UGAS) 5. The control law is implemented in
cascade with a feedback linearizing surge controller and a backstepping attitude controller
to achieve closed-loop stability results. This approach also guarantee path convergence in
the presence of unknown ocean currents.

In [208], it is shown that straight line path following can be achieved in 3D with the
UGAS and uniformly local exponential stability (ULES) properties, using an integral line
of sight (ILOS) approach. This approach can also ensure convergence in the presence of
constant irrotational ocean currents.

These approaches suffice in the context of non-articulated robots, as the practical aspects
relating to the above-mentioned performance measures are demonstrated in conjunction

3This is a superfluous assumption that does not hold in practice. However, robust dynamic control is not
considered in this thesis, making the measure difficult to test.

4[206] shows that an asymptotically stable (AS) tube can be constructed around the path which depends
on the curvature.

5Given certain assumptions. The most important one affecting this work is that the algorithm is limited
by the Euler angle singularity.



15.2. GUIDANCE 203

with theoretical stability proofs. However, an USM require multiple links to follow the
desired path. The following section will describe the guidance algorithm that will be used
in this project and how it extends to guide multiple links.

15.2.3 Solution

Guidance law

In this work, multiple path-tangential Frenet frames will be defined to guide a set of links
towards a path. To develop such a framework the body frame, virtually any desired point
on the USM, is defined.

Definition 15.1. The body frame, Fb is the root of the kinematic tree which branch out to
both sides of the USM and connects to the inertial frame, Tb

I .

Remark 15.2.1. Even though the body frame can be located at any position, it is chosen
as the the longest link on the USM. This point defines a moving base with two attached
manipulators.

In the guidance context, the body frame is virtually connected to a path-tangential Frenet
frame, F fb , such that the deviation between the frames can be represented effectively6,

ηIfb/b =
[
x fb/b y fb/b z fb/b ϕ fb/b θ fb/b ψ fb/b

]
(15.1)

At this point, the 3D guidance algorithms from e.g. [202] or [203] from section 15.2.2
could be used to control the body frame. The algorithm from [202] is chosen, implying that
the maneuvering task [209] is solved for the base frame, with the possibility to add current
compensation. For completeness the guidance law is presented next. The guidance angles
are

ψb/fb ,d = arctan
(

y fb/b√
∆2 + x2

fb/b
+ z2

fb/b

)

θb/fb ,d = − arctan
(

z fb/b√
∆2 + y2

fb/b

) (15.2)

where ∆ is the lookahead distance. The propagation law is

6yfb /b and zfb /b are known as the base frame cross-track and vertical errors respectively



204 15. CONTROL SYSTEM

Ûϖ = U ·

√
∆2 + y2

fb/b√
∆2 + y2

fb/b
+ z2

fb/b

·

√
∆2 + x2

fb/b
+ z2

fb/b√
∆2 + x2

fb/b
+ y2

fb/b
+ z2

fb/b

−U ·
x fb/b√

∆2 + x2
fb/b
+ y2

fb/b
+ z2

fb/b

(15.3)

whereU is the desired body frame speed, not accounting for currents as in [202].
To further ensure that the maneuvering task is solved for multiple links, the set of

guided links and their corresponding path tangential Frenet frames are defined, see fig. 15.3.

Definition 15.2. The full set of guided links constitutes the two end-effectors and the
link attached to the base frame, {Fb , Fee0, Fee1}7. Their path tangential Frenet frames are
{F fb , F fee0 , F fee1 }, see fig. 15.3. Their progress along the path are represented by {π (ϖb),π (ϖee0),π (ϖee1)},
respectively.

Figure 15.3: The robot centric coordinate systems {Fb , Fee0, Fee1} and their associated path
tangential Frenet frames. The dashed line represent the projection from the end-effector
frames onto the curve.

Three instances are chosen as this is sufficient to ensure that the USM adheres to the path
given that the assumptions from section 12.6 holds (more on this in section 15.3). To reduce
complexity, ϖee0 and ϖee1 are found by projection, see appendix E. It is consequently prone
to ambiguities, see e.g. [206], as illustrated in fig. 15.4. This is resolved by saturating
|ϖb −ϖee0 | and |ϖb −ϖee1 |, such that Fee0 and Fee1 are constrained to Fb .

Finally, the output from the guidance algorithm are represented as a set of homogeneous
transformations from the USM towards the path, {Tfb

b
,Tfee0

ee0 ,T
fee1
ee1 }. Next, the velocity

7The end-effector denoted the 0 link in the link enumeration has the same name here



15.2. GUIDANCE 205

Figure 15.4: A USM encapsulated by a path. The dashed lines represent the projection
ambiguity that may arise in such situations.

reference generation will be presented before cascaded stability results are presented in the
kinematic control section.

Velocity reference generation

Velocity generation includes computing a desired linear and angular velocity. In general,
the linear velocity reference is the desired velocity in the guidance direction

Ûη fi/i,1,d = Rfi
i,d


ub,d

0
0

 (15.4)

where i ∈ {ee0,b, ee1} and ub/b,d is the desired body frame surge velocity. The angular
velocity reference, on the other hand, is a function of the path curvature, the guidance
angles and the angular velocity. In the two-dimensional case the yaw rate reference is
defined as

ri,d = κv fi + kp,ψψ fi/i,d +
Ûψ fi/i,d (15.5)

see e.g. [15], ensuring thatψi/I → ψ fi/I ,d . However, a general three-dimensional curve with
a path-tangential Frenet formulas inherently promote pitch-free angular motion

®ω = κ ®b + τ®t (15.6)

8

8This vector of angular velocity is commonly referred to as the Darboux vector [210]



206 15. CONTROL SYSTEM

with ®b, ®t being the binormal and tangent vectors at a certain point along the path. This can
be seen from the Frenet-Serret formulas which includes both curvature and torsion

[
®t
′

®n
′ ®b

′
]
=


0 κ 0
−κ 0 τ

0 −τ 0

 ·
[
®t ®n ®b

]
(15.7)

where κ is the path curvature and τ is the relative torsion of the path — for simplicity named
torsion in this thesis. From eq. (15.6) and eq. (15.7) it is evident that the path tangential
Frenet frame only rotates about its tangential axis due to torsion, τ , and about its binormal
axis due to curvature, κ.

To make full-body convergence possible, the set of Frenet frames need to be relatively
oriented such that they are reachable given the joint configuration of the USM. Consequently,
hardware related assumptions are made to tailor the angular velocity references to a
particular configuration.

Assumption 15.2.1. The USM has only revolute joints providing yaw and pitch motion.

Assumption 15.2.2. Roll is actively stabilized by low-level controllers.

Assumption 15.2.2 implies that a rotation-minimizing adapted frame (RMAF) have to be
constructed, see e.g. [210], to provide a reference frame constrained by no rolling motion.
This can be achieved by applying a rotation to the Frenet frames about their tangential axes,
®t9.


®t

®u

®v

 =

1 0 0
0 cos(ϕ fi ) sin(ϕ fi )

0 − sin(ϕ fi ) cos(ϕ fi )·

 ·

®t

®n
®b

 (15.8)

where ϕ fi is the rotation of the Frenet frame of interest around its own tangential axis.
Differentiating eq. (15.8) is necessary to obtain an expression for a new coordinate frame
that promotes roll-free angular motion.


®t
′

®u
′

®v
′

 =
d

dϖ
(Rx ,ϕfi

)T ·


®t

®n
®b

 + RT
x ,ϕfi
·


®t
′

®n
′

®b
′


= −S( ®ωϕfi ) · R

T
x ,ϕfi
·


®t

®n
®b

 + RT
x ,ϕfi
·


0 κ 0
−κ 0 τ

0 −τ 0

 ·

®t

®n
®b


(15.9)

9See e.g. [211]



15.2. GUIDANCE 207

where eq. (15.8) is written in matrix form to simplify calculations, ®ωϕfi =
[
1 0 0

]T
ωϕfi ,

the Frenet formulas are inserted for
[
®t
′

®n
′ ®b

′
]T

and ϖ is the curvilinear progress along
the path. Further, substituting eq. (15.8) into eq. (15.9) gives


®t
′

®u
′

®v
′

 = −S( ®ωϕfi ) · R
T
x ,ϕfi
· Rx ,ϕfi

·


®t

®u

®v

 + RT
x ,ϕfi
·


0 κ 0
−κ 0 τ

0 −τ 0

 · Rx ,ϕfi
·


®t

®u

®v


=

( 
0 0 0
0 0 −ωϕfi
0 ωϕfi 0

 +


0 κ cos(ϕ fi ) −κ sin(ϕ fi )

−κ cos(ϕ fi ) 0 τ

κ sin(ϕ fi ) −τ 0


)
·


®t

®u

®v


=


0 κ cos(ϕ fi ) −κ sin(ϕ fi )

−κ cos(ϕ fi ) 0 τ − ωϕfi
κ sin(ϕ fi ) −τ + ωϕfi 0

 ·

®t

®u

®v



(15.10)

The final expression in eq. (15.10) shows that an appropriate choice of ωϕfi cancels the
torsion of the curve, ee e.g. [210] for a possible choice. Consequently, rolling motion is
cancelled out in the coordinate frame F f ′ = (®t , ®u, ®v)

®ω = κ · (sin(ϕ fi )®u + cos(ϕ fi )®v) (15.11)

In 2D, the rotation rate between the angleψi/I −ψ f
′

i /I
isψi/I −ψ f

′

i /I
= κ Ûϖ , see e.g. [15].

Extending this observation two 3D with respect to F f ′ then gives the dynamical system

Ûψi/I − Ûψ f
′

i /I
= κ cos(ϕ fi )v fi

Ûθi/I − Ûθ f ′i /I
= κ sin(ϕ fi )v fi

(15.12)

Yaw and pitch rate references can now be defined with respect to F f ′ to ensure convergence
and stability of eq. (15.12)

ri,d = κ cos(ϕ fi )v fi + kp,ψψ f
′

i /i,d
+ Ûψi/I ,d

qi,d = κ sin(ϕ fi )v fi + kp,θθ f ′i /i,d
+ Ûθi/I ,d

(15.13)

Note that for practical purposes kp,ψ = kp,θ and kd,ψ = kd,θ based on rotary joint and thruster
symmetry on a typical USM. The following lemma extends the results in [15] to 3D.

Lemma 15.2.1. Consider the dynamical system in eq. (15.12)where Ûψ f
′

i /I
, Ûθ f ′i /I

are the angular
velocities of the Frenet frame. Then the reference angles (15.13) make the dynamic system



208 15. CONTROL SYSTEM

(15.12) converge.

Proof. Stability and convergence will be shown for the yaw rate reference. Because of the
symmetry, the proof for pitch angle convergence is equivalent. Insertion of (15.13) into
(15.12) gives

κ cos(ϕ fi )v fi + kp,ψψ f
′

i /i,d
+ Ûψ f

′

i /i,d
− Ûψ f

′

i /I
= κ cos(ϕ fi )v fi

Û̃
ψ + kp,ψψ f

′

i /i,d
= 0

(15.14)

Consequently, ψi/I → ψ f
′

i /I
ensuring convergence. As mentioned above, the same result

holds for the pitch angles through the same procedure. □

For clarification, the control laws in eq. (15.2), eq. (15.3) and eq. (15.13) is applied
to the base link. This ensures convergence for curved paths provided sufficiently large
proportional velocity reference gains, kpψ ,kp,θ , and a sufficiently small lookahead distance,
∆b . Results exploring how this tuning parameters are chosen to obtain the performance
specifications will be presented in section 15.4. The end-effectors path-tangential Frenet
frames are found by projecting the end-effector link position onto path. This point of
projection is then constrained to an interval a fixed distance from the origin of the Frenet
frame associated with the base link. How these projected points are used to ensure full-body
path convergence is explored in the subsequent section.

15.3 Kinematic Control

15.3.1 Performance Specifications

The kinematic controller can be used for a variety of tasks including collision avoidance,
joint constraints, ensuring FoV and path following. However, only the latter will be a focus
area in this section as collision avoidance is covered by the path planning module and the
FoV are implicitly guaranteed during path following along a pipe. The goal for the kinematic
controller is therefore to ensure that the end-effectors converge to the path given the path
errors specified from the guidance output in subsection 15.2.3. Formally, it is expected that
the cross-track and vertical errors for both end-effectors vanish



15.3. KINEMATIC CONTROL 209

lim
t→∞

yee0/fee0 (t) → 0

lim
t→∞

zee0/fee0 (t) → 0

lim
t→∞

yee1/fee1 (t) → 0

lim
t→∞

zee1/fee1 (t) → 0

(15.15)

The values in 15.15 will be used as performance measures as they specify the relative
closeness between the end-effectors and the path.

15.3.2 Existing Solutions

In [212], an operational space formulation for robot manipulator control was developed.
This framework makes it possible to specify desired end-effector setpoints in 3D space that
a robot manipulator can reach. This end-effector setpoint is formally denoted as a task. The
methodology was further developed with a framework called closed loop inverse kinematics
(CLIK), see e.g. [19]. The CLIK algorithm that is presented is exponentially stable, assuming
independent tasks. Since only two, kinematically independent tasks are used in this work,
this framework can be used.

Kinematic control have been used extensively both for tracking control of USMs and
more generally for tracking control for robot manipulators. In particular, kinematic control
was used in [16] to generate velocity references for straight line path following. However,
only 2D straight line path following was considered. Straight line path following in 3D was
considered in [204] with references generate in a similar manner as in [16]. The next section
describes how the above-mentioned CLIK algorithm can be modified to fit the position
tracking problem for curved 3D paths.

15.3.3 Solution

In this work, position tracking tasks will be defined for the end-effectors to ensure full
body path following. As these tasks are computed with the projective method described in
section 15.2.3, they are not reachable by default. Figure 15.5 demonstrate how consecutive
projection steps bends the USM towards the path, never reaching it. Note that, in general, a
curved path either bends towards or away from the USM (or a combination), and that the
USM end-effectors will move towards them and saturate10.

To ensure that the end-effectors track the path, convergence and stability will be proven
10An observation at this point is that the USM is able to extend further towards the path if the number of

links between base and end-effector frames increase.



210 15. CONTROL SYSTEM

Figure 15.5: The convergence of unconstrained consecutive projection steps for paths
bending towards and away from the USM. The base frame are assumed at rest and the large
black errors denote how the system naturally would bend in the given cases. The dashed
line represent the error between the respective path-tangential Frenet frames and their
guided links.

given end-effector position tasks. The tasks are defined as an objective for the end-effector
to achieve, namely touch the path at some point. Consequently,

σee0 = ηee0/I ,1

σee1 = ηee1/I ,1
(15.16)

is chosen for the front and rear end-effectors. By differentiating the tasks with respect to
time, the mapping between the joint and task velocities appear, see e.g. [19], dσdt =

dσ
dq

dq
dt . For

the tasks in eq. (15.16), this mapping is denoted as position Jacobian11, Ji,pos, i ∈ {ee0, ee1}

Ûσee0 = Jee0,pos Ûq

Ûσee1 = Jee1,pos Ûq
(15.17)

The operational space12 position errors η fee0/ee0,1,η fee1/ee1,1, define the task errors — dis-
played by the dashed lines in fig. 15.5. These are given by

11How to compute this Jacobian is intentionally omitted as it does not contribute to the understanding of the
developed approach. See e.g. [14] for a comprehensive description of derivation, use cases and implementation.

12Meaning that the task is specified in the space in which the manipulator task is specified, see e.g. [19]



15.3. KINEMATIC CONTROL 211

σ̃i = η fi/i = Ri⊤
I (π (ϖi) − ηi/I ,1) (15.18)

where π (·) is the path andϖ the curvilinear progress along it. From [19], the CLIK algorithm
is presented as

Ûqi,des = J†i,pos( Ûσi,d + Λiσ̃i) (15.19)

where Λi ≻ 0 is a gain matrix, Ûσi,d is the desired task velocity and J †i,pos is the Moore-Penrose
inverse of Ji,pos — commonly called the pseudoinverse. The task error gain and the desired
task velocity are determined to ensure stability of the task error dynamics, Û̃σi .

Û̃σi = Ri⊤
I ( Ûπ (ϖi) − Ûηi/I ,1) − S( ®ωi/I )Ri⊤

I (π (ϖi) − ηi/I ,1)

= Ri⊤
I ( Ûπ (ϖi) − Ji,pos Ûqi) − S( ®ωi/I )Ri⊤

I (π (ϖi) − ηi/I ,1)

= Ri⊤
I ( Ûπ (ϖi) − Ji,pos Ûqi,des) − S( ®ωi/I )Ri⊤

I (π (ϖi) − ηi/I ,1)

(15.20)

Note that the final expression in eq. (15.20) assumes that the joint velocities is a control
variable and that Ûqi ≈ Ûqi,des. This assumption holds given a sufficiently fast dynamic control
loop13 — or sufficiently slow kinematic control loop — which will be discussed further from
an experimental standpoint, section 15.4. A control system design that assumes the opposite
is out of the scope of this thesis and will therefore not be considered.

The next sections proves boundedness of the task errors, eq. (15.18), for a particular
choice of Ûσi,d in eq. (15.19). Stability and convergence of the cascade in fig. 15.2 is also
shown.

Boundedness

Proving boundedness of the task errors is necessary to ensure that the end-effector joint
angles do not diverge in the presence of disturbances introduced by a moving base and a
curved path. Meaning, the velocity of the base link relative to the path will not necessarily
equal the end-effector velocity relative to the path. Thus, the base frame moving introduce
a path offset felt by the end-effectors. The following lemma establish the boundedness
of the task errors when a LOS vector — found from the angles in eq. (15.2) — is used to
determine the desired task velocities

Lemma 15.3.1. Let the task error dynamics from eq. (15.20) be controlled by the joint desired
joint velocities from eq. (15.19). A choice of the desired task velocities is

13See e.g. [195] for a description of this concept in cascaded control loops



212 15. CONTROL SYSTEM

Ûσi,d = Ri
I ®vi,1,d

=
[
®ti,d ®ni,d ®bi,d/i

] 
ui,d

0
0


= ®t Ii,dui,d

(15.21)

where ®t I
i,d

is the velocity direction with respect to Fi in FI and ui/i,d its surge magnitude. With
this choice of control, and the Lyapunov function candidate Vσ̃i =

1
2σ̃

T
i σ̃i , the tracking task

errors are uniformly ultimately bounded (UUB) with | |σ̃i | | ≥
2Umax
θ > 0, where 0 < θ <

λmin(Λi).

Proof. Differentiating the Lyapunov function candidate,Vσ̃i =
1
2σ̃

T
i σ̃i , and inserting eq. (15.20),

and rotating the task error in eq. (15.19) to the inertial frame, gives

ÛVσ̃i = σ̃
T
i
Û̃σi

= σ̃Ti

(
Ri⊤
I ( Ûπ (ϖi) − Ji,pos Ûqi,des) − S( ®ωi/I )Ri⊤

I (π (ϖi) − ηi/I ,1)
)

= σ̃Ti

(
Ri⊤
I

(
Ûπ (ϖi) − Ji,posJ†i,pos( Ûσi,d + ΛiRi

I σ̃i)
)
− S( ®ωi/I )σ̃i

)
= σ̃Ti Ri⊤

I

(
Ûπ (ϖi) − (Ri

I ®vi,d + ΛiRi
I σ̃i)

)
= −σ̃Ti Λiσ̃i + σ̃

T
i Ri⊤

I

(
Ûπ (ϖi) − Ri

I ®vi,d

)
(15.22)

where the fourth inequality use that xT S(·)x ≡ 0 for any skew-symmetric matrix S(·). from
the chain rule, it follows that Ûπ (ϖi) =

dπ (ϖi )

dϖi
Ûϖi = ®t

I
fi/I
(ϖi) Ûϖi where ®t Ifi/I (ϖi) is the unit

tangent vector and Ûϖi is the desired base frame surge speed. Consequently, the derivative
of the Lyapunov function can be bounded from above

ÛVσ̃i ≤ −λmin(Λi) ∥σ̃i ∥
2
2 + ∥σ̃i ∥2




®t Ifi/I (ϖi)ub,d − ®t
I
i,dui,d





2

≤ −λmin(Λi) ∥σ̃i ∥
2
2 + θ ∥σ̃i ∥

2
2 − θ ∥σ̃i ∥

2
2 + ∥σ̃i ∥2




®t Ifi/I (ϖi) − ®t
I
i,d





2
max(ub,d ,ui,d)

≤ −(λmin(Λi) − θ ) ∥σ̃i ∥
2
2 , ∀ ∥σ̃i ∥2 ≥




®t Ifi/I (ϖi) − ®t
I
i,d





2
max(ub,d ,ui,d)

θ

(15.23)

where λmin(Λi) is the smallest eigenvalue of Λi , and 0 < θ < λmin(Λi). Since ®t Ifi/I (ϖi), ®t
I
i,d

are unit vectors, their relative norm is bounded from above by the case were they stand
parallel in opposite directions,




®t Ifi/I (ϖi) − ®t
I
i,d





2
≤ 2. Finally, the desired surge velocity



15.3. KINEMATIC CONTROL 213

can be chosen implying that it is naturally bounded from above max(ub,d ,ui,d) ≤ Umax. It
follows that the result holds for all ∥σ̃i ∥2 ≥ 2Umax

θ > 0. According to theorem 4.18 in [83],
the tracking tasks are uniformly ultimately bounded.

□

By lemma 15.3.1, the task errors remain ultimately bounded within some ball which can
be found from theorem 4.18 in [83]. Note that this bound is overly conservative, as the USM
typically moves either towards the path or along it. To ensure this, however, convergence of
the task towards this path have to be proven. This requires the desired velocity tangent to
converge to the path tangent,




®t Ifi/I − ®t Ii,d


2 → 0, as the bound in lemma 15.3.1 then shrinks
to 0.

An observation from lemma 15.3.1, is that the kinematic control law introduce two
tuning parameters to control the convergence rate. The velocity direction is scaled by
a lookahead distance, henceforth denoted ∆i , and the magnitude of the velocity can be
chosen freely. Consequently, angular rate can be limited, by tuning of the above-mentioned
parameters along with the gain Λi . This is a desirable feature considering the effect of
increased yaw rate on the SLAM module, see part III. Note, however, that the angular
velocity of the end-effector is a sum of the velocity imposed by joint velocities and the
velocity of the base link. The two therefore have to be tuned with the same goal in mind. A
thorough discussion on this topic is covered in section 15.4.

Cascade stability

In section 15.2 it was established that the the base link tracks a path-tangential Frenet frame
which propagates along a path. Since the end-effectors move when the base link moves,
the projection from the end-effectors onto the curve will depend on the base link velocity.
Additionally, as the curve has a curvature profile the projection will also vary irrespective
of the base frame velocity, see fig. 15.5 for an illustration. To ensure convergence of the
task errors, the cascade of the controllers in fig. 15.2 have to satisfy the criteria of lemma
2.1 in [213]. To prove this, firstly stability of the end-effector error dynamics have to be
shown given no influence from the base link.

Lemma 15.3.2. Consider the position task error dynamics from eq. (15.20). Under influence of
the control law eq. (15.21), The unperturbed system without any base link velocity is UGAS.

Proof. Firstly, eq. (15.20) can be re-written as



214 15. CONTROL SYSTEM

Û̃σi = Ri⊤
I ( Ûπ (ϖi) − Ji,pos Ûqi,des) − S( ®ωi/I )Ri⊤

I (π (ϖi) − ηi/I ,1)

= Ri⊤
I ( Ûπ (ϖi) − ( Ûσi,d + ΛiRi

I σ̃i)) − S( ®ωi/I )σ̃i

= −(Λi + S( ®ωi/I ))σ̃i − Ûσi,d + RiT

I ( Ûπ (ϖi))

= −(Λi + S( ®ωi/I ))σ̃i − ®t
I
i,dui,d + RiT

I (®t fi/I ,dub,d)

(15.24)

where the notation follows that of the derivation in lemma 15.3.1. The assumption of a base
link with zero velocities translates to ub,d = 0 and ®ωb/I =

[
0 0 0

]T
. The error dynamics

in eq. (15.24) unperturbed can be written as

Û̃σi = −(Λi + S( ®ωi/b))σ̃i − ®t
I
i,dui,d (15.25)

By introducing same Lyapunov function candidate, Vσ̃i =
1
2σ̃

T
i σ̃i in lemma 15.3.1 the

following expression is obtained

ÛVσ̃i = −σ̃
T
i Λiσ̃i − σ̃

T ®t Ii,dui,d

≤ −σ̃Ti Λiσ̃i −


σ̃T 

2ui,min

(15.26)

where ui,min. Under the assumption that the task is feasible — that the end-effector actually
can reach the path — the criteria of theorem 4.9 in [83] is fulfilled such that the unperturbed
system, eq. (15.25), is UGAS. □

Note that lemma 15.3.2 assumes a non-zero velocity. The direction of the velocity is
uniquely determined by ®t I

i,d
implying that the result holds for end-effectors moving in any

direction satisfying the hardware assumptions mentioned in 15.2.3. At this point, lemma
2.1 in [213] can be applied to obtain a cascaded stability result.

Consider the cascaded guidance and kinematic control system presented in fig. 15.2,
which is intended to solve the maneuvering problem from [209] and ensure end-effector con-
vergence in the sense of eq. (15.15). Further assume that the criteria of lemmas 15.2.1, 15.3.1,
15.3.2, and that of the guidance algorithm presented in [202], are satisfied. Consequently,
by application of lemma 2.1 from [213], the cascaded system is UGAS:

UGAS + UGB + UGAS = UGAS (15.27)

An implication of the above-mentioned result is that the guidance and kinematic con-
trollers can be tuned separately. This fact is exploited in section 15.4.



15.4. SIMULATION 215

15.4 Simulation

To ensure re-usability, readability and portability (in case a conversion from ROS to another
messaging system is desirable at a later point), the control system implementation is
grounded in an object-oriented methodology. The control system itself is implemented
as a C++ library included in a ROS wrapper to allow communication with the rest of the
autonomous system. The simulator avoids using any external libraries except for Eigen,
[214], an open source linear algebra library.

15.4.1 Kinematics

The kinematics in the simulations are modelled using differential kinematics and evaluated
using Euler integration, see e.g. [17],

pb/I [k + 1] = pb/I [k] + h · ®vb/I
Rb
I [k + 1] = Rb

I [k] + h · (R
b
I [k] · S( ®ωb/I ))

q[k + 1] = q[k] + h · dq

(15.28)

where h is the step length which is chosen to be h = 0.001ms and the square brackets [·]
denote a discrete time state space formulation, see e.g. [215]. To ensure some attachment to
reality, the joint velocities are saturated according to the specifications of the joint motors
on the Eelume robot, dq < 1.5 rad s−1.

Simulations are carried out to verify the correctness of the implementation and evaluate
algorithmic choices specified in sections 15.2 and 15.3. Simulation results regarding the
most significant design choices will be outlined subsequently. The factors determining the
significance of the choices are whether they have a considerable effect on the performance
goals specified in section 15.2.1 and section 15.3.1.

15.4.2 Tests

Simulation experiments are carried out to provide an ideal base-line for practical exper-
iments. Consequently, a set of benchmark tests have to be performed with appropriate
performance measures. The desired task specifications provide a scaffolding for a sufficient
set of such tests and the performance specifications for each control system an associated
performance measure.



216 15. CONTROL SYSTEM

Task Test Test specs Measure

Move full body Straight line distance = 10.0m Full body error
Move full body Hairpin κ = 0.5m−1 Full body error
Move full body Hairpin κ = 0.33m−1 Full body error

For simplicity in visualizing results, the USM used for simulations contains two links, the
rear joint being the the base link. The control objective is therefore to ensure that both
links adheres to the path, see fig. 15.6.

Figure 15.6: .

15.4.2.1 Straight line

Straight line path following mainly demonstrate the performance of the guidance algorithm
and verify the existence, or lack thereof, of transient behaviour due to the kinematic
control methodology. The goals of this test is therefore to document both base frame and
end-effector convergence.

Firstly, base link convergence is evaluated for varying speed and lookahead distance.
As specified in section 15.2.1, the goal is to minimize overshoot while not compromising
convergence time considerably. In fig. 15.7 base link convergence for varying lookahead
distance is demonstrated at ub,d = 0.5m s−1 and ub,d = 1.0m s−1. Consequently, ∆b = 0.5m
results in the best performance according to the specifications. Note, however, that lowering
∆b results in a larger yaw rate peak, implying a negative impact on navigation.
Another important performance aspect is the effect of the velocity reference proportional
gain, kp,ψb from eq. (15.13), concerning overshoot and convergence time. fig. 15.8 display



15.4. SIMULATION 217

Figure 15.7: Base link cross-track and yaw error displayed using kp,ψb = 0.8. From the
leftmost figures, it is evident that lowering the surge speed results in a second order response
due to the coupling between relative attitude and positioning with respect to the path.

how lowering the gain increase yaw error, but decrease overshooting at ub,d = 0.5m
and ub,d = 1.0m. As the proportional gain decrease, the yaw rate peak will increase
proportionally. Increased yawing error, on the other hand, imply an increased end-effector
error. Therefore, choosing the proportional gain requires trading off base link convergence
for transient end-effector error.

Figure 15.8: Base link cross-track and yaw error displayed using ∆b = 0.5m.

The second objective from this test is verification of end-effector convergence. As the
end-effector position error is coupled with the base link velocity, convergence is tested
during medium conditions; ∆b = 1.0m, kp,ψb = 0.8. The end-effector gain, velocity direction



218 15. CONTROL SYSTEM

andmagnitude are themain contributors to convergence and are therefore varied. Intuitively,
the desired task velocity magnitude uee0,d increase convergence speed and reduce overshoot.
It will particularly cause quicker convergence when the yaw error is large, independent of
the cross-track error, when increased. Scaling the lookahead distance ∆ee0 smooth out the
desired task velocity direction, ®t I

i,d
, when increased. Whence a large desired task velocity

magnitude and a small lookahead distance is desirable. Scaling the task error with Λi will
have an increased effect with an increased cross-track error. In the case of yaw errors larger
than a quarter circle,ψ fee0/ee0

> π
2 , the task error will switch signs and pull in the opposite

direction. The task error should therefore be tuned accordingly, such that the desired task
velocity dominates.

Figure 15.9: End-effector link cross-track and yaw error displayed using ∆ee0 = 0.2m, λ =
0.5 with varying desired task velocity magnitude.

The effect of increasing the desired task velocity magnitude for constant task error gain
and lookahead is demonstrated in fig. 15.9. Clearly, both cross-track and yaw errors are
subject to fast convergence for increased velocities. The bump in the cross-track error arise
due to the base link overshooting — the magnitude equals the orange line in fig. 15.8. The
effect of varying the task error gain holding the desired task velocity magnitude constant
is displayed in fig. 15.10a for uee0,d = 2.0m s−1 and in fig. 15.10b for uee0,d = 1.0m s−1. In
fig. 15.10b, increased gain relative to velocity cause a delayed peak in cross-track error. This
is an effect of the of the yaw-error increasing above a quarter circle, as mentioned earlier.
In fig. 15.10a, a sufficiently large velocity seems to alleviate the effect of an increasing task
error gain — this only holds up to a certain point, of course. The desired task velocity
magnitude will therefore be chosen considerably larger than the task error gain to ensure
convergence in the sense displayed above.



15.4. SIMULATION 219

(a) End-effector link cross-track and yaw error displayed using ∆ee0 = 0.2m, uee0,d = 2.0m s−1 with
varying task error gain.

(b) End-effector link cross-track and yaw error displayed using ∆ee0 = 0.2m, uee0,d = 1.0m s−1 with
varying task error gain.



220 15. CONTROL SYSTEM

Hairpin

Curved path following is demonstrated using hairpins of varying curvature. Hairpin curves
provide a test both for both a steady state and transient phase — i.e. constant and varying
curvature respectively — such that both base and end-effector convergence can be evaluated
under such conditions. Figure 15.11 display the curvature profiles of two hairpin curves
with curvatures κ = 0.5m−1 and κ = 0.33m−1, where transient phases can be recognised
from a linearly increasing curvature.

Figure 15.11: Curvature profiles of two hairpin curves with κ = 0.5m−1 and κ = 0.33m−1.
As the hairpins are computed with natural cubic splines, they do not represent perfect half
circles. Consequently, transient phases are recurring throughout both profiles.

Firstly, steady state behaviour of the base link is demonstrated for varying lookahead
distances and the proportional angular deviation gain as in section 15.4.2.1, see fig. 15.12b
and fig. 15.12a. From fig. 15.12b, it is evident that an increasing lookahead cause a significant
increase in the cross-track error. The lookahead distance similarly cause the cross-track
error to gradually resemble the curvature profile. This observation implies that increasing
the lookahead distance makes the robot less reactive to changes in curvature, which makes
sense as it can be thought of as a damping term on the desired angular setpoint, eq. (15.2).
Increasing the velocity reference proportional gain have a similar effect as the lookahead
distance, applied to the yaw error instead of the cross-track error. Consequently, to alleviate
the effect of a changing curvature, the above-mentioned tuning parameters should be
chosen kp,ψ ≥ 2.0 and ∆b ≤ 0.2. Note however, that such a choice of parameters will cause
large overshoots, as discussed in section 15.4.2.1. Thus, either a trade-off between these two
cases have to be found, or a gain-scheduling scheme have to be implemented. This will,
however, not be considered any further in this thesis.

Secondly, steady state behaviour of the end-effector is demonstrated following the
same procedure as in section 15.4.2.1. The effect of having a constantly small lookahead



15.4. SIMULATION 221

(a) Steady state hairpin base link cross-track and yaw error with constant speed and lookahead
distance, while varying proportional velocity reference gain.

(b) Steady state hairpin base link cross-track and yaw error with constant speed and proportional
velocity reference gain, while varying lookahead distance.



222 15. CONTROL SYSTEM

distance and a constant task error gain is demonstrated in fig. 15.13a. Looking away from
the transient convergence in the beginning, the end-effector sensitivity towards changing
curvature is reduced by an increased desired task velocity. In fig. 15.13b the effect of holding
the desired task velocity constant and varying the lookahead distance is demonstrated. The
result is similar to that for the base link, the yaw error follow the curvature changes with
an increasing extent with increasing lookahead. Again it is therefore desirable to reduce
the lookahead distance and increase the desired task velocity to ensure robustness.

(a) Steady state hairpin end-effector cross-track and yaw error with constant lookahead distance
and task error proportional gain, while varying desired task velocity.

(b) Steady state hairpin end-effector cross-track and yaw error with constant lookahead distance
and desired task velocity, while varying task error proportional gain.

Finally, the performance of both base link and end-effector is tested for a curve with
κ = 0.5m−1. This is to validate how the performance of the control system scales with
varying track conditions. The results are shown in fig. 15.14a and fig. 15.14b, with base
link parameters ub,d = 0.5m s−1, kp,ψ = 2.0, ∆b = 0.2m and end-effector parameters
uee0,d = 2.0m s−1, ∆ee0 = 0.2m, λ = 0.5. It is evident that the errors are amplified during



15.4. SIMULATION 223

transient phases, but that they remain bounded. Depending on the precision desired in
actual operation, the bound can be tightened by parameter tuning as explained in this and
the previous section.

(a) Transient hairpin base link cross-track and yaw error.

(b) Transient hairpin end-effector cross-track and yaw error.



224 15. CONTROL SYSTEM



Part VII

Closing the Loop

225





16 | Connecting the Modules

System integration is a big part of this thesis since multiple modules are implemented
and combined to create a complete autonomy pipeline. Seeing as these components

have been discussed in detail in parts II and IV to VI, this chapter will look more into how
these modules are interconnected and demonstrate how the more complete system operates.
These closed-loop connections will be tested on a selected set of simulated cases, from
which the overall system performance will be evaluated.

16.1 Combining Object Detection and Planning

One of the underlying objectives of this thesis was to use semantic, or contextual, infor-
mation to help drive the inspection operation. This was intended achieved through the
implementation of the object detection module in part IV. The idea behind this was to use
object detection techniques to segment the incoming images from which more context-
aware path planning could be performed. In the complete system, this information would
arrive through the semantic map provided by the SLAM module. For this test, however, the
semantic information was shared directly to the exploration module from the classification
system, as illustrated in fig. 16.1. This is mostly done to simplify the test, partly because
the current SLAM method provides sparse maps (see section 16.2 for examples of the more
complete semantic maps). Of course, if the pipe location is known exactly, the robot can

Stereo Camera

IMU

Classi�cation

SLAM
Path Planning

Exploration

Control USM Interface

�rusters

Joints

Figure 16.1: Altered block diagram structure for easier testing of the object detection,
exploration, and planning modules.

be given a set of precalculated waypoints. Therefore, an assumption for these test cases is
that the pipe location is not entirely known.1 Instead, the positions of a docking station
and selected subsea structures, to which the pipes are connected, are assumed known. The
USM is then intended to start its inspection by approaching one of these subsea structures,

1This is not unrealistic, as the pipe could have shifted or been covered by sand, biomass, or sediment.

227



228 16. CONNECTING THE MODULES

Figure 16.2: Pipe tracking is lost due to occluded segments.

identify the pipe based on its camera feed, then continuously follow the pipe until the
second subsea structure is reached.

To follow the pipe, new waypoints needs to be set along the pipe based on incoming
images. Based on the implementation specifics from section 10.1, the output consists of a
bounding box estimating the pipe position in the image, with a center point close to, or
on, the pipe itself — in the case of relatively straight pipes, this should be a reasonable
assumption. This point is then re-projected from the image plane to the world frame,
along the pipe at a fixed distance (using the intrinsic camera matrix, briefly discussed
in section 4.4.1), and passed as a goal to the path planning module. As the purpose of
this is to test the modules, the goal points were also placed a set distance above the pipe,
to emulate a proximity/depth sensor, or depth information from the SLAM system, and
simplify the problem slightly. Furthermore, instead of just sending a point directly, a point
cloud containing all points labelled as pipe could be passed to the exploration module. From
this, the next-best goal for following the pipe could be extrapolated. An interesting problem
arises if the USM loses track of the pipe, however. This could happen due to the pipe being
occluded by particles thrown around by the thrusters or completely hidden by sand or
biomass. In this case, the USM is required to re-locate the pipe. To this end, this thesis
proposes to utilize the exploration module.

Upon losing the pipe, a search area, or geofence (see chapter 14), will be established.
This area originates from the USM, extending a distance along the estimated pipe location,
as exemplified in fig. 16.2. If the pipe is located within this region, the operation resumes. If
not, however, an expanded search area will be defined, as shown in fig. 16.3. By performing
this extended search, the USM will be able to re-locate the pipe in the case of a hidden pipe
bend. This process will continue a set number of times, expanding the search area each
time. If the pipe cannot be rediscovered, the operation terminates by sending the USM back
to the docking station and alerting the possible need for manual remote inspection. To test
this, a simple simulated scenario was set up.



16.1. COMBINING OBJECT DETECTION AND PLANNING 229

Figure 16.3: Example scenario where the pipe is lost due to a hidden bend.

16.1.1 Case: Context-driven Subsea Pipe Inspection

In order to test the system with the path planning and classification module working as a
closed looped system, a simulated scenario was constructed. This scenario consisted of an
operation where the USM was supposed to deploy from a docking station at the sea floor,
before it travelled to a nearby subsea structure and initiated an inspection. The pipe would
then be followed until the second subsea structure was reached. Upon reaching the second
subsea structure, the USM would then return to the docking station. Once the USM reached
the docking station, the operation was complete. An overview of the case can be seen in
fig. 16.4.

Figure 16.4: Illustration of the simulated pipe inspection operation.

The goal of the experimentwas to see how the path planner could utilize the classification
module to explore along a pipe section. Since the test was conducted in a simulated environ-
ment, where the pipe is continuous and visible, the test was performed without the explo-



230 16. CONNECTING THE MODULES

ration module for finding the pipe upon lost tracking. The commands for when to start the
operation, as well as returning to the docking station, were given manually. In the simulated
environment, the subsea structures are represented as large red boxes and the docking sta-
tion as a large blue box. These colors were primarily chosen to be easily distinguishable from
the background for human observers, and is not exploited by the classification algorithm.

Figure 16.5: Video of
pipe inspection sec-
tion of the experiment
designed to test the
combination of the ob-
ject detection and plan-
ning.

From the experiment, it was observed that the USM sometimes
oscillated between the sides of the pipe rather than staying exactly
above it (this is present in the video linked in fig. 16.5). This is due
to the goal position only being reliant on the center pixel of the
bounding box, and is, thus, sensitive to bends in the pipe. This
results in the center pixel being re-projected away from the pipe.
It was also observed that, when this occurred, the next goal would
be closer to the pipe and, after some time, the USM was steered
back on track. If instead operating on the final semantic map

The resulting map produced by following the pipe is shown in
fig. 16.6 as a lighter shade, most easily visible in fig. 16.6a and sec-
tion 16.1.1. To further test the collision avoidance, the USM was
given two return trips starting at the final subsea structure. In the
first, no a priori knowledge of the map was present, which lead

to several replanning stages and a final path with increased clearance. This is shown in
fig. 16.6 as the red path. In the second scenario, the map of the surrounding environment
was assumed at least partially known. In this case, the return path were much more direct
while still providing sufficient clearance to guarantee a safe path. This is shown in fig. 16.6
as the blue path.

To see if the system could handle a lost pipe, the same setup as described above was used,
with one simple alteration. A section of the pipe was hidden by covering it with a rectangle
such that the object detection fails to locate any pipe segments. This initiates an exploration
action, starting with a relatively narrow search area. This setup is shown in fig. 16.7. In
fig. 16.7a, the robot loses track roughly around (x ,y) = (7,-80). A narrow exploration area is
then assigned, shown as a yellow box in fig. 16.7, and the exploration module drives the
relocation process. As mentioned in previous chapters, the pipe is assumed straight over
short distances, which is not exactly the case in this simulation. It is evident from fig. 16.7a
that the search area is offset slightly from the actual pipe location. Due to the relative small
curvature of the pipeline, however, the relocation procedure succeeds in rediscovering the
pipe, allowing the USM to continue in normal operating conditions.

The placement of the exploration area is not perfect, and could be improved upon
through extrapolating the pipe itself given a labeled point cloud. All in all, however,
the operation was a success and the USM was able to complete the entire operation in a



16.1. COMBINING OBJECT DETECTION AND PLANNING 231

satisfactory manner. The entirety of the first part of the experiment, without the exploration
module, can be viewed through the QR code found in fig. 16.5.



232 16. CONNECTING THE MODULES

(a) Overview of the entire inspection and return operation.

(b) Slightly more angled view, showcasing the different depths of the return paths.

Figure 16.6: Example paths calculated from a subsea structure back to the docking station
(yellow) after a completed inspection case. The red curve shows the path calculated without
knowledge about the environment surrounding the pipe, resulting in a couple of replanning
situations and a much larger clearance due to repeated collision avoidance scenarios. The
blue curve indicate the path calculated with knowledge about the surrounding area. The
lighter patches of the map show the inspected area during execution.



16.1. COMBINING OBJECT DETECTION AND PLANNING 233

(c) Top-down view of the entire inspection operation and the return paths.

Figure 16.6: Continued figure showing the same case as the previous page, but displayed in
a top-down view.



234 16. CONNECTING THE MODULES

(a) Top-down view of the pipe re-location procedure.

(b) Side view of the pipe re-location procedure.

Figure 16.7: Results from a small pipe re-location procedure. After the USM encounters the
hidden pipe (blue), the exploration module is initiated with the search bounds shown in
yellow. The exploration then continues until the pipe is re-located.



16.2. COMBINING OBJECT DETECTION AND SLAM 235

16.2 Combining Object Detection and SLAM

The output from the SLAM system is, generally, a point cloud constituting the map, which
is used to locate the USM. However, for any contextual planning to occur, it is important
to have a semantic understanding of what is in the map. This context can be provided
from the classification system. The desired output will be a map augmented with seman-
tic information. In order for this augmentation to occur, it is necessary to have some
sort of connection point between the classification and SLAM module. The output of
the classification module will be bounding boxes containing the information about the
detected classes, as well as a label of which frame the bounding boxes are classified from.

Figure 16.8: Schematic of connection between
Classification and SLAM module

Whenever the SLAM system decides that
a image Ik contains enough new informa-
tion for it to be accepted as a key-frame and
thus be used to generate new map points
it simultaneously transfer Ik to the classi-
fication module and the mapping module.
While the mapping module uses Ik to gener-
ate new map points, performs local bundle
adjustment and performs map maintenance,
the object detection detects bounding boxes
in the image and returns them to the SLAM
system. Once the mapping module is fin-
ished, it projects all the visible map points
into the image Ik and gives them a labeling
score if they are within one of the bound-
ing boxes. The bounding boxes are stored
together with the key-frame Ik , so that when a new map point pi which are visible by Ik are
generated later on by a new key-frame Ik + n, the new map point pi is matched against the
stored bounding boxes of Ik and the labeling score is incremented accordingly. To ensure
each map point only is labeled by the same key-frame once each map point keep a list
of key-frames they have already been labeled by. Figure 16.8 show the schematics of the
connection between the Classification and SLAM module.

Map points can, of course, be classified multiple times, as they will be visible from
multiple key frames. This means that there can be different class assignments for the same
map points. In order to account for this, a voting scheme was necessary. The voting scheme
works by having a counter for each possible class, including a no class-label, associated
with the map point. On each positive hit from the classification, this counter will be iterated.
Upon evaluating the semantic map, this voting scheme will provide a representation on the



236 16. CONNECTING THE MODULES

certainty of which class the map point belong to. The class with the most classifications
will then be selected and the certainty will be represented as a percentage of the positive
classifications of said class in relation to the complete number of classifications for the
given map point.

To see how the combination between the classification and SLAM modules worked,
the following test was conducted. Three pipe segments were placed in the test basin.
Additionally, various small weights where scattered around the test basin to ensure that
there was a sufficient amount of features present for the SLAM algorithm to operate well.
Figure 16.9a shows an example of these conditions. The hardware platform was then moved
around in the test basin while recording the data as ROS Bags to process the data at a later
point.

(a)
(b)

Figure 16.9: Comparison of the experiment setup in the test basin and a real operational
case.

Figure 16.12: Example of smooth pipe result-
ing in few map points on the pipe itself.

Figure 16.11 shows the final SLAM map
from the experiment where the SLAM mod-
ule was combined with the Classification
module to produce a labeled map. The pipe
is clearly visible as a series of redmap points.
However, there are several outlying false
positives present This was due to the bound-
ing boxes encompassing features that are
relatively far from the pipe, especially when
the pipe located close to a 45◦ angle in the
image. A way to reduce these outliers could

be to do semantic segmentation from the classification module, make the voting scheme
stricter, incorporating the confidence parameter of the bounding boxes in the voting scheme,
or employ an algorithm to reduce the outliers. This thesis will not investigate these im-



16.2. COMBINING OBJECT DETECTION AND SLAM 237

(a) (b)

(c) (d)

Figure 16.10: Developing SLAM map with object detection labeling map points.



238 16. CONNECTING THE MODULES

Figure 16.11: Final SLAM map with object detection labeling map points.



16.2. COMBINING OBJECT DETECTION AND SLAM 239

provements further, but the most straightforward method would probably be to incorporate
a simple RANSAC outlier removal procedure.

In the test basin the pipe was very smooth, which resulted in there being very few map
points directly located on the pipe, see fig. 16.12. Most of the labeled points were, therefore,
located close to the pipe, but not directly on it. For a real operation, one would expect pipes
closer to the example from fig. 16.9b. In these conditions, the pipes are not smooth, due to
biofouling, and one would expect the algorithm to find a significantly higher number of
map points located on the pipe itself.



240 16. CONNECTING THE MODULES

16.3 Combining SLAM and Control

The SLAM and control modules are designed to be compatible, but are not explicitly tested
together. The reason for this is twofold: a simulation framework compatible with both
modules was not prioritized, and the kinematic control system does not have a notion of
robustness. The former is an effect of the group firstly prioritizing testing and verification
of the individual autonomous modules. The latter is predicated on the the control system
being solely kinematic, part VI. The robustness of the full control system largely depends
on a properly implemented dynamic controller, see e.g. [204], and is not prioritized, as
explained in part VI.

The control system module testing, however, discusses the effect of tuning the con-
troller to enhance SLAM performance, section 15.4. The SLAM performance limitations,
section 9.2.2, explicitly limit the allowable linear and angular velocity of the visual sensors.
Although the control system enables control of these variables, proper simulation and
practical experiments should be conducted to ensure reliable performance.

16.4 Control and Planning

The planning module was able to compute a path, satisfying the criteria specified in sec-
tion 12.6, for the guidance and control system to follow. Such a path is computed either
when a new goal state is received or when a collision is detected along the current path,
initiating a replanning procedure. In either way, the control system will stop and wait for a
path to be provided. Consequently, the interface between the modules does not require any
elaborate testing other than performance testing at the module level and ensuring that the
communication between the modules is compatible. This has been verified through simple
simulation experiments. An example path following case is shown in fig. 16.13.



16.4. CONTROL AND PLANNING 241

Figure 16.13: USM with two links adheres to a path satisfying kinematic path criteria.



242 16. CONNECTING THE MODULES



17 | Conclusion

The goal of this thesis was to propose and implement a system architecture capable
of performing context-based reasoning and mapping while autonomously executing

inspection tasks. This was intended accomplished through the implementation of several
modules, each responsible for each of the sub-tasks which needed to be solved.

To accomplish this, a satisfactory sensor rig was needed. A high quality stereo-visual-
inertial sensor consisting of a stereo camera, an IMU and a pressure sensor was constructed.
The rig synchronize the measurements with the synchronization circuit. The hardware
platform worked well for the requirements of this thesis. Due to the goal of constructing
a hardware platform that can be utilized by other projects as well, there modular design
enable mounting of additional functionality such as an acoustic underwater positioning
system or a light source. In short, the hardware platform provided as required and are ready
to be developed further to meet new challenges.

Localization andmapping was achieved by implementing a visual-intertial SLAM system.
The system works well in the ideal environments of the test basin, the monocular inertial
SLAM system estimates scale accurately and are thus able to provide accurate, metric pose
estimates at 20.83 Hz with 45 ms latency. Further the robustness of the monocular SLAM
system is shown to increase when fusing in a Inertial sensor, particularly with respect to
pure rotations and scale drift. In the more realistic environment in the Dora dock, the visual
SLAM system struggles. If the cameras are carefully directed at scenes with a lot of contrast
and structure while maintained at a close distance, the system manages to keep tracking
the scene. Thus one applicable function could be to maintain a given position close to
another objects. However except for station keeping, it is not robust and where not able to
complete any of the sequences from the Dora Dock dataset. To be able to work robustly in
real environments the state estimation can not solely be based on a visual inertial SLAM
system. In the long term extending the state estimation to include additional sensors such
as underwater acoustic positioning systems, Doppler velocity logger or SONAR is essential.
Then the visual SLAM system would only be activated while the scenery is close enough and
has sufficient structure and contrast, similarly to the work in [216]. Thus having multiple
maps like in [217], but instead of initializing a new map when tracking is lost, rely on the
other sensors to estimate the trajectory. Resulting in multiple visual maps, connected by
trajectories estimated from other sensors.

With the combined insight of the qualitative and quantitative results, this report con-
cludes that the added challenges present when detecting pipes underwater seem to be

243



244 17. CONCLUSION

solvable using deep learning techniques. The network performed well on similar data to
the data it had trained on, but struggled once the conditions changed substantially. The
difference in lighting conditions, and proximity to the pipe, had a drastic impact on the
performance of the network. However, by augmenting the dataset with a relative small
amount of data, it experienced a significant improvement on these conditions. In order to
get a system operational, it is suggested to have a surveillance period to see which type
of images the network struggle to detect and add some of them to the dataset until the
network start performing to a satisfactory level. This work can be done by observing the
USM in operation when controlled manually over time. By collecting data in this phase
it seems likely that most conditions can be added to the dataset. It will, of course, require
a labour intensive process of looking through hours of video footage, but the potential
rewards of a fully autonomous systems seem to be worth it. This process will make the
network increasingly robust over time.

Through experiments, the implemented Voronoi-based planner was deemed inadequate
for an exploration scenario — or a scenario in which only partial map knowledge is present
— due to the nature of the operational environment. Instead, an informed sampling-based
planningmodule based on BIT∗ was used, which, combinedwith a kinematically constrained
state space formulation and natural cubic spline interpolation, provided flyable paths
coinciding with the kinematic constraints imposed by the control system. This module was
then coupled with an actuator fixated frontier exploration strategy based on point cloud
clustering to provide fairly efficient map coverage.

For guidance and control, a cascaded control system consisting of a guidance and a
kinematic control algorithm with the UGAS property was designed. Consequently, full
body convergence can theoretically be achieved for 3D path following on general curves.
This result is validated through simulations on a straight line and two hairpin turns with
differing curvature with deviations resulting from base and joint velocity constraints. This
experimental setup also demonstrate how the system can be tuned to minimize base link
and end-effector overshoot and convergence time under these constraints. The cascade is
solely kinematic and should be extended with a dynamic controller to ensure robustness in
the presence of noisy sensor data.

17.1 Further Research

In any project, there is always the constraint of time. The following is a collection of topics
and improvements the team would have continued with given more time:

• Test MPNet [106] on submarine data through transfer learning. Training data for this
could be generated using the presented planner, or any other for that matter, and



17.1. FURTHER RESEARCH 245

could thus be specialized to different applications.

• It could be interesting to further develop on AEP [172] to better suit underwater
environments/dynamics, e.g. through the use of alternative planning strategies or
fusing camera and sonar measurement to be used for optimal viewpoint estimation.

• To better handle energy- or time constrained cases, these aspects could be included
in the planning task. This could possibly be accomplished by including current
measurements, or by performing more task specific planning by including more of
the kinematics and making use of velocity measurements.

• More closely incorporate SLAM information into planning. Although this makes for
a less general system, it could allow for the system to better utilize information about
the map, landmarks, and uncertainties for improved goal selection and handling of
the loss of track.

• An extension of the cascaded stability proof including dynamic control. The develop-
ment of such a cascaded control system makes it possible to account for software and
hardware delays, measurement noise and modelling errors in a robust manner.

• Realize the control system implementation in conjunction with the SLAM module on
an actual USM. Exploration of different yaw- and pitch-rates the SLAM module can
handle in various conditions, and how the resulting performance affect the control
system would be particularly interesting.

• Other networks should be tested and compared to YOLOv3-tiny to see if any solutions
would be a more suitable choice.

• Alternative approaches for improving the dataset, such as image augmentation, should
be tried in addition to the proposed strategy for improving robustness.

• Traditional computer vision techniques, such as sliding window or RANSAC, should
be tried to improve the robustness of the solution as well as narrow in on the spatial
location of the pipes within the bounding box.

• The dataset should be labeled on the form required by segmentation networks to see
if such networks can be better suited than object detection networks.

• A light source should be added to the hardware platform to enable the system to
perform without the heavy dependency upon external light sources.

• Improve the SLAM system to incorporate the stereo information provided by the
hardware platform.



246 17. CONCLUSION

• Adding additional sensors to see how they impact the robustness of the SLAM system,
such as Doppler velocity log and acoustic underwater positioning.



Bibliography

[1] K. S. Gjerden, Dynamic Path Planning for Autonomous Exploration. 2018, Unpublished, specialization
project.

[2] O. B. Utbjoe, Autonomous navigation and mapping for underwater snake robots, Unpublished, special-
ization project, 2018.

[3] V. A., Autonomous navigation and mapping for underwater snake robots. 2018, Unpublished, special-
ization project.

[4] J. A. Dowdeswell, J. Evans, R. Mugford, G. Griffiths, S. Mcphail, N. Millard, P. Stevenson, M. A.
Brandon, C. Banks, K. J. Heywood, M. R. Price, P. A. Dodd, A. Jenkins, K. W. Nicholls, D. Hayes,
E. P. Abrahamsen, P. Tyler, B. Bett, D. Jones, P. Wadhams, J. P. Wilkinson, K. Stansfield, and S. Ackley,
“Instruments and Methods Autonomous underwater vehicles (AUVs) and investigations of the ice-
ocean interface in Antarctic and Arctic waters,” Tech. Rep. [Online]. Available: www.bodc.ac.uk/.

[5] G. Marani, S. K. Choi, and J. Yuh, “Underwater autonomous manipulation for intervention missions
AUVs,” Ocean Engineering, vol. 36, no. 1, pp. 15–23, 2009.

[6] R. B. Wynn, V. A. Huvenne, T. P. Le Bas, B. J. Murton, D. P. Connelly, B. J. Bett, H. A. Ruhl, K. J.
Morris, J. Peakall, D. R. Parsons, E. J. Sumner, S. E. Darby, R. M. Dorrell, and J. E. Hunt, “Autonomous
Underwater Vehicles (AUVs): Their past, present and future contributions to the advancement of
marine geoscience,” Marine Geology, vol. 352, pp. 451–468, 2014. [Online]. Available: http://dx.
doi.org/10.1016/j.margeo.2014.03.012.

[7] A. Lavin, “Optimized Mission Planning for Planetary Exploration Rovers,” CoRR, vol. abs/1511.0,
2015. [Online]. Available: http://arxiv.org/abs/1511.00195.

[8] P. Tompkins, “Mission-directed path planning for planetary rover exploration,” PhD thesis, The
Robotics Institute, Carnegie Mellon University, 2005, pp. 1–192. [Online]. Available: http : / /
citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.69.9399&amp;rep=rep1&amp;type=

pdf.

[9] M. Faria, I. Maza, and A. Viguria, “Applying Frontier Cells Based Exploration and Lazy Theta* Path
Planning over Single Grid-Based World Representation for Autonomous Inspection of Large 3D
Structures with an UAS,” Journal of Intelligent and Robotic Systems: Theory and Applications, pp. 1–21,
2018.

[10] C. Cadena, L. Carlone, H. Carrillo, Y. Latif, D. Scaramuzza, J. Neira, I. Reid, and J. J. Leonard, “Past,
Present, and Future of Simultaneous Localization And Mapping: Towards the Robust-Perception
Age,” IEEE Trans. Robotics, vol. 32, no. 6, pp. 1309–1332, 2016. [Online]. Available: http://arxiv.
org/abs/1606.05830%0Ahttp://dx.doi.org/10.1109/TRO.2016.2624754.

[11] L.-Y. Weng, M. Li, Z. Gong, and S. Ma, “Underwater object detection and localization based on
multi-beam sonar image processing,” 2012 IEEE International Conference on Robotics and Biomimetics
(ROBIO), no. December, pp. 514–519, 2012. [Online]. Available: http://ieeexplore.ieee.org/
lpdocs/epic03/wrapper.htm?arnumber=6491018.

247

www.bodc.ac.uk/
http://dx.doi.org/10.1016/j.margeo.2014.03.012
http://dx.doi.org/10.1016/j.margeo.2014.03.012
http://arxiv.org/abs/1511.00195
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.69.9399&amp;rep=rep1&amp;type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.69.9399&amp;rep=rep1&amp;type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.69.9399&amp;rep=rep1&amp;type=pdf
http://arxiv.org/abs/1606.05830%0Ahttp://dx.doi.org/10.1109/TRO.2016.2624754
http://arxiv.org/abs/1606.05830%0Ahttp://dx.doi.org/10.1109/TRO.2016.2624754
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6491018
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6491018


248 BIBLIOGRAPHY

[12] M. Leonardi, A. Stahl, M. Gazzea, M. Ludvigsen, I. Rist-Christensen, and S. M. Nornes, “Vision based
obstacle avoidance and motion tracking for autonomous behaviors in underwater vehicles,” OCEANS
2017 - Aberdeen, vol. 2017-Octob, no. June, pp. 1–10, 2017.

[13] J. Sverdrup-Thygeson, E. Kelasidi, K. Y. Pettersen, and J. T. Gravdahl, “The Underwater Swimming
Manipulator A Bioinspired Solution for Subsea Operations,” IEEE Journal of Oceanic Engineering,
vol. 43, no. 2, pp. 402–417, Apr. 2018. [Online]. Available: https://ieeexplore.ieee.org/
document/8121980/.

[14] P. J. From, Vehicle-manipulator systems : Modeling for simulation, analysis, and control, eng, London,
2014.

[15] T. I. Fossen, Handbook of Marine Craft Hydrodynamics and Motion Control. 2011, pp. 15–41.

[16] J. Sverdrup-Thygeson, E. Kelasidi, K. Y. Pettersen, and J. T. Gravdahl, “The underwater swimming
manipulator;a bioinspired solution for subsea operations,” eng, Oceanic Engineering, IEEE Journal of,
vol. 43, no. 2, pp. 402–417, 2018.

[17] O. Egeland and T. Gravdahl, Modeling and Simulation for Automatic Control. 2002, vol. 53, pp. 1689–
1699.

[18] P. Liljeb ck, K. Y. Pettersen, Stavdahl, and J. T. Gravdahl, A 3d motion planning framework for snake
robots, eng, 2014. [Online]. Available: http://hdl.handle.net/11250/286585.

[19] B. Siciliano, L. Sciavicco, L. Villani, and G. Oriolo, Robotics: Modelling, Planning and Control, 1st.
Springer Publishing Company, Incorporated, 2008.

[20] M. M. M. Manhães, S. A. Scherer, M. Voss, L. R. Douat, and T. Rauschenbach, “UUV Simulator: A
Gazebo-based package for underwater intervention and multi-robot simulation,” in OCEANS 2016
MTS/IEEE Monterey, OCE 2016, 2016.

[21] L. F. Melo and T. R. Bott, “Biofouling in water systems,” Experimental Thermal and Fluid Science,
vol. 14, no. 4, pp. 375–381, 1997.

[22] E. Rublee, V. Rabaud, K. Konolige, and G. Bradski, “ORB: An efficient alternative to SIFT or SURF,” in
2011 International Conference on Computer Vision, IEEE, Nov. 2011.

[23] M. Samek and P. C. Montgomery, “State-oriented programming,” 2000.

[24] B. H. Liskov and J. M. Wing, “A behavioral notion of subtyping,” ACM Trans. Program. Lang. Syst.,
vol. 16, no. 6, pp. 1811–1841, Nov. 1994. [Online]. Available: http://doi.acm.org/10.1145/
197320.197383.

[25] C. Forster, L. Carlone, F. Dellaert, and D. Scaramuzza, “On-manifold preintegration for real-time
visual–inertial odometry,” IEEE Transactions on Robotics, vol. 33, no. 1, pp. 1–21, Feb. 2016.

[26] IEEE standard specification format guide and test procedure for single-axis interferometric fiber optic
gyros, Feb. 1998.

[27] O. J. Woodman, “An introduction to inertial navigation,” University of Cambridge, Computer Labora-
tory, Tech. Rep., 2007.

[28] R. Mur-Artal and J. D. Tardos, “Visual-inertial monocular SLAM with map reuse,” IEEE Robotics and
Automation Letters, vol. 2, no. 2, pp. 796–803, Apr. 2017.

[29] C. Forster, Z. Zhang, M. Gassner, M. Werlberger, and D. Scaramuzza, “SVO: Semidirect visual
odometry for monocular and multicamera systems,” IEEE Transactions on Robotics, vol. 33, no. 2,
pp. 249–265, Apr. 2017.

https://ieeexplore.ieee.org/document/8121980/
https://ieeexplore.ieee.org/document/8121980/
http://hdl.handle.net/11250/286585
http://doi.acm.org/10.1145/197320.197383
http://doi.acm.org/10.1145/197320.197383


BIBLIOGRAPHY 249

[30] J. Engel, V. Koltun, and D. Cremers, “Direct sparse odometry,” Jul. 9, 2016. arXiv: http://arxiv.
org/abs/1607.02565v2 [cs.CV].

[31] D. Scaramuzza, A. Martinelli, and R. Siegwart, “A flexible technique for accurate omnidirectional
camera calibration and structure from motion,” in Fourth IEEE International Conference on Computer
Vision Systems (ICVS’06), IEEE, 2006.

[32] T. Łuczyński, M. Pfingsthorn, and A. Birk, “The pinax-model for accurate and efficient refraction
correction of underwater cameras in flat-pane housings,” Ocean Engineering, vol. 133, pp. 9–22, Mar.
2017.

[33] D. Li, L. Xu, X. S. Tang, S. Sun, X. Cai, and P. Zhang, “3D imaging of greenhouse plants with an
inexpensive binocular stereo vision system,” Remote Sensing, vol. 9, no. 5, 2017.

[34] J. Weng, P. Cohen, and M. Herniou, “Camera calibration with distortion models and accuracy
evaluation,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 14, no. 10, pp. 965–
980, 1992.

[35] N. Kaempchen and K. Dietmayer, “Data synchronization strategies for multi-sensor fusion,” in Proceed-
ings of the IEEE Conference on Intelligent Transportation Systems, vol. 85, 2003, pp. 1–9. [Online]. Avail-
able: https://www.researchgate.net/profile/Nico_Kaempchen/publication/228537991_
Data_synchronization_strategies_for_multi-sensor_fusion/links/564050da08ae45b5d28d3ab6.

pdf.

[36] J. Nikolic, J. Rehder, M. Burri, P. Gohl, S. Leutenegger, P. T. Furgale, and R. Siegwart, “A synchronized
visual-inertial sensor system with FPGA pre-processing for accurate real-time SLAM,” in 2014 IEEE
International Conference on Robotics and Automation (ICRA), IEEE, May 2014.

[37] P. Furgale, T. D. Barfoot, and G. Sibley, “Continuous-time batch estimation using temporal basis
functions,” in 2012 IEEE International Conference on Robotics and Automation, IEEE, May 2012.

[38] P. Furgale, J. Rehder, and R. Siegwart, “Unified temporal and spatial calibration for multi-sensor
systems,” in 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, IEEE, Nov. 2013.

[39] D. Galvez-López and J. D. Tardos, “Bags of binary words for fast place recognition in image sequences,”
IEEE Transactions on Robotics, vol. 28, no. 5, pp. 1188–1197, Oct. 2012.

[40] M. Cummins and P. Newman, “FAB-MAP: Probabilistic localization and mapping in the space of
appearance,” The International Journal of Robotics Research, vol. 27, no. 6, pp. 647–665, Jun. 2008.

[41] H. Strasdat, J. Montiel, and A. J. Davison, “Visual SLAM: Why filter?” Image and Vision Computing,
vol. 30, no. 2, pp. 65–77, Feb. 2012.

[42] F. Kschischang, B. Frey, and H.-A. Loeliger, “Factor graphs and the sum-product algorithm,” IEEE
Transactions on Information Theory, vol. 47, no. 2, pp. 498–519, 2001.

[43] R. Kummerle, G. Grisetti, H. Strasdat, K. Konolige, and W. Burgard, “G2o: A general framework for
graph optimization,” in 2011 IEEE International Conference on Robotics and Automation, IEEE, May
2011.

[44] S. Agarwal, K. Mierle, et al., Ceres solver, http://ceres-solver.org.

[45] G. Klein and D. Murray, “Parallel tracking and mapping for small AR workspaces,” in 2007 6th IEEE
and ACM International Symposium on Mixed and Augmented Reality, IEEE, Nov. 2007.

[46] C. Forster, M. Pizzoli, and D. Scaramuzza, “SVO: Fast semi-direct monocular visual odometry,” in
2014 IEEE International Conference on Robotics and Automation (ICRA), IEEE, May 2014.

http://arxiv.org/abs/http://arxiv.org/abs/1607.02565v2
http://arxiv.org/abs/http://arxiv.org/abs/1607.02565v2
https://www.researchgate.net/profile/Nico_Kaempchen/publication/228537991_Data_synchronization_strategies_for_multi-sensor_fusion/links/564050da08ae45b5d28d3ab6.pdf
https://www.researchgate.net/profile/Nico_Kaempchen/publication/228537991_Data_synchronization_strategies_for_multi-sensor_fusion/links/564050da08ae45b5d28d3ab6.pdf
https://www.researchgate.net/profile/Nico_Kaempchen/publication/228537991_Data_synchronization_strategies_for_multi-sensor_fusion/links/564050da08ae45b5d28d3ab6.pdf
http://ceres-solver.org


250 BIBLIOGRAPHY

[47] R. Mur-Artal and J. D. Tardos, “ORB-SLAM2: An open-source SLAM system for monocular, stereo,
and RGB-d cameras,” IEEE Transactions on Robotics, vol. 33, no. 5, pp. 1255–1262, Oct. 2016.

[48] T. Qin, P. Li, and S. Shen, “VINS-mono: A robust and versatile monocular visual-inertial state
estimator,” IEEE Transactions on Robotics, vol. 34, no. 4, pp. 1004–1020, Aug. 2018.

[49] H. Liu, M. Chen, G. Zhang, H. Bao, and Y. Bao, “Ice-ba: Incremental, consistent and efficient bundle
adjustment for visual-inertial slam,” in Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, 2018, pp. 1974–1982.

[50] J. Engel, T. Schöps, and D. Cremers, “Lsd-slam: Large-scale direct monocular slam,” in Computer Vision
– ECCV 2014, D. Fleet, T. Pajdla, B. Schiele, and T. Tuytelaars, Eds., Cham: Springer International
Publishing, 2014, pp. 834–849.

[51] R. Mur-Artal, J. M. M. Montiel, and J. D. Tardos, “ORB-SLAM: A versatile and accurate monocular
SLAM system,” IEEE Transactions on Robotics, vol. 31, no. 5, pp. 1147–1163, Oct. 2015.

[52] M. Kaess, A. Ranganathan, and F. Dellaert, “iSAM: Incremental smoothing and mapping,” IEEE
Transactions on Robotics, vol. 24, no. 6, pp. 1365–1378, Dec. 2008.

[53] M. Kaess, H. Johannsson, R. Roberts, V. Ila, J. Leonard, and F. Dellaert, “iSAM2: Incremental smoothing
andmappingwith fluid relinearization and incremental variable reordering,” in 2011 IEEE International
Conference on Robotics and Automation, IEEE, May 2011.

[54] V. Ila, L. Polok, M. Solony, and P. Svoboda, “SLAM++ -a highly efficient and temporally scalable
incremental SLAM framework,” The International Journal of Robotics Research, vol. 36, no. 2, pp. 210–
230, Feb. 2017.

[55] A. P. Bustos, T.-J. Chin, A. Eriksson, and I. Reid, “Visual slam: Why bundle adjust?,” Feb. 11, 2019.
arXiv: http://arxiv.org/abs/1902.03747v1 [cs.CV].

[56] J. G. Mangelson, J. Liu, R. M. Eustice, and R. Vasudevan, “Guaranteed globally optimal planar pose
graph and landmark slam via sparse-bounded sums-of-squares programming,” Sep. 20, 2018. arXiv:
http://arxiv.org/abs/1809.07744v1 [cs.RO].

[57] A. Allevato, Converting between ros images and opencv images (c++), [Online; last edit 2017-04-20], Apr.
2017. [Online]. Available: http://wiki.ros.org/cv_bridge/Tutorials/UsingCvBridgeToConvertBetweenROSImagesAndOpenCVImages.

[58] G. Bradski and A. Kaehler, Learning OpenCV. O Reilly Media, Inc., 2008.

[59] M. Bjelonic, YOLO ROS: Real-time object detection for ROS, https://github.com/leggedrobotics/
darknet_ros, 2016–2018.

[60] SharkD, File:hsv color solid cylinder.png, [Online; accessed June 13, 2019], 2018. [Online]. Available:
https://commons.wikimedia.org/wiki/File:HSV_color_solid_cylinder.png.

[61] Glosser.ca, File:colored neural network.svg, [Online; accessed June 13, 2019], 2013. [Online]. Available:
https://commons.wikimedia.org/wiki/File:Colored_neural_network.svg.

[62] S. J. Lee, T. Chen, L. Yu, and C. H. Lai, “Image Classification Based on the Boost Convolutional Neural
Network,” IEEE Access, vol. 6, pp. 12 755–12 768, 2018.

[63] M. W. Gardner and S. R. Dorling, “Artificial neural networks (the multilayer perceptron) - a review of
applications in the atmospheric sciences,” Atmospheric Environment, vol. 32, no. 14-15, pp. 2627–2636,
1998.

http://arxiv.org/abs/http://arxiv.org/abs/1902.03747v1
http://arxiv.org/abs/http://arxiv.org/abs/1809.07744v1
http://wiki.ros.org/cv_bridge/Tutorials/UsingCvBridgeToConvertBetweenROSImagesAndOpenCVImages
https://github.com/leggedrobotics/darknet_ros
https://github.com/leggedrobotics/darknet_ros
https://commons.wikimedia.org/wiki/File:HSV_color_solid_cylinder.png
https://commons.wikimedia.org/wiki/File:Colored_neural_network.svg


BIBLIOGRAPHY 251

[64] Zadeh, Reza Bosagh and Ramsundar, Bharath, Chapter 4. fully connected deep networks, [Online;
accessed June 13, 2019], [Online]. Available: https : / / www . oreilly . com / library / view /
tensorflow-for-deep/9781491980446/ch04.html.

[65] M. R. M. Talabis, R. McPherson, I. Miyamoto, J. L. Martin, and D. Kaye, “Analytics Defined,” Informa-
tion Security Analytics, pp. 1–12, 2014.

[66] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet Classification with Deep Convolutional
Neural Networks,” ImageNet Classification with Deep Convolutional Neural Networks, pp. 1097–1105,
2012. [Online]. Available: http://papers.nips.cc/paper/4824-imagenet-classification-
w%5Cnpapers3://publication/uuid/1ECF396A-CEDA-45CD-9A9F-03344449DA2A.

[67] Shaikh, Faizan, Deep learning vs. machine learning the essential differences you need to know!
[Online; accessed June 13, 2019], 2017. [Online]. Available: https://www.analyticsvidhya.com/
blog/2017/04/comparison-between-deep-learning-machine-learning/.

[68] TUM Wiki, Image Semantic Segmentation, [Online; accessed June 13, 2019], 2017. [Online]. Available:
https://wiki.tum.de/display/lfdv/Image+Semantic+Segmentation.

[69] Tzutalin, LabelImg, Online; last accessed 03-May-2019, 2015. [Online]. Available: https://github.
com/tzutalin/labelImg.

[70] S.-i. AMARI, Neural Information Processing, 823. Springer International Publishing, 2017, vol. 90,
pp. 758–759. [Online]. Available: http://dx.doi.org/10.1007/978-3-030-04212-7_32.

[71] R. Girshick, J. Donahue, T. Darrell, U. C. Berkeley, and J. Malik, “(r-cnn) Rich feature hierarchies for
accurate object detection and semantic segmentation,” 2014 IEEE Conference on Computer Vision and
Pattern Recognition, pp. 2–9, 2012. [Online]. Available: http://ieeexplore.ieee.org/document/
6909475/.

[72] R. Girshick, “R-CNN_ICCV_2015_paper,” International Conference on Computer Vision, pp. 1440–1448,
2015.

[73] S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN: Towards Real-Time Object Detection with
Region Proposal Networks Shaoqing,” IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 39, no. 6, pp. 1137–1149, 2017.

[74] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look once: Unified, real-time object
detection,” Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern
Recognition, vol. 2016-Decem, pp. 779–788, 2016.

[75] J. Redmon and A. Farhadi, “YOLO9000: Better, faster, stronger,” Proceedings - 30th IEEE Conference on
Computer Vision and Pattern Recognition, CVPR 2017, vol. 2017-Janua, pp. 6517–6525, 2017.

[76] ——, “YOLOv3: An Incremental Improvement,” 2018. [Online]. Available: http://arxiv.org/abs/
1804.02767.

[77] J. Redmon, Darknet: Open source neural networks in c, http://pjreddie.com/darknet/, 2013–2016.

[78] G. P. Zhang, “Neural networks for classification: a survey,” IEEE Transactions on Systems, Man, and
Cybernetics, Part C: Applications and Reviews, vol. 30, no. 4, pp. 451–462, 2000.

[79] J.-c. Latombe, Robot motion plannig, 9. Springer Science + Business Media, LLC, 1991, vol. 53, pp. 58–
105.

[80] S. M. LaValle, “Planning algorithms,” Planning Algorithms, vol. 9780521862, pp. 1–826, 2006.

https://www.oreilly.com/library/view/tensorflow-for-deep/9781491980446/ch04.html
https://www.oreilly.com/library/view/tensorflow-for-deep/9781491980446/ch04.html
http://papers.nips.cc/paper/4824-imagenet-classification-w%5Cnpapers3://publication/uuid/1ECF396A-CEDA-45CD-9A9F-03344449DA2A
http://papers.nips.cc/paper/4824-imagenet-classification-w%5Cnpapers3://publication/uuid/1ECF396A-CEDA-45CD-9A9F-03344449DA2A
https://www.analyticsvidhya.com/blog/2017/04/comparison-between-deep-learning-machine-learning/
https://www.analyticsvidhya.com/blog/2017/04/comparison-between-deep-learning-machine-learning/
https://wiki.tum.de/display/lfdv/Image+Semantic+Segmentation
https://github.com/tzutalin/labelImg
https://github.com/tzutalin/labelImg
http://dx.doi.org/10.1007/978-3-030-04212-7_32
http://ieeexplore.ieee.org/document/6909475/
http://ieeexplore.ieee.org/document/6909475/
http://arxiv.org/abs/1804.02767
http://arxiv.org/abs/1804.02767
http://pjreddie.com/darknet/


252 BIBLIOGRAPHY

[81] S. M. Lavalle, “Motion planning: Part I: The essentials,” IEEE Robotics and Automation Magazine,
vol. 18, no. 1, pp. 79–89, 2011.

[82] A. Tsourdos, B. White, and M. Shanmugavel, Cooperative Path Planning of Unmanned Aerial Vehicles
Cooperative Path Planning of Unmanned Aerial Vehicles Aerospace Series List Design and Analysis of
Composite Structures: With Applications to Aerospace Structures. 2011.

[83] H. K. Khalil, Nonlinear Systems, 3rd. Prentice Hall, 2002.

[84] F. A. Leve, B. J. Hamilton, and M. A. Peck, Spacecraft momentum control systems. 2015, pp. 1–247.

[85] T. W. Gamelin and R. E. Greene, Introduction to Topology, 2nd. Mineola, N.Y.: Drover Publications,
1999, p. 234.

[86] Shonk, “Special Groups and Projective Planes,” Tech. Rep. [Online]. Available: http : / / www .
sellingwaves.com/projplane.pdf.

[87] M. do Carmo, M. Ritoré, and A. Ros, Compact minimal hypersurfaces with index one in the real
projective space. Springer, 2012, pp. 407–414.

[88] ProofWiki.com, Projective Space, 2017. [Online]. Available: https : / / proofwiki . org / wiki /
Definition:Projective_Space.

[89] A. Lekkas and T. I. Fossen, Introduction to Path Planning, Properties of Curves, Dubins Paths and
Clothoids - TTK8190 Lecture Notes (NTNU).

[90] D. Devaurs, T. Simeon, and J. Cortés, “Optimal Path Planning in Complex Cost Spaces With Sampling-
Based Algorithms,” IEEE Transactions on Automation Science and Engineering, vol. 13, no. 2, pp. 415–
424, 2016. [Online]. Available: https://hal.archives-ouvertes.fr/hal-01231482.

[91] J. T. Schwartz and M. Sharir, “On the "piano movers" problem. II. General techniques for computing
topological properties of real algebraic manifolds,” Advances in Applied Mathematics, vol. 4, no. 3,
pp. 298–351, 1983.

[92] T. Lozano-Pérez and M. A. Wesley, “An algorithm for planning collision-free paths among polyhedral
obstacles,” Communications of the ACM, vol. 22, no. 10, pp. 560–570, 1979. [Online]. Available:
http://portal.acm.org/citation.cfm?doid=359156.359164.

[93] T. Lozano-Perez, “Spatial Planning: A Configuration Space Approach,” Computers, IEEE Transactions
on, vol. c, no. 2, pp. 108–120, 1983. [Online]. Available: http://lis.csail.mit.edu/pubs/tlp/
spatial-planning.pdf.

[94] B. Chazelle, Approximation and Decomposition of Shapes, 1987. [Online]. Available: https://www.
cs.princeton.edu/~chazelle/pubs/ApproxDecompShapes.pdf.

[95] J. H. Reif, “Complexity of the mover’s problem and generalizations,” 20th Annual Symposium on Foun-
dations of Computer Science (sfcs 1979), pp. 421–427, 1979. [Online]. Available: http://ieeexplore.
ieee.org/document/4568037/.

[96] J. E. Hopcroft, J. T. Schwartz, and M. Sharir, “On the Complexity of Motion Planning for Multiple
Independent Objects; PSPACE-Hardness of the "Warehouseman’s Problem",” Tech. Rep. [Online].
Available: http://journals.sagepub.com/doi/pdf/10.1177/027836498400300405.

[97] J. F. Canny, The Complexity of Robot Motion Planning. 1988, vol. Doctoral D, p. 195. [Online]. Available:
https://ia801604.us.archive.org/21/items/TheComplexityOfRobotMotionPlanning/The%

20Complexity%20of%20Robot%20Motion%20Planning.pdf%20http://books.google.com/

books?hl=en&lr=&id=_VRM_sczrKgC&pgis=1.

http://www.sellingwaves.com/projplane.pdf
http://www.sellingwaves.com/projplane.pdf
https://proofwiki.org/wiki/Definition:Projective_Space
https://proofwiki.org/wiki/Definition:Projective_Space
https://hal.archives-ouvertes.fr/hal-01231482
http://portal.acm.org/citation.cfm?doid=359156.359164
http://lis.csail.mit.edu/pubs/tlp/spatial-planning.pdf
http://lis.csail.mit.edu/pubs/tlp/spatial-planning.pdf
https://www.cs.princeton.edu/~chazelle/pubs/ApproxDecompShapes.pdf
https://www.cs.princeton.edu/~chazelle/pubs/ApproxDecompShapes.pdf
http://ieeexplore.ieee.org/document/4568037/
http://ieeexplore.ieee.org/document/4568037/
http://journals.sagepub.com/doi/pdf/10.1177/027836498400300405
https://ia801604.us.archive.org/21/items/TheComplexityOfRobotMotionPlanning/The%20Complexity%20of%20Robot%20Motion%20Planning.pdf%20http://books.google.com/books?hl=en&lr=&id=_VRM_sczrKgC&pgis=1
https://ia801604.us.archive.org/21/items/TheComplexityOfRobotMotionPlanning/The%20Complexity%20of%20Robot%20Motion%20Planning.pdf%20http://books.google.com/books?hl=en&lr=&id=_VRM_sczrKgC&pgis=1
https://ia801604.us.archive.org/21/items/TheComplexityOfRobotMotionPlanning/The%20Complexity%20of%20Robot%20Motion%20Planning.pdf%20http://books.google.com/books?hl=en&lr=&id=_VRM_sczrKgC&pgis=1


BIBLIOGRAPHY 253

[98] O. Khatib, “Real-Time Obstacle Avoidance for Manipulators and Mobile Robots,” The International
Journal of Robotics Research, vol. 5, no. 1, 1986.

[99] S. Campbell, W. Naeem, and G. W. Irwin, “A review on improving the autonomy of unmanned surface
vehicles through intelligent collision avoidance manoeuvres,” Annual Reviews in Control, vol. 36, no. 2,
pp. 267–283, 2012. [Online]. Available: http://dx.doi.org/10.1016/j.arcontrol.2012.09.008.

[100] M. Imran and F. Kunwar, “A hybrid path planning technique developed by integrating global and
local path planner,” 2016 International Conference on Intelligent Systems Engineering, ICISE 2016,
pp. 118–122, 2016.

[101] A. M. Lekkas, A. L. Roald, and M. Breivik, “Online Path Planning for Surface Vehicles Exposed
to Unknown Ocean Currents Using Pseudospectral Optimal Control,” IFAC-PapersOnLine, vol. 49,
no. 23, pp. 1–7, 2016. [Online]. Available: https://linkinghub.elsevier.com/retrieve/pii/
S2405896316319000.

[102] P. Tompkins, A. Stentz, and D. Wettergreen, “Global path planning for Mars rover exploration,” IEEE
Aerospace Conference Proceedings, vol. 2, pp. 801–814, 2004.

[103] D. S. Rao and S. B. Williams, Large-scale path planning for Underwater Gliders in ocean currents, 2009.
[Online]. Available: https://www.semanticscholar.org/paper/Large-scale-path-planning-
for-Underwater-Gliders-in-Rao-Williams/2d5c2dae59cee6a2664148026c5d1b768fa7075c.

[104] Z. Zeng, K. Sammut, L. Lian, F. He, A. Lammas, and Y. Tang, “A comparison of optimization techniques
for AUV path planning in environments with ocean currents,” Robotics and Autonomous Systems,
vol. 82, pp. 61–72, 2016. [Online]. Available: http://dx.doi.org/10.1016/j.robot.2016.03.011.

[105] F. Sadeghi and S. Levine, “CAD2RL: Real Single-Image Flight without a Single Real Image,” Nov. 2016.
[Online]. Available: http://arxiv.org/abs/1611.04201.

[106] A. H. Qureshi, M. J. Bency, and M. C. Yip, “Motion Planning Networks,” Tech. Rep. [Online]. Available:
https://sites.google.com/view/mpnet/home..

[107] F. Engelmann, T. Kontogianni, A. Hermans, and B. Leibe, “Exploring Spatial Context for 3D Semantic
Segmentation of Point Clouds,” Feb. 2018. [Online]. Available: http://arxiv.org/abs/1802.
01500%20http://dx.doi.org/10.1109/ICCVW.2017.90.

[108] L. E. Kavraki, “RANDOM NETWORKS IN CONFIGURATION SPACE FOR FAST PATH PLANNING,”
Tech. Rep., 1994. [Online]. Available: http://i.stanford.edu/pub/cstr/reports/cs/tr/95/
1535/CS-TR-95-1535.pdf.

[109] L. E. Kavraki, P. Švestka, J. C. Latombe, and M. H. Overmars, “Probabilistic roadmaps for path
planning in high-dimensional configuration spaces,” IEEE Transactions on Robotics and Automation,
vol. 12, no. 4, pp. 566–580, 1996.

[110] A.-a. Agha-mohammadi, S. Chakravorty, and N. M. Amato, “Sampling-based nonholonomic mo-
tion planning in belief space via Dynamic Feedback Linearization-based FIRM,” in 2012 IEEE/RSJ
International Conference on Intelligent Robots and Systems, IEEE, Oct. 2012, pp. 4433–4440. [Online].
Available: http://ieeexplore.ieee.org/document/6385970/.

[111] P. Corke, Robotics, Vision and Control, ser. Springer Tracts in Advanced Robotics. Cham: Springer
International Publishing, 2017, vol. 118. [Online]. Available: http://link.springer.com/10.
1007/978-3-319-54413-7.

[112] K. Solovey and M. Kleinbort, “The Critical Radius in Sampling-based Motion Planning *,” Tech. Rep.,
2018. [Online]. Available: https://arxiv.org/pdf/1709.06290.pdf.

http://dx.doi.org/10.1016/j.arcontrol.2012.09.008
https://linkinghub.elsevier.com/retrieve/pii/S2405896316319000
https://linkinghub.elsevier.com/retrieve/pii/S2405896316319000
https://www.semanticscholar.org/paper/Large-scale-path-planning-for-Underwater-Gliders-in-Rao-Williams/2d5c2dae59cee6a2664148026c5d1b768fa7075c
https://www.semanticscholar.org/paper/Large-scale-path-planning-for-Underwater-Gliders-in-Rao-Williams/2d5c2dae59cee6a2664148026c5d1b768fa7075c
http://dx.doi.org/10.1016/j.robot.2016.03.011
http://arxiv.org/abs/1611.04201
https://sites.google.com/view/mpnet/home.
http://arxiv.org/abs/1802.01500%20http://dx.doi.org/10.1109/ICCVW.2017.90
http://arxiv.org/abs/1802.01500%20http://dx.doi.org/10.1109/ICCVW.2017.90
http://i.stanford.edu/pub/cstr/reports/cs/tr/95/1535/CS-TR-95-1535.pdf
http://i.stanford.edu/pub/cstr/reports/cs/tr/95/1535/CS-TR-95-1535.pdf
http://ieeexplore.ieee.org/document/6385970/
http://link.springer.com/10.1007/978-3-319-54413-7
http://link.springer.com/10.1007/978-3-319-54413-7
https://arxiv.org/pdf/1709.06290.pdf


254 BIBLIOGRAPHY

[113] A. Elfes, “Using Occupancy Grids for Mobile Robot Perception and Navigation,” Computer, vol. 22,
no. 6, pp. 46–57, 1989.

[114] R. R. Murphy,AI Robotics. 2000, p. 466. [Online]. Available: http://scholar.google.com/scholar?
hl=en&btnG=Search&q=intitle:Ai+robotics#5%5Cnhttp://scholar.google.com/scholar?

hl=en&btnG=Search&q=intitle:AI+Robotics%235.

[115] D. Meagher, “Octree Encoding: A New Technique for the Representation, Manipulation and Display
of Arbitrary 3-D Objects by Computer,” Rensselaer Polytechnic Institute, no. Technical Report IPL-TR-
80-111, 1980.

[116] M. Seda, “RoadmapMethods vs. Cell Decomposition in Robot Motion Planning,” Proceedings of the 6th
WSEAS International Conference on Signal Processing, Robotics and Automation, pp. 127–132, 2007. [On-
line]. Available: https://pdfs.semanticscholar.org/d4b6/2b89acbf9eb50782f04c4b38c47cac515dbe.
pdf.

[117] M. De Berg, O. Cheong, M. Van Kreveld, and M. Overmars, Computational geometry: Algorithms and
applications. 2008, pp. 1–386.

[118] M. Candeloro, A. M. Lekkas, A. J. Sørensen, and T. I. Fossen, “Continuous Curvature Path Plan-
ning using Voronoi diagrams and Fermat’s spirals,” IFAC Proceedings Volumes, vol. 46, pp. 132–
137, 2013. [Online]. Available: https : / / ac . els - cdn . com / S147466701646146X / 1 - s2 . 0 -
S147466701646146X-main.pdf?_tid=13204da2-b21c-4d05-a4b9-325f8b84955e&acdnat=

1543911094_a861ac33fcc8a82a74cdb71f03c3bd58.

[119] C. B. Barber, D. P. Dobkin, and H. Huhdanpaa, “The quickhull algorithm for convex hulls,” ACM
Transactions on Mathematical Software, vol. 22, no. 4, pp. 469–483, Dec. 1996. [Online]. Available:
http://dpd.cs.princeton.edu/Papers/BarberDobkinHuhdanpaa.pdf.

[120] H. Oleynikova, Z. Taylor, R. Siegwart, and J. Nieto, “Sparse 3D Topological Graphs for Micro-Aerial
Vehicle Planning,” no. Section III, 2018. [Online]. Available: http://arxiv.org/abs/1803.04345.

[121] A. Hornung, K. M. Wurm, M. Bennewitz, C. Stachniss, and W. Burgard, “OctoMap: An Efficient
Probabilistic 3DMapping Framework Based onOctrees,”Autonomous Robots, 2013. [Online]. Available:
http://octomap.github.com..

[122] M. Candeloro, A. M. Lekkas, and A. J. Sørensen, “A Voronoi-diagram-based dynamic path-planning
system for underactuated marine vessels,” Control Engineering Practice, vol. 61, no. February, pp. 41–
54, 2017. [Online]. Available: http://dx.doi.org/10.1016/j.conengprac.2017.01.007.

[123] M. Candeloro, A. M. Lekkas, J. Hegde, and A. J. Sorensen, “A 3D dynamic Voronoi diagram-based
path-planning system for UUVs,” OCEANS 2016 MTS/IEEE Monterey, OCE 2016, 2016.

[124] J. Y. Yen, “An algorithm for finding shortest routes from all source nodes to a given destination
in general networks,” Quarterly of Applied Mathematics, vol. 27, no. 4, pp. 526–530, 1970. [Online].
Available: http://www.ams.org/qam/1970-27-04/S0033-569X-1970-0253822-7/.

[125] M. Ester, K. Hans-Peter, S. Jorg, and X. Xiaowei, “Density-Based Clustering Algorithms for Discover-
ing Clusters,” Comprehensive Chemometrics, vol. 2, pp. 635–654, 2010.

[126] D. R. Canelhas, “Truncated Signed Distance Fields Applied To Robotics,” PhD thesis, Örebro Univer-
sity, 2017. [Online]. Available: www.publications.oru.se.

[127] H. Oleynikova, Z. Taylor, R. Siegwart, and J. Nieto, “Safe Local Exploration for Replanning in
Cluttered Unknown Environments for Micro-Aerial Vehicles,” 2017. [Online]. Available: http :
//arxiv.org/abs/1710.00604%0Ahttp://dx.doi.org/10.1109/LRA.2018.2800109.

http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Ai+robotics#5%5Cnhttp://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:AI+Robotics%235
http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Ai+robotics#5%5Cnhttp://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:AI+Robotics%235
http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Ai+robotics#5%5Cnhttp://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:AI+Robotics%235
https://pdfs.semanticscholar.org/d4b6/2b89acbf9eb50782f04c4b38c47cac515dbe.pdf
https://pdfs.semanticscholar.org/d4b6/2b89acbf9eb50782f04c4b38c47cac515dbe.pdf
https://ac.els-cdn.com/S147466701646146X/1-s2.0-S147466701646146X-main.pdf?_tid=13204da2-b21c-4d05-a4b9-325f8b84955e&acdnat=1543911094_a861ac33fcc8a82a74cdb71f03c3bd58
https://ac.els-cdn.com/S147466701646146X/1-s2.0-S147466701646146X-main.pdf?_tid=13204da2-b21c-4d05-a4b9-325f8b84955e&acdnat=1543911094_a861ac33fcc8a82a74cdb71f03c3bd58
https://ac.els-cdn.com/S147466701646146X/1-s2.0-S147466701646146X-main.pdf?_tid=13204da2-b21c-4d05-a4b9-325f8b84955e&acdnat=1543911094_a861ac33fcc8a82a74cdb71f03c3bd58
http://dpd.cs.princeton.edu/Papers/BarberDobkinHuhdanpaa.pdf
http://arxiv.org/abs/1803.04345
http://octomap.github.com.
http://dx.doi.org/10.1016/j.conengprac.2017.01.007
http://www.ams.org/qam/1970-27-04/S0033-569X-1970-0253822-7/
www.publications.oru.se
http://arxiv.org/abs/1710.00604%0Ahttp://dx.doi.org/10.1109/LRA.2018.2800109
http://arxiv.org/abs/1710.00604%0Ahttp://dx.doi.org/10.1109/LRA.2018.2800109


BIBLIOGRAPHY 255

[128] S. M. LaValle, “Rapidly-Exploring Random Trees: A New Tool for Path Planning,” In, vol. 129, pp. 98–
11, 1998. [Online]. Available: http://scholar.google.com/scholar?hl=en&btnG=Search&q=
intitle:Rapidly-exploring+random+trees:+A+new+tool+for+path+planning#0.

[129] S. Karaman and E. Frazzoli, “Sampling-based Algorithms for Optimal Motion Planning,” pp. 1–76,
2011. [Online]. Available: http://arxiv.org/abs/1105.1186.

[130] S. M. LaValle and J. J. Kuffner, “Rapidly-exploring random trees: Progress and prospects,” 4thWorkshop
on Algorithmic and Computational Robotics: New Directions, pp. 293–308, 2000. [Online]. Available:
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.38.1387.

[131] I. Noreen, A. Khan, and Z. Habib, “Optimal Path Planning using RRT * based Approaches : A Survey
and Future Directions,” (IJACSA) International Journal of Advanced Computer Science and Applications,
vol. 7, no. 11, pp. 97–107, 2016. [Online]. Available: www.ijacsa.thesai.org.

[132] L. Yang, J. Qi, D. Song, J. Xiao, J. Han, and Y. Xia, “Survey of Robot 3D Path Planning Algorithms,”
Journal of Control Science and Engineering, vol. 2016, pp. 1–22, Jul. 2016. [Online]. Available: http:
//www.hindawi.com/journals/jcse/2016/7426913/.

[133] M. Elbanhawi and M. Simic, “Sampling-Based Robot Motion Planning: A Review,” IEEE Access, vol. 2,
pp. 56–77, 2014. [Online]. Available: http://ieeexplore.ieee.org/document/6722915/.

[134] S. Karaman and E. Frazzoli, “Optimal kinodynamic motion planning using incremental sampling-
based methods,” in 49th IEEE Conference on Decision and Control (CDC), IEEE, Dec. 2010, pp. 7681–
7687. [Online]. Available: http://ieeexplore.ieee.org/document/5717430/.

[135] O. Adiyatov andH. A. Varol, “Rapidly-exploring random tree basedmemory efficientmotion planning,”
in 2013 IEEE International Conference on Mechatronics and Automation, IEEE ICMA 2013, 2013, pp. 354–
359.

[136] ——, “A novel RRTstar-based algorithm for motion planning in Dynamic environments,” in 2017 IEEE
International Conference on Mechatronics and Automation, ICMA 2017, IEEE, 2017, pp. 1416–1421.

[137] J. D. Gammell, S. S. Srinivasa, and T. D. Barfoot, “Informed RRT*: Optimal Sampling-based Path
Planning Focused via Direct Sampling of an Admissible Ellipsoidal Heuristic,” Tech. Rep. [Online].
Available: https://arxiv.org/pdf/1404.2334.pdf.

[138] S. Choudhury, J. D. Gammell, T. D. Barfoot, S. S. Srinivasa, and S. Scherer, “Regionally accelerated
batch informed trees (RABIT*): A framework to integrate local information into optimal path
planning,” in 2016 IEEE International Conference on Robotics and Automation (ICRA), IEEE, May 2016,
pp. 4207–4214. [Online]. Available: http://ieeexplore.ieee.org/document/7487615/.

[139] M. Zucker, N. Ratliff, A. D. Dragan, M. Pivtoraiko, M. Klingensmith, C. M. Dellin, J. A. Bagnell, and
S. S. Srinivasa, “CHOMP: Covariant Hamiltonian optimization for motion planning,” The International
Journal of Robotics Research, vol. 32, no. 9-10, pp. 1164–1193, Aug. 2013. [Online]. Available: http:
//journals.sagepub.com/doi/10.1177/0278364913488805.

[140] R. B. Cattell, “The description of personality: basic traits resolved into clusters.,” The Journal of
Abnormal and Social Psychology, vol. 38, no. 4, pp. 476–506, 1943. [Online]. Available: http://doi.
apa.org/getdoi.cfm?doi=10.1037/h0054116.

[141] J. MacQueen, “Some Methods for Classification and Analysis of Multivariate Observations,” in 5th
Berkeley Symposium on Mathematical Statistics and Probability, Vol. 1, University of California Press,
1967, pp. 281–297.

http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Rapidly-exploring+random+trees:+A+new+tool+for+path+planning#0
http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Rapidly-exploring+random+trees:+A+new+tool+for+path+planning#0
http://arxiv.org/abs/1105.1186
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.38.1387
www.ijacsa.thesai.org
http://www.hindawi.com/journals/jcse/2016/7426913/
http://www.hindawi.com/journals/jcse/2016/7426913/
http://ieeexplore.ieee.org/document/6722915/
http://ieeexplore.ieee.org/document/5717430/
https://arxiv.org/pdf/1404.2334.pdf
http://ieeexplore.ieee.org/document/7487615/
http://journals.sagepub.com/doi/10.1177/0278364913488805
http://journals.sagepub.com/doi/10.1177/0278364913488805
http://doi.apa.org/getdoi.cfm?doi=10.1037/h0054116
http://doi.apa.org/getdoi.cfm?doi=10.1037/h0054116


256 BIBLIOGRAPHY

[142] S. Lloyd, “Least squares quantization in PCM,” IEEE Transactions on Information Theory, vol. 28, no. 2,
pp. 129–137, Mar. 1982. [Online]. Available: http://ieeexplore.ieee.org/document/1056489/.

[143] H. Steinhaus, “Sur la division des corps materiels en parties,” Bulletin of the Polish Academy of Sciences,
vol. 4, no. 3, pp. 801–804, 1956. [Online]. Available: http://www.laurent-duval.eu/Documents/
Steinhaus_H_1956_j-bull-acad-polon-sci_division_cmp-k-means.pdf.

[144] R. M. Esteves, T. Hacker, and C. Rong, “Competitive K-Means, a New Accurate and Distributed
K-Means Algorithm for Large Datasets,” in 2013 IEEE 5th International Conference on Cloud Computing
Technology and Science, IEEE, Dec. 2013, pp. 17–24. [Online]. Available: http://ieeexplore.ieee.
org/document/6753773/.

[145] H. Ng, S. Ong, K. Foong, P. Goh, and W. Nowinski, “Medical Image Segmentation Using K-Means
Clustering and ImprovedWatershed Algorithm,” in 2006 IEEE Southwest Symposium on Image Analysis
and Interpretation, IEEE, pp. 61–65. [Online]. Available: http://ieeexplore.ieee.org/document/
1633722/.

[146] D. Xu and Y. Tian, “A Comprehensive Survey of Clustering Algorithms,” Annals of Data Science, vol. 2,
no. 2, pp. 165–193, Jun. 2015. [Online]. Available: http://link.springer.com/10.1007/s40745-
015-0040-1.

[147] F. Imeson and S. L. Smith, “Clustering in discrete path planning for approximating minimum length
paths,” in 2017 American Control Conference (ACC), IEEE, May 2017, pp. 2968–2973. [Online]. Available:
http://ieeexplore.ieee.org/document/7963402/.

[148] O. Arslan, D. P. Gulranik, and D. E. Koditschek, “Clustering-Based Robot Navigation and Control,”
no. May, 2016. [Online]. Available: http://kodlab.seas.upenn.edu/uploads/Main/arslan_
guralnik_kod_ICRA2016TopologyWorkshop.pdf.

[149] L. E. Dubins, “On Curves of Minimal Length with a Constraint on Average Curvature, and with
Prescribed Initial and Terminal Positions and Tangents,” American Journal of Mathematics, vol. 79,
no. 3, p. 497, Jul. 1957. [Online]. Available: https://www.jstor.org/stable/2372560?origin=
crossref.

[150] F. Lamiraux and J.-P. Lammond, “Smooth motion planning for car-like vehicles,” IEEE Transactions on
Robotics and Automation, vol. 17, no. 4, pp. 498–501, 2001. [Online]. Available: http://ieeexplore.
ieee.org/document/954762/.

[151] A. M. Lekkas and T. I. Fossen, “Integral LOS Path Following for Curved Paths Based on a Monotone
Cubic Hermite Spline Parametrization,” IEEE Transactions on Control Systems Technology, vol. 22,
no. 6, pp. 2287–2301, Nov. 2014. [Online]. Available: http://ieeexplore.ieee.org/document/
6767080/.

[152] P. Costantini, T. N. T. Goodman, and C. Manni, “Constructing C 3 shape preserving interpolating
space curves,” Tech. Rep., 2001, pp. 103–127. [Online]. Available: https://link.springer.com/
content/pdf/10.1023%2FA%3A1016664630563.pdf.

[153] A. M. Lekkas, A. R. Dahl, M. Breivik, and T. I. Fossen, “Continuous-Curvature Path Generation
Using Fermat’s Spiral,” vol. 34, no. 4, pp. 183–198, 2013. [Online]. Available: http://www.mic-
journal.no/PDF/2013/MIC-2013-4-3.pdf%20http://www.mic-journal.no/ABS/MIC-2013-4-

3.asp.

[154] A. Cosgun and H. I. Christensen, “Context-aware robot navigation using interactively built semantic
maps,” Tech. Rep., 2018. [Online]. Available: https://arxiv.org/pdf/1710.08682.pdf.

http://ieeexplore.ieee.org/document/1056489/
http://www.laurent-duval.eu/Documents/Steinhaus_H_1956_j-bull-acad-polon-sci_division_cmp-k-means.pdf
http://www.laurent-duval.eu/Documents/Steinhaus_H_1956_j-bull-acad-polon-sci_division_cmp-k-means.pdf
http://ieeexplore.ieee.org/document/6753773/
http://ieeexplore.ieee.org/document/6753773/
http://ieeexplore.ieee.org/document/1633722/
http://ieeexplore.ieee.org/document/1633722/
http://link.springer.com/10.1007/s40745-015-0040-1
http://link.springer.com/10.1007/s40745-015-0040-1
http://ieeexplore.ieee.org/document/7963402/
http://kodlab.seas.upenn.edu/uploads/Main/arslan_guralnik_kod_ICRA2016TopologyWorkshop.pdf
http://kodlab.seas.upenn.edu/uploads/Main/arslan_guralnik_kod_ICRA2016TopologyWorkshop.pdf
https://www.jstor.org/stable/2372560?origin=crossref
https://www.jstor.org/stable/2372560?origin=crossref
http://ieeexplore.ieee.org/document/954762/
http://ieeexplore.ieee.org/document/954762/
http://ieeexplore.ieee.org/document/6767080/
http://ieeexplore.ieee.org/document/6767080/
https://link.springer.com/content/pdf/10.1023%2FA%3A1016664630563.pdf
https://link.springer.com/content/pdf/10.1023%2FA%3A1016664630563.pdf
http://www.mic-journal.no/PDF/2013/MIC-2013-4-3.pdf%20http://www.mic-journal.no/ABS/MIC-2013-4-3.asp
http://www.mic-journal.no/PDF/2013/MIC-2013-4-3.pdf%20http://www.mic-journal.no/ABS/MIC-2013-4-3.asp
http://www.mic-journal.no/PDF/2013/MIC-2013-4-3.pdf%20http://www.mic-journal.no/ABS/MIC-2013-4-3.asp
https://arxiv.org/pdf/1710.08682.pdf


BIBLIOGRAPHY 257

[155] L. Carlone, J. Du, M. Kaouk Ng, B. Bona, and M. Indri, “Active SLAM and exploration with particle
filters using Kullback-Leibler divergence,” Journal of Intelligent and Robotic Systems: Theory and
Applications, vol. 75, no. 2, pp. 291–311, Aug. 2014. [Online]. Available: http://link.springer.
com/10.1007/s10846-013-9981-9.

[156] M. Mataric, “Integration of representation into goal-driven behavior-based robots,” IEEE Transactions
on Robotics and Automation, vol. 8, no. 3, pp. 304–312, Jun. 1992. [Online]. Available: http://
ieeexplore.ieee.org/document/143349/.

[157] C. H., Robot Motion Planning: Bug Algorithms, Online; last accessed 29-April-2019, 2007. [Online].
Available: https://www.cs.cmu.edu/~motionplanning/lecture/Chap2-Bug-Alg_howie.pdf.

[158] B. Yamauchi, “A frontier-based exploration for autonomous exploration,” IEEE International Sympo-
sium on Computational Intelligence in Robotics and Automation, Monterey, CA, pp. 146–151, 1997.

[159] S. D., F. T., F. M., and W. M., turtlebot ROS package, http://wiki.ros.org/turtlebot, Online; last
accessed 29 April 2019, 2018.

[160] L. Murphy and P. Newman, “Using incomplete onlinemetric maps for topological explorationwith the
Gap Navigation Tree,” in 2008 IEEE International Conference on Robotics and Automation, IEEE, May
2008, pp. 2792–2797. [Online]. Available: http://ieeexplore.ieee.org/document/4543633/.

[161] A. Makarenko, S. Williams, F. Bourgault, and H. Durrant-Whyte, “An experiment in integrated
exploration,” in IEEE/RSJ International Conference on Intelligent Robots and System, vol. 1, IEEE,
pp. 534–539. [Online]. Available: http://ieeexplore.ieee.org/document/1041445/.

[162] A. Zelinsky, “Using Path Transforms to Guide the Search for Findpath in 2D,” The International
Journal of Robotics Research, vol. 13, no. 4, pp. 315–325, Aug. 1994. [Online]. Available: http://
journals.sagepub.com/doi/10.1177/027836499401300403.

[163] S. Wirth and J. Pellenz, “Exploration transform: A stable exploring algorithm for robots in rescue
environments,” SSRR2007 - IEEE International Workshop on Safety, Security and Rescue Robotics
Proceedings, 2007.

[164] P. Norvig and S. J. Russel, Artificial intelligence A modern approach, 3rd. Harlow, UK: Pearson
Education Ltd., Mar. 2010. arXiv: 9809069v1 [gr-qc]. [Online]. Available: http://www.journals.
cambridge.org/abstract_S0269888900007724.

[165] R. Valencia and J. Andrade-cetto, Springer Tracts in Advanced Robotics 119 Mapping , Planning and
Exploration with Pose SLAM, B. Siciliano and O. Khatib, Eds. Springer International Publishing, 2018,
pp. 53–98.

[166] T. Tao, Y. Huang, F. Sun, and T. Wang, “Motion planning for SLAM based on frontier exploration,”
Proceedings of the 2007 IEEE International Conference on Mechatronics and Automation, ICMA 2007,
no. 60605021, pp. 2120–2125, 2007.

[167] C. Zhu, R. Ding, M. Lin, and Y. Wu, “A 3D Frontier-Based Exploration Tool for MAVs,” in 2015 IEEE
27th International Conference on Tools with Artificial Intelligence (ICTAI), IEEE, Nov. 2015, pp. 348–352.
[Online]. Available: http://ieeexplore.ieee.org/document/7372156/.

[168] D. Priyasad, Y. Jayasanka, H. Udayanath, D. Jayawardhana, S. Sooriyaarachchi, C. Gamage, and
N. Kottege, “Point Cloud Based Autonomous Area Exploration Algorithm,” in 2018 Moratuwa En-
gineering Research Conference (MERCon), IEEE, May 2018, pp. 318–323. [Online]. Available: https:
//ieeexplore.ieee.org/document/8421954/.

http://link.springer.com/10.1007/s10846-013-9981-9
http://link.springer.com/10.1007/s10846-013-9981-9
http://ieeexplore.ieee.org/document/143349/
http://ieeexplore.ieee.org/document/143349/
https://www.cs.cmu.edu/~motionplanning/lecture/Chap2-Bug-Alg_howie.pdf
http://wiki.ros.org/turtlebot
http://ieeexplore.ieee.org/document/4543633/
http://ieeexplore.ieee.org/document/1041445/
http://journals.sagepub.com/doi/10.1177/027836499401300403
http://journals.sagepub.com/doi/10.1177/027836499401300403
http://arxiv.org/abs/9809069v1
http://www.journals.cambridge.org/abstract_S0269888900007724
http://www.journals.cambridge.org/abstract_S0269888900007724
http://ieeexplore.ieee.org/document/7372156/
https://ieeexplore.ieee.org/document/8421954/
https://ieeexplore.ieee.org/document/8421954/


258 BIBLIOGRAPHY

[169] S. S. Belavadi, R. Beri, and V. Malik, “Frontier Exploration Technique for 3D Autonomous SLAM
Using K-Means Based Divisive Clustering,” in 2017 Asia Modelling Symposium (AMS), IEEE, Dec.
2017, pp. 95–100. [Online]. Available: https://ieeexplore.ieee.org/document/8424313/.

[170] D. Holz, S. Behnke, N. Basilico, and F. Amigoni, “Evaluating the Efficiency of Frontier-based Explo-
ration Strategies,” ISR/Robotik, no. 2, p. 8, 2010. [Online]. Available: https://www.vde-verlag.de/
proceedings-en/453273006.html.

[171] A. Bircher, M. Kamel, K. Alexis, H. Oleynikova, and R. Siegwart, “Receding Horizon &quot;Next-
Best-View&quot; Planner for 3D Exploration,” in 2016 IEEE International Conference on Robotics and
Automation (ICRA), IEEE, May 2016, pp. 1462–1468. [Online]. Available: http://ieeexplore.ieee.
org/document/7487281/.

[172] M. Selin, M. Tiger, D. Duberg, F. Heintz, and P. Jensfelt, “Efficient Autonomous Exploration Planning
of Large-Scale 3-D Environments,” IEEE Robotics and Automation Letters, vol. 4, no. 2, pp. 1699–1706,
Apr. 2019. [Online]. Available: https://ieeexplore.ieee.org/document/8633925/.

[173] E. Vidal, J. D. Hernandez, K. Istenic, and M. Carreras, “Optimized Environment Exploration for
Autonomous Underwater Vehicles,” in 2018 IEEE International Conference on Robotics and Automation
(ICRA), IEEE, May 2018, pp. 6409–6416. [Online]. Available: https://ieeexplore.ieee.org/
document/8460919/.

[174] R. Nuredini, B. Fetaji, and I. Chorbev, “Bio-inspired Obstacle Avoidance: From Animals to Intelligent
Agents,” vol. 13, no. 2, pp. 146–153, 2017.

[175] B. Sun, D. Zhu, and S. X. Yang, “An Optimized Fuzzy Control Algorithm for Three-Dimensional AUV
Path Planning,” International Journal of Fuzzy Systems, vol. 20, no. 2, pp. 597–610, 2018.

[176] J. Witt and M. Dunbabin, “Go with the Flow: Optimal Path Planning in Coastal Environments,”
Proceedings of the Australasian Conference on Robotics & Automation (ACRA), pp. 1–9, 2008.

[177] A. Hussain Qureshi and Y. Ayaz, “Intelligent bidirectional rapidly-exploring random trees for optimal
motion planning in complex cluttered environments *,” Tech. Rep., 2017. [Online]. Available: https:
//arxiv.org/pdf/1703.08944.pdf.

[178] M. Candeloro, A. M. Lekkas, A. J. Sørensen, and T. I. Fossen, Continuous curvature path planning using
voronoi diagrams and Fermat’s spirals, PART 1. IFAC, 2013, vol. 9, pp. 132–137. [Online]. Available:
http://dx.doi.org/10.3182/20130918-4-JP-3022.00064.

[179] K. Takaya, T. Asai, V. Kroumov, and F. Smarandache, “Simulation environment for mobile robots
testing using ROS and Gazebo,” in 2016 20th International Conference on System Theory, Control and
Computing, ICSTCC 2016 - Joint Conference of SINTES 20, SACCS 16, SIMSIS 20 - Proceedings, 2016.

[180] D. Arthur and S. Vassilvitskii, “k-means++: The Advantages of Careful Seeding,” Tech. Rep. [Online].
Available: http://ilpubs.stanford.edu:8090/778/1/2006-13.pdf.

[181] D. Radu and B. Rusu, “Semantic 3D Object Maps for Everyday Manipulation in Human Living
Environments,” Tech. Rep. [Online]. Available: http://mediatum.ub.tum.de/doc/800632/
941254.pdf.

[182] F. Pedregosa, G. Varoquaux, A. Gramfort, V.Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R.
Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay,
“Scikit-learn: Machine learning in Python,” Journal of Machine Learning Research, vol. 12, pp. 2825–
2830, 2011.

https://ieeexplore.ieee.org/document/8424313/
https://www.vde-verlag.de/proceedings-en/453273006.html
https://www.vde-verlag.de/proceedings-en/453273006.html
http://ieeexplore.ieee.org/document/7487281/
http://ieeexplore.ieee.org/document/7487281/
https://ieeexplore.ieee.org/document/8633925/
https://ieeexplore.ieee.org/document/8460919/
https://ieeexplore.ieee.org/document/8460919/
https://arxiv.org/pdf/1703.08944.pdf
https://arxiv.org/pdf/1703.08944.pdf
http://dx.doi.org/10.3182/20130918-4-JP-3022.00064
http://ilpubs.stanford.edu:8090/778/1/2006-13.pdf
http://mediatum.ub.tum.de/doc/800632/941254.pdf
http://mediatum.ub.tum.de/doc/800632/941254.pdf


BIBLIOGRAPHY 259

[183] S. M. Omohundro, “Five Balltree Construction Algorithms,” Bulletin of Mathematical Biology, vol. 51,
no. 1, pp. 39–54, 1989. [Online]. Available: http://www.springerlink.com/index/10.1016/
S0092-8240(89)80047-3.

[184] K. Klasing, D. Althoff, D. Wollherr, and M. Buss, “Comparison of surface normal estimation methods
for range sensing applications,” in 2009 IEEE International Conference on Robotics and Automation,
IEEE, May 2009, pp. 3206–3211. [Online]. Available: http://ieeexplore.ieee.org/document/
5152493/.

[185] H. Hoppe, T. DeRose, T. Duchamp, J. McDonald, and W. Stuetzle, “Surface Reconstruction from
Unorganized Points,” in SIGGRAPH ’92 Proceedings of the 19th annual conference on Computer graphics
and interactive techniques, New York: ACM, 1992, pp. 71–78.

[186] C. Shakarji, “Least-squares fitting algorithms of the NIST algorithm testing system,” Journal of
Research of the National Institute of Standards and Technology, vol. 103, no. 6, p. 633, 2012.

[187] M. Danielczuk, M. Matl, S. Gupta, A. Li, A. Lee, J. Mahler, and K. Goldberg, “Segmenting Unknown 3D
Objects from Real Depth Images using Mask R-CNN Trained on Synthetic Data,” Sep. 2018. [Online].
Available: http://arxiv.org/abs/1809.05825.

[188] T. M. Chan, “A Minimalist’s Implementation of the 3-d Divide-and-Conquer Convex Hull Algorithm,”
Tech. Rep., 2003. [Online]. Available: http://www.cs.uwaterloo.ca/~tmchan/..

[189] R. Seidel, “A convex hull algorithm optimal for point sets in even dimensions,” 1981. [Online].
Available: https://open.library.ubc.ca/cIRcle/collections/ubctheses/831/items/1.
0051821.

[190] S. Hert and S. Schirra, “3D convex hulls,” in CGAL User and Reference Manual, 4.13, CGAL Editorial
Board, 2018. [Online]. Available: https://doc.cgal.org/4.13/Manual/packages.html#
PkgConvexHull3Summary.

[191] S. Suri, “Lifting Transform, Voronoi, Delaunay, Convex Hulls,” pp. 1–5,

[192] I. A. Şucan, M. Moll, and L. E. Kavraki, “The Open Motion Planning Library,” IEEE Robotics &
Automation Magazine, vol. 19, no. 4, pp. 72–82, Dec. 2012, http://ompl.kavrakilab.org.

[193] J. D. Gammell, S. S. Srinivasa, and T. D. Barfoot, “Batch Informed Trees (BIT*): Sampling-basedOptimal
Planning via the Heuristically Guided Search of Implicit Random Geometric Graphs,” Tech. Rep.
[Online]. Available: https://www.ri.cmu.edu/pub_files/2015/5/Gammell15-bitstar.pdf.

[194] A. M. Shkel and V. Lumelsky, “Classification of the Dubins set,” Robotics and Autonomous Systems,
vol. 34, no. 4, pp. 179–202, Mar. 2001. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/S0921889000001275.

[195] R. W. Beard and T. W. Mclain, “Implementing Dubins Airplane Paths on Fixed-wing UAVs,” in
Handbook for Unmanned Aerial Vehicles, Springer, 2013, pp. 5–15.

[196] D. Schneider, “Master Thesis Path Planning for Fixed-Wing Unmanned Aerial Vehicles,” 2016.

[197] Y. Lin and S. Saripalli, “Path planning using 3D Dubins Curve for Unmanned Aerial Vehicles,” in
2014 International Conference on Unmanned Aircraft Systems (ICUAS), IEEE, May 2014, pp. 296–304.
[Online]. Available: http://ieeexplore.ieee.org/document/6842268/.

[198] J. Pan, S. Chitta, and D. Manocha, “FCL: A general purpose library for collision and proximity queries,”
in 2012 IEEE International Conference on Robotics and Automation, IEEE, May 2012, pp. 3859–3866.
[Online]. Available: http://ieeexplore.ieee.org/document/6225337/.

http://www.springerlink.com/index/10.1016/S0092-8240(89)80047-3
http://www.springerlink.com/index/10.1016/S0092-8240(89)80047-3
http://ieeexplore.ieee.org/document/5152493/
http://ieeexplore.ieee.org/document/5152493/
http://arxiv.org/abs/1809.05825
http://www.cs.uwaterloo.ca/~tmchan/.
https://open.library.ubc.ca/cIRcle/collections/ubctheses/831/items/1.0051821
https://open.library.ubc.ca/cIRcle/collections/ubctheses/831/items/1.0051821
https://doc.cgal.org/4.13/Manual/packages.html#PkgConvexHull3Summary
https://doc.cgal.org/4.13/Manual/packages.html#PkgConvexHull3Summary
http://ompl.kavrakilab.org
https://www.ri.cmu.edu/pub_files/2015/5/Gammell15-bitstar.pdf
https://www.sciencedirect.com/science/article/pii/S0921889000001275
https://www.sciencedirect.com/science/article/pii/S0921889000001275
http://ieeexplore.ieee.org/document/6842268/
http://ieeexplore.ieee.org/document/6225337/


260 BIBLIOGRAPHY

[199] E. Weiszfeld and F. Plastria, “On the point for which the sum of the distances to n given points is
minimum,” Annals of Operations Research, vol. 167, no. 1, pp. 7–41, Mar. 2009. [Online]. Available:
http://link.springer.com/10.1007/s10479-008-0352-z.

[200] M. B. Cohen, Y. T. Lee, G. Miller, J. Pachocki, and A. Sidford, “Geometric Median in Nearly Linear
Time,” Jun. 2016. [Online]. Available: http://arxiv.org/abs/1606.05225.

[201] N. Koenig and A. Howard, “Design and Use Paradigms for Gazebo, An Open-Source Multi-Robot
Simulator,” Tech. Rep. [Online]. Available: http://playerstage.sourceforge.net/gazebo/.

[202] S. Moe, W. Caharija, K. Y. Pettersen, and I. Schjolberg, “Path following of underactuated marine
surface vessels in the presence of unknown ocean currents,” eng, American Automatic Control
Council, 2014, pp. 3856–3861.

[203] M. Breivik and T. I. Fossen, “Principles of guidance-based path following in 2d and 3d,” in Proceedings
of the 44th IEEE Conference on Decision and Control, Dec. 2005, pp. 627–634.

[204] I.-L. Borlaug, K. Pettersen, and J. Gravdahl, “Trajectory tracking for an articulated intervention auv
using a super-twisting algorithm in 6 dof,” eng, IFAC PapersOnLine, vol. 51, no. 29, pp. 311–316, 2018.

[205] S. Moe, G. Antonelli, A. R. Teel, K. Y. Pettersen, and J. Schrimpf, “Set-based tasks within the singularity-
robust multiple task-priority inverse kinematics framework: General formulation, stability analysis,
and experimental results,” Frontiers in Robotics and AI, vol. 3, p. 16, 2016. [Online]. Available: https:
//www.frontiersin.org/article/10.3389/frobt.2016.00016.

[206] C. Samson, “Path following and time-varying feedback stabilization of a wheeled mobile robot,” 1992.

[207] M. Breivik and T. I. Fossen, “Path following for marine surface vessels,” in Oceans ’04 MTS/IEEE
Techno-Ocean ’04 (IEEE Cat. No.04CH37600), vol. 4, Nov. 2004, 2282–2289 Vol.4.

[208] W. Caharija, K. Y. Pettersen, M. Bibuli, P. Calado, E. Zereik, J. Braga, J. T. Gravdahl, A. J. S rensen, M.
Milovanovi, and G. Bruzzone, “Integral line-of-sight guidance and control of underactuated marine
vehicles: Theory, simulations, and experiments,” IEEE Transactions on Control Systems Technology,
vol. 24, no. 5, pp. 1623–1642, Sep. 2016.

[209] R. Skjetne, T. I. Fossen, and P. Kokotovi, “Output maneuvering for a class of nonlinear systems,” IFAC
Proceedings Volumes, vol. 35, no. 1, pp. 501–506, 2002, 15th IFAC World Congress. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S1474667015386663.

[210] R. T. Farouki, C. Giannelli, M. L. Sampoli, and A. Sestini, “Rotation-minimizing osculating frames,”
Computer Aided Geometric Design, vol. 31, no. 1, pp. 27–42, 2014. [Online]. Available: http://www.
sciencedirect.com/science/article/pii/S0167839613001003.

[211] H. Guggenheimer, “Computing frames along a trajectory,” Computer Aided Geometric Design, vol. 6,
no. 1, pp. 77–78, 1989. [Online]. Available: http://www.sciencedirect.com/science/article/
pii/0167839689900083.

[212] O. Khatib, “A unified approach for motion and force control of robot manipulators: The operational
space formulation,” IEEE Journal on Robotics and Automation, vol. 3, no. 1, pp. 43–53, Feb. 1987.

[213] A. Loría and E. Panteley, “2 cascaded nonlinear time-varying systems: Analysis and design,” in
Advanced Topics in Control Systems Theory: Lecture Notes from FAP 2004, F. Lamnabhi-Lagarrigue,
A. Loría, and E. Panteley, Eds. London: Springer London, 2005, pp. 23–64. [Online]. Available:
https://doi.org/10.1007/11334774_2.

[214] G. Guennebaud, B. Jacob, et al., Eigen v3, http://eigen.tuxfamily.org, 2010.

http://link.springer.com/10.1007/s10479-008-0352-z
http://arxiv.org/abs/1606.05225
http://playerstage.sourceforge.net/gazebo/
https://www.frontiersin.org/article/10.3389/frobt.2016.00016
https://www.frontiersin.org/article/10.3389/frobt.2016.00016
http://www.sciencedirect.com/science/article/pii/S1474667015386663
http://www.sciencedirect.com/science/article/pii/S0167839613001003
http://www.sciencedirect.com/science/article/pii/S0167839613001003
http://www.sciencedirect.com/science/article/pii/0167839689900083
http://www.sciencedirect.com/science/article/pii/0167839689900083
https://doi.org/10.1007/11334774_2


BIBLIOGRAPHY 261

[215] J. G. Balchen, Reguleringsteknikk, nor, Trondheim, 2016.

[216] A. Kim and R. M. Eustice, “Real-time visual SLAM for autonomous underwater hull inspection using
visual saliency,” IEEE Transactions on Robotics, vol. 29, no. 3, pp. 719–733, Jun. 2013.

[217] H. A. Daoud, A. Q. M. Sabri, C. K. Loo, and A. M. Mansoor, “SLAMM: Visual monocular SLAM with
continuous mapping using multiple maps,” PLOS ONE, vol. 13, no. 4, A. Agudo, Ed., e0195878, Apr.
2018.

[218] O. Ronneberger, P. Fischer, and T. Brox, “U-Net: Convolutional Networks for Biomedical Image
Segmentation,” Tech. Rep. [Online]. Available: http://lmb.informatik.uni-freiburg.de/.

[219] D. Maturana and S. Scherer, “VoxNet: A 3D Convolutional Neural Network for Real-Time Object
Recognition,” Tech. Rep. [Online]. Available: https://www.ri.cmu.edu/pub_files/2015/9/
voxnet_maturana_scherer_iros15.pdf.

[220] Z. Wu, S. Song, A. Khosla, Y. Fisher, L. Zhang, X. Tang, and J. Xiao, “3D ShapeNets: A Deep Represen-
tation for Volumetric Shapes,” Tech. Rep. [Online]. Available: http://3DShapeNets.cs.princeton.
edu.

[221] H. Su, S. Maji, E. Kalogerakis, and E. Learned-Miller, “Multi-view Convolutional Neural Networks for
3D Shape Recognition,” Tech. Rep. [Online]. Available: http://vis-www.cs.umass.edu/mvcnn..

[222] C. R. Qi, H. Su, K. Mo, and L. J. Guibas, “PointNet: Deep Learning on Point Sets for 3D Classification
and Segmentation,” Tech. Rep. [Online]. Available: https://arxiv.org/pdf/1612.00593.pdf.

[223] L. Landrieu and M. Simonovsky, “Large-scale Point Cloud Semantic Segmentation with Superpoint
Graphs,” Tech. Rep. [Online]. Available: https://arxiv.org/pdf/1711.09869.pdf.

http://lmb.informatik.uni-freiburg.de/
https://www.ri.cmu.edu/pub_files/2015/9/voxnet_maturana_scherer_iros15.pdf
https://www.ri.cmu.edu/pub_files/2015/9/voxnet_maturana_scherer_iros15.pdf
http://3DShapeNets.cs.princeton.edu
http://3DShapeNets.cs.princeton.edu
http://vis-www.cs.umass.edu/mvcnn.
https://arxiv.org/pdf/1612.00593.pdf
https://arxiv.org/pdf/1711.09869.pdf


262 BIBLIOGRAPHY



Appendices

A Simulator Environment

To test planning and exploration implementations, as well as to run more interconnected
system experiments on selected operational cases, a simulator environment was required.
The use of a simulator lessens the need for tedious practical tests and allows for expeditious
evaluation of modules and bug fixing. To this end, the UUV simulator [20] was used. This
simulator includes the implementation of the equations of motion for underwater vehicles
[15], thruster allocation modules, several controllers, and incorporates lift, drag, and current
simulations. The simulator is made publicly available as a research prototype, and is under
continuous development.

The UUV simulator is implemented as a set of Gazebo plugins and ROS packages. Gazebo
is a robotics simulator capable of simulating complex 3D environments and can perform
extensive dynamic interaction between objects. These environments are defined usingworld
files which describes the objects, robots, and global parameters (such as physics properties)
present in the simulation. To allow for model reuse, and open source distribution, simulated
objects are stored as model files, using the simulated description format (.sdf). These files
include the information of the specific model and its 3D rendering data.

Being based on Gazebo, the UUV simulator makes use of the supported physics engines,
such as ODE and Bullet, and the environment and robot model rendering capabilities.
This allows for the use of other open source simulator resources, such as pregenerated 3D
environments and more specific sensor plugins. One such sensor plugin that was used in
this thesis to emulate an idealized SLAM scenario, was the image sonar plugin created by
the Swedish maritime robotics centre (SMaRC). This plugin is available on their Git repo.1,
but have since been merged with the UUV simulator 2.

Due to this simulator, essentially, being a ROS package, it can be seamlessly integrated
into a ROS project. This allows for running a complete simulation scenario using a single
ROS launch file written in the XML format3. A simple example launch file, showing the
essentials, is presented in listing 1. The default robot model setup can be customized by

1SMaRC Gazebo plugins: https://github.com/smarc-project/smarc_simulations/tree/master/
smarc_gazebo_plugins

2UUV Simulator: https://github.com/uuvsimulator/uuv_simulator
3See http://wiki.ros.org/ROS/Tutorials for a more complete introduction to ROS and its compo-

nents.

263

https://github.com/smarc-project/smarc_simulations/tree/master/smarc_gazebo_plugins
https://github.com/smarc-project/smarc_simulations/tree/master/smarc_gazebo_plugins
https://github.com/uuvsimulator/uuv_simulator
http://wiki.ros.org/ROS/Tutorials


264 BIBLIOGRAPHY

modifying a xacro file4 defining its sensors, links, and 3D model. An example xacro file
describing a robot with a center-mounted IMU and a tilted camera and image sonar is
presented in listing 2. This is an example of a file loaded by the "upload_default.launch" call
on line 6 in listing 1. Thus, specialized robot models can be included and set up, allowing
for the simulation of different operations and scenarios.

4Xacro (XML Macro) files contains XML macro code, constructing shorter and more readable XML files
through the use of macros.



A. SIMULATOR ENVIRONMENT 265

Listing 1: Example launch file launching a Gazebo environment, an UUV robot
object, an OctoMap server, and RViz for visualization.

1 <launch >

2 <!-- launch Gazebo world -->

3 <include file="$(find smarc_worlds)/launch/pipe_world.launch"

/>

4
5 <!-- Add the RexROV vehicle to the simulation (namespace:

rexrov) -->

6 <include file="$(find uuv_descriptions)/launch/

upload_rexrov_default.launch">

7 <arg name="mode" value="sonar"/>

8 <arg name="x" default="0"/>

9 <arg name="y" default="-78"/>

10 <arg name="z" default="-88"/>

11 <arg name="yaw" default="-0.25"/>

12 </include >

13
14 <!-- launch octomap server -->

15 <node pkg="octomap_server" type="octomap_server_node" name="

octomap_server">

16 <param name="resolution" value="0.5" />

17 <param name="frame_id" type="string" value="world" />

18 <!-- True for static map , false if no initial map -->

19 <param name="latch" value="false" />

20 <!-- maximum range to integrate (speedup !) -->

21 <param name="sensor_model/max_range" value="7.0" />

22 <!-- data source to integrate (PointCloud2) -->

23 <remap from="cloud_in" to="/rexrov/points" />

24 <param name="publish_free_space" value="true" />

25 </node>

26
27 <!-- Open RViz for visualization of sensor data and markers

-->

28 <node name="rviz" pkg="rviz" type="rviz" output="screen" args

="-d $(find uuv_gazebo)/rviz/controller_demo.rviz"/>

29 </launch >



266 BIBLIOGRAPHY

Listing 2: Example robot setup describing a model with a centered IMU and a
mounted camera and image sonar.

1 <?xml version ="1.0"?>

2 <robot xmlns:xacro="http://www.ros.org/wiki/xacro">

3 <!-- IMU -->

4 <xacro:default_imu_macro

5 namespace="${namespace}"

6 parent_link="${namespace }/ base_link"

7 inertial_reference_frame="${inertial_reference_frame}">

8 <origin xyz="0 0 0" rpy="0 0 0"/>

9 </xacro:default_imu_macro >

10
11 <!-- Mount a camera -->

12 <xacro:default_camera namespace="${namespace}" parent_link="${

namespace }/ base_link" suffix="">

13 <origin xyz="1.15 0 0.4" rpy="0 0.6 0"/>

14 </xacro:default_camera >

15
16 <!-- Mount an image sonar -->

17 <xacro:forward_looking_sonar

18 namespace="${namespace}"

19 suffix="/image_sonar"

20 parent_link="${namespace }/ base_link"

21 topic="image_sonar"

22 mass="0.1"

23 update_rate="30"

24 samples="256"

25 fov="1.527"

26 width="768"

27 height="492">

28 <inertia ixx="0.1" ixy="0.0" iyy="0.1" iyz="0.0" izz="0.1" ixz=

"0.0"/>

29 <origin xyz="1.15 0.0 0.5" rpy="0 0.6 0"/>

30 </xacro:forward_looking_sonar >

31 </robot>



B. HARDWARE ELECTRONIC SCHEMATICS 267

B Hardware Electronic schematics

This section includes the hardware rig wiring and breadboard schematics, as well as the
wiring diagram for the STIM 300 and a table covering the voltage levels of the power supply
used.

Table 1: Voltage levels for the power supply used.

Component Voltage [V]
Pressure sensor 5
STIM300 5
Teensy 3.2 5
Camera 5-16
S1-locator 10-18
Lights 10-48
DC-DC Buck converter in 4-38
DC-DC Buck converter out 1.5-36

Max power supply: 18 V

STIM 300
IMU

TOV
ExTrg

TxD-
TxD+

RxD-
RxD+

5 V

GND

2
Teensy 3.2

GND

5 V

Blackfly
Camera

GPIO 0
GPIO 1

GND

Opto-GND

!Leak
Vcc

V ext

GND
Leak sensor

0

1
RS422

WIZ850io

GND

12 V
DC-DC

5 V

5 V

5 V

Power

Ethernet

Computer

Above water

Blackfly
Camera

GPIO 0
GPIO 1

GND
Opto-GND

!Leak
Vcc

V ext

GND
Leak sensor

5 V

221819

222021

5 V

5 V

3

SPI Ethernet
Switch

Figure B.1: Wiring



268 BIBLIOGRAPHY

GND
0
1
2
3
4
5
6
7
8
9

10
11
12

Vin
AGND
3.3V
23
22
21
20
19
18
17
16
15
14
13

Teensy 3.2

O1 !L

O1 !L

I0
G

N
D

I0
G

nd
5V

G
N

D

5V
G

N
D

G
N

D
  5

V

G
N

D 
  5

V

12
V 

   G
N

D

5V GND

Tx+
Tx-

R
x-

R
x+

TOVTrg

ABCEGIKMOQST R P N L J H F D

1
2
3
4
5
6
7
8
9

10
11
12
13
14 12V    GNDPWRGND12V

A B C E G I K M O Q S TRPNLJHFD

GND
0
1
2
3
4
5
6
7
8
9

10
11
12

Vin
AGND
3.3V
23
22
21
20
19
18
17
16
15
14
13

Teensy 3.2

O1 !L

O1 !L

I0
G

N
D

I0
G

nd
5V

G
N

D

5V
G

N
D

G
N

D
  5

V

G
N

D 
  5

V

12
V 

   G
N

D

5V GND

Tx+
Tx-

R
x-

R
x+

TOVTrg

1
2
3
4
5
6
7
8
9

10
11
12
13
14

G
N

D
12V

G
N

D
5V

12V    GNDPWRGND12V

A B C E G I K M O Q S TRPNLJHFD

GND
0
1
2
3
4
5
6
7
8
9

10
11
12

Vin
AGND
3.3V
23
22
21
20
19
18
17
16
15
14
13

Teensy 3.2

O1 !L

O1 !L

I0
G

N
D

I0
G

nd
5V

G
N

D

5V
G

N
D

G
N

D
  5

V

G
N

D 
  5

V

12
V 

   G
N

D

5V GND

Tx+
Tx-

R
x-

R
x+

TOVTrg

1
2
3
4
5
6
7
8
9

10
11
12
13
14

G
N

D
R

X
TX

5V

G
N

D
A

B
Y

Z

RS422 Breakout

A B C E G I K M O Q S TRPNLJHFD

GND
0
1
2
3
4
5
6
7
8
9

10
11
12

Vin
AGND
3.3V
23
22
21
20
19
18
17
16
15
14
13

Teensy 3.2

O1 !L

O1 !L
I0

G
N

D

I0
G

nd
5V

G
N

D

5V
G

N
D

G
N

D
  5

V

G
N

D 
  5

V

12
V 

   G
N

D

5V GND

Tx+
Tx-

R
x-

R
x+

TOVTrg

1
2
3
4
5
6
7
8
9

10
11
12
13
14

Figure B.2: Breadboard schematics



B. HARDWARE ELECTRONIC SCHEMATICS 269

+5V
+5V

+5V

								STIM300

TxD-
RxD-
TST
TOV
NRST
AUX_GND
AUX-
VSUP
TxD+
RxD+
ExtTrig
GND
GND
AUX+
GND

ExtTrig
GND

Cable

1
2
3
4
5
6
7
8

Honeywell	

GND

V+
Vout

Figure B.3: STIM 300 and pressure sensor wiring.



270 BIBLIOGRAPHY

C Proof: Path Curvature Criteria (for USM)

For any USM consisting of j rigid links attached by joints with a maximum joint angle
qi,max, the path curvature κπ must satisfy the constraints put forth in eq. (12.3). If any of
these constraints are not upheld, it is kinematically impossible for the USM to follow the
circular path exactly.

Proof. Given a USM with j joints qi with intermediate links of length li following a circular
arc and maximum joint angles of qimax . The curvatures of a specific segment is then given by

κi =
2 sin(qi)

li
. For the first joint to cut with the circle segment θ12 ≤ q1,max must be satisfied.

This gives that q f +
θ1
2 = q1. Due to the nature of the links, the subsequent joint angle has

an offset equal to the joint angle of the previous joint (see fig. 12.14). This means that the
next joint angle has to satisfy θ22 ≤ q2,max −

θ1
2 .

Continuing this argument for each subsequent joint completes the proof of the curvature
constraints in eq. (12.3). □

Remark C.1. The argument put forth in eq. (12.3) and appendix C extends to non-circular
paths as well, assuming that the maximum curvature of the path enclosed by the link
is available (see fig. C.1). The argument from eq. (12.3) can then be approximated using
κ = κi,max determined by over-estimating the joint angle.



C. PROOF: PATH CURVATURE CRITERIA (FOR USM) 271

Figure C.1: The curved path with a circle drawn at the point of maximum curvature. The
angles θi

2 shows that the link cutting the circle over-estimates the necessary joint angle.
The extended line across the circle provides the geometric relations necessary to show how
the angles propagate.



272 BIBLIOGRAPHY

D 3D Point Cloud Classification

The segmentation performed in this thesis is performed on images fused with depth data
from the SLAM algorithm. The concept of performing this directly on the point cloud was
briefly explored, however. Some of the potential basis literature will, therefore, be left here
as a starting point for potential future improvements.

Three-dimensional point cloud sensors have in recent years become one of the de-facto
standards due to their performance and availability. These types of 3D sensors include
stereo cameras, LiDAR, structured light, and time-of-flight, among others. Seeing as point
cloud data is a very general, and canonical, way of representing sensor information, it is
of interest to be able to directly utilise this data in autonomous tasks. Due to this, point
cloud techniques have become increasingly important for autonomous robotics, as this
data structure is very close to raw sensor data. Contextual information regarding the
robot’s surrounding have most often been extracted from visual sensors. This is the case
in the main body of this thesis. Other examples include semantic segmentation of camera
images. This can be achieved in many different ways, but the most prominent one is
through Convolutional Neural Networks (CNNs). One much used network architecture to
perform semantic segmentation is showcased in the U-Net [218]. This network is essentially
divided into two parts: i) an encoder and ii) a decoder. The encoder part acts like a normal
CNN, learning feature representations at increasing levels of abstraction . The decoder
part, on the other hand, performs successive up-sampling combining the output from
previous convolutions in the encoder. These kind of networks, and their successors, can
give very good results on image segmentation problems. However, problems arise when
these concepts are to be applied on three-dimensional point cloud data.

Point cloud data, in this context, is usually represented as a multitude of points p =
(x ,y, z), alternatively p = (x ,y, z, r ,д,b)5. These sets of points are usually unordered and
irregular, which results in problems when it comes to feeding the data to a neural network.
These problems arise due to the geometric properties convolutional networks require to,
for example, perform proper weight sharing. Workarounds do exist, such as the conversion
from point clouds to voxel grids [219]–[221], although this tend to increase the data volume.
Recent methods have, despite the inherent structural difficulties, managed to train end-to-
end networks solely on point cloud data, however. PointNet [222] is one such method.

Themain contribution from PointNet, was the fact that it solved the problem of rotational
and permutational invariance. As mentioned, point cloud data is unordered, which means
that there is no implicit permutation of the points that characterise the detected object.

5The exact data fields differ depending on means of acquisition, but can, for example, also include intensity
values or normal vector data.



D. 3D POINT CLOUD CLASSIFICATION 273

Permutational invariance is achieved by relying on symmetric functions6. PointNet realises
this by combining a single variable and max pooling to extract a set of critical points to
describe the input point cloud.

The other problem PointNet solved was how to obtain invariance with regard to trans-
formations. I.e. the classification result remains unaltered if the same object is fed to the
network with different spatial orientations. To overcome this problem, PointNet utilises a
small transformation network to estimate a transformation directly on the input data which
allows for automatic data alignment.

At the end of the segmentation pipeline, the PointNet outputs a per-point class label,
which is calculated based on point-by-point local and global features. As pointed out in
[107], the point aggregation performed by the PointNet results in information only being
passed between points contained in the same block. The way PointNet limits its information
utilisation, by restricting the network to work with singular blocks, was tried improved
upon in [107]. The presented network takes the PointNet one step forward, by evaluating
points using multi-scale blocks. These blocks are all sampled from the same position, but
taken at different scales, broadening the network’s field of view.

Point cloud segmentation can, of course, be based solely on clustering principles. This
can be done by utilizing the intrinsic properties of different objects. I.e. their shape, color,
intensity, etc. By using these simpler segmentation techniques, the runtimes are expectedly
faster compared to neural network approaches. Although, in general, AI-based methods
tend to outperform the purer geometric clustering techniques, due to them being able to
make use of contextual information. Therefore, the perhaps most promising method for
segmentation of point clouds, especially in larger environments, is segmentation using a
graph convolutional network based on superpoint graphs [223]. A superpoint graph (SPG)
is an attributed directed graph where the nodes represent geometric shapes and the edges
represent the nodes’ adjacency based on rich edge features. This way of representing the
data avoids classifying individual points of voxels and does instead consider the object as
a whole. An advantage of this method, is that the size of the graph is not dependant on
the total number of points, but rather the number of structures in the scene. All in all, this
method of point cloud segmentation obtains a higher accuracy compared to other state-of-
the-art methods. Thus, applying this to underwater sensor data could be of great interest,
as it could allow for safer navigation by using the semantic information to characterize
safe and unsafe areas. This would, however, require the labelling of many large-scale point
clouds, as no such thing is publicly available at time of writing.

6A function f (·) is symmetric if f (x1,x2, ...,xn) = ... = f (xn, ...,x2,x1 for any permutation of x.



274 BIBLIOGRAPHY

E Path Projection

Definition E.1. A parametric curve in Rn is a smooth function π : Θ→ Rn, where Θ ⊂ R
is an interval.

Remark E.1. In 3D definition E.1 implies, provided sufficient smoothness, that the position,
velocity and acceleration vectors of the curve can be expressed by

π (ϖ) = (x(ϖ),y(ϖ), z(ϖ))

v(ϖ) = (x′(ϖ),y′(ϖ), z′(ϖ))

a(ϖ) = (x′′(ϖ),y′′(ϖ), z′′(ϖ))

(1)

where ϖ ∈ Θ is the is the curvilinear path progress variable.

The closest point between a curve π (ϖ) and the position of the USM, ηIb,1, is required.
In the general case, this is equivalent to solving the problem

ϖ∗ = argminϖ (ηIb,1 − π (ϖ))2 (2)

which again is equivalent to finding the orthogonal projection of the current position
onto the curve, meaning ϖ∗ = ϖ⊥. This can be computed using Newton’s method which
constitutes of computing the Newton step, which is summarized in the following lemma.

Lemma E.1. Let π (ϖ) : I →, ϖ ∈ I be a regular curve — at least twice contiuously differen-
tiable — and ηIb,1 be a point in 3D. Then the Newton step can be computing as

∆ϖ =
⟨v(ϖ),ηIb,1 − π (ϖ)⟩

⟨a(ϖ),π (ϖ)⟩ + ⟨v(ϖ),v(ϖ)⟩ − ⟨ηIb,1,a(ϖ)⟩
(3)

Proof. Consider the minimization problem (2) with f (ϖk) = (ηIb,1 − π (ϖ))
2. Then by the

chain rule

d

dϖk
f (ϖk) = −2v(ϖk)(ηIb,1 − π (ϖk)) (4)

Applying the chain rule once more gives

d2

dϖ2
k

f (ϖk) = −2a(ϖk)(ηIb,1 − π (ϖk)) + 2v(ϖk)
2

= 2v(ϖk)
2 − 2a(ϖk)ηIb,1 + 2a(ϖk)π (ϖk)

(5)



E. PATH PROJECTION 275

Computation of the newton step gives the desired result

∆ϖk =
f ′(ϖk)

f ′′(ϖk)

=
v(ϖk)(ηIb,1 − π (ϖk))

v(ϖk)
2 − a(ϖk)ηIb,1 + a(ϖk)π (ϖk)

=
⟨v(ϖ),η0b,1 − π (ϖ)⟩

⟨a(ϖ),π (ϖ)⟩ + ⟨v(ϖ),v(ϖ)⟩ − ⟨ηIb,1,a(ϖ)⟩

(6)

□

A second order optimization problem can be formulated based on lemma E.1 and a line
search algorithm.

Theorem E.1. Let π (ϖ) : I →, ϖ ∈ I be a regular curve and ηIb,1 be a point in 3D. Fur-
thermore, define α as a line search scaling parameter. Scaling the current Newton step by αn

where n is determined by the squared distance

⟨π (ϖk + α
i∆ϖk) − ηIb,1,π (ϖk + α

i∆ϖk) − ηIb,1⟩ < d (7)

where
d = ⟨π (ϖk + ∆ϖk) − ηIb,1,π (ϖk + ∆ϖk) − ηIb,1⟩ (8)

is the squared distance of the between the previous iterate δk−1+∆ϖk−1 and the current position
ηIb,1. Furthermore, convergence can be guaranteed provided that the existence of a strict min-
imizer ϖ∗, see theorem 2.4, and that f ′′(ϖk) is Lipschitz continuous, see theorem 3.5. Lastly,
provided that the α i fulfills the role of theorem 3.6, superlinear convergence can be guaranteed
after a certain number of iterations.

A proof of theorem E.1 follows directly from the theorems mentioned above with;

• Quadratic rate of convergence

• Quadratic convergence of the sequence of gradient norms | | f ′(ϖk)| | to zero.

Remark E.2. The conditions of theorem 2.4 in Theorem E.1 is not always satisfied due to
the general nature of a path. Think for example of the current position, ηIb,1, located at the
center of a circle. Then, there exists a continuum of optimum points.

To avoid situations in remark E.2 occurring to often, the initial condition from the
current rate of progress will usually be used as an initial condition for the next projection
step. By assuming that the desired path is reasonably close to the robot, the above will not
cause any problems in practice.



276 BIBLIOGRAPHY

Remark E.3. With a closed spline, the Newton step have to account for the transition
between the end of the curve and the start of the curve. This is handled with bisection to
cover both cases.

Remark E.4. When projection reaching the end of a spline, the algorithm have to be stopped
and the spline ending is the desired point of reference. Alternatively, the curve can be
extrapolated.



N
TN

U
N

or
w

eg
ia

n 
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lt

y 
of

 In
fo

rm
at

io
n 

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ri
ca

l
En

gi
ne

er
in

g
D

ep
ar

tm
en

t o
f E

ng
in

ee
ri

ng
 C

yb
er

ne
tic

s

M
as

te
r’

s 
th

es
is

Marcus Aleksander Engebretsen
Kjetil Skogstrand Gjerden
Øystein Barth Utbjoe
Andreas Våge

Autonomous Navigation, Mapping, and
Exploration for Underwater Robots

Master’s thesis in Cybernetics and Robotics
Supervisor:
Annette Stahl
Edmund Førland Brekke
Kristin Ytterstad Pettersen
Marco Leonardi
Pål Liljebäck

June 2019


	Abstract
	Sammendrag
	Preface
	List of Tables
	Nomenclature
	I Introduction
	Motivation
	Project Statement
	Contributions
	Thesis Outline

	Preliminaries
	Geometry
	Homogeneous Transformations
	D-H Convention
	Euler Convention

	Operating Conditions

	System Overview
	Architecture
	Perception
	Planning and Control

	State Machine
	Organization


	II Hardware
	Sensors
	Hardware Platform Description
	Inertial Measurement Unit
	Sensor Model
	Implementation
	Calibration

	Pressure sensor
	Sensor Model
	Implementation
	Calibration

	Camera
	Sensor Model
	Implementation
	Calibration


	Electronic Design
	Synchronization
	Implementation
	Experiments


	Mechanical Design
	Water Tight Housing
	Mounting the Components


	III SLAM
	Background
	SLAM Definition
	Front-end
	Place Recognition

	Back-end
	Bundle Adjustment
	Factor graphs

	Batch BA
	Key-Frames
	Windowed Optimization
	Fixed-lag-Smoothing
	Parallel Tracking and Mapping

	Incremental BA

	SLAM Method
	ORB-SLAM
	Connectivity Graph
	Place Recognition
	Initialization
	Tracking
	Mapping
	Loop closure

	Visual Inertial ORB-SLAM
	Tracking
	Mapping and Loop Closing

	Implementation
	IMU Integration


	Experiments
	Setup
	Datasets
	Computer
	Tracking Parameters

	Visual Odometry Accuracy
	Score System
	Results
	Discussion
	Dora Dock
	Tracking Time

	Summary


	IV Classification
	Computer Vision
	Deep Learning
	Creating the Dataset
	Evaluation of Results
	Network Selection
	Training the Network

	Summary


	V Planning
	Background Theory
	Continuous-Space Path Planning
	Optimal Path Planning


	Path Planning in 3D Space
	Traditional Planning Methods
	Representing the Environment
	Occupancy Grids
	Roadmaps

	Combinatorial Methods
	Voronoi Diagrams in Path Planning

	Sampling-based Methods
	The RRT Family

	Clustering in the Context of Planning
	Path Criteria
	Context-aware Planning
	Summary

	Autonomous Exploration
	Exploration Strategies
	Frontier-based Exploration
	Next-Best-View Exploration

	Summary

	Planning & Exploration Method
	Incremental Voronoi-based Path Planning
	3D Point Cloud Clustering
	Abstracting Obstacle Shapes Using Convex Hulls
	Generalized Voronoi Generation From Convex Hulls

	Sampling-based Planning With Kinematic Constraints
	3D Dubins State Space

	Collision Detection
	Environment Exploration
	Simulations
	Voronoi-based Planning in Partially Known Environments
	TEXT and Collision Avoidance
	Autonomous Exploration

	Summary


	VI Control
	Control System
	Interface
	Guidance
	Performance Specifications
	Existing Solutions
	Solution

	Kinematic Control
	Performance Specifications
	Existing Solutions
	Solution

	Simulation
	Kinematics
	Tests



	VII Closing the Loop
	Connecting the Modules
	Combining Object Detection and Planning
	Case: Context-driven Subsea Pipe Inspection

	Combining Object Detection and SLAM
	Combining SLAM and Control
	Control and Planning

	Conclusion
	Further Research

	Bibliography
	Appendices
	Simulator Environment
	Hardware Electronic schematics
	Proof: Path Curvature Criteria (for USM)
	3D Point Cloud Classification
	Path Projection



