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Summary 

The goals of this thesis are: 

1. Literature study on Gaussian Processes (GP), Optimization theory, and Nonlinear 

Conjugate Gradient (NCG) method. 

2. Novel implementation of a GP algorithm in computer software. 

3. Analysis of hyperparameter optimization using the NCG methods. 

4. Case examples of the GP implementation and performance comparison to existing 

software. 

Gaussian Process has showed great potential in ability to interpret highly non-linear 

models extremely well with minimal tuning. Two test cases have been designed to test the 

functionality of the GP implementation. The first one is a 1-dimensional sinusoidal wave 

regression with some noise. The second example is a 4-dimensional 2-link planar robot 

manipulator arm model with friction in the joints.  

The results of first test case showed great potential and were comparable to the 

performance of the existing software. The runtime of the implementation was low and well 

scalable (26 seconds for 1000 runs of the optimization algorithm). The results of the second 

test case produced faulty results and point to problems in the implementation. Regardless of 

the final results, this thesis shows that Gaussian Processes is a great tool to have in the machine 

learning toolbox.  
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Sammendrag 

Målene til denne masteroppgaven er: 

1. Litteraturstudie på Gaussiske Prosesser (GP), Optimeringsteori og metoden av 

ulineære konjugerte gradienter (NCG). 

2. Ny implementasjon av en GP-algoritme i programvare. 

3. Analyse av optimering av hyperparameter ved bruk av en NCG metode. 

4. Testcaser av GP implementasjonen og sammenligne ytelse med eksisterende 

dataprogramvare. 

Gaussiske Prosesser har vist stor potensiale i å kunne tolke høyst ulineære modeller med 

ekstrem presisjon med lite tuning. To testcaser har blitt designet for å teste funksjonalitet i GP 

implementasjonen. Den første er regresjon av en 1-dimensjonal sinus kurve med støy. Den 

andre er en 4-dimensjonal-robot manipulator modell med friksjon i leddene.  

Resultatene til første case har vist stor potensiale og er sammenlignbare med ytelse til 

andre eksisterende implementasjoner. Kjøretiden var lav og skalerbar (26 sekunder for 1000 

kjøringer av optimaliseringsalgoritmen). Resultatene til den andre cases har gitt defekte 

resultater og viser at implementasjonen ikke er feilfri. Uansett sluttresultatet, så viser dette 

arbeidet at GP er et fantastisk verktøy i maskinlæringskassen.   
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cholesky(𝐴) - cholesky decomposition. Returns 𝐿 where 𝐿𝐿⊤ = 𝐴 

𝐷  - number of dimensions in training data  

𝛿𝑝𝑞 - Kronecker delta function which equals to 1 iff 𝑝 = 𝑞 and 0 

otherwise 

𝐟∗ or f∗  - Gaussian process posterior prediction  

𝐟∗̅ or f∗̅  - Gaussian process predictive mean 

𝑔   - gravitational constant ≈ 9.81 𝑚/𝑠2  

𝒢𝒫   - Gaussian process with a mean and a covariance function 

𝐼   - moment of inertia 

𝜇   - mean value 

𝑴  - matrix of characteristic length-scales 

𝑚𝑖  - mass of link 𝑖 

𝒩(𝜇, 𝜎2) - Normal (or Gaussian) distribution 

𝑛   - number of training inputs 

𝑛∗  - number of test inputs 

𝑘(𝐱, 𝐱′)  - kernel (or similarity) function evaluated at 𝐱 and 𝐱′ 
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𝐾(𝑋, 𝑋)  - 𝑛 × 𝑛 covariance matrix 

ℒ   - Lagrangian  

𝑙   - characteristic length-scale parameter 

𝑚(𝐱)  - mean function  

𝜎𝑓
2  - variance of the noise-free signal 

𝜎𝑛
2  - variance of the noise 

𝑞𝑖  - joint 𝑖 angle  

𝑞�̇�  - joint 𝑖 angular velocity 

𝑞�̈�  - joint 𝑖 angular acceleration 

𝑇∗  - kinetic co-energy 

𝜏𝑖  - torque of link 𝑖 

𝜽   - hyperparameters for GP 

tr(A)  - trace is the sum of the elements on the main diagonal of a square 

matrix. ∑ 𝑎𝑖𝑖
𝑛
𝑖=1 = 𝑎11 + 𝑎22 +⋯+ 𝑎𝑛𝑛 

𝑣𝑖  - velocity of link 𝑖 

𝑉  - potential energy 

𝑋  - a 𝐷 × 𝑛 matrix of training inputs 

𝑋∗  - a 𝐷 × 𝑛∗ matrix of test inputs 

𝐱i  - a 𝐷 × 1 vector of training input 𝑖 

𝐲   - a 1 × 𝑛 vector of training targets 
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Introduction - 1 - Robot model   

1. Introduction 

 Gaussian Processes (GP) method is a powerful machine learning algorithm first 

introduced back in 1949 by Norbert Wiener. The method has many application areas, where 

regression and classification are the two most prominent ones. The main goal in a regression 

problem is to find a function that fits the data at hand as accurately as possible. There is virtually 

an infinite amount of functions that fit any finite set of data, so how does GP find “the solution” 

in finite time? Instead of finding all the individual functions, that are an infinity of, GP works 

with the probability distribution of these functions. The best guess is then the mean of this 

distribution. GP also provides the confidence of the prediction at every prediction point, a 

feature that can be used to design fault-tolerant and robust control models.  

This thesis is intended to further develop the discussion surrounding the control theory 

using the non-parametric models, especially Gaussian Processes. It is written in an easy-to-

understand language and all parts of the process are extensively discussed and described. To 

the contrary of some (faulty) implementations out there, the code in the Appendix B is backed 

up with concrete algorithms in the literature. It can be used as groundwork for further 

development of machine learning in process control. 

Chapter II starts by presenting a planar robot manipulator model and deriving the 

equations of motion by using the Lagrangian method. Forward and backward kinematics are 

then used to find the relationship between the joint angles and the end effector position, which 

are later used in controller. Following a discussion about the model dynamics identification 

challenges and the choices for a good excitation trajectory. Then, the basics of the machine 

learning algorithm GP are introduced. Optimization theory, which is crucial for choice of 

hyperparameters, that inherently define the GP itself, is introduced and the necessary formulas 

are derived. Appendix A provides extensive explanation to the underlying mathematical 

principles necessary to understanding of this chapter. 

Chapter III discusses the implementation of the ideas presented in Chapter II in 

computer software. MATLAB programming language has been chosen for this purpose. Code 

optimization ideas are also discussed throughout the presentation of the code. Two test cases 

have been made and are extensively described in the chapter. The first one is a benchmark case 

made for comparison with other existing software. The chapter starts by describing the general 

notion of the implementation common for both cases, before diving deeper into each case. 

The results of the simulations are discussed in Chapter IV. Simulation plots and graphs 



 Vilius Ciuzelis  

NONLINEAR OPTIMIZATION FOR HYPERPARAMETER COMPUTATION IN 

GAUSSIAN PROCESSES MACHINE LEARNING 

 

Introduction - 2 - Robot model   

are presented and evaluated. A short discussion on the validity and usefulness of the results in 

the process control concludes the chapter. 

Implementation improvements and critique is given in Chapter V. Following a few 

words on implementation pitfalls and challenges. Chapter VI suggests ideas for further research 

in the field of machine learning in control systems.   
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2. Background theory 

2.1. Robot model 

This thesis focuses on the model of the 2-link planar robot manipulator arm depicted in 

the Figure 1. The model is the simplified version of an industrial robot arm. The mathematical 

derivations throughout this chapter is trivial to extended to any number of joints. Since the focus 

of this thesis is the optimization and machine learning part, the simplified model has been 

chosen to merely save time when implementing the GP framework. This model, simple as it is, 

showcases the workings of GP just as well. 

 

The robot consists of 2 links and 2 joints. The lengths of the first and the second link are 

defined as 𝑙1 and 𝑙2, respectively. The base of the first link is attached to the ground forming 

joint 1. The second link is attached onto the top of the first link and will therefore be called joint 

2. The angle the first link forms with respect to the horizontal ground is 𝑞1, while the angle 

between the first and the second link is 𝑞2. The links are formed as thin, uniform beams with 

masses 𝑚1 and 𝑚2, with mass centers in the middle of the links. The inertia about the center of 

mass for each link 𝑙𝑖 is then given by 

𝐼𝑖,𝑐𝑒𝑛𝑡𝑒𝑟 =
𝑚𝑖𝑙𝑖

2

12
  

Figure 1. 2-link planar robot manipulator arm model. Illustration borrowed from 

[42]. 
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Background theory - 4 - Robot model   

 

The end of the second link, and therefore the robot, is known as end effector, or EE for short. 

This is the part of the robot which is of most interest as it is the position and reach of the EE 

that decides what the robot’s capabilities are. The most common way of controlling the EE is 

by changing the joint angles that are driven by (usually) stepper motors inside the links. 

Therefore, the relationship between joint torques and the model parameters will be derived next. 

 

2.1.1. Equations of Motion 

As mentioned in the last section, the equations of motion (EOM) describe the relationship 

between the forces and the model motion, (kinematics). There are several well-known methods 

of obtaining EOMs, some of them being the Newton-Euler method, Lagrange’s method and the 

Euler-Poincaré equation. All methods produce the same equations, but some are better suited 

for given applications than others. Lagrange’s method is considered less complex to derive and 

very well suited for robotic manipulators. It produces simple expression for systems with a clear 

set of generalized coordinates, with the joint angles being excellent candidates. Whereas the 

systems described in terms or rotation matrices and angular velocities might find Newton-Euler 

method a better choice. The following derivation is extensively described in Appendix A, where 

the full derivation can be found in [1]. 

Let the total energy in the system be defined as the difference between the kinetic (co-

energy) and the potential energies: 

ℒ =∑
1

2
𝑚𝑖𝑣𝑖

2

𝑖

−∑𝑚𝑖𝑔𝑙𝑖
𝑖

 

 

Equations of motion (EOM) are then found using the Lagrangian: 

𝑑

𝑑𝑡
(
𝜕ℒ

𝜕�̇�𝑖
) −

𝜕ℒ

𝜕𝑞𝑖
= 𝜏𝑖 

 

Express for 𝝉 = [𝜏1 𝜏2] to arrive at EOMs:  

𝜏1 = (𝐼1 + 𝐼2 +𝑚1𝐿𝑐1
2 +𝑚2(𝐿1

2 + 𝐿𝑐2
2 + 2𝐿1𝐿𝑐2 cos 𝑞2))�̈�1

+ (𝐼2 +𝑚2𝐿𝑐2
2 +𝑚2𝐿1𝐿𝑐2 cos 𝑞2)�̈�2 −𝑚2𝐿1𝐿𝑐2 sin 𝑞2 (2�̇�1�̇�2 + �̇�2

2)

+ (𝑚1𝐿𝑐1 +𝑚2𝐿1)𝑔 cos 𝑞1 +𝑚2𝐿𝑐2𝑔 cos(𝑞1 + 𝑞2) 

𝜏2 = (𝐼2 +𝑚2𝐿𝑐2
2 +𝑚2𝐿1𝐿𝑐2 cos 𝑞2)�̈�1 + (𝐼2 +𝑚2𝐿𝑐2

2 )�̈�2 +𝑚2𝐿1𝐿𝑐2�̇�1
2𝑠𝑖𝑛 𝑞2

+𝑚2𝐿𝑐2𝑔 cos(𝑞1 + 𝑞2) 
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These equations can be written in a more compact form 

𝑴(𝒒)�̈� + 𝑪(𝒒, �̇�) + 𝑮(𝒒) = 𝝉 

 

where 𝑴(𝒒) is a positive-definite mass matrix, 𝑮(𝒒) is the gradient of the gravity potential, 

and 𝑪(𝒒, �̇�) is the matrix contains so-called Christoffel symbols of the first kind. Using this 

compact form, the EOMs are fully ready to be implemented in computer software. 

 

2.1.2. Kinematics 

As mentioned earlier, kinematics describe the motion of the system without considering 

the forces causing the motion. Forward kinematics expresses the position of the end effector 

as the coordinates in the xy-plane as a function of the joint angles 𝒒 and the links 𝒍. These 

formulas are trivial to derive and will not be presented here. They take the following form 

(
𝑥𝑒
𝑦𝑒
) = (

𝑙1 𝑐𝑜𝑠 𝑞1 + 𝑙2 𝑐𝑜𝑠(𝑞1 + 𝑞2)

𝑙1 𝑠𝑖𝑛 𝑞1 + 𝑙2 𝑠𝑖𝑛(𝑞1 + 𝑞2)
) 

 

This result can be used for various purposes, one of them being tracking of the end effector 

measuring the joint angles.  

Inverse kinematics problem is the reverse process of the forward kinematics problem, 

that is: given a position of the end effector in the xy-plane, compute possible joint angles and 

link geometries which correspond to that particular end effector position. Several forms of the 

solution exist, each one with different characteristics when it comes to computation 

complexity, orientation of the links, and avoidance of singularities. The formula below, for 

instance, does not have any singularities. For complete derivation of this formula, see Appendix 

A. 

𝑞(𝑥𝑒 , 𝑦𝑒) =

[
 
 
 
 
 

atan2(𝑦𝑒 , 𝑥𝑒) ± atan 2(𝑙2 sin 𝑞2 , (𝑙1 + 𝑙2 cos 𝑞2))

atan2(±√1 − (
𝑥𝑒2+𝑦𝑒2 − 𝑙1

2 − 𝑙2
2

2𝑙1𝑙2
)
2

,
𝑥𝑒2 + 𝑦𝑒2 − 𝑙1

2 − 𝑙2
2

2𝑙1𝑙2
) 

]
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2.1.3. Identification trajectory 

Black-box model estimates use an input set to excite the model in such a way, that the 

excitation is able to identify most of the underlying dynamics of the system. In the presence of 

noise, such excitation trajectories play a crucial role when identifying model parameters. 

Therefore, the trajectory must be chosen carefully. Sometimes, the desired excitation might be 

difficult to achieve with physical systems. Even though there has been developed several 

optimal excitation methodologies, no one method suits every application.  

In order to discover most of the coupled and highly non-linear dynamics of robotic 

manipulators, a sufficiently exciting motion trajectory is needed. One might use an intuitive 

approach and try to excite the robot in every direction with various velocities and hope that 

most of the dynamics will be discovered. This method would most likely yield a sub-optimal 

result compared to optimal techniques, see Figure 2. There exists however a method of 

maximizing the excitation motion throughout the identification motion, for instance as in [2]. 

Further investigations on the topic are left up to the reader. 

 

This thesis has used simple geometry figures, such as circles, to identify the dynamics. 

That is most likely a sub-optimal trajectory for this system, so it should be updated in the future 

research. Figure 3 shows the chosen identification trajectory used in the simulations. 

Figure 2. Possible end-effector path for parameter 

identification. Illustration borrowed from [41] 
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Figure 3. End effector trajectory for parameter identification used in the 

simulations. 
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2.2. Gaussian Processes 

 GP is used for making understandings about the relationships between the training and 

target data. Said in other words, input-output relationship or the conditional distribution of the 

targets, given the inputs [3]. By a more formal definition in the same book, a Gaussian Process 

“is a collection of random variables, any finite number of which have a joint Gaussian 

distribution”. Given a dataset of 𝐷 × 𝑛 observations, which we call 𝒟 = (𝐗, 𝐲), a GP is fully 

expressed by its mean and covariance functions 𝑚(𝐱) and 𝑘(𝐱, 𝐱′). These functions are defined 

as 

𝑚(𝐱) = 𝔼[𝑓(𝐱)] 

𝑘(𝐱, 𝐱′) = 𝔼[(𝑓(𝐱) − 𝑚(𝐱))(𝑓(𝐱′) − 𝑚(𝐱′))] 

 

where 𝑓(𝐱) is the process. A Gaussian Process using formulas above can be denoted as 

𝑓(𝐱) ~ 𝒢𝒫(𝑚(𝐱), 𝑘(𝐱, 𝐱′)) 

 

2.2.1. Multivariate normal distribution 

GP building blocks are multivariate normal distributions (MVN) or simply multivariate 

Gaussian distributions. It is a crucial part of the GP methodology. Given a multivariate normal 

distribution of a 𝑘-dimensional vector 𝐗 = (X1, … , 𝑋𝑘)
⊤ 

𝐗 ~𝓝𝑘(𝝁, 𝚺) 

 

where 𝝁 is a 𝑘-dimensional mean vector 

𝝁 = E[𝐗] = [E[𝑋1], E[𝑋2], … , E[𝑋𝑘]]
⊤

 

 

and 𝚺 is a square 𝑘-dimensional covariance matrix, where each entry is 

Σi,j = E[(𝑋𝑖 − 𝜇𝑖)(𝑋𝑗 − 𝜇𝑗)] = 𝐶𝑜𝑣[𝑋𝑖, 𝑋𝑗] 

 

The most important part to take from this is the requirement of the normal distribution when 

using GP. Extensive description and analysis of the multivariate normal distributions can be 

found in [3]. 
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2.2.2. Mean 

Mean function is useful when the data is expected to be at a given shape. In most cases, 

the mean is left 0 throughout the inference. The reason behind that is that the mean is usually 

well enough explained through covariance. There have therefore not been used any mean 

functions in this thesis. The mean is simply 0 for the rest of the thesis. 

  

2.2.3. Covariance 

Covariance functions, also called kernel functions or just kernels, describe the 

relationship between input-output pairs. The learning part of a GP inference is finding the 

“correct” properties for the covariance function. Any function that produces a positive definite 

covariance matrix is, in theory, a valid covariance function. The requirement of positive-

definiteness stems from the definition of similarity between two points. Most kernels define 

this similarity simply as the distance between the points. There are several techniques of 

measuring this distance: Euclidean, Manhattan, Minkowski, Cosine, the squared Mahalanobis 

distance, and Jaccard [4]. Other generalized measures exist but will not be explained here and 

are left up to the reader himself to research. This thesis focuses on the distance measure by 

using the squared Euclidean distance. 

In general, squared Euclidean distance between two 𝐷 × 1 points (𝐱i, 𝐱j) is defined as: 

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑆𝐸(𝐱i, 𝐱i) = ‖𝐱i − 𝐱j‖
2
= ∑(𝑥𝑖𝑚 − 𝑥𝑗𝑚)

2
 

𝐷

𝑚=1

 

 

To accommodate the vast range of possible nonlinear models, a number of kernel 

functions have been developed. These kernels have different properties concerning effects like, 

among others, stationarity, isotropy, and smoothness. 

Stationarity refers to a stochastic process whose unconditional joint probability 

distribution, mean, and variance do not change in time. It means that 𝐱𝐢 − 𝐱𝐣 only depends on 

the values of 𝐱𝐢 and 𝐱𝒋, but not their position in time. Isotropy deals with the measurement of 

distance. If a function is only dependent on values and not the measurement direction, then the 

function is called isotropic. Smoothness is defined by the expected closeness (or similarity) 

between input-output pairs. If the expectancy is high, the resulting function will tend to favor 

a more rapidly changing model rather than a slower producing a smoother model.  

The choice of the kernel function is not arbitrary. The most common and widely used 
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kernel function is the Squared Exponential (SE). Despite its widespread use, this kernel has 

been critiqued for being “too smooth” and therefore unrealistic in most cases [3]. There is 

however nothing that indicates that this kernel is not suitable for the application in this thesis. 

It is defined as 

𝑘(𝐱i, 𝐱j) = σf
2exp (−

1

2
(𝐱i − 𝐱j)

⊤
𝑴(𝐱i − 𝐱j)) + 𝜎𝑛

2𝛿𝐱i𝐱j   

 

where 𝜎𝑓
2 is the variance of the noise-free signal, 𝜎𝑛

2 is the variance of the noise, and 𝛿𝐱i𝐱j is a 

Kronecker delta which is 1 if 𝐱i = 𝐱j and 0 otherwise. 𝑴 is simply a symmetric matrix 

containing the characteristic length-scales 𝒍. Characteristic length-scale decides how fast pace 

of change the sample functions are to have. Low 𝑙 values will yield a more rapidly changing 

functions, while greater values will tend to smooth out the functions. It might take one of the 

following forms, depending on the values of hyperparameters: 

𝑀1 = 𝑙
−2𝑰,                       𝑀2 = 𝑑𝑖𝑎𝑔(𝒍)

−2,                           𝑀3 = ΛΛ
⊤ + 𝑑𝑖𝑎𝑔(𝒍)−2 

 

For input with multiple dimensions, one can define a suitable covariance function with 

a property called in the literature Automatic Relevance Determination (ARD). ARD kernels 

weight each input dimension differently. Features that do not contribute enough for the 

explanation of the model are weighted lower for being not relevant, hence the R in ARD. This 

effect is automatic. There exist numerous ARD kernels suited for different applications, but the 

one used in this thesis is the Squared Exponential (SE) ARD kernel. Other kernels with ARD 

property are listed below.  The SE-ARD kernel takes the following form: 

𝑘(𝐱i, 𝐱j|𝜃) = 𝜎𝑓
2 exp [−

1

2
∑

(𝑥𝑖𝑚 − 𝑥𝑗𝑚)
2

𝑙𝑚2

𝑑

𝑚=1

] 

 

Table 1 contain the most widely used kernels with the ARD property. The first step of a 

successful GP process is usually the selection of functions to be used in the inference – the 

prior distribution. 
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ARD Squared 

Exponential 
𝜎𝑓
2 exp [−

1

2
∑

(𝑥𝑖𝑚 − 𝑥𝑗𝑚)
2

𝑙𝑚2

𝑑

𝑚=1

] 

 

ARD 

Exponential 𝜎𝑓
2 exp

[
 
 
 

−√∑
(𝑥𝑖𝑚 − 𝑥𝑗𝑚)

2

𝑙𝑚2

𝑑

𝑚=1
]
 
 
 

 

 

ARD Matern 

3/2 𝜎𝑓
2

(

 1 + √3√∑
(𝑥𝑖𝑚 − 𝑥𝑗𝑚)

2

𝑙𝑚2

𝑑

𝑚=1
)

 exp

[
 
 
 

−√3√∑
(𝑥𝑖𝑚 − 𝑥𝑗𝑚)

2

𝑙𝑚2

𝑑

𝑚=1
]
 
 
 

 

 

ARD Matern 

5/2 𝜎𝑓
2

(

 1 + √5√∑
(𝑥𝑖𝑚 − 𝑥𝑗𝑚)

2

𝑙𝑚2

𝑑

𝑚=1

+
5

3
∑

(𝑥𝑖𝑚 − 𝑥𝑗𝑚)
2

𝑙𝑚
2

𝑑

𝑚=1
)

 exp

[
 
 
 

−√5√∑
(𝑥𝑖𝑚 − 𝑥𝑗𝑚)

2

𝑙𝑚
2

𝑑

𝑚=1
]
 
 
 

 

 

ARD Rational 

Quadratic 
𝜎𝑓
2 (1 +

1

2𝛼
∑

(𝑥𝑖𝑚−𝑥𝑗𝑚)
2

𝑙𝑚
2

𝑑
𝑚=1 )

−𝛼

where when 𝛼 → ∞, the kernel is identical to the 

SE-ARD kernel  

Table 1. Example of kernel functions with the ARD property 

 

2.2.4. Prior 

Prior prediction, also called prior distribution, or just prior, is used to encode any prior 

knowledge about model to help infer the correct results. That is done by choosing the initial 

hyperparameter values, the mean, and the covariance function. A simple inference on the test 

inputs can then be performed, which reveals the function pool that will be drawn from in the 

inference. For example, if the data at hand is very rough, say, similar to the Brownian motion, 

probably the best suited kernel would be a Matérn 5/2 or a SE with low characteristic length 

values. 

Note that the prior distribution is solely dependent on the test data. One can sample the 
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desired number of sample functions from GP prior using the multivariate normal distribution 

𝐟∗~𝒩(𝟎,𝐾(𝑋∗, 𝑋∗)) 

 

Prior functions can be sampled using the following operation: 

𝐟prior = cholesky(𝐾(𝑋∗, 𝑋∗) + 𝜖𝐼)𝒖 (1) 

 

where 𝒖~𝓝(𝟎, 𝐼), that is a 𝑛∗ × 𝑁 matrix of random functions drawn from a normal 

(Gaussian) distribution with 0 mean and unit standard deviation, and 𝜖 is a small constant, 

usually in order of 10−6. Most software tools have a tool for generating these random functions, 

often called a Gaussian generator. An example of such a sample of prior functions is shown in 

Figure 4. 

 

2.2.5. Inference 

Inference is the main process of the GP. The input data, together with the optimized 

hyperparameters, is used to approximate the mean of the given data and produce the confidence 

interval as to how accurate the predictions might be. The joint distribution of the observations 

at the test points are [3]: 

[
𝐲
𝐟∗
] ~𝒩 (𝟎, [

𝐾(𝑋, 𝑋) + 𝜎𝑛
2 𝐾(𝑋, 𝑋∗)

𝐾(𝑋∗, 𝑋) 𝐾(𝑋∗, 𝑋∗)
])  

 

The fully derived conditional on Gaussian prior distribution is then 

𝐟∗̅ = 𝐾(𝑋∗, 𝑋)[𝐾(𝑋, 𝑋) + 𝜎𝑛
2𝐼]−1𝐲 

cov(𝐟∗) = 𝐾(𝑋∗, 𝑋∗) − 𝐾(𝑋∗, 𝑋)[𝐾(𝑋, 𝑋) − 𝜎𝑛
2𝐼]−1𝐾(𝑋, 𝑋∗) 

Figure 4. Example of multiple sample functions from the prior distribution. 
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where [𝐾(𝑋, 𝑋) − 𝜎𝑛
2𝐼]−1 should be computed by using the Cholesky factorization. This yields 

a more efficient and numerically stable inversion process. When predicting noisy test data, one 

must add the noise variance 𝜎𝑛
2 to the diagonal of the covariance matrix cov(𝐟∗).  

 

2.2.6. Posterior 

The posterior distribution can be constructed to show which functions conform to the 

inference model produced by the GP. The operation is identical to when generating the prior, 

except for that covariance matrix now uses the input data, rather than only the test inputs:   

𝐟posterior = cov(𝐟∗)𝒖 = (𝐾(𝑋∗, 𝑋∗) − 𝐾(𝑋∗, 𝑋)[𝐾(𝑋, 𝑋) − 𝜎𝑛
2𝐼]−1𝐾(𝑋, 𝑋∗))𝒖 

 

The posterior combines the mean and the variance to show the final prediction, which an 

example of is shown in Figure 5. 

 

 

2.2.7. Model validation 

Model validation concerns measuring the accuracy of a given GP inference or 

prediction. The simplest method of measuring validity of predictions is the mean squared error 

(MSE), which is defined as:  

𝑀𝑆𝐸 = 𝑚𝑒𝑎𝑛 (𝑦∗ − 𝑓∗̅(𝑋∗))
2

 

 

where 𝑓∗̅ is the inferred mean, 𝑦∗ are the target input, and 𝑋∗ is the test point set. As this measure 

Figure 5. Posterior distribution.  
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is sensitive to the overall scale of the target values [5], the standardized mean squared error is 

usually used: 

𝑆𝑀𝑆𝐸 =
𝑀𝑆𝐸

𝜎𝑦
 

SMSE of 0 indicate perfect correlation, while 1 indicate pure guessing. 

 

2.2.8. Hyperparameters 

Hyperparameters play the key role in the Gaussian Processes. They are the defining 

parameters that form the shape of the covariance matrix. Recall the squared exponential kernel 

𝑘𝑆𝐸(𝑥𝑖, 𝑥𝑗) =  𝜎𝑓
2 exp

(𝑥𝑖−𝑥𝑗)
2

𝑙2
, parameters 𝜎𝑓 and 𝑙 are the hyperparameters. They can be set 

using either intuition or use an automated technique. Intuition tends to produce sub-optimal 

results as the process of finding the optimal parameters is not trivial, especially when the 

dimension of the data grows. Intuition, or some prior knowledge of the system at hand, is 

however useful when initializing the hyperparameters and setting the GP prior.  

Automated techniques for finding suitable hyperparameters almost always include 

gradient-based approaches. There exist gradient-free approaches, but they are not used as much 

in practice. Grid search and derivative-free-optimization (DFO) are examples of these. The grid 

search method, that searches for optima values in a grid of values, tends to be too 

computationally expensive, whereas the DFO methods usually yield worse performance than 

the gradient-based counterparts and should therefore only be used when the information of the 

gradients of the optimizing function is not available or too costly to compute.  

The hyperparameters are found by minimizing a cost, or a loss, function 

ℒ(𝑦𝑡𝑟𝑢𝑒 , 𝑦𝑔𝑢𝑒𝑠𝑠) with respect to hyperparameters. There exist several powerful cost functions, 

each with different properties, such that Bayesian – log marginal likelihood (LML), or a Cross 

Validation-based method – Leave One Out Cross Validation (LOO-CV). The LML is a little 

more computationally efficient and will therefore be focused on in this thesis. There is some 

research however, that points to the CV-based methods being more robust against model 

misspecification [6]. 

Maximization of LML is equivalent to minimization of the negative – negative log 

marginal likelihood (NLML). NLML produces a self-regulating cost function that produces a 

scalar value. It contains an automatic Occam’s razor between the data explanation and the 

complexity of that explanation, see Figure 7. The better the explanation of the data, the more 
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complex model will get. That makes sense, because a perfectly exact model will fit every input 

exactly producing an effect known as overfitting. On the other hand, low complexity models 

tend to generalize too much and might not explain the data at all. This will cause underfitting. 

Both effects are clearly seen in Figure 6.  

 

 

  

Figure 6. Examples of underfitting and overfitting. 

Figure 7. Self-regulating nature of the marginal likelihood. 

Illustration borrowed from [3]. 



 Vilius Ciuzelis  

NONLINEAR OPTIMIZATION FOR HYPERPARAMETER COMPUTATION IN 

GAUSSIAN PROCESSES MACHINE LEARNING 

 

Background theory - 16 - Gaussian 

Processes   

The formal definition of the negative log marginal likelihood is 

− log 𝑝(𝒚|𝑋, 𝜽) =
1

2
𝒚⊤𝐾𝑦

−1𝐲
⏟      
𝑑𝑎𝑡𝑎−𝑓𝑖𝑡

+
1

2
log|𝐾𝑦|⏟      

𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦 𝑝𝑒𝑛𝑎𝑙𝑡𝑦

+
𝑛

2
log 2𝜋

⏟    
𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡

 

 

where 𝐾𝑦 = 𝐾(𝑋, 𝑋) + 𝜎𝑛
2𝐼. For a gradient based NLML optimization approach, the gradient 

of the NLML is given below: 

−
𝜕

𝜕𝜃𝑗
log 𝑝(𝒚|𝑋, 𝜽) = −

1

2
𝒚⊤𝐾𝑦

−1𝒚 +
1

2
tr (𝐾𝑦

−1
𝜕

𝜕𝜃𝑗
) 

= −
1

2
tr ((𝜶𝜶⊤ − 𝐾𝑦

−1)
𝜕𝐾𝑦

𝜕𝜃𝑗
 ) 

 

where 𝜶 = 𝐾𝑦
−1𝒚 and  𝜽 = (𝜎𝑓

2, 𝜎𝑛
2, 𝑙). Partial derivatives of 𝐾𝑦 with respect to the 

hyperparameters are trivial to compute for most kernels. For other kernels, the derivatives 

might not readily be available and approximation methods might be used. The finite difference 

or automatic differentiation can be used. See [Appendix A] for the complete list of the standard 

kernel derivatives with respect to hyperparameters. Optimization algorithms often used in GP 

involving nonlinear problems are either quasi-Newton or nonlinear conjugate gradient 

methods. See page 20 for the introduction of the method of conjugate gradients. 
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2.3. Optimization theory  

As mentioned earlier, optimization of the hyperparameters is the key element to a 

successful GP prediction. This chapter will try to introduce basics of the optimization theory 

necessary for the understanding of the GP. An excellent source for the extensive derivations 

and proofs is found in [5].  

Every optimization problem starts with a function to be minimized or maximized: 

min
𝑥∈ℝ𝑛

𝑓(𝑥)  or  max
𝑥∈ℝ𝑛

−𝑓(𝑥) 

 

Given an initial point 𝑥0, search for the next point 𝑥1 that produces a better result – lower value 

of 𝑓(𝑥). Possibly the best direction to look for next 𝑥 is the direction in which the value of the 

function 𝑓(𝑥) descends the most – a descent direction. Define this direction as 𝑝𝑘 =

−
𝑑

𝑑𝑥
𝑓(𝑥) = −∇𝑓(𝑥), or in general terms as 𝑝𝑘 = −𝐵𝑘

−1∇𝑓𝑘, where 𝐵𝑘 varies for different 

methods. For example, 𝐵𝑘 is an identity matrix 𝐼 in the steepest descent method, exact Hessian 

∇2𝑓(𝑥) in Newton’s method and approximation to the Hessian in quasi-Newton methods. 

Conjugate gradient methods use the combination of the previous and the current search 

directions: −∇𝑓𝑘 + 𝛽𝑘𝑝𝑘−1. More on the choice of 𝛽𝑘 in the introduction of NCG on page 20.  

When the desired direction is found, one has to determine how far along this direction 

lies the improvement point 𝑥1, in other words, find the step size 𝛼𝑘: 

𝑥𝑘+1 = 𝑥𝑘 + 𝛼𝑘𝑝𝑘 

 

It is often found using interpolation or using some multiple of a constant. Next section discusses 

the methods available to take the right size steps as to ensure the convergence of the algorithm.  

 

2.3.1. Interpolation 

 Given a set of value pairs (𝑥, 𝑦), and possibly the derivatives at those points, 

interpolation is a method of approximating new points that belong to that same set. See Figure 

8 for the illustration of the concept.  

In the line search algorithms, the interpolation technique is used to find the optimal step 

size, given a step size interval. There exist several interpolation algorithms, based on the current 

information of the optimization function. Some examples are the quadratic, cubic, and the 

three-point interpolation. [5] suggests using a quadratic interpolation followed by the cubic 

one. The quadratic interpolation is expressed as 
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𝜙𝑞(𝛼) = (
𝜙(𝛼0) − 𝜙(0) − 𝛼0𝜙

′(0)

𝛼0
2 )𝛼2 + 𝜙′(0)𝛼 + 𝜙(0) 

 

The step size 𝛼𝑚𝑖𝑛 that minimizes 𝜙𝑞 is at the zero point of the derivative 

𝜙𝑞
′ = 0 = 2(𝜙(𝛼0) − 𝜙(0) −

𝛼0𝜙
′(0)

𝛼0
2 )𝛼𝑚𝑖𝑛 + 𝜙

′(0) 

𝛼𝑚𝑖𝑛 = −
𝜙′(0)𝛼0

2

2[𝜙(𝛼0) − 𝜙(0) − 𝛼0𝜙′(0)]
 

  

Not all steps will yield fast solution or even convergence. Therefore, some conditions need to 

be imposed, to be able to find the correct step size fast. 

  

Figure 8. By interpolating the given value pairs, it is 

possible to approximate the interior point of the function. 
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Wolfe conditions 

 Wolfe conditions is a popular set of inexact line search abortion conditions, that ensure 

fast convergence. The set consists of two equations, where the first one is called the sufficient 

decrease condition, or Armijo condition, and the second one is referred to as the curvature 

condition. The sufficient decrease condition require a sizeable decrease in the function value 

for any step size. The curvature condition, on the other hand, forbid too small steps to ensure 

convergence. Together, the conditions ensure a reliable method of finding the near-optimal step 

size. See Figure 9 for illustration of the conditions. The official definition of wolfe conditions 

is: 

 

𝑓(𝑥𝑘 + 𝛼𝑘𝑝𝑘) ≤ 𝑓(𝑥𝑘) + 𝑐1𝛼𝑘∇𝑓𝑘
⊤𝑝𝑘, 

∇𝑓(𝑥𝑘 + 𝛼𝑘𝑝𝑘)
⊤𝑝𝑘 ≥ −𝑐2∇𝑓𝑘

⊤𝑝𝑘  

 

where 0 < 𝑐1 < 𝑐2 <
1

2
. In practice, the parameters 𝑐1 and 𝑐2 are usually equal 10−4 and 0.1 

respectively, for conjugate gradient methods [5]. A small modification of the conditions offer 

an even greater convergence and are often used in NCG. The modified condition exclude points 

that are far from stationary points of 𝑓(𝑥𝑘 + 𝛼𝑘𝑝𝑘). These conditions are called the strong 

Wolfe conditions: 

𝑓(𝑥𝑘 + 𝛼𝑘𝑝𝑘) ≤ 𝑓(𝑥𝑘) + 𝑐1𝛼𝑘∇𝑓𝑘
⊤𝑝𝑘, 

|∇𝑓(𝑥𝑘 + 𝛼𝑘𝑝𝑘)
⊤𝑝𝑘| ≥ −𝑐2∇𝑓𝑘

⊤𝑝𝑘  
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2.3.2. Nonlinear Conjugate Gradients 

 

 Conjugate gradient methods have firstly been proposed for solving large linear systems 

of equations, as an alternative to Gaussian elimination. With little adaptation, the method can 

also be used to solve nonlinear optimization problems. The attractive properties of both 

methods are the fast convergence (faster than the steepest descent) and no need of matrix 

storage, as opposed to the methods involving Newton directions.  

Linear conjugate gradient (CG) method was first proposed by Hestenes and Stiefel in 

the 1950s. The first nonlinear conjugate gradient (NCG) algorithm was proposed by Fletcher 

and Reeves in the 1960s. The use of NCG algorithms has been widespread and involves, among 

others, neural net training and nonlinear regression. The convergence of linear methods is 

closely tied to the eigenvalues of the coefficient matrix. The more spread are the eigenvalues, 

the slower is the algorithm. See [5] for more info on the topic. 

The key elements of the CG algorithms are the use of gradients and the property called 

Figure 9. Illustration of the Wolfe conditions. Upper left: the sufficient decrease condition, upper right: the curvature 

condition, lower: the steps satisfying the Wolfe conditions. The illustration is from [3] 
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conjugates. Define a set of nonzero vectors {𝑝0, 𝑝1, … , 𝑝𝑙} to be conjugate with respect to the 

symmetric positive definite matrix 𝐴 if 

𝑝𝑖
⊤𝐴𝑝𝑗 = 0, for all 𝑖 ≠ 𝑗. 

 

It can also be shown that any set of vectors satisfying the above property is also linearly 

independent. All conjugate vectors are conjugate to each other, therefore there is no need of 

storing the previous values of conjugate vectors. 

As mentioned, the second important part of an NCG algorithm is the use of gradients. 

Most NCG variations use available gradient information of the current and the previous point, 

while some others also require hessian or approximate hessian, such as Newton-Rhapson or 

Secant variations [7]. It is not always trivial to find the hessian analytically; approximation 

methods can be used – finite differences or automatic differentiation [5]. 

Since this thesis only uses NCG, it is left up to the reader to investigate the CG 

algorithms by himself. The general outline of all NCG methods is depicted in the Algorithm 1 

below.  

 

The Algorithm 1 is usually repeated until some convergence conditions are achieved. For 

instance, when 𝛼 or 𝑝 approaches zero, when the progress of decrease of the minimizer is 

sufficiently small or simply stop after a given amount of iterations.  

All NCG algorithms are similar, except for one property: descent direction update. That 

is the only feature that distinguish the different NCG methods. Below, some of the most 

prominent NCG methods are defined. The Fletcher-Reeves (FR) method is one of the first ones 

proposed and has good convergence properties: 

input:  𝑥0 (starting point), 𝑓 (minimizer) 

 

1: set 𝑥 = 𝑥0, 𝑝 = −∇𝑓(𝑥0),  
2: repeat 

3: find step length 𝛼 ≥ 0 

4: update 𝑥 = 𝑥𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 + 𝛼 ⋅ 𝑝  

5: set  𝛽 using gradient information 

6: update 𝑝 = −∇𝑓(𝑥) + 𝛽 ⋅ 𝑝𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 

7: end (repeat) 

Algorithm 1. A general NCG algorithm. 
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𝛽𝑘+1
𝐹𝑅 =

∇𝑓𝑘+1
⊤ ∇𝑓𝑘+1

∇𝑓𝑘
⊤∇𝑓𝑘

 

 

The Polak-Ribière (PR) method does not guarantee that 𝑝𝑘 will remain a descent direction even 

when the line search is performed using the strong Wolfe conditions. 

𝛽𝑘+1
𝑃𝑅 =

∇𝑓𝑘+1
⊤ (∇𝑓𝑘+1 − ∇𝑓𝑘)

∥ ∇𝑓 ∥2
 

 

A small improvement to the method though, provides that property. The algorithm is called 

Polar-Ribière plus (PR+), which usually outperforms FR. It is formulated as: 

𝛽𝑘+1
𝑃𝑅+ = max{𝛽𝑘+1

𝑃𝑅 , 0} 

 

Another method, that promises global convergence is, again, a modification of the PR 

algorithm, called FR-PR: 

𝛽𝑘 = {

−𝛽𝑘
𝐹𝑅     𝑖𝑓     𝛽𝑘

𝑃𝑅    <    −𝛽𝑘
𝐹𝑅 

 𝛽𝑘
𝑃𝑅     𝑖𝑓     |𝛽𝑘

𝑃𝑅|  ≤      𝛽𝑘
𝐹𝑅

𝛽𝑘
𝐹𝑅     𝑖𝑓     𝛽𝑘

𝑃𝑅     >      𝛽𝑘
𝐹𝑅

 

 

2.3.3. Preconditioning 

For the methods that use the hessian information, the convergence can be greatly 

improved by manipulating the hessian. The method is called preconditioning and it is a method 

of matrix manipulation to improve the condition number of a matrix, or a Hessian in this case. 

The condition number for a given symmetric, positive-definite matrix 𝑀 in 𝑀−1𝐴𝑥 = 𝑀−1𝑏 is 

defined as the ratio between the largest and smallest eigenvalue of that matrix. 

𝜅 = 𝜆𝑚𝑎𝑥/𝜆𝑚𝑖𝑛 

 

Analysis of condition number is beyond the scope of this thesis. To sum it up, the convergence 

of an optimization algorithm is worst for great values of 𝜅. Matrices with great condition 

numbers are called ill-conditioned. 

There exist several precondition techniques of preconditioning with different 

properties, such that i) the total performance increase, ii) inexpensiveness of computation and 

storage of M, or iii) inexpensiveness of solution 𝑀𝑦 = 𝑟, which is a cheap approximation to 
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the solution 𝐴𝑥 = 𝑏 [5]. Some promising general-purpose preconditioners are symmetric 

successive overrelaxation (SSOR), incomplete Cholesky factorization, and banded 

preconditioners. Further investigation on preconditioning methods is left up to the reader. No 

preconditioners were found needed in the simulations of the problems described in this thesis. 
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3. Simulation 

3.1. General 

Simulations described in this chapter were carried out using a Windows 10 operating 

system laptop with Intel Core i7-7700 CPU @ 3.60 GHz and 8 GB RAM. All simulations were 

entirely written in MATLAB programming language. The version of MATLAB at the time is 

pre-release version 2018a. As the code was written avoiding the short-term implementations in 

MATLAB (i.e. the inline command), the code should be flexible to tackle some older and newer 

versions of MATLAB.  

The code used in the simulations is written by the author unless specifically stated 

otherwise. Both examples start with generating the input data. This data is then standardized 

according to the formula below: 

𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑𝑖𝑧𝑒𝑑 𝑑𝑎𝑡𝑎 =
𝑑𝑎𝑡𝑎 − 𝑑𝑎𝑡𝑎 𝑚𝑒𝑎𝑛

𝑑𝑎𝑡𝑎 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛
 

 

This is done to help algorithms recognize patterns in the data. Then the optimization can be 

started by initializing the hyperparameters: initialize length-scale and function variance to 1. 

The experience also shows that higher initial values for the target function variance yield better 

performance when optimizing the other hyperparameters, even when expecting low noise. A 

small number of restarts of the optimization algorithm with different initial starting points is a 

possible remedy for when local optima is reached [8]. 

 

 

Algorithm 2. Line search algorithm, ref [3]. 
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Line search methods consist of two phases: the bracketing phase, where a smaller 

interval of test values, known to contain a minimum, is determined, and an interpolation phase, 

which finds the local minimum on the given interval. See Algorithm 2 and Algorithm 3. The 

criteria for the abortion of the search is the strong Wolfe conditions. The workings of both 

algorithms are rather easy to understand and are extensively described in [5]. NCG abort 

conditions are 100 iterations or step length being too small (< 1.4−10) 5 times in a row. 

 

 

  

Algorithm 3. Part 2 of line search algorithm, ref [3]. 
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3.2. Example test case 

 The following test case has been used as an example case by Rasmussen on the GPML 

documentation web page [9].The training inputs 𝑋 are 20 random points with zero mean and 

unit variance. The training targets 𝑦 are then generated by using the training inputs and adding 

some noise: 

𝑦 = sin(3𝑋) + 𝜖𝑛𝑜𝑖𝑠𝑒 

 

The test inputs are simply 61 equally spaced points between -3 and 3. See Figure 10 for the 

illustration. The data is then standardized as described earlier. Two versions of optimization 

are then run. The first one is all the NCG versions using different 𝛽 parameters, and the second 

one is the steepest descent method, meaning 𝛽 = 0 → 𝑝𝑘 = −∇𝑓(𝑥𝑘). 

 

Since the problem is only two-dimensional, it is easy to display the functionality of the 

algorithm graphically. The NLML forms, in this case, a drop shaped form with the optimum at 

around (0.7, 1.45) with the lengthscale parameter on the x-axis and the noise variance on the 

y-axis. Note the many and small steps the SD algorithm while the NCG needs only a few. See 

Figure 11 for the illustration. The runtime for different choices of 𝛽 parameter in the NCG 

algorithm are shown in Figure 12, with the clear winner being the FR-PR method. 

 

 

 

Figure 10. Example case input data. 



 Vilius Ciuzelis  

NONLINEAR OPTIMIZATION FOR HYPERPARAMETER COMPUTATION IN 

GAUSSIAN PROCESSES MACHINE LEARNING 

 

Simulation - 27 - Example test 

case   

 

  

Figure 12. Runtime test on the simple example case. 

Figure 11. The contours of the NLML distribution for the test case: left 

– FR-PR NCG, right: Steepest Descent. The red cross is the found 

minimum, black crosses are intermediate steps. 
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3.3. Robot model test case 

Physical robot manipulator arm model parameters are based on a Kuka LBR iiwa 14 

R280 (GmbH) robot, Figure 13. The robot has 7 degrees of freedom (DoF) and therefore has 7 

joints. The mass of the robot is assumed to be uniform, such that the masses of the respective 

links are obtained by simply linear combination of the different links of the robot. 

 

Friction coefficients in the robot joints is chosen to be simply [
10000 0
0 5000

]. The 

behavior of the unforced system represents life-like behavior. 

 

A proportional-derivative controller works fine in simulations. The explicit integration 

action in the controller is not necessary as the system has an internal integrator (�̈� → �̇�). The 

Model parameter  LBR iwwa 14’s parameter  Value Explanation 

    

𝒍𝟏 𝐷 420 𝑚𝑚 Length of the 1st link 

𝒍𝟐 𝐴 − 𝐶 − 𝐷 526 𝑚𝑚 Length of the 2nd link 

𝒎𝑻 𝑚𝑇 29,9 𝑘𝑔 Total mass of the robot 

𝒎𝟏 − 9,6 𝑘𝑔 Mass of the 1st link 

𝒎𝟐 − 12,0 𝑘𝑔 Mass of the 2nd link 

𝑰𝟏 − 5640 𝑘𝑔𝑚𝑚2 Inertia of the 1st link 

𝑰𝟐 −  Inertia of the 2nd link 

𝒈 − −9,81 𝑘𝑔𝑚/𝑠2 Gravity constant 

Figure 13. KUKA intelligent industrial work assistant 14 R280, illustrations from [25] 
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controller is of the form: 

𝝉 = 𝒌𝑑(−�̇�) + 𝒌𝑝(𝒒𝑟 − 𝒒) 

 

where 𝒒𝑟 is the reference trajectory and 𝒌𝑑 and 𝒌𝑑 are the control constants. After a quick 

tuning the system performs satisfactory with the controller gains found in Table 2 below.  

 

𝒌𝒑 
[
100000 ⋅ 𝑚1𝑙1
12500 ⋅ 𝑚2𝑙2

] 

𝒌𝒅 
[
15000 ⋅ 𝑚1𝑙1
1000 ⋅ 𝑚2𝑙2

] 

Table 2. PD controller gains 

The actual values of the gains might not be entirely feasible in a real-world application as they 

might be too great. These gains yield an extremely fast convergence rate and fast error 

dynamics. Therefore, they perform sufficiently well based on the application of the current 

model. The error dynamics are shown in Figure 14. 

 

 

The data generated by the robot model is six vectors of size 1 × 5100: the joint angles 𝑞1, 𝑞2, 

the joint angle velocities 𝑞1̇, 𝑞2̇, and the joint torques 𝜏1 and 𝜏2. The GP is then used to model 

the torque as a function of the joint angles and their velocities together with friction dependent 

on the angle velocities: 

𝜏1 = 𝑓(𝑞1, 𝑞2, 𝑞1̇, 𝑞2̇) + 𝑔(𝑞1̇) 

𝜏2 = 𝑓(𝑞1, 𝑞2, 𝑞1̇, 𝑞2̇) + 𝑔(𝑞2̇) 

 

Figure 14. Error dynamics for the robot model test case. 
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4. Results 

4.1. Example test case  

The results of the simulations are shown in the figures below.  Figure 15 shows the runtime 

and the total steps taken before the convergence was reached. When comparing the steepest 

descent with the NCG, the latter wins clearly by the measure of convergence. While the 

resulting hyperparameters are equal, the required number of steps were unsurprisingly higher 

in the SD method. Figure 16 shows comparable results between the novel implementation and 

the results using the in-built MATLAB fitrgp function. The validation SMSE scores were 

0.0428 and 0.0123, respectively. It is worth to note that the runtime for the in-built function 

was 2 times faster than the novel implementation. Figure 17 shows the samples of the posterior 

prediction. 

Figure 15. Example test case MATLAB command window output. Upper: FR-PR NCG algorithm. Lower: 

Steepest descent 
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Figure 17. Example test case results. Top left – functions used in the predictions. Top right – the prior prediction. Lower left 

– the distribution of the functions used in the predictions. Lower right – the posterior prediction. 

Figure 16. The resulting prediction from the GP 

inference on the example test case. Left – Novel 

implementation, right – fitrgp result. 
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4.2. Robot model test case 

The following figures describe the results of the simulation of the robot model test case. 

Surprisingly, the steepest descent method yielded a better NLML score of -94.7814 compared 

to the NCG method with FR-PR beta update with the s core of only -65.5756. The runtime of 

the latter algorithm was also shorter. This defies every intuition prior to the simulations and 

therefore can be an indicator that the results are faulty. Note this fact for the further analysis of 

the results. The resulting output windows of both methods are depicted in Figure 18.   

 

Looking at the NLML plots, both methods show the failure to converge. The algorithm 

stops due to the step size being zero, while the descent direction 𝑝𝑘 is anything but the zero 

vector. Figure 19 shows the final results of the NLML distribution where x and y axes are the 

first and second lengthscale parameters– angles 𝑞1 and 𝑞2, respectively. Figure 20 shows some 

of the step search curves and the failure to find the correct minima.  

Figure 18. MATLAB command window ouput for the robot model test case. 
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Figure 19. The NLML for the robot model test case, where left - GP using the FR-PR algorithm, right - GP using steepest descent 

Figure 20. Graphical examples of step search iterations. Black circles meaning the starting points, 

and the red cross being the found minima. Notice the failure to find the extremum on graph on the 

lower right. 
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5. Discussion 

The simple test case performed as expected and, when compared to the existing software, 

produced comparable results. The line search method is fast and find the NLML minima well.   

The causes for the failure in the multi-dimensional problem are not obvious. There have 

been made several attempts of finding any inaccuracies between the theory and the 

implementation, but the problem remained. This might point to another weakness of the model 

– the identification trajectory. This trajectory is suspected to not excite the model sufficiently, 

causing the lack of correlation between the input-output pairs.  

Another cause might be the assumption of the independency of the torques. The torques 

have been inferred separately as functions of all angles and angle velocities. Multiple output 

GPs have been studied in the past and yield promising results [10]. 

The step search graphs of the hyperparameter optimization problem, contain interesting 

behavior, pointing to the NLML or its derivatives being faulty. After some search steps have 

been found and “taken”, the step search graphs become monotonically increasing at zero in the 

positive step direction. This suggests that the optimum has been reached, when it clearly has 

not.  
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6. Future Work 

In order to achieve more accurate predictions, one could use the gradient information at the 

training points. The information on whether the slope is increasing or decreasing on the test 

points can dramatically improve the accuracy of the predictions. This technique yields great 

results in [11]. 

When the explained data is low, one might suspect the faulty choice of the hyperparameters. 

While one can use the combination kernels designed as a sum or product of several other 

simpler kernels, the curse of dimensionality becomes evident [12]. With several choices of the 

hyperparameters, the error of choosing “wrong” hyperparameters, increases. An automated 

technique of choosing and discarding the increasing complexity priors, deserves further 

research. 

Implementation of cross-validation-based hyperparameter optimizers, such as LOO-CV, 

sometimes prioritize the complexity and the data-fit differently than the marginal likelihood. It 

may therefore produce totally different hyperparameters and results, which is very interesting 

and deserves more research. Implementing other types of likelihoods, non-Gaussian.  

Gaussian Processes have regretfully been overseen in the machine learning in the recent 

years. The main cause of that is the expensive computations needed for inference and 

hyperparameter learning for larger data sets. That makes GP a poor choice for on-line control 

tasks. The costs of both inference and learning tend to scale badly with the matrix inversion of 

an 𝑛 × 𝑛 matrix alone costing 𝑂(𝑛3) time. There have been proposed some remedies in [13].  

Almost all following methods use sparse matrices and approximates that greatly speed up 

the inference and learning processes. One idea is to approximate non-parametric kernels in 

“dual space”: Random Kitchen Sinks [14], Fastfood [15], À la carte [16]. Another technique is 

using inducing points methods, where the cost for predictions can be reduced to 𝑂(𝑚2𝑛), 

where 𝑚 ≪ 𝑛. For instance, replacing the exact covariance function with an approximation 

using Subset of Regression (SoR), allows faster computations with the cost of underestimating 

the uncertainty. Another example is Fully Independent Training Conditional (FITC) which 

replaces the approximate diagonal of SoR with the diagonal of the true covariance function. 

[17] introduced Kernel Interpolation for Scalable Structured Gaussian Processes, or KISS-GP, 

which claims to achieve staggering 𝑂(𝑛) for both time and storage costs for GP inference. This 

method exploits the structure in the covariance function and use Toeplitz and Kronecker 

algebra, as in the works with Massively Scalable GP in [18].  
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8. Appendix A 

8.1. Derivation of the EOM for 2-link planar manipulator 

 

The derivations are based on [1]. The planar manipulator has kinetic energy: 

𝑇 =
1

2
𝑚1�⃗�𝑐1 ⋅ �⃗�𝑐1 +

1

2
𝑚2�⃗�𝑐2 ⋅ �⃗�𝑐2 +

1

2
�⃗⃗⃗�1 ⋅ �⃗⃗⃗�1

𝑐
⋅ �⃗⃗⃗�1 +

1

2
�⃗⃗⃗�2 ⋅ �⃗⃗⃗�2

𝑐
⋅ �⃗⃗⃗�2 

 

This can be written as 

𝑇 =
1

2
𝒎𝟏𝟏�̇�1

2 +𝒎𝟏𝟐�̇�1�̇�2 +
1

2
𝒎𝟐𝟐�̇�2

2 

 

where  

𝒎𝟏𝟏 = 𝐼1𝑧 + 𝐼2𝑧 +𝑚1𝐿𝑐1
2 +𝑚2(𝐿1

2 + 𝐿𝑐2
2 + 2𝐿1𝐿𝑐2 cos 𝑞2) 

𝒎𝟏𝟐 = 𝒎𝟐𝟏 = 𝐼2𝑧 +𝑚2𝐿𝑐2
2 +𝑚2𝐿1𝐿𝑐2 cos 𝑞2 

𝒎𝟐𝟐 = 𝐼2𝑧 +𝑚2𝐿𝑐2
2    

 

are the elements of the inertia matrix and 𝑞1 and 𝑞2 are the angles between the horizontal plane 

and the robot arm 1 and 2 respectively. The potential energy in the system is given by 

𝑉 = (𝑚1𝑔𝐿𝑐1 +𝑚2𝑔𝐿1) sin 𝑞1 +𝑚2𝑔𝐿𝑐2 sin(𝑞1 + 𝑞2) 

 

Then, from ℒ = 𝑇 − 𝑉 partial derivatives are found to be 

𝜕ℒ

𝜕�̇�1
=
𝜕𝑇

𝜕�̇�1
= 𝒎𝟏𝟏�̇�1 +𝒎𝟏𝟐�̇�2 

𝜕ℒ

𝜕�̇�2
=
𝜕𝑇

𝜕�̇�2
= 𝒎𝟏𝟐�̇�1 +𝒎𝟐𝟐�̇�2   

𝜕ℒ

𝜕𝑞1
= −

𝜕𝑉

𝜕𝑞1
= −(𝑚1𝐿𝑐1 +𝑚2𝐿1)𝑔 cos 𝑞1 −𝑚2𝐿𝑐2𝑔 cos(𝑞1 + 𝑞2) 

𝜕ℒ

𝜕𝑞2
=
𝜕𝑇

𝜕𝑞2
−
𝜕𝑉

𝜕𝑞2
=
1

2

𝜕𝒎𝟏𝟏

𝜕𝑞2
�̇�1
2 +

𝜕𝒎𝟏𝟐

𝜕𝑞2
�̇�1�̇�2  − 𝑚2𝐿𝑐2𝑔 cos(𝑞1 + 𝑞2)  

 

Recalling the chain rule expansion: 
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𝑑𝑧

𝑑𝑡
=
𝜕𝑧

𝜕𝑥

𝜕𝑥

𝜕𝑡
+
𝜕𝑧

𝜕𝑦

𝜕𝑦

𝜕𝑡
   

 

the equations of motion are then found to be: 

𝜏1 = 𝒎𝟏𝟏�̈�1 +𝒎𝟏𝟐�̈�2 + (
𝜕𝒎𝟏𝟏

𝜕𝑞2
�̇�2) �̇�1 + (

𝜕𝒎𝟏𝟐

𝜕𝑞2
�̇�2) �̇�2 +

𝜕𝑉

𝜕𝑞1
 

𝜏2 = 𝒎𝟐𝟏�̈�1 +𝒎𝟐𝟐�̈�2 + (
𝜕𝒎𝟐𝟏

𝜕𝑞2
�̇�2) �̇�1 − (

𝝏𝒎𝟐𝟏

𝝏𝒒𝟐
�̇�1) �̇�2 −

1

2
(
𝜕𝒎𝟏𝟏

𝜕𝑞2
) �̇�1

2 +
𝜕𝑉

𝜕𝑞2
  

 

𝜏1 = (𝐼1 + 𝐼2 +𝑚1𝐿𝑐1
2 +𝑚2(𝐿1

2 + 𝐿𝑐2
2 + 2𝐿1𝐿𝑐2 cos 𝑞2))�̈�1

+ (𝐼2 +𝑚2𝐿𝑐2
2 +𝑚2𝐿1𝐿𝑐2 cos 𝑞2)�̈�2 −𝑚2𝐿1𝐿𝑐2 sin 𝑞2 (2�̇�1�̇�2 + �̇�2

2)

+ (𝑚1𝐿𝑐1 +𝑚2𝐿1)𝑔 cos 𝑞1 +𝑚2𝐿𝑐2𝑔 cos(𝑞1 + 𝑞2) 

𝜏2 = (𝐼2 +𝑚2𝐿𝑐2
2 +𝑚2𝐿1𝐿𝑐2 cos 𝑞2)�̈�1 + (𝐼2 +𝑚2𝐿𝑐2

2 )�̈�2 + (𝑚2𝐿1𝐿𝑐2 sin 𝑞2)�̇�1
2

+𝑚2𝐿𝑐2𝑔 cos(𝑞1 + 𝑞2)   

 

These equations can be written in a simplified form: 

𝑴(𝒒)�̈� + 𝑪(𝒒, �̇�) + 𝑮(𝒒) = 𝝉 

 

where 𝑴(𝒒) = 𝑴⊤(𝒒) is a positive definite matrix of masses [
𝑚11 𝑚12
𝑚21 𝑚22

] with elements 

𝑚11 = 𝐼1 + 𝐼2 +𝑚1𝐿𝑐1
2 +𝑚2(𝐿1

2 + 𝐿𝑐2
2 + 2𝐿1𝐿𝑐2 cos 𝑞2)  

𝑚12 = 𝑚21 = 𝐼2 +𝑚2(𝐿𝑐2
2 + 𝐿1𝐿𝑐2 cos 𝑞2) 

𝑚22 = 𝐼2 +𝑚2𝐿𝑐2
2  

 

  𝑮(𝒒) is the gradient of the gravity potential [
𝑔1
𝑔2
] with elements 

𝑔1 = 𝑔((𝑚1𝐿𝑐1 +𝑚2𝐿1) cos 𝑞1 +𝑚2𝐿𝑐2 cos(𝑞1 + 𝑞2)) 

𝑔2 = 𝑔𝑚2𝐿𝑐2 cos(𝑞1 + 𝑞2) 

 

The matrix 𝑪(𝒒, �̇�) can be selected to be  

𝑪(𝒒, �̇�) = {𝒄𝑗𝑘} = {∑𝒄𝑖𝑗𝑘�̇�𝑖

𝑛

𝑖=1

} 
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where  

𝒄𝑖𝑗𝑘 ≔
𝟏

𝟐
(
𝜕𝒎𝑗𝑘

𝜕𝒒𝒊
+
𝜕𝒎𝑖𝑘

𝜕𝒒𝑗
+
𝜕𝒎𝑖𝑗

𝜕𝒒𝑘
) 

 

are the Christoffel symbols of the first kind. Define 𝑞1̇ = 𝜔1 and 𝑞2̇ = 𝜔2 and express 

Christoffel symbols as 

𝑐11 = −𝑚2𝐿1𝐿𝑐2𝜔2 sin 𝑞2 

𝑐12 = (−𝑚2𝐿1𝐿𝑐2 sin 𝑞2)(𝜔1 + 𝜔2) 

𝑐21 = 𝑚2𝐿1𝐿𝑐2𝜔1 sin 𝑞2 

𝑐22 = 0 

∎ 

8.2. Inverse kinematics for 2-link planar manipulator 

The derivation of these formulas is borrowed from [19] and [20]. Start with forward 

kinematics formulas 

(
𝑥𝑒
𝑦𝑒
) = (

𝑙1 𝑐𝑜𝑠 𝑞1 + 𝑙2 𝑐𝑜𝑠(𝑞1 + 𝑞2)

𝑙1 𝑠𝑖𝑛 𝑞1 + 𝑙2 𝑠𝑖𝑛(𝑞1 + 𝑞2)
) (1∗) 

 

where all variables are according Figure 1 on page 3. Rewrite squares of the end effector 

position 

(
𝑥𝑒
2

𝑦𝑒
2
) = (

𝑙1
2 cos2 𝑞1 + 𝑙2

2 cos2(𝑞1 + 𝑞2) + 2𝑙1𝑙2 cos 𝑞1 cos(𝑞1 + 𝑞2)

𝑙1
2 sin2 𝑞1 + 𝑙2

2 sin2(𝑞1 + 𝑞2) + 2𝑙1𝑙2 sin 𝑞1 sin(𝑞1 + 𝑞2) 
 ) 

 

Use Pythagorean identity 

𝑎sin2 𝜃 + 𝑎cos2 𝜃 = 𝑎2 

 

and rewrite 

𝑥𝑒
2 + 𝑦𝑒

2 = 𝑙1
2 + 𝑙2

2 + 2𝑙1𝑙2[cos 𝑞1 cos(𝑞1 + 𝑞2) + sin 𝑞1 sin(𝑞1 + 𝑞2)] 

 

Use the following identities 

sin(𝑎 ± 𝑏) = sin 𝑎 cos 𝑏 ± cos 𝑎 sin 𝑏 

cos(𝑎 ± 𝑏) = cos 𝑎 cos 𝑏 ∓ sin 𝑎 sin 𝑏 
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to prove 

𝑥𝑒
2 + 𝑦𝑒

2 = 𝑙1
2 + 𝑙2

2

+ 2𝑙1𝑙2[cos 𝑞1 (cos 𝑞1 cos 𝑞2 − sin 𝑞1 sin 𝑞2)

+ sin 𝑞1 (sin 𝑞1 cos 𝑞2 + cos 𝑞1 sin 𝑞2)] 

= 𝑙1
2 + 𝑙2

2 + 2𝑙1𝑙2[cos
2 𝑞1 cos 𝑞2 + sin

2 𝑞1 cos 𝑞2] 

= 𝑙1
2 + 𝑙2

2 + 2𝑙1𝑙2 cos 𝑞2 

 

From this follow 

𝑞2 = cos
−1
𝑥𝑒
2 + 𝑦𝑒

2 − 𝑙1
2 − 𝑙2

2

2𝑙1𝑙2
 

 

Since arcsin  and arccos  are inaccurate for small angles, use the atan2 function: 

𝑞2 = atan2(sin 𝑞2 , cos 𝑞2) 

= atan2 (±√1 − cos2 𝑞2 , cos 𝑞2) 

= atan2(±√1 − (
𝑥2 + 𝑦2 − 𝑙1

2 − 𝑙2
2

2𝑙1𝑙2
)

2

,
𝑥2 + 𝑦2 − 𝑙1

2 − 𝑙2
2

2𝑙1𝑙2
) 

 

Next, use (1∗) to rewrite 𝑥 and 𝑦: 

𝑥 = 𝑘1 cos 𝑞1 − 𝑘2 sin 𝑞1 

𝑦 = 𝑘1 sin 𝑞1 + 𝑘2 cos 𝑞1 

 

where 𝑘1 = 𝑙1 + 𝑙2 cos 𝑞2 and 𝑘2 = 𝑙2 sin 𝑞2. 

Now, use the following: 

𝑟 = √𝑘1
2 + 𝑘2

2 

𝛾 = atan2(𝑘2, 𝑘1) 

 

This gives 

𝑘1 = 𝑟 cos 𝛾 

𝑘2 = 𝑟 sin 𝛾 
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which leads to 

𝑥 = 𝑟 cos(𝛾 + 𝑞1) 

𝑦 = 𝑟 sin(𝛾 + 𝑞1) 

 

Finally apply atan2 function to find 𝑞1: 

𝛾 + 𝑞1atan2 (
𝑦

𝑟
,
𝑦

𝑟
) = atan2(𝑦, 𝑥) 

𝑞1 = atan2(𝑦, 𝑥) − atan2(𝑘2, 𝑘1) 

 

where 𝑘1 = 𝑙1 + 𝑙2 cos 𝑞2 and 𝑘2 = 𝑙2 sin 𝑞2. 

The final solution contains ± sign which can be thought of as elbow-up and elbow-down 

solutions. Plus-sign yields the elbow-up solution, while the minus yields the opposite. 

 

𝑞(𝑥𝑒 , 𝑦𝑒) =

[
 
 
 
 
 

atan2(𝑦𝑒 , 𝑥𝑒) ± atan 2(𝑙2 sin 𝑞2 , (𝑙1 + 𝑙2 cos 𝑞2))

atan2(±√1 − (
𝑥𝑒2+𝑦𝑒2 − 𝑙1

2 − 𝑙2
2

2𝑙1𝑙2
)
2

,
𝑥𝑒2 + 𝑦𝑒2 − 𝑙1

2 − 𝑙2
2

2𝑙1𝑙2
) 

]
 
 
 
 
 

 

∎ 

 

8.3. Finite difference 

Finite difference is a numerical method of approximating derivatives, using the differences 

of known function values. There exist mainly three types differences: 

• Forward difference:  𝑓′(𝑥) = lim
ℎ→0

𝑓(𝑥+ℎ)−𝑓(𝑥)

ℎ
  with the error estimate 𝑂(ℎ) 

• Backward difference:  𝑓′(𝑥) = lim
ℎ→0

𝑓(𝑥)−𝑓(𝑥−ℎ)

ℎ
 with the error estimate 𝑂(ℎ) 

• Central difference: 𝑓′(𝑥) = lim
ℎ→0

𝑓(𝑥+
1

2
ℎ)−𝑓(𝑥−

1

2
ℎ)

ℎ
 with the error estimate 𝑂(ℎ2) 

where ℎ is a “small” constant.  

For multi-dimensional functions, the forward difference is: 

𝑓𝑥𝑖(𝒙) ≈
𝑓(𝑥𝑖+ℎ,𝒙∖𝑥𝑖)−𝑓(𝒙)

ℎ
, where 𝒙 ∈ {𝑥1, 𝑥2, … , 𝑥𝑖} 
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Forward and backward difference yield near identical results and are cheapest to 

compute, whereas the central difference is the approximation that yields the most accurate 

result at the cost of double the computing power of one of the other methods.  

 

8.4. Partial kernel derivatives 

The use of the partial derivatives of kernels is the minimization of the negative log 

marginal likelihood function using a gradient based method. Given an arbitrary kernel function 

of the form 𝑘(𝑥𝑖 , 𝑥𝑗|𝜃) = 𝑘(𝑥𝑖, 𝑥𝑗|𝜎𝑓 , 𝑙), find the first order partial derivatives with respect to 

𝜃 or (𝜎𝑓 , 𝑙). All the derivations below start with the partial derivatives with respect to the noise-

free signal constant 𝜎𝑓, following the partial derivatives with respect to the characteristic 

length-scale 𝑙. The derivations where 𝑥 has more than 1 dimension, 𝑙𝑘 will be used, where 𝑘 is 

the dimension of 𝑥 the kernel is being differentiated along. 

 

Squared Exponential 

 The most common and widely used kernel  

𝜕𝑘𝑆𝐸
𝜕𝜎𝑓

=

𝜕𝜎𝑓
2 exp [−

1
2
(𝑥𝑖 − 𝑥𝑗)

2

𝑙2
]

⏞            
𝑓(𝒙,𝒍)

𝜕𝜎𝑓
=
𝜕𝜎𝑓

2𝑓(𝒙, 𝒍)

𝜕𝜎𝑓
= 2𝜎𝑓𝑓(𝒙, 𝒍) = 

= 2𝜎𝑓 exp [−
1

2

(𝑥𝑖 − 𝑥𝑗)
2

𝑙2
] =

2

𝜎𝑓
𝑘𝑆𝐸  

 

𝜕𝑘𝑆𝐸
𝜕𝑙

=

𝜕𝜎𝑓
2 exp [−

1
2
(𝑥𝑖 − 𝑥𝑗)

2

𝑙2
]

⏞          
𝑓(𝒙,𝑙)

𝜕𝑙
= 𝜎𝑓

2
𝜕 exp(𝑓(𝒙, 𝑙))

𝜕𝑙
= 

= 𝜎𝑓
2 exp(𝑓(𝒙, 𝑙))

𝜕𝑓(𝒙, 𝑙)

𝜕𝑙𝑘
= 𝜎𝑓

2 exp(𝑓(𝒙, 𝑙))⏟          
𝑘𝑆𝐸

(−
1

2
⋅ −2

(𝑥𝑖 − 𝑥𝑗)
2

𝑙3
) = 

=
(𝑥𝑖 − 𝑥𝑗)

2

𝑙3
𝑘𝑆𝐸  
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∎ 

 

Squared Exponential with ARD 

 SE kernel with the property of automatically choosing the relevant features in the 

inference, called automatic relevance determination (ARD). The derivatives are nearly 

identical to the SE kernel and follow the same procedure.  

𝜕𝑘𝑆𝐸−𝑎𝑟𝑑
𝜕𝜎𝑓

=

𝜕𝜎𝑓
2 exp [−

1
2
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2
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2

𝑑
𝑚=1 ]

⏞                  
𝑓(𝒙,𝒍)

𝜕𝜎𝑓
=
𝜕𝜎𝑓

2𝑓(𝒙, 𝒍)

𝜕𝜎𝑓
= 2𝜎𝑓𝑓(𝒙, 𝒍) = 

=
2

𝜎𝑓
𝜎𝑓
2 exp [−

1

2
∑

(𝑥𝑖𝑚 − 𝑥𝑗𝑚)
2

𝑙𝑚2

𝑑

𝑚=1

]
⏟                    

𝑘𝑆𝐸−𝑎𝑟𝑑

=
2

𝜎𝑓
𝑘𝑆𝐸−𝑎𝑟𝑑  

 

𝜕𝑘𝑆𝐸−𝑎𝑟𝑑
𝜕𝑙𝑘

=
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=
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The last derivative can also be derived using the exponent rule and differentiating every 

term. The finals results of both methods yield identical results. 

∎ 

Matérn 3/2 

 Matérn class functions have the following expression: 

𝑘𝑀𝑎𝑡𝑒𝑟𝑛 =
2(1−𝜈)

Γ(𝜈)
(
√2𝜈(𝑥𝑖 − 𝑥𝑗)

𝑙
)

𝜈

𝐾𝜈 (
√2𝜈(𝑥𝑖 − 𝑥𝑗)

𝑙
) 

 

where two prominent cases are obtained by setting 𝜈 =
3

2
 and 

5

2
. The behavior differs for 
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different 𝜈’s. The kernel is equal to the squared exponential for 𝜈 = ∞. The kernel is 

differentiable 𝑘 times for 𝜈 > 𝑘. 

 

𝜕𝑘𝑀32
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=
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Alternative version, which can be obtained by keeping the exponent, does not involve the 

kernel itself: 

𝜕𝑘𝑀32
𝜕𝑙

= 𝜎𝑓
2 exp(−

√3(𝑥𝑖 − 𝑥𝑗)

𝑙
) [
𝑙2 + (𝑙 + 2)√3(𝑥𝑖 − 𝑥𝑗)

𝑙2
] 

∎ 
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Matern 5/2 

  

𝜕𝑘𝑀52
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∎ 

 

There exists a solution involving 𝑘𝑀52 just like for 𝑘𝑀32: 

𝜕𝑘𝑀52
𝜕𝑙
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∎ 

Periodic 

 Periodic kernels are useful when the behavior of the system is known to contain 

oscillations. Parameter 𝑝 determines the period of the oscillations. 

𝑘𝑃𝑒𝑟 = 𝜎𝑓
2 exp (−

2

𝑙2
sin2 (𝜋

𝑥𝑖 − 𝑥𝑗

𝑝
 )) 

 



 Vilius Ciuzelis  

NONLINEAR OPTIMIZATION FOR HYPERPARAMETER COMPUTATION IN 

GAUSSIAN PROCESSES MACHINE LEARNING 

 

Appendix A - 48 - Partial kernel 

derivatives   

The derivatives of this kernel are shown below: 

𝜕𝑘𝑃𝑒𝑟
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∎ 

 

 

 

 

  



 Vilius Ciuzelis  

NONLINEAR OPTIMIZATION FOR HYPERPARAMETER COMPUTATION IN 

GAUSSIAN PROCESSES MACHINE LEARNING 

 

Appendix B - 49 - Robot 

manipulator 

code   

9. Appendix B 

Robot manipulator code 

function output = Manipulator() 

%% Robot manipulator  

%%% 

% This code uses refers to the paper "Nonlinear optimization for  

% hyperparameter computation in Gaussian Processes machine learning" by 

% Vilius Ciuzelis. 

% 

% Date: 1/9/2018 

% Last edit: 6/6/2019 

% Author: Vilius Ciuzelis 

%%% 

  

% INITIALIZE 

sandbox = 0; 

h = 0.01;                                         % integration step length 

time = 50;                                              % simulation length 

constants = getConstants(sandbox);                 % Define model constants 

trajectory = getTrajectory( h, time, constants );       % Define trajectory 

  

% MAIN 

data = simulate( h, trajectory, constants, sandbox );     % Main simulation 

  

% PRESENT 

hFig = figure(); 

plotTraj( constants, trajectory, hFig );           % Present the trajectory 

animate( data, constants, hFig );     % Present the results in an animation 

plotErrDyn( data );                                % Present error dynamics 

  

output = struct(    'q_1', data.q(1,:), ...            % Structure the data 

                    'q_2', data.q(2,:), ... 

                    'q_1_dot', data.omega(1,:), ... 

                    'q_2_dot', data.omega(2,:), ... 

                    'u_1', data.tau(1,:), ... 

                    'u_2', data.tau(2,:)); 

                 

%% Simulation 

function res = simulate( h, traj, constants, sandbox ) 

    % See II Background theory -> Robot model 

     

    % INITIALIZE 

    [ q, omega, omega_dot ] = getInitialStates; 

    [ kp, kd ] = getGains( constants, sandbox ); 

    f_coeff = getFCoeff(sandbox); 

    storage = getStorage( length(traj) ); 

     

    x_e = traj(:,1); 

    y_e = traj(:,2); 

     

    for i=1:1:length(traj) 

        % --------------------------SENSE---------------------------------- 

        omega = omega + h * omega_dot; 

        q = q + h * omega; 

        [ M, C, G ] = getModel( constants, q, omega ); 

        % --------------------------PLAN----------------------------------- 
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        q_r = inverseKinematics( constants, x_e(i), y_e(i) ); 

        tau = kd*(-omega) + kp*( q_r-q ) - f_coeff*omega; 

        % --------------------------ACT------------------------------------ 

        omega_dot = M\( tau-C*omega-G ); 

        % --------------------------STORE VALUES--------------------------- 

        storage.q(:,i) = q; 

        storage.omega(:,i) = omega; 

        storage.omega_dot(:,i) = omega_dot; 

        storage.tau(:,i) = tau; 

        storage.q_r(:,i) = q_r; 

        [ storage.l1_pos(:,i), storage.l2_pos(:,i), storage.ee_pos(:,i) ] = 

... 

            forwardKinematics(constants,q); 

        storage.error(:,i) = storage.q_r(:,i)-q;           % error dynamics 

    end 

         

    res = struct(   'q', storage.q,...               % Structure the output 

                    'omega', storage.omega,...  

                    'omega_dot', storage.omega_dot,... 

                    'tau', storage.tau,... 

                    'ee_pos', storage.ee_pos,... 

                    'l1_pos', storage.l1_pos,... 

                    'l2_pos', storage.l2_pos,... 

                    'error', storage.error,... 

                    'q_r', storage.q_r); 

end 

  

%% Storage function 

function res = getStorage(count) 

  

    zero = deal( zeros(2, count) ); 

    res = struct(   'q', zero, ... 

                    'omega', zero, ... 

                    'omega_dot', zero,... 

                    'tau', zero, ... 

                    'ee', zero,... 

                    'l1', zero,... 

                    'l2', zero,... 

                    'error', zero,... 

                    'qr', zero); 

end 

  

%% Storage of constants 

function res = getConstants(sandbox) 

    if sandbox                                 % Simple model for debugging 

        l_1 = 1; 

        l_2 = 0.7; 

        m_1 = 1; 

        m_2 = 1; 

    else                        % Parameters based on KUKA LBR iiwa 14 R280 

        l_1 = 42; 

        l_2 = 52.6; 

        m_1 = 9.6156; 

        m_2 = 12.0424; 

    end                              

     

    res = struct(   'l_1', l_1,...                          % length link 1 

                    'l_c1', ( l_1/2 ), ... 

                    'l_2', l_2,...                          % length link 2 
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                    'l_c2', ( l_2/2 ), ... 

                    'm_1', m_1, ...                           % mass link 1 

                    'm_2', m_2, ...                           % mass link 2 

                    'g', 9.81,...                  % gravitational constant 

                    'I_1', ( m_1*l_1^2/12 ),...        % Inertia for link 1 

                    'I_2', ( m_2*l_2^2/12 ));          % Inertia for link 2 

end 

  

%% Manipulator model 

function [ M, C, G ] = getModel( const, q, omega ) 

    % See Appendix A: Derivation of the EOM for 2-link planar manipulator 

    l_1 = const.l_1; 

    l_c2 = const.l_c2; 

    m_1 = const.m_1; 

    m_2 = const.m_2; 

     

    M_11 = const.I_1 + const.I_2 + m_1*const.l_c1^2 + ... 

            m_2*( l_1^2 + l_c2^2 + 2*l_1*l_c2^2 + 2*l_1*l_c2*cos(q(2)) ); 

    M_12 = const.I_2 + m_2*( l_c2^2 + l_1*l_c2*cos(q(2)) ); 

    M_21 = M_12; 

    M_22 = const.I_2 + m_2*l_c2^2; 

    M =[    M_11    M_12; 

            M_21    M_22 ]; 

     

    C_11 = -m_2*l_1*l_c2*sin(q(2))*omega(2); 

    C_12 = ( -m_2*l_1*l_c2*sin(q(2)) )*(omega(1)+omega(2)); 

    C_21 = m_2*l_1*l_c2*sin(q(2))*omega(1); 

    C_22 = 0; 

    C = [   C_11    C_12;  

            C_21    C_22]; 

     

    G_1 = const.g*( ( m_1*const.l_c1 + m_2*l_1 )*cos(q(1)) + ... 

            m_2*l_c2*cos( q(1)+q(2) ) ); 

    G_2 = const.g*m_2*l_c2*cos( q(1)+q(2) ); 

    G = [   G_1;  

            G_2 ]; 

end 

  

%% Friction coefficients 

function res = getFCoeff(sandbox)  

    if sandbox 

        res = [ 2 0; 

                0 1 ]; 

    else 

        res = [ 10000   0;  

                0       5000]; 

    end 

end 

  

%% Initial states 

function [ q, omega, omega_dot ] = getInitialStates 

    q = [ -1; pi/2 ]; 

    omega = [ 0; 0 ]; 

    omega_dot = [ 0; 0 ]; 

end 

  

%% Forward kinematics 

function [ link1, link2, endEffector ] = forwardKinematics( const, q ) 

    % Computes the x and y coordinates of starting points of the links 
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    % See II Background theory -> Kinematics 

    link1 = [   0; 

                0 ]; 

    link2 = [   const.l_1*cos(q(1));  

                const.l_1*sin(q(1)) ]; 

    endEffector = [ link2(1) + const.l_2*cos(q(1)+q(2)); 

                    link2(2) + const.l_2*sin(q(1)+q(2))]; 

end 

  

%% Inverse kinematics 

function res = inverseKinematics( const, x, y ) 

    % Computes the joint angles as a function of x and y 

    % See II Background theory -> Kinematics 

    l_1 = const.l_1; 

    l_2 = const.l_2; 

     

    arg1 = (x^2+y^2-l_1^2-l_2^2)/(2*l_1*l_2); 

     

    q_2 = atan2(sqrt(1-(arg1)^2), arg1); 

    q_1 = atan2( y,x ) - atan2( l_2*sin(q_2), (l_1+l_2*cos(q_2)) ); 

     

    res = [ q_1; q_2 ]; 

end 

  

%% Controller gains 

function [ kp, kd ] = getGains( const, sandbox ) 

    % Controller parameters 

    if sandbox 

        k_d1 = 50; 

        k_p1 = 500; 

        k_d2 = 20; 

        k_p2 = 200; 

    else 

        k_d1 = 30000*const.m_1*const.l_1/2; 

        k_p1 = 100000*const.m_1*const.l_1; 

        k_d2 = 1000*const.m_2*const.l_2; 

        k_p2 = 50000*const.m_2*const.l_2/4; 

    end 

    kd = [  k_d1    0;  

            0       k_d2 ]; 

    kp = [  k_p1    0;  

            0       k_p2 ]; 

end 

  

%% Identification trajectory 

function [ traj, count ] = getTrajectory( h, steps, const ) 

    t = ( 0:h:steps-h+1 )';                                          % time 

    count = length(t); 

    center = [ const.l_1 0 ]; 

    radius = 1/2*const.l_2; 

    theta = t*( 2*pi/t(end) ); 

    points = center + radius*[ cos(theta) sin(theta) ]; 

  

    traj = points; 

end 

  

%% Trajectory plotter 

function plotTraj( const, traj, Hfig ) 

    l_1 = const.l_1; 
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    l_2 = const.l_2; 

     

    [q,~,~] = getInitialStates; 

    subplot(2,2,1) 

    plot( traj(:,1), traj(:,2) ); 

    grid on; 

    title( "Planned e.e. trajectory in the reachable workspace" ); 

    axis([ -(l_1+l_2) (l_1+l_2) -(l_1+l_2) (l_1+l_2) ]); 

    hold on; 

    plot([ 0 cos(q(1))*l_1],[0 sin(q(1))*l_1 ]); 

    hold on; 

    plot([ cos(q(1))*l_1 cos(q(1))*l_1 + cos(q(1) + q(2))*l_2 ],... 

        [ sin(q(1))*l_1 sin(q(1))*l_1 + sin(q(1) + q(2))*l_2 ]); 

    hold off; 

end 

  

%% Animation 

function animate( data, const, hFig ) 

    subplot( 2,2,2 ); 

    if nargin == 2 

        hFig = figure(); 

    end 

    d = 100;                                            % frames per second 

    j=1:d:length(data.q); 

     

    ee_pos = data.ee_pos; 

    l2_pos = data.l2_pos; 

     

    for i=1:length(j)-1 

        hold off 

        plot( ee_pos(1,1:j(i)),ee_pos(2,1:j(i)), "-" ); 

        hold on; 

        plot(   [l2_pos(1,j(i)) ee_pos(1, j(i))],... 

                [l2_pos(2, j(i)) ee_pos(2, j(i))],'o',... 

                [data.l1_pos(1) l2_pos(1,j(i))],...             % first arm 

                [data.l1_pos(2) l2_pos(2,j(i))],'k',...         

                [l2_pos(1,j(i)) ee_pos(1, j(i))],...           % second arm 

                [l2_pos(2,j(i)) ee_pos(2, j(i))],'k')           

        hold on; 

  

        title( 'Motion of the robot' ) 

        xlabel('x') 

        ylabel('y') 

        axis( [ -const.l_1 - const.l_2, const.l_1 + const.l_2,... 

                -const.l_1 - const.l_2, const.l_1 + const.l_2 ] ); 

        grid on; 

        hold on; 

        drawnow; 

    end 

end 

  

%% Error dynamics plotter 

function plotErrDyn( data ) 

    steps = 200; 

    subplot(2,2,[3,4] ); 

    plot( 1:steps, data.error(:,1:steps) ); 

    txt = sprintf( "Error dynamics in the first %d simulation steps", steps 

); 

    title(txt); 
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    legend( "Error in q_1", "Error in q_2" ); 

end 

end 

 

Gaussian Processes inference code 

%% GP Vilius Ciuzelis 

  

run startup.m;                                           % For gpml_randn() 

input = Manipulator();                                 % Generate the model 

  

%% Globals 

global sigma_f sigma_n l gamma 

sigma_f = 0.9;                % standard deviation of the noise-free signal 

sigma_n = 0.09;                           % standard deviation of the noise 

l = 1;                                                       % Length-scale 

gamma = 2;                 % For use in gammaExp cov. func. Value must be 2 

rng( 'default' );                                       % For repeatability 

  

[ X, xs, y, Y] = getInput( '1' );          % input:'1' - 1-dim sin curve 

                                                    % '2' - 4-dim robot arm 

[ x, y ] = standardize( X', y' );      % Standardize the inputs and outputs 

covFunc = 'SE-ARD';  

hyp = struct( 'M', ones(size(X,2),1), 'sf', sigma_f , 'sn', sigma_n);  

%% OPTIMIZE 

wolfe = struct('verbose', 1, ...               show intermediate plots if 1 

                            'c_1', 10^-4,... 

                            'c_2', 10^-1,...      0.9 for loose line search 

                            'itermax', 100,... 

                            'jmax', 100); 

                         

params = struct('itermax', 100, ... 

                'gradientType', 'anal', ...                'anal', 'approx' 

                'precond', '', ... 

                'beta', 'FR-PR', ...       'FR', 'PR', 'PR+', 'FR-PR', 'SD' 

                'verbose', 1,... 

                'v', 0.1, ...            Conjugacy requirement, typical 0.1 

                'wolfe', wolfe); 

             

tic; 

res_struct = optimize( covFunc, x, y, [ ones(size(x,1),1); sigma_f; sigma_n 

]', params); 

toc; 

res = res_struct.hyp; 

  

%% -----------------------GP REGRESSION------------------------------------ 

hyp = struct( 'M', res( 1:end-2 ), 'sf', res( end-1 ) , 'sn', res( end )); 

  

% Perform GP 

[ mu, variance, covariance ] = getGP( x', xs, y', covFunc, hyp ); 

figure; 

  

plot(mu); hold on;  

plot(y); legend('Predicted mean \mu', 'Input y'); 

% MSE = mean(mu-Z).^2; 

% SMSE = MSE/std(Y); 

if 1 plotGP( covFunc, mu, variance, x', xs, y' ); end 

%% -------------------------------PRIOR------------------------------------ 
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prior = getFPrior( covFunc, hyp, xs, 10 ); 

if 1 plotPrior( prior, xs ); end 

%% -----------------------------POSTERIOR---------------------------------- 

posterior = getFPost( mu, covariance, 10 ); 

if 1 plotPost( posterior, mu, variance, x', xs, y ); end %#ok<*SEPEX> 

  

% -----------------------Plotter functions start--------------------------- 

%% Plot prior 

function plotPrior( prior, xs ) 

    %%%  

    % arg prior attributes: 

    %       mean 

    %       variance 

    %       samples 

    %%% 

     

    hyp = evalin( 'base', 'hyp' ); 

    figure(); subplot( 2,2,2 ); hold on; 

     

    plot( xs, prior.samples ); 

    mu = plot( xs, prior.mu, 'r--' ); 

    sigma = plot( xs, prior.mu+2*sqrt(prior.sigma), 'k--' );  

    plot( xs, prior.mu-2*sqrt(prior.sigma) ,'k--' );  

    legend( [ mu, sigma ] , 'Mean', '95% Confidence interval' ); 

    txt = sprintf('Samples from the prior distribution'); 

    title(txt); 

     

    subplot( 2,2,1 ); 

    plot( xs, prior.random_functions ); 

    txt = sprintf( "%d random function samples drawn from the normal 

distribution", size(prior.random_functions, 2) );  

    title( txt ); 

    hold on; 

  

    subplot( 2,2,3 ); 

    norm = normpdf( xs, 0, 1 ); 

    plot( xs, norm, 'LineWidth', 2 ); hold on; 

    histogram( normalize(prior.random_functions), 'Normalization', 'pdf', 

'BinMethod', 'auto'); 

    title( "Histogram over normal samples" ); 

    legend( "Normal distribution" ); 

    hold off; 

end 

%% Plot GP 

function plotGP( covFunc, mu, variance, X, xs, y ) 

  

figure();   hold on;  

var = plot( xs, mu+2*sqrt(variance), 'k--' ); plot( xs, mu-2*sqrt(variance) 

,'k--' );  

mean = plot(xs, mu, 'b' );  

testpoints = plot( X, y, 'r+' ); hold off; 

legend( [ var, mean, testpoints] , '95% Confidence interval', 'Predicted 

mean', 'Test points' ); 

txt = sprintf( 'GP regression using %s', covFunc ); 

title( txt ); 

end 

  

%% Plot Posterior 

function plotPost( posterior, mu, variance, X, xs, y ) 
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subplot( 2,2,4 ); hold on; 

plot( xs, posterior ); 

var = plot( xs, mu+2*sqrt(variance), 'k--' ); plot( xs, mu-2*sqrt(variance) 

,'k--' );  

testpoints = plot( X, y, 'r+' ); hold off; 

legend( [ var, testpoints ] , '95% Confidence interval', 'Test points' ); 

txt = sprintf( 'Samples from inference' ); 

title( txt ); 

end 

  

%% Covariance function 

function res = kernel( covariance_function, X, Y, hyp ) 

    % CONVERT TO X: D x N, Y: d x M 

    x = X'; 

    y = Y'; 

    [D, N] = size(x); 

    [d, M] = size(y); 

     

    % PREALLOC 

    res = zeros( N, M ); 

     

    switch covariance_function 

        case 'SE-ARD' 

            prodl = prod( hyp.M )^2; 

            for row=1:N 

                    for col=1:M 

                        res( row,col ) = hyp.sf^2*exp( -0.5*sum((x(:,row)-

y(:,col)).^2/prodl) ); 

                    end 

            end 

    end         

end 

%% Prior 

function prior = getFPrior( covFunc, hyp, X_star, n ) 

    % Generate n samples from the prior distribution.  

    % x ~ N(mu, K), where mu is the mean and K is the 

    % covariance matrix 

  

     

    Ns = length( X_star ); 

    KXX = kernel( covFunc, X_star, X_star, hyp ); 

    L = chol( KXX + 1e-6*eye(Ns), 'lower' ); 

    u = randn( Ns , n );                  % n random Gaussian distributions 

    samples = L * u;                                             % + 0 mean 

    variance = diag( KXX ); 

     

    prior = struct( 'mu', zeros(Ns,1), 'sigma', variance, ... 

        'samples', samples, 'random_functions', u ); 

end 

  

%% GP regression 

function [ mean, var, cov ] = getGP( X, X_star, y, covFunc, hyp )    

    % This function uses algorithm 2.1 from Rasmussen&Williams, 2006 

     

    n = length( X ); 

    KXX = kernel( covFunc, X,X, hyp ) + hyp.sn^2*eye(n) ; 

    K_star = kernel( covFunc, X_star, X, hyp ); 

    K_star_star = kernel( covFunc, X_star, X_star, hyp ); 
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    L = chol( KXX , 'lower' ); 

    Lk = L\K_star'; 

    invKy = L'\(L\y);   

    

    mean = K_star * invKy; 

    cov = K_star_star - Lk' * Lk; 

    var = diag( cov ) + hyp.sn^2 * ones( length( cov ), 1 );   % noisy data 

end 

  

%% Posterior 

function posterior = getFPost( mu, K, n ) 

    % Generate n samples from the posterior distribution.  

    % x ~ N(mu, K), where mu is the mean and K is the 

    % covariance matrix, ref p. 201 R&W 

    L = chol( K + 10e-6*eye( length(mu) ), 'lower' ); 

    posterior = mu + L * randn( length(mu), n ); 

end 

  

%% Squared Exponential covariance function (2.20) R&W 2006 

function res = SE(arg1, arg2, hyp) 

    res = hyp.sf^2*exp(-0.5*(hyp.l)\(sum((arg1-arg2).^2))) + ... 

        hyp.sn^2*eq(arg1, arg2); 

end 

  

%% MacKay covariance function, (4.31) R&W 2006 

function res = MacKay(arg1, arg2, hyp) 

    r = arg1-arg2; 

    res = exp(-2*inv(hyp.l^2)*sin(r/2).^2); 

end 

  

%% Matérn v=3/2 covariance function, (4.17) R&W 2006 

function res = Matern32(arg1, arg2) 

    hyp = getHyp; 

    r = arg1-arg2; 

    res = (1+sqrt(3)*r*inv(hyp.l))*exp(-sqrt(3)*r*inv(hyp.l)); 

end 

  

%% Matérn v=5/2 covariance function, (4.17) R&W 2006 

function res = Matern52(arg1, arg2) 

    hyp = getHyp; 

    r = arg1-arg2; 

    res = (1+sqrt(5)*r*inv(hyp.l)+5*r^2*inv(3*hyp.l^2))*exp(-

sqrt(5)*r*inv(hyp.l)); 

end 

  

%% Gamma-exponential covariance function, (4.18) R&W 2006 

function res = gammaExp(arg1, arg2) 

    hyp = getHyp; 

    r = arg1-arg2; 

    res = exp(-(r/hyp.l)^hyp.gamma);  

end 

  

%% Exponential covariance function 

function res = Exp(arg1, arg2) 

    hyp = getHyp; 

    r = arg1-arg2; 

    res = exp(-r*inv(hyp.l)); 

end 
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%% Input fetcher 

function [ X, xs, Y, y ] = getInput(dataset) 

    switch dataset 

        case '1' 

            %     from http://www.gaussianprocess.org/gpml/code/matlab/doc/ 

            n = 20; 

            X = gpml_randn(0.8, n, 1);                 % 20 training inputs 

            xs = linspace(-3, 3, 61)';                     % 20 test inputs  

            Y = sin(3*X); 

%             Z = sin(3*xs);                   

            y =  Y + 0.1*gpml_randn(0.9, n, 1); % 20 noisy training targets 

             

        case '2' 

            s = 1;      % starting index 

            e = 200;    % ending index 

            sp = 2;    % spacing index 

            output = evalin('base', 'input'); 

            X = [output.q_1(s:sp:e)', ...                   % Training data 

                output.q_2(s:sp:e)', ... 

                output.q_1_dot(s:sp:e)', ... 

                output.q_2_dot(s:sp:e)']; 

            Y = output.u_1(s:sp:e)';                        % True function 

            y = Y + 0.05*gpml_randn(0.05, length(Y), 1);      % Target data 

            xs = linspace(1, length(y), length(y))';          % test inputs  

        case '3'    

            % Values from the uniform distribution on the interval (a, b) 

            X1 = 100.*rand(100,1); 

            X2 = 100.*rand(100,1); 

            X = [X1 X2]; 

            Y = sin(pi*X1)+cos(2*pi*X2); 

            y =  Y + 0.1*gpml_randn(0.9, 100, 1); 

            xs = linspace(-20, 120, 200); 

    end 

end 

  

%% Input plotter 

function plotInput(val) 

    if val 

        y = evalin('base', 'y'); 

        X = evalin('base', 'X'); 

        figure(); 

        plot(X, y, '+'); hold on; 

        plot(linspace(-2,2,100), sin(3*linspace(-2,2,100))); 

        legend('Training points', 'True function'); 

        xlabel('input, index'); ylabel('output, y'); 

    end 

end 

  

%% Standardize 

function varargout = standardize(varargin) 

    %%%                                         x - mean(x) 

    % Standard score using formula:     x_new = -----------               

    %                                             std(x)                          

    %%% 

     

    % PREALLOC 

    varargout = cell(size(varargin)); 

     

    for i=1:nargin 
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        [D, N] = size(varargin{i}); 

        for j=1:D 

            varargout{i}(j, :) = ... 

                (varargin{i}(j, :) - mean(varargin{i}(j, 

:)))/std(varargin{i}(j, :)); 

        end 

    end 

end 

 

Optimization algorithm 

function res = optimize(covFunc, inputX, inputY, inputTheta, params) 

%%% 

% Hyperparameter optimization using the negative marginal likelihood method 

% Input:     

%   inputX - (D x N) training input vector 

%   inputY - (d x N) training target vector   

%   theta = struct('l', theta(1:end-2), 'sf', theta(end-1), 'sn', 

theta(end)); 

%%% 

  

    % INITIALIZE 

    X = inputX; 

    Y = inputY; 

    theta = inputTheta(1:end-1)'; 

    sn = inputTheta(end); 

    [D, N] = size(X); 

    [d, M] = size(Y); 

    if(N~=M) error('Check the length of the training vectors X and Y'); end 

    verboseON = params.verbose; 

     

    % -------------PLOTTING AREA--------------     

    if verboseON 

        L1 = linspace(0.1, 10, 100); 

        L2 = linspace(0.1, 10, 100); 

  

        len = length(L1); 

        MLgrid = zeros(len); 

        for i=1:len 

            for j=1:len 

                MLgrid(i, j ) = NLML([L1(i), L2(j)]); 

            end 

        end 

        fig5 = figure(5); 

        ax5 = axes('Parent', fig5); 

        contour(ax5, L1, L2, MLgrid', 500); 

        hold on; 

%     figure; imshow(mat2gray(MLgrid)); 

    %---------------------------------------- 

     

        outputNames = ... 

            '| ITER |    FUN VAL    |                         X VAL                         

|  DATA FIT  | CMPX PEN | NORM CNST |\n'; 

        outputLine = ... 

            

'|=========================================================================

=========================================|\n'; 

        outputHeader = strcat('\n\n\n',outputLine,outputNames,outputLine); 

    end 
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    if strcmp(covFunc, 'SE-ARD') 

        if verboseON 

            fprintf('--> Hyperparameter optimization: optimizer = NCG, 

kernel = %s \n', covFunc); 

        end 

        %--------------------------NCG START------------------------------% 

         

        % DEFINE 

        getF = @(x) NLML(x); 

        getDf = @(x) dNLML(x); 

        itermax = params.itermax; 

         

        % PREALLOC 

        x = zeros(D+1, itermax+1); 

        df = zeros(D+1, itermax+1); 

        alpha = zeros(1, itermax+1); 

        p = zeros(D+1, itermax+1); 

        beta = zeros(1, itermax+1); 

  

        % INITIALIZE 

        abort_counter = 0; 

        abort_flag = 0; 

        success_flag = 0; 

        x(:, 1) = theta;                                         % Given x0 

        df(:, 1) = getDf(x(:, 1));                  % Evaluate df0 = df(x0) 

        p(:, 1) = -df(:, 1);                                % Set p0 = -df0  

        k = 1;                                                      % k = 0 

        old_fk = getF(x(:, k)); 

         

        % MAIN NCG LOOP 

        while 1 

            if verboseON 

                plot(ax5, x(1, k), x(2, k), 'k+'); 

  

                % Print to command view 

                if mod(k-1, 20)==0 fprintf(outputHeader); end 

                [funval, datafit, cmpxpen, normcnst] = NLML(x(:, k)); 

                outputData = ... 

                    getOutputData(k,funval,x(:,k), datafit, cmpxpen, 

normcnst); 

                fprintf(outputData); 

            end 

             

            % Line search 

            if ( k>1) 

                old_fk = getF(x(:, k-1)); 

            end 

            alpha(:, k) = ...                                  % Compute ak 

                wolfe(getF, getDf, p(:,k), x(:, k), params.wolfe);  

             

            % Update hyperparameters 

            x(:,k+1)= x(:,k) + alpha(:,k)*p(:,k);  % set xk+1 = xk + ak*pk; 

             

            % Update gradients 

            df(:, k+1) = getDf(x(:, k+1));                % Evaluate dfk+1; 

             

            % Update search direction 

            beta(:, k+1) = ...  % betaFRk+1 = df'k+1*dfk+1/df'k*dfk (5.41a) 
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                getBeta(df(:, k+1), df(:, k), p(:, k), params.beta); 

            p(:, k+1) = ...          % pk+1 = -dfk+1 + betaFRk+1*pk (5.41b) 

                -df(:, k+1)+ beta(:, k+1)*p(:, k);                  

            k = k + 1;                                  % k = k + 1 (5.41c) 

             

            % Check conjugacy 

            gradients_not_conjugate = (p(:, k+1)'*p(:, k)) <= 0; 

            if gradients_not_conjugate 

                p(:, k+1) = -df(:, k+1); 

            end 

             

            % ABORT CONDITIONS 

            if (k >= itermax)  

                break;  

            end 

            if (alpha(:, k-1) < sqrt(eps)) 

                abort_counter = abort_counter + 1; 

            else 

                abort_counter = 0; 

            end 

            if abort_counter >= 5 

                abort_flag = 1; 

                break; 

            end 

            success_flag = 1; 

        end                                                   % end (while) 

        %---------------------------NCG END-------------------------------% 

    end 

     

    if verboseON  

        plot(ax5, x(1, k), x(2, k), 'r+');  

     

        if abort_flag 

            fprintf('\t\t Aborted due to lack of progress\n'); 

        elseif success_flag 

            fprintf('\t\t Terminated successfully\n'); 

        end 

    end 

     

    % Truncate the vectors 

    x = x( :, 1:k ); 

    df = df( :, 1:k ); 

    alpha = alpha( 1:k );  

    p = p( :, 1:k );  

    beta = beta( 1:k ); 

     

    res = struct('hyp' , [x(:, k); sn], 'NLML', NLML(x(:, k))); 

% -------------------------- HELPER FUNCTIONS ----------------------------% 

    function beta = getBeta(r_new, r_old, pk, type) 

        if (strcmp(params.beta, 'SD'))    % check for steepest descent 

            beta = 0; 

            return; 

        end 

        switch type 

            case 'FR' 

                beta = (r_new'*r_new)/(r_old'*r_old); 

            case 'PR' 

                beta = r_new'*(r_new-r_old)/(r_old'*r_old); 

            case 'PR+' 
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                beta = max(r_new'*(r_new-r_old)/(r_old'*r_old), 0); 

            case 'FR-PR' 

                betaFR = (r_new'*r_new)/(r_old'*r_old); 

                betaPR = r_new'*(r_new-r_old)/(r_old'*r_old); 

                if (betaPR < -betaFR) 

                    beta = -betaFR; 

                elseif (abs(betaPR)<=betaFR) 

                    beta = betaPR; 

                elseif betaPR > betaFR 

                    beta = betaFR; 

                end 

            case 'HS' 

                beta = r_new'*(r_new-r_old)/(r_new-r_old)'*pk; 

            otherwise 

                warning('No step search method selected. Beware!'); 

        end 

    end 

  

    function res = dNLML(x) 

        %%% 

        % Partial derivatives of the Negative Log Marginal Likelihood with 

        % respect to all hyperparameters, ref eq. (5.9) R&W 2006 

        % x     - (1 x D+1) hyperparameter list 

        % type  - 'analytical' (default), 'approximation' 

        %%% 

             

        % PREALLOC 

        res = zeros(size(x)); 

        thetak = x; 

        l = x(1:end-1); 

        sf = x(end); 

  

        switch params.gradientType 

            case 'anal' 

                Ky = kernel(thetak, X, X)+sn^2*eye(N);                 % Ky 

                L = chol(Ky, 'lower'); 

                invKy = L'\(L\Y');                                 % Ky^-1y  

                val = (invKy*invKy'-inv(L*L'));         % alpha*alpha'-K^-1  

  

                % COMPUTE   d(ML)/d(l) and d(ML)/d(sf) 

                for dim=1:length(l) 

                    dKydl = ( ((X(dim, :)-X(dim,:)').^2 )/l(dim)^3).* Ky; 

                    res(dim) = -0.5*trace(val*dKydl); 

                end 

                dKydsf = ( 2/sf ) * Ky; 

                res(end) = -0.5*trace(val*dKydsf);  

                 

            case 'approx'    

                delta = sqrt(eps); 

                for dim=1:length(l)      % forward finite difference 

                    theta_delta = thetak; 

                    theta_delta(dim) = l(dim)+delta; 

                    res(dim) = (NLML(theta_delta)-NLML(thetak))/delta; 

                end 

                theta_delta = thetak; 

                theta_delta(end) = thetak(end)+delta; 

                res(end) = (NLML(theta_delta)-NLML(thetak))/delta; 

        end 

    end 
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    % Squared Exponential Automatic Relevance Determination (ARD) kernel 

    function res = kernel(hyp, X, Y) 

        %%% Checked and optimized 

        % hyp - 1 x D+1 vector consisting of 

        %               1 x D characteristic length scales l, and 

        %               1 x 1 noise-free signal standard deviation -sigma_n 

        % X -   D x N training data 

        % Y -   D x N training data 

        %%% 

        lProduct = prod(hyp(1:end-1)); 

        sf2 = hyp(end)^2; 

        exp_arg = zeros(length(X)); 

        for dim=1:size(X,1) 

            exp_arg = exp_arg + (X(dim, :) - Y(dim,:)').^2; 

        end 

        res = sf2*exp( -0.5*exp_arg/lProduct^2 );         

  

    end 

  

    function [res, data_fit, compl_pen, norm_const] = NLML(theta) 

        %%% 

        % Negative Log Marginal Likelihood 

        %   1                1             1 

        %   -*y'*(Ky^-1)*y + -*log(|Ky|) + -*log(2pi) 

        %   2                2             2 

        %%% 

         

        y = Y'; 

        Ky = kernel(theta, X, X)+sn^2*eye(N); 

        try  

            L = chol(Ky, 'lower'); 

        catch ME 

            switch ME.identifier 

                case 'MATLAB:posdef' 

                    error('Ky not positive definite. Check your theta'); 

            end 

        end 

        invKy = L'\(L\y); 

        data_fit = 0.5*y'*invKy; 

        % Complexity penalty is the same as 1/2*log(det(Ky)). This 

        % implementation is 3-4 times faster 

        compl_pen = sum(log(diag(L))); 

        norm_const = 0.5*N*log(2*pi); 

        res = data_fit+compl_pen+norm_const; 

    end 

     

    function res = getOutputData(iter, funval, xval, datafit, cmpxpen, 

normcnst) 

         

        % ITER 

        xval = xval'; 

        val1 = num2str(iter,4); 

        for it = 1:(5-(length(val1))) 

            val1 = [val1 ' ']; 

        end 

        val1 = ['| ' val1 '|']; 

         

        % FUN VAL 



 Vilius Ciuzelis  

NONLINEAR OPTIMIZATION FOR HYPERPARAMETER COMPUTATION IN 

GAUSSIAN PROCESSES MACHINE LEARNING 

 

Appendix B - 64 - Wolfe 

conditions 

algorithm   

        val2 = num2str(funval,6); 

        for it = 1:(13-(length(val2))) 

            val2 = [val2 ' ']; 

        end 

        val2 = [' ' val2 ' |']; 

         

        % X VAL 

        val3 = num2str(xval,3); 

        while contains(val3, '  ') 

            val3 = strrep(val3, '  ', ' '); 

        end 

        for it = 1:(53-(length(val3))) 

            val3 = [val3 ' ']; 

        end 

        val3 = [' ' val3 ' |']; 

         

        % DATA FIT 

        val4 = num2str(datafit,3); 

        for it = 1:(10-(length(val4))) 

            val4 = [val4 ' ']; 

        end 

        val4 = [' ' val4 ' |']; 

         

        % CMPX PEN 

        val5 = num2str(cmpxpen,3); 

        for it = 1:(8-(length(val5))) 

            val5 = [val5 ' ']; 

        end 

        val5 = [' ' val5 ' |']; 

         

        % NORM CNST 

        val6 = num2str(normcnst,3); 

        for it = 1:(9-(length(val6))) 

            val6 = [val6 ' ']; 

        end 

        val6 = [' ' val6 ' |']; 

         

        res = strcat(val1, val2, val3, val4, val5, val6, '\n'); 

    end 

end 

 

Wolfe conditions algorithm 

function res = wolfe(f, df, pk, xk, params) 

%%%  

% Wolfe line search algorithm, ref. p. 60 Nocedal 2006  

% Search for alpha - D x 1 

% given:    xk, ak, pk, f, df 

%%% 

  

% DEFINE 

phi = @(a) f( xk + a*pk ); 

dphi = @(a) ( phi(a+sqrt(eps))-phi(a) )/ ( sqrt(eps) ); 

dphi2 = @(a) df( xk + a*pk )'*pk; 

verbose = params.verbose; 

  

% INITIALIZE 

phi_0 = phi(0); 
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dphi_0 = dphi(0); 

alpha_max = 1; 

% (3.60) NOCEDAL 

% alphas = [ min(1, 0.01*( 2*(f(xk)-fk_minus1)/dphi_0 )); alpha_max ]; 

  

alphas = [ 0; alpha_max ];              % [ previous step, current step ] 

i = 2; 

function_value_increase = 0; 

% ------------------------------------------------------------DRAWING BOARD 

if verbose 

    L1 = linspace(0.0001, alpha_max, 1000); 

  

    len = length(L1); 

    l = zeros(len,1); 

    for k=1:len 

        l(k) = phi(L1(k)); 

    end 

    fig = figure(); 

    ax = axes('Parent', fig); 

    plot(ax, L1, l); 

    hold on; 

end 

%-------------------------------------------------------------------------- 

  

% MAIN LOOP 

while 1   

    try  

        if verbose 

            plot(ax, alphas(2), phi(alphas(2)), 'ok'); 

        end 

         

        val = phi(alphas(2));                       % evaluate phi(alpha_i) 

     

        % Sufficient decrease condition 

        not_sufficient_decrease = val > (phi_0 + 

params.c_1*alphas(2)*dphi_0); 

        if i > 2 

            function_value_increase = (val >= phi(alphas(1))); 

        end 

        if not_sufficient_decrease || ( function_value_increase ) 

            % alpha chosen is too big. Find smaller alpha! 

            res = zoom(alphas(1), alphas(2)); 

            if verbose 

                plot(ax, res, phi(res), 'r+'); 

            end 

            break; 

        end 

        % Sufficient decrease condition passed. Let's take a look at the 

        % curvature condition next! 

        val = dphi(alphas(2));                     % evaluate phi'(alpha_i) 

  

        % Curvature condition 

        sufficient_curvature = abs(val)<= -params.c_2*dphi_0; 

        if sufficient_curvature 

           % All conditions met. Keep alpha_i! 

            res = alphas(2); 

            if verbose 

                plot(ax, res, phi(res), 'r+'); 

            end 
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            break; 

        end 

  

        % Curvature condition violated!  

        if val >= 0 

            % Alpha too big! Find smaller alpha! 

            res = zoom(alphas(2), alphas(1)); 

            if verbose 

                plot(ax, res, phi(res), 'r+'); 

            end 

            break; 

        end 

        alphas(1) = alphas(2); 

        alphas(2) = interpolate(alphas(2), alpha_max); 

  

        i = i+1; 

  

        % EXIT CONDITION 

        if (i > params.itermax) 

            if verbose 

                warning('Reached max iterations'); 

            end 

            break; 

        end 

    catch ME 

        error('Line search has encountered an error and needs to close'); 

    end   

end 

  

% -----------------------   HELPER FUNCTIONS   ---------------------------- 

    function res = zoom(a, b) 

        %%%  

        % Zoom algorithm, ref. p. 61 Nocedal 2006 

        %%% 

         

        % INITIALIZE 

        if a >= b 

            alpha_high = a; 

            alpha_low = b; 

        else 

            alpha_low = a; 

            alpha_high = b; 

        end 

        j = 1; 

        jmax = params.jmax;    

        try 

            while j < jmax 

                % Interpolate from alpha_low to alpha_high 

                alpha_j = interpolate(alpha_low, alpha_high); 

  

                FUNC_VAL_BIG_STEP = phi(alpha_j); 

                FUNC_VAL_SMALL_STEP = phi(alpha_low); 

                FUNC_VAL_TINY_STEP = (phi_0+params.c_1*alpha_j*dphi_0); 

                % IF FUN VAL increases with BIG step OR the TINY step 

                if (FUNC_VAL_BIG_STEP > FUNC_VAL_TINY_STEP) ||... 

                        (FUNC_VAL_BIG_STEP >= FUNC_VAL_SMALL_STEP) 

                    % THEN update the highest allowable step size 

                    alpha_high = alpha_j; 

                else 
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                    % Sufficient decrease achieved! 

                    val = dphi(alpha_j); 

                    if abs(val) <= -params.c_2*dphi_0 

                        % Curvature condition is also OK! BREAK!  

                        res = alpha_j; 

                        break; 

                    end 

                    if (val*(alpha_high-alpha_low)) >= 0 

                        alpha_high = alpha_low; 

                    end 

                    alpha_low = alpha_j; 

                end 

                j = j+1; 

            end 

        catch 

            error('zoom(a, b) has encountered an error and needs to 

close'); 

        end 

%         if (phi(alpha_j) > phi_0)   % if no improvement was made, DONT 

MOVE 

%             res = 0; 

%         else 

%             res = alpha_j; 

%         end 

        res = alpha_j; 

    end % zoom 

  

    function res = interpolate(x1, x2) 

        %%%  

        % Interpolation algorithm, ref. p. 57-59 Nocedal 2006 

        % Arguments:  

        %   type 

        %   interval to interpolate [a, b] 

        %%% 

         

        % INITIALIZE 

        error_flag = 0; 

        f_x1 = phi(x1); 

        f_x2 = phi(x2); 

        g_x1 = dphi(x1); 

        g_x2 = dphi(x2); 

         

        if x1==x2                                  % No need to interpolate  

            res = x1; 

            return; 

        end 

         

        if      g_x1 == 0 

            res = x1; 

            return; 

        elseif  g_x2 == 0 

            res = x2; 

            return; 

        end 

             

        % MAIN 

        try 

            d1 = g_x1 + g_x2 - 3*(f_x1-f_x2)/(x1-x2); 

            d2 = sign( x2-x1 )*sqrt( d1^2-g_x1*g_x2 ); 
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            res = x2 - (x2-x1)*( (g_x2+d2-d1)/(g_x2-g_x1+2*d2) ); 

        catch 

            error_flag = 1; 

        end 

         

        if ~isreal(res) 

            if verbose 

                warning('Interpolation yields imaginary results'); 

            end 

            res = x1; 

        end 

  

        if error_flag  

            error('interpolate(x1, x2) encountered an error and needs to 

close');  

        end 

    end 

end % wolfe 
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