
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lt

y
of

 In
fo

rm
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ri
ca

l
En

gi
ne

er
in

g
D

ep
ar

tm
en

t o
f E

ng
in

ee
ri

ng
 C

yb
er

ne
tic

s

M
as

te
r’

s
th

es
is

Vilius Ciuzelis

Nonlinear optimization for
Hyperparameter computation in
Gaussian Processes machine learning

Master’s thesis in Engineering Cybernetics
Supervisor: Lars Imsland

June 2019

Vilius Ciuzelis

Nonlinear optimization for
Hyperparameter computation in
Gaussian Processes machine learning

Master’s thesis in Engineering Cybernetics
Supervisor: Lars Imsland
June 2019

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Engineering Cybernetics

 Vilius Ciuzelis

NONLINEAR OPTIMIZATION FOR HYPERPARAMETER COMPUTATION IN

GAUSSIAN PROCESSES MACHINE LEARNING

i

Summary

The goals of this thesis are:

1. Literature study on Gaussian Processes (GP), Optimization theory, and Nonlinear

Conjugate Gradient (NCG) method.

2. Novel implementation of a GP algorithm in computer software.

3. Analysis of hyperparameter optimization using the NCG methods.

4. Case examples of the GP implementation and performance comparison to existing

software.

Gaussian Process has showed great potential in ability to interpret highly non-linear

models extremely well with minimal tuning. Two test cases have been designed to test the

functionality of the GP implementation. The first one is a 1-dimensional sinusoidal wave

regression with some noise. The second example is a 4-dimensional 2-link planar robot

manipulator arm model with friction in the joints.

The results of first test case showed great potential and were comparable to the

performance of the existing software. The runtime of the implementation was low and well

scalable (26 seconds for 1000 runs of the optimization algorithm). The results of the second

test case produced faulty results and point to problems in the implementation. Regardless of

the final results, this thesis shows that Gaussian Processes is a great tool to have in the machine

learning toolbox.

 Vilius Ciuzelis

NONLINEAR OPTIMIZATION FOR HYPERPARAMETER COMPUTATION IN

GAUSSIAN PROCESSES MACHINE LEARNING

ii

THIS PAGE LEFT INTENTIONALLY BLANK

 Vilius Ciuzelis

NONLINEAR OPTIMIZATION FOR HYPERPARAMETER COMPUTATION IN

GAUSSIAN PROCESSES MACHINE LEARNING

iii

Sammendrag

Målene til denne masteroppgaven er:

1. Litteraturstudie på Gaussiske Prosesser (GP), Optimeringsteori og metoden av

ulineære konjugerte gradienter (NCG).

2. Ny implementasjon av en GP-algoritme i programvare.

3. Analyse av optimering av hyperparameter ved bruk av en NCG metode.

4. Testcaser av GP implementasjonen og sammenligne ytelse med eksisterende

dataprogramvare.

Gaussiske Prosesser har vist stor potensiale i å kunne tolke høyst ulineære modeller med

ekstrem presisjon med lite tuning. To testcaser har blitt designet for å teste funksjonalitet i GP

implementasjonen. Den første er regresjon av en 1-dimensjonal sinus kurve med støy. Den

andre er en 4-dimensjonal-robot manipulator modell med friksjon i leddene.

Resultatene til første case har vist stor potensiale og er sammenlignbare med ytelse til

andre eksisterende implementasjoner. Kjøretiden var lav og skalerbar (26 sekunder for 1000

kjøringer av optimaliseringsalgoritmen). Resultatene til den andre cases har gitt defekte

resultater og viser at implementasjonen ikke er feilfri. Uansett sluttresultatet, så viser dette

arbeidet at GP er et fantastisk verktøy i maskinlæringskassen.

 Vilius Ciuzelis

NONLINEAR OPTIMIZATION FOR HYPERPARAMETER COMPUTATION IN

GAUSSIAN PROCESSES MACHINE LEARNING

iv

THIS PAGE LEFT INTENTIONALLY BLANK

 Vilius Ciuzelis

NONLINEAR OPTIMIZATION FOR HYPERPARAMETER COMPUTATION IN

GAUSSIAN PROCESSES MACHINE LEARNING

v

Preface

This thesis is the finishing work that concludes my Master of Science degree in

engineering cybernetics studies at Norwegian University of Science and Technology. Research

performed here builds on a previous research on Gaussian Processes by me. It was my project

thesis from January 2019 and is called “Gaussian Processes in non-linear regression”. It was

also supervised by Lars Imsland at the department of Engineering Cybernetics at NTNU.

The basis for this thesis is heavily based on the book on Gaussian Processes by Rasmussen

and Williams – “Gaussian Processes in Machine Learning” from 2006. The second edition of

“Numerical Optimization” from 2006 by Jorge Nocedal and Stephen J. Wright was basis for

the optimization theory and algorithms. The rest of the research literature can be found in

bibliography in the end of the document.

I have received external help and guidance provided by Lars Imsland in the form of

meetings throughout the research period (January 18th to June 13th). I want to thank him for

patience and advice, and thank my family and my girlfriend for the support.

 Vilius Ciuzelis

NONLINEAR OPTIMIZATION FOR HYPERPARAMETER COMPUTATION IN

GAUSSIAN PROCESSES MACHINE LEARNING

vi

Contents

Summary... i

Sammendrag .. iii

Preface ... v

List of Tables ... viii

List of Figures.. viii

List of Algorithms .. ix

Nomenclature ... ix

1. Introduction ... 1

2. Background theory .. 3

2.1. Robot model .. 3

2.1.1. Equations of Motion .. 4

2.1.2. Kinematics ... 5

2.1.3. Identification trajectory ... 6

2.2. Gaussian Processes ... 8

2.2.1. Multivariate normal distribution .. 8

2.2.2. Mean .. 9

2.2.3. Covariance ... 9

2.2.4. Prior ... 11

2.2.5. Inference .. 12

2.2.6. Posterior ... 13

2.2.7. Model validation .. 13

2.2.8. Hyperparameters .. 14

2.3. Optimization theory .. 17

2.3.1. Interpolation ... 17

Wolfe conditions ... 19

 Vilius Ciuzelis

NONLINEAR OPTIMIZATION FOR HYPERPARAMETER COMPUTATION IN

GAUSSIAN PROCESSES MACHINE LEARNING

vii

2.3.2. Nonlinear Conjugate Gradients ... 20

2.3.3. Preconditioning .. 22

3. Simulation ... 24

3.1. General .. 24

3.2. Example test case .. 26

3.3. Robot model test case ... 28

4. Results... 30

4.1. Example test case .. 30

4.2. Robot model test case ... 32

5. Discussion ... 34

6. Future Work .. 35

8. Appendix A ... 39

8.1. Derivation of the EOM for 2-link planar manipulator 39

8.2. Inverse kinematics for 2-link planar manipulator ... 41

8.3. Finite difference .. 43

8.4. Partial kernel derivatives... 44

Squared Exponential ... 44

Squared Exponential with ARD .. 45

Matérn 3/2 ... 45

Matern 5/2 ... 47

Periodic ... 47

9. Appendix B ... 49

Robot manipulator code ... 49

Gaussian Processes inference code .. 54

Optimization algorithm .. 59

Wolfe conditions algorithm ... 64

 Vilius Ciuzelis

NONLINEAR OPTIMIZATION FOR HYPERPARAMETER COMPUTATION IN

GAUSSIAN PROCESSES MACHINE LEARNING

viii

List of Tables

Table 1. Example of kernel functions with the ARD property .. 11

Table 2. PD controller gains .. 29

List of Figures

Figure 1. 2-link planar robot manipulator arm model. Illustration borrowed from [42]. 3

Figure 2. Possible end-effector path for parameter identification. Illustration borrowed from

[41] ... 6

Figure 3. End effector trajectory for parameter identification used in the simulations. 7

Figure 4. Example of multiple sample functions from the prior distribution. 12

Figure 5. Posterior distribution. ... 13

Figure 6. Examples of underfitting and overfitting. .. 15

Figure 7. Self-regulating nature of the marginal likelihood. Illustration borrowed from [3]. . 15

Figure 8. By interpolating the given value pairs, it is possible to approximate the interior point

of the function. ... 18

Figure 9. Illustration of the Wolfe conditions. Upper left: the sufficient decrease condition,

upper right: the curvature condition, lower: the steps satisfying the Wolfe conditions. The

illustration is from [3] .. 20

Figure 10. Example case input data. .. 26

Figure 11. The contours of the NLML distribution for the test case: left – FR-PR NCG, right:

Steepest Descent. The red cross is the found minimum, black crosses are intermediate steps.

.. 27

Figure 12. Runtime test on the simple example case. .. 27

Figure 13. KUKA intelligent industrial work assistant 14 R280, illustrations from [25] 28

Figure 14. Error dynamics for the robot model test case. .. 29

Figure 15. Example test case MATLAB command window output. Upper: FR-PR NCG

algorithm. Lower: Steepest descent ... 30

Figure 16. The resulting prediction from the GP inference on the example test case. Left –

Novel implementation, right – fitrgp result. .. 31

Figure 17. Example test case results. Top left – functions used in the predictions. Top right –

 Vilius Ciuzelis

NONLINEAR OPTIMIZATION FOR HYPERPARAMETER COMPUTATION IN

GAUSSIAN PROCESSES MACHINE LEARNING

ix

the prior prediction. Lower left – the distribution of the functions used in the predictions. Lower

right – the posterior prediction. .. 31

Figure 18. MATLAB command window ouput for the robot model test case. 32

Figure 19. The NLML for the robot model test case, where left - GP using the FR-PR algorithm,

right - GP using steepest descent ... 33

Figure 20. Graphical examples of step search iterations. Black circles meaning the starting

points, and the red cross being the found minima. Notice the failure to find the extremum on

graph on the lower right. .. 33

List of Algorithms

Algorithm 1. A general NCG algorithm. ... 21

Algorithm 2. Line search algorithm. .. 24
Algorithm 3. Part 2 of line search algorithm. .. 25

Nomenclature

cholesky(𝐴) - cholesky decomposition. Returns 𝐿 where 𝐿𝐿⊤ = 𝐴

𝐷 - number of dimensions in training data

𝛿𝑝𝑞 - Kronecker delta function which equals to 1 iff 𝑝 = 𝑞 and 0

otherwise

𝐟∗ or f∗ - Gaussian process posterior prediction

𝐟∗̅ or f∗̅ - Gaussian process predictive mean

𝑔 - gravitational constant ≈ 9.81 𝑚/𝑠2

𝒢𝒫 - Gaussian process with a mean and a covariance function

𝐼 - moment of inertia

𝜇 - mean value

𝑴 - matrix of characteristic length-scales

𝑚𝑖 - mass of link 𝑖

𝒩(𝜇, 𝜎2) - Normal (or Gaussian) distribution

𝑛 - number of training inputs

𝑛∗ - number of test inputs

𝑘(𝐱, 𝐱′) - kernel (or similarity) function evaluated at 𝐱 and 𝐱′

file:///C:/Users/ivili/OneDrive%20-%20NTNU/Prosjektoppgave/Masteroppgave_23_april%20(Repaired).docx%23_Toc11259695
file:///C:/Users/ivili/OneDrive%20-%20NTNU/Prosjektoppgave/Masteroppgave_23_april%20(Repaired).docx%23_Toc11259696
file:///C:/Users/ivili/OneDrive%20-%20NTNU/Prosjektoppgave/Masteroppgave_23_april%20(Repaired).docx%23_Toc11259697

 Vilius Ciuzelis

NONLINEAR OPTIMIZATION FOR HYPERPARAMETER COMPUTATION IN

GAUSSIAN PROCESSES MACHINE LEARNING

x

𝐾(𝑋, 𝑋) - 𝑛 × 𝑛 covariance matrix

ℒ - Lagrangian

𝑙 - characteristic length-scale parameter

𝑚(𝐱) - mean function

𝜎𝑓
2 - variance of the noise-free signal

𝜎𝑛
2 - variance of the noise

𝑞𝑖 - joint 𝑖 angle

𝑞�̇� - joint 𝑖 angular velocity

𝑞�̈� - joint 𝑖 angular acceleration

𝑇∗ - kinetic co-energy

𝜏𝑖 - torque of link 𝑖

𝜽 - hyperparameters for GP

tr(A) - trace is the sum of the elements on the main diagonal of a square

matrix. ∑ 𝑎𝑖𝑖
𝑛
𝑖=1 = 𝑎11 + 𝑎22 +⋯+ 𝑎𝑛𝑛

𝑣𝑖 - velocity of link 𝑖

𝑉 - potential energy

𝑋 - a 𝐷 × 𝑛 matrix of training inputs

𝑋∗ - a 𝐷 × 𝑛∗ matrix of test inputs

𝐱i - a 𝐷 × 1 vector of training input 𝑖

𝐲 - a 1 × 𝑛 vector of training targets

 Vilius Ciuzelis

NONLINEAR OPTIMIZATION FOR HYPERPARAMETER COMPUTATION IN

GAUSSIAN PROCESSES MACHINE LEARNING

Introduction - 1 - Robot model

1. Introduction

 Gaussian Processes (GP) method is a powerful machine learning algorithm first

introduced back in 1949 by Norbert Wiener. The method has many application areas, where

regression and classification are the two most prominent ones. The main goal in a regression

problem is to find a function that fits the data at hand as accurately as possible. There is virtually

an infinite amount of functions that fit any finite set of data, so how does GP find “the solution”

in finite time? Instead of finding all the individual functions, that are an infinity of, GP works

with the probability distribution of these functions. The best guess is then the mean of this

distribution. GP also provides the confidence of the prediction at every prediction point, a

feature that can be used to design fault-tolerant and robust control models.

This thesis is intended to further develop the discussion surrounding the control theory

using the non-parametric models, especially Gaussian Processes. It is written in an easy-to-

understand language and all parts of the process are extensively discussed and described. To

the contrary of some (faulty) implementations out there, the code in the Appendix B is backed

up with concrete algorithms in the literature. It can be used as groundwork for further

development of machine learning in process control.

Chapter II starts by presenting a planar robot manipulator model and deriving the

equations of motion by using the Lagrangian method. Forward and backward kinematics are

then used to find the relationship between the joint angles and the end effector position, which

are later used in controller. Following a discussion about the model dynamics identification

challenges and the choices for a good excitation trajectory. Then, the basics of the machine

learning algorithm GP are introduced. Optimization theory, which is crucial for choice of

hyperparameters, that inherently define the GP itself, is introduced and the necessary formulas

are derived. Appendix A provides extensive explanation to the underlying mathematical

principles necessary to understanding of this chapter.

Chapter III discusses the implementation of the ideas presented in Chapter II in

computer software. MATLAB programming language has been chosen for this purpose. Code

optimization ideas are also discussed throughout the presentation of the code. Two test cases

have been made and are extensively described in the chapter. The first one is a benchmark case

made for comparison with other existing software. The chapter starts by describing the general

notion of the implementation common for both cases, before diving deeper into each case.

The results of the simulations are discussed in Chapter IV. Simulation plots and graphs

 Vilius Ciuzelis

NONLINEAR OPTIMIZATION FOR HYPERPARAMETER COMPUTATION IN

GAUSSIAN PROCESSES MACHINE LEARNING

Introduction - 2 - Robot model

are presented and evaluated. A short discussion on the validity and usefulness of the results in

the process control concludes the chapter.

Implementation improvements and critique is given in Chapter V. Following a few

words on implementation pitfalls and challenges. Chapter VI suggests ideas for further research

in the field of machine learning in control systems.

 Vilius Ciuzelis

NONLINEAR OPTIMIZATION FOR HYPERPARAMETER COMPUTATION IN

GAUSSIAN PROCESSES MACHINE LEARNING

Background theory - 3 - Robot model

2. Background theory

2.1. Robot model

This thesis focuses on the model of the 2-link planar robot manipulator arm depicted in

the Figure 1. The model is the simplified version of an industrial robot arm. The mathematical

derivations throughout this chapter is trivial to extended to any number of joints. Since the focus

of this thesis is the optimization and machine learning part, the simplified model has been

chosen to merely save time when implementing the GP framework. This model, simple as it is,

showcases the workings of GP just as well.

The robot consists of 2 links and 2 joints. The lengths of the first and the second link are

defined as 𝑙1 and 𝑙2, respectively. The base of the first link is attached to the ground forming

joint 1. The second link is attached onto the top of the first link and will therefore be called joint

2. The angle the first link forms with respect to the horizontal ground is 𝑞1, while the angle

between the first and the second link is 𝑞2. The links are formed as thin, uniform beams with

masses 𝑚1 and 𝑚2, with mass centers in the middle of the links. The inertia about the center of

mass for each link 𝑙𝑖 is then given by

𝐼𝑖,𝑐𝑒𝑛𝑡𝑒𝑟 =
𝑚𝑖𝑙𝑖

2

12

Figure 1. 2-link planar robot manipulator arm model. Illustration borrowed from

[42].

 Vilius Ciuzelis

NONLINEAR OPTIMIZATION FOR HYPERPARAMETER COMPUTATION IN

GAUSSIAN PROCESSES MACHINE LEARNING

Background theory - 4 - Robot model

The end of the second link, and therefore the robot, is known as end effector, or EE for short.

This is the part of the robot which is of most interest as it is the position and reach of the EE

that decides what the robot’s capabilities are. The most common way of controlling the EE is

by changing the joint angles that are driven by (usually) stepper motors inside the links.

Therefore, the relationship between joint torques and the model parameters will be derived next.

2.1.1. Equations of Motion

As mentioned in the last section, the equations of motion (EOM) describe the relationship

between the forces and the model motion, (kinematics). There are several well-known methods

of obtaining EOMs, some of them being the Newton-Euler method, Lagrange’s method and the

Euler-Poincaré equation. All methods produce the same equations, but some are better suited

for given applications than others. Lagrange’s method is considered less complex to derive and

very well suited for robotic manipulators. It produces simple expression for systems with a clear

set of generalized coordinates, with the joint angles being excellent candidates. Whereas the

systems described in terms or rotation matrices and angular velocities might find Newton-Euler

method a better choice. The following derivation is extensively described in Appendix A, where

the full derivation can be found in [1].

Let the total energy in the system be defined as the difference between the kinetic (co-

energy) and the potential energies:

ℒ =∑
1

2
𝑚𝑖𝑣𝑖

2

𝑖

−∑𝑚𝑖𝑔𝑙𝑖
𝑖

Equations of motion (EOM) are then found using the Lagrangian:

𝑑

𝑑𝑡
(
𝜕ℒ

𝜕�̇�𝑖
) −

𝜕ℒ

𝜕𝑞𝑖
= 𝜏𝑖

Express for 𝝉 = [𝜏1 𝜏2] to arrive at EOMs:

𝜏1 = (𝐼1 + 𝐼2 +𝑚1𝐿𝑐1
2 +𝑚2(𝐿1

2 + 𝐿𝑐2
2 + 2𝐿1𝐿𝑐2 cos 𝑞2))�̈�1

+ (𝐼2 +𝑚2𝐿𝑐2
2 +𝑚2𝐿1𝐿𝑐2 cos 𝑞2)�̈�2 −𝑚2𝐿1𝐿𝑐2 sin 𝑞2 (2�̇�1�̇�2 + �̇�2

2)

+ (𝑚1𝐿𝑐1 +𝑚2𝐿1)𝑔 cos 𝑞1 +𝑚2𝐿𝑐2𝑔 cos(𝑞1 + 𝑞2)

𝜏2 = (𝐼2 +𝑚2𝐿𝑐2
2 +𝑚2𝐿1𝐿𝑐2 cos 𝑞2)�̈�1 + (𝐼2 +𝑚2𝐿𝑐2

2)�̈�2 +𝑚2𝐿1𝐿𝑐2�̇�1
2𝑠𝑖𝑛 𝑞2

+𝑚2𝐿𝑐2𝑔 cos(𝑞1 + 𝑞2)

 Vilius Ciuzelis

NONLINEAR OPTIMIZATION FOR HYPERPARAMETER COMPUTATION IN

GAUSSIAN PROCESSES MACHINE LEARNING

Background theory - 5 - Robot model

These equations can be written in a more compact form

𝑴(𝒒)�̈� + 𝑪(𝒒, �̇�) + 𝑮(𝒒) = 𝝉

where 𝑴(𝒒) is a positive-definite mass matrix, 𝑮(𝒒) is the gradient of the gravity potential,

and 𝑪(𝒒, �̇�) is the matrix contains so-called Christoffel symbols of the first kind. Using this

compact form, the EOMs are fully ready to be implemented in computer software.

2.1.2. Kinematics

As mentioned earlier, kinematics describe the motion of the system without considering

the forces causing the motion. Forward kinematics expresses the position of the end effector

as the coordinates in the xy-plane as a function of the joint angles 𝒒 and the links 𝒍. These

formulas are trivial to derive and will not be presented here. They take the following form

(
𝑥𝑒
𝑦𝑒
) = (

𝑙1 𝑐𝑜𝑠 𝑞1 + 𝑙2 𝑐𝑜𝑠(𝑞1 + 𝑞2)

𝑙1 𝑠𝑖𝑛 𝑞1 + 𝑙2 𝑠𝑖𝑛(𝑞1 + 𝑞2)
)

This result can be used for various purposes, one of them being tracking of the end effector

measuring the joint angles.

Inverse kinematics problem is the reverse process of the forward kinematics problem,

that is: given a position of the end effector in the xy-plane, compute possible joint angles and

link geometries which correspond to that particular end effector position. Several forms of the

solution exist, each one with different characteristics when it comes to computation

complexity, orientation of the links, and avoidance of singularities. The formula below, for

instance, does not have any singularities. For complete derivation of this formula, see Appendix

A.

𝑞(𝑥𝑒 , 𝑦𝑒) =

[

atan2(𝑦𝑒 , 𝑥𝑒) ± atan 2(𝑙2 sin 𝑞2 , (𝑙1 + 𝑙2 cos 𝑞2))

atan2(±√1 − (
𝑥𝑒2+𝑦𝑒2 − 𝑙1

2 − 𝑙2
2

2𝑙1𝑙2
)
2

,
𝑥𝑒2 + 𝑦𝑒2 − 𝑙1

2 − 𝑙2
2

2𝑙1𝑙2
)

]

 Vilius Ciuzelis

NONLINEAR OPTIMIZATION FOR HYPERPARAMETER COMPUTATION IN

GAUSSIAN PROCESSES MACHINE LEARNING

Background theory - 6 - Robot model

2.1.3. Identification trajectory

Black-box model estimates use an input set to excite the model in such a way, that the

excitation is able to identify most of the underlying dynamics of the system. In the presence of

noise, such excitation trajectories play a crucial role when identifying model parameters.

Therefore, the trajectory must be chosen carefully. Sometimes, the desired excitation might be

difficult to achieve with physical systems. Even though there has been developed several

optimal excitation methodologies, no one method suits every application.

In order to discover most of the coupled and highly non-linear dynamics of robotic

manipulators, a sufficiently exciting motion trajectory is needed. One might use an intuitive

approach and try to excite the robot in every direction with various velocities and hope that

most of the dynamics will be discovered. This method would most likely yield a sub-optimal

result compared to optimal techniques, see Figure 2. There exists however a method of

maximizing the excitation motion throughout the identification motion, for instance as in [2].

Further investigations on the topic are left up to the reader.

This thesis has used simple geometry figures, such as circles, to identify the dynamics.

That is most likely a sub-optimal trajectory for this system, so it should be updated in the future

research. Figure 3 shows the chosen identification trajectory used in the simulations.

Figure 2. Possible end-effector path for parameter

identification. Illustration borrowed from [41]

 Vilius Ciuzelis

NONLINEAR OPTIMIZATION FOR HYPERPARAMETER COMPUTATION IN

GAUSSIAN PROCESSES MACHINE LEARNING

Background theory - 7 - Robot model

Figure 3. End effector trajectory for parameter identification used in the

simulations.

 Vilius Ciuzelis

NONLINEAR OPTIMIZATION FOR HYPERPARAMETER COMPUTATION IN

GAUSSIAN PROCESSES MACHINE LEARNING

Background theory - 8 - Gaussian

Processes

2.2. Gaussian Processes

 GP is used for making understandings about the relationships between the training and

target data. Said in other words, input-output relationship or the conditional distribution of the

targets, given the inputs [3]. By a more formal definition in the same book, a Gaussian Process

“is a collection of random variables, any finite number of which have a joint Gaussian

distribution”. Given a dataset of 𝐷 × 𝑛 observations, which we call 𝒟 = (𝐗, 𝐲), a GP is fully

expressed by its mean and covariance functions 𝑚(𝐱) and 𝑘(𝐱, 𝐱′). These functions are defined

as

𝑚(𝐱) = 𝔼[𝑓(𝐱)]

𝑘(𝐱, 𝐱′) = 𝔼[(𝑓(𝐱) − 𝑚(𝐱))(𝑓(𝐱′) − 𝑚(𝐱′))]

where 𝑓(𝐱) is the process. A Gaussian Process using formulas above can be denoted as

𝑓(𝐱) ~ 𝒢𝒫(𝑚(𝐱), 𝑘(𝐱, 𝐱′))

2.2.1. Multivariate normal distribution

GP building blocks are multivariate normal distributions (MVN) or simply multivariate

Gaussian distributions. It is a crucial part of the GP methodology. Given a multivariate normal

distribution of a 𝑘-dimensional vector 𝐗 = (X1, … , 𝑋𝑘)
⊤

𝐗 ~𝓝𝑘(𝝁, 𝚺)

where 𝝁 is a 𝑘-dimensional mean vector

𝝁 = E[𝐗] = [E[𝑋1], E[𝑋2], … , E[𝑋𝑘]]
⊤

and 𝚺 is a square 𝑘-dimensional covariance matrix, where each entry is

Σi,j = E[(𝑋𝑖 − 𝜇𝑖)(𝑋𝑗 − 𝜇𝑗)] = 𝐶𝑜𝑣[𝑋𝑖, 𝑋𝑗]

The most important part to take from this is the requirement of the normal distribution when

using GP. Extensive description and analysis of the multivariate normal distributions can be

found in [3].

 Vilius Ciuzelis

NONLINEAR OPTIMIZATION FOR HYPERPARAMETER COMPUTATION IN

GAUSSIAN PROCESSES MACHINE LEARNING

Background theory - 9 - Gaussian

Processes

2.2.2. Mean

Mean function is useful when the data is expected to be at a given shape. In most cases,

the mean is left 0 throughout the inference. The reason behind that is that the mean is usually

well enough explained through covariance. There have therefore not been used any mean

functions in this thesis. The mean is simply 0 for the rest of the thesis.

2.2.3. Covariance

Covariance functions, also called kernel functions or just kernels, describe the

relationship between input-output pairs. The learning part of a GP inference is finding the

“correct” properties for the covariance function. Any function that produces a positive definite

covariance matrix is, in theory, a valid covariance function. The requirement of positive-

definiteness stems from the definition of similarity between two points. Most kernels define

this similarity simply as the distance between the points. There are several techniques of

measuring this distance: Euclidean, Manhattan, Minkowski, Cosine, the squared Mahalanobis

distance, and Jaccard [4]. Other generalized measures exist but will not be explained here and

are left up to the reader himself to research. This thesis focuses on the distance measure by

using the squared Euclidean distance.

In general, squared Euclidean distance between two 𝐷 × 1 points (𝐱i, 𝐱j) is defined as:

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑆𝐸(𝐱i, 𝐱i) = ‖𝐱i − 𝐱j‖
2
= ∑(𝑥𝑖𝑚 − 𝑥𝑗𝑚)

2

𝐷

𝑚=1

To accommodate the vast range of possible nonlinear models, a number of kernel

functions have been developed. These kernels have different properties concerning effects like,

among others, stationarity, isotropy, and smoothness.

Stationarity refers to a stochastic process whose unconditional joint probability

distribution, mean, and variance do not change in time. It means that 𝐱𝐢 − 𝐱𝐣 only depends on

the values of 𝐱𝐢 and 𝐱𝒋, but not their position in time. Isotropy deals with the measurement of

distance. If a function is only dependent on values and not the measurement direction, then the

function is called isotropic. Smoothness is defined by the expected closeness (or similarity)

between input-output pairs. If the expectancy is high, the resulting function will tend to favor

a more rapidly changing model rather than a slower producing a smoother model.

The choice of the kernel function is not arbitrary. The most common and widely used

 Vilius Ciuzelis

NONLINEAR OPTIMIZATION FOR HYPERPARAMETER COMPUTATION IN

GAUSSIAN PROCESSES MACHINE LEARNING

Background theory - 10 - Gaussian

Processes

kernel function is the Squared Exponential (SE). Despite its widespread use, this kernel has

been critiqued for being “too smooth” and therefore unrealistic in most cases [3]. There is

however nothing that indicates that this kernel is not suitable for the application in this thesis.

It is defined as

𝑘(𝐱i, 𝐱j) = σf
2exp (−

1

2
(𝐱i − 𝐱j)

⊤
𝑴(𝐱i − 𝐱j)) + 𝜎𝑛

2𝛿𝐱i𝐱j

where 𝜎𝑓
2 is the variance of the noise-free signal, 𝜎𝑛

2 is the variance of the noise, and 𝛿𝐱i𝐱j is a

Kronecker delta which is 1 if 𝐱i = 𝐱j and 0 otherwise. 𝑴 is simply a symmetric matrix

containing the characteristic length-scales 𝒍. Characteristic length-scale decides how fast pace

of change the sample functions are to have. Low 𝑙 values will yield a more rapidly changing

functions, while greater values will tend to smooth out the functions. It might take one of the

following forms, depending on the values of hyperparameters:

𝑀1 = 𝑙
−2𝑰, 𝑀2 = 𝑑𝑖𝑎𝑔(𝒍)

−2, 𝑀3 = ΛΛ
⊤ + 𝑑𝑖𝑎𝑔(𝒍)−2

For input with multiple dimensions, one can define a suitable covariance function with

a property called in the literature Automatic Relevance Determination (ARD). ARD kernels

weight each input dimension differently. Features that do not contribute enough for the

explanation of the model are weighted lower for being not relevant, hence the R in ARD. This

effect is automatic. There exist numerous ARD kernels suited for different applications, but the

one used in this thesis is the Squared Exponential (SE) ARD kernel. Other kernels with ARD

property are listed below. The SE-ARD kernel takes the following form:

𝑘(𝐱i, 𝐱j|𝜃) = 𝜎𝑓
2 exp [−

1

2
∑

(𝑥𝑖𝑚 − 𝑥𝑗𝑚)
2

𝑙𝑚2

𝑑

𝑚=1

]

Table 1 contain the most widely used kernels with the ARD property. The first step of a

successful GP process is usually the selection of functions to be used in the inference – the

prior distribution.

 Vilius Ciuzelis

NONLINEAR OPTIMIZATION FOR HYPERPARAMETER COMPUTATION IN

GAUSSIAN PROCESSES MACHINE LEARNING

Background theory - 11 - Gaussian

Processes

ARD Squared

Exponential
𝜎𝑓
2 exp [−

1

2
∑

(𝑥𝑖𝑚 − 𝑥𝑗𝑚)
2

𝑙𝑚2

𝑑

𝑚=1

]

ARD

Exponential 𝜎𝑓
2 exp

[

−√∑
(𝑥𝑖𝑚 − 𝑥𝑗𝑚)

2

𝑙𝑚2

𝑑

𝑚=1
]

ARD Matern

3/2 𝜎𝑓
2

(

 1 + √3√∑
(𝑥𝑖𝑚 − 𝑥𝑗𝑚)

2

𝑙𝑚2

𝑑

𝑚=1
)

 exp

[

−√3√∑
(𝑥𝑖𝑚 − 𝑥𝑗𝑚)

2

𝑙𝑚2

𝑑

𝑚=1
]

ARD Matern

5/2 𝜎𝑓
2

(

 1 + √5√∑
(𝑥𝑖𝑚 − 𝑥𝑗𝑚)

2

𝑙𝑚2

𝑑

𝑚=1

+
5

3
∑

(𝑥𝑖𝑚 − 𝑥𝑗𝑚)
2

𝑙𝑚
2

𝑑

𝑚=1
)

 exp

[

−√5√∑
(𝑥𝑖𝑚 − 𝑥𝑗𝑚)

2

𝑙𝑚
2

𝑑

𝑚=1
]

ARD Rational

Quadratic
𝜎𝑓
2 (1 +

1

2𝛼
∑

(𝑥𝑖𝑚−𝑥𝑗𝑚)
2

𝑙𝑚
2

𝑑
𝑚=1)

−𝛼

where when 𝛼 → ∞, the kernel is identical to the

SE-ARD kernel

Table 1. Example of kernel functions with the ARD property

2.2.4. Prior

Prior prediction, also called prior distribution, or just prior, is used to encode any prior

knowledge about model to help infer the correct results. That is done by choosing the initial

hyperparameter values, the mean, and the covariance function. A simple inference on the test

inputs can then be performed, which reveals the function pool that will be drawn from in the

inference. For example, if the data at hand is very rough, say, similar to the Brownian motion,

probably the best suited kernel would be a Matérn 5/2 or a SE with low characteristic length

values.

Note that the prior distribution is solely dependent on the test data. One can sample the

 Vilius Ciuzelis

NONLINEAR OPTIMIZATION FOR HYPERPARAMETER COMPUTATION IN

GAUSSIAN PROCESSES MACHINE LEARNING

Background theory - 12 - Gaussian

Processes

desired number of sample functions from GP prior using the multivariate normal distribution

𝐟∗~𝒩(𝟎,𝐾(𝑋∗, 𝑋∗))

Prior functions can be sampled using the following operation:

𝐟prior = cholesky(𝐾(𝑋∗, 𝑋∗) + 𝜖𝐼)𝒖 (1)

where 𝒖~𝓝(𝟎, 𝐼), that is a 𝑛∗ × 𝑁 matrix of random functions drawn from a normal

(Gaussian) distribution with 0 mean and unit standard deviation, and 𝜖 is a small constant,

usually in order of 10−6. Most software tools have a tool for generating these random functions,

often called a Gaussian generator. An example of such a sample of prior functions is shown in

Figure 4.

2.2.5. Inference

Inference is the main process of the GP. The input data, together with the optimized

hyperparameters, is used to approximate the mean of the given data and produce the confidence

interval as to how accurate the predictions might be. The joint distribution of the observations

at the test points are [3]:

[
𝐲
𝐟∗
] ~𝒩 (𝟎, [

𝐾(𝑋, 𝑋) + 𝜎𝑛
2 𝐾(𝑋, 𝑋∗)

𝐾(𝑋∗, 𝑋) 𝐾(𝑋∗, 𝑋∗)
])

The fully derived conditional on Gaussian prior distribution is then

𝐟∗̅ = 𝐾(𝑋∗, 𝑋)[𝐾(𝑋, 𝑋) + 𝜎𝑛
2𝐼]−1𝐲

cov(𝐟∗) = 𝐾(𝑋∗, 𝑋∗) − 𝐾(𝑋∗, 𝑋)[𝐾(𝑋, 𝑋) − 𝜎𝑛
2𝐼]−1𝐾(𝑋, 𝑋∗)

Figure 4. Example of multiple sample functions from the prior distribution.

 Vilius Ciuzelis

NONLINEAR OPTIMIZATION FOR HYPERPARAMETER COMPUTATION IN

GAUSSIAN PROCESSES MACHINE LEARNING

Background theory - 13 - Gaussian

Processes

where [𝐾(𝑋, 𝑋) − 𝜎𝑛
2𝐼]−1 should be computed by using the Cholesky factorization. This yields

a more efficient and numerically stable inversion process. When predicting noisy test data, one

must add the noise variance 𝜎𝑛
2 to the diagonal of the covariance matrix cov(𝐟∗).

2.2.6. Posterior

The posterior distribution can be constructed to show which functions conform to the

inference model produced by the GP. The operation is identical to when generating the prior,

except for that covariance matrix now uses the input data, rather than only the test inputs:

𝐟posterior = cov(𝐟∗)𝒖 = (𝐾(𝑋∗, 𝑋∗) − 𝐾(𝑋∗, 𝑋)[𝐾(𝑋, 𝑋) − 𝜎𝑛
2𝐼]−1𝐾(𝑋, 𝑋∗))𝒖

The posterior combines the mean and the variance to show the final prediction, which an

example of is shown in Figure 5.

2.2.7. Model validation

Model validation concerns measuring the accuracy of a given GP inference or

prediction. The simplest method of measuring validity of predictions is the mean squared error

(MSE), which is defined as:

𝑀𝑆𝐸 = 𝑚𝑒𝑎𝑛 (𝑦∗ − 𝑓∗̅(𝑋∗))
2

where 𝑓∗̅ is the inferred mean, 𝑦∗ are the target input, and 𝑋∗ is the test point set. As this measure

Figure 5. Posterior distribution.

 Vilius Ciuzelis

NONLINEAR OPTIMIZATION FOR HYPERPARAMETER COMPUTATION IN

GAUSSIAN PROCESSES MACHINE LEARNING

Background theory - 14 - Gaussian

Processes

is sensitive to the overall scale of the target values [5], the standardized mean squared error is

usually used:

𝑆𝑀𝑆𝐸 =
𝑀𝑆𝐸

𝜎𝑦

SMSE of 0 indicate perfect correlation, while 1 indicate pure guessing.

2.2.8. Hyperparameters

Hyperparameters play the key role in the Gaussian Processes. They are the defining

parameters that form the shape of the covariance matrix. Recall the squared exponential kernel

𝑘𝑆𝐸(𝑥𝑖, 𝑥𝑗) = 𝜎𝑓
2 exp

(𝑥𝑖−𝑥𝑗)
2

𝑙2
, parameters 𝜎𝑓 and 𝑙 are the hyperparameters. They can be set

using either intuition or use an automated technique. Intuition tends to produce sub-optimal

results as the process of finding the optimal parameters is not trivial, especially when the

dimension of the data grows. Intuition, or some prior knowledge of the system at hand, is

however useful when initializing the hyperparameters and setting the GP prior.

Automated techniques for finding suitable hyperparameters almost always include

gradient-based approaches. There exist gradient-free approaches, but they are not used as much

in practice. Grid search and derivative-free-optimization (DFO) are examples of these. The grid

search method, that searches for optima values in a grid of values, tends to be too

computationally expensive, whereas the DFO methods usually yield worse performance than

the gradient-based counterparts and should therefore only be used when the information of the

gradients of the optimizing function is not available or too costly to compute.

The hyperparameters are found by minimizing a cost, or a loss, function

ℒ(𝑦𝑡𝑟𝑢𝑒 , 𝑦𝑔𝑢𝑒𝑠𝑠) with respect to hyperparameters. There exist several powerful cost functions,

each with different properties, such that Bayesian – log marginal likelihood (LML), or a Cross

Validation-based method – Leave One Out Cross Validation (LOO-CV). The LML is a little

more computationally efficient and will therefore be focused on in this thesis. There is some

research however, that points to the CV-based methods being more robust against model

misspecification [6].

Maximization of LML is equivalent to minimization of the negative – negative log

marginal likelihood (NLML). NLML produces a self-regulating cost function that produces a

scalar value. It contains an automatic Occam’s razor between the data explanation and the

complexity of that explanation, see Figure 7. The better the explanation of the data, the more

 Vilius Ciuzelis

NONLINEAR OPTIMIZATION FOR HYPERPARAMETER COMPUTATION IN

GAUSSIAN PROCESSES MACHINE LEARNING

Background theory - 15 - Gaussian

Processes

complex model will get. That makes sense, because a perfectly exact model will fit every input

exactly producing an effect known as overfitting. On the other hand, low complexity models

tend to generalize too much and might not explain the data at all. This will cause underfitting.

Both effects are clearly seen in Figure 6.

Figure 6. Examples of underfitting and overfitting.

Figure 7. Self-regulating nature of the marginal likelihood.

Illustration borrowed from [3].

 Vilius Ciuzelis

NONLINEAR OPTIMIZATION FOR HYPERPARAMETER COMPUTATION IN

GAUSSIAN PROCESSES MACHINE LEARNING

Background theory - 16 - Gaussian

Processes

The formal definition of the negative log marginal likelihood is

− log 𝑝(𝒚|𝑋, 𝜽) =
1

2
𝒚⊤𝐾𝑦

−1𝐲
⏟
𝑑𝑎𝑡𝑎−𝑓𝑖𝑡

+
1

2
log|𝐾𝑦|⏟

𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦 𝑝𝑒𝑛𝑎𝑙𝑡𝑦

+
𝑛

2
log 2𝜋

⏟
𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡

where 𝐾𝑦 = 𝐾(𝑋, 𝑋) + 𝜎𝑛
2𝐼. For a gradient based NLML optimization approach, the gradient

of the NLML is given below:

−
𝜕

𝜕𝜃𝑗
log 𝑝(𝒚|𝑋, 𝜽) = −

1

2
𝒚⊤𝐾𝑦

−1𝒚 +
1

2
tr (𝐾𝑦

−1
𝜕

𝜕𝜃𝑗
)

= −
1

2
tr ((𝜶𝜶⊤ − 𝐾𝑦

−1)
𝜕𝐾𝑦

𝜕𝜃𝑗
)

where 𝜶 = 𝐾𝑦
−1𝒚 and 𝜽 = (𝜎𝑓

2, 𝜎𝑛
2, 𝑙). Partial derivatives of 𝐾𝑦 with respect to the

hyperparameters are trivial to compute for most kernels. For other kernels, the derivatives

might not readily be available and approximation methods might be used. The finite difference

or automatic differentiation can be used. See [Appendix A] for the complete list of the standard

kernel derivatives with respect to hyperparameters. Optimization algorithms often used in GP

involving nonlinear problems are either quasi-Newton or nonlinear conjugate gradient

methods. See page 20 for the introduction of the method of conjugate gradients.

 Vilius Ciuzelis

NONLINEAR OPTIMIZATION FOR HYPERPARAMETER COMPUTATION IN

GAUSSIAN PROCESSES MACHINE LEARNING

Background theory - 17 - Optimization

theory

2.3. Optimization theory

As mentioned earlier, optimization of the hyperparameters is the key element to a

successful GP prediction. This chapter will try to introduce basics of the optimization theory

necessary for the understanding of the GP. An excellent source for the extensive derivations

and proofs is found in [5].

Every optimization problem starts with a function to be minimized or maximized:

min
𝑥∈ℝ𝑛

𝑓(𝑥) or max
𝑥∈ℝ𝑛

−𝑓(𝑥)

Given an initial point 𝑥0, search for the next point 𝑥1 that produces a better result – lower value

of 𝑓(𝑥). Possibly the best direction to look for next 𝑥 is the direction in which the value of the

function 𝑓(𝑥) descends the most – a descent direction. Define this direction as 𝑝𝑘 =

−
𝑑

𝑑𝑥
𝑓(𝑥) = −∇𝑓(𝑥), or in general terms as 𝑝𝑘 = −𝐵𝑘

−1∇𝑓𝑘, where 𝐵𝑘 varies for different

methods. For example, 𝐵𝑘 is an identity matrix 𝐼 in the steepest descent method, exact Hessian

∇2𝑓(𝑥) in Newton’s method and approximation to the Hessian in quasi-Newton methods.

Conjugate gradient methods use the combination of the previous and the current search

directions: −∇𝑓𝑘 + 𝛽𝑘𝑝𝑘−1. More on the choice of 𝛽𝑘 in the introduction of NCG on page 20.

When the desired direction is found, one has to determine how far along this direction

lies the improvement point 𝑥1, in other words, find the step size 𝛼𝑘:

𝑥𝑘+1 = 𝑥𝑘 + 𝛼𝑘𝑝𝑘

It is often found using interpolation or using some multiple of a constant. Next section discusses

the methods available to take the right size steps as to ensure the convergence of the algorithm.

2.3.1. Interpolation

 Given a set of value pairs (𝑥, 𝑦), and possibly the derivatives at those points,

interpolation is a method of approximating new points that belong to that same set. See Figure

8 for the illustration of the concept.

In the line search algorithms, the interpolation technique is used to find the optimal step

size, given a step size interval. There exist several interpolation algorithms, based on the current

information of the optimization function. Some examples are the quadratic, cubic, and the

three-point interpolation. [5] suggests using a quadratic interpolation followed by the cubic

one. The quadratic interpolation is expressed as

 Vilius Ciuzelis

NONLINEAR OPTIMIZATION FOR HYPERPARAMETER COMPUTATION IN

GAUSSIAN PROCESSES MACHINE LEARNING

Background theory - 18 - Optimization

theory

𝜙𝑞(𝛼) = (
𝜙(𝛼0) − 𝜙(0) − 𝛼0𝜙

′(0)

𝛼0
2)𝛼2 + 𝜙′(0)𝛼 + 𝜙(0)

The step size 𝛼𝑚𝑖𝑛 that minimizes 𝜙𝑞 is at the zero point of the derivative

𝜙𝑞
′ = 0 = 2(𝜙(𝛼0) − 𝜙(0) −

𝛼0𝜙
′(0)

𝛼0
2)𝛼𝑚𝑖𝑛 + 𝜙

′(0)

𝛼𝑚𝑖𝑛 = −
𝜙′(0)𝛼0

2

2[𝜙(𝛼0) − 𝜙(0) − 𝛼0𝜙′(0)]

Not all steps will yield fast solution or even convergence. Therefore, some conditions need to

be imposed, to be able to find the correct step size fast.

Figure 8. By interpolating the given value pairs, it is

possible to approximate the interior point of the function.

 Vilius Ciuzelis

NONLINEAR OPTIMIZATION FOR HYPERPARAMETER COMPUTATION IN

GAUSSIAN PROCESSES MACHINE LEARNING

Background theory - 19 - Optimization

theory

Wolfe conditions

 Wolfe conditions is a popular set of inexact line search abortion conditions, that ensure

fast convergence. The set consists of two equations, where the first one is called the sufficient

decrease condition, or Armijo condition, and the second one is referred to as the curvature

condition. The sufficient decrease condition require a sizeable decrease in the function value

for any step size. The curvature condition, on the other hand, forbid too small steps to ensure

convergence. Together, the conditions ensure a reliable method of finding the near-optimal step

size. See Figure 9 for illustration of the conditions. The official definition of wolfe conditions

is:

𝑓(𝑥𝑘 + 𝛼𝑘𝑝𝑘) ≤ 𝑓(𝑥𝑘) + 𝑐1𝛼𝑘∇𝑓𝑘
⊤𝑝𝑘,

∇𝑓(𝑥𝑘 + 𝛼𝑘𝑝𝑘)
⊤𝑝𝑘 ≥ −𝑐2∇𝑓𝑘

⊤𝑝𝑘

where 0 < 𝑐1 < 𝑐2 <
1

2
. In practice, the parameters 𝑐1 and 𝑐2 are usually equal 10−4 and 0.1

respectively, for conjugate gradient methods [5]. A small modification of the conditions offer

an even greater convergence and are often used in NCG. The modified condition exclude points

that are far from stationary points of 𝑓(𝑥𝑘 + 𝛼𝑘𝑝𝑘). These conditions are called the strong

Wolfe conditions:

𝑓(𝑥𝑘 + 𝛼𝑘𝑝𝑘) ≤ 𝑓(𝑥𝑘) + 𝑐1𝛼𝑘∇𝑓𝑘
⊤𝑝𝑘,

|∇𝑓(𝑥𝑘 + 𝛼𝑘𝑝𝑘)
⊤𝑝𝑘| ≥ −𝑐2∇𝑓𝑘

⊤𝑝𝑘

 Vilius Ciuzelis

NONLINEAR OPTIMIZATION FOR HYPERPARAMETER COMPUTATION IN

GAUSSIAN PROCESSES MACHINE LEARNING

Background theory - 20 - Optimization

theory

2.3.2. Nonlinear Conjugate Gradients

 Conjugate gradient methods have firstly been proposed for solving large linear systems

of equations, as an alternative to Gaussian elimination. With little adaptation, the method can

also be used to solve nonlinear optimization problems. The attractive properties of both

methods are the fast convergence (faster than the steepest descent) and no need of matrix

storage, as opposed to the methods involving Newton directions.

Linear conjugate gradient (CG) method was first proposed by Hestenes and Stiefel in

the 1950s. The first nonlinear conjugate gradient (NCG) algorithm was proposed by Fletcher

and Reeves in the 1960s. The use of NCG algorithms has been widespread and involves, among

others, neural net training and nonlinear regression. The convergence of linear methods is

closely tied to the eigenvalues of the coefficient matrix. The more spread are the eigenvalues,

the slower is the algorithm. See [5] for more info on the topic.

The key elements of the CG algorithms are the use of gradients and the property called

Figure 9. Illustration of the Wolfe conditions. Upper left: the sufficient decrease condition, upper right: the curvature

condition, lower: the steps satisfying the Wolfe conditions. The illustration is from [3]

 Vilius Ciuzelis

NONLINEAR OPTIMIZATION FOR HYPERPARAMETER COMPUTATION IN

GAUSSIAN PROCESSES MACHINE LEARNING

Background theory - 21 - Optimization

theory

conjugates. Define a set of nonzero vectors {𝑝0, 𝑝1, … , 𝑝𝑙} to be conjugate with respect to the

symmetric positive definite matrix 𝐴 if

𝑝𝑖
⊤𝐴𝑝𝑗 = 0, for all 𝑖 ≠ 𝑗.

It can also be shown that any set of vectors satisfying the above property is also linearly

independent. All conjugate vectors are conjugate to each other, therefore there is no need of

storing the previous values of conjugate vectors.

As mentioned, the second important part of an NCG algorithm is the use of gradients.

Most NCG variations use available gradient information of the current and the previous point,

while some others also require hessian or approximate hessian, such as Newton-Rhapson or

Secant variations [7]. It is not always trivial to find the hessian analytically; approximation

methods can be used – finite differences or automatic differentiation [5].

Since this thesis only uses NCG, it is left up to the reader to investigate the CG

algorithms by himself. The general outline of all NCG methods is depicted in the Algorithm 1

below.

The Algorithm 1 is usually repeated until some convergence conditions are achieved. For

instance, when 𝛼 or 𝑝 approaches zero, when the progress of decrease of the minimizer is

sufficiently small or simply stop after a given amount of iterations.

All NCG algorithms are similar, except for one property: descent direction update. That

is the only feature that distinguish the different NCG methods. Below, some of the most

prominent NCG methods are defined. The Fletcher-Reeves (FR) method is one of the first ones

proposed and has good convergence properties:

input: 𝑥0 (starting point), 𝑓 (minimizer)

1: set 𝑥 = 𝑥0, 𝑝 = −∇𝑓(𝑥0),
2: repeat

3: find step length 𝛼 ≥ 0

4: update 𝑥 = 𝑥𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 + 𝛼 ⋅ 𝑝

5: set 𝛽 using gradient information

6: update 𝑝 = −∇𝑓(𝑥) + 𝛽 ⋅ 𝑝𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠

7: end (repeat)

Algorithm 1. A general NCG algorithm.

 Vilius Ciuzelis

NONLINEAR OPTIMIZATION FOR HYPERPARAMETER COMPUTATION IN

GAUSSIAN PROCESSES MACHINE LEARNING

Background theory - 22 - Optimization

theory

𝛽𝑘+1
𝐹𝑅 =

∇𝑓𝑘+1
⊤ ∇𝑓𝑘+1

∇𝑓𝑘
⊤∇𝑓𝑘

The Polak-Ribière (PR) method does not guarantee that 𝑝𝑘 will remain a descent direction even

when the line search is performed using the strong Wolfe conditions.

𝛽𝑘+1
𝑃𝑅 =

∇𝑓𝑘+1
⊤ (∇𝑓𝑘+1 − ∇𝑓𝑘)

∥ ∇𝑓 ∥2

A small improvement to the method though, provides that property. The algorithm is called

Polar-Ribière plus (PR+), which usually outperforms FR. It is formulated as:

𝛽𝑘+1
𝑃𝑅+ = max{𝛽𝑘+1

𝑃𝑅 , 0}

Another method, that promises global convergence is, again, a modification of the PR

algorithm, called FR-PR:

𝛽𝑘 = {

−𝛽𝑘
𝐹𝑅 𝑖𝑓 𝛽𝑘

𝑃𝑅 < −𝛽𝑘
𝐹𝑅

 𝛽𝑘
𝑃𝑅 𝑖𝑓 |𝛽𝑘

𝑃𝑅| ≤ 𝛽𝑘
𝐹𝑅

𝛽𝑘
𝐹𝑅 𝑖𝑓 𝛽𝑘

𝑃𝑅 > 𝛽𝑘
𝐹𝑅

2.3.3. Preconditioning

For the methods that use the hessian information, the convergence can be greatly

improved by manipulating the hessian. The method is called preconditioning and it is a method

of matrix manipulation to improve the condition number of a matrix, or a Hessian in this case.

The condition number for a given symmetric, positive-definite matrix 𝑀 in 𝑀−1𝐴𝑥 = 𝑀−1𝑏 is

defined as the ratio between the largest and smallest eigenvalue of that matrix.

𝜅 = 𝜆𝑚𝑎𝑥/𝜆𝑚𝑖𝑛

Analysis of condition number is beyond the scope of this thesis. To sum it up, the convergence

of an optimization algorithm is worst for great values of 𝜅. Matrices with great condition

numbers are called ill-conditioned.

There exist several precondition techniques of preconditioning with different

properties, such that i) the total performance increase, ii) inexpensiveness of computation and

storage of M, or iii) inexpensiveness of solution 𝑀𝑦 = 𝑟, which is a cheap approximation to

 Vilius Ciuzelis

NONLINEAR OPTIMIZATION FOR HYPERPARAMETER COMPUTATION IN

GAUSSIAN PROCESSES MACHINE LEARNING

Background theory - 23 - Optimization

theory

the solution 𝐴𝑥 = 𝑏 [5]. Some promising general-purpose preconditioners are symmetric

successive overrelaxation (SSOR), incomplete Cholesky factorization, and banded

preconditioners. Further investigation on preconditioning methods is left up to the reader. No

preconditioners were found needed in the simulations of the problems described in this thesis.

 Vilius Ciuzelis

NONLINEAR OPTIMIZATION FOR HYPERPARAMETER COMPUTATION IN

GAUSSIAN PROCESSES MACHINE LEARNING

Simulation - 24 - General

3. Simulation

3.1. General

Simulations described in this chapter were carried out using a Windows 10 operating

system laptop with Intel Core i7-7700 CPU @ 3.60 GHz and 8 GB RAM. All simulations were

entirely written in MATLAB programming language. The version of MATLAB at the time is

pre-release version 2018a. As the code was written avoiding the short-term implementations in

MATLAB (i.e. the inline command), the code should be flexible to tackle some older and newer

versions of MATLAB.

The code used in the simulations is written by the author unless specifically stated

otherwise. Both examples start with generating the input data. This data is then standardized

according to the formula below:

𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑𝑖𝑧𝑒𝑑 𝑑𝑎𝑡𝑎 =
𝑑𝑎𝑡𝑎 − 𝑑𝑎𝑡𝑎 𝑚𝑒𝑎𝑛

𝑑𝑎𝑡𝑎 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛

This is done to help algorithms recognize patterns in the data. Then the optimization can be

started by initializing the hyperparameters: initialize length-scale and function variance to 1.

The experience also shows that higher initial values for the target function variance yield better

performance when optimizing the other hyperparameters, even when expecting low noise. A

small number of restarts of the optimization algorithm with different initial starting points is a

possible remedy for when local optima is reached [8].

Algorithm 2. Line search algorithm, ref [3].

 Vilius Ciuzelis

NONLINEAR OPTIMIZATION FOR HYPERPARAMETER COMPUTATION IN

GAUSSIAN PROCESSES MACHINE LEARNING

Simulation - 25 - General

Line search methods consist of two phases: the bracketing phase, where a smaller

interval of test values, known to contain a minimum, is determined, and an interpolation phase,

which finds the local minimum on the given interval. See Algorithm 2 and Algorithm 3. The

criteria for the abortion of the search is the strong Wolfe conditions. The workings of both

algorithms are rather easy to understand and are extensively described in [5]. NCG abort

conditions are 100 iterations or step length being too small (< 1.4−10) 5 times in a row.

Algorithm 3. Part 2 of line search algorithm, ref [3].

 Vilius Ciuzelis

NONLINEAR OPTIMIZATION FOR HYPERPARAMETER COMPUTATION IN

GAUSSIAN PROCESSES MACHINE LEARNING

Simulation - 26 - Example test

case

3.2. Example test case

 The following test case has been used as an example case by Rasmussen on the GPML

documentation web page [9].The training inputs 𝑋 are 20 random points with zero mean and

unit variance. The training targets 𝑦 are then generated by using the training inputs and adding

some noise:

𝑦 = sin(3𝑋) + 𝜖𝑛𝑜𝑖𝑠𝑒

The test inputs are simply 61 equally spaced points between -3 and 3. See Figure 10 for the

illustration. The data is then standardized as described earlier. Two versions of optimization

are then run. The first one is all the NCG versions using different 𝛽 parameters, and the second

one is the steepest descent method, meaning 𝛽 = 0 → 𝑝𝑘 = −∇𝑓(𝑥𝑘).

Since the problem is only two-dimensional, it is easy to display the functionality of the

algorithm graphically. The NLML forms, in this case, a drop shaped form with the optimum at

around (0.7, 1.45) with the lengthscale parameter on the x-axis and the noise variance on the

y-axis. Note the many and small steps the SD algorithm while the NCG needs only a few. See

Figure 11 for the illustration. The runtime for different choices of 𝛽 parameter in the NCG

algorithm are shown in Figure 12, with the clear winner being the FR-PR method.

Figure 10. Example case input data.

 Vilius Ciuzelis

NONLINEAR OPTIMIZATION FOR HYPERPARAMETER COMPUTATION IN

GAUSSIAN PROCESSES MACHINE LEARNING

Simulation - 27 - Example test

case

Figure 12. Runtime test on the simple example case.

Figure 11. The contours of the NLML distribution for the test case: left

– FR-PR NCG, right: Steepest Descent. The red cross is the found

minimum, black crosses are intermediate steps.

 Vilius Ciuzelis

NONLINEAR OPTIMIZATION FOR HYPERPARAMETER COMPUTATION IN

GAUSSIAN PROCESSES MACHINE LEARNING

Simulation - 28 - Robot model

test case

3.3. Robot model test case

Physical robot manipulator arm model parameters are based on a Kuka LBR iiwa 14

R280 (GmbH) robot, Figure 13. The robot has 7 degrees of freedom (DoF) and therefore has 7

joints. The mass of the robot is assumed to be uniform, such that the masses of the respective

links are obtained by simply linear combination of the different links of the robot.

Friction coefficients in the robot joints is chosen to be simply [
10000 0
0 5000

]. The

behavior of the unforced system represents life-like behavior.

A proportional-derivative controller works fine in simulations. The explicit integration

action in the controller is not necessary as the system has an internal integrator (�̈� → �̇�). The

Model parameter LBR iwwa 14’s parameter Value Explanation

𝒍𝟏 𝐷 420 𝑚𝑚 Length of the 1st link

𝒍𝟐 𝐴 − 𝐶 − 𝐷 526 𝑚𝑚 Length of the 2nd link

𝒎𝑻 𝑚𝑇 29,9 𝑘𝑔 Total mass of the robot

𝒎𝟏 − 9,6 𝑘𝑔 Mass of the 1st link

𝒎𝟐 − 12,0 𝑘𝑔 Mass of the 2nd link

𝑰𝟏 − 5640 𝑘𝑔𝑚𝑚2 Inertia of the 1st link

𝑰𝟐 − Inertia of the 2nd link

𝒈 − −9,81 𝑘𝑔𝑚/𝑠2 Gravity constant

Figure 13. KUKA intelligent industrial work assistant 14 R280, illustrations from [25]

 Vilius Ciuzelis

NONLINEAR OPTIMIZATION FOR HYPERPARAMETER COMPUTATION IN

GAUSSIAN PROCESSES MACHINE LEARNING

Simulation - 29 - Robot model

test case

controller is of the form:

𝝉 = 𝒌𝑑(−�̇�) + 𝒌𝑝(𝒒𝑟 − 𝒒)

where 𝒒𝑟 is the reference trajectory and 𝒌𝑑 and 𝒌𝑑 are the control constants. After a quick

tuning the system performs satisfactory with the controller gains found in Table 2 below.

𝒌𝒑
[
100000 ⋅ 𝑚1𝑙1
12500 ⋅ 𝑚2𝑙2

]

𝒌𝒅
[
15000 ⋅ 𝑚1𝑙1
1000 ⋅ 𝑚2𝑙2

]

Table 2. PD controller gains

The actual values of the gains might not be entirely feasible in a real-world application as they

might be too great. These gains yield an extremely fast convergence rate and fast error

dynamics. Therefore, they perform sufficiently well based on the application of the current

model. The error dynamics are shown in Figure 14.

The data generated by the robot model is six vectors of size 1 × 5100: the joint angles 𝑞1, 𝑞2,

the joint angle velocities 𝑞1̇, 𝑞2̇, and the joint torques 𝜏1 and 𝜏2. The GP is then used to model

the torque as a function of the joint angles and their velocities together with friction dependent

on the angle velocities:

𝜏1 = 𝑓(𝑞1, 𝑞2, 𝑞1̇, 𝑞2̇) + 𝑔(𝑞1̇)

𝜏2 = 𝑓(𝑞1, 𝑞2, 𝑞1̇, 𝑞2̇) + 𝑔(𝑞2̇)

Figure 14. Error dynamics for the robot model test case.

 Vilius Ciuzelis

NONLINEAR OPTIMIZATION FOR HYPERPARAMETER COMPUTATION IN

GAUSSIAN PROCESSES MACHINE LEARNING

Results - 30 - Example test

case

4. Results

4.1. Example test case

The results of the simulations are shown in the figures below. Figure 15 shows the runtime

and the total steps taken before the convergence was reached. When comparing the steepest

descent with the NCG, the latter wins clearly by the measure of convergence. While the

resulting hyperparameters are equal, the required number of steps were unsurprisingly higher

in the SD method. Figure 16 shows comparable results between the novel implementation and

the results using the in-built MATLAB fitrgp function. The validation SMSE scores were

0.0428 and 0.0123, respectively. It is worth to note that the runtime for the in-built function

was 2 times faster than the novel implementation. Figure 17 shows the samples of the posterior

prediction.

Figure 15. Example test case MATLAB command window output. Upper: FR-PR NCG algorithm. Lower:

Steepest descent

 Vilius Ciuzelis

NONLINEAR OPTIMIZATION FOR HYPERPARAMETER COMPUTATION IN

GAUSSIAN PROCESSES MACHINE LEARNING

Results - 31 - Example test

case

Figure 17. Example test case results. Top left – functions used in the predictions. Top right – the prior prediction. Lower left

– the distribution of the functions used in the predictions. Lower right – the posterior prediction.

Figure 16. The resulting prediction from the GP

inference on the example test case. Left – Novel

implementation, right – fitrgp result.

 Vilius Ciuzelis

NONLINEAR OPTIMIZATION FOR HYPERPARAMETER COMPUTATION IN

GAUSSIAN PROCESSES MACHINE LEARNING

Results - 32 - Robot model

test case

4.2. Robot model test case

The following figures describe the results of the simulation of the robot model test case.

Surprisingly, the steepest descent method yielded a better NLML score of -94.7814 compared

to the NCG method with FR-PR beta update with the s core of only -65.5756. The runtime of

the latter algorithm was also shorter. This defies every intuition prior to the simulations and

therefore can be an indicator that the results are faulty. Note this fact for the further analysis of

the results. The resulting output windows of both methods are depicted in Figure 18.

Looking at the NLML plots, both methods show the failure to converge. The algorithm

stops due to the step size being zero, while the descent direction 𝑝𝑘 is anything but the zero

vector. Figure 19 shows the final results of the NLML distribution where x and y axes are the

first and second lengthscale parameters– angles 𝑞1 and 𝑞2, respectively. Figure 20 shows some

of the step search curves and the failure to find the correct minima.

Figure 18. MATLAB command window ouput for the robot model test case.

 Vilius Ciuzelis

NONLINEAR OPTIMIZATION FOR HYPERPARAMETER COMPUTATION IN

GAUSSIAN PROCESSES MACHINE LEARNING

Results - 33 - Robot model

test case

Figure 19. The NLML for the robot model test case, where left - GP using the FR-PR algorithm, right - GP using steepest descent

Figure 20. Graphical examples of step search iterations. Black circles meaning the starting points,

and the red cross being the found minima. Notice the failure to find the extremum on graph on the

lower right.

 Vilius Ciuzelis

NONLINEAR OPTIMIZATION FOR HYPERPARAMETER COMPUTATION IN

GAUSSIAN PROCESSES MACHINE LEARNING

Discussion - 34 - Robot model

test case

5. Discussion

The simple test case performed as expected and, when compared to the existing software,

produced comparable results. The line search method is fast and find the NLML minima well.

The causes for the failure in the multi-dimensional problem are not obvious. There have

been made several attempts of finding any inaccuracies between the theory and the

implementation, but the problem remained. This might point to another weakness of the model

– the identification trajectory. This trajectory is suspected to not excite the model sufficiently,

causing the lack of correlation between the input-output pairs.

Another cause might be the assumption of the independency of the torques. The torques

have been inferred separately as functions of all angles and angle velocities. Multiple output

GPs have been studied in the past and yield promising results [10].

The step search graphs of the hyperparameter optimization problem, contain interesting

behavior, pointing to the NLML or its derivatives being faulty. After some search steps have

been found and “taken”, the step search graphs become monotonically increasing at zero in the

positive step direction. This suggests that the optimum has been reached, when it clearly has

not.

 Vilius Ciuzelis

NONLINEAR OPTIMIZATION FOR HYPERPARAMETER COMPUTATION IN

GAUSSIAN PROCESSES MACHINE LEARNING

Future Work - 35 - Robot model

test case

6. Future Work

In order to achieve more accurate predictions, one could use the gradient information at the

training points. The information on whether the slope is increasing or decreasing on the test

points can dramatically improve the accuracy of the predictions. This technique yields great

results in [11].

When the explained data is low, one might suspect the faulty choice of the hyperparameters.

While one can use the combination kernels designed as a sum or product of several other

simpler kernels, the curse of dimensionality becomes evident [12]. With several choices of the

hyperparameters, the error of choosing “wrong” hyperparameters, increases. An automated

technique of choosing and discarding the increasing complexity priors, deserves further

research.

Implementation of cross-validation-based hyperparameter optimizers, such as LOO-CV,

sometimes prioritize the complexity and the data-fit differently than the marginal likelihood. It

may therefore produce totally different hyperparameters and results, which is very interesting

and deserves more research. Implementing other types of likelihoods, non-Gaussian.

Gaussian Processes have regretfully been overseen in the machine learning in the recent

years. The main cause of that is the expensive computations needed for inference and

hyperparameter learning for larger data sets. That makes GP a poor choice for on-line control

tasks. The costs of both inference and learning tend to scale badly with the matrix inversion of

an 𝑛 × 𝑛 matrix alone costing 𝑂(𝑛3) time. There have been proposed some remedies in [13].

Almost all following methods use sparse matrices and approximates that greatly speed up

the inference and learning processes. One idea is to approximate non-parametric kernels in

“dual space”: Random Kitchen Sinks [14], Fastfood [15], À la carte [16]. Another technique is

using inducing points methods, where the cost for predictions can be reduced to 𝑂(𝑚2𝑛),

where 𝑚 ≪ 𝑛. For instance, replacing the exact covariance function with an approximation

using Subset of Regression (SoR), allows faster computations with the cost of underestimating

the uncertainty. Another example is Fully Independent Training Conditional (FITC) which

replaces the approximate diagonal of SoR with the diagonal of the true covariance function.

[17] introduced Kernel Interpolation for Scalable Structured Gaussian Processes, or KISS-GP,

which claims to achieve staggering 𝑂(𝑛) for both time and storage costs for GP inference. This

method exploits the structure in the covariance function and use Toeplitz and Kronecker

algebra, as in the works with Massively Scalable GP in [18].

 Vilius Ciuzelis

NONLINEAR OPTIMIZATION FOR HYPERPARAMETER COMPUTATION IN

GAUSSIAN PROCESSES MACHINE LEARNING

Future Work - 36 - Robot model

test case

7. References

[1] O. Egeland and J. T. Gravdahl, Modeling and simulation for automatic control, Trondheim:

Marine Cybernetics, 2002, pp. 315, 320, 322, 323.

[2] B. Armstrong, "On Finding Exciting Trajectories for Identification Experiments Involving

Systems with Nonlinear Dynamics," 1 December 1989. [Online]. Available:

https://journals.sagepub.com/doi/10.1177/027836498900800603.

[3] C. K. I. W. C. E. Rasmussen, Gaussian Processes for Machine Learning, Massachusetts: the

MIT press, 2006, pp. 13, 106, 114,.

[4] S. Polamuri, "Five most popular similarity measures, implementation in python," 11 April

2015. [Online]. Available: http://dataaspirant.com/2015/04/11/five-most-popular-similarity-

measures-implementation-in-python/.

[5] J. Nocedal and S. J. Wright, Numerical Optimization, 2nd ed., T. V. Mikosch, S. I. Resnick

and S. M. Robinson, Eds., Evanston: Springer, 2006.

[6] G. Wahba, "Spline Models for Observational Data," 1990. [Online]. Available:

https://epubs.siam.org/doi/book/10.1137/1.9781611970128?mobileUi=0.

[7] J. R. Shewchuk, "An Introduction to," 4 August 1994. [Online]. Available:

https://www.cs.cmu.edu/~quake-papers/painless-conjugate-gradient.pdf.

[8] I. Murray, "Introduction to Gaussian Processes, page 34," 2008. [Online]. Available:

https://www.cs.toronto.edu/~hinton/csc2515/notes/gp_slides_fall08.pdf.

[9] C. E. Rasmussen and C. Williams, "Documentation for GPML Matlab Code version 4.2,"

11 Novermber 2018. [Online]. Available:

http://www.gaussianprocess.org/gpml/code/matlab/doc/.

[10] A. M. Álvarez, "Multiple-output Gaussian processes," The University of Sheffield,

[Online]. Available: http://gpss.cc/gpss17/slides/multipleOutputGPs.pdf.

[11] E. Solak, R. Murray-Smith, W. E. Leithead, D. J. Leith and C. E. Rasmussen, "Derivative

Observations in Gaussian Process Models of Dynamic Systems," 2003. [Online]. Available:

https://papers.nips.cc/paper/2287-derivative-observations-in-gaussian-process-models-of-

dynamic-systems.

[12] B. Shetty, "Curse of Dimensionality," 16 January 2019. [Online]. Available:

https://towardsdatascience.com/curse-of-dimensionality-2092410f3d27.

[13] A. G. Wilson, "Probabilistic Graphical Models," Carnegie Mellon University, 1 April 2015.

[Online]. Available: https://www.cs.cmu.edu/~epxing/Class/10708-

15/slides/andrewgp2.pdf.

[14] A. Rahimi, "Random Kitchen Sinks: Replacing Optimization with Randomization in

Learning," Intel Labs Berkeley, 24 July 2009. [Online].

[15] Q. V. Le, T. Sarlos and A. J. Smola, "Fastfood: Approximate Kernel Expansions in

Loglinear Time," Cornell University, 13 August 2014. [Online]. Available:

https://arxiv.org/abs/1408.3060.

[16] Z. Yang, A. J. Smola, L. Song and A. G. Wilson, "A la Carte - Learning Fast Kernels,"

Cornell University, 19 December 2014. [Online]. Available:

https://arxiv.org/abs/1412.6493.

[17] A. G. Wilson and H. Nickisch, "Kernel Interpolation for Scalable Structured Gaussian

Processes (KISS-GP)," Cornell University, 3 March 2015. [Online]. Available:

 Vilius Ciuzelis

NONLINEAR OPTIMIZATION FOR HYPERPARAMETER COMPUTATION IN

GAUSSIAN PROCESSES MACHINE LEARNING

Future Work - 37 - Robot model

test case

https://arxiv.org/abs/1503.01057.

[18] A. G. Wilson, C. Dann and H. Nickisch, "Thoughts on Massively Scalable Gaussian

Processes," Cornell University, 5 November 2015. [Online]. Available:

https://arxiv.org/abs/1511.01870.

[19] R. N. Jazar, Theory of Applied Robotics. Kinematics, Dynamics and Control, 2nd ed.,

Springer US, 2010, p. 883.

[20] D. R. Hessmer, "Kinematics for Lynxmotion Robot Arm," October 2009. [Online].

[21] "Gaussian Process - Wikipedia," [Online]. Available:

https://en.wikipedia.org/wiki/Gaussian_process.

[22] N. I. o. S. a. Technology, "Engineering Statistics Handbook," [Online]. Available:

https://www.itl.nist.gov/div898/handbook/pmc/section4/pmc442.htm.

[23] N. A. C. Cressie, Statistics for Spatial Data, Wiley, 2015.

[24] J. K. P. Y. S. K. M. S. K. F. C. Samy Youssef, "Probabilistic Selection of Ship-Ship

Collision Scenarios," ASME 2013, June 2013. [Online]. Available:

https://www.researchgate.net/publication/267607095_Probabilistic_Selection_of_Ship-

Ship_Collision_Scenarios.

[25] K. R. GmbH, "KUKA LBR iiwa Broschure - PDF, page 30," [Online]. Available:

https://www.kuka.com/en-

de/services/downloads?terms=Language:en:1;product_name:LBR%20iiwa%2014%20R820.

[26] C. W. Carl Edward Rasmussen, "Documentation for GPML Matlab Code version 4.2," 11

June 2018. [Online]. Available: http://www.gaussianprocess.org/gpml/code/matlab/doc/.

[27] J. S.-T. A. E. J. K. Nello Cristianini. [Online]. Available: http://papers.nips.cc/paper/1946-

on-kernel-target-alignment.pdf.

[28] L. C. M. A. K. H. H. B. L. R. F. Jacob Y. Hesterman, "Maximum-Likelihood Estimation

With a Contracting-Grid Search Algorithm," 14 June 2010.

[29] I. L. Andrew V. Knyazev, "Steepest descent and conjugate gradient methods," April 2007.

[Online]. Available: https://arxiv.org/pdf/math/0605767.pdf.

[30] Y. B. James Bergstra, "Random serach for hyper-parameter optimization," Journal of

Machine Learning Research 13, February 2012.

[31] H. L. R. P. A. Jasper Snoek, "Practical Bayesian Optimization of Machine Learning

Algorithms," 2012.

[32] G. S. L. Cai, "A smooth robust nonlinear controller for robot manipulators with joint stick-

slip friction," Atlanta, 2002.

[33] A. C. Harvey Motulsky, Fitting Models to Biological Data Using Linear and Nonlinear

Regression, New York: OXFORD University Press, 2004.

[34] A. G. d. G. M. Z. G. James Hensman, "Scalable Variational Gaussian Process

Classification," 2015.

[35] R. M.-S. C. E. R. A. G. J. Kocijan, "Gaussian process model based predictive control,"

Boston, 2004.

[36] N. d. Freitas, "CPSC540 Gaussian Process," January 2013. [Online]. Available:

https://www.cs.ubc.ca/~nando/540-2013/lectures/l6.pdf.

[37] N. Wiener, Extrapolation, Interpolation and Smoothing of Stationary Time Series, MIT

Press, 1949.

[38] A. Hopgood, "Artificial Intelligence: hype or reality?," 2003.

 Vilius Ciuzelis

NONLINEAR OPTIMIZATION FOR HYPERPARAMETER COMPUTATION IN

GAUSSIAN PROCESSES MACHINE LEARNING

Future Work - 38 - Robot model

test case

[39] N. M. G. Cressie, The origins of kriging, vol. 22: 239, Kluwer Academic Publishers, 1990.

[40] Wikipedia, "Bregman divergence," [Online]. Available:

https://en.wikipedia.org/wiki/Bregman_divergence.

[41] H. Gattringer, R. Riepl and M. Neubauer, Artists, End-effector path during identification

process. [Art]. Hindawi, 2013.

[42] M. M. Zirkohi, "An articulated two-link manipulator," 2013. [Online]. Available:

https://www.researchgate.net/publication/257705396_Type-

2_Fuzzy_Control_for_a_Flexible-_joint_Robot_Using_Voltage_Control_Strategy.

 Vilius Ciuzelis

NONLINEAR OPTIMIZATION FOR HYPERPARAMETER COMPUTATION IN

GAUSSIAN PROCESSES MACHINE LEARNING

Appendix A - 39 - Derivation of

the EOM for 2-

link planar

manipulator

8. Appendix A

8.1. Derivation of the EOM for 2-link planar manipulator

The derivations are based on [1]. The planar manipulator has kinetic energy:

𝑇 =
1

2
𝑚1�⃗�𝑐1 ⋅ �⃗�𝑐1 +

1

2
𝑚2�⃗�𝑐2 ⋅ �⃗�𝑐2 +

1

2
�⃗⃗⃗�1 ⋅ �⃗⃗⃗�1

𝑐
⋅ �⃗⃗⃗�1 +

1

2
�⃗⃗⃗�2 ⋅ �⃗⃗⃗�2

𝑐
⋅ �⃗⃗⃗�2

This can be written as

𝑇 =
1

2
𝒎𝟏𝟏�̇�1

2 +𝒎𝟏𝟐�̇�1�̇�2 +
1

2
𝒎𝟐𝟐�̇�2

2

where

𝒎𝟏𝟏 = 𝐼1𝑧 + 𝐼2𝑧 +𝑚1𝐿𝑐1
2 +𝑚2(𝐿1

2 + 𝐿𝑐2
2 + 2𝐿1𝐿𝑐2 cos 𝑞2)

𝒎𝟏𝟐 = 𝒎𝟐𝟏 = 𝐼2𝑧 +𝑚2𝐿𝑐2
2 +𝑚2𝐿1𝐿𝑐2 cos 𝑞2

𝒎𝟐𝟐 = 𝐼2𝑧 +𝑚2𝐿𝑐2
2

are the elements of the inertia matrix and 𝑞1 and 𝑞2 are the angles between the horizontal plane

and the robot arm 1 and 2 respectively. The potential energy in the system is given by

𝑉 = (𝑚1𝑔𝐿𝑐1 +𝑚2𝑔𝐿1) sin 𝑞1 +𝑚2𝑔𝐿𝑐2 sin(𝑞1 + 𝑞2)

Then, from ℒ = 𝑇 − 𝑉 partial derivatives are found to be

𝜕ℒ

𝜕�̇�1
=
𝜕𝑇

𝜕�̇�1
= 𝒎𝟏𝟏�̇�1 +𝒎𝟏𝟐�̇�2

𝜕ℒ

𝜕�̇�2
=
𝜕𝑇

𝜕�̇�2
= 𝒎𝟏𝟐�̇�1 +𝒎𝟐𝟐�̇�2

𝜕ℒ

𝜕𝑞1
= −

𝜕𝑉

𝜕𝑞1
= −(𝑚1𝐿𝑐1 +𝑚2𝐿1)𝑔 cos 𝑞1 −𝑚2𝐿𝑐2𝑔 cos(𝑞1 + 𝑞2)

𝜕ℒ

𝜕𝑞2
=
𝜕𝑇

𝜕𝑞2
−
𝜕𝑉

𝜕𝑞2
=
1

2

𝜕𝒎𝟏𝟏

𝜕𝑞2
�̇�1
2 +

𝜕𝒎𝟏𝟐

𝜕𝑞2
�̇�1�̇�2 − 𝑚2𝐿𝑐2𝑔 cos(𝑞1 + 𝑞2)

Recalling the chain rule expansion:

 Vilius Ciuzelis

NONLINEAR OPTIMIZATION FOR HYPERPARAMETER COMPUTATION IN

GAUSSIAN PROCESSES MACHINE LEARNING

Appendix A - 40 - Derivation of

the EOM for 2-

link planar

manipulator

𝑑𝑧

𝑑𝑡
=
𝜕𝑧

𝜕𝑥

𝜕𝑥

𝜕𝑡
+
𝜕𝑧

𝜕𝑦

𝜕𝑦

𝜕𝑡

the equations of motion are then found to be:

𝜏1 = 𝒎𝟏𝟏�̈�1 +𝒎𝟏𝟐�̈�2 + (
𝜕𝒎𝟏𝟏

𝜕𝑞2
�̇�2) �̇�1 + (

𝜕𝒎𝟏𝟐

𝜕𝑞2
�̇�2) �̇�2 +

𝜕𝑉

𝜕𝑞1

𝜏2 = 𝒎𝟐𝟏�̈�1 +𝒎𝟐𝟐�̈�2 + (
𝜕𝒎𝟐𝟏

𝜕𝑞2
�̇�2) �̇�1 − (

𝝏𝒎𝟐𝟏

𝝏𝒒𝟐
�̇�1) �̇�2 −

1

2
(
𝜕𝒎𝟏𝟏

𝜕𝑞2
) �̇�1

2 +
𝜕𝑉

𝜕𝑞2

𝜏1 = (𝐼1 + 𝐼2 +𝑚1𝐿𝑐1
2 +𝑚2(𝐿1

2 + 𝐿𝑐2
2 + 2𝐿1𝐿𝑐2 cos 𝑞2))�̈�1

+ (𝐼2 +𝑚2𝐿𝑐2
2 +𝑚2𝐿1𝐿𝑐2 cos 𝑞2)�̈�2 −𝑚2𝐿1𝐿𝑐2 sin 𝑞2 (2�̇�1�̇�2 + �̇�2

2)

+ (𝑚1𝐿𝑐1 +𝑚2𝐿1)𝑔 cos 𝑞1 +𝑚2𝐿𝑐2𝑔 cos(𝑞1 + 𝑞2)

𝜏2 = (𝐼2 +𝑚2𝐿𝑐2
2 +𝑚2𝐿1𝐿𝑐2 cos 𝑞2)�̈�1 + (𝐼2 +𝑚2𝐿𝑐2

2)�̈�2 + (𝑚2𝐿1𝐿𝑐2 sin 𝑞2)�̇�1
2

+𝑚2𝐿𝑐2𝑔 cos(𝑞1 + 𝑞2)

These equations can be written in a simplified form:

𝑴(𝒒)�̈� + 𝑪(𝒒, �̇�) + 𝑮(𝒒) = 𝝉

where 𝑴(𝒒) = 𝑴⊤(𝒒) is a positive definite matrix of masses [
𝑚11 𝑚12
𝑚21 𝑚22

] with elements

𝑚11 = 𝐼1 + 𝐼2 +𝑚1𝐿𝑐1
2 +𝑚2(𝐿1

2 + 𝐿𝑐2
2 + 2𝐿1𝐿𝑐2 cos 𝑞2)

𝑚12 = 𝑚21 = 𝐼2 +𝑚2(𝐿𝑐2
2 + 𝐿1𝐿𝑐2 cos 𝑞2)

𝑚22 = 𝐼2 +𝑚2𝐿𝑐2
2

 𝑮(𝒒) is the gradient of the gravity potential [
𝑔1
𝑔2
] with elements

𝑔1 = 𝑔((𝑚1𝐿𝑐1 +𝑚2𝐿1) cos 𝑞1 +𝑚2𝐿𝑐2 cos(𝑞1 + 𝑞2))

𝑔2 = 𝑔𝑚2𝐿𝑐2 cos(𝑞1 + 𝑞2)

The matrix 𝑪(𝒒, �̇�) can be selected to be

𝑪(𝒒, �̇�) = {𝒄𝑗𝑘} = {∑𝒄𝑖𝑗𝑘�̇�𝑖

𝑛

𝑖=1

}

 Vilius Ciuzelis

NONLINEAR OPTIMIZATION FOR HYPERPARAMETER COMPUTATION IN

GAUSSIAN PROCESSES MACHINE LEARNING

Appendix A - 41 - Inverse

kinematics for

2-link planar

manipulator

where

𝒄𝑖𝑗𝑘 ≔
𝟏

𝟐
(
𝜕𝒎𝑗𝑘

𝜕𝒒𝒊
+
𝜕𝒎𝑖𝑘

𝜕𝒒𝑗
+
𝜕𝒎𝑖𝑗

𝜕𝒒𝑘
)

are the Christoffel symbols of the first kind. Define 𝑞1̇ = 𝜔1 and 𝑞2̇ = 𝜔2 and express

Christoffel symbols as

𝑐11 = −𝑚2𝐿1𝐿𝑐2𝜔2 sin 𝑞2

𝑐12 = (−𝑚2𝐿1𝐿𝑐2 sin 𝑞2)(𝜔1 + 𝜔2)

𝑐21 = 𝑚2𝐿1𝐿𝑐2𝜔1 sin 𝑞2

𝑐22 = 0

∎

8.2. Inverse kinematics for 2-link planar manipulator

The derivation of these formulas is borrowed from [19] and [20]. Start with forward

kinematics formulas

(
𝑥𝑒
𝑦𝑒
) = (

𝑙1 𝑐𝑜𝑠 𝑞1 + 𝑙2 𝑐𝑜𝑠(𝑞1 + 𝑞2)

𝑙1 𝑠𝑖𝑛 𝑞1 + 𝑙2 𝑠𝑖𝑛(𝑞1 + 𝑞2)
) (1∗)

where all variables are according Figure 1 on page 3. Rewrite squares of the end effector

position

(
𝑥𝑒
2

𝑦𝑒
2
) = (

𝑙1
2 cos2 𝑞1 + 𝑙2

2 cos2(𝑞1 + 𝑞2) + 2𝑙1𝑙2 cos 𝑞1 cos(𝑞1 + 𝑞2)

𝑙1
2 sin2 𝑞1 + 𝑙2

2 sin2(𝑞1 + 𝑞2) + 2𝑙1𝑙2 sin 𝑞1 sin(𝑞1 + 𝑞2)
)

Use Pythagorean identity

𝑎sin2 𝜃 + 𝑎cos2 𝜃 = 𝑎2

and rewrite

𝑥𝑒
2 + 𝑦𝑒

2 = 𝑙1
2 + 𝑙2

2 + 2𝑙1𝑙2[cos 𝑞1 cos(𝑞1 + 𝑞2) + sin 𝑞1 sin(𝑞1 + 𝑞2)]

Use the following identities

sin(𝑎 ± 𝑏) = sin 𝑎 cos 𝑏 ± cos 𝑎 sin 𝑏

cos(𝑎 ± 𝑏) = cos 𝑎 cos 𝑏 ∓ sin 𝑎 sin 𝑏

 Vilius Ciuzelis

NONLINEAR OPTIMIZATION FOR HYPERPARAMETER COMPUTATION IN

GAUSSIAN PROCESSES MACHINE LEARNING

Appendix A - 42 - Inverse

kinematics for

2-link planar

manipulator

to prove

𝑥𝑒
2 + 𝑦𝑒

2 = 𝑙1
2 + 𝑙2

2

+ 2𝑙1𝑙2[cos 𝑞1 (cos 𝑞1 cos 𝑞2 − sin 𝑞1 sin 𝑞2)

+ sin 𝑞1 (sin 𝑞1 cos 𝑞2 + cos 𝑞1 sin 𝑞2)]

= 𝑙1
2 + 𝑙2

2 + 2𝑙1𝑙2[cos
2 𝑞1 cos 𝑞2 + sin

2 𝑞1 cos 𝑞2]

= 𝑙1
2 + 𝑙2

2 + 2𝑙1𝑙2 cos 𝑞2

From this follow

𝑞2 = cos
−1
𝑥𝑒
2 + 𝑦𝑒

2 − 𝑙1
2 − 𝑙2

2

2𝑙1𝑙2

Since arcsin and arccos are inaccurate for small angles, use the atan2 function:

𝑞2 = atan2(sin 𝑞2 , cos 𝑞2)

= atan2 (±√1 − cos2 𝑞2 , cos 𝑞2)

= atan2(±√1 − (
𝑥2 + 𝑦2 − 𝑙1

2 − 𝑙2
2

2𝑙1𝑙2
)

2

,
𝑥2 + 𝑦2 − 𝑙1

2 − 𝑙2
2

2𝑙1𝑙2
)

Next, use (1∗) to rewrite 𝑥 and 𝑦:

𝑥 = 𝑘1 cos 𝑞1 − 𝑘2 sin 𝑞1

𝑦 = 𝑘1 sin 𝑞1 + 𝑘2 cos 𝑞1

where 𝑘1 = 𝑙1 + 𝑙2 cos 𝑞2 and 𝑘2 = 𝑙2 sin 𝑞2.

Now, use the following:

𝑟 = √𝑘1
2 + 𝑘2

2

𝛾 = atan2(𝑘2, 𝑘1)

This gives

𝑘1 = 𝑟 cos 𝛾

𝑘2 = 𝑟 sin 𝛾

 Vilius Ciuzelis

NONLINEAR OPTIMIZATION FOR HYPERPARAMETER COMPUTATION IN

GAUSSIAN PROCESSES MACHINE LEARNING

Appendix A - 43 -

which leads to

𝑥 = 𝑟 cos(𝛾 + 𝑞1)

𝑦 = 𝑟 sin(𝛾 + 𝑞1)

Finally apply atan2 function to find 𝑞1:

𝛾 + 𝑞1atan2 (
𝑦

𝑟
,
𝑦

𝑟
) = atan2(𝑦, 𝑥)

𝑞1 = atan2(𝑦, 𝑥) − atan2(𝑘2, 𝑘1)

where 𝑘1 = 𝑙1 + 𝑙2 cos 𝑞2 and 𝑘2 = 𝑙2 sin 𝑞2.

The final solution contains ± sign which can be thought of as elbow-up and elbow-down

solutions. Plus-sign yields the elbow-up solution, while the minus yields the opposite.

𝑞(𝑥𝑒 , 𝑦𝑒) =

[

atan2(𝑦𝑒 , 𝑥𝑒) ± atan 2(𝑙2 sin 𝑞2 , (𝑙1 + 𝑙2 cos 𝑞2))

atan2(±√1 − (
𝑥𝑒2+𝑦𝑒2 − 𝑙1

2 − 𝑙2
2

2𝑙1𝑙2
)
2

,
𝑥𝑒2 + 𝑦𝑒2 − 𝑙1

2 − 𝑙2
2

2𝑙1𝑙2
)

]

∎

8.3. Finite difference

Finite difference is a numerical method of approximating derivatives, using the differences

of known function values. There exist mainly three types differences:

• Forward difference: 𝑓′(𝑥) = lim
ℎ→0

𝑓(𝑥+ℎ)−𝑓(𝑥)

ℎ
 with the error estimate 𝑂(ℎ)

• Backward difference: 𝑓′(𝑥) = lim
ℎ→0

𝑓(𝑥)−𝑓(𝑥−ℎ)

ℎ
 with the error estimate 𝑂(ℎ)

• Central difference: 𝑓′(𝑥) = lim
ℎ→0

𝑓(𝑥+
1

2
ℎ)−𝑓(𝑥−

1

2
ℎ)

ℎ
 with the error estimate 𝑂(ℎ2)

where ℎ is a “small” constant.

For multi-dimensional functions, the forward difference is:

𝑓𝑥𝑖(𝒙) ≈
𝑓(𝑥𝑖+ℎ,𝒙∖𝑥𝑖)−𝑓(𝒙)

ℎ
, where 𝒙 ∈ {𝑥1, 𝑥2, … , 𝑥𝑖}

 Vilius Ciuzelis

NONLINEAR OPTIMIZATION FOR HYPERPARAMETER COMPUTATION IN

GAUSSIAN PROCESSES MACHINE LEARNING

Appendix A - 44 - Partial kernel

derivatives

Forward and backward difference yield near identical results and are cheapest to

compute, whereas the central difference is the approximation that yields the most accurate

result at the cost of double the computing power of one of the other methods.

8.4. Partial kernel derivatives

The use of the partial derivatives of kernels is the minimization of the negative log

marginal likelihood function using a gradient based method. Given an arbitrary kernel function

of the form 𝑘(𝑥𝑖 , 𝑥𝑗|𝜃) = 𝑘(𝑥𝑖, 𝑥𝑗|𝜎𝑓 , 𝑙), find the first order partial derivatives with respect to

𝜃 or (𝜎𝑓 , 𝑙). All the derivations below start with the partial derivatives with respect to the noise-

free signal constant 𝜎𝑓, following the partial derivatives with respect to the characteristic

length-scale 𝑙. The derivations where 𝑥 has more than 1 dimension, 𝑙𝑘 will be used, where 𝑘 is

the dimension of 𝑥 the kernel is being differentiated along.

Squared Exponential

 The most common and widely used kernel

𝜕𝑘𝑆𝐸
𝜕𝜎𝑓

=

𝜕𝜎𝑓
2 exp [−

1
2
(𝑥𝑖 − 𝑥𝑗)

2

𝑙2
]

⏞
𝑓(𝒙,𝒍)

𝜕𝜎𝑓
=
𝜕𝜎𝑓

2𝑓(𝒙, 𝒍)

𝜕𝜎𝑓
= 2𝜎𝑓𝑓(𝒙, 𝒍) =

= 2𝜎𝑓 exp [−
1

2

(𝑥𝑖 − 𝑥𝑗)
2

𝑙2
] =

2

𝜎𝑓
𝑘𝑆𝐸

𝜕𝑘𝑆𝐸
𝜕𝑙

=

𝜕𝜎𝑓
2 exp [−

1
2
(𝑥𝑖 − 𝑥𝑗)

2

𝑙2
]

⏞
𝑓(𝒙,𝑙)

𝜕𝑙
= 𝜎𝑓

2
𝜕 exp(𝑓(𝒙, 𝑙))

𝜕𝑙
=

= 𝜎𝑓
2 exp(𝑓(𝒙, 𝑙))

𝜕𝑓(𝒙, 𝑙)

𝜕𝑙𝑘
= 𝜎𝑓

2 exp(𝑓(𝒙, 𝑙))⏟
𝑘𝑆𝐸

(−
1

2
⋅ −2

(𝑥𝑖 − 𝑥𝑗)
2

𝑙3
) =

=
(𝑥𝑖 − 𝑥𝑗)

2

𝑙3
𝑘𝑆𝐸

 Vilius Ciuzelis

NONLINEAR OPTIMIZATION FOR HYPERPARAMETER COMPUTATION IN

GAUSSIAN PROCESSES MACHINE LEARNING

Appendix A - 45 - Partial kernel

derivatives

∎

Squared Exponential with ARD

 SE kernel with the property of automatically choosing the relevant features in the

inference, called automatic relevance determination (ARD). The derivatives are nearly

identical to the SE kernel and follow the same procedure.

𝜕𝑘𝑆𝐸−𝑎𝑟𝑑
𝜕𝜎𝑓

=

𝜕𝜎𝑓
2 exp [−

1
2
∑

(𝑥𝑖𝑚 − 𝑥𝑗𝑚)
2

𝑙𝑚
2

𝑑
𝑚=1]

⏞
𝑓(𝒙,𝒍)

𝜕𝜎𝑓
=
𝜕𝜎𝑓

2𝑓(𝒙, 𝒍)

𝜕𝜎𝑓
= 2𝜎𝑓𝑓(𝒙, 𝒍) =

=
2

𝜎𝑓
𝜎𝑓
2 exp [−

1

2
∑

(𝑥𝑖𝑚 − 𝑥𝑗𝑚)
2

𝑙𝑚2

𝑑

𝑚=1

]
⏟

𝑘𝑆𝐸−𝑎𝑟𝑑

=
2

𝜎𝑓
𝑘𝑆𝐸−𝑎𝑟𝑑

𝜕𝑘𝑆𝐸−𝑎𝑟𝑑
𝜕𝑙𝑘

=

𝜕𝜎𝑓
2 exp [−

1
2
∑

(𝑥𝑖𝑚 − 𝑥𝑗𝑚)
2

𝑙𝑚2
𝑑
𝑚=1]

⏞
𝑓(𝒙,𝒍)

𝜕𝑙𝑘
= 𝜎𝑓

2
𝜕 exp(𝑓(𝒙, 𝒍))

𝜕𝑙𝑘
=

= 𝜎𝑓
2 exp(𝑓(𝒙, 𝒍))

𝜕𝑓(𝒙, 𝒍)

𝜕𝑙𝑘
= 𝜎𝑓

2 exp(𝑓(𝒙, 𝒍))⏟
𝑘𝑆𝐸−𝑎𝑟𝑑

(−
1

2
⋅ −2

(𝑥𝑖𝑘 − 𝑥𝑗𝑘)
2

𝑙𝑘
3) =

=
(𝑥𝑖𝑘 − 𝑥𝑗𝑘)

2

𝑙𝑘
3 𝑘𝑆𝐸−𝑎𝑟𝑑

The last derivative can also be derived using the exponent rule and differentiating every

term. The finals results of both methods yield identical results.

∎

Matérn 3/2

 Matérn class functions have the following expression:

𝑘𝑀𝑎𝑡𝑒𝑟𝑛 =
2(1−𝜈)

Γ(𝜈)
(
√2𝜈(𝑥𝑖 − 𝑥𝑗)

𝑙
)

𝜈

𝐾𝜈 (
√2𝜈(𝑥𝑖 − 𝑥𝑗)

𝑙
)

where two prominent cases are obtained by setting 𝜈 =
3

2
 and

5

2
. The behavior differs for

 Vilius Ciuzelis

NONLINEAR OPTIMIZATION FOR HYPERPARAMETER COMPUTATION IN

GAUSSIAN PROCESSES MACHINE LEARNING

Appendix A - 46 - Partial kernel

derivatives

different 𝜈’s. The kernel is equal to the squared exponential for 𝜈 = ∞. The kernel is

differentiable 𝑘 times for 𝜈 > 𝑘.

𝜕𝑘𝑀32
𝜕𝜎𝑓

=

𝜕𝜎𝑓
2 (1 +

√3(𝑥𝑖 − 𝑥𝑗)
𝑙

) exp (−
√3(𝑥𝑖 − 𝑥𝑗)

𝑙
)

𝜕𝜎𝑓
=

= 2𝜎𝑓 (1 +
√3(𝑥𝑖 − 𝑥𝑗)

𝑙
) exp (−

√3(𝑥𝑖 − 𝑥𝑗)

𝑙
) =

2

𝜎𝑓
𝑘𝑀32

𝜕𝑘𝑀32
𝜕𝑙

= exp (−
√3(𝑥𝑖 − 𝑥𝑗)

𝑙
)

𝜕𝜎𝑓
2 (1 +

√3(𝑥𝑖 − 𝑥𝑗)
𝑙

)

𝜕𝑙

+ 𝜎𝑓
2 (1 +

√3(𝑥𝑖 − 𝑥𝑗)

𝑙
)

𝜕 exp (−
√3(𝑥𝑖 − 𝑥𝑗)

𝑙
)

𝜕𝑙
=

= exp (−
√3(𝑥𝑖 − 𝑥𝑗)

𝑙
) (−𝜎𝑓

2 √3(𝑥𝑖 − 𝑥𝑗)

𝑙2
)

+ 𝜎𝑓
2 (1 +

√3(𝑥𝑖 − 𝑥𝑗)

𝑙
) exp(−

√3(𝑥𝑖 − 𝑥𝑗)

𝑙
)

⏟
𝑘𝑀32

(
√3(𝑥𝑖 − 𝑥𝑗)

𝑙2
) =

=

√3(𝑥𝑖 − 𝑥𝑗)

𝑙2
𝑘𝑀32

[

1 −
𝑙

𝑙 + √3(𝑥𝑖 − 𝑥𝑗)]

Alternative version, which can be obtained by keeping the exponent, does not involve the

kernel itself:

𝜕𝑘𝑀32
𝜕𝑙

= 𝜎𝑓
2 exp(−

√3(𝑥𝑖 − 𝑥𝑗)

𝑙
) [
𝑙2 + (𝑙 + 2)√3(𝑥𝑖 − 𝑥𝑗)

𝑙2
]

∎

 Vilius Ciuzelis

NONLINEAR OPTIMIZATION FOR HYPERPARAMETER COMPUTATION IN

GAUSSIAN PROCESSES MACHINE LEARNING

Appendix A - 47 - Partial kernel

derivatives

Matern 5/2

𝜕𝑘𝑀52
𝜕𝜎𝑓

=

𝜕𝜎𝑓
2 (1 +

√5(𝑥𝑖 − 𝑥𝑗)
𝑙

+
5(𝑥𝑖 − 𝑥𝑗)

2

3𝑙2
)exp(−

√5(𝑥𝑖 − 𝑥𝑗)
𝑙

)

𝜕𝜎𝑓
=

=
2

𝜎𝑓
𝑘𝑀52

𝜕𝑘𝑀52
𝜕𝑙

= 𝜎𝑓
2 exp (−

√5(𝑥𝑖 − 𝑥𝑗)

𝑙
) (−

√5(𝑥𝑖 − 𝑥𝑗)

𝑙2
−
10(𝑥𝑖 − 𝑥𝑗)

2

3𝑙3
)

+ 𝜎𝑓
2 (1 +

√5(𝑥𝑖 − 𝑥𝑗)

𝑙
+
5(𝑥𝑖 − 𝑥𝑗)

2

3𝑙2
)exp (−

√5(𝑥𝑖 − 𝑥𝑗)

𝑙
) (
√5(𝑥𝑖 − 𝑥𝑗)

𝑙2
)

= 𝜎𝑓
2 exp (−

√5(𝑥𝑖 − 𝑥𝑗)

𝑙
) [−

10(𝑥𝑖 − 𝑥𝑗)
2

3𝑙3
+
5(𝑥𝑖 − 𝑥𝑗)

𝑙3
+
5√5(𝑥𝑖 − 𝑥𝑗)

3

3𝑙4
]

= 𝜎𝑓
2
5(𝑥𝑖 − 𝑥𝑗)

2

3𝑙3
(
√5(𝑥𝑖 − 𝑥𝑗)

𝑙
+ 1) exp(−

√5(𝑥𝑖 − 𝑥𝑗)

𝑙
)

∎

There exists a solution involving 𝑘𝑀52 just like for 𝑘𝑀32:

𝜕𝑘𝑀52
𝜕𝑙

= 𝑘𝑀52 [−
10(𝑥𝑖 − 𝑥𝑗)

2

3𝑙3
⋅

1

1 +
√5(𝑥𝑖 − 𝑥𝑗)

𝑙
+
5(𝑥𝑖 − 𝑥𝑗)

2

3𝑙2

]

= 𝑘𝑀52 (−
10(𝑥𝑖 − 𝑥𝑗)

2

3𝑙3 + 3√5(𝑥𝑖 − 𝑥𝑗)𝑙2 + 5(𝑥𝑖 − 𝑥𝑗)
2
𝑙
)

∎

Periodic

 Periodic kernels are useful when the behavior of the system is known to contain

oscillations. Parameter 𝑝 determines the period of the oscillations.

𝑘𝑃𝑒𝑟 = 𝜎𝑓
2 exp (−

2

𝑙2
sin2 (𝜋

𝑥𝑖 − 𝑥𝑗

𝑝
))

 Vilius Ciuzelis

NONLINEAR OPTIMIZATION FOR HYPERPARAMETER COMPUTATION IN

GAUSSIAN PROCESSES MACHINE LEARNING

Appendix A - 48 - Partial kernel

derivatives

The derivatives of this kernel are shown below:

𝜕𝑘𝑃𝑒𝑟
𝜕𝜎𝑓

=
2

𝜎𝑓
𝑘𝑃𝑒𝑟

𝜕𝑘𝑃𝑒𝑟
𝜕𝑙

= 𝜎𝑓
2 exp (−

2

𝑙2
sin2 (𝜋

𝑥𝑖 − 𝑥𝑗

𝑝
)) (

4

𝑙3
sin2 (𝜋

𝑥𝑖 − 𝑥𝑗

𝑝
)) = 𝑘𝑃𝑒𝑟 (

4

𝑙3
sin2 (𝜋

𝑥𝑖 − 𝑥𝑗

𝑝
))

𝜕𝑘𝑃𝑒𝑟
𝜕𝑝

= 𝜎𝑓
2 exp (−

2

𝑙2
sin2 (𝜋

𝑥𝑖 − 𝑥𝑗

𝑝
))

(

−
2

𝑙2
⋅ −

𝜋(𝑥𝑖 − 𝑥𝑗) sin (
2𝜋(𝑥𝑖 − 𝑥𝑗)

𝑝)

𝑝2

)

= 𝑘𝑃𝑒𝑟

(

2𝜋(𝑥𝑖 − 𝑥𝑗) sin (

2𝜋(𝑥𝑖 − 𝑥𝑗)
𝑝)

𝑙2𝑝2

)

∎

 Vilius Ciuzelis

NONLINEAR OPTIMIZATION FOR HYPERPARAMETER COMPUTATION IN

GAUSSIAN PROCESSES MACHINE LEARNING

Appendix B - 49 - Robot

manipulator

code

9. Appendix B

Robot manipulator code

function output = Manipulator()

%% Robot manipulator

%%%

% This code uses refers to the paper "Nonlinear optimization for

% hyperparameter computation in Gaussian Processes machine learning" by

% Vilius Ciuzelis.

%

% Date: 1/9/2018

% Last edit: 6/6/2019

% Author: Vilius Ciuzelis

%%%

% INITIALIZE

sandbox = 0;

h = 0.01; % integration step length

time = 50; % simulation length

constants = getConstants(sandbox); % Define model constants

trajectory = getTrajectory(h, time, constants); % Define trajectory

% MAIN

data = simulate(h, trajectory, constants, sandbox); % Main simulation

% PRESENT

hFig = figure();

plotTraj(constants, trajectory, hFig); % Present the trajectory

animate(data, constants, hFig); % Present the results in an animation

plotErrDyn(data); % Present error dynamics

output = struct('q_1', data.q(1,:), ... % Structure the data

 'q_2', data.q(2,:), ...

 'q_1_dot', data.omega(1,:), ...

 'q_2_dot', data.omega(2,:), ...

 'u_1', data.tau(1,:), ...

 'u_2', data.tau(2,:));

%% Simulation

function res = simulate(h, traj, constants, sandbox)

 % See II Background theory -> Robot model

 % INITIALIZE

 [q, omega, omega_dot] = getInitialStates;

 [kp, kd] = getGains(constants, sandbox);

 f_coeff = getFCoeff(sandbox);

 storage = getStorage(length(traj));

 x_e = traj(:,1);

 y_e = traj(:,2);

 for i=1:1:length(traj)

 % --------------------------SENSE----------------------------------

 omega = omega + h * omega_dot;

 q = q + h * omega;

 [M, C, G] = getModel(constants, q, omega);

 % --------------------------PLAN-----------------------------------

 Vilius Ciuzelis

NONLINEAR OPTIMIZATION FOR HYPERPARAMETER COMPUTATION IN

GAUSSIAN PROCESSES MACHINE LEARNING

Appendix B - 50 - Robot

manipulator

code

 q_r = inverseKinematics(constants, x_e(i), y_e(i));

 tau = kd*(-omega) + kp*(q_r-q) - f_coeff*omega;

 % --------------------------ACT------------------------------------

 omega_dot = M\(tau-C*omega-G);

 % --------------------------STORE VALUES---------------------------

 storage.q(:,i) = q;

 storage.omega(:,i) = omega;

 storage.omega_dot(:,i) = omega_dot;

 storage.tau(:,i) = tau;

 storage.q_r(:,i) = q_r;

 [storage.l1_pos(:,i), storage.l2_pos(:,i), storage.ee_pos(:,i)] =

...

 forwardKinematics(constants,q);

 storage.error(:,i) = storage.q_r(:,i)-q; % error dynamics

 end

 res = struct('q', storage.q,... % Structure the output

 'omega', storage.omega,...

 'omega_dot', storage.omega_dot,...

 'tau', storage.tau,...

 'ee_pos', storage.ee_pos,...

 'l1_pos', storage.l1_pos,...

 'l2_pos', storage.l2_pos,...

 'error', storage.error,...

 'q_r', storage.q_r);

end

%% Storage function

function res = getStorage(count)

 zero = deal(zeros(2, count));

 res = struct('q', zero, ...

 'omega', zero, ...

 'omega_dot', zero,...

 'tau', zero, ...

 'ee', zero,...

 'l1', zero,...

 'l2', zero,...

 'error', zero,...

 'qr', zero);

end

%% Storage of constants

function res = getConstants(sandbox)

 if sandbox % Simple model for debugging

 l_1 = 1;

 l_2 = 0.7;

 m_1 = 1;

 m_2 = 1;

 else % Parameters based on KUKA LBR iiwa 14 R280

 l_1 = 42;

 l_2 = 52.6;

 m_1 = 9.6156;

 m_2 = 12.0424;

 end

 res = struct('l_1', l_1,... % length link 1

 'l_c1', (l_1/2), ...

 'l_2', l_2,... % length link 2

 Vilius Ciuzelis

NONLINEAR OPTIMIZATION FOR HYPERPARAMETER COMPUTATION IN

GAUSSIAN PROCESSES MACHINE LEARNING

Appendix B - 51 - Robot

manipulator

code

 'l_c2', (l_2/2), ...

 'm_1', m_1, ... % mass link 1

 'm_2', m_2, ... % mass link 2

 'g', 9.81,... % gravitational constant

 'I_1', (m_1*l_1^2/12),... % Inertia for link 1

 'I_2', (m_2*l_2^2/12)); % Inertia for link 2

end

%% Manipulator model

function [M, C, G] = getModel(const, q, omega)

 % See Appendix A: Derivation of the EOM for 2-link planar manipulator

 l_1 = const.l_1;

 l_c2 = const.l_c2;

 m_1 = const.m_1;

 m_2 = const.m_2;

 M_11 = const.I_1 + const.I_2 + m_1*const.l_c1^2 + ...

 m_2*(l_1^2 + l_c2^2 + 2*l_1*l_c2^2 + 2*l_1*l_c2*cos(q(2)));

 M_12 = const.I_2 + m_2*(l_c2^2 + l_1*l_c2*cos(q(2)));

 M_21 = M_12;

 M_22 = const.I_2 + m_2*l_c2^2;

 M =[M_11 M_12;

 M_21 M_22];

 C_11 = -m_2*l_1*l_c2*sin(q(2))*omega(2);

 C_12 = (-m_2*l_1*l_c2*sin(q(2)))*(omega(1)+omega(2));

 C_21 = m_2*l_1*l_c2*sin(q(2))*omega(1);

 C_22 = 0;

 C = [C_11 C_12;

 C_21 C_22];

 G_1 = const.g*((m_1*const.l_c1 + m_2*l_1)*cos(q(1)) + ...

 m_2*l_c2*cos(q(1)+q(2)));

 G_2 = const.g*m_2*l_c2*cos(q(1)+q(2));

 G = [G_1;

 G_2];

end

%% Friction coefficients

function res = getFCoeff(sandbox)

 if sandbox

 res = [2 0;

 0 1];

 else

 res = [10000 0;

 0 5000];

 end

end

%% Initial states

function [q, omega, omega_dot] = getInitialStates

 q = [-1; pi/2];

 omega = [0; 0];

 omega_dot = [0; 0];

end

%% Forward kinematics

function [link1, link2, endEffector] = forwardKinematics(const, q)

 % Computes the x and y coordinates of starting points of the links

 Vilius Ciuzelis

NONLINEAR OPTIMIZATION FOR HYPERPARAMETER COMPUTATION IN

GAUSSIAN PROCESSES MACHINE LEARNING

Appendix B - 52 - Robot

manipulator

code

 % See II Background theory -> Kinematics

 link1 = [0;

 0];

 link2 = [const.l_1*cos(q(1));

 const.l_1*sin(q(1))];

 endEffector = [link2(1) + const.l_2*cos(q(1)+q(2));

 link2(2) + const.l_2*sin(q(1)+q(2))];

end

%% Inverse kinematics

function res = inverseKinematics(const, x, y)

 % Computes the joint angles as a function of x and y

 % See II Background theory -> Kinematics

 l_1 = const.l_1;

 l_2 = const.l_2;

 arg1 = (x^2+y^2-l_1^2-l_2^2)/(2*l_1*l_2);

 q_2 = atan2(sqrt(1-(arg1)^2), arg1);

 q_1 = atan2(y,x) - atan2(l_2*sin(q_2), (l_1+l_2*cos(q_2)));

 res = [q_1; q_2];

end

%% Controller gains

function [kp, kd] = getGains(const, sandbox)

 % Controller parameters

 if sandbox

 k_d1 = 50;

 k_p1 = 500;

 k_d2 = 20;

 k_p2 = 200;

 else

 k_d1 = 30000*const.m_1*const.l_1/2;

 k_p1 = 100000*const.m_1*const.l_1;

 k_d2 = 1000*const.m_2*const.l_2;

 k_p2 = 50000*const.m_2*const.l_2/4;

 end

 kd = [k_d1 0;

 0 k_d2];

 kp = [k_p1 0;

 0 k_p2];

end

%% Identification trajectory

function [traj, count] = getTrajectory(h, steps, const)

 t = (0:h:steps-h+1)'; % time

 count = length(t);

 center = [const.l_1 0];

 radius = 1/2*const.l_2;

 theta = t*(2*pi/t(end));

 points = center + radius*[cos(theta) sin(theta)];

 traj = points;

end

%% Trajectory plotter

function plotTraj(const, traj, Hfig)

 l_1 = const.l_1;

 Vilius Ciuzelis

NONLINEAR OPTIMIZATION FOR HYPERPARAMETER COMPUTATION IN

GAUSSIAN PROCESSES MACHINE LEARNING

Appendix B - 53 - Robot

manipulator

code

 l_2 = const.l_2;

 [q,~,~] = getInitialStates;

 subplot(2,2,1)

 plot(traj(:,1), traj(:,2));

 grid on;

 title("Planned e.e. trajectory in the reachable workspace");

 axis([-(l_1+l_2) (l_1+l_2) -(l_1+l_2) (l_1+l_2)]);

 hold on;

 plot([0 cos(q(1))*l_1],[0 sin(q(1))*l_1]);

 hold on;

 plot([cos(q(1))*l_1 cos(q(1))*l_1 + cos(q(1) + q(2))*l_2],...

 [sin(q(1))*l_1 sin(q(1))*l_1 + sin(q(1) + q(2))*l_2]);

 hold off;

end

%% Animation

function animate(data, const, hFig)

 subplot(2,2,2);

 if nargin == 2

 hFig = figure();

 end

 d = 100; % frames per second

 j=1:d:length(data.q);

 ee_pos = data.ee_pos;

 l2_pos = data.l2_pos;

 for i=1:length(j)-1

 hold off

 plot(ee_pos(1,1:j(i)),ee_pos(2,1:j(i)), "-");

 hold on;

 plot([l2_pos(1,j(i)) ee_pos(1, j(i))],...

 [l2_pos(2, j(i)) ee_pos(2, j(i))],'o',...

 [data.l1_pos(1) l2_pos(1,j(i))],... % first arm

 [data.l1_pos(2) l2_pos(2,j(i))],'k',...

 [l2_pos(1,j(i)) ee_pos(1, j(i))],... % second arm

 [l2_pos(2,j(i)) ee_pos(2, j(i))],'k')

 hold on;

 title('Motion of the robot')

 xlabel('x')

 ylabel('y')

 axis([-const.l_1 - const.l_2, const.l_1 + const.l_2,...

 -const.l_1 - const.l_2, const.l_1 + const.l_2]);

 grid on;

 hold on;

 drawnow;

 end

end

%% Error dynamics plotter

function plotErrDyn(data)

 steps = 200;

 subplot(2,2,[3,4]);

 plot(1:steps, data.error(:,1:steps));

 txt = sprintf("Error dynamics in the first %d simulation steps", steps

);

 title(txt);

 Vilius Ciuzelis

NONLINEAR OPTIMIZATION FOR HYPERPARAMETER COMPUTATION IN

GAUSSIAN PROCESSES MACHINE LEARNING

Appendix B - 54 - Gaussian

Processes

inference code

 legend("Error in q_1", "Error in q_2");

end

end

Gaussian Processes inference code

%% GP Vilius Ciuzelis

run startup.m; % For gpml_randn()

input = Manipulator(); % Generate the model

%% Globals

global sigma_f sigma_n l gamma

sigma_f = 0.9; % standard deviation of the noise-free signal

sigma_n = 0.09; % standard deviation of the noise

l = 1; % Length-scale

gamma = 2; % For use in gammaExp cov. func. Value must be 2

rng('default'); % For repeatability

[X, xs, y, Y] = getInput('1'); % input:'1' - 1-dim sin curve

 % '2' - 4-dim robot arm

[x, y] = standardize(X', y'); % Standardize the inputs and outputs

covFunc = 'SE-ARD';

hyp = struct('M', ones(size(X,2),1), 'sf', sigma_f , 'sn', sigma_n);

%% OPTIMIZE

wolfe = struct('verbose', 1, ... show intermediate plots if 1

 'c_1', 10^-4,...

 'c_2', 10^-1,... 0.9 for loose line search

 'itermax', 100,...

 'jmax', 100);

params = struct('itermax', 100, ...

 'gradientType', 'anal', ... 'anal', 'approx'

 'precond', '', ...

 'beta', 'FR-PR', ... 'FR', 'PR', 'PR+', 'FR-PR', 'SD'

 'verbose', 1,...

 'v', 0.1, ... Conjugacy requirement, typical 0.1

 'wolfe', wolfe);

tic;

res_struct = optimize(covFunc, x, y, [ones(size(x,1),1); sigma_f; sigma_n

]', params);

toc;

res = res_struct.hyp;

%% -----------------------GP REGRESSION------------------------------------

hyp = struct('M', res(1:end-2), 'sf', res(end-1) , 'sn', res(end));

% Perform GP

[mu, variance, covariance] = getGP(x', xs, y', covFunc, hyp);

figure;

plot(mu); hold on;

plot(y); legend('Predicted mean \mu', 'Input y');

% MSE = mean(mu-Z).^2;

% SMSE = MSE/std(Y);

if 1 plotGP(covFunc, mu, variance, x', xs, y'); end

%% -------------------------------PRIOR------------------------------------

 Vilius Ciuzelis

NONLINEAR OPTIMIZATION FOR HYPERPARAMETER COMPUTATION IN

GAUSSIAN PROCESSES MACHINE LEARNING

Appendix B - 55 - Gaussian

Processes

inference code

prior = getFPrior(covFunc, hyp, xs, 10);

if 1 plotPrior(prior, xs); end

%% -----------------------------POSTERIOR----------------------------------

posterior = getFPost(mu, covariance, 10);

if 1 plotPost(posterior, mu, variance, x', xs, y); end %#ok<*SEPEX>

% -----------------------Plotter functions start---------------------------

%% Plot prior

function plotPrior(prior, xs)

 %%%

 % arg prior attributes:

 % mean

 % variance

 % samples

 %%%

 hyp = evalin('base', 'hyp');

 figure(); subplot(2,2,2); hold on;

 plot(xs, prior.samples);

 mu = plot(xs, prior.mu, 'r--');

 sigma = plot(xs, prior.mu+2*sqrt(prior.sigma), 'k--');

 plot(xs, prior.mu-2*sqrt(prior.sigma) ,'k--');

 legend([mu, sigma] , 'Mean', '95% Confidence interval');

 txt = sprintf('Samples from the prior distribution');

 title(txt);

 subplot(2,2,1);

 plot(xs, prior.random_functions);

 txt = sprintf("%d random function samples drawn from the normal

distribution", size(prior.random_functions, 2));

 title(txt);

 hold on;

 subplot(2,2,3);

 norm = normpdf(xs, 0, 1);

 plot(xs, norm, 'LineWidth', 2); hold on;

 histogram(normalize(prior.random_functions), 'Normalization', 'pdf',

'BinMethod', 'auto');

 title("Histogram over normal samples");

 legend("Normal distribution");

 hold off;

end

%% Plot GP

function plotGP(covFunc, mu, variance, X, xs, y)

figure(); hold on;

var = plot(xs, mu+2*sqrt(variance), 'k--'); plot(xs, mu-2*sqrt(variance)

,'k--');

mean = plot(xs, mu, 'b');

testpoints = plot(X, y, 'r+'); hold off;

legend([var, mean, testpoints] , '95% Confidence interval', 'Predicted

mean', 'Test points');

txt = sprintf('GP regression using %s', covFunc);

title(txt);

end

%% Plot Posterior

function plotPost(posterior, mu, variance, X, xs, y)

 Vilius Ciuzelis

NONLINEAR OPTIMIZATION FOR HYPERPARAMETER COMPUTATION IN

GAUSSIAN PROCESSES MACHINE LEARNING

Appendix B - 56 - Gaussian

Processes

inference code

subplot(2,2,4); hold on;

plot(xs, posterior);

var = plot(xs, mu+2*sqrt(variance), 'k--'); plot(xs, mu-2*sqrt(variance)

,'k--');

testpoints = plot(X, y, 'r+'); hold off;

legend([var, testpoints] , '95% Confidence interval', 'Test points');

txt = sprintf('Samples from inference');

title(txt);

end

%% Covariance function

function res = kernel(covariance_function, X, Y, hyp)

 % CONVERT TO X: D x N, Y: d x M

 x = X';

 y = Y';

 [D, N] = size(x);

 [d, M] = size(y);

 % PREALLOC

 res = zeros(N, M);

 switch covariance_function

 case 'SE-ARD'

 prodl = prod(hyp.M)^2;

 for row=1:N

 for col=1:M

 res(row,col) = hyp.sf^2*exp(-0.5*sum((x(:,row)-

y(:,col)).^2/prodl));

 end

 end

 end

end

%% Prior

function prior = getFPrior(covFunc, hyp, X_star, n)

 % Generate n samples from the prior distribution.

 % x ~ N(mu, K), where mu is the mean and K is the

 % covariance matrix

 Ns = length(X_star);

 KXX = kernel(covFunc, X_star, X_star, hyp);

 L = chol(KXX + 1e-6*eye(Ns), 'lower');

 u = randn(Ns , n); % n random Gaussian distributions

 samples = L * u; % + 0 mean

 variance = diag(KXX);

 prior = struct('mu', zeros(Ns,1), 'sigma', variance, ...

 'samples', samples, 'random_functions', u);

end

%% GP regression

function [mean, var, cov] = getGP(X, X_star, y, covFunc, hyp)

 % This function uses algorithm 2.1 from Rasmussen&Williams, 2006

 n = length(X);

 KXX = kernel(covFunc, X,X, hyp) + hyp.sn^2*eye(n) ;

 K_star = kernel(covFunc, X_star, X, hyp);

 K_star_star = kernel(covFunc, X_star, X_star, hyp);

 Vilius Ciuzelis

NONLINEAR OPTIMIZATION FOR HYPERPARAMETER COMPUTATION IN

GAUSSIAN PROCESSES MACHINE LEARNING

Appendix B - 57 - Gaussian

Processes

inference code

 L = chol(KXX , 'lower');

 Lk = L\K_star';

 invKy = L'\(L\y);

 mean = K_star * invKy;

 cov = K_star_star - Lk' * Lk;

 var = diag(cov) + hyp.sn^2 * ones(length(cov), 1); % noisy data

end

%% Posterior

function posterior = getFPost(mu, K, n)

 % Generate n samples from the posterior distribution.

 % x ~ N(mu, K), where mu is the mean and K is the

 % covariance matrix, ref p. 201 R&W

 L = chol(K + 10e-6*eye(length(mu)), 'lower');

 posterior = mu + L * randn(length(mu), n);

end

%% Squared Exponential covariance function (2.20) R&W 2006

function res = SE(arg1, arg2, hyp)

 res = hyp.sf^2*exp(-0.5*(hyp.l)\(sum((arg1-arg2).^2))) + ...

 hyp.sn^2*eq(arg1, arg2);

end

%% MacKay covariance function, (4.31) R&W 2006

function res = MacKay(arg1, arg2, hyp)

 r = arg1-arg2;

 res = exp(-2*inv(hyp.l^2)*sin(r/2).^2);

end

%% Matérn v=3/2 covariance function, (4.17) R&W 2006

function res = Matern32(arg1, arg2)

 hyp = getHyp;

 r = arg1-arg2;

 res = (1+sqrt(3)*r*inv(hyp.l))*exp(-sqrt(3)*r*inv(hyp.l));

end

%% Matérn v=5/2 covariance function, (4.17) R&W 2006

function res = Matern52(arg1, arg2)

 hyp = getHyp;

 r = arg1-arg2;

 res = (1+sqrt(5)*r*inv(hyp.l)+5*r^2*inv(3*hyp.l^2))*exp(-

sqrt(5)*r*inv(hyp.l));

end

%% Gamma-exponential covariance function, (4.18) R&W 2006

function res = gammaExp(arg1, arg2)

 hyp = getHyp;

 r = arg1-arg2;

 res = exp(-(r/hyp.l)^hyp.gamma);

end

%% Exponential covariance function

function res = Exp(arg1, arg2)

 hyp = getHyp;

 r = arg1-arg2;

 res = exp(-r*inv(hyp.l));

end

 Vilius Ciuzelis

NONLINEAR OPTIMIZATION FOR HYPERPARAMETER COMPUTATION IN

GAUSSIAN PROCESSES MACHINE LEARNING

Appendix B - 58 - Gaussian

Processes

inference code

%% Input fetcher

function [X, xs, Y, y] = getInput(dataset)

 switch dataset

 case '1'

 % from http://www.gaussianprocess.org/gpml/code/matlab/doc/

 n = 20;

 X = gpml_randn(0.8, n, 1); % 20 training inputs

 xs = linspace(-3, 3, 61)'; % 20 test inputs

 Y = sin(3*X);

% Z = sin(3*xs);

 y = Y + 0.1*gpml_randn(0.9, n, 1); % 20 noisy training targets

 case '2'

 s = 1; % starting index

 e = 200; % ending index

 sp = 2; % spacing index

 output = evalin('base', 'input');

 X = [output.q_1(s:sp:e)', ... % Training data

 output.q_2(s:sp:e)', ...

 output.q_1_dot(s:sp:e)', ...

 output.q_2_dot(s:sp:e)'];

 Y = output.u_1(s:sp:e)'; % True function

 y = Y + 0.05*gpml_randn(0.05, length(Y), 1); % Target data

 xs = linspace(1, length(y), length(y))'; % test inputs

 case '3'

 % Values from the uniform distribution on the interval (a, b)

 X1 = 100.*rand(100,1);

 X2 = 100.*rand(100,1);

 X = [X1 X2];

 Y = sin(pi*X1)+cos(2*pi*X2);

 y = Y + 0.1*gpml_randn(0.9, 100, 1);

 xs = linspace(-20, 120, 200);

 end

end

%% Input plotter

function plotInput(val)

 if val

 y = evalin('base', 'y');

 X = evalin('base', 'X');

 figure();

 plot(X, y, '+'); hold on;

 plot(linspace(-2,2,100), sin(3*linspace(-2,2,100)));

 legend('Training points', 'True function');

 xlabel('input, index'); ylabel('output, y');

 end

end

%% Standardize

function varargout = standardize(varargin)

 %%% x - mean(x)

 % Standard score using formula: x_new = -----------

 % std(x)

 %%%

 % PREALLOC

 varargout = cell(size(varargin));

 for i=1:nargin

 Vilius Ciuzelis

NONLINEAR OPTIMIZATION FOR HYPERPARAMETER COMPUTATION IN

GAUSSIAN PROCESSES MACHINE LEARNING

Appendix B - 59 - Optimization

algorithm

 [D, N] = size(varargin{i});

 for j=1:D

 varargout{i}(j, :) = ...

 (varargin{i}(j, :) - mean(varargin{i}(j,

:)))/std(varargin{i}(j, :));

 end

 end

end

Optimization algorithm

function res = optimize(covFunc, inputX, inputY, inputTheta, params)

%%%

% Hyperparameter optimization using the negative marginal likelihood method

% Input:

% inputX - (D x N) training input vector

% inputY - (d x N) training target vector

% theta = struct('l', theta(1:end-2), 'sf', theta(end-1), 'sn',

theta(end));

%%%

 % INITIALIZE

 X = inputX;

 Y = inputY;

 theta = inputTheta(1:end-1)';

 sn = inputTheta(end);

 [D, N] = size(X);

 [d, M] = size(Y);

 if(N~=M) error('Check the length of the training vectors X and Y'); end

 verboseON = params.verbose;

 % -------------PLOTTING AREA--------------

 if verboseON

 L1 = linspace(0.1, 10, 100);

 L2 = linspace(0.1, 10, 100);

 len = length(L1);

 MLgrid = zeros(len);

 for i=1:len

 for j=1:len

 MLgrid(i, j) = NLML([L1(i), L2(j)]);

 end

 end

 fig5 = figure(5);

 ax5 = axes('Parent', fig5);

 contour(ax5, L1, L2, MLgrid', 500);

 hold on;

% figure; imshow(mat2gray(MLgrid));

 %--

 outputNames = ...

 '| ITER | FUN VAL | X VAL

| DATA FIT | CMPX PEN | NORM CNST |\n';

 outputLine = ...

'|===

===|\n';

 outputHeader = strcat('\n\n\n',outputLine,outputNames,outputLine);

 end

 Vilius Ciuzelis

NONLINEAR OPTIMIZATION FOR HYPERPARAMETER COMPUTATION IN

GAUSSIAN PROCESSES MACHINE LEARNING

Appendix B - 60 - Optimization

algorithm

 if strcmp(covFunc, 'SE-ARD')

 if verboseON

 fprintf('--> Hyperparameter optimization: optimizer = NCG,

kernel = %s \n', covFunc);

 end

 %--------------------------NCG START------------------------------%

 % DEFINE

 getF = @(x) NLML(x);

 getDf = @(x) dNLML(x);

 itermax = params.itermax;

 % PREALLOC

 x = zeros(D+1, itermax+1);

 df = zeros(D+1, itermax+1);

 alpha = zeros(1, itermax+1);

 p = zeros(D+1, itermax+1);

 beta = zeros(1, itermax+1);

 % INITIALIZE

 abort_counter = 0;

 abort_flag = 0;

 success_flag = 0;

 x(:, 1) = theta; % Given x0

 df(:, 1) = getDf(x(:, 1)); % Evaluate df0 = df(x0)

 p(:, 1) = -df(:, 1); % Set p0 = -df0

 k = 1; % k = 0

 old_fk = getF(x(:, k));

 % MAIN NCG LOOP

 while 1

 if verboseON

 plot(ax5, x(1, k), x(2, k), 'k+');

 % Print to command view

 if mod(k-1, 20)==0 fprintf(outputHeader); end

 [funval, datafit, cmpxpen, normcnst] = NLML(x(:, k));

 outputData = ...

 getOutputData(k,funval,x(:,k), datafit, cmpxpen,

normcnst);

 fprintf(outputData);

 end

 % Line search

 if (k>1)

 old_fk = getF(x(:, k-1));

 end

 alpha(:, k) = ... % Compute ak

 wolfe(getF, getDf, p(:,k), x(:, k), params.wolfe);

 % Update hyperparameters

 x(:,k+1)= x(:,k) + alpha(:,k)*p(:,k); % set xk+1 = xk + ak*pk;

 % Update gradients

 df(:, k+1) = getDf(x(:, k+1)); % Evaluate dfk+1;

 % Update search direction

 beta(:, k+1) = ... % betaFRk+1 = df'k+1*dfk+1/df'k*dfk (5.41a)

 Vilius Ciuzelis

NONLINEAR OPTIMIZATION FOR HYPERPARAMETER COMPUTATION IN

GAUSSIAN PROCESSES MACHINE LEARNING

Appendix B - 61 - Optimization

algorithm

 getBeta(df(:, k+1), df(:, k), p(:, k), params.beta);

 p(:, k+1) = ... % pk+1 = -dfk+1 + betaFRk+1*pk (5.41b)

 -df(:, k+1)+ beta(:, k+1)*p(:, k);

 k = k + 1; % k = k + 1 (5.41c)

 % Check conjugacy

 gradients_not_conjugate = (p(:, k+1)'*p(:, k)) <= 0;

 if gradients_not_conjugate

 p(:, k+1) = -df(:, k+1);

 end

 % ABORT CONDITIONS

 if (k >= itermax)

 break;

 end

 if (alpha(:, k-1) < sqrt(eps))

 abort_counter = abort_counter + 1;

 else

 abort_counter = 0;

 end

 if abort_counter >= 5

 abort_flag = 1;

 break;

 end

 success_flag = 1;

 end % end (while)

 %---------------------------NCG END-------------------------------%

 end

 if verboseON

 plot(ax5, x(1, k), x(2, k), 'r+');

 if abort_flag

 fprintf('\t\t Aborted due to lack of progress\n');

 elseif success_flag

 fprintf('\t\t Terminated successfully\n');

 end

 end

 % Truncate the vectors

 x = x(:, 1:k);

 df = df(:, 1:k);

 alpha = alpha(1:k);

 p = p(:, 1:k);

 beta = beta(1:k);

 res = struct('hyp' , [x(:, k); sn], 'NLML', NLML(x(:, k)));

% -------------------------- HELPER FUNCTIONS ----------------------------%

 function beta = getBeta(r_new, r_old, pk, type)

 if (strcmp(params.beta, 'SD')) % check for steepest descent

 beta = 0;

 return;

 end

 switch type

 case 'FR'

 beta = (r_new'*r_new)/(r_old'*r_old);

 case 'PR'

 beta = r_new'*(r_new-r_old)/(r_old'*r_old);

 case 'PR+'

 Vilius Ciuzelis

NONLINEAR OPTIMIZATION FOR HYPERPARAMETER COMPUTATION IN

GAUSSIAN PROCESSES MACHINE LEARNING

Appendix B - 62 - Optimization

algorithm

 beta = max(r_new'*(r_new-r_old)/(r_old'*r_old), 0);

 case 'FR-PR'

 betaFR = (r_new'*r_new)/(r_old'*r_old);

 betaPR = r_new'*(r_new-r_old)/(r_old'*r_old);

 if (betaPR < -betaFR)

 beta = -betaFR;

 elseif (abs(betaPR)<=betaFR)

 beta = betaPR;

 elseif betaPR > betaFR

 beta = betaFR;

 end

 case 'HS'

 beta = r_new'*(r_new-r_old)/(r_new-r_old)'*pk;

 otherwise

 warning('No step search method selected. Beware!');

 end

 end

 function res = dNLML(x)

 %%%

 % Partial derivatives of the Negative Log Marginal Likelihood with

 % respect to all hyperparameters, ref eq. (5.9) R&W 2006

 % x - (1 x D+1) hyperparameter list

 % type - 'analytical' (default), 'approximation'

 %%%

 % PREALLOC

 res = zeros(size(x));

 thetak = x;

 l = x(1:end-1);

 sf = x(end);

 switch params.gradientType

 case 'anal'

 Ky = kernel(thetak, X, X)+sn^2*eye(N); % Ky

 L = chol(Ky, 'lower');

 invKy = L'\(L\Y'); % Ky^-1y

 val = (invKy*invKy'-inv(L*L')); % alpha*alpha'-K^-1

 % COMPUTE d(ML)/d(l) and d(ML)/d(sf)

 for dim=1:length(l)

 dKydl = (((X(dim, :)-X(dim,:)').^2)/l(dim)^3).* Ky;

 res(dim) = -0.5*trace(val*dKydl);

 end

 dKydsf = (2/sf) * Ky;

 res(end) = -0.5*trace(val*dKydsf);

 case 'approx'

 delta = sqrt(eps);

 for dim=1:length(l) % forward finite difference

 theta_delta = thetak;

 theta_delta(dim) = l(dim)+delta;

 res(dim) = (NLML(theta_delta)-NLML(thetak))/delta;

 end

 theta_delta = thetak;

 theta_delta(end) = thetak(end)+delta;

 res(end) = (NLML(theta_delta)-NLML(thetak))/delta;

 end

 end

 Vilius Ciuzelis

NONLINEAR OPTIMIZATION FOR HYPERPARAMETER COMPUTATION IN

GAUSSIAN PROCESSES MACHINE LEARNING

Appendix B - 63 - Optimization

algorithm

 % Squared Exponential Automatic Relevance Determination (ARD) kernel

 function res = kernel(hyp, X, Y)

 %%% Checked and optimized

 % hyp - 1 x D+1 vector consisting of

 % 1 x D characteristic length scales l, and

 % 1 x 1 noise-free signal standard deviation -sigma_n

 % X - D x N training data

 % Y - D x N training data

 %%%

 lProduct = prod(hyp(1:end-1));

 sf2 = hyp(end)^2;

 exp_arg = zeros(length(X));

 for dim=1:size(X,1)

 exp_arg = exp_arg + (X(dim, :) - Y(dim,:)').^2;

 end

 res = sf2*exp(-0.5*exp_arg/lProduct^2);

 end

 function [res, data_fit, compl_pen, norm_const] = NLML(theta)

 %%%

 % Negative Log Marginal Likelihood

 % 1 1 1

 % -*y'*(Ky^-1)*y + -*log(|Ky|) + -*log(2pi)

 % 2 2 2

 %%%

 y = Y';

 Ky = kernel(theta, X, X)+sn^2*eye(N);

 try

 L = chol(Ky, 'lower');

 catch ME

 switch ME.identifier

 case 'MATLAB:posdef'

 error('Ky not positive definite. Check your theta');

 end

 end

 invKy = L'\(L\y);

 data_fit = 0.5*y'*invKy;

 % Complexity penalty is the same as 1/2*log(det(Ky)). This

 % implementation is 3-4 times faster

 compl_pen = sum(log(diag(L)));

 norm_const = 0.5*N*log(2*pi);

 res = data_fit+compl_pen+norm_const;

 end

 function res = getOutputData(iter, funval, xval, datafit, cmpxpen,

normcnst)

 % ITER

 xval = xval';

 val1 = num2str(iter,4);

 for it = 1:(5-(length(val1)))

 val1 = [val1 ' '];

 end

 val1 = ['| ' val1 '|'];

 % FUN VAL

 Vilius Ciuzelis

NONLINEAR OPTIMIZATION FOR HYPERPARAMETER COMPUTATION IN

GAUSSIAN PROCESSES MACHINE LEARNING

Appendix B - 64 - Wolfe

conditions

algorithm

 val2 = num2str(funval,6);

 for it = 1:(13-(length(val2)))

 val2 = [val2 ' '];

 end

 val2 = [' ' val2 ' |'];

 % X VAL

 val3 = num2str(xval,3);

 while contains(val3, ' ')

 val3 = strrep(val3, ' ', ' ');

 end

 for it = 1:(53-(length(val3)))

 val3 = [val3 ' '];

 end

 val3 = [' ' val3 ' |'];

 % DATA FIT

 val4 = num2str(datafit,3);

 for it = 1:(10-(length(val4)))

 val4 = [val4 ' '];

 end

 val4 = [' ' val4 ' |'];

 % CMPX PEN

 val5 = num2str(cmpxpen,3);

 for it = 1:(8-(length(val5)))

 val5 = [val5 ' '];

 end

 val5 = [' ' val5 ' |'];

 % NORM CNST

 val6 = num2str(normcnst,3);

 for it = 1:(9-(length(val6)))

 val6 = [val6 ' '];

 end

 val6 = [' ' val6 ' |'];

 res = strcat(val1, val2, val3, val4, val5, val6, '\n');

 end

end

Wolfe conditions algorithm

function res = wolfe(f, df, pk, xk, params)

%%%

% Wolfe line search algorithm, ref. p. 60 Nocedal 2006

% Search for alpha - D x 1

% given: xk, ak, pk, f, df

%%%

% DEFINE

phi = @(a) f(xk + a*pk);

dphi = @(a) (phi(a+sqrt(eps))-phi(a))/ (sqrt(eps));

dphi2 = @(a) df(xk + a*pk)'*pk;

verbose = params.verbose;

% INITIALIZE

phi_0 = phi(0);

 Vilius Ciuzelis

NONLINEAR OPTIMIZATION FOR HYPERPARAMETER COMPUTATION IN

GAUSSIAN PROCESSES MACHINE LEARNING

Appendix B - 65 - Wolfe

conditions

algorithm

dphi_0 = dphi(0);

alpha_max = 1;

% (3.60) NOCEDAL

% alphas = [min(1, 0.01*(2*(f(xk)-fk_minus1)/dphi_0)); alpha_max];

alphas = [0; alpha_max]; % [previous step, current step]

i = 2;

function_value_increase = 0;

% --DRAWING BOARD

if verbose

 L1 = linspace(0.0001, alpha_max, 1000);

 len = length(L1);

 l = zeros(len,1);

 for k=1:len

 l(k) = phi(L1(k));

 end

 fig = figure();

 ax = axes('Parent', fig);

 plot(ax, L1, l);

 hold on;

end

%--

% MAIN LOOP

while 1

 try

 if verbose

 plot(ax, alphas(2), phi(alphas(2)), 'ok');

 end

 val = phi(alphas(2)); % evaluate phi(alpha_i)

 % Sufficient decrease condition

 not_sufficient_decrease = val > (phi_0 +

params.c_1*alphas(2)*dphi_0);

 if i > 2

 function_value_increase = (val >= phi(alphas(1)));

 end

 if not_sufficient_decrease || (function_value_increase)

 % alpha chosen is too big. Find smaller alpha!

 res = zoom(alphas(1), alphas(2));

 if verbose

 plot(ax, res, phi(res), 'r+');

 end

 break;

 end

 % Sufficient decrease condition passed. Let's take a look at the

 % curvature condition next!

 val = dphi(alphas(2)); % evaluate phi'(alpha_i)

 % Curvature condition

 sufficient_curvature = abs(val)<= -params.c_2*dphi_0;

 if sufficient_curvature

 % All conditions met. Keep alpha_i!

 res = alphas(2);

 if verbose

 plot(ax, res, phi(res), 'r+');

 end

 Vilius Ciuzelis

NONLINEAR OPTIMIZATION FOR HYPERPARAMETER COMPUTATION IN

GAUSSIAN PROCESSES MACHINE LEARNING

Appendix B - 66 - Wolfe

conditions

algorithm

 break;

 end

 % Curvature condition violated!

 if val >= 0

 % Alpha too big! Find smaller alpha!

 res = zoom(alphas(2), alphas(1));

 if verbose

 plot(ax, res, phi(res), 'r+');

 end

 break;

 end

 alphas(1) = alphas(2);

 alphas(2) = interpolate(alphas(2), alpha_max);

 i = i+1;

 % EXIT CONDITION

 if (i > params.itermax)

 if verbose

 warning('Reached max iterations');

 end

 break;

 end

 catch ME

 error('Line search has encountered an error and needs to close');

 end

end

% ----------------------- HELPER FUNCTIONS ----------------------------

 function res = zoom(a, b)

 %%%

 % Zoom algorithm, ref. p. 61 Nocedal 2006

 %%%

 % INITIALIZE

 if a >= b

 alpha_high = a;

 alpha_low = b;

 else

 alpha_low = a;

 alpha_high = b;

 end

 j = 1;

 jmax = params.jmax;

 try

 while j < jmax

 % Interpolate from alpha_low to alpha_high

 alpha_j = interpolate(alpha_low, alpha_high);

 FUNC_VAL_BIG_STEP = phi(alpha_j);

 FUNC_VAL_SMALL_STEP = phi(alpha_low);

 FUNC_VAL_TINY_STEP = (phi_0+params.c_1*alpha_j*dphi_0);

 % IF FUN VAL increases with BIG step OR the TINY step

 if (FUNC_VAL_BIG_STEP > FUNC_VAL_TINY_STEP) ||...

 (FUNC_VAL_BIG_STEP >= FUNC_VAL_SMALL_STEP)

 % THEN update the highest allowable step size

 alpha_high = alpha_j;

 else

 Vilius Ciuzelis

NONLINEAR OPTIMIZATION FOR HYPERPARAMETER COMPUTATION IN

GAUSSIAN PROCESSES MACHINE LEARNING

Appendix B - 67 - Wolfe

conditions

algorithm

 % Sufficient decrease achieved!

 val = dphi(alpha_j);

 if abs(val) <= -params.c_2*dphi_0

 % Curvature condition is also OK! BREAK!

 res = alpha_j;

 break;

 end

 if (val*(alpha_high-alpha_low)) >= 0

 alpha_high = alpha_low;

 end

 alpha_low = alpha_j;

 end

 j = j+1;

 end

 catch

 error('zoom(a, b) has encountered an error and needs to

close');

 end

% if (phi(alpha_j) > phi_0) % if no improvement was made, DONT

MOVE

% res = 0;

% else

% res = alpha_j;

% end

 res = alpha_j;

 end % zoom

 function res = interpolate(x1, x2)

 %%%

 % Interpolation algorithm, ref. p. 57-59 Nocedal 2006

 % Arguments:

 % type

 % interval to interpolate [a, b]

 %%%

 % INITIALIZE

 error_flag = 0;

 f_x1 = phi(x1);

 f_x2 = phi(x2);

 g_x1 = dphi(x1);

 g_x2 = dphi(x2);

 if x1==x2 % No need to interpolate

 res = x1;

 return;

 end

 if g_x1 == 0

 res = x1;

 return;

 elseif g_x2 == 0

 res = x2;

 return;

 end

 % MAIN

 try

 d1 = g_x1 + g_x2 - 3*(f_x1-f_x2)/(x1-x2);

 d2 = sign(x2-x1)*sqrt(d1^2-g_x1*g_x2);

 Vilius Ciuzelis

NONLINEAR OPTIMIZATION FOR HYPERPARAMETER COMPUTATION IN

GAUSSIAN PROCESSES MACHINE LEARNING

Appendix B - 68 - Wolfe

conditions

algorithm

 res = x2 - (x2-x1)*((g_x2+d2-d1)/(g_x2-g_x1+2*d2));

 catch

 error_flag = 1;

 end

 if ~isreal(res)

 if verbose

 warning('Interpolation yields imaginary results');

 end

 res = x1;

 end

 if error_flag

 error('interpolate(x1, x2) encountered an error and needs to

close');

 end

 end

end % wolfe

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lt

y
of

 In
fo

rm
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ri
ca

l
En

gi
ne

er
in

g
D

ep
ar

tm
en

t o
f E

ng
in

ee
ri

ng
 C

yb
er

ne
tic

s

M
as

te
r’

s
th

es
is

Vilius Ciuzelis

Nonlinear optimization for
Hyperparameter computation in
Gaussian Processes machine learning

Master’s thesis in Engineering Cybernetics
Supervisor: Lars Imsland

June 2019

