
Trajectory Planning and Following for
Autonomous Passenger Ferries

Emil Thyri

December 2018

Preface

The work presented in this report is the last work I do in my studies before I
finalize my degree with the master thesis. Diving into the field of autonomous
vessels and collision avoidance has been interesting, overwhelming and motivat-
ing. The knowledge and experience I have acquired is invaluable and will serve
me well in the final semester of my 5-year Masters degree in Cybernetics and
Robotics and in what follows.

I would like to express a special thanks to my academic supervisor Morten
Breivik for the time he has dedicated to guidance and feedback in the scope of
this project. His feedback has been crucial in the forming of the final product
of my work.

Emil Hjelseth Thyri
Trondheim, December 18, 2018

i

Abstract

This report treats problems related to collision free transit for autonomous
USVs. Specifically it considers the case of an autonomous passenger ferry, mil-
liAmpere, and presents a deliberate COLAV system for short distance transit.
In addition, a comparison between three trajectory following control strategies
is performed with regards to passenger comfort.

The collision avoidance is solved by a two step trajectory planning process.
Firstly, a path that does not collide with any static obstacles is planned, sec-
ondly, a velocity profile is planned for the path so that it avoids collision with
any moving objects. The approach transforms moving objects onto a two di-
mensional space in path × time and hence reduces the trajectory planning to
a shortest path node search problem. Special considerations are taken in order
to not violate the physical capacities of the ferry, as well as to ensure sufficient
passenger comfort. A cost function that favours transit time and passenger
comfort is used to select the optimal trajectory from the potential candidates.

A simulator with a vessel model is developed in order to facilitate testing of
the COLAV system, as well as the trajectory following methods. The simulator
is made to have the same interface as the systems on the milliAmpere ferry in
order to facilitate a seamless transition from simulation to testing.

Three trajectory following controllers are implemented and simulated. A ref-
erence feed forward, with pose feedback, a LOS guidance law with along track
distance feedback, and a MPC is tested in the simulator with a trajectory sug-
gested by the COLAV system. The methods are compared based on tracking
error, along with metrics related to passenger comfort.

The COLAV system proves to be effective and intuitive. The two dimensional
path× time representation makes it easy to follow the method of the algorithm.
It has no problem finding a collision free trajectory, if one exists. The method
lacks robustness towards uncertainty in the environment, and should be used in
combination with a reactive COLAV system.

ii

Table of Contents

Preface . i
Abstract . ii
Table of Content . iv
List of Figures . v
List of Tables . vii
Abbreviations. viii
1 Introduction . 1

1.1 Motivation . 1
1.2 Problem Description . 1
1.3 Contribution . 2
1.4 Previous Work . 3
1.5 Outline . 4

2 Theoretical Background . 4
2.1 Vessel Modelling . 4

2.1.1 Kinematics . 4
2.1.2 Kinetics . 6

2.2 Trajectory Tracking . 7
2.3 ROS . 7

3 Collision Avoidance . 8
3.1 Structure . 9
3.2 Trajectory Planning . 11

3.2.1 Considerations . 11
3.2.2 Moving Objects . 12
3.2.3 Object Representation . 12
3.2.4 Path Parameterization . 13
3.2.5 Object Transformation . 13
3.2.6 Node Representation . 14
3.2.7 Vertices and Weights . 15
3.2.8 Graph Search . 15
3.2.9 Continuous Velocity Profile 16

3.3 Trajectory Evaluation . 17

iii

4 Trajectory Tracking . 18
4.1 Thrust Allocation . 18
4.2 Reference Model . 18
4.3 Reference Feed Forward . 19
4.4 Line of Sight Controller . 19
4.5 Model Predictive Controller . 21

4.5.1 State Space Form . 21
4.5.2 Linearization . 21
4.5.3 Discretization . 22
4.5.4 Optimization Problem . 22
4.5.5 MPC controller . 24

5 Simulator . 25
5.1 Simulator Layout . 25
5.2 3 DOF Model . 26
5.3 Thruster Model . 28
5.4 Thruster Force Transformation 30
5.5 External Forces . 31
5.6 ROS Interface . 31

6 Simulation Results and Discussion . 33
6.1 Trajectory Planning . 33
6.2 Trajectory Following . 40

7 Conclusions and Future Work . 45
7.1 Conclusions . 45
7.2 Future Work . 45

References . 47

iv

List of Figures
1 The prototype milliAmpere during a demonstration in Hauge-

sund in September 2018. The ferry functions as a platform for
development and testing of sensor and control systems needed for
fully autonomous sea-travel. Courtesy of Teknisk Ukeblad. 2

2 Reference Frames, ECEF frame in blue, NED frame in green and
BODY frame in orange. 5

3 Operational environment of milliAmpere. Two ferry quays with
approximately 85 meters across, giving a transit time of about 80
seconds. Small-boat harbour on both sides of the transit area. . . 8

4 Illustration of structure of a COLAV system with supporting
functions [1]. 10

5 Moving objects in the canal (grey) with a velocity vector (blue)
and a forbidden region (red). The ferry (dark green) and the
desired path across the canal (light green). The forbidden region
extends in front of the vessels approaching from the starboard
side, and behind the vessels approaching from the port side in
order to facilitate COLREGs. 13

6 Two sub trajectories in path time space (green), that can be
connected by a circle segment with a minimum radius. to assure
a saturated acceleration. 16

7 Layout showing an overview of the the simulator implemented in
Matlab/Simulink with ROS interfaces interfacing with the same
ROS-nodes that is running on the milliAmpere OBC 26

8 Curve-fitting of the data from the bollard pull test in Table 2. . . 28
9 Data for the look-up table for the thruster model in Simulink.

The table gives the relation between RPM and thrust as well as
the curve fit to the bollard pull data. 29

10 Azimuth angle modeling in Simulink. The angular velocity is
set proportional to the error, and saturated to max angular rate.
The saturation value is found from the data in Table 3. 30

11 Topside view of the thruster layout on milliAmpere. The ferry
is symmetrical, and hence the front and rear thruster arm is the
same. 31

12 Situation overview of the three test situations. Blue line defies
the canal banks, green line is the planned path and red dots are
the detected objects with a velocity vector scaled up by a factor
of 10 for visibility. The path starts on the lower bank and ends
on the higher bank. 34

13 Possible sub-trajectories for the trajectory planner in Situation 1
plotted in blue. The objects from Table 4 represented at forbid-
den regions in red. 35

14 Possible sub-trajectories for the trajectory planner in Situation 2
plotted in blue. The objects from Table 5 represented at forbid-
den regions in red. 35

v

15 Possible sub-trajectories for the trajectory planner in Situation 3
plotted in blue. The objects from Table 6 represented at forbid-
den regions in red. 36

16 Optimal trajectory for each time of start in blue. Suggested tran-
sit trajectory in green. Forbidden regions around the objects in
Table 4. Cost for each trajectory is shown in Table 7. 37

17 Optimal trajectory for each time of start in blue. Suggested tran-
sit trajectory in green. Forbidden regions around the objects in
Table 5. Cost for each trajectory is shown in Table 8. 38

18 Optimal trajectory for each time of start in blue. Suggested tran-
sit trajectory in green. Forbidden regions around the objects in
Table 6. Cost for each trajectory is shown in Table 9. 39

19 Reference trajectory for the transit. Position, velocity and accel-
eration in {n}. 41

20 External forces in {n}, on the vessel during transit 42
21 Tracking error in {n} for the trajectory following systems. 42
22 Control input in {b} , from the three trajectory following systems. 43
23 Body fixed acceleration for the ferry in transit by the three dif-

ferent trajectory tracking systems. 43
24 Heading and yaw rate for the ferry in transit by the three different

trajectory tracking systems. 44

vi

List of Tables
1 Model parameters for the 3DOF model used in the simulator [2]. 27
2 Results from the bollard pull test performed with the milliAmpere

ferry 06.06.2018. 29
3 Results from step input test of azimuth angle on the thruster

system. The table gives start value and end value of the step
input, as well as the corresponding response time of the azimuth
thruster. 30

4 The moving objects in Situation 1. The table contains the object
data that is available to the trajectory planning. 33

5 The moving objects in Situation 2. The table contains the object
data that is available to the trajectory planning. 34

6 The moving objects in Situation 3. The table contains the object
data that is available to the trajectory planning. 34

7 Calculated cost for the optimal trajectory in each starting point
of the trajectories in Figure 16. Cost is calculated according to
(26), with gains KTT = 1, KAT = 1 and Kacc = 1. 38

8 Calculated cost for the optimal trajectory in each starting point
of the trajectories in Figure 17.Cost is calculated according to
(26), with gains KTT = 1, KAT = 1 and Kacc = 1. 39

9 Calculated cost for the optimal trajectory in each starting point
of the trajectories in Figure 18.Cost is calculated according to
(26), with gains KTT = 1, KAT = 1 and Kacc = 1. 40

10 Metrics for comparing the passenger comfort of each control strat-
egy. Values are integrated absolute value of the state in the
header. 41

11 Metrics for comparing the trajectory tracking capabilities. Values
are integrated absolute value of the state in the header. 44

vii

Abbreviations

ARPA Automatic Radar Plotting Aid

COLAV Collision Avoidance

DOF Degrees of Freedom

DP Dynamic Positioning

ECEF Earth Centered Earth Fixed

ENC Electronical Nautical Charts

GNSS Global Navigation Satellite System

Lidar Light Imaging Detection and Ranging

LOS Line of Sight

MPC Model Predictive Control

NED North East Down

NTNU Norwegian University of Technology and Science

OBC On Board Computer

PID Proportional Integral Derivative

ROS Robot Operating System

USV Unmanned Surface Vessel

viii

1 Introduction

In this chapter, the motivation for the work in this project is presented along
with a problem description and a list of contributions from the author to the
project. An introduction to the background and previous work on the field is
included. The chapter is concluded with an outline of the report.

1.1 Motivation

The milliAmpere ferry was initially though of as an alternative to a walking
bridge across a canal in Trondheim harbour that would block of a small-boat
harbour for all boats above a certain height. The idea was taken further and
became a project with a goal to develop the first autonomous passenger ferry in
the world. A 5 meter long prototype has been build and functions as a platform
for development and testing of all systems that are needed on an autonomous
passenger ferry. The project is owned by NTNU Trondheim and allows for
student to contribute to the development. The potential of the project is huge,
where the finished product is highly scalable and can contribute to the way cities
and infrastructure is planned. As the populations in cities around the world
is growing, the need for flexible and environmentally friendly transportation
along the waterways is growing along with it. Electric autonomous passenger
ferries can fill this demand, as they are low cost (relative to building solid
infrastructure), flexible, where it is easy to add more ferries or new transit
routes depending on season or other needs, and good for the city environment,
in the way that they do not pollute noise nor exhaust like traditional collective
transport systems. The market for autonomous ferries is very real, and the
project can contribute to the growth of maritime industry in Norway. The
research and development that goes into this project will contribute to keeping
Norway a leading country in the maritime industry.

1.2 Problem Description

The problem this project sets out to solve is to develop a planning and control
system that can perform a transit with an autonomous passenger ferry, mil-
liAmpere, in an environment defined by a canal in the harbour of Trondheim
City. The ferry can be seen in Figure 1, while the environments are displayed
in Figure 3. The system is to interface with existing systems already on the
ferry, such as thrust allocation and sensor systems. The following objectives are
proposed for this project:

• Research methods for COLAV

• Formulate a set of considerations for a trajectory planning system

• Develop a simple COLAV system

1

Figure 1: The prototype milliAmpere during a demonstration in Haugesund in
September 2018. The ferry functions as a platform for development and testing
of sensor and control systems needed for fully autonomous sea-travel. Courtesy
of Teknisk Ukeblad.

• Develop a trajectory planning system

• Look into trajectory following methods

• Develop a simulator for the ferry

• Implement a trajectory following system

• Simulate and evaluate the COLAV system

• Simulate and evaluate the trajectory following system

1.3 Contribution

The contributions of this project thesis are threefold.

• A simulator that interfaces with the existing control and sensor-systems
on the ferry is developed. The simulator will facilitate rapid testing and
prototyping of new and old systems and algorithms in both unit testing
as well as full system testing on the OBC of the ferry. This can become
a time-saver for everyone working on the project, and a needed safety-
measure in the development of COLAV systems. The simulator is generic
and easily adaptable. This makes for a simple augmentation of the sim-

2

ulator when the milliAmpere ferry system is expanded with new sensors
systems and functionality.

• A deliberate COLAV system is developed and tested. The system is design
with respect to the environment the ferry is to operate in. In addition,
the COLAV system is simple, predictable and does not introduce a high
computational cost to the OBC of the ferry.

• A job is done to compare trajectory following systems in order to see
what control strategy best complements the COLAV systems while giving
a vessel behaviour close to the desired behaviour with regards to passenger
comfort.

1.4 Previous Work

COLAV is an essential part of every traffic system, or transportation system.
The task of a COLAV system is to prevent two or more objects from from
colliding into each other. This includes detecting objects, predicting the chance
of collision and suggesting or even performing a maneuver in order to avoid or
reduce the chance for, or damage from a collision.

Traditionally this has been a task for a skilled operator, well known with the
rules and laws of the environment he is operating in, as well as the system he is
operating. Despite qualified operators, accidents do occur, and the last decades
a lot of COLAV systems has been developed to assist or take over for operators.
In the automotive industry, this is very apparent, where adaptive cruise con-
trol, emergency braking systems and lane assist has emerged on commercially
available vehicles. In aviation, Radar based air traffic control have been in use
for several decades. The system assists pilots and air traffic officers to keep
a minimum distance between aircrafts in zones with high traffic, such as the
airspace over big airports. For marine traffic, ARPA is in quite extended use,
and is an assisting system that broadcasts the positioning, heading and velocity
of the vehicle, as well as receives the same information from close by vessels. It
then uses this information to estimate the closest point of approach, as well as
alerting potential collisions.

As the autonomous technology is advancing, allowing for vehicles to operate
autonomously in the presence of other autonomous and non autonomous ve-
hicles, it will not longer be sufficient to have operator assisting systems. The
COLAV systems has to be able to match the autonomous level of the craft.
This includes a high level of precision in detection of all other objects in close
proximity, robustness to noise and full redundancy.

As of today there is a number of commercial actors working hard to develop
into the segment of fully autonomous surface vessels, and hence also has to solve
the problem of fully autonomous collision avoidance. Between January and
April 2018, technology group Wärtsilä was successfully testing its auto-docking

3

technology on the Foglefonn ferry, a 85 meter long passenger and car ferry on the
transit Jektevik-Hodnanes in Norway. Later the same year, they expanded the
system to include automated transit, and hence had system capable of a dock-
to-dock transits [3]. The system is fully autonomous is normal situations, but
does not have capability to handle situations due to lack of situation awareness,
and therefore the system is dependent on personnel monitoring it, ready to take
over in any situation. On the 3.December 2018 Rolls-Royce demonstrated their
autonomous ferry transit system that is able to travel from dock to dock, while
detecting obstacles and performing maneuvers to avoid collision [4]. The system
monitor the environments by a set of sensor systems, and is able to detect and
react to a situation, such as a ship on collision course. Kongsberg Maritime
also has been developing and testing autonomous vessels for some years, and
has started production of a fully autonomous cargo ship, with a vision of full
autonomous operation by 2022 [5].

1.5 Outline

In Chapter 2 an introduction is given to some fundamental theory as well as
some key terms and concepts. In Chapter 3, an approach to collision avoidance is
presented, followed by suggestions to a trajectory following system in Chapter
4. In Chapter 5, the simulator and its functionality is described. Chapter 6
presents the results of the work done as well as a discussion. In Chapter 7, the
work is summed up, and suggestions for future work are included.

2 Theoretical Background

In this section, some fundamental theoretical background will be presented, as
well as an introduction to some terms and concepts that is used in this project
thesis.

2.1 Vessel Modelling

2.1.1 Kinematics

In navigation and motion control of marine crafts, a set of reference frames can
be can be used, depending on the area of use and tolerances.

• ECEF frame is an Earth-Centered-Earth-Fixed frame denoted {e}. Its
origin is fixed to the center of the earth, and it rotates around the earths
spin axis. A point on the surface of the earth will have a fixed set of
coordinates in {e}. The {e} frame can also be used to represent Longitude-
Latitude-Altitude which is widely used in GNSS based navigation.

4

Figure 2: Reference Frames, ECEF frame in blue, NED frame in green and
BODY frame in orange.

5

• NED frame is the North-East-Down coordinate system, hereby denoted
{n}. The {n} frame is used to describe the position and orientation of the
craft. In this frame the x-axis point towards the true north, the y-axix
points to the east, and the z-axix points down, normal to the surface of
the earth. For flat-earth navigation, one can assume that {n} is inertial,
implying that Newton’s laws still apply.

• BODY frame is the Body-fixed-reference-frame hereby referred to as {b}
is a coordinate frame fixed to the craft. The {b} frame is used to describe
the linear and rotational velocities of the craft. The x-axis of the {b}
frame is aligned with the longitudinal axis, of the craft, the y-axis is the
transversal axis, and points straight to starboard, and the z-axix is the
normal axis, and points straight down.

A ferry will typically operate in a local area where flat earth navigation can be
assumed. This allows for use of {n} in combination with {b} to describe the
system. Since we only consider 3 DOF, the orientation z-axis of {b} and {n}
are parallel, the rotation from {b} to {n} becomes a principle rotation about
the z-axix

JΘ(η) = Rz,ψ =

 cos(ψ) −sin(ψ) 0
sin(ψ) cos(ψ) 0

0 0 1

 (1)

the rotation gives the relationship between the pose and the body velocities

η̇ = R(ψ)ν (2)

where R(ψ) := Rz,ψ with ν = [u, v, r]T and η = [N,E,ψ]T

2.1.2 Kinetics

In order to develop model-based control systems as well as a simulation en-
vironment, a kinetic model of the vessel in the environments must be made.
In this section, a 3 DOF model in the horizontal plane is presented [6]. The
maneuvering model is based on the rigid body kinetics

MRB ν̇ +CRB(ν)ν = τRB (3)

τRB = τhyd + τhs + τwind + τwaves + τ (4)

where τ represents the forces for the actuators on the vessel. Since the model
only takes into account the horizontal plane τhs = 0. The hydrodynamic forces

τhyd = −MAν̇r −CA(νr)νr −D(νr)νr (5)

is a result of the added mass, MA, Coriolis and centripetal matrix CA(νr) due
to the rotation {b} with respect to {n}, as well as the viscous and wave induced
damping. By combining (3)-(5) we get the maneuvering equation

MRBν̇ +MAν̇ +CRB(ν)ν +CA(νr)νrD(νr)ν = τ + τwind + τwave (6)

6

In the case of ocean currents, ν and νr will not be the same, this can be han-
dled by parameterizing CRB independent of linear linear velocity, and assuming
constant currents and hence v̇c = 0 [6]. By doing this the system can be written
on the form

Mν̇r +C(νr)νr +D(νr)νr = τ + τwind + τwave (7)

M = MRB +MA (8)

C(νr) = CRB(ν) +CA(νr) (9)

2.2 Trajectory Tracking

A control system that forces the system output y(t) ∈ Rm to track a desired out-
put yd(t) ∈ Rm solves a trajectory tracking problem [6]. For surface vessels, the
trajectory tracking problem usually concerns the 3DOF previously mentioned
where y(t) = η(t) = [N(t), E(t), ψ(t)] and yd(t) = ηd(t) = [Nd(t), Ed(t), ψd(t)],
where the objective is to minimize the tracking error

e(t) :=

 N(t)−Nd(t)
E(t)− Ed(t)
ψ(t)− ψd(t)

 (10)

The trajectory tracking strategy is dependent on the vehicle actuator configu-
ration as well as the trajectory to be tracked. A fully actuated vessel allows
for independent control of all the the three degrees of freedom and is especially
suited for crab-like motions as well as stationkeeping and DP .

2.3 ROS

Robot Operating System is software developed for building robot applications.
ROS is not an operating system, but rather a collection of software frameworks
for robot software development [7]. ROS is open source and free for commercial
and research use. The software provided can be split into three groups: Tools
for building and distributing ROS based software, ROS client libraries such as
roscpp (C++) and rospy (python), and packages containing application related
code which usually uses one or several of the ROS client libraries.

ROS was developed to facilitate collaborative development of robotic systems.
With the ROS packages, a team of developers in one field can easily share
or combine their work with developers in another field. This is much due to
intuitive and standardized message based interface that ROS uses. This also
facilitates the use of a variety of programming languages combined. ROS works
well for both low level hardware drives, as well as advanced algorithms.

7

Figure 3: Operational environment of milliAmpere. Two ferry quays with ap-
proximately 85 meters across, giving a transit time of about 80 seconds. Small-
boat harbour on both sides of the transit area.

3 Collision Avoidance

A common denominator for a lot of the methods developed in the field of COLAV
for unmanned surface vessels is the scope of the environments. Often, the vessel
guidance systems have a deliberate layer planning a global trajectory without
concern of COLAV, and then leave the COLAV to the reactive layer [8], [9]
allowing it to deviate from the global trajectory during evasive manoeuvres,
and then converging to the trajectory when the situation has passed. In a lot
of the cases this separation between deliberate trajectory planning and COLAV
is a necessity, since the vessels are traveling great distance over a long period
of time, and hence lacks knowledge of potential obstacles. Other methods are
augmented with COLAV in the deliberate layer as well as the reactive layer [1].
A similarity in these methods is that the environments facilitates COLAV by
allowing great deviations from the global trajectory without introducing any
considerable risk or complications [10].

In the case of milliAmpere the situation for the COLAV systems is quite differ-
ent. The physical environments are displayed in Figure 3. As one can see from
the figure the scope of the transit is about 85 metes, which means that deviations
of 25 meters from the straight trajectory between the two ferry quays will lead
to an increase of trajectory length of about 20%, and a deviation of more than
25 meters might introduce complications with approaching the quay without
excessive maneuvering of the vessel. This might lead to another complication
that none of the mentioned methods consider; the passenger comfort. Due to
these factors, a COLAV that is 100% reactive is unsuited for this problem due
to its unpredictability.

8

The operational environment of milliAmpere does on the other hand introduce a
couple of great advantages. Due to the short trajectory and hence short transit
time, it is possible to get a relatively good understanding of what the traffic
picture in the canal will look like in the time-scope of the transit. Another
advantage of the canal shaped environment is the increased predictability of
potential objects, since they tend to be either on their way in or out of the
canal. The nature of the mission for the ferry also gives that the ferry will be
at dock, which is considered a state free of collisions, at least once every 80
or so seconds. This gives the possibility of simply staying docked every time
the traffic picture gives predictions of a problematic transit, awaiting better
condition. These factors combined facilitates the use of a deliberate COLAV
system as the main COLAV system of the ferry.

The strategy of staying docked awaiting better conditions in stead of laying out
on a trajectory of evasive maneuvers rests on the assumption that the threshold
for acceptable traffic is above the typical traffic in the canal in order to be an
effective method. As long as this condition is met, the waiting strategy will
improve passenger comfort, energy consumption, safety and also increase the
charging time of the ferry, since it will use induction-charging whenever it is
docked.

In the following subsections a suggestion to a deliberative COLAV system for
the milliAmpere ferry will be proposed.

3.1 Structure

Figure 4 illustrates a suggestion to an architecture for a COLAV system with
some of the vital supporting functions. The suggested structure is based on the
three layer software architecture of autonomy [11].

The Static Environment Map keeps information about the static or slowly
varying environments. This might be provided by ENC, supported by real time
radar and Lidar data that catches changes in the static environment caused by
either changes in water levels, currents or boats that are periodically docked in
the environment. This module is under development in the milliAmpere project.

The Object Detection Module provides data on the rapid changes in the
environment such as moving objects. The information might come from radar,
lidar and camera data either from the ferry or from stations mounted on the dock
or along the canal. This module is also under development in the milliAmpere
project.

The Executive Layer uses information about the trajectory and mission to
generate reference signals for the reactive layer. The executive layer generates
a heading reference by a aligning the heading of the vessel with the velocity
vector reference.

9

Figure 4: Illustration of structure of a COLAV system with supporting functions
[1].

The Mission Planner is the top layer of the structure, and part of the deliber-
ate layer. The mission planner handles the transit missions of the ferry. When
the ferry is requested to transit from one quay to the other, it is the mission
planner that generates the path from the current location to the desired loca-
tion. Note that the mission planner only gives a path, and not a trajectory, in
the way that it provides a set of wayponts in {n}. The transit request set a time
for earliest possible departure, but puts no restrictions on the time of arrival,
nor a timestamp for any underway checkpoints. Note that the mission planner
only takes into account the information about the static environments, and not
any moving objects in the canal.

TheDeliberate Layer of the COLAV algorithm uses the path from the mission
planner, as well as the information from the Object Detection Module about
the moving objects in the environment to generate a trajectory that connects
the suggested waypoits in a way that avoids collision during the transit. This is
done by generating a velocity profile in {n} that is fed to the Executive Layer.
Note that the Deliberate Layer does not generate a heading reference, this is
done by the Executive Layer by aligning the desired heading with the velocity
vector. A suggested method for the Deliberate Layer will be presented later in
this section.

The Reactive Layer of the COLAV tracks the suggested trajectory from the
deliberate layer by using a trajectory tracking control system. At the same
time it reacts to real time data from the Object Detection Module by making
adjustments to the trajectory in order to avoid collision and ensure a certain
level of safety.

10

3.2 Trajectory Planning

In this project the trajectory planning problem is concerned with finding a
trajectory in space and time S(t) ∈ R2 that the ferry can track in order to
get from the current position P0 = [x0, y0]T = [N0, E0]T to a desired position
Pd = [xd, yd]

T = [Nd, Ed]
T . In addition to this, the trajectory should be planned

in a way that ensures the ferry not to collide into any static or moving objects.

Here, a method of finding a collision free trajectory is separated into two sub-
problems, based on [12]. First finding a path that does not collide with any
static object, and then finding a velocity profile along that path that ensures no
collision with any potential moving objects.

3.2.1 Considerations

Since the trajectory is to take the ferry from one side of the canal to the other,
the trajectory should start in a point just outside of one quay, and end in a
point just outside of the other quay. This would allow the ferry to get close
enough to the quay, so that the docking algorithm can take over. Other than
this, the choice of trajectory should take into account the following factors:

• Predictability: In order for the passenger to feel safe, the trajectory
should be predictable. This will make it easier for the passenger to observe
the ferry in the environments and be assured that the crossing is secure
and well planed.

• Safety: The trajectory should be planned in a way that maximizes the
safety-factor of the crossing. This be, for example keeping an adequate
distance to stationary object, waiting for high traffic or high velocity ves-
sels to pass before starting the transit, as well as keeping in line with the
COLREGs [13] in order to be predictable to other autonomous and non
autonomous vessels.

• Comfort: The trajectory should be planned in a way that minimizes the
acceleration and yaw rate, in order to increase passenger comfort and re-
duce risk of standing passenger loosing balance as well as motions sickness.

• Efficiency: The trajectory should take energy consumption into account
and plan a trajectory that is no longer than necessary. There is also
possibility to account for environmental factors such as wind and current.

• Simplicity: The trajectory should be as simple as possible, but not sim-
pler.

In this particular case, the area in the canal between the two quays is free of
any permanent obstacles, and hence a trajectory that resembles a straight line
between the two docking stations would simplify the problem into only consid-
ering moving objects. A straight line is a very predictable trajectory, makes

11

the crossing as short as possible and is arguably one of the simplest trajectories
there is. Limitations associated with committing to a straight line is slowly
moving, or temporally static objects located along the line will introduce prob-
lems for the planner. Also, in some cases, the trajectory might be substantially
longer in duration, or suffers a reduction in one or more of the factors above
compared to a trajectory that is allowed to deviate from the straight line.

The problem of finding the path is not addressed further in this project, but will
in general be handled by the Mission Planner in Figure 4. In the following,
we present a way of generating a trajectory that does not collide with any
moving objects, given some assumptions about the behaviour of the objects.
The trajectory is generated from a straight path, or a path made up from
straight line segments, which is to make up the deliberate part of the COLAV
system presented in the preceding sections. This method can also be generalized
to smooth paths by altering the way the moving objects are transformed into
the time× path domain.

3.2.2 Moving Objects

In the following, it is assumed that the moving objects in the canal close to
the transit area is detectable by the sensor systems available to the ferry. It
assumes that the objects are detected with a position, and velocity vector, as
well as a size estimate. Further it is assume that due to the formation of the
canal, moving objects will keep a somewhat steady course and velocity.

3.2.3 Object Representation

In order to make an algorithm that avoids colliding into objects, a representation
of the objects is needed. The representation needs to include the area spanned
by the object body in a topside view. An easy way of modeling this is to
represent every object by a set of points giving the corners of a polygon, where
when the sides of the polygon is drawn up, the whole projection of the vessel
will be enclosed by the polygon. With this representation the polygon can be
considered as a forbidden region that is moving around in the xy plane.

Figure 5 illustrates a way of making the polygons so that they also incorporate
COLREGs [13]. By extending the polygon in front of the objects coming from
the starboard side of the ferry, and extending to the rear of objects coming
from the port side of the ferry the trajectory planning algorithm will favour
trajectories that follow COLREGs rule 15.

12

Figure 5: Moving objects in the canal (grey) with a velocity vector (blue) and
a forbidden region (red). The ferry (dark green) and the desired path across
the canal (light green). The forbidden region extends in front of the vessels
approaching from the starboard side, and behind the vessels approaching from
the port side in order to facilitate COLREGs.

3.2.4 Path Parameterization

A straight line path P between the points Pstart = [xstart, ystart]
T and Pend =

[xend, yend]
T can be parameterized by

P :=
x− xstart

a
=
y − ystart

b
(11)

x ∈ [xstart, xend], y ∈ [ystart, yend] where the length of the path is

l =
√

(xend − xstart)2 + (yend − ystart)2 (12)

By choosing a and b as

a =
(xend − xstart)

l
(13)

b =
(yend − ystart)

l
(14)

where l is the length of the path, the parameterization of the path has the unit
meters, which proves to be intuitive and beneficial at a later stage.

3.2.5 Object Transformation

With a parameterization of the path, the observed objects can be transformed
onto the path× time domain. For this, it it assumed that the objects will keep

13

a steady course and velocity from the point of detection until it has crossed
the path. From this, the time and position of where the object will intersect
the path can be estimated. All objects with a size greater than zero will use
some time crossing the path, and hence create an area of intersection in the
path× time domain.

Since all objects can be represented by four points corresponding to the four
corners of a polygon that is fully enclosing the vessel. The problem of finding
the hyper-plane the object projects onto the path × time space is turned into
four equal linear problems that can be solved independently.

The position [x(t), y(t)] of an object in a plane as a function of time can be
described by the initial position and velocity-vector at last detection, as well as
the time since last detection,

x(t) = xobj + vx(t− tobj) (15)

y(t) = yobj + vy(t− tobj) (16)

where xobj and yobj is the position of the object at detection at t = tobj By
substituting x and y from (11) for x(t) and y(t) in (15)-(16) we get

Pa− xstart = xobj + vx(t− tobj) (17)

Pb− ystart = yobj + vy(t− tobj) (18)

The equations can be solved to get a point [P, t] for each corner of the rectangle in
the Euclidean space, to get the four corners defining the object in the path×time
space. By doing this for each observed object, a map of all objects projection
onto the path× time space can be made. Figure 14 displays such a projection
for the objects listen in Table 5.

3.2.6 Node Representation

With the objects represented in the path × time space, finding a collision free
trajectory can be viewed as finding a graph from the point [P, t] = [0, 0] to the
line represented by P = l that does not intersect with the area spanned by the
representation of the objects. By making the corners of the objects, as well
as the starting point into nodes, and creating vertices between the nodes, this
problem can be solved by graph search algorithms. For the the algorithms to
be able to find a trajectory to the end of the path, there has to be reachable
end-nodes at P = l. To provide this, end nodes can be added for each of the
objects and start nodes. By setting the time for the end nodes as a function
of the desired transit velocity of the ferry according to (19), we facilitate the
graph search algorithm to finding trajectories with desired transit velocity. In
the equation l is trajectory length, and vdes is the desired transit velocity.

tend_node = tstart_node +
l − pstart_node

vdes
(19)

14

3.2.7 Vertices and Weights

For this problem to be solved by a node search algorithm, it needs to be repre-
sented as a set of vertices and weights. The vertices are straight line segments
connecting two nodes, and represents a potential sub-trajectory. The weights
are values connected to each vertex representing the cost of using that sub-
trajectory. When the nodes are set, the vertices and weights can be generated.
Since the problem is a physical one, not all vertices are feasible. For a vertex to
be feasible in this problem, there is three criteria that has to be met.

• The end node is later in time than the start node

• The vertex does not represent a velocity with absolute value above Vmax

• The vertex does not pass through any of the objects

where Vmax > 0 is the maximum desired velocity for the ferry. The first two
criteria are trivial to check. The third criteria is solved by by the following
approach: Let V be the set of vertices fulfilling the first two criteria, and O
be the set of all vertices representing edges of objects. All vertices in V and
O are represented as line Pvertex on the format given by equation (20). Then
for all vertices in V , find the intersection point (pintersect, tintersect) with each
of the vertices in O. If any of the intersection points give correspond to an
pvertex ∈ [0, 1) for both vertices, remove the vertex from V .

Pvertex =
p− pstart_node

pend_node − pstart_node
=

t− tstart_node
tend_node − tstart_node

(20)

Following, the set V can be further reduced. Since we the vertices in V are
directed, any node, except for the starting node, that does not have a vertex
pointing to it, is an unreachable node. And hence all vertices pointing out from
that node can be removed form the set V . This is done in an iterative manner
until no further reduction of V is possible.

The weight for each vertex can be set based on multiple objectives. For this
case the weight is simply set as the length in time for each vertex, namely
W = (tend_node − tstart_node), since the objective is to get the ferry along the
path in transit velocity.

3.2.8 Graph Search

With the set of vertices and weights, a graph search can be done. For this, the
built in matlab function shortestpath() is used. The function takes the vertices,
weights, start-node and end-node as arguments, and returns a list of nodes that
makes up the shortest paths from the start-node to the end-nodes. Firstly the
set E of end nodes is constructed, then the shortest path from the start-node
to every node in E is calculated. The function returns a set of node lists that

15

θ1

θ2

θ
R

t0

t

P

Figure 6: Two sub trajectories in path time space (green), that can be connected
by a circle segment with a minimum radius. to assure a saturated acceleration.

contains nodes making up a collision free path form the starting point to the
end of the path. If the list comes back empty, there is no collision free path
from the start-node to any of the end-nodes. This is done for every start node.

3.2.9 Continuous Velocity Profile

The waypoints make up a trajectory consisting of sub trajectories of constant
velocities. For trajectories with more than two waypoints, the trajectory will
have a step in velocity between sub-trajectories, corresponding to infinite accel-
eration. This is unphysical, and will cause problems for the trajectory following
control system, and give unwanted deviations from the trajectory at the link be-
tween each sub-trajectory. The steps in acceleration can also cause displeasure
for the passengers, and is in violation with the list of considerations for trajec-
tory planning. Special care has to be taken when solving this problem, since
altering the trajectory might compromise the collision free path. A suggested
solution to the problem is inspired by Dubins Path , with the line segments
connected by circle segments to create a smooth path [14]. Since Dubins Path
was created for the two dimensional euclidean space, some considerations has to
be taken to use the concepts in the path× time space. It is desirable to smooth
the trajectory in a way that saturates the acceleration to a value amax. The

16

velocity of the trajectory is given

v =
∆p

∆t
=
dsin(θ)

dcos(θ)
= tan(θ) (21)

where θ is the angle from the time axis to the trajectory tangent. This only holds
if the path has the property stated in equations (11)-(14). The acceleration is
given as the time derivative of the velocity

a =
θ̇

cos2(θ)
(22)

From Figure 6 we can see that the relation between θ and time becomes

t = Rsin(θ) + t0 (23)

By differentiating with respect to time, and solving for θ̇ we get the relation

θ̇ =
1

Rcos(θ)
(24)

By combining (22) and (24), and inserting the the maximum desired acceleration
amax for a as well as the biggest angle of θ1 and θ2 namely θmax = max(θ1, θ2),
we get the minimum radius Rmin for the circle segments connecting two sub-
trajectories in order make a trajectory that does not violate the acceleration
saturation. The minimum radius becomes

Rmin =
1

amaxcos3(θmax)
(25)

With this radius, the trajectory can be remapped in the area combining two
sub trajectories in the path × time space, to give a continuous velocity profile
with an acceleration saturation [14].

3.3 Trajectory Evaluation

With the velocity profile calculated, the trajectories from can be evaluated in
order to fint the optimal trajectory. The evaluation is done with regards to

• Transit Time: The difference in transit-time tTT from the shortest transit-
time of the trajectories to the transit-time of the trajectory in evaluation,
given in seconds.

• Acceleration: The integrated absolute value, asum, of the body accelera-
tion aabs =

√
u̇ref + v̇ref

• Time to arrival: The difference in arrival-time tAT from the earliest arrival-
time of the trajectories to the arrival-time of the trajectory in evaluation,
given in seconds.

17

The score is calculated by the cost function

Jtrj = KTT tTT +Kaccasum +KAT tAT (26)

where KTT , KAT and Kacc gives the cost of the transit time, arrival time and
body acceleration respectively. When all possible trajectories are evaluated, the
trajectory of lower cost is chosen, and a transit can begin.

4 Trajectory Tracking

For the ferry to be able to follow the trajectory suggested by the trajectory gen-
eration module, it needs to have a control system capable of trajectory tracking.
Since the vessel is fully actuated the options for trajectory tracking are many.
The criteria for the trajectory tracking are not as comprehensive as the tra-
jectory generation, but the system needs to be robust, stable, and keep the
tracking error given by (10) within certain limits in order to ensure a collision
free crossing. In this section three approaches to trajectory tracking are pre-
sented; a model based reference feed forward with position feed back, a line of
sight guidance method with surge reference feed forward and along path distance
feedback, and a MPC.

4.1 Thrust Allocation

The thrust allocation system on the ferry is controlling the two azimuth thrusters.
The module takes inn a 3DOF force reference ,τref = [τu_ref , τv_ref , τr_ref]T ,
and calculates the optimal distribution of force between the two actuators ac-
cording to a cost function. The algorithm uses data from a Bollard Pull Test,
to estimate the actuator setpoints corresponding to a certain force. The thrust
allocation module is described further in the section on simulator design. Since
the interface to the thrust allocation system is a 3DOF force reference, the out-
put from the following suggested trajectory tracking control systems will be a
3DOF force vector, τ = [τu, τv, τr]

T , and hence the systems will not consider
the dynamics of the thrusters at all.

4.2 Reference Model

The reference model used in the design of the control systems is from a scaled
model of C/S Inocean Cat I Drillship. The model is nonlinear 3DOF model in
surge, sway and yaw, and is further described in Section 5.2.

18

4.3 Reference Feed Forward

Since a 3DOF reference is generated, the vessel model can be used to estimate
the 3DOF forces needed to follow the reference. By using (7)-(9), the following
feed forward law can be generated

τFF = Mν̇ref + (C(νref) +D(νref))νref (27)

where ν̇ref is the body acceleration reference, and νref is the body velocity
reference.

The law does not take into account the current, wind or waves, and hence a
feedback law is needed to eliminate the error caused by disturbance and mod-
eling error. Since the objective is to track a trajectory, a feedback law on the
state of the tracking is beneficial, and the feedback on η is used to calculate the
trajectory tracking error e from (10). With this error, the following feedback
control law is generated

τFB = R(ψ)T (Kpe+Kd
de

dt
+Ki

∫ t

t0

edt) (28)

where R(ψ) is the rotation matrix in (1).

Hence, the control law becomes

τPID = τFF + τFB (29)

4.4 Line of Sight Controller

Another approach to trajectory tracking is a LOS based steering law with veloc-
ity and acceleration feed forward in surge, as well as along track error feedback.
The steering law is based on [6].

The method uses the position and the reference position in the path-fixed frame,
and hence we need to find a transformation matrix. This is done by first finding
the angle of the path αk relative North, in {n}, and is found by (30).

αk := atan2(yk+1 − yk, xk+1 − xk) (30)

where pk = (xk, yk) and pk+1 = (xk+1, yk+1) is the previous and next waypoint
on the path. Since we here consider a straight path from one quay to the other
it can be considered as the start and end point of the trajectory respectively.
With this angle, the coordinates of the vessel can be rotated to the path-fixed
frame by (31) where the rotation matrix Rp(αk) is given by (32) and p(t) is the
position of the vessel.

ε(t) = Rp(αk)T (p(t)− pk) (31)

19

Rp(αk) =

[
cos(αk) −sin(αk)
sin(αk) cos(αk)

]
(32)

Here ε(t) = [s(t), ec(t)]
T where s(t) is the along-track distance, and ec(t) is

the cross-track error. Applying the same rotation to the vector from the path
starting point to the current trajectory reference, namely pref − pk, where
pref = [Nref , Eref]T , we get εref with the reference along-track distance, and
a reference cross track error that is zero by design. From this we can compute
ε̃ = εref − ε, that gives the along-track error ea and the cross track error ec.
From this the trajectory tracking objective can be formulated as

lim
t→∞

ε̃(t) = 0 (33)

The objective can be split into two sub-objectives where one is concerned with
the cross-track error, and one is concerned with the along-track error. The cross-
track error can be handled by the steering law (34) from [6] Section 10.3.2.
The law is a saturated steering law where Kp = 1/∆ and ∆ is the look-ahead
distance, and Ki > 0.

χr(ec) = arctan(−Kpec −Ki

∫ t

0

ec(τ)dτ) (34)

The desired heading of the vessel can be calculated to be

ψd = αk + χr(ec) (35)

and the PID control law (36) can be used to apply the torque N in the 3DOF
force τ = [X,Y,N]T = [τX , τY , τN]T

N = τN = −Kpψ̃ −Kd
˙̃
ψ −Ki

∫ t

0

ψ̃(τ)dτ (36)

The second objective, concerning the along track error ea can be solved by a
surge velocity and acceleration feed forward along with the feedback on the
along track error.

XFB = τX = Kpeaea +Kdea

dea
dt

+

∫ t

0

ea(τ)dτ (37)

XFF = [1, 0, 0](MU̇ref + (C(ν) +D(ν))Uref) (38)

where Uref = [Uref , 0, 0]T and Uref =
√
u2
ref + v2

ref .

From this the following 3DOF control input can be formulated

τLOS =

 XFB +XFF

0
N

 (39)

20

4.5 Model Predictive Controller

A third approach to the trajectory tracking problem is a MPC [15]. MPC is
a control strategy where the control action is found by solving a finite horizon
open loop optimal control problem. The approach uses the current state of the
plant along with a state-space representation of the plant to propose a solution
for the next N control inputs, where the control inputs are found by minimizing
a quadratic cost function

J =
1

2
eTQe+

1

2
uTRu+

1

2
∆uTR∆u (40)

by a quadratic programming algorithm. The cost function represents the objec-
tive of the optimization, whereQ, R andR∆ sets the cost for the tracking error,
control input and change in control input, respectively. For the implementation
of an MPC the system needs to be described on a discrete state space form.

4.5.1 State Space Form

By rearranging (7)-(9), the system can be represented in state space form

ẋ(t) = A(x(t))x(t) +B(x(t))u(t) (41)

This is done by rearranging (7), and solving for ẋ(t) = ν̇r(t). This gives the
system

ν̇r(t) = M−1(C(νr(t))+D(νr(t)))νr(t)+M
−1(τ (t)+τwind(t)+τwave(t)) (42)

where the A can be found to be

A(ν(t)) = M−1(C(νr) +D(νr)) (43)

and the B matrix becomes

B(ν(t)) = M−1 (44)

4.5.2 Linearization

The system in (41) can be linearized about a point x(t0) by substituting the
time dependent system matrix A(x(t)) with At0 = A(x(t0)) and B(x(t)) with
Bt0 = B(x(t0)). The linearized system becomes

ẋ(t) = At0x(t) +Bt0u(t) (45)

21

4.5.3 Discretization

The system in (45) can be discretized according to [16].The discretization method
assumes that the input u(t) is behaves like a staircase function where the input
is piecewise constant, that is u(t) = u(kT) := u(k) for kT ≤ t < (k + 1)T for
k = 0, 1, 2, ..., and uses the general solution of the state space equation [16] to
find the discretized solution

x[t+ 1] = Adx[t] +Bdu[t] (46)

with

Ad = eAT , Bd =

∫ T

0

eAτdτB (47)

4.5.4 Optimization Problem

With the linearized system in hand, the optimization problem can be set up.
This regards setting up the cost function and the equality constraints for the
optimization. In the approach used in this project thesis, the matlab function
mpcqpsolver() is used to solve the quadratic optimization problem . The solver
takes as input the H and F matrix from the cost function written in the form

J = xTHx+ Fx (48)

as well as the inequality matrices

Aeqx = beq (49)

In (48) tje H and F matrix represents the cost priorities from Q ,R and R∆.
The vector x is the combined states and control input of the system

x =



x[k + 1]
x[k + 2]

...
x[k +N]
u[k]

u[k + 1]
...

u[k +N − 1]


(50)

In the construction ofH and F the objective of the trajectory tracking problem
must be considered. The objective is to minimize the absolute value of the

22

tracking error x− xref with

xref =



x[k + 1]ref
x[k + 2]ref

...
x[k +N]ref

0
0
...
0


(51)

By inserting the tracking error into the quadratic cost function along with a
general H we get

J =
1

2
(x− xref)TH(x− xref) (52)

J =
1

2
(x)TH(x) + xTrefHx+

1

2
xTrefHxref (53)

where the last term in (53) is a constant and can be omitted. This gives

J =
1

2
(x)TH(x) + xTrefHx (54)

which is on the same form as the cost function in (48) with F = xTrefH From
the state and input vector x, one can see that the cost matrix needs to be
H = H1 +H2, with H1 and H2 given by (55) and (56) respectively in order
for (48) to be equivalent to (40).

H1 =



Q 0 · · · 0 0 0 0 · · · 0 0
0 Q · · · 0 0 0 0 · · · 0 0
...

...
. . .

...
...

...
...

. . .
...

...
0 0 · · · Q 0 0 0 · · · 0 0
0 0 · · · 0 Q 0 0 · · · 0 0
0 0 · · · 0 0 R 0 · · · 0 0
0 0 · · · 0 0 0 R · · · 0 0
...

...
. . .

...
...

...
...

. . .
...

...
0 0 · · · 0 0 0 0 · · · R 0
0 0 · · · 0 0 0 0 · · · 0 R


(55)

H2 =

[
0 0
0 R∆u

]
(56)

23

R∆u = R∆u



1 −1 0 0 · · · 0 0 0
0 1 −1 0 · · · 0 0 0
0 0 1 −1 · · · 0 0 0
...

...
...

...
. . .

...
...

...
0 0 0 0 · · · 1 −1 0
0 0 0 0 · · · 0 1 −1
0 0 0 0 · · · 0 0 0


(57)

The equality constraint matrices can be calculated by (46) by solving from the
time t = k, to t = k+N where N defines the prediction horizon. By rearranging
the terms on one side we get

x[k + n+ 1]−Adx[k + n]−Bdu[k + n] = 0 (58)

for n ∈ [1, N], and
x[k + 1]−Adx0 −Bdu[k] = 0 (59)

for the first step, where x0 is the current state of the system. From this we see
that withX as given in (50) theAeq and beq becomes (60) and (61) respectively.

Aeq =



I 0 0 · · · 0 0 −B 0 0 · · · 0 0
−A I 0 · · · 0 0 0 −B 0 · · · 0 0

0 −A I · · · 0 0 0 0 −B · · · 0 0
...

...
...

. . .
...

...
...

...
...

. . .
...

...
0 0 0 · · · I 0 0 0 0 ... −B 0
0 0 0 · · · −A I 0 0 0 ... 0 −B


(60)

beq =


Ax0

0
0
...
0

 (61)

4.5.5 MPC controller

The control algorithm solves the optimization problem for each iteration. This is
done by first calculating the linearized state space matrices given by (45) around
the current state x(t0) = [ηT0 ,ν0]T , and then discretize the matrices according to
(46) and (47). Subsequently, the equality matrices can be calculated. Further,
the reference vector xref can be constructed from the planned trajectory, and
the cost matrix F can be computed. The cost matrix H is constant and can be
calculated offline.

24

When all matrices are calculated, the xopt = mpcqpsolver(H,F ,Aeq, beq) is
called. The xopt state contains a combined state vector on the form (50) with
states that minimize the cost function in accordance with the equality con-
straints. Further the control algorithm extracts the first control input u[k] =
[0, 0, 0, X[k], Y [k], N [k]]T and realizes the 3DOF force vector (62).

τMPC = [X[k], Y [k], N [k]]T (62)

This is done for for every timestep of the trajectory following control loop.

5 Simulator

Even though the ferry milliAmpere is fully functional and available in the har-
bour in the centre of Trondheim, it is somewhat time consuming to take it out
for sea trials every time a new iteration of the COLAV system needs testing. A
system under development rarely works on the fist try either, so the simulator
can contribute in removing the obvious bugs in the system In addition to this,
testing of COLAV algorithms under development might lead to uncomfortable
situations, and hence it is beneficial to be able to test the system in a risk free
simulator environment beforehand.

Due to this, a simulator was developed to facilitate the testing of COLAV sys-
tems in series with the trajectory following systems on the ferry. The simulator
was developed in Matlab/Simulink and is based on a 3DOF horizontal plane
maneuvering model as described by Fossen [6]. The simulator interfaces with
the systems on the ferry through ROS messages, and uses the ROS interface in
MathWorks - Robotic System Toolbox [17].

The simulator includes a thruster model for the two azimuth thrusters on the
ferry. The thruster-model is based on data from a bollard pull test and will be
explained further in the section on thruster model. The navigation node from
the ferry is also included in the simulator. This node handles the data from
the GPS systems and the IMU and makes this available for the rest of the ROS
system.

5.1 Simulator Layout

An overview of the layout for the simulator is displayed in Figure 7. The green
blocks represents the ROS interfaces that are either publishing or subscribing
to messages from the ROS nodes in the ferry control system of milliAmpere.
The green blocs make up the vessel model. The red block simulates the envi-
ronmental forces.

25

Figure 7: Layout showing an overview of the the simulator implemented in
Matlab/Simulink with ROS interfaces interfacing with the same ROS-nodes
that is running on the milliAmpere OBC

5.2 3 DOF Model

At the time of simulator development there was no model of the ferry, so the
simulator is based on a model of the C/S Inocean Cat Drillship [2]. The vessel
mode is from a 1:90 scale replica of a supply ship with a length of L = 2.578m

The model is a 3DOF vessel model equal to (3)-(9). The system matrices is
given in the following, and the model parameters are given by Table 1. The
rigid bod and added mass matrix is given by

MRB =

 m 0 0
0 m mxg
0 mxg Iz

 (63)

MA =

 −Xu̇ 0 0
0 −Yv̇ −Yṙ
0 −Nv̇ −Nṙ

 (64)

The Coriolis and centripetal matrix is given by

CRB(ν) =

 0 0 −m(xgr + v)
0 0 mu

m(xgr + v) −mu 0

 (65)

CA(ν) =

 0 0 −cA,13(ν)
0 0 cA,23(ν)

cA,13(ν) −cA,23(ν) 0

 (66)

where the terms in the Coriolis matrix is given by

cA,13(ν) = −Yṙr − Yv̇v (67)
cA,23(ν) = −Xu̇u (68)

26

Parameter value
Xu -5.35
X|u|u 0
Xuuu -19.6312
Yv -10.16
Y|v|v -0.8647
Yvvv -681.1745
Yr -7.25
Y|r|r -3.45
Yrrr 0
Nv 0
N|v|v -0.2088
Nvvv 0
Nr -14.55
N|r|r -9.9597
Nrrr -0.3101

Parameter value
Nrv 0.08
Nvr 0.08
Yrv -0.805
Yvr -0.845
Xu̇ -10
Yv̇ -105
Yṙ -0.525
Nv̇ -0.157
Nṙ -3.450
Nur -0.525
Nuv 95
Yur 10
xg 0.0375
m 127.92
Iz 61.967

Table 1: Model parameters for the 3DOF model used in the simulator [2].

The damping matrix D(ν) is given by (69) where the matrix elements are given
by (70)-(74).

D(ν) =

 D11(ν) 0 0
0 D22(ν) D23(ν)
0 D32(ν) D33(ν)

 (69)

D11(ν) = −Xu −X|u|u|u| −Xuuuu
2 (70)

D22(ν) = −Yv − Y|v|v|v| − Y|r|v|v| − Yvvvv2 (71)

D23(ν) = −Yr − Y|r|r|r| − Y|v|r|v| − Yrrrv2 − Yuru (72)

D32(ν) = −Nv −N|v|v|v| −N|r|v|r| −Nvvvv2 −Nuvu (73)

D33(ν) = −Nr −N|r|r|v| −N|v|r|v| −Nrrrr2 −Nuru (74)

The simulator solves

ν(t) =

∫ t

t0

M−1(τ −C(ν)ν −D(ν)ν)dt+ ν(t0) (75)

η(t) =

∫ t

t0

R(ψ)νdt+ η(t0) (76)

where the initial condition ν(t0) and η(t0) is set in the initiation file of the
simulator, and

τ = τthruster + τexternal (77)

is the forces on the vessel where τthrusters come from τPID, τLOS or τMPC

depending on the choice of control strategy, and τexternal come from the external
forces that will be mentioned in a later subsection.

27

-1500 -1000 -500 0 500 1000 1500

-300

-200

-100

0

100

200

300

400

500

600

Bollard Pull Data

Fitted Curve

Figure 8: Curve-fitting of the data from the bollard pull test in Table 2.

5.3 Thruster Model

The interface between the thrusters and the rest of the ferry control is limited
to four signal values. The thrust allocation system sends a rotational velocity
setpoint, omegaset ∈ [−1000, 1000] where the two edge cases correspond to min
and max rotational velocity respectively. In addition, the thrust allocation send
angle setpoint, corresponding to the desired angle of the thruster relative the
x-axis of the vessel. The thruster system reads the setpoints for angle and
rotational velocity. The commands are realized by the motor controllers to the
best ability, and the actual RPM and thrust angle of the azimuth thruster are
published back to the thrust allocation system.

The mapping between the RPM thrust is based on data form a bollard pull
test performed on the ferry 06.06.2018 by people in the milliAmpere project.
The data can be seen in Table 2. The data was imported to matlab and a 5th
degree polynomial was curve-fitted to the thruster data. The fitted curve can be
seen in Figure 8. From the polynomial, an evenly distributed data set of thrust
and RPM was calculated, for use in a linear look-up table. The fitted curve
and the brakepoints can be seen in Figure 9. The dynamics of the azimuth
angle is also modeled based on test data from the same test. Data from running
the azimuth angle with step inputs are presented in Table 3. Since this is all

28

-1500 -1000 -500 0 500 1000 1500
-300

-200

-100

0

100

200

300

400

500

600

Fitted Curve

Lookup-table Brakepoints

Figure 9: Data for the look-up table for the thruster model in Simulink. The
table gives the relation between RPM and thrust as well as the curve fit to the
bollard pull data.

Motor Speed [%] Positive Thrust [N] Negative Thrust [N]
5.0 0 0
10.0 29.0 0
15.0 59.0 0
20.0 69.0 0
25.0 88.0 9.8
30.0 122.0 29.0
35.0 166.0 49.0
40.0 200.0 69.0
45.0 222.0 88.0
50.0 277.0 111.0
55.0 322.0 144.0
60.0 399.0 199.0
65.0 411.0 211.0
70.0 433.0 233.0
75.0 466.0 266.0
80.0 477.0 277.0
85.0 499.0 277.0
90.0 500.0 288.0
95.0 500.0 299.0
100.0 500.0 300.0

Table 2: Results from the bollard pull test performed with the milliAmpere
ferry 06.06.2018.

29

Figure 10: Azimuth angle modeling in Simulink. The angular velocity is set
proportional to the error, and saturated to max angular rate. The saturation
value is found from the data in Table 3.

Step Start[deg] Step End[deg] Time [s]
0 360 9
0 180 4
0 90 2
360 0 9
270 0 6
180 0 4
90 0 1.9

Table 3: Results from step input test of azimuth angle on the thruster system.
The table gives start value and end value of the step input, as well as the
corresponding response time of the azimuth thruster.

the data available it is assumed that the thruster rotates at a constant angular
velocity until it is close to the setpoint, and then ramps down the velocity until
the azimuth angle corresponds with the setpoint. The thruster is modeled with
a velocity proportional to the error

eθ = θset − θ (78)

where θset is the azimuth angle setpoint, and θ is the actual azimuth angle. A
saturation is added to match the maximum angular rate of the thrusters which
is found from the test data in Table 3. The azimuth angle model from Simulink
is displayed in Figure 10.

5.4 Thruster Force Transformation

The two thrusters are modeled independent of each other and generates indepen-
dent forces Ffront and Frear at the azimuth angles θfront and θrear respectively.
The vessel model uses 3DOF thruster forces τthruster, and hence a transforma-
tion needs to be done. The position of the thrusters can be seen in Figure 11.

30

Figure 11: Topside view of the thruster layout on milliAmpere. The ferry is
symmetrical, and hence the front and rear thruster arm is the same.

Both thrusters are placed on the front-aft centerline of the vessel, symmetri-
cal about the midship beam. The relationship between the thruster forces and
angles and the 3DOF force is

τthrusters =

 cos(θfront) cos(θrear)
sin(θfront) sin(θrear)

−lTAsin(θfront) lTAsin(θrear)

[Ffront
Frear

]
(79)

where lTA is the front and rear thruster arm.

5.5 External Forces

The simulator is also augmented with the possibility to add external forces
τexternal. Both static and dynamical forces can be added. The forces are defined
in the {n} frame as Fexternal, and is rotated to the {b} frame by

τexternal = R(η)TFexternal (80)

where R(η) is given by (1).

5.6 ROS Interface

The simulator interfaces with the control system though ROS messages. Blocks
from the Robotic System Toolbox support importation of custom messages, and
make the adaptation seamless. The actuator setpoints are published by the
thruster allocation node, and is subscribed to by a block in the simulator in
the same way the actuator controllers do. The simulator also has a sensor

31

system module, where it publishes sensor data on the same topics and message
format as the navigation node in the ferry control system. This makes for
easy switching between testing the control system in the simulator and the
experimental platform.

32

6 Simulation Results and Discussion

6.1 Trajectory Planning

The trajectory planning algorithm is tested by three traffic situations with in-
creasing traffic. All three situations are shown in Figure 12. In the figure, the
planned path is marked in green, the canal banks in dashed blue, and the initial
position of objects, with a vector showing the heading of the objects in red. The
path of the ferry starts on the lower bank in the point Pstart = [x, y]T [10, 10]T

and ends on the higher bank in the point Pend = [x, y]T = [100, 30]T . The infor-
mation about the objects for Situation 1, Situation 2 and Situation 3 is given in
Table 4, Table 5 and Table 6 respectively. For each of the situations introduces
in Figure 12 , the trajectory planning algorithm has tried to plan a trajectory.
Figure 13-15 shows the collection of vertices that fulfilled the three conditions
from Section 3.2.7, and hence qualifies as potential sub-trajectories. The figures
also contains the projection of the moving objects onto the path× time domain.

From the results in figures 13-15 it is evident that the trajectory planner is able
to find a trajectory that is collision free according to the data available, given the
mentioned assumptions about the moving objects. An increasing traffic picture
increases the size of the problem by adding more nodes and vertices, but does
not make the problem any more complicated, and hence the same method can
be used, independent of the traffic picture.

Object Position (x0, y0)[m] Heading [rad] Velocity [m/s] Length [m] Width [m]
Obj11 [24,−6] π/2.1 1.0 4 2
Obj12 [70, 70] −π/1.9 0.9 4 2

Table 4: The moving objects in Situation 1. The table contains the object data
that is available to the trajectory planning.

33

-100 -50 0 50 100 150

y [m]

0

50

100

x
 [

m
]

Situation 1

-100 -50 0 50 100 150

y [m]

0

50

100

x
 [

m
]

Situation 2

-100 -50 0 50 100 150

y [m]

0

50

100

x
 [

m
]

Situation 3

Figure 12: Situation overview of the three test situations. Blue line defies the
canal banks, green line is the planned path and red dots are the detected objects
with a velocity vector scaled up by a factor of 10 for visibility. The path starts
on the lower bank and ends on the higher bank.

Object Position (x0, y0)[m] Heading [rad] Velocity [m/s] Length [m] Width [m]
Obj21 [24,−3] π/2.1 1.0 4 2
Obj22 [23,−35] π/2.2 1.0 6 3
Obj23 [68, 100] −π/1.9 1.1 6 3
Obj24 [73, 75] −π/1.9 0.9 4 2

Table 5: The moving objects in Situation 2. The table contains the object data
that is available to the trajectory planning.

Object Position (x0, y0)[m] Heading [rad] Velocity [m/s] Length [m] Width [m]
Obj31 [24,−2] π/2.1 1.0 4 2
Obj32 [22,−31] π/2.2 1.0 6 3
Obj33 [68, 110] −π/1.9 1.1 6 3
Obj34 [73, 84] −π/1.9 0.9 4 2
Obj35 [60,−60] π/1.9 1.5 4 2
Obj36 [80, 140] −π/2.2 1.1 6 3

Table 6: The moving objects in Situation 3. The table contains the object data
that is available to the trajectory planning.

34

0 10 20 30 40 50 60 70
0

10

20

30

40

50

60

70

80

90

100

obj
11

obj
12

Figure 13: Possible sub-trajectories for the trajectory planner in Situation 1
plotted in blue. The objects from Table 4 represented at forbidden regions in
red.

0 10 20 30 40 50 60 70
0

20

40

60

80

100

120

140

obj
21

obj
22

obj
23

obj
24

Figure 14: Possible sub-trajectories for the trajectory planner in Situation 2
plotted in blue. The objects from Table 5 represented at forbidden regions in
red.

35

0 10 20 30 40 50 60 70
0

20

40

60

80

100

120

140

obj
31

obj
32

obj
33

obj
34

obj
35

obj
36

Figure 15: Possible sub-trajectories for the trajectory planner in Situation 3
plotted in blue. The objects from Table 6 represented at forbidden regions in
red.

Figure 16-18 shows the optimal trajectory for each time of start for each situ-
ation, along with the suggested trajectory for the transit in dashed green line.
Table 7, 8 and 9 shows the calculated cost for each trajectory in situation 1, 2
and 3 respectively. The cost is calculated according to (26) with gains KTT = 1,
KAT = 1 and Kacc = 1.

When the algorithm finds potential trajectories, it finds the shortest trajectory
from a start node to the an node in time, and does therefore often suggest
trajectories that zigzag between the objects to get to the other side. It is
therefore beneficial to add enough start noes for the algorithm to always find a
trajectory with a constant velocity profile that transits after all the objects have
passed. This becomes clear by Figure 18, where the optimal trajectory awaits
until all vessel in the canal have passed before starting the transit. If the last
two start nodes had not been includes, one can see from cost in Table 9 that
trj34 would be the optimal, and hence the ferry would perform a transit with
19.8 seconds longer transit time, that passes in front of two vessels in during
the transit, and arrives only 8.1 seconds earlier.

The method of always adding start nodes until an undisturbed transit is avail-
able has some limitations, since it assumes that all objects in the canal are
observable, which demands sensor systems able to see several hundred meters
in each direction, which might not be realistic. Without this assumption ful-
filled, the trajectories waiting for vessels to pass, will introduce high uncertainty,

36

0 10 20 30 40 50 60 70
0

10

20

30

40

50

60

70

80

90

100

trj
11

trj
12

rtj
13

trj
14

Suggested Trajectory

Figure 16: Optimal trajectory for each time of start in blue. Suggested transit
trajectory in green. Forbidden regions around the objects in Table 4. Cost for
each trajectory is shown in Table 7.

due to lack of information about what the traffic picture will look like in the
future. If the optimal trajectory suggest to postpone the transit start, a re-
planning of the trajectory should be done close to the transit start, but this
might led to a further postponement of transit start if new moving objects are
detected. With a high traffic picture this could led to long waiting times before
transit, in stead of taking what appears to be a sub-optimal trajectory with a
shorter time to transit start.

37

Name Transit Cost Acceleration Cost Time To Arrival Cost Total Cost
trj11 12.5 2.869 0 15.37
trj12 8.0 4.497 2.3 14.8
trj13 1.1 1.015 2.3 4.415
trj14 0 0 8.1 8.1

Table 7: Calculated cost for the optimal trajectory in each starting point of
the trajectories in Figure 16. Cost is calculated according to (26), with gains
KTT = 1, KAT = 1 and Kacc = 1.

0 10 20 30 40 50 60 70 80
0

20

40

60

80

100

120

140

trj
21

trj
22

rtj
23

trj
24

trj
25

trj
26

rtj
27

trj
28

Suggested Trajectory

Figure 17: Optimal trajectory for each time of start in blue. Suggested transit
trajectory in green. Forbidden regions around the objects in Table 5. Cost for
each trajectory is shown in Table 8.

38

Name Transit Cost Acceleration Cost Time To Arrival Cost Total Cost
trj21 15.4 6.621 0 22.02
trj22 8.7 3.436 0 12.14
trj23 1.8 0.4144 0 2.214
trj24 15.1 3.046 20.4 38.55
trj25 8.2 5.558 20.4 34.16
trj26 8.8 4.045 28.2 41.05
trj27 1.9 1.257 28.2 31.36
trj28 0 0 33.2 33.2

Table 8: Calculated cost for the optimal trajectory in each starting point of
the trajectories in Figure 17.Cost is calculated according to (26), with gains
KTT = 1, KAT = 1 and Kacc = 1.

0 10 20 30 40 50 60 70 80
0

20

40

60

80

100

120

140

trj
31

trj
32

rtj
33

trj
34

trj
35

trj
36

rtj
37

trj
38

Suggested Trajectory

Figure 18: Optimal trajectory for each time of start in blue. Suggested transit
trajectory in green. Forbidden regions around the objects in Table 6. Cost for
each trajectory is shown in Table 9.

39

Name Transit Cost Acceleration Cost Time To Arrival Cost Total Cost
trj31 40.5 3.498 0 44.0
trj32 33.7 1.963 0 35.66
trj33 26.8 0.8525 0 27.65
trj34 19.8 1.88 0 21.68
trj35 18.0 5.244 5.3 28.54
trj36 13.1 4.214 5.3 22.61
trj37 4.1 1.063 5.3 10.46
trj38 0 0 8.1 8.1

Table 9: Calculated cost for the optimal trajectory in each starting point of
the trajectories in Figure 18.Cost is calculated according to (26), with gains
KTT = 1, KAT = 1 and Kacc = 1.

6.2 Trajectory Following

The trajectory following algorithms are all tested on the same trajectory, a
straight path from one quay to the other, with a velocity profile that ensures
no collisions. The position, velocity and acceleration profile in {n} is shown in
Figure 19. Figure 20 displays the external forces acting on the vessel, given in
the {n} frame. The tracking error for the three trajectory following methods
is shown in Figure 10, while the control output from the control systems are
displayed in Figure 22. Figure 23 shows the body fixed linear and angular
accelerations for the vessel during the transit, and Figure 24 shows the heading
and the yaw rate. Metrics for comparing the trajectory tracking methods in
terms of passenger comfort are shown in Table 10. The table gives values for
the integral of the absolute value of the accelerations and yaw rate in {b} for
the whole transit. Table 11 gives the same values for the tracking error in {n}
for the data presented in Figure 21. The table also gives the integrated sum of
all control inputs.

From the data presented in Figure 21 and Table 11 is is clear that the MPC
approach to trajectory tracking is far superior to the two other. The MPC has
an integrated tracking error of an order of magnitude less, with approximately
the same control input. Table 10 gives that the MPC also scores best in terms
of passenger comfort. The MPC handles the environmental disturbances well,
and manages to keep the heading of the vessel steady, and hence the yaw rate at
a minimum. The vessel model in the MPC is the same as the one used to make
the simulator, which gives it an unrealistic advantage. This is also the case
the feed forward in both the other control strategies, and hence experimental
testing of all three methods is desirable.

The reference feed forward with feedback on η, named PID in the tables and fig-
ures, and the LOS guidance has similar performance both in trajectory tracking
and passenger comfort. The PID is more precise, and scores better on passen-
ger comfort. Since the control law adjusts the heading of the vessel in order to

40

0 10 20 30 40 50 60 70 80 90
0

20

40

60 North

East

0 10 20 30 40 50 60 70 80 90
0

0.5

1

North

East

0 10 20 30 40 50 60 70 80 90
-0.2

0

0.2

0.4

North

East

Figure 19: Reference trajectory for the transit. Position, velocity and accelera-
tion in {n}.

Controller u̇ v̇ r ṙ
PID 0.7168 0.1125 0.03731 0.00834

LOS guidence 0.9295 0.3266 0.5956 0.1267
MPC 0.6864 0.01428 0.001221 0.004297

Table 10: Metrics for comparing the passenger comfort of each control strategy.
Values are integrated absolute value of the state in the header.

minimize the tracking error, it is reasonable that the controller will introduce
yawing under the influence of external disturbances. Effect from the external
disturbances in Figure 20 on the heading and yaw rate can be seen in Figure 24.
This effect could be reduces by in stead controlling the velocity vector of the
vessel while keeping the heading at a stable or slowly varying reference. This
would also make the LOS utilize the capabilities of the fully actuates system, in
stead of acting like an under actuated system, as can be seen from Figure 22,
where the Y output from the LOS guidance is zero.

41

0 10 20 30 40 50 60 70 80 90
1

1.5

2

2.5

3

3.5

X

Y

0 10 20 30 40 50 60 70 80 90
-0.2

-0.1

0

0.1

0.2

N

Figure 20: External forces in {n}, on the vessel during transit .

0 10 20 30 40 50 60 70 80 90

-0.2

-0.1

0 PID

LOS

MPC

0 10 20 30 40 50 60 70 80 90
-0.5

0

0.5

PID

LOS

MPC

0 10 20 30 40 50 60 70 80 90
-2

0

2 PID

LOS

MPC

Figure 21: Tracking error in {n} for the trajectory following systems.

42

0 10 20 30 40 50 60 70 80 90

0

20

40 PID

LOS

MPC

0 10 20 30 40 50 60 70 80 90

-2

-1

0

PID

LOS

MPC

0 10 20 30 40 50 60 70 80 90
-0.5

0

0.5

1

PID

LOS

MPC

Figure 22: Control input in {b} , from the three trajectory following systems.

0 10 20 30 40 50 60 70 80 90
-0.2

0

0.2 PID

LOS

MPC

0 10 20 30 40 50 60 70 80 90

-0.01

0

0.01

PID

LOS

MPC

0 10 20 30 40 50 60 70 80 90
-0.5

0

0.5

PID

LOS

MPC

Figure 23: Body fixed acceleration for the ferry in transit by the three different
trajectory tracking systems.

43

0 10 20 30 40 50 60 70 80 90
0

5

10

15

PID

LOS

MPC

0 10 20 30 40 50 60 70 80 90
-1

0

1

2

PID

LOS

MPC

Figure 24: Heading and yaw rate for the ferry in transit by the three different
trajectory tracking systems.

Controller Error North Errro East Error Heading Control Input
Feed Forward PID 8.856 6.098 0.48 1259.0
LOS guidance 12.91 18.12 0.7987 1258.0

MPC 0.3923 0.08381 0.01997 1260.0

Table 11: Metrics for comparing the trajectory tracking capabilities. Values are
integrated absolute value of the state in the header.

44

7 Conclusions and Future Work

Some concluding remarks about the work presented in this project thesis and
possible future work.

7.1 Conclusions

In this project, a deliberate trajectory planning system with COLAV has been
implemented and tested in simulations, along with three trajectory following
control strategies.

The COLAV system performed satisfactory. It is intuitive in the way it plans
the trajectory, which gives it predictability, as well as makes it easy to evaluate
and improve. The object representation makes it simple to compensate for
uncertainty or add a factor of safety.

The COLAV system does not handle uncertainty very well, and is dependent
on observable environments. Therefore it is of benefit for for the system to be
augmented with a reactive COLAV layer.

The MPC came out as the superior trajectory tracking method, but is based on
a model with unrealistically high fidelity. Both the PID and the LOS approach
perform acceptable, but would benefit from being augmented with observers and
feedforward of external disturbances. The LOS guidance also need a change of
control objective in order to increase the passenger comfort.

7.2 Future Work

In continuation of this work, the COLAV systems will be augmented with a
reactive layer, giving the possibility to adapt to erroneous assumptions in the
traffic picture used in the deliberate trajectory planning. Following, the two sys-
tems combined will be tested and validated on the milliAmpere ferry. For the
deliberate COLAV, the assumptions about the objects will be further investi-
gated. The object model can be augmented with some stochasticity on heading
and velocity in order to increase the safety factor in the planned trajectory. The
cost function for the trajectories will also be reviewed and expanded to include
a term for the risk involved with the trajectory.

The simulator will be updated to include a more correct vessel model, as soon as
the work on system parameter identification is completed. There will be added
a model for wind disturbance, in order to facilitate testing of more advanced
features of the trajectory following system. A new and improved object detec-
tion module will be developed, with some stochasticity on the objects in the
canal, so that the reactive COLAV can be tested in more realistic situations.

45

The trajectory following systems will also be tested and validated on the ferry.
A choice of control strategy, and development of a robust trajectory following
system will be conducted. It will be augmented with wind and current ob-
servers, as well as model parameter estimators for system parameters that are
rapidly changing, such as the mass of the ferry as passengers are boarding and
unboarding.

46

References
[1] B.-O. Eriksen and M. Breivik, “MPC-based Mid-level Collision Avoidance

for ASVs using Nonlinear Programming,” in IEEE Conference on Control
Technology and Applications, Hawaii, USA, 08 2017.

[2] J. Bjørnø, “Thruster-Assisted Position Mooring of C/S Inocean Cat I Drill-
ship.” Master’s thesis, Norwegian University of Science and Technology,
Trondheim, Norway, 2016.

[3] Wärtsilä. (2018) Wärtsilä achieves notable advances in
automated shipping with latest successful tests. [On-
line]. Available: https://www.wartsila.com/media/news/
28-11-2018-wartsila-achieves-notable-advances-in-automated-shipping-\
with-latest-successful-tests-2332144

[4] T. Stensvold, “Verdens første helt autonome fergeseilas gjen-
nomført - teknologien er 100 prosent klar,” Teknisk Uke-
blad, Dec 2018. [Online]. Available: https://www.tu.no/artikler/
verdens-forste-helt-autonome-fergeseilas-gjennomfort-teknologien-er-100-\
prosent-klar/452610

[5] K. Maritime. (2018) Autonomous ship project,
key facts about YARA Birkeland. [Online]. Avail-
able: https://www.km.kongsberg.com/ks/web/nokbg0240.nsf/AllWeb/
4B8113B707A50A4FC125811D00407045?OpenDocument

[6] T. I.Fossen, Handbook of Marine Craft Hydrodynamics and Motion Control.
John Wiley & Sons, 2011.

[7] ROS.org. (2018, November) About ros. [Online]. Available: http:
//www.ros.org/about-ros/

[8] B.-O. Eriksen, M. Breivik, K. Pettersen, and M. Wiig, “A Modified Dy-
namic Window Algorithm for Horizontal Collision Avoidance for AUVs,”
in IEEE Multi-Conference on Systems and Control (MSC), Benos Aires,
Argentina, 09 2016.

[9] I. B. Hagen, D. K. M. Kufoalor, E. F. Brekke, and T. A. Johansen, “Mpc-
based collision avoidance strategy for existing marine vessel guidance sys-
tems,” 2018 IEEE International Conference on Robotics and Automation
(ICRA), pp. 7618–7623, 2018.

[10] T. Johansen, T. Perez, and A. Cristofaro, “Ship Collision Avoidance and
COLREGS Compliance Using Simulation-Based Control Behavior Selec-
tion With Predictive Hazard Assessment,” IEEE Transactions on Intelli-
gent Transportation Systems, vol. 17, pp. 1–16, 05 2016.

[11] B. Siciliano and O. Khatib, Springer Handbook of Robotics. Berlin, Hei-
delberg: Springer-Verlag, 2007.

47

https://www.wartsila.com/media/news/28-11-2018-wartsila-achieves-notable-advances-in-automated-shipping- \ with-latest-successful-tests-2332144
https://www.wartsila.com/media/news/28-11-2018-wartsila-achieves-notable-advances-in-automated-shipping- \ with-latest-successful-tests-2332144
https://www.wartsila.com/media/news/28-11-2018-wartsila-achieves-notable-advances-in-automated-shipping- \ with-latest-successful-tests-2332144
https://www.tu.no/artikler/verdens-forste-helt-autonome-fergeseilas-gjennomfort-teknologien-er-100- \ prosent-klar/452610
https://www.tu.no/artikler/verdens-forste-helt-autonome-fergeseilas-gjennomfort-teknologien-er-100- \ prosent-klar/452610
https://www.tu.no/artikler/verdens-forste-helt-autonome-fergeseilas-gjennomfort-teknologien-er-100- \ prosent-klar/452610
https://www.km.kongsberg.com/ks/web/nokbg0240.nsf/AllWeb/4B8113B707A50A4FC125811D00407045?OpenDocument
https://www.km.kongsberg.com/ks/web/nokbg0240.nsf/AllWeb/4B8113B707A50A4FC125811D00407045?OpenDocument
http://www.ros.org/about-ros/
http://www.ros.org/about-ros/

[12] K. Kant and S. W. Zucker, “Toward Efficient Trajectory Planning: The
Path-Velocity Decomposition,” The International Journal of Robotics Re-
search 1986 5:72, vol. 5, pp. 72–89, 1986.

[13] “COLREGS - International Regulations for Preventing Collisions at Sea,”
Articles of the Convention on the International Regulations for Preventing
Collisions at Sea, 1972.

[14] S. Kim, P. Silson, A. Tsourdos, and M. Shanmugavel, “Dubins path plan-
ning of multiple unmanned airborne vehicles for communication relay,”
Proceedings of the Institution of Mechanical Engineers, Part G: Journal
of Aerospace Engineering, vol. 225, pp. 12–25, 01 2011.

[15] H. Zheng, R. R. Negenborn, and G. Lodewijks, “Trajectory tracking of
autonomous vessels using model predictive control,” IFAC Proceedings
Volumes, vol. 47, no. 3, pp. 8812 – 8818, 2014, 19th IFAC World
Congress. [Online]. Available: http://www.sciencedirect.com/science/
article/pii/S1474667016430041

[16] C.-T. Chen, Linear Systems Theory and Design. Oxford University Press,
2013.

[17] MathWorks, “Robotic System Toolbox ,” 2018. [Online]. Available:
https://se.mathworks.com/products/robotics.html

48

http://www.sciencedirect.com/science/article/pii/S1474667016430041
http://www.sciencedirect.com/science/article/pii/S1474667016430041
https://se.mathworks.com/products/robotics.html

	Preface
	Abstract
	Table of Content
	List of Figures
	List of Tables
	Abbreviations
	Introduction
	Motivation
	Problem Description
	Contribution
	Previous Work
	Outline

	Theoretical Background
	Vessel Modelling
	Kinematics
	Kinetics

	Trajectory Tracking
	ROS

	Collision Avoidance
	Structure
	Trajectory Planning
	Considerations
	Moving Objects
	Object Representation
	Path Parameterization
	Object Transformation
	Node Representation
	Vertices and Weights
	Graph Search
	Continuous Velocity Profile

	Trajectory Evaluation

	Trajectory Tracking
	Thrust Allocation
	Reference Model
	Reference Feed Forward
	Line of Sight Controller
	Model Predictive Controller
	State Space Form
	Linearization
	Discretization
	Optimization Problem
	MPC controller

	Simulator
	Simulator Layout
	3 DOF Model
	Thruster Model
	Thruster Force Transformation
	External Forces
	ROS Interface

	Simulation Results and Discussion
	Trajectory Planning
	Trajectory Following

	Conclusions and Future Work
	Conclusions
	Future Work

	References

