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Preface

This thesis is the culmination of my work in the five-years integrated MSc program in Cy-
bernetics and Robotics at the Norwegian University of Science and Technology (NTNU).
The work with the thesis was performed during the spring of 2019 under the supervision
of Morten Breivik, Edmund Førland Brekke and Egil Eide. Through the entirety of the
thesis, I have been aided by valuable discussions and insights to be applied in my work.
I would also like to thank Torleiv H. Bryne and Erik F. Wilthil for insightful knowledge
about the error-state Kalman filter (ESKF) and its implementation. I would like to thank
my fellow graduate students who have been valuable partners in discussions about topics
relevant to my thesis. Lastly, I would like to thank my family for all the support throughout
the years.

The thesis is linked to the vessel milliAmpere, which is a prototype for an autonomous
passenger ferry for use in urban waterways. The need for a new, improved guidance, nav-
igation and control (GNC) system on the vessel served as motivation. The thesis is aimed
at an audience with previous knowledge in topics in control theory and estimation theory.
The algorithms used in the thesis rely heavily on knowledge of the feedback loop, Lya-
punov theory, and the Kalman filter, among others. Additionally, practical experience on
how to apply them in practice is preferred. The thesis assumes knowledge in linear algebra
and modelling of stochastic noise and their distributions. Even though prior knowledge is
expected, the thesis introduces concepts before applying them, providing the possibility
to follow along without extensive previous experience with the algorithms that are being
implemented.

The main contribution of this thesis is the design and implementation of a new navigation
system and motion control system. The navigation system performs sensor fusion of the
available sensor data, and the new motion control system uses an adaptive backstepping
control approach. The new implementation uses the existing guidance system and thrust
allocation. The system is implemented in Python, with the additional use of the Robot
Operating System framework. Additionally, the library "numpy" is used to enhance the
innate abilities for the programming language for use towards linear algebra. MATLAB is
used for the analysis of the data obtained. The implementations have been tested, verified
and validated through testing in simulated environments and an experimental environment.

The work on the adaptive control is based on an on-line paper co-authored by my super-
visor Morten Breivik. The navigation system is based on recent papers available on-line.
Bi-weekly meetings with the advisers were held during the entirety of the thesis. The
meetings sought to serve as follow-up meetings where recent progress and issues were
discussed, and as a means for general guidance with my work.

The bumpy time-consuming road of implementing the ESKF was aided by guidance from
Edmund F. Brekke, Erik F. Wilthil and Torleiv H. Bryne. Their advice consisted of dif-
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ferent suggestions to deal with debugging issues. Their guidance helped me overcome the
implementation issues I faced. The rest of the work has been independent through the en-
tirety of the thesis. The previous working experience I have on the experimental platform
helped significantly during the experimental tests. The well-rounded prior knowledge of
the platform, in conjunction with earlier involvement with the software development, made
it possible to obtain the presented results during both the simulations and the experimental
tests with no outside help.

Brage Sæther
June 10th, 2019

Trondheim, Norway
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Summary

Marine vessels operating in a confined area demands a robust and accurate navigation
and control system. This thesis presents the implementations of a navigation system and
a motion control system. The implementations in the thesis explore two state of the art
methods in their respective fields and their implementations on an experimental platform.

In the implementation of the new motion control system, the L1 adaptive control approach
utilizes adaptive backstepping for faster convergence of the unmodeled dynamics. The
latest motion control approach is coupled with an ESKF that performs sensor fusion and
state estimation. Together these approaches serve as an upgrade over the prior systems on
the experimental platform milliAmpere.

The new navigation system and motion control system are both tested through computer-
simulated environments and experimental tests in the harbor basin by Brattøra in Trond-
heim. The new implementations use the existing implementations on the experimental
platform for a comparison of performance. Various performance metrics ensure an objec-
tive assessment of performance between the new and old implementations.

The new implementations are tested individually at first to get a grasp of how they differ
in performance in comparison to the prior system. Afterwards, they are joined together to
show the performance with their combined efforts. The new implementations outperforms
the prior solution. The new motion controller greatly increases the ability to estimate the
unmodeled dynamics, and the new navigation system successfully eliminates several un-
wanted characteristics present in the previous implementation. The new implementations
especially improves the directional stability of the vessel. Lastly, final experimental tests
with a collision avoidance module, which is developed by a fellow student, are success-
fully carried out with virtual objects. The experimental tests with the use of the collision
avoidance system mark the complete upgrade of the new GNC system.
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Sammendrag

Marine fartøy som opererer i trange omgivelser krever et robust og nøyaktig navigasjon-
ssystem og kontrollsystem. Denne oppgaven presenterer nye implementasjoner av navi-
gasjonssystem og kontrollsystem i detalj. Implementasjonene utforsker det siste og beste
innen hver av sine respektive fagområder, samt implementasjon av disse på en eksperi-
mentell plattform.

Det nye kontrollsystemet tar i bruk L1 adaptiv kontroll basert på adaptiv backstepping for
raskere konvergeringstid for estimeringen av dynamikk som ikke er modellert. Det nye
kontrollsystemet fungerer sammen med et ESKF som utfører sensor fusjon og tilstandses-
timering. Disse systemene fungerer som oppgraderinger av det gamle navigasjonssystemet
og kontrollsystemet på den eksperimentelle plattformen milliAmpère.

Det nye navigasjonssystemet og kontrollsystemet er testet i simulatorer og gjennom eksper-
imentelle tester i havnebassenget ved Brattøra i Trondheim. De nye implementasjonene
bruker de eksisterende systemene for å foreta sammenligninger i ytelse. En rekke ytelses
metrikker er tatt i bruk for en objektiv evaluering av de ulike implementasjonene.

De nye systemene er testet både individuelt og samlet for å skaffe et bilde av hvilke kon-
sekvenser de ulike systemene har på overordnet ytelse. De nye implementasjonene fun-
gerer bedre enn de eksisterende implementasjonene. Det nye kontroll systemet øker evnen
til å estimere dynamikk som ikke er modellert betraktelig, og det nye navigasjonssystemet
fjerner flere uønskede egenskaper som var tilstede i det gamle navigasjonssystemet. Spe-
sielt oppleves det en økning i retningsstabilitet som en konsekvens av de nye systemene.
Til slutt er de nye systemene sydd sammen med en kollisjonsunngåelsesmodul som er
utviklet av en felles student. Suksessfulle full skala tester med disse tre systemene som
jobber sammen er utført med virtuelle objekter. Disse testene markerer en fullstendig opp-
gradering av planlegging, navigasjon og kontroll systemet på den eksperimentelle plattfor-
men.
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ẋ x differentiated with regards to time

x̂ Estimated x

x̃ Error between estimated and actual x

C Coriolis-centripetal matrix

xxi



CA Added mass coriolis-centripetal matrix

Dn Non-linear damping matrix

Dv Linear damping Matrix

I Identity matrix

M Inertia matrix

Ma Added mass matrix

p Position vector

r Vector containing lever arm between frames

Rn
b Rotation matrix

S(·) Skew symmetric matrix of vector (·)

v Linear velocity vector

x(·) Matrix depending on vector (·)

x∗ True value of x

x−1 Inverse of x

⊕ General composition

⊗ Quaternion product

φ, θ, ψ Euler angles about the x, y and z axes

× Cross product

{b} BODY frame

{d} Reference vector

{e} Earth-centered earth-fixed coordinate frame

{m} Sensor measurement frame

{n} NED frame

p, q, r Angular velocity about the x, y and z axes

sψ, cψ Sine and cosine of ψ

diag{·} Diagonal matrix with diagonal entries given by vector (·)

K, N, M Moments around the x, y and z axes in the BODY frame

u, v, w Velocities along the x, y and z axes in the BODY frame

X, Y, Z Forces along x, y and z axes in the BODY frame

x, y, z Position

xxii



Chapter 1
Introduction

1.1 Motivation
A drastic increase in automation has taken place during the last decades. The introduction
of everything from industrial robots on assembly lines, to small automated lawnmowers,
have seen the light of day. Lately, autonomous systems able to solve more complex tasks in
more complex environments have emerged. The emergence of more complex autonomous
systems can serve as a significant advance in personal transportation.

Figure 1.1: Concept for the final version of the autonomous passenger ferry intended to operate in
the channel in Trondheim. Image courtesy of [Mustvedt, 2019].
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There is an ever-increasing number of cars and buses on the roads. Bigger cities especially
see an increasing problem with traffic. Autonomous passenger ferries can help revitalize
the urban waterways and, alleviate the pressure on the city roads. Other areas can also
benefit significantly from the use of autonomous passenger ferries. Such a solution can
serve as an alternative mode of transportation across rivers. These ferries will easily tie
together communities, and different parts of cities separated by water. The realization of
a digitized ferryman will contribute towards the possibility of an intelligent, synchronous
transportation network consisting of autonomous cars, buses, trains, and marine vessels.

Many older solutions such as cable ferries or a ferryman have traditionally had such a role.
The main idea behind milliAmpere is to provide an inexpensive, environmentally friendly,
and non-intrusive solution to this problem. By delivering the same logistical service as
bridges, smaller ports, harbors, and canals are kept open and provides the essential water-
ways for large and small vessels alike. The channel between Fosenkaia and Ravnkloa in
Trondheim is the intended area for the final iteration of the ferry to operate.

Figure 1.2: Map of the area for the intended use of the autonomous passenger ferry. Image courtesy
of Egil Eide with Google Maps as base.
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This service has in Trondheim historically been carried out by a local ferryman in a rowing
boat. The project focuses on the continued development of the prototype milliAmpere.

The finished ferry is to serve as an on-demand solution. Its main goal is to provide passen-
gers with a smooth, fast, and reliable transportation option across urban waterways. The
full-sized vessel will have the capability to transport 12 passengers at any given time, as
well as bikes, strollers and similar equipment. A scalable solution of this kind ensures an
easily deployable solution where it is needed. Not only in Norway is this solution desir-
able, but it can be used all over the world. The development of milliAmpere also brings
with it substantial attention, given its autonomous nature. A ferry of this kind will also
provide the city of Trondheim with a new attraction of a unique kind.

1.2 Problem Description
The main objective of this thesis is to research and develop an improved GNC system
for milliAmpere. The thesis researches and develops a new navigation system based on
GNSS and IMU sensor fusion, and it explores a new adaptive motion control system for
improved tracking performance. The guidance system is left as is in the thesis. However,
the new GNC system needs to be compatible with a collision avoidance module developed
in [Thyri, 2019]. The problem description summarizes in the bullet points as:

• Literature study for state estimation using GNSS and IMU.

• Literature study for adaptive motion control.

• Design and implement an observer for real time sensor fusion of IMU and GNSS sensor
data.

• Design and implement a robust adaptive motion control system to account for modelling
uncertainties and external disturbances.

• Test, verify and validate the system through simulations and experiments.

• Implement an interface such that the low-level GNC system can be interfaced with a
high-level COLAV system.

1.3 Contributions
The project during the fall of 2018 explored the potential use of multiple controllers to
remedy some of the shortcomings of the implementation at that time. The results did not
pan out as intended. However, the lessons learned during the project were valuable. Con-
sequently, this thesis pursues other ideas not related to the project. The main contributions
for this thesis summarize as

• Designed and implemented an ESKF for real time sensor fusion of GNSS and IMU
sensor data.

• Designed and implemented an adaptive motion control system using the L1 adaptive
control approach.
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• Verified the new navigation and control systems through extensive tests in a simulated
environment.

• Validated the new navigation and control systems through experimental testing.

• Implemented software for a stacking beacon to ease experimental testing.

• Ensure integration of the navigation and motion control systems with a COLAV module.

1.4 Outline
This thesis organizes its contents in chapters and sections. Chapter 2 explores the vessel
modelling. This chapter will focus mostly on kinematic and kinetic details for describ-
ing a marine vessel in motion. The use of correct notation in mathematical modelling is
essential. This chapter also discusses the notation used throughout the thesis.

Chapter 3 explains the details surrounding the new navigation system. This chapter goes
into detail about sensor preliminaries, the proposed observer, and other nuances to the
newly implemented navigation system.

Chapter 4 examines the different motion control algorithms and their respective approaches.
The chapter describes all the theory necessary for the implementation of the controllers.
Further, the theory that forms the basis of the thrust allocation is detailed here.

Chapter 5 will elaborate more on the experimental platform. Previous work and previous
test results are detailed. The chapter also presents the hardware used on milliAmpere.
Chapters 6 and 7 goes more in-depth to present, analyze and discuss the results from the
simulated environment and the experimental tests. Finally, Chapter 8 will wrap up and
conclude the thesis.
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Chapter 2
Modelling

This chapter describes a six DOF mathematical modelling of a marine surface vessel. Both
the kinematics and kinetics are described in detail to obtain an accurate vessel model. The
chapter also establishes the conventional notation and the reduced three DOF vessel model
for further use in the motion control system.

2.1 Kinematics
When analyzing the motion of a vessel, it is important to differentiate between different
reference frames. The different measurements are given in a specific frame, and it is im-
portant to transform the measurement to the correct frame before utilizing its measurement
in the model. The different frames need to be separated, and the relationship between them
established. The frames of interest are the earth-centered earth-fixed (ECEF) frame given
in coordinate system {e} , NED frame given in coordinate system {n} and BODY frame
given in coordinate system {b} .
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Figure 2.1: Relationship between different relevant reference frames used in the navigation and
motion control systems. Courtesy of [Fossen, 2011].

2.1.1 ECEF frame
The ECEF frame is a fixed inertial frame with the origin at the Earth’s center [Fossen,
2011]. Given that it is an inertial frame, Newton’s second law of motion applies. The
GNSS gives it’s coordinates relative to the ECEF frame. The coordinates given are in the
standard longitude, latitude, and altitude format. By using a transformation, the ECEF
frame is transformed into the NED frame.

2.1.2 NED frame
The NED frame describes a tangent plane to the Earth’s surface. The components of
the NED frame is given as [xn, yn, zn]T. The coordinates denote the position in the true
north, true east and down respectively. The NED frame is a relative frame with origin in
Earth’s reference ellipsoid defined by [WGS84]. For vessels operating in a small area with
small deviations in the longitude and latitude coordinates, the NED frame representation
is simplified to be inertial. This simplification refers to the flat Earth approximation. This
simplification ensures the validity of Newton’s laws of motion in the NED frame.
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The transformation between the ECEF frame and the NED frame is described in [Fossen,
2011] as

ṗeb/e = Re
n(Θen)ṗnb/e = Re

n(Θen)Rn
b (Θnb)vbb/e (2.1)

where Θen is defined as [l, µ]T ∈ S2 by longitude l and latitude µ. This means that
S2 → SO(3) is given by the rotation matrix Re

n(Θen). This rotation matrix is given in
[Fossen, 2011] and is defined as

Re
n(Θen) = Rz,lRy,−µ−π2 (2.2a)

Re
n(Θen) =

−cos(l)sin(µ) −sin(l) −cos(l)cos(µ)
−sin(l)sin(µ) cos(l) −sin(l)cos(µ)

cos(µ) 0 −sin(µ)

 (2.2b)

2.1.3 BODY frame
The BODY frame is the transformation from the NED frame about the Euler angles given
by roll, pitch, and yaw. For simplicity, these are from here on out referred to as φ, θ and
ψ. The rotation matrix about the Euler angles is given in [Fossen, 2011] as

Rn
b (Θnb) =

cψcθ -sψcφ+ cψsθsφ sψsφ+ cψcφsθ
sψcθ cψcφ+ sφsθsψ −cψsφ+ sθsψcφ
−sθ cθsφ cθcφ

 (2.3)

where Rn
b (Θnb) denotes the rotation Rz,ψRy,θRx,φ, c = cos and s = sin. These angles

represent the angular position of a vessel. A visualization of their derivatives, [φ̇, θ̇, ψ̇] =
[p, q, r], is shown in Figure 2.2.
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Figure 2.2: Relationships between the Euler angles and the relations for angular velocities around
their respective axes. Courtesy of [Fossen, 2011].

This rotation refers to the BODY frame. In the BODY frame, the six motion components
are described using the notations defined in [SNAME]. The motions and rotations are
given by Table 2.1.

DOF Forces
and moments

Linear and
angular velocities

Positions and
Euler angles

1 motions in the x direction (surge) X u x
2 motions in the y direction (sway) Y v y
3 motions in the z direction (heave) Z w z
4 rotation about the x axis (roll, heel) K p φ
5 rotation about the y axis (pitch, trim) N q θ
6 rotation about the z axis (yaw) M r ψ

Table 2.1: Motion and rotation notation for marine vessels defined in [SNAME]

Figure 2.3 shows the notation for different velocities and different rotations and the various
relationships in the BODY frame.
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Figure 2.3: The BODY frame denoted by subscript b, on a marine vessel in relation to the NED
frame denoted by subscript n. χ and ψ are the course and heading of the vessel, u and v denotes the
surge and sway, and β is the sideslip. Figure courtesy of [Breivik, 2010].

When describing the equations of motion (EOM) for a marine vessel, proper vector nota-
tion is needed. In [Fossen, 2011], the six DOF rigid-body EOM according to the [SNAME]
notation, is written in component form as

f bb = [X,Y, Z]T − force through ob expressed in {b}
mb
b = [K,M,N ]T −moment about ob expressed in {b}

vbb/n = [u, v, w]T − linear velocity of ob relative on expressed in {b}

wb
b/n = [p, q, r]T − angular velocity of {b} relative to {n} expressed in {b}

rbo = [xg, yg, zg]
T − vector from ob to CO expressed in {b}

pnn/b = [N,E,D]T − distance from {n} to {b} expressed in {n}

Θnb = [φ, θ, ψ]T − Euler angles between {n} and {b}

The six DOF kinematic equations for a vessel in motion are expressed in [Fossen, 2011]
as

η̇ = JΘ(η)ν (2.4a)

or equivalently
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[
ṗnb/n
Θ̇nb

]
=

[
Rn
b (Θnb) 03x3

03x3 TΘ(Θnb)

][
vbb/n
ωbb/n

]
(2.4b)

where pnb/n = [x, y, z]T and Θnb = [φ, θ, ψ]T are the positions and Euler angles respec-
tively, and JΘ is the transformation matrix between the BODY and NED frame.

For a marine vessel in calm waters, the assumption is that the φ and θ angles are negligible.
This assumption reduces the transformation between NED and BODY frame to the rotation
around the z-axis with the angle ψ. For a marine surface vessel in calm waters, z is also
negligible. As a result, the surface vessel restricts its motion to horizontal motion and
rotation around the z-axis. These motions refer to surge, sway, and yaw. The simplification
of neglecting heave, roll, and pitch simplifies the model of the vessel to movement in three
DOF. As a result, the state vector reduces to three DOF defined by the transformation
matrix

JΘ(η) = R(ψ) =

cos(ψ) −sin(ψ) 0
sin(ψ) cos(ψ) 0

0 0 1

 (2.5)

The kinematic equation for the three DOF system becomes

η̇ = R(ψ)ν (2.6)

where the state vectors are reduced to η = [x, y, ψ]T and ν = [u, v, r]T.

2.2 Kinetics
A six DOF system is described with the kinetics in [Fossen, 2011] as

Mν̇ + C(ν)ν + D(ν)ν + g(η) + g0 = τ + τwind + τwave (2.7)

where

M =

[
mI3x3 mS(rbg)
mS(rbg) Ib

]
︸ ︷︷ ︸

MRB

+ MA (2.8a)

C =

[
mS (v2) −mS (v2) S

(
rbg
)

mS
(
rbg
)
S (v2) −S (Ibv2)

]
︸ ︷︷ ︸

CRB(ν)

+ CA(ν) (2.8b)

D = Dl(ν) + Dn(ν) (2.8c)
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where M,C(ν), and D(ν) are the inertia, coriolis and centripetal, and damping matrices
respectively, and g(η) denote the generalized gravitation and buoyancy forces. Static
restoring forces and moments are collected in the term g0. The system matrices satisfies
the properties M > 0, D > 0 and C = −CT. The property of C refers to the skew-
symmetric property of a matrix.

The three DOF model describes the motions in surge, sway and yaw. The states of interest
are the North-East-Heading positions given by η = [N,E,ψ]T in the NED frame, and
velocities surge, sway and yaw described by ν = [u, v, r]T in the BODY frame. The
complete kinematic and kinetic model for a marine vessel in three DOF becomes

η̇ = R(ψ)ν (2.9a)

Mν̇ + C(ν)ν + D(ν)ν = τ + τwind + τwave (2.9b)

where M = MRB + MA, C(ν)ν = CRB(ν)ν + CA(ν)ν, and D(ν)ν = Dlν +
Dn(ν)ν. The element wise definition of the reduced model matrices in three DOF are
shown in (2.10) - (2.17). The inertia matrix M = MRB + MA is

MRB =

 m 0 0
0 m mxg
0 mxg Iz

 (2.10)

and

MA =

 −Xu̇ −Xv̇ −Xṙ

−Yu̇ −Yv̇ −Yṙ
−Nu̇ −Nv̇ −Nṙ

 (2.11)

The assumption for the vessel modelling is that the CO and the center of gravity (CG)
coincide such that xg = 0. Coupled with this the assumption, the parameters in (2.10) and
(2.11) are joined together to form the matrix

MA =

 m11 m12 m13

m21 m22 m23

m31 m32 m33

 (2.12)

The centripetal matrix C(ν) = CRB(ν) + CA(ν) is given by

CRB(ν) =

 0 0 −m(xgr + v)
0 0 mu

m(xgr + v) −mu 0

 (2.13)

and
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CA(ν) =

 0 0 Yṙr + Yv̇v
0 0 −Xu̇u

−Yṙr − Yv̇v Xu̇u 0

 (2.14)

Lastly, the definition of the damping matrix D(ν) = Dl+Dn(ν) with the linear damping
matrix

Dl =

 −Xu −Xv −Xr

−Yu −Yv −Yr
−Nu −Nv −Nr

 (2.15)

and non-linear damping matrix

Dn(ν) =

 D11(ν) 0 0
0 D22(ν) D23(ν)
0 D33(ν) D32(ν)

 (2.16)

where the individual entries in the non-linear damping matrix are given by

D11(ν) = −Xu −X|u|u|u| −Xuuuu
2 (2.17a)

D22(ν) = −Yv − Y|v|v|v| − Yvvvv2 (2.17b)

D23(ν) = −Yv − Y|v|v|v| − Yvvvv2 (2.17c)
D32(ν) = −N|v|v|v| −N|r|v|r| (2.17d)

D33(ν) = −Nr −N|r|r|r| −Nrrrr2. (2.17e)

This thesis uses the model parameters from [Pedersen, 2019]. Appendix F further details
the model parameters. The simulated environment and the model-based control in the new
motion control system use the model parameters.

2.3 Chapter Summary
This chapter outlined the fundamental theory for accurate vessel modelling of a marine
surface vessel. The chapter discussed the transformations between the relevant reference
frames and its applications in the vessel modelling. Roll angle, pitch angle and heave
position are negligible such that the six DOF vessel model was reduced to the simplified
three DOF model. The three DOF kinematic model is coupled with the vessel kinetics to
form an accurate, complete vessel model for use in the GNC system.
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Chapter 3
Navigation

A navigation system is a system that uses measured sensor data and performs data pro-
cessing to utilize the data for motion control. The navigation system has the critical role of
providing the motion control system with reliable state estimates. The navigation system
uses different techniques such as wild point filtering to discard erroneous sensor informa-
tion. The navigation system typically uses a state observer to minimize the stochastic noise
present in the sensor measurements and to estimate the entire state vector. The navigation
system is an essential part of the GNC system and provides the state information needed to
perform tracking operations. The circled portion of Figure 3.1 shows the elements making
up the navigation system, along with the measurements supplied by the sensors available,
and the estimated states.

Figure 3.1: Navigation node in the GNC system consisting of the sensors and the state estimator.
Illustration by author.

13



This chapter presents the state estimation algorithm used in the navigation system. The al-
gorithm estimates the pose, velocity, acceleration, angular velocity, and attitude. The nav-
igation system will utilize the measurements from a strap-down IMU and a RTK-GNSS.

3.1 Sensor Preliminaries
For any six DOF vessel model, it is required 12 differential equations to be able to describe
the trajectory of a vessel in 3 dimensions fully. Simple reasons like expensive sensors, or
the fact that the measurements are hard to perform accurately, lead to non-measured states.
By using a GNSS and an IMU, a 6 DOF vessel state can be estimated despite lack of
measurements of all states. The main drawback of using an IMU is the measurement errors
that occur due to biases on the angular velocity and linear acceleration measurements.

3.1.1 Inertial Measurement Unit
An IMU is a measurement unit that measures the acceleration and angular velocity for a
rigid body. Additionally, the IMU can estimate the attitude based on the Earth’s magnetic
field and the gravity constant. An IMU uses three orthogonally mounted accelerometers
and gyroscopes to measure the acceleration and angular velocity. The angular velocity and
acceleration measurements are integrated once and twice receptively to predict the system
states in attitude, velocity, and position.

Accelerometer

An accelerometer measures specific force. A simple directional accelerometer takes the
form of a directional pendulum attached to a spring [Fossen, 2011]. Application of a
specific force to the proof mass in the accelerometer displaces the proof mass relative
to the casing. This displacement can be measured, and the resulting acceleration can be
related to the resulting extension of the spring attached to the pendulum. Other types of
accelerometers utilizing vibrations also exist.

For an accelerometer, the gravity will be present in the measurements. Subsequently,
compensation for the gravitational pull in the measurements is a must. For a marine vessel,
the assumption is that the gravity will only be present downward, or along the z-axis
expressed in the NED frame. The gravitational acceleration varies based on the location on
Earth. The gravity can be calculated based on the World Geodetic System 1984 (WGS84)
reference ellipsoid and the measured latitude and altitude. For a surface vessel in calm
waters, the elevation is h ≈ 0. The WGS84 calculates the gravity constant with high
accuracy using the ellipsoidal gravity formula given by

g(φ) = 9.7803253359m/s2

 1 + 0.00193185265241sin2(φ)√
1− 0.00669437999013sin2(φ)

 (3.1)

By using the latitude measured by the GNSS, the correct gravity constant is calculated
accurately and compensated for in the ESKF.
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Gyroscope

A gyroscope is an inertial sensor used for measuring orientation and angular velocity. A
gyroscope used to measure angular velocity is referred to as a rate-gyroscope. The tradi-
tional gyroscope is a spinning wheel that uses the physical law of conservation of angular
momentum to assume its orientation. Other gyroscopes are the microelectromechanical
systems (MEMS) gyroscopes, the ring laser gyros (RLG) and fiber optic gyros (FOG)
[Fossen, 2011]. The MEMS gyros are especially cheap, and lower cost applications see
the use of these sensors frequently.

Roll/Pitch Inclination Estimate

If the measurement of the gravitational acceleration is in the BODY frame, it can be used
to estimate the roll and pitch of the vessel. For a resting object at an inclination, gravity
will affect the acceleration measurements. The calculation of the roll and pitch angles are
according to

axay
az

 ≈ −Rb
n(Θ)

0
0
g

 =

 g sin(θ)
g cos(θ)sin(φ)
g sin(θ)cos(φ)

 (3.2)

which gives the relationship

φ ≈ atan
(ay
az

)
(3.3a)

θ ≈ −atan
(

ax√
a2y+a2z

)
(3.3b)

As there is no way to distinguish the biases and the specific force exerted on the vessel
to the gravitational force, using this estimation as a measurement over time is not recom-
mended. However, the inclination estimate, together with compass measurements, provide
an initial estimate of the attitude to be used in the navigation system.

IMU Errors

All sensors show some sign of measurement noise. The noise can be the results of a variety
of reasons. Commonly, the lack of resolution from the analogue to the digital conversion
results in some loss of information for the perceived measurement. More expensive sen-
sors that offer higher resolution in the conversion will have less information loss.

In addition to the measurement noise, an IMU will have errors due to biases. Biases are
slowly varying perturbations of the measurements performed by the IMU. By not account-
ing for the bias errors, the estimation of position, velocity and attitude will drift from the
actual state over time. State estimation with different specific filters corrects for the biases
in the measurements. More specifically, integration filters with absolute position data can
render these biases observable. Later, an ESKF will be implemented to account for the
errors due to these biases.
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Summarizing all characteristics of an IMU, [Fossen, 2011] models the outputs as

abm = Rb
n(Θ)(v̇nm/n − gn) + bbacc +wb

acc (3.4a)

ωbm = ωbm/n + bbgyro +wb
gyro (3.4b)

mb
m = Rb

n(Θ)mn + bbmag +wb
mag (3.4c)

where bb and wb denotes the bias and noise in the measurements respectively. The mea-
surements are here defined in the body-fixed IMU sensor frame {m} relative to the BODY
frame {b}. A strapdown system is when the IMU is mounted away from CO. A computer
is then used to transform the IMU measurements into the coordinate frame CO.

Wild Point Filtering

For the given measurements from the IMU, it is crucial to perform some form of sanity
check on the incoming measurements. The sanity checks pick up any unforeseen distur-
bances or measurement errors affecting the measurements. For example, an erroneous
spike in any of the measurements should be discarded, and not used in the estimation of
the state vector.

For measurements in acceleration, any sudden spikes can happen if the vessel bumps into
another object. Dropping these spikes can lead to poor prediction and should not occur.
The design of the wild point filter must account for these spikes. For any three DOF
measurement vector of acceleration, the wild point filter keeps track of the difference
between the current acceleration measurement and the previous acceleration measurement.
If the difference between the two measurements is too significant, the wild point filter
drops the current measurement. The following check handles the potential measurement
drop

if |ai − aiprev | < atolerance or dropped measurements > max dropped allowed
ai → approved
dropped measurements = 0

else
ai → rejected
dropped measurements + = 1

where the subscript i = x, y, z, and denotes the acceleration along the separate axes.

The wild point filter for the angular velocity measurements uses a different tolerance
methodology. An object hitting an unmovable object is considered as a fully elastic colli-
sion in a frictionless system. A fully elastic collision in this manner implies that an object
will have the same velocity after the collision with a mirrored angle of direction. The
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wild point filtering for the measured angular velocity uses this principle to set the filter
tolerance. The wild point filter defines the tolerance for angular velocity measurements as

|ωi − ωiprev | > max(2 · |ωiprev |, ω noise threshold)

where the ω noise threshold is some threshold set slightly larger than the largest observed
peak-to-peak noise. The threshold is to keep the measurement noise from causing the wild
point filter to drop measurements. Figure 3.2 demonstrates the ESKF dropping measure-
ments for the az measurement.

Time [s]

Wild Point Filter Demonstration

Figure 3.2: Acceleration wild point filter in action for measurements of az .

Prolonged Prediction

As mentioned in the introduction of this section, the measurements of an IMU can be
integrated once and twice to obtain the states position, velocity and attitude. In case the
aiding sensor drops out, in this scenario, a GNSS, the IMU can be used to predict the states
of the system. When there are no external updates or corrections, the estimation algorithm
will rely entirely on the IMU until any other sensor data measurements are received.

As will be discussed later in this chapter, the IMU measurements drive the implemented
filter. Consequently, any measurement noise from the IMU will propagate during predic-
tion. The result is that the measurement noise of the IMU directly alters the predicted
state of position, velocity and attitude. For a slowly accelerating system like the one at
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hand, the measurement noise will often be more dominant than the actual dynamics of the
system. The domination of the stochastic noise will lead to inaccurate predictions over
a small period, and drift will occur rapidly. Prolonged prediction based solely on IMU
measurements is highly discouraged for the system at hand.

3.1.2 Global Navigation Satellite System
GNSS is a positioning system with global coverage. Several different positioning systems
exist, such as the United States’ global positioning system (GPS), Russia’s GLONASS
system and the European Union’s Galileo positioning system. A positioning system uses
several satellites to triangulate the position of a receiver. There are numerous error sources
to the position measurements. A shortlist includes errors induced by ephemeris data, iono-
spheric delay, tropospheric delay, satellite clock error, multipath reception and receiver
measurement timing [Beard and McLain, 2012]. However, this thesis will not go into
these in detail.

To improve the overall accuracy of the position measurement, the GNSS measurement
is aided by a base station placed in a known location, better known as RTK. RTK uses
carrier-based ranging to determine the distance between the vessel receiving GNSS data
and a base station. The ranging data is used to correct for the numerous error sources
previously mentioned. This method dramatically increases the accuracy of the position
measurements, and it achieves an accuracy as high as ±1 cm. Figure 3.3 shows a visual-
ization of the principle. The GNSS uses the same wild point filter technique discussed in
Section 3.1.1 to drop any erroneous measurements.

Figure 3.3: The principle of RTK-GNSS. Image courtesy of swisstopo.admin.com.
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The GNSS provides the measurements position, velocity, and heading. The output from
the GNSS is given in longitude and latitude, speed and course, and ψ. The converted
measurements expressed in the NED frame is modelled by the following equations

pnb/n =

xy
z

 (3.5a)

vnb/n = R(χ)

U0
0

 (3.5b)

ψb = ψ (3.5c)

where χ is the course of the vessel and U is the speed of the vessel. Figure 2.3 shows the
relation of these measurements to the relevant reference frames used in the GNC system.

3.2 Error State Kalman Filter
A state estimator is a dynamic system that estimates the full state of a system. The es-
timation algorithm uses available measurements of inputs and outputs to estimate other
states that are not directly measured. The publication of [Kalman, 1960] in 1960, is the
introduction of the well-known estimation algorithm called the Kalman filter. The Kalman
filter has a statistical framework that deals with the uncertainty measurement noise and the
like introduce. The statistical framework allows for the estimation of the state covariance.
The state covariance is a metric used to quantify the uncertainty for the predicted state.
The covariance estimation allows the Kalman filter to perform an educated estimate of the
next state. Figure 3.4 shows a visual representation of this principle.
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Figure 3.4: The principle of the Kalman filter. Image courtesy of MathWorks: Understanding
Kalman Filters, Part 3: An Optimal State Estimator.

The Kalman Filter enables estimation of the non-measured states. The measurement of
individual states renders other states observable. By using kinematic models of a system,
the measured states in combination with the observable states are used to recreate the entire
state space. The Kalman Filter is used in a variety of applications and has ever since its
development had an enormous impact on control engineering.

For a system that has IMU measurements, the 6 DOF EOM can be estimated using com-
plementary data from a GNSS. By using the IMU measurements for linear acceleration
and angular velocity, an IMU driven ESKF can be developed. This section establishes the
relevant theory for an ESKF. The approach in [Solà, 2017] forms the basis for the filter
design.

3.2.1 Choices of Attitude Representation
There are numerous possible ways to represent the attitude of a rigid body system. One
of the more conventional representations is the three-component parametrization Euler
angles. The Euler angles decomposition describes three rotations about the axes of the
relevant coordinate system. Depending on the coordinate system, the definition of the rep-
resentation for the rotation is either intrinsic or extrinsic. Extrinsic rotations for the Euler
angle representation refer to a rotation in an inertial ECEF frame. For any coordinate
system attached to a moving body frame coordinate system, the rotation refers to an in-
trinsic rotation. Other three-component parametrizations such as the rotation vector exist.
However, three-component parametrizations suffer from singularities.

Different alternatives to the three-component representations exist. Among these are the
rotation matrix and the quaternion. The rotation matrix is a representation that uses a
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matrix to perform rotations in Euclidean space. The quaternion, on the other hand, is
a 4-component parameterization of a general rotation. Both representations are non-
minimalistic, and thus do not suffer from the singularity present in the three-component
parametrizations. However, the relation between the different parametrizations are useful
and can be applied when necessary.

Further, the frequent use of the different conventions of the Euler representation can cause
confusion. The differential equations that describe the behavior of the Euler angles, given
in (3.6) and (3.7), are cluttered and contains many non-linearities. Thus, the mathematical
representation of both the rotation matrix and the quaternion are less complicated. To avoid
the singularity, and the cluttered mathematical expressions, quaternion parameterization is
used as the primary representation of the attitude in the ESKF.

3.2.2 Quaternion Kinematics
As mentioned, the Euler angle representation is problematic since it has a singularity. In
GNC applications, the commonly used convention of the Euler angle representation is
the zyx-convention. The relation of the Euler rates and angular velocity showcases the
singularity. In [Fossen, 2011], the relation is specified as

Θ̇nb = TΘ (Θnb)ω
b
b/n (3.6)

where

T−1
Θ (Θnb) =

 1 0 −sθ
0 cφ cθsφ
0 −sφ cθcφ

 =⇒ TΘ (Θnb) =

 1 sφtθ cφtθ
0 cφ −sφ
0 sφ/cθ cφ/cθ


(3.7)

By inspection of the matrix TΘ (Θnb), it is clear that a singularity occurs for any angle
that results in cos(θ) = 0, or more specifically θ = 90◦ + 180◦ · k where k ∈ Z. This is
known as gimbal lock.

The quaternion is a four-parameter parametrization of a general rotation. The parametriza-
tion is defined as a complex vector with one real part, qw, and three imaginary parts given
by the vector qv = [qx, qy, qz]. Together they form the quaternion representation given by
the 4 - dimensional vector

q =

[
qw
qv

]
=


qw
qx
qy
qz

 (3.8)

This thesis uses the Hamilton convention of the quaternion. The definition of the quater-
nion product in component form in [Solà, 2017] is
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p⊗ q =


pwqw − pxqx − pyqy − pzqz
pwqx + pxqw + pyqz − pzqy
pwqy − pxqz + pyqw + pzqx
pwqz + pxqy − pyqx + pzqw

 (3.9)

In terms of the scalar and vector parts, the product is given by

p⊗ q =

[
pwqw − p>v qv

pwqv + qwpv + pv × qv

]
(3.10)

The quaternion product is noncommutative, which means that

p⊗ q 6= q⊗ p (3.11)

Another important kinematic detail for the quaternion is its conjugate. The quaternion
conjugate is defined by

q∗ = qw − qv =

[
qw
−qv

]
(3.12)

The quaternion representation is significant because there are no singularities in its rep-
resentation. Unfortunately, the quaternion is a non-intuitive representation. However,
conversion of the attitude given by the quaternion into Euler angles or the rotation matrix
is possible. The use of the different relationships between quaternions, Euler angles, and
the rotational matrix is applied whenever needed. The quaternion expresses the rotation
matrix in component form as

R(q) =

 q2
w + q2

x − q2
y − q2

z 2 (qxqy − qwqz) 2 (qxqz + qwqy)
2 (qxqy + qwqz) q2

w − q2
x + q2

y − q2
z 2 (qyqz − qwqx)

2 (qxqz − qwqy) 2 (qyqz + qwqx) q2
w − q2

x − q2
y + q2

z

 (3.13)

In terms of the scalar and vector part of the quaternion, the quaternion defines the rotation
matrix as

R(q) =
(
q2
w − q>v qv

)
I + 2qvq

>
v + 2qwS(qv) (3.14)

The quaternion defines the Euler angles through the relationships given by

 φ
θ
ψ

 =


arctan

2(qwqx+qyqz)

1−2(q2x+q2y)
arcsin (2 (qwqy − qzqx))

arctan
2(qwqz+qxqy)

1−2(q2y+q2z)

 (3.15)
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The relationship between Euler angles and the rotation matrix is described by

cψcθ −sψcφ+ cψsθsφ sψsφ+ cψsθcφ
sψcθ cψcφ+ sφsθsψ −cψsφ+ sψsθcφ
−sθ cθsφ cθcφ

 =

R11 R12 R13

R21 R22 R23

R31 R32 R33

 (3.16)

where c = cos and s = sin. One solution to this equality is given in [Fossen, 2011] as

φ = atan 2 (R32, R33)

θ = − sin−1 (R31) = − tan−1

(
R31√

1−R2
31

)
; θ 6= ±90◦

ψ = atan 2 (R21, R11)

(3.17)

The angular velocity measurements are integrated once with quaternion integration to pre-
dict the attitude. [Solà, 2017] uses a Taylor expansion to define a backward integration
method for angular velocity measurements arriving in real-time. The definition of the
zeroth-order backward quaternion integration is

qn = qn−1 ⊗ q{ωn∆t} (3.18)

where qn is the updated quaternion, qn−1 is the previous quaternion, and q{ωn∆t} rep-
resents the quaternion of the incremental rotation in the attitude given by ∆θ = ωn∆t.

3.2.3 Nominal State Kinematics
The ESKF uses a nominal state that tracks the error corrected state vector. The state vector
for the system is defined by the EOM in 6 DOF described by (2.4) with the addition of the
estimated acceleration. The definition of the state vector is

x =


p
v
Θ
a
ω

 (3.19)

where p is in NED frame, and v,Θ,a and ω are in the BODY frame. The nominal state,
which tracks the error corrected estimated states, is defined by

x̂ =


p̂
v̂

Θ̂
âb
ω̂b

 (3.20)
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where p̂ is the estimated position and v̂ is the estimated velocity in the NED frame, and
Θ̂ is the estimated attitude , âb is the estimated acceleration bias and ω̂b is the estimated
angular velocity bias in the BODY frame.

The measured angular velocity and linear acceleration from the IMU in the BODY frame
performs the prediction of the nominal state using integration. Ideally, the angular velocity
measurement model, given by (3.4b), should incorporate the Earth’s rotation rate. such that
the angular velocity measurement model is

ωbm = ωbm/n + RTωnε + bbgyro +wb
gyro (3.21)

where ωε is the Earth’s rotation rate. However, as will be discussed in Chapter 5, the
experimental platform uses a MEMS IMU prone to measurement noise and biases. Con-
sequently, the implementation in this thesis neglects the Earth’s rotation in the formulation
of the ESKF.

[Solà, 2017] gives the equations for prediction of the nominal state in both continuous and
discrete-time. This thesis focuses on the discrete-time implementation, and subsequently,
the discrete-time equations. The nominal state in discrete time is predicted by

p̂← p̂+ v̂∆t+
1

2
(R̂(am − âb) + g)∆t2 (3.22a)

v̂ ← v̂ + (R̂(am − âb) + g)∆t (3.22b)
q̂ ← q̂ ⊗ q{(ωm − ω̂b)∆t} (3.22c)
âb ← âb (3.22d)
ω̂b ← ω̂b (3.22e)

(3.22f)

where R̂ = R(q̂) is the estimated rotation matrix based on the estimated attitude q̂ rep-
resented by the quaternion, am is the measured acceleration, and ωm is the measured
angular velocity.

3.2.4 Error State Kinematics
The error state kinematics bears many similarities to the nominal state kinematics. How-
ever, the error state introduces the random perturbations and noise found in the measure-
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ments of the IMU. The error-state kinematics is approximated as a linear system by

δp̂← δp̂ + δv̂∆t (3.23a)

δv̂← δv̂ +
(
−R̂ [am − âb]× δθ̂ − R̂δâb

)
∆t+ v̂i (3.23b)

δθ̂ ← R̂> {(ωm − ω̂b) ∆t} δθ̂ − δω̂b∆t+ θi (3.23c)
δâb ← δâb + ai (3.23d)
δω̂b ← δω̂b + ωi (3.23e)

where vi, θi, ai and ωi are random Gaussian white noise processes for the velocity, atti-
tude, acceleration bias and angular velocity bias respectively.

3.2.5 Error State Jacobian
Given the error state kinematics in (3.23) without noise, the whole set of equations is on
matrix form as

δ ˙̂x = Aδx̂(t), A =


I I∆t 0 0 0
0 I −R̂ [am − âb]×∆t −R̂∆t 0
0 0 R̂T{(ωm − ω̂b)∆t} 0 −I∆t
0 0 0 I 0
0 0 0 0 I

 (3.24)

The key here is that for the error state, this equation is linear. The linearity in the error
state simplifies the entire operation, and the solution to (3.24) in discrete time is given by

xn+1 = eA∆txn = Φxn (3.25)

where Φ is called the transition matrix for the system. To approximate the solution to
(3.24), the Taylor expansion for et is used. This Taylor expansion is given by

Φ = eA∆t = I + A∆t+
1

2
A2∆t2 +

1

6
A3∆t3 + · · · =

∞∑
k=0

1

k!
Ak∆tk (3.26)

In Appendix B in [Solà, 2017], the matrices Ak, k = 1, 2, 3, 4, are given. These are given
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by

A =


0 Pv 0 0 0
0 0 Vθ Va 0
0 0 Θθ 0 Θω

0 0 0 0 0
0 0 0 0 0

 (3.27a)

A2 =


0 0 PvVθ PvVa 0
0 0 VθΘθ 0 VθΘω

0 0 Θ2
θ 0 ΘθΘω

0 0 0 0 0
0 0 0 0 0

 (3.27b)

A3 =


0 0 PvVθΘθ 0 PvVθΘω

0 0 VθΘ2
θ 0 VθΘθΘω

0 0 Θ3
θ 0 Θ2

θΘω

0 0 0 0 0
0 0 0 0 0

 (3.27c)

A4 =


0 0 PvVθΘ2

θ 0 PvVθΘθΘω

0 0 VθΘ3
θ 0 VθΘ2

θΘω

0 0 Θ4
θ 0 Θ3

θΘω

0 0 0 0 0
0 0 0 0 0

 (3.27d)

By following the pattern in the increasing orders of the matrices, the general expression
for the k-order matrix Ak is

Ak =


0 0 PvVθΘk−2

θ 0 PvVθΘk−3
θ Θω

0 0 VθΘk−1
θ 0 VθΘk−2

θ Θω

0 0 Θk
θ 0 Θk−1

θ Θω

0 0 0 0 0
0 0 0 0 0

 (3.27e)

where k ∈ {N | k 6= 0, 1, 2} denotes the order of the matrix. The different entries in the
matrix are found by comparing the entries in (3.24) and (3.27a). This further gives the
expressions for the entries in the matrix as

Pv = I (3.28a)

Va = −R̂ (3.28b)

Vθ = −R̂ [am − âb]× (3.28c)

Θθ = (R̂T{(ωm − ω̂b)∆t} − I)/∆t (3.28d)
Θω = −I (3.28e)
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However, this is the transition matrix for the set of equations without noise. The integration
also needs to account for the perturbation and noise signals present. The various noise
and perturbation signals in the system are due to the measurement noise in the different
sensors used, as well as the bias in the IMU measurements in angular velocity and linear
acceleration. A GNSS measures position, speed over ground (SOG), course over ground
(COG) and heading. The GNSS measurement models are defined as

pn = pn +wc
p (3.29)

vb = vb +wc
v (3.30)

ψb = ψb +wc
ψ (3.31)

(3.32)

where pn = [x, y, z]T, vb = [ẋb, ẏb]T, ψb is the compass measurement, andwc represents
the measurement noise for the given measurement. The IMU measurements are given by

ab = Rbn(Θ)(v̇n − gn) + bbacc +wb
acc (3.33)

ωb = ω + bbgyro +wb
gyro (3.34)

ḃ
b

= vc (3.35)

where w is the measurement noise for the given measurement, and b is the bias for the
given measurement. The models for noise and perturbations signals are white Gaussian
processes defined by

wc ∼N{0, σn} (3.36)
vc ∼N{0, σb} (3.37)

where σn and σb denotes the covariance for the measurement noise and perturbation sig-
nals respectively. By using the noise and perturbation covariances, the noise covariance
matrixQd is defined by

Qd = BQBT (3.38)

where
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B =


0 0 0 0
−R 0 0 0
0 −I 0 0
0 0 I 0
0 0 0 I

 , Q =


σ2
ab

∆t2I 0 0 0
0 σ2

wb
∆t2I 0 0

0 0 σ2
an∆tI 0

0 0 0 σ2
wn∆tI

 ,
(3.39)

and σ2
ab
, σ2
wb
, σ2
an and σ2

wn denotes the covariance for the noise and perturbations in the
measurements.

The system will then transition into the next state by using the transition matrix Φ and
noise covariance matrix Qd by

P← ΦPΦ + Qd (3.40)
(3.41)

3.2.6 Error Correction Using Secondary Sensor Data
Secondary sensor data is used to render the biases in the IMU measurements observable.
The filter performs error correction by observation based on secondary sensor data given
by the GNSS. The GNSS sensor provides a generic measurement given by

z = h(xt) + v (3.42)

where z denotes the measured data, h(xt) is the true state and v is the measurement noise.
The filter is estimating the error state, so the filter correction equations become

K = PHT(HPHT + V)−1 (3.43)

δ̂x = K(z − h(x̂t)) (3.44)

P← (I−KH)P(I−KH)T + KVKT (3.45)
(3.46)

where K is the Kalman gain, H is the measurement matrix, V is the measurement covari-
ance matrix, δ̂x is the error state and P is the covariance matrix. This form of the covari-
ance update refers to the symmetric and positive Joseph form. It is important to realize
that the definition of the measurement matrix H is for the error state. The measurement
matrix H is defined by

H =
∂h

∂δx

∣∣∣∣
x

=
∂h

∂xt

∣∣∣∣
x

∂xt
∂δx

∣∣∣∣
x

= HxXδx (3.47)
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where Hx is the Jacobian to its argument, and

Xδx =



∂(p+δp)
∂δp 0 0 0 0
0 ∂(v+δv)

∂δv 0 0 0
0 0 ∂(q⊗δq)

∂δθ 0 0
0 0 0 ∂(ab+δab)

∂δab
0

0 0 0 0 ∂(ωb+δωb)
∂δωb

 (3.48)

Given that the entries in the Xδx are for the error state, all entries except ∂(q⊗δq)
∂δθ are

trivial. The non-trivial term is defined in [Solà, 2017] as

∂(q⊗ δq)

∂δθ
=

1

2


−qx −qy −qz
qw −qz qy
qz qw −qx
−qy qx qw

 (3.49)

Since the error state for the position and velocity measurements are linear, a single obser-
vation containing the measurements pn ∈ R3x1 and vn ∈ R2x1, such that the innovation
is

x− x̂ =

[
p− p̂
v − v̂

]
,

the definition of H is

H =

[
I3 0 0 0 0
0 I2 0 0 0

]
(3.50)

For observations of the yaw angle given by the compass, the error correction is a bit trick-
ier. The first step is to make sure that any subtraction between two angles is unique on the
unit circle. The second step is the calculation of the Jacobian. A series of steps make up
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the ultimate expression of the compass measurement Jacobian. These are given by

w1 = 2 · (qx · qy + qw · qz) (3.51a)

w2 = q2
w + q2

x − q2
y − q2

z (3.51b)

→ (3.51c)
∂w1

∂q
= 2 · [qz, qy, qx, qw]T (3.51d)

∂w2

∂q
= 2 · [qw, qx,−qy,−qz]T (3.51e)

→ (3.51f)

Jψ =

[w2,−w1]

[
∂w1

∂q
∂w2

∂q

]
w2

1 + w2
2

(3.51g)

The Jacobian Hx for the compass measurement becomes

Hx =
[
01×6 Jψ 01×6

]
(3.52)

Hx is post multiplied with Xδx to get the measurement matrix Hψ = HxXδx. For a pure
yaw angle measurement provided by the compass, the definition of the innovation is

δψ = ψ − ψ̂ (3.53)

where the innovation, δψ, is a uniquely mapped solution on the circle manifold.

3.2.7 Filter Update
After observing the error through secondary sensor data, use of the general compositions
inject the error state δ̂x into the nominal state vector x̂

x̂← x̂⊕ δx̂,

alternatively,

p̂← p̂ + δp̂ (3.54a)
v̂← v̂ + δv̂ (3.54b)

q̂← q̂⊗ q{δθ̂} (3.54c)
âb ← âb + δâb (3.54d)
ω̂b ← ω̂b + δω̂b (3.54e)
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After the injection of the error state, the expected error is zero again. The error state is
subsequently reset, and the covariance matrix updated. The expressions for the reset and
update are

δx̂← 0 (3.55a)

P← GPGT, G =

I6 0 0
0 I− S( 1

2δθ̂) 0
0 0 I6

 (3.55b)

where S(x) is the skew symmetric matrix of vector x.

3.2.8 Lever Arm Compensation
For any error correction containing the position and velocities, it is necessary with a trans-
formation of the measurement from the GNSS sensor frame to the IMU sensor frame.
For position lever-arm compensation, the definition of the transformation from position
measurements in the GNSS sensor frame to the IMU sensor frame {m} is

pnm = pngnss −R(Θ)rmgnss (3.56)

The definition of the velocity transformation matrix H is

[
v̂bm/n
ω̂bm/n

]
= H−1

(
rmgnss

) [ v̂bgnss/n
ω̂bgnss/n

]
(3.57)

where

H−1
(
rmgnss

)
=

[
I3×3 S

(
rmgnss

)
03×3 I3×3

]
, (3.58)

rmgnss is the lever arm between the respective sensor frames, and S(rmgnss) is the skew-
symmetric matrix of the lever arm.

After the error correction, the estimated states are expressed in the IMU sensor frame
{m}. The state vector subsequently needs to be transformed into the CO before using
the estimated states for motion control. The same transformation expressed in (3.58) and
(3.56) are used to transform the state vector from the {m} frame to CO with the lever-arm
rbm.
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3.3 Chapter Summary
In this chapter, the new inertial navigation system (INS) is presented. The chapter in-
troduced the different sensors that are in use and the necessary preliminaries for their
continued use in the estimation algorithm. Further, the chapter presented the theory and
development of the ESKF estimation algorithm. Lastly, the chapter presented the sensor
fusion capabilities of the ESKF.
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Chapter 4
Motion Control

In a GNC system, the motion control is used to produce the correct control input such that
the vessel converges to the desired reference trajectory. The guidance system generates the
desired reference trajectory for the motion control system. The motion control acts on the
current reference signal and the current state to allocate a thrust input based on the error
e = x − xd and ė. An accurate motion control system ensures fast convergence to the
desired path. The system needs to be robust enough to correct for any external disturbances
and modelling uncertainties efficiently and accurately. Figure 4.1 shows the motion control
system and how it interacts with the rest of the GNC system on milliAmpere.

Figure 4.1: Motion control node in the GNC system consisting of the control algorithm and the
thrust allocation. Illustration by author.
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The thrust allocation converts the desired thrust force into conceivable setpoints for the
actuators. Together they form the control system. The guidance system uses a pose refer-
ence filter. The already implemented thrust allocation is used to convert the desired control
input into feasible actuator setpoints. This thesis utilizes both previous implementations
to complement the new navigation and motion control implementations.

4.1 Pose Reference Model
Reference models are used to generate smooth trajectories based on the desired input.
These generated trajectories from the reference filter serve as input in the motion control
system. The reference model used in this system is a pose reference model.

By utilizing higher-order derivatives of the pose, the reference filter guarantees that the
generated trajectories are smooth and feasible for the motion control system. It is essential
to have all the constraints for the relevant controller incorporated in this reference model.
In this case, the essential constraints are the maximum acceleration and the maximum
velocity.

The pose reference model is given in [Fossen, 2011] in vectorial form as

...
ηd + (2∆ + I)Ωη̈d + (2∆ + I)Ω2η̇d + Ω3ηd = Ω3rn (4.1)

The state-space representation for this equation is

Ad =

 0 I 0
0 0 I

−Ω3 −(2∆ + I)Ω2 −(2∆ + I)Ω

 , Bd =

 0
0

Ω3

 (4.2)

where Ω > 0 and ∆ > 0 in (4.1) and (4.2) are diagonal matrices containing the natural
frequencies ωnm and the damping ratios ζm, and rn is the input to the reference filter and
denotes the desired pose at the end of the trajectory. The natural frequencies and damping
ratios and are given by

Ω = diag
{
ωn1

, ωn2
, ...., ωnm

}
(4.3a)

∆ = diag
{
ζ1, ζ2, ...., ζm

}
(4.3b)

The vectorial reference filter equation (4.1) calculates the desired pose trajectory. Based
on the desired jerk,

...
η , the desired values for any given step k, is calculated with the use of

Euler integration

ηnd (k + 1) = ηnd (k) + vnd (k + 1)∆t (4.4a)

vnd (k + 1) = vnd (k) + and (k + 1)∆t (4.4b)
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and (k + 1) = and (k) +
...
ηd(k + 1)∆t (4.4c)

...
ηn
d (k + 1) = Ω3rn − (2∆ + I)Ωand (k)− (2∆ + I)Ω2vnd (k)−Ω3ηnd (k) (4.4d)

While integrating to find the correct pose reference, it is important to enforce any con-
straints the system has. The saturation function upholds these constraints. The saturation
function is given by (4.5) below.

sat(x) =

{
sgn(x)xmax if |x| ≥ xmax

x else
(4.5)

By using the saturation function, a realistic reference pose trajectory, ηd, is obtained for
the motion control system. More details about the different controllers used in the motion
control system will follow in Section 4.2. Figure 4.2 shows a visualization of the pose
reference model block scheme.

Figure 4.2: Reference model with saturation of an
d and vn

d used in the guidance node of the GNC
system. Image courtesy of [Fossen, 2011].

4.2 Control Algorithms
In this system, various controllers serve different purposes. This section establishes these
controllers and provides the theory behind them. Figure 4.1 shows the relationship be-
tween the controllers and the rest of the GNC system.

4.2.1 PID Controller
One controller forms the basis for the controllers in this system. This controller is called a
PID controller. A PID controller can have certain additives such as integrator anti-windup
and negation of derivative kick.

The PID controller is used to minimize an error given between the actual state and the
reference state. The PID controller utilizes the error between these states and calculates a
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desired output. The continuous-time PID controller is given by

τpid = Kpe+Ki

∫ t

0

e(τ)dτ +Kdė (4.6a)

e = x− xd (4.6b)

where e is the error state, ė is the differentiated error state and Kp > 0,Ki > 0 and
Kd > 0 are the gains in the controller. The controller used in this system is the discrete
PID controller. The discrete version of the PID controller is given by

τpid = Kpe(k) +Ki

k∑
k=0

e(k) +Kdė(k) (4.7)

This controller is applied in the motion control system, and for the controller that sets the
correct azimuth angle.

Integrator Anti-Windup

For any control algorithm that uses the traditional control algorithm discussed in Section
4.2.1, specific considerations are necessary. In this case, the one of interest is the integra-
tor anti-windup. Integrator anti-windup is a prudent step taken when the control algorithm
wants to output the maximum or minimum allowed output over time. Maximum or min-
imum allocated trust can result in the error growing over time when the system has no
way of acting on it. This accumulated error can propagate to a scenario where the integral
effect is not desirable. This course of action can result in undesirable behavior or worst
case, instability. Integrator anti-windup mitigates that by disabling the integrator term in
specific predefined scenarios.

4.2.2 Dynamic Positioning Controller
Dynamic positioning started as an exotic control technology in the early 1960s [Breivik
et al., 2015]. The technology became more advanced and widespread during the 1970s
and saw extended use in Norway’s effort during the discovery of oil and gas. A dynamic
positioning (DP) system is a fully actuated control system, and its intended use is for low-
speed maneuvering and station keeping. By driving the state of the system to a given
reference, or equivalently e(t) → 0, the desired trajectory for the system is achievable.
e(t) is given by

e(t) = RT(ψ)
(
η(t)− ηd(t)

)
= RT(ψ)

N(t)−Nd(t)
E(t)− Ed(t)
ψ(t)− ψd(t)

 (4.8)
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To establish a control plant for the motion control system, the low-frequency control plant
defined in [Sørensen, 2018] is employed. The definition of the plant is

η̇ = R(ψ)ν (4.9a)

Mν̇ +D(ν) +RT(ψ)Gη = τ +RT(ψ)w (4.9b)

where ν = [u, v, r]T, η = [x, y, ψ]T, w ∈ R3 is the bias vector and τ = [Fx, Fy, τψ] is
the force vector.

The controller should be designed to set the desired τ correctly. τ can be written as

τ = τ pid + τ refFF + τwind + τ current (4.10)

where τ pid is a convential PID controller in three DOF given by (4.7), τ refFF is the
reference feed forward, and τwind and τ current are the external disturbances. τ pid is
written as

τ pid = −Kpe−Ki

∫ t

0

edτ −Kdė (4.11)

e = RT(ψ)
(
η − ηd

)
(4.12)

ė = ν − νd (4.13)

where η = [x, y, ψ]T is the pose, ηd = [xd, yd, ψd]T is the desired pose, ν = [u, v, r]T is
the velocity, νd = [ud, vd, rd]

T is the desired velocity, and Kp > 0, Ki > 0 and Kd > 0
are the gain matrices in R3x3.

4.2.3 Model Reference Feedforward
The three DOF vessel model defined by (2.9) can be used to improve transient behavior.
By using the knowledge of the model coupled with the desired velocity and acceleration
from the reference filter, the calculation of a predictive force is possible. This feedforward
force vector is defined by

τFF = Mabd + C(νbd)ν
b
d + D(νbd)ν

b
d (4.14)

where abd = RT(ψ)η̈d and νbd = RT(ψ)η̇d. It is unrealistic for any model to be 100%
accurate, so the feedforward is used alongside the traditional PID controller to correct for
any error in the predicted force to ensure tracking of the desired trajectory.
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4.2.4 Adaptive Control
The history of adaptive control dates back to the 1950s. Adaptive control is a potent tool
that enables estimation of modelling uncertainties and external disturbances. In 1958 the
model reference adaptive control (MRAC) first appeared, and in 1965 Lyapunov theory
was introduced to address stability issues for the controller [Anavatti et al., 2015]. This
section outlines the theoretical approach surrounding the adaptive controller used in this
thesis.

Modelling Uncertainties

For a three DOF model of a ship, there will always be unmodelled dynamics. By using
adaptive backstepping, these dynamics can be estimated and accounted for in the con-
troller. In [Sørensen and Breivik, 2015], a modified model changed slightly from the one
given in (2.9) relates the uncertainties to the model matrices and the control vector. The
relationship enables estimation of these dynamics. The new model becomes

η̇ = R(ψ)ν (4.15a)

δMν̇ + δC(ν)ν + σD(ν)ν = ρτ + R(ψ)Tω (4.15b)

where Ṁ = 0 and C = −CT holds. For notational simplicity, the system matrices will be
used as C = C(ν), D = D(ν) and R = R(ψ). Using this notation, the correlation from
(2.9) to (4.15) is

δM = M∗ (4.16a)
δC = C∗ (4.16b)
σD = D∗ (4.16c)
ρτ = τ ∗ (4.16d)

where the ∗ notation represent the real system matrices and control input, δ, σ and ρ
represent the uncertainty connected to the system matrices and the control input considered
in the implementation, and RTω are the external disturbances.

L1 Adaptive Backstepping

The publication of the L1 adaptive backstepping controller was in 2010 [Hovakimyan and
Cao, 2010]. The new design decouples the adaptation from the robustness of the controller.
The approach successfully guarantees transient performance for the vessel states, and it
ensures robustness margins. The decoupling of the adaptation from the controller allows
for fast adaptation, and subsequently the possibility for aggressive maneuvering.

The L1 adaptive backstepping controller relies on state prediction to correctly estimate the
unmodeled dynamics. The first stage consists of designing a state predictor and conse-
quently, the adaptation laws with the use of the technique backstepping. After the design
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of the state predictor, backstepping in combination with variable change is applied to de-
velop a motion controller for the vessel. In this section, the hat notation describes the
predicted state by the state predictor used in the estimation of the unmodeled dynamics.
The thesis names this controller the L1-AB controller from here on.

State Prediction and Adaptation Laws

In [Sørensen and Breivik, 2015], an L1 adaptive controller was designed. The design starts
with the state predictor. The state predictor uses the error between a predicted state and
the actual state to correct for the prediction errors. The predictor uses the following errors
as the basis for the predictions

η̃ = η̂ − η (4.17a)
ν̃ = ν̂ − ν (4.17b)

where η̃ and ν̃ are the prediction errors for pose and velocity, η̂ and ν̂ are the predicted
pose and velocity, and η and ν are measured pose and velocity. To make sure that the
origins in the prediction errors are exponentially stable, the error dynamics are defined as

˙̃η = −L1η̃ (4.18a)
˙̃ν = −L2ν̃ (4.18b)

where L1 > 0 and L2 > 0 to ensure stability. By combining the differentiation of (4.17)
with regards to time with (4.15), the prediction dynamics becomes

˙̂η = ˙̃η + η̇ (4.19a)
˙̂η = −L1η̃ + Rν (4.19b)

and

˙̂ν = ˙̃ν + ν̇ (4.20a)

˙̂ν = −L2ν̃ +
1

δ̂
M−1(ρ̂τ − δ̂Cν − σ̂Dν + RTω̂) (4.20b)

˙̂ν = −L2ν̃ + M−1(ρ̂δτ −Cν − σ̂δDν + RTω̂δ) (4.20c)

where ρ̂δ = ρ̂

δ̂
, σ̂δ = σ̂

δ̂
, and ω̂δ = ρ̂

δ̂
. These values consists of the estimates of the

uncertainty terms given in (4.15).
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Given the uncertainty terms in the state predictor dynamics, it must be designed adaptation
laws that correctly estimates the uncertainty variables such that δ̂ = δ, σ̂ = σ, and ρ̂ = ρ.
To achieve this, (4.18) is adjusted to

˙̃η = −L1η̃ (4.21a)
˙̃ν = −L2ν̃ + M−1

(
ρ̃δτ − σ̃δDν + RTω̃δ

)
(4.21b)

where ρ̃δ = ρ̂δ − ρδ , σ̃δ = σ̂δ − σδ , and ω̃δ = ω̂δ − ωδ . To derive the adaptation laws,
the following positive definite control Lyapunov function (CLF) for the prediction law is
chosen

Vpred =
1

2

(
1

γρδ
ρ̃2
δ +

1

γσδ
σ̃2
δ +

1

γωδ
ω̃T
δ ω̃δ

)
+

1

2
ν̃TMν̃ +

1

2
η̃Tη̃ (4.22)

By differentiation with regards to time, the CLF becomes

V̇pred =
1

γρδ
ρ̃δ( ˙̂ρδ − ρ̇δ) +

1

γσδ
σ̃δ( ˙̂σδ − σ̇δ) +

1

γωδ
ω̃T
δ ( ˙̂ωδ − ω̇δ)

+ ν̃TM ˙̃ν + η̃T ˙̃η

(4.23)

Here it is assumed that all the uncertainties are constant or slowly varying compared to the
vessel dynamics, meaning that ρ̇δ = 0, σ̇δ = 0 and ω̇δ = 0. Using this assumption while
inserting (4.21) into the equation yields

V̇pred =
1

γρδ
ρ̃δ ˙̂ρδ +

1

γσδ
σ̃δ ˙̂σδ +

1

γωδ
ω̃T
δ

˙̂ωδ − η̃TL1η̃

+ ν̃T
(
−ML2ν̃ + ρ̃δτ − σ̃δDν + RTω̃δ

) (4.24)

By collecting similar terms, Vpred becomes

V̇pred =ρ̃δ(
1

γρδ
˙̂ρδ + ν̃Tτ ) + σ̃δ(

1

γσδ
˙̂σδ − ν̃TDν) + ω̃T

δ (
1

γωδ
˙̂ωδ + Rν̃)

− η̃TL1η̃ − ν̃TML2ν̃

(4.25)
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The adaptation laws are then chosen as

˙̂ρδ = −γρδ ν̃
Tτ (4.26a)

˙̂σδ = γσδ ν̃
TDν (4.26b)

˙̂ωδ = −γωδRν̃ (4.26c)

where γρδ > 0, γρδ > 0 and γρδ > 0 are the adaptation gains. With these adaptation laws,
(4.25) becomes

V̇pred = −η̃TL1η̃ − ν̃TML2ν̃ < 0, ∀η,ν 6= 0 (4.27)

By theorem A.6 in [Fossen, 2011], the system of error states (η̃, ν̃, ρ̃δ, σ̃δ, ω̃δ) becomes
uniformly globally asymptotically stable (UGAS).

Control Law

The next step is to use a change of variables to define the error variables z1 and z2. The
definition of the error variables is

z1 = RT(η − ηd) (4.28a)
z2 = ν −α (4.28b)

where α is the stabilizing function to be designed later. The next phase of the design
consists of two steps to finish the complete backstepping controller.

Step 1

In step one, the first CLF, V1, is chosen as

V1 =
1

2
zT1 z1 (4.29)

To continue the design, differentiation w.r.t. time of the positive definite CLF yields

V̇1 = zT1 ż1 (4.30a)

V̇1 = zT1
(
S(r)TRT(η − ηd) + RT(η̇ − η̇d)

)
(4.30b)

V̇1 = zT1
(
S(r)Tz1 + RT(η̇ − η̇d)

)
(4.30c)

where

41



S(r) =

0 −r 0
r 0 0
0 0 0

 (4.31)

Given that S(r) is skew symmetric, which means zT1 ST(r)z1 = 0, (4.30c) further simpli-
fies to

V̇1 = zT1
(
RTη̇ −RTη̇d

)
(4.32a)

V̇1 = zT1
(
ν −RTη̇d

)
(4.32b)

By inserting (4.28b), V̇1 takes the form

V̇1 = zT1
(
z2 +α−RTη̇d

)
(4.33a)

V̇1 = zT1 z2 + zT1
(
α−RTη̇d

)
(4.33b)

The stabilizing function α is now chosen as

α = −Kz1 + RTη̇d (4.34)

giving V̇1 the form

V̇1 = zT1 z2 − zT1 K1z1 (4.35)

where K1 > 0.

Step 2

Since V̇1 < 0 ∀z1, z2 6= 0 is not true, a second CLF is used. The second CLF, V2, is
chosen to be

V2 =
1

2
zT2 Mz2 + V1 (4.36a)
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By following the same procedure as in Step 1, differentiation of V2 w.r.t. results in

V̇2 = zT2 Mż2 + V̇1 (4.37a)

V̇2 = zT2 M
(
ν̇ − α̇

)
+ V̇1 (4.37b)

V̇2 = zT2
(
ρ̂δτ −Cν − σ̂δDν + RTω̂δ −Mα̇

)
+ zT1 z2 − zT1 K1z1 (4.37c)

V̇2 = zT2
(
z1 + ρ̂δτ −Cα− σ̂δDα+ RTω̂δ −Mα̇

)
− zT1 K1z1

− zT2 Cz2 − zT2 σ̂δDz2 (4.37d)

where
α̇ = S(r)TRTη̇d + RTη̈d −K1ż1 (4.38)

and zT2 Cz2 = 0 because of the skew symmetric property of the C matrix. The control law
is then chosen as

ρ̂δτ = −RTω̂δ + Mα̇+ Cα+ σ̂δDα− z1 −K2z2 (4.39)

where K2 > 0. This ensures that

V̇2 = −zT1 K1z1 − zT2 (K2 + σ̂δD)z2 < 0 ∀z1, z2 6= 0 (4.40)

Once again, using theorem A.6 in [Fossen, 2011], the error system (z1, z2) is UGAS.

The addition of a low pass filter removes any high-frequent oscillatory effects that the
adaptation laws introduce. The definition of the low-pass filter is

C(s) =
k

s+ k
(4.41)

where k is the time constant tuning parameter for the low-pass filter. The low pass filter
constant needs to be small enough not to cause a significant time delay on the control input.
On the other hand, it needs to be sufficiently large to filter out most of the high-frequency
signals coming from the adaptation law. The final control law for the L1-AB controller is

τ c = C(s)(−RTω̂δ + Mα̇+ Cα+ σ̂δDα− z1 −K2z2) (4.42)

The adaptive control scheme is displayed in Figure 4.3.
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Figure 4.3: The new adaptive motion control scheme. The state prediction of the adaptive control
runs at 100Hz, while the rest of the control algorithm runs at 10Hz. Illustration by author.

4.3 Control Parameters
One of the main tasks in this thesis is the development of a new controller that improves
tracking performance. All the controllers rely on state feedback to compute the error state.
Different approaches to adaptive control are explored to minimize the effect of unmodelled
dynamics. The distinct design aspects and their implementations are discussed further in
this section.

4.3.1 3 DOF PID Controller
The 3 DOF PID controller is a discrete nonlinear controller. The important elements to
consider in the implementation of the controller, are saturating elements, yaw wrapping
and integrator anti-windup.

The handling of saturating elements is done indirectly through the reference filter and the
generation of the reference trajectory. Yaw wrapping is the action of defining ψ and ψd
within a set of allowed values given by −π ≤ ψ,ψd ≤ π. Section 4.2.1 discusses the
integrator anti-windup.

The 3 DOF PID controller is based on the low frequency plant given in (4.9). See Section
4.2.2 for a more in-depth description of the plant and the controller. The implemented
controller has three uncoupled PID controllers in each DOF. The gain parameters for the
individual DOF are defined by the entries in the diagonal matrices

Kp =

200 0 0
0 200 0
0 0 800

 , Kd =

700 0 0
0 700 0
0 0 1600

Ki, =

10 0 0
0 10 0
0 0 15


(4.43)
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The values of the gain matrices in (4.43) can be related to the force outputs from the
thrusters. During the DP controller tests, the thrusters had a max force output of 500N
per thruster. The arm lx given in Figure 4.4, is 1.8m. This means that the thrusters can
output a maximum of τmax = [1000N, 1000N, 1800Nm]T for an uncoupled motion for
each separate DOF. For a deviation of

e1 =

 0.5m
0.5m

0.5 rad


the desired force output from the proportional gain will be

τ p = [100N, 100N, 400Nm]

The same logic applies for e2 and τ d. The τ i term will continue to accumulate propor-
tionally with the integrated error state

∫ t
0
e1(τ)dτ in each DOF with a factor of the relevant

entry in theKi matrix.

4.3.2 L1 Adaptive Backstepping Controller
The L1-AB Controller follows a backstepping approach. First, the adaptation gains need
to be tuned. The control law is defined in (4.39) as

ρ̂δτ = −RTω̂δ + Mα̇+ Cα+ σ̂δDα− z1 −K2z2 (4.44)

However, to reduce the number of adaptive variables in the control law, all the system
uncertainties and external disturbances are collected into one term. This is done by setting
ρ̂δ = σ̂δ = 1 or equivalently ˙̂ρδ = ˙̂σδ = 0. This simplifies the control law to

τ = −RTω̂δ + Mα̇+ Cα+ Dα− z1 −K2z2 (4.45)

where all the modelling uncertainties and external disturbances expressed in the NED
frame are collected in the term ω̂δ .

The adaptation law for the adaptive parameter ω̂δ is defined in (4.26). The tuning of the
adaptation gain γωδ needs to be with care. Sensor measurements contain measurement
noise, and the adaptation gain amplifies the noise with a large γωδ . On the other hand,
choose γωδ too small and the estimation might not converge fast enough to ensure accu-
rate tracking. Another challenge is the delay introduced by the thruster dynamics. If the
adaptation gain is too large, it may allocate a thrust vector with unfeasible rate change. If
this is the case, the delay in the thruster dynamics might cause instability. By using the
simulated environment containing measurement noise, the tuning of the adaptation gain
results in
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γωδ = 25000 (4.46)

The tuning of the adaptation law needs to be investigated further in the experimental tests
to adjust for the measurement noise and the thruster dynamics.

The next step is the tuning of K1 and K2 in (4.40). After iterative tuning in simulations,
these are found to be

K1 =

0.3 0 0
0 0.3 0
0 0 0.6

 , K2 =

1000 0 0
0 1000 0
0 0 2000

 (4.47)

4.3.3 L1 Adaptive Feedforward
The L1-AB controller introduces a different way of compensating for modelling uncer-
tainties and external disturbances in comparison to the PID controller. The design of the
L1-AB controller, allows for usage of the adaptive feedforward terms together with the
PID controller. By using the adaptive feedforward terms from (4.42), combined with the P
and D terms of (4.7), the definition of a proposed PD controller with adaptive feedforward
is

τ = −RTω̂δ + Mν̇d + C(νd)νd + D(νd)νd +Kpe+Kdė (4.48)

The estimation of the external disturbances and modelling uncertainties improves the ac-
curacy of the predicted force necessary to comply with the desired path. This design
offers reusability of the previously tuned PID controller. Iterative tuning is often time-
consuming, and the ability to reuse the already tuned controller simplifies the tuning pro-
cess significantly.

The introduction of the estimation of unmodelled dynamics through the L1 controller
framework negates the need for the integral term in the traditional PID controller. The
adaptation law allows for fast convergence of the estimation of unmodelled dynamics.
Faster convergence of the unmodeled dynamics will, in turn, ensure faster path conver-
gence. This controller will be referred to as the proportional–derivative (PD) adaptive
feedforward controller, or PD + L1-FF from here on. The thesis also collects the vari-
ations of the PID controller into the term non-adaptive controllers, and the controllers
utilizing the adaptive backstepping approach into the term adaptive controllers to separate
the two approaches easily.

4.3.4 Magnitude Saturation
A magnitude saturation model ensures that the control algorithm outputs a feasible desired
force vector. The magnitude saturation model is a function based on the maximum thrust
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for each thruster given by

τms = satm(τ c) (4.49a)

where satm = [satx, saty, satψ] are the maximum allowed outputs for the azimuth
thrusters. The static saturation limits are set to

τms = [500N, 500N, 1000Nm]

for the current implementation.

Figure 5.3 shows the non-linear relationship between thrust input and thrust force. Based
on the non-linear relationship and the lack of an accurate thruster model, this saturation
model includes no rate saturation. During the experimental tests, if the desired rate change
in thruster force appears not to be feasible, it is imperative that the tuning parameters in
(4.46) and (4.47) are changed.

4.4 Thrust Allocation
The vessel milliAmpere operates in three DOF. It is necessary to map the desired gen-
eralized forces, τ = [Fx, Fy, τψ]T from the controller, to feasible actuator inputs. For
milliAmpere, the actuators in question are two azimuth thrusters.

Figure 4.4: Azimuth actuator configuration used on milliAmpere. Here, α denotes the angle, Fx

and Fy denotes the decomposed thrust forces in the BODY frame, F1 and F2 are the total force and
direction produced by each azimuth thruster, and lx is the moment arm from the thrusters to the CO.
Illustration by author.
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For the current actuator setup, the relationship between the output force τ and the actuator
inputs u is described by

τ = T (α)f = T (α)Ku (4.50)

where T (α)Ku is called the thrust configuration matrix. K is the relationship between
the thruster input u and thruster force output f . T (α)Ku describes the relationship
between the angles and thrust of the azimuth thrusters and the resulting force and torque
in the BODY frame. For this vessel the thrust configuration matrix becomes

τ =

 cos(α1) cos(α2)
sin(α1) sin(α2)
lxsin(α1) −lxsin(α2)

[K 0
0 K

] [
u1

u2

]
(4.51)

The pseudoinverse expresses the explicit solution to the equation. By use of the pseudoin-
verse, the actuator input vector u is defined in [Fossen, 2011] as

u = K−1T †w(α)τ (4.52a)

T †w = W−1T T(α)[T (α)W−1T T(α)]−1 (4.52b)

where T †w is the pseudoinverse andW is the weighting matrix.

The process of finding the constrained feasible actuator input u from the desired output
force τ is described as a model-based optimization problem. The optimization problem
is a constrained optimization problem as the thrusters have a constrained thruster force,
and the rotation of the thrusters have a constrained rotation speed. For any rotational
thruster, there are numerous possible solutions to the desired output force. The optimiza-
tion problem then becomes non-convex, which is harder to solve. The formulation of this
optimization problem is called a quadratic programming (QP) problem. The definition of
a simple QP problem formulation of the current optimization problem is

J = min
f,s

{
r∑
i=1

fTWf + sTQs+ (α− α0)TΩ(α− α0)

}
(4.53a)

subject to:

T (α)f = τ + s

fmin ≤ f ≤ fmax
∆αmin ≤ α− α0 ≤ ∆αmax

where W is the weighting matrix for the force vector, s are the slack variables, f are the
thruster forces, Ω is the weighting matrix for the servo angles, and ∆α are the changes in
the servo angles.
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4.5 Chapter Summary
This chapter summarized the theory behind the applied motion control algorithms. First,
the chapter discussed the implementation of the reference filter serving as the guidance
system on the vessel. Additionally, the 3 DOF PID controller is discussed in further detail.
The chapter went on to discuss an adaptive backstepping approach for a new non-linear
controller and the use of model reference feedforward. Additionally, the chapter detailed
the relevant control parameters for their respective control algorithms. Lastly, a brief in-
troduction to the thrust allocation rounds out the chapter.

49





Chapter 5
Autonomous Passenger Ferry
Platform

The prototype milliAmpere is a small autonomous passenger ferry designed and developed
by NTNU. milliAmpere serves as an essential experimental platform for research in the
field of autonomous marine vessels. The development of milliAmpere started in 2017 and
is built in a 1:2 scale of the intended final design.
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Figure 5.1: The experimental platform milliAmpere during experimental tests in May 2019.

5.1 milliAmpere
The ferry currently relies on two separate sensors for the navigation system. The main
sensor is the Vector VS330 GNSS Compass [Hemisphere]. This sensor measures the
position, velocity, and heading data used in the navigation system. The second sensor
is an IMU from XSENS [Xsens]. The IMU provides acceleration and angular veloc-
ity data for the navigation system. The GNSS and IMU are mounted at approximately
rbgnss ≈ [0, 0.975,−2.33]T and rbimu ≈ [−0.78, 0, 0.07]T in relation to the vessel CO.

Component Make and Model Specs
IMU Xsens MTi-20 VRU Inclination stabilization
GNSS Hemisphere Vector VS330 GNSS Compass RTK enabled, dual reciever
Arduino Arduino Mega Microcontroller

Thruster Torqeedo Pod Cruise 2.0FP
500N force output,
reverse rotation capabilities

Servo Intecno BLDC 32deg/s rotation speed
Angle encoder Wachendorff WDGA 36a SSI Absolute angle measurement
Servo signal generator ICPDAS ET-7224 -10V - 10V signal generator

Table 5.1: Main components on milliAmpere used during tracking operations.
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Figure 5.2: The design of milliAmpere and the placement of the various components. Design sketch
of milliAmpere courtesy of Jon Boye Andersen, Innovation JBA.

The prototype has two thruster pods for propulsion, one in the stern and one in the bow.
Two brushless direct current (BLDC) motors from Intecno controls the servo angles. The
servos use a signal voltage of −10V − 10V to control the rotation speeds for the ser-
vos. Two separate ICPDAS ethernet input/output (I/O) modules generate the signal for
the respective servos. The servo control uses the angle measurements from the absolute
encoders as feedback.

The absolute encoder measures the angular position as well as the number of full rotations
performed. Figure 5.2 shows all the relevant components and their placements on the
ferry. The setup of the Arduino, servo motor, absolute encoder and thruster is identical in
the stern and the bow.

During the spring of 2019, the installation of a sensor rig served as an important upgrade
for milliAmpere. The new sensor rig has radio detection and ranging (RADAR), a 360◦

panorama view infrared (IR) camera, and light detection and ranging (LiDAR). The instal-
ment of the sensor rig enables milliAmpere with abilities of perception and other means
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of localization.

5.2 Previous Work
NTNU has developed the ferry through student summer projects during the summers of
2017 and 2018. The author has taken part in the project during both summers. During
the summer of 2017, the focus was on the construction of the vessel. All the different
components, wires and accessories were installed. The intended design of most of the
components is not suitable for the specified usage on milliAmpere. The design of custom
software drivers enabled the usage of the different components for their purposes on the
vessel. At the end of the summer, the ferry was fully operational with manual remote
control. The initial set of sensors needed for transit was installed and interfaced. As
discussed in the previous section, this included high precision RTK-GNSS and an IMU.

For the modelling equations of these measurements, see Section 3.1. To see more informa-
tion on these measurements in regards to notation, see Table 2.1. For more information on
relevant reference frames for use in transformations, see Section 2.1. These measurements
provide the necessary input for autonomy without collision avoidance.

During the summer of 2018, the focus shifted to software development and software ar-
chitecture. During that time, the thrust allocation, a basic 3 DOF PID controller, a basic
navigation system using measurements directly and low-pass filtered differentiation, and
a graphical user interface (GUI) were developed and implemented on the ferry. See Ap-
pendix E for a detailed view of the GUI.

5.2.1 Bollard Pull Test
A bollard pull test is a test that maps the thruster input to output force. The mapping from
the bollard pull test ensures that the thrusters and servos get the correct input based on
the desired force. Different steps on the input to the thrusters result in the ferry exerting a
specific force. A weight tied to the stern of the ferry records the resulting force. The result
of the test is plotted in Figure 5.3. The parameters found to fit this mapping was of a 5th

order curve fit.
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Figure 5.3: Bollard pull test performed during the summer of 2018. The test data results in a
mapping from percentage of thrust capacity to generated thrust force. The mapping is a 5th order
curve fit.

The ability of the servos to rotate 360 degrees enables the vessel to set a force vector at
any given angle with each of its 500N thrusters. Figure 5.4 shows a visualization of all the
force vector setpoints the ferry is capable of producing with a coarse resolution.
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Thrust Setpoints [N]

Figure 5.4: Force vectors in the BODY frame the vessel is capable of producing with both thrusters.
The angle resolution is 1◦ and the thrust resolution is 40N.

5.2.2 GNC System
The ferry has gone through extensive testing, and experimental results were promising.
The GNC system implemented over the summer of 2018 was a basic system with a simple
reference filter, no observer, and no model-based feedforward or no wind feedforward.
The summer of 2018 also saw the implementation of the thrust allocation. Despite the
simplicity of the implementation, the GNC system performs accurate tracking.

A 4-corner test is commonly used to test the accuracy of a motion control system. A
4-corner test is conducted by having a square-shaped positional reference with different
attitude references. Figure 5.5 shows a visualization of the concept of a 4-corner test.
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Figure 5.5: Concept of the 4-corner test. The vessel performs a surge motion, a sway motion, a
yaw rotation, a coupled surge and sway motion, and a fully coupled motion. Image Courtesy of
[Lyngstadaas, 2018].

Figure 5.6 shows the result from the 4-corner test. The main issue with the motion control
system was the lack of heading stability.
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Figure 5.6: 4-corner test for the 3 DOF PID controller performed in pristine conditions during the
summer of 2018.

In Figure 5.7, the measurements are separated into individual plots. The positional accu-
racy in north and east were almost spot on, but the heading tracking struggled and suffered
from oscillations. It is important to note that the conditions during the 4-corner test were
pristine.
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Figure 5.7: Responses for individual DOF during 4-corner test performed in pristine conditions the
summer of 2018.

5.3 Platform Improvement Potential
The platform has areas of improvement to enhance overall performance during tracking
operations. The most substantial restriction is slow thruster dynamics. The delay caused
by the thrusters ramping up and down, coupled with the slow rotational speed of the servos,
cause the platform performance to suffer when the need for more considerable thrust rate
change is needed.

Due to the platform’s unique design with a shallow draft, the vessel is very susceptible
to wind forces. The shallow draft means less wind force is necessary to dislocate the
vessel from its desired trajectory. Another design feature that negatively impacts the vessel
characteristics is the flat-bottomed hull and the small ratio between the length and width
of the hull. The flat-bottomed, square-like design of the vessel makes it directionally
unstable.

The vessel also suffers from a quite substantial message delay on the servo control. With
the current set up, it takes 0.5 seconds for the servo to act on the setpoint the on board
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computer (OBC) requests. This delay further adds to the overall delay in the thruster
dynamics. Removing the delay will improve the thruster dynamics and, in turn, the overall
trajectory tracking accuracy.

5.4 Chapter Summary
This chapter presented the experimental platform used in the thesis. The chapter presented
the design, the components and the previous work. The previous work consists of a previ-
ous implementation of a GNC system and includes some experimental results. The chapter
also discussed some platform improvement potential for improving overall tracking per-
formance for the vessel.
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Chapter 6
Simulation Results

Two separate simulated environments are used to verify the different implementations. For
the verification of the performance of the ESKF, simulated measurement data is used to
mimic the actual sensor data. For the new controllers, the simulated environment uses a
vessel model developed in [Pedersen, 2019]. These separate environments enable verifi-
cation of both the ESKF and the new adaptive controllers.

6.1 Navigation Results
The navigation system evaluates the performance with the use of a node that mimics sensor
data from the GNSS and IMU sensors. The imitation node provides data in real-time to test
the ESKF in a realistic setting. The simulated environment enables the ability for necessary
debugging and performance tests for the ESKF. A discussion in Section 6.1.1 details the
performance tests for the ESKF. The filter is made to function with the same sensor data
provided on the vessel. This approach will simplify the process of filter integration with
the rest of the system on milliAmpere. The simulated sensor data includes simulated noise
and perturbations. The added noise in the simulations ensures that the simulations are as
close to any real-life scenario as possible.

The ESKF can estimate states based on absolute position data alone. This variation of
the filter serves as a benchmark for performance. Other sensor data, such as velocity and
compass measurement updates, are implemented in the ESKF. These filter variations are
used as a comparison to evaluate precision and accuracy compared to the filter variation
with only position error correction.

6.1.1 Filter Consistency
An essential aspect of the ESKF is the tuning of the Q and R matrices. It is beneficial
to be able to confirm that the values in these matrices optimize filter performance. The

61



confirmation method is especially useful when the characteristics of the sensors are not
necessarily known. Filter consistency is a way of validating the tuning of these matrices.
Two tests often used to check for filter consistency are outlined in [Brekke, 2018] and
[Bar-Shalom et al., 2002]. The first is the NEES test

εk = (x̂k − xk)TP−1
k (x̂k − xk) (6.1)

where x̂k is the estimated state, xk is the true state and Pk is the covariance matrix for
iteration k. The second is the NIS test given by

εvk = νT
kS−1

k νk (6.2)

where νk is the innovation for measurement update k, and S−1
k is the innovation matrix in

the Kalman gain.

The NEES test is a tool for testing the consistency of the estimates in comparison to the
ground truth. This test is dependent on knowing the actual state. The NIS test is a consis-
tency test based on the innovation between the estimated state and the measured correction
data. The latter is suitable for real-life scenarios where the true state is not known. The
results from these tests should mimic that of a series of the norm of a three dimensional
zero-mean unit-variance Gaussian random vector. If this is the case, the estimation error
is modelled as white noise, indicating optimal estimation. Figure 6.1 shows a comparison
between a NEES distribution and a 3 dimensional Gaussian distribution.
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Figure 6.1: NEES test concept for position error between estimated position and true position in the
ESKF.
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As shown in the example, the test results do not mirror the Gaussian distribution com-
pletely. However, this case is satisfactory. The NEES/NIS test results that have larger
values than the Gaussian distribution itself are far worse as this can lead to divergence.
Both cases will lead to suboptimal estimation, but the former is preferred. Unfortunately,
the non-linearities in the ESKF make it hard to make guarantees regarding filter consis-
tency.

6.1.2 Position Data Error Correction
Figures 6.2 and 6.3 shows the filter estimates with position error corrections.

Time [s] Time [s]

Time [s] Time [s]

Figure 6.2: Estimation of acceleration, angular velocity, velocity, and position with position error
correction during a simulation. The clean variable is the true state, the variable with hat notation is
the estimated state, and the variable with the subscript m is the measured state.
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Time [s]

Figure 6.3: Attitude estimation with position error correction during simulation. The clean variable
is the true state, the variable with hat notation is the estimated state.

With just the position error correction, the estimation of the non-measured states is per-
formed well, except for the heading ψ. Even though the estimation of ψ is somewhat
inaccurate, the estimation never diverges and is kept close to the actual ψ during simula-
tions. The consistency test shown in Figure 6.4 shows that the filter behaves as desired
by having an estimation error distribution smaller than the Gaussian distribution, thus sup-
porting that the filter will not diverge. The introduction of compass measurements will
resolve the struggle with the estimation of the heading.
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Figure 6.4: NEES test result for error between position estimates and true position compared to a
three dimensional Gaussian during simulation.

The NEES test gives satisfying results with position data error correction. The estimation
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error distribution is smaller than that of the Gaussian distribution. The estimation error
distribution satisfies the remarks outlined in Section 6.1.1, indicating well-tuned parame-
ters.

Heading Observability with Position Data Error Correction

It is not straightforward how the heading is observable with only the use of position data
error correction. The heading is observable through the acceleration measurements [Gade,
2016]. In the case of position data error correction only, the ESKF relies on an accelerated
system to achieve heading observability. The larger the accelerations are, the better the ob-
servability, and thus more accurate heading estimate. The heading is possible to estimate
with this approach only if the obtained position measurement has sufficient accuracy and
rate. Unfortunately, this method requires a sufficiently large vessel acceleration to be ap-
plicable. In the simulations, the accelerations are unreasonably large in comparison to the
real-life application of milliAmpere. A correct estimate of the heading with only position
data error correction is unlikely to be achievable in a real-life scenario with milliAmpere.

Successful estimation of the heading is also possible with velocity measurements only.
The required vessel acceleration is then less in comparison to position measurements. The
lesser need for acceleration is a result of the separation of velocity measurement noise
and the integrated acceleration is quicker in comparison to the position measurement. The
quicker separation is due to the further integration of the acceleration needed to obtain the
position. Estimation of heading with velocity measurements only will not be examined in
more detail in this thesis as the ESKF utilizes compass measurements.

6.1.3 Position and Compass Data Error Correction
The onboard GNSS provides yaw measurements. As mentioned in the previous section,
the orientation estimate lacks accuracy in the yaw position. Compass measurements are
introduced to remedy this shortcoming.
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Time [s] Time [s]

Time [s] Time [s]

Figure 6.5: Estimation of Acceleration, angular velocity, velocity, and position with position and
compass error correction during simulation. Subscript m denotes the measured state, hat notation
denotes the estimated state, and the clean variable is the true state.

The introduction of compass measurements increases the accuracy of the estimated angu-
lar velocity. The increased observability, because of the compass measurements, ensure
impeccable estimation of all states.
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Time [s]

Figure 6.6: Attitude estimation with position and compass error correction during simulation. The
clean variable is the true state, the variable with hat notation is the estimated state.

The introduction of the compass measurement has the desired effect. The heading now
coincides with the actual heading, and the attitude is correctly estimated. The correct
estimate of attitude means an accurate estimation of the complete six DOF vessel model.
The estimation of the six DOF state vector is valuable not only for the motion control
system, but it also allows for accurate transformations between the different reference
frames. The results from the NEES test in Figure 6.7 further supports stability of the filter
by abiding to the rules of filter consistency in Section 6.1.1.
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Figure 6.7: NEES test with position and compass estimation error during simulation.
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6.1.4 Position, Velocity and Compass Data Error Correction
The addition of planar velocity error correction further improves the state estimation ac-
curacy. The planar velocity measurement is a transformation of the speed and course mea-
surements provided by the GNSS. Together with the rest of the estimated states, Figure
6.8 shows the improvement in the velocity estimate.

Time [s] Time [s]

Time [s] Time [s]

Figure 6.8: Estimation of Acceleration, angular velocity, velocity, and position with position, veloc-
ity, and compass error correction during simulation. Clean variable denotes true state, hat notation
are estimated states, and subscript m is the measured states.
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Time [s]

Figure 6.9: Attitude estimation with position, velocity, and compass error correction during simu-
lation.

The introduction of the velocity measurement, vn = [ẋn, ẏn]T, does not have a pro-
found effect on the filter performance. However, there are some subtle improvements. The
attitude estimation is now more accurate and more consistent, allowing for more consis-
tent transformation of the GNSS measurement to the CO. The velocity estimates are also
smoother, although not perfect. As the true state is known, all errors in the estimates are
available in three DOF. Figure 6.10 shows the comparison between the estimation error
and a three DOF Gaussian distribution.
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Figure 6.10: NEES test with position, velocity, and compass error correction during simulation.

The NEES test results are satisfactory. All the NEES tests for the different measurements
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have smaller distributions than the Gaussian distribution. These tests further support the
achievement of filter stability.

6.1.5 Discussion
The simulations of the ESKF show that the filter behaves as expected. The ESKF suc-
cessfully estimates the state vector for all three variations of the filter. The only issue is
that the filter appears to have some issues with the observability of ψ when there is only
position error correction. One reason is that the added stochastic noise reduces the overall
observability. Larger accelerations will also improve heading estimation accuracy.

The inability to accurately estimate ψ gives cause to concern for the filter running in a
real scenario with less acceleration and with more dominant noise. However, this is for
the variation that only uses position data as error correction. The inability to estimate ψ
accurately does not cause concern for overall filter accuracy, as the final implementation
uses more measurements for error correction.

Another critical remark is that the estimation of the state vector is stable in real-time. State
estimation in real-time is an important milestone as it is crucial for any application in a
real-life. The filter has a runtime which allows for very high order approximation of the
transition matrix. The ESKF runs successfully in real-time with an approximation of the
transition matrix as high as 7th order. 7th order approximation might seem overkill, but
increased approximation accuracy is highly valued to ensure stability.

Additionally, the maximum runtime for one iteration of the filter, which occurs when there
is an update for all three measurements during one iteration, is clocked at 2.6 · 10−3s.
A 5th order approximation of the transition matrix was running with the achievement of
this runtime. This runtime was clocked on a virtual Ubuntu machine on a laptop with a
minimum amount of allocated processing power. The relatively low computational cost of
running the filter will come in handy down the line with the introduction of more nodes to
the software stack on the OBC.

6.2 Motion Control Results
The control algorithm currently being used is a 3 DOF PID controller. The introduction
of feedforward will easily improve the transient response in comparison to the response
shown in Section 5.2.2. However, the model is never 100% accurate. The introduction
of adaptive control is an attempt to improve the performance of the current controller.
The principles of adaptive control will be used to estimate the model uncertainties and
external disturbances. The simulated environment used for verification is set up as a Robot
Operating System (ROS) node to interact with the entire system in real-time.

6.2.1 Simulations With Unmodelled Dynamics
It is essential to have a simulation environment as close to reality as possible. A realistic
simulated environment will ensure that the real-life applications of the implementation are
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attainable with little to no tweaking. The measurements from the different sensors are sub-
ject to measurement noise. The simulated environment models the measurement noise as a
Gaussian process based on the datasheet for the particular measurement. Table 6.1 details
the standard deviation of the added measurement noise in the simulated environment.

Measurement
Standard
Deviation

x 10 mm
y 10 mm
ψ 0.05 deg
ẋ 0.01 m/s
ẏ 0.01 m/s
r 0.05 deg/s

Table 6.1: Simulated measurement noise in the simulated environment for the measurements used
in the motion control algorithms on milliAmpere.

The measurement noise for the measurements are random samples drawn from a Gaussian
distribution defined by the probability density function

p(x) =
1√

2πσ2
e−

(x−µ)2

2σ2 (6.3)

where the mean µ = 0, and the standard deviation σ for the respective measurement is
according to Table 6.1. The simulated environment applies the measurement noise to the
correct measurement before use.

To further make the simulated environment more accurate towards a real-life scenario, an
external force vector is added to interact with the vessel. The external disturbance mimics
that of a force induced by irrotational ocean currents. The definition of the force vector is
in the NED frame. All the simulations performed from here on out are all subjected to the
external force ωnd = [200N, 200N, 50Nm]. Furthermore, all model matrices are perturbed
by ±40% to act as the inherently imperfect model. The sum of all unmodeled dynamics is
then collectively expressed in the term ωn.

The simulations use a static magnitude saturation function based on the maximum thrust
output from a single thruster. The static magnitude saturation defines the thruster force
saturation as

τms = [500N, 500N, 1000Nm]T

6.2.2 Performance Metrics
A set of performance metrics are used to evaluate the performance of the different control
algorithms objectively. [Sørensen and Breivik, 2015] uses four performance metrics for
the evaluation of the performance of a motion control algorithm. This thesis uses the same
performance metrics. These performance metrics are the integral of the absolute error
(IAE)

71



IAE(e) =

∫ t

0

|e|dt, (6.4)

which is purely the error over time with no other considerations. The IAE metric indicates
how well the vessel tracks the desired path over time. The integral of the square of the
error (ISE)

ISE(e) =

∫ t

0

e2dt, (6.5)

which weigh larger errors more than smaller errors and gives a metric for how well an
algorithm eliminates larger deviations from the intended trajectory. The integral of the
absolute error multiplied by time (ITAE)

ITAE(e) =

∫ t

0

t|e|dt, (6.6)

which penalize errors that are present over more extended periods. This metric will heavily
weigh stationary errors that the tracking operation does not eliminate. The last metric is
the integral of the absolute error multiplied by energy consumption (IAEW)

IAEW (e) =

∫ t

0

|e|dt
∫ t

0

Pdt, (6.7)

which combines the tracking error and the power consumption to see which algorithm has
the best tracking vs power consumption. In these metrics the variables e and P are given
by

e = −sin(ψ)(x− xd) + cos(ψ)(y − yd) (6.8)

and

P = ||νT τ || (6.9)

6.2.3 Non-Adaptive Controllers
The first simulations show the individual responses from the non adaptive controllers. The
controllers in question are a 3 DOF PID controller without feedforward, a 3 DOF PD
controller with feedforward, and a 3 DOF PID controller with feedforward.
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Figure 6.11: 4-corner test for non-adaptive controllers during simulations.

As expected, the PD controller with feedforward performs poorly. Without compensation
for unmodelled dynamics in any way, the controller falls short and never converges to the
desired state. The flaws for the other controllers are also apparent. The fully coupled
motion, described in Figure 5.5 as the 5 → 1 stage, causes large deviations from the
desired path. With ±40% model perturbation, the feedforward causes more harm than
good at this stage.
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Figure 6.12: Performance metrics for non-adaptive controllers during simulations.

The performance metrics show that adding feedforward to the PID controller increases
overall performance. The model reference feedforward achieves improved transient re-
sponse and better overall performance for the controller. The feedforward ensures that
the controller more accurately follows the desired path during phases of acceleration. The
difference in transient performance is most notable in the corners of the 4-corner test in
Figure 6.11. The same improvement is visible in Figure 6.13.
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Figure 6.13: Responses for the individual DOF for non-adaptive controllers during simulations.

Due to the addition of stochastic measurement noise in the simulated environment, the
desired control outputs have a high-frequency oscillation. This is shown in Figure 6.14.
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Figure 6.14: Control input for non-adaptive controllers during simulations.
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The control inputs showcase the effect of the feedforward. With feedforward, a predicted
force is immediately added based on the desired acceleration and velocity calculated by
the reference filter. This predicted force causes the control input to have a powerful surge
in phases of acceleration. In Figure 6.14, this is easily seen by inspection of the desired
control input from the PID controller and how it differs from the others.

6.2.4 Adaptive Controllers
As noted in Section 4.3.2, the adaptive term enables an alternate way of estimating the
uncertainties and external disturbances. This new design has a significant advantage com-
pared to the traditional PID controller. The adaptive control can estimate all the unmod-
eled dynamics quickly, whereas the integral term in the traditional PID controller needs
to build up over time. The rapid convergence of unmodeled dynamics provided by the
adaptive controller gives an advantage over the PID controller and will ensure improved
tracking.
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Figure 6.15: 4-Corner test for adaptive controllers during simulations.

The results of the 4-corner test with the introduction of adaptive control are dramatically
improved. The adaptive control ensures almost perfect tracking, even with 40% model
perturbation and an external disturbance vector of ωnd = [200N, 200N, 50Nm]T. The
L1-AB controller has slightly better tracking, but at the cost of increased actuator usage.
Figure 7.34 further shows the increased actuator usage.
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Figure 6.16: Performance metrics during the 4-corner test for adaptive controllers during simula-
tions.

The dramatic improvement in performance is evident by comparing figures 6.12 and 6.16.
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Figure 6.17: Responses for the individual DOF in the 4-corner test for adaptive controllers during
simulations.
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Figure 6.18: Control input for adaptive controllers during the 4-corner test in simulations.

The usage of theL1-AB controller increases the actuator wear and tear. However, reducing
the gains given in (4.47) will reduce the aggressive behavior evident in the actuator usage
by the L1-AB controller. The response from the L1-AB controller does show that it is
capable of more aggressive maneuvering. More aggressive maneuvering is useful in some
instances and should be part of the consideration for the final choice of the controller. The
high-frequency oscillations in the desired control output are due to the measurement noise
present for η and ν.

6.2.5 Discussion
All the simulations of the new controllers show improvement over the 3 DOF PID con-
troller that currently reside on milliAmpere. Especially are the results that were performed
using principles of adaptive control promising. The PD controller with adaptive feedfor-
ward show massive improvement over the PID controller with feedforward.

What is also essential to notice is how the adaptive controllers differ in actuator usage.
The different actuator usage provides some flexibility regarding the desired behavior of the
ferry. For a situation demanding aggressive maneuvering and accuracy, the L1 adaptive
backstepping (L1-AB) controller is more suitable. If less actuator wear and tear and less
power consumption outweigh the need for a slight improvement in accuracy, the PD con-
troller with adaptive feedforward is the better choice. Regardless, both the controllers with
adaptive control shows great promise and outperforms the traditional PID based controllers
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by a considerable margin. The increased performance in the simulations is auspicious for
the final performance these controllers will have on milliAmpere.

6.3 Chapter Summary
Chapter 6 presented all the results acquired from the simulations. The simulations of the
estimation algorithm used a node that mimics the sensor data available. The filter ran in
three different variations in the simulations, and the chapter presented a discussion for
each of the variations along with the results.

This chapter also presented the simulations for the control algorithms. The new adaptive
controller variations are compared to the already implemented 3 DOF PID controller using
the 4-corner test. The results from the 4-corner tests are presented with the use of perfor-
mance metrics and individual responses for the separate DOF for positions and control
input.
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Chapter 7
Experimental Results

This chapter outlines all the experimental results. The experimental results present the
performance for the newly implemented controllers and the ESKF. The new algorithms
serve as an improvement to the GNC system on milliAmpere, and it is imperative that
both the ESKF and the controllers have stable and predictable behaviors to ensure safety
on board. The filter estimates are from here on out compared to raw position measure-
ments and the estimated velocities obtained through low pass filtered differentiation of
the position measurements. These measurements and estimates will be referred to as the
old navigation node and are denoted by the measured pose η, and the velocity in body ν
achieved by transforming the low pass filtered differentiation of the measured pose from
the NED frame to the BODY frame.

7.1 Test Area
The declaration of Trondheimsfjorden as a test site for autonomous ships in 2016 [Sae-
Khow, 2016] marked it as the first of its kind in the world. A suitable place to test the new
implementations on the ferry is Havnebassenget by Brattøra. It is vital to have large safety
margins as the ferry is a prototype and has no backup solution. Given the severity of the
situation, if a crash is to occur, a big open area is favorable. As the traffic in this area is
minimal, it serves as a perfect testing area for the ferry. The experimental tests performed
are further detailed in Appendix C.
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Figure 7.1: Test area for milliAmpere. Map provided from Google Maps.

7.1.1 Testing on the Experimental Platform
Testing implementations on an experimental platform is both a burden and a joy. The
experimental platform allows for real-life testing that showcases the results in a much more
satisfying way than through simulations. The ability to see actual real-life applications
is both rewarding and exciting. On the other hand, the platform introduces difficulties
that are not associated with simulations. The time consumption of set up, experimental
testing, unforeseen events and other time thieves, further constrain an already constrained
time frame. The time constraint became more and more apparent towards the end of the
thesis as experimental tests were pushed repeatedly for the variety of reasons previously
mentioned.

The test platform can also provide some logistical issues regarding performing experi-
ments. Given that milliAmpere is a prototype, there are extra precautions concerning the
operation of the vessel. Safety guidelines dictate that at least two people should always be
on board the ferry in case of malfunction. The need for multiple people on board puts lim-
itations on available time slots to conduct experiments. Another issue is that milliAmpere
serves as a testing platform for other students. As many students rely on the platform,
available testing time is further restricted. Other limitations such as scheduled demos,
weather conditions and hardware issues mean that available time for testing purposes is
limited.

A discovery of hardware issues on milliAmpere during Ocean Week in Trondheim meant
pushing the majority of the experimental tests from the 9th of May to 21st of May 2019.
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7.2 Navigation Results
The ESKF in its current state can utilize measurements for all states if available. Most
of the initialization parameters in the filter can be set easily due to reliant accurate mea-
surements given by the sensors in question. The nominal states in the ESKF that are not
easily measured pose more of a significant impact on the initialization of the filter. More
specifically, the nominal states for velocity, roll and pitch. The biases in the acceleration
and angular velocity measurements are expected to be small, and the initial error values
for the biases reflect that. The roll and pitch can not be reliably measured, and the velocity
measurement is very noisy when at a standstill.

Proper initialization of the filter is essential as it decreases the convergence time. Filter
initialization is necessary every time the system needs to reboot. During a reboot, it is
reasonable to assume a moored state of the vessel. Thus, this state of the vessel is the basis
for the filter initialization.

7.2.1 Inertial Measurement Unit Mounting
The IMU is currently mounted below deck with the lever arm rbm = [−0.78, 0, 0.07]T.
With the current hardware setup, there are no better alternatives to mount the IMU re-
garding CG. However, mounting the IMU close to CG in this case, comes at a cost. The
mounting of the sensor is directly below deck on the inside of the hull. Any movement
on deck causes spikes in the measurements. Consequently, the wild point filter drops
many IMU measurements. Figure 7.2 shows the effects on the acceleration measurements
induced by walking and stomping above on deck.

Time [s]

Figure 7.2: Induced acceleration in IMU measurements due to stomping and walking on deck.
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The induced accelerations are quite large, and some spikes even cause deviations larger
than 1m/s2. The wild point filter picks up a lot of the spikes, but if the vibrations occur
over a prolonged period, the measurements approved by the wild point filter will not be
satisfactory.

Another issue with the current mounting is that after inspection of the IMU, it shows that
the IMU has a slight offset in the roll position. Figure 7.3 shows this offset. The offset is
not ideal as the provided measurements from the IMU will be entangled with the gravity
vector. The offset also causes the roll estimate provided by the IMU to have a slight offset.
This inaccuracy is important to consider for the attitude comparisons later.

Figure 7.3: The mounting of the IMU. The sensor has a slight offset in negative roll.

The previous mounting of the IMU had the lever arm rbm = [0, 0,−2.33]T. To illustrate
another aspect of the importance of the IMU mounting, Figure 7.4 shows the resulting
measured accelerations by the IMU with the old mounting. These are recordings during the
4-corner test in pristine conditions discussed in Section 5.2.2. Still, the measurements are
greatly affected by the angular acceleration. The angular acceleration causes oscillations
of the acceleration measurements with amplitudes as large as 0.15m/s2 with a period of
two seconds.
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T

Figure 7.4: IMU acceleration measurements corrupted due to angular acceleration as a result of the
lever arm rbm = [0, 0,−2.33]T.

A solution that remedies both current shortcomings is a contraption rooted in the base of
the hull. The contraption will extend the position of the IMU as close to CG as possible.
With this solution, the IMU is minimally susceptible to be influenced by small vibrations
and material deflections caused by people walking around on deck. Additionally, the ac-
celeration measurements will be less affected by angular accelerations that are caused by
being mounted away from CG. A new mounting solution also alleviates the observed off-
set in the roll angle. A new, improved mounting of the sensor will minimize the effects of
both factors. Eliminating these factors will improve the overall performance of the ESKF.

7.2.2 Covariance Matrix Initialization
Before the state estimation algorithm can run in the current setup, all measurements have
to be registered at least ones. These measurements are for position, velocity, compass,
angular velocity and linear acceleration. Based on the initial measurement of the linear
acceleration, the roll and pitch angles are estimated. See Section 3.1.1 for a more thorough
explanation of this estimation. An accurate initial estimate of the state vector is then
established based on these measurements.

The covariance matrix is initialized to express the uncertainty of the initial estimate of the
state vector. The initial uncertainty estimates are set slightly larger than the initial mea-
surement uncertainty to avoid any unwanted effects that might occur if the uncertainty
estimates are set too small. For the states with no reliable measurements, the initial un-
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certainty estimates are set slightly larger than strictly necessary to avoid any initialization
issues. If the uncertainty in the initial estimates does not reflect the actual uncertainty of
the measurements, the convergence time of the filter increases, or in worst case diverges.
The entries in the initial diagonal covariance matrix are

P0 =


pσ 0 0 0 0
0 vσ 0 0 0
0 0 θσ 0 0
0 0 0 abσ 0
0 0 0 0 ωbσ

 (7.1)

where

pσ =

0.1 0 0
0 0.1 0
0 0 0.2

 , vσ =

0.5 0 0
0 0.5 0
0 0 0.5

 , θσ =

5 0 0
0 5 0
0 0 0.2

 (7.2)

where the initial error estimate of the attitude θσ is expressed in degrees. The initial values
for the last entries in the covariance matrix is

abσ =

10−8 0 0
0 10−8 0
0 0 10−8

 , ωbσ =

10−8 0 0
0 10−8 0
0 0 10−8

 (7.3)

The bias values for the acceleration and angular velocity measurements are chosen to be
equal along with the diagonal of the matrix. The biases are assumed to be minute and
initialized as such.

7.2.3 Initial Filter Tuning Based on Recorded Data
The initial tuning of the ESKF is performed on recorded data by using the ROS framework
and the rosbag feature. The rosbag feature allows for real-time playback of the recorded
information flow on the vessel. From the observer point of view, this is equivalent to
performing live estimation in a real-life scenario. This powerful feature allows for "online"
tuning while not being on the vessel. For more information about this feature and ROS in
general, see appendix D.

Position Correction Data

With only position data error correction, accurate estimation of the heading proved dif-
ficult in the simulated environment. It is doubtful that the filter will be able to correctly
estimate the full state vector accurately with only position error correction with real data.
As stated in Section 6.1.2, the vessel operates with low acceleration, and the heading esti-
mate will suffer significantly due to the lack of observability of the state. Additionally, the
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introduction of more dominant stochastic noise in the measurements will negatively affect
the observability. The ESKF experimental test with only position data for error correction
proves this suspicion.
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Figure 7.5: Estimated pose η̂ vs measured pose η with position error correction on experimental
data.

With only position data for error correction, the heading estimate does not converge, and
the ESKF fails to estimate the full six DOF state vector. The unacceptable error in the
estimation of the heading propagates further for the estimation of any states that are de-
pendent on the rotation matrix. Case in point is the estimated velocity in body ν̂ shown in
Figure 7.6.
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Figure 7.6: Estimated velocity ν̂ vs low pass filtered velocity ν vs raw velocity measurement νgnss

with position error correction on experimental data. No subscript is the velocity estimated with low
pass filtered differentiation of position, gnss subscript is the measured velocity from the GNSS, and
hat notation is the estimated velocity.

Due to the lack of accuracy in the heading estimate, the velocity estimate ν̂ is way off. This
is unacceptable and will produce unwanted behavior from the motion control system. This
chapter refers to the estimated acceleration as â = am − âb, and the estimated angular
velocity as ω̂ = ωm − ω̂b, where subscript m denotes the measurement and subscript b
denotes the bias. The rest of the estimated states in comparison to the measured states are
shown in figures 7.7 - 7.9.
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Figure 7.7: Estimated acceleration â vs the measured acceleration a with position error correction
on experimental data. The boxes on the individual plots are plots of the same states only zoomed in
for better inspection of differences between the estimations and the measurements.
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Figure 7.8: Estimated angular velocity ω̂ vs measured angular velocity ω with position error cor-
rection on experimental data. The boxes on the individual plots are plots of the same states only
zoomed in for better inspection of differences between the estimations and the measurements.

Section 7.2.1 discusses the mounting of the IMU and especially mentions the slight offset
in the roll position. The roll offset manifests itself into the measured acceleration along
the y-axis. Figure 7.21 shows that the filter correctly adds a bias to the acceleration mea-
surements to correct offset in the roll.
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Figure 7.9: Estimated attitude Θ̂ vs measured attitude Θ with position error correction on experi-
mental data. The yaw plot show the compass measurement ψcompass, the estimated yaw ψ̂ and the
IMU yaw measurement ψimu.

The IMU uses the method discussed in Section 3.1.1 to estimate the roll and pitch. Ad-
ditionally, the IMU uses a specially designed Xsens Kalman filter (XKF3i) to estimate
roll and pitch with better accuracy. The XKF3i averages the measured acceleration over
an extended period to estimate the gravity acceleration. As summarized in [Xsens], the
estimation of the gravitational acceleration is used to stabilize the estimation of roll and
pitch. The limitation for this approach is that the acceleration must be averaged over an
extended period to give an accurate estimate of the direction of the gravity vector.

Additionally, the averaged acceleration will never be zero, so the expectation is for the
estimated attitude to have some slight deviation from the actual attitude. However, in this
case of a slow, low accelerating marine vessel, this is not an issue. Subsequently, the roll
angle and pitch angle estimates from the IMU are entirely accurate. The yaw measurement
from the IMU is unreferenced, but more accurate than simple integration of the angular
velocity. The estimate for the attitude is used to compare to the ESKF attitude estimate.
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Figure 7.10: NIS test results for error between position estimates and position correction data on
experimental data.

The NIS test indicates that the tuning parameters are decent. Still, the filter is not able
to correctly estimate the heading accurately. As will be discussed next, this is due to
the reduced observability caused by the low acceleration, and the introduction of more
dominant stochastic noise in the system.

Observability Issues

In [Bageshwar et al., 2009], a simple test of stochastic observability in discrete Kalman
filters is proposed. The test uses the singular value decomposition of the covariance ma-
trix to determine if the system is stochastically observable. This simple test inspects the
maximum singular value for the covariance matrix. The definition of the test parameter is

σmax(Pk) < Tv, tk ≥ tN (7.4)

where σmax is the largest singular value of the covariance matrix Pk, and Tv, tN < ∞.
The test dictates that after convergence, the maximum singular value should be below a
threshold limit defined by the convergence value of the maximum singular value. For the
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system to be stochastically observable, once σmax(Pk) has converged to a finite limit for
tk = tN , σmax(Pk) must be less than the threshold value for tk ≥ tN . As seen in Figure
7.11, this is not the case.

Time [s]

Figure 7.11: Stochastic observability test results with position data error correction on experimental
data.

The conclusion is that the system, with such a low bounded maximum acceleration, is not
fully observable when only using position data for error correction. Thus, the filter is not
expected to converge while performing normal crossing operations. The filter needs more
measurements to achieve satisfying estimation.

Position and Compass Correction Data

The introduction of compass measurements fixes the issue with an inaccurate estimate of
the heading angle.
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Figure 7.12: Estimated pose η̂ vs measured pose η with position, and compass error correction on
experimental data.

The full state vector is estimated correctly with the introduction of compass error correc-
tion. However, the measurement noise in acceleration measurements affects the velocity
estimates quite substantially. If the acceleration measurements are weighted heavily in the
estimation, more noise propagates into the velocity estimate. On the other hand, as seen in
Figure 7.13, non-satisfactory velocity estimates are a result of lower weights on the accel-
eration measurements. Obtaining both accurate and relatively noise-free estimates of the
velocity with the current set up was not achieved.
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Figure 7.13: Estimated velocity ν̂ vs low pass filtered velocity ν with position and compass error
correction on experimental data

Time [s]

Figure 7.14: Estimated acceleration â vs measured acceleration a vs raw velocity measurement
νgnss with position and compass error correction on experimental data.
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Figure 7.15: Estimated angular velocity ω̂ vs measured angular velocity ω with position and com-
pass error correction on experimental data.
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Figure 7.16: Estimated attitude Θ̂ vs measured attitude Θ with position and compass error correc-
tion on experimental data.

Following logic reasoning, the attitude estimate makes sense. Any marine vessel in rela-
tively still waters will have roll and pitch angles approximately equal to zero. It is reassur-
ing to have the attitude estimate backed up by another estimation algorithm with a proven
record in the XKF3i algorithm. Similar estimates of attitude through the two respective
methods give high confidence in the filter estimate.

Compass measurements aid the ESKF for the estimation of the yaw angle. These compass
measurements provide the filter with very accurate yaw measurements. In comparison,
the IMU estimate of ψ struggles due to the magnetic field induced by other components
around the sensor. Figure 7.16 show that the estimated attitude from the filter is accurate.

For the NIS test of compass estimates, the compass measurement is one-dimensional, and
subsequently, the Gaussian distribution used in the comparison is univariate.
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Figure 7.17: NIS test results with position, and compass error correction on experimental data vs
the norm of their respective dimensional Gaussian distributions.

The consistency tests give further confidence in the estimated state vector. The filter shows
sufficient estimation consistency and thus, reliant estimation.

Position, Velocity and Compass correction data

With the introduction of the velocity measurements, the estimated position and attitude
does not change much. As expected, the improvement mainly comes in the estimated
velocity. The estimated pose η̂ is the same as before, and the ESKF shows an accurate
estimate of the position.
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Figure 7.18: Estimated pose η̂ vs measured pose η with position, velocity, and compass error
correction on experimental data.

The introduction of the velocity measurement corrects the error that occurs in the velocity
estimate with only position and compass error correction. Figures 7.13 and 7.19 show the
improvement as a result of velocity data error correction.
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Figure 7.19: Estimated velocity ν̂ vs low pass filtered ν vs raw velocity measurement νgnss with
position, velocity, and compass error correction on experimental data. The small box plotted on the
right side of the yaw rate measurements show the phase lag of 1.5 seconds caused by the low pass
filtering.
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Figure 7.20: Estimated attitude Θ̂ vs measured attitude Θ with position, velocity, and compass
error correction on experimental data.

With the addition of the velocity error correction in the ESKF, the attitude estimation
further improves slightly. The mounting of the IMU means that the inclination estimate of
the IMU has a small offset with a negative roll. As a result, the two individual estimates
of the attitude are not expected to coincide directly. See Section 3.1.1 for more details on
the IMU estimation of attitude.
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Figure 7.21: Estimated acceleration â vs measured acceleration a with position, velocity, and com-
pass error correction

Time [s]

Figure 7.22: Estimated angular velocity ω̂ vs measured angular velocity ω with position, velocity,
and compass error correction.
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Figure 7.23: NIS test on real data with position, velocity, and compass error correction vs the norm
of their respective dimensional Gaussian distributions.

7.2.4 Filter Consistency During Prolonged Run Time
Consistency Test When Moored

When in operation, the filter will run for a prolonged amount of time. It is vital to perform
consistency tests over an extended period to verify that the filter is stable. The NIS test
is yet again used to verify the filter performance. During prolonged operation, any weak-
nesses or faults are more likely to propagate and be exposed. Figure 7.24 shows the NIS
test results during 1-hour runtime for a moored ferry.
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Figure 7.24: NIS test for position during 1 hour while vessel is moored vs norm of three dimensional
Gaussian distribution.

The consistency test reveals that the tuning matrices for the position and velocity measure-
ments are well-tuned and that the ESKF is stable over a prolonged period. However, the
Rψ is too large since the filter is overconfident for the compass measurements. At a stand-
still, the modelling of the velocity measurement noise is not as a white noise distribution.
Additionally, the position measurement will have less measurement noise. These noise
attributes are reflected through their respective distributions when at a standstill.

Consistency Test Under Normal Operation

The filter performs well under normal operation. Figure 7.25 shows the consistency test
results during normal operation.
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Figure 7.25: NIS test during 30 minutes of normal operation.

What can be observed is that there are a lot more outliers during regular operation than
when moored. Vibrations in the hull cause the observed outliers. The thrusters ramping up
and down, and people walking on deck, cause the vibrations in the hull. Given that the IMU
is very sensitive to external vibrations in its current location, especially the acceleration
measurements, these vibrations will propagate in the predictions the ESKF makes, and thus
cause the outliers visible for the velocity and position NIS test results. The outliers aside,
the NIS results for the position and velocity are excellent, and the tuning parameters should
be left as is. For the compass, the ESKF is overconfident, and measurement covariance for
the compass measurement Rψ needs adjusting to a smaller value.

7.2.5 Robustness Test
The ESKF needs to be stable under demanding situations. By inducing large spikes on
the IMU measurements, the corrupted measurements will give a clear measure of the filter
robustness. As discussed previously, this is done by stomping and jumping on deck to
cause material deflections and vibrations that manifest themselves in the IMU measure-
ments. Figure 7.2 shows how these actions greatly affect the acceleration measurements.
With the corruption of the measurements affecting the filter estimates, NIS consistency
test results indicate the filter robustness. The resulting NIS test is shown in Figure 7.26.
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Figure 7.26: NIS test while IMU measurements are compromised.

The more significant number of outliers in the consistency test results is a result of the
corrupted measurements. However, the consistency test performed while compromised
measurements propagate through the filter reveal that the filter is highly capable of dealing
with false measurements.

The induced deviations in the measurements are quite large, and it compromises the filter
estimates somewhat. Compromised estimates are inevitable given the IMU driven nature
of the filter. However, the filter withstands the compromised measurements and remains
stable.
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Figure 7.27: Estimated pose η̂ estimate while IMU measurements are compromised.

The corrupted IMU measurements induce almost no drift in the position estimate. The
small position deviation is highly encouraging, and it shows that the filter stays true to the
measured state even when the IMU measurements are highly unrealistic for an extended
period. The same goes to show for the velocity and the attitude estimate. The filter keeps
both the estimated velocity ν̂ and the estimated attitude Θ̂ close to the "true" state shown
by the velocity estimate obtained through low pass filtered differentiation and the compass
measurement.
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Figure 7.28: ν̂ estimate while IMU measurements are compromised.
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Figure 7.29: Estimated attitude Θ̂ while IMU measurements are compromised.

The low pass filtered differentiated states provided by the old navigation node are a good
measure of the true state when the IMU measurements are compromised. As discussed in
Section 3.1.1, the XKF3i averages the acceleration measurements over time to establish
the inclination. Since the expected acceleration during this test over time is zero, the
inclination estimate is expected to be relatively accurate even when the measurements are
compromised, thus providing a good comparison for the estimated attitude, and north and
east position.

7.2.6 Final Tuning Parameters
R matrix

The position measurement suffers from increased measurement noise for increasing ve-
locity. Figure 7.30 shows the correlation between velocity and the measurement noise in
the position measurement.
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Figure 7.30: Correlation between the vessel velocity and the position measurement noise. N and
E are the measured north and east positions, and N̄ and Ē are the moving averages of the posi-
tion measurements. N̄ − N and Ē − E show the deviations from the means for the respective
measurements.

The correlation between increased velocity and the resulting position measurement noise
is apparent. For both the north and east position, the deviation from the mean is more
significant when the change in position is more substantial. The tuning of the position
measurement covariance matrix Rp needs to reflect the variable measurement noise of
the position measurement. The measurement covariance matrix for the position updates
is inspired by a tracking example using Kalman filters in [Brekke, 2018]. The covariance
matrix uses the estimated velocity coupled with a scaling factor to increase the measure-
ment covariance to a more suitable value for higher velocities. Additionally, the altitude
measurements are less accurate than the lateral position measurements. The position mea-
surement covariance matrix reflects these characteristics with the following parameters

Rp =

0.015 0 0
0 0.015 0
0 0 0.025

+
1

48

v̂2
x 0 0
0 v̂2

y 0
0 0 0

 (7.5)

The measurement covariance matrices R for the other measurements are assumed con-
stant. Through iterative tuning, the parameters are set to
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Rv =

[
0.02 0

0 0.02

]
, Rψ = 0.0005 (7.6)

Q Matrix

Continuous-time models are useful from a conceptual perspective because they are invari-
ant to the discretization time interval [Brekke, 2018]. A continuous-time representation of
the process noise matrix is

Q =


σ2
aI3x3 0 0 0

0 σ2
ωI3x3 0 0

0 0 σ2
vI3x3 0

0 0 0 σ2
θI3x3

 (7.7)

where σ2 represents the process noise for the given state.

The diagonal representation of the process noise is not realistic for any discrete-time im-
plementation, and typically the process noise matrix Q ought to be non-diagonal for a
discrete implementation given the correlations that build up over time. The assumption for
the tuning of the process noise matrix is that the high frequency of the IMU measurements
renders the correlations between measurements insignificant. The high-frequency updates
mean that the diagonal discrete-time process noise matrix successfully approximates the
continuous-time process noise matrix with an acceptable error.

The high sampling rate causes all the non-diagonal terms in the discrete-time process noise
matrix to be approximately 0 as no correlations are evident. The discrete-time approxima-
tion of the process noise matrix Q is then given by

Q =


0.0082∆t2I2x2 0 0 0 0

0 0.032∆t2 0 0 0
0 0 0.022∆t2I3x3 0 0
0 0 0 (2.5 · 10−4)2∆tI3x3 0
0 0 0 0 (3 · 10−7)2∆tI3x3


(7.8)

The more significant value for the process noise parameter of the acceleration along the
z-axis σ2

az is due to the lack of velocity measurement in heave. As a consequence, more
information is needed from the acceleration measurement to obtain a correct estimate of
the heave velocity.

7.2.7 Discussion
The ESKF velocity estimate ν̂ reveals some critical aspects of the previous navigation node
on the vessel. The old navigation node uses low pass filtered numerical differentiation to
obtain the velocity estimate in the NED frame for η̇. The old node then uses the rotation
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matrix to obtain velocity in the BODY frame ν. Figure 7.19 reveals three flaws with this
approach. Firstly, the position data provided by the GNSS have substantial measurement
noise when the vessel is operating at higher speeds. Any numerical derivation approach
will amplify any measurement noise in the signal. The low pass filtering is supposed to
minimize the noise, but the consequence of the filtering is a phase lag.

The consequence of the low pass filtering brings up the second flaw. The low pass filtering
introduces an unwanted phase lag on the estimated velocity ν. To be able to minimize
the effect the measurement noise has on the estimate of the surge velocity, the low pass
filter time constant needs to be substantial. Increasing the time constant in the low pass
filter will further increase the phase lag. This behavior is highly discouraged, and efforts
to eliminate it is necessary.

The third problem with the old navigation system is the reduced amplitude caused by the
low pass filtering. The low pass filter will weigh previous measurements to minimize
noise. The extreme values for a given state will reduce by weighing previous measure-
ments. This reduction of extreme values is apparent in both the sway and yaw plots shown
in Figure 7.19. The reduction will affect how the PID controller allocates a control input.
The relation between the velocity and the allocated control input is detailed in (4.6a). If
the estimated state ν̂ has a reduced value, the D term in the PID controller will not control
the rate change of the control input as efficiently. This loss of accurate representation of
the state will cause less accurate tracking.

The introduction of the filter successfully removes the phase lag in all estimates. The
removal of the phase lag will affect the accuracy of the motion control system as the
controller can allocate a control action based on estimated data with almost no delay. As
shown in the zoomed-in plot for the yaw rate estimate in Figure 7.19, the yaw rate has a
phase lag of 1.5 seconds. The phase lag is substantial and will affect the ability to control
the heading accurately. For milliAmpere, this phase lag will have even more significant
effects on the heading accuracy due to the small yaw moment needed to induce a rotation
about its z-axis.

7.3 Motion Control Results
The experimental tests of the controllers shown were all conducted in as small a timespan
as possible. The small timespan ensured that the conditions for each test were as similar as
possible. However, there is no guarantee that the conditions for individual controllers are
equal to the others. The external disturbances during the experimental tests were a combi-
nation of time-varying wind forces, wave forces, and ocean currents. The most significant
factor for the unmodeled dynamics was the introduction of the thruster dynamics. All
these factors make up a much more sophisticated testing environment than the simulated
environment.

The pure backstepping controller, theL1-AB controller, proved to be very aggressive in the
allocation of the desired control input. The thruster dynamics on milliAmpere is relatively
slow, and the controller is deemed unsuitable for use on this vessel. As a consequence,
the experimental results do not involve the L1-AB controller. Even though the limitations
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on the current vessel restricts the usage of the L1-AB controller, it shows that a future
platform with faster thruster dynamics can utilize the controller for a performance boost.
The non-linear approach allows for more aggressive maneuvering than that of the linear
PID controller and serves as a viable candidate for the next iteration of the ferry.

7.3.1 PD L1-FF vs PID-FF vs PID
The experimental tests unveiled some interesting problems with the initial tuning of the
new control algorithm. The biggest issue is the relatively slow thruster dynamics coupled
with the 1.5 seconds delay in the navigation node. These dynamics greatly limits the rate
change of the control input vector. Reducing the tuning parameter compared to that in the
simulated environment handles the introduction of these delays. After iterative tuning, the
adaptation gain for the PD L1-FF controller is set to

γωδ = 3000 (7.9)

The PID tuning parameters are left unchanged. The forced reduction of the γωδ will affect
the allocation of the control input. The reduced ability for rate change in the thrust force
vector, coupled with time-varying external disturbances, will reduce the overall accuracy
of the controller.

7.3.2 4-Corner Test
Figure 7.31 shows the experimental 4-corner test for the new control algorithms compared
to the old 3 DOF PID controller.
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Figure 7.31: 4-Corner test with the new controllers compared to the old PID controller.
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The significant reduction in the adaptation gain in the new PD controller with adaptive
feedforward negatively affects its overall performance. Still, the new controller vastly
outperforms the traditional PID controller. The improvement in performance is best shown
in stage 5 → 1, as explained in Section 5.2.2 where the vessel performs a fully coupled
motion. This stage is notorious for causing large deviations from the intended path, so the
result showing increased accuracy is very encouraging. The performance metrics in Figure
6.12 further shows the improvement in performance. The improved accuracy does come
at a cost. It is evident by the performance metric IAEW shown at the bottom in Figure
7.32, that better accuracy comes at the cost of increased actuator usage.

Figure 7.32: Performance metrics for the new controllers compared to the old PID controller.

However, this increase in actuator usage is minuscule, and the improved accuracy out-
weighs the cost of the small increase in actuator usage. It is crucial to keep in mind that
the vessel is operating in a confined area with high traffic. As a result, higher accuracy is
desired to ensure that the vessel adheres to the commands given as accurately as possible.
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Figure 7.33: North-East-Heading for the new controllers compared to the old PID controller.

The North-East position is spot on during the 4-corner test with the new PD controller
with adaptive feedforward. The vessel does, however, have trouble maintaining the desired
heading. The vessel is especially susceptible to rotation about its z-axis. The susceptibility
to wind forces is troublesome since the thruster dynamics are not fast enough to keep up
with the rapid rate change needed to keep it stable during operation. The introduction of
the ESKF will improve heading stability by removing the phase lag, but looking into other
means for improvement is essential.
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Figure 7.34: Control input for the new controllers compared to the old PID controller.

Figure 7.34 shows the desired control input from the individual controllers. In comparison
to the IAEW metric, the actuator usage is almost identical for the different controllers,
especially for the desired force in surge and sway direction. The desired control input
for the yaw moment varies more. The PD L1-FF Controller, in general, has a steadier
control input to converge to the desired pose. The decreased convergence time of unmod-
eled dynamics supported by the adaptive backstepping framework ensures the increase in
performance.

7.3.3 Discussion
The introduction of adaptive control has the desired effect on the motion control system.
The use of adaptive control and the backstepping framework increases the overall accu-
racy. The most significant improvement is due to the adaptive controller being able to
estimate the unmodeled dynamics faster. The reduced convergence time, coupled with
the feedforward, increases overall performance significantly. The introduction of adaptive
backstepping control also somewhat improves the overall heading accuracy.

The new backstepping approach does not integrate over time to estimate the unmodeled
dynamics. Subsequently, the approach mitigates the need for handling of any effects like
integrator wind-up. The unconstrained behavior of the integrator term in the PID controller
can lead to serious side effects if not handled properly. The integrator does also have a
convergence time much slower than for the adaptive backstepping approach. The reduced

116



time needed for estimation of the unmodeled dynamics will ensure that the vessel is more
robust against time-varying disturbances and other external factors.

One remark is that the controllers with feedforward have excessive actuator usage for
yaw moment during the final stage of the 4-corner test. This excessive use of moment is
evident by comparing the feedforward-based controllers vs the pure PID controller. By
using figures 7.34 and 7.33, it is seen that the model is too aggressive in predicting the
moment needed in yaw. The incorrect use of thrust force suggests that the coupled vessel
model is somewhat inaccurate.

7.4 Combined Efforts of The New Navigation and Motion
Control Systems

The testing of the ESKF revealed various unwanted characteristics in the old navigation
node on the vessel. Most noticeable is the phase lag on the state estimate ν̂ produced by
the low pass filtering used in the old navigation node. Section 7.2.7 discusses this in more
detail. The following section examines the performance with the combined efforts of the
new controller and the new navigation node.

7.4.1 4-Corner Test
The conditions during the individual tests were adequate, with small amounts of wind.
The conditions were stable and ensured testing under relatively similar circumstances.
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Figure 7.35: 4-corner test for adaptive control with and without the use of the ESKF.
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Overall planar position accuracy is slightly worse with the use of the ESKF. The loss of
planar position accuracy is apparent in the last stage of the 4-corner test. However, the
difference in planar position accuracy between the controllers is insignificant.
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Figure 7.36: Performance metrics for adaptive control with and without the use of the ESKF.

The performance metrics show the loss of planar positional accuracy mentioned above.
The minimal loss of positional accuracy is somewhat compensated for by less power con-
sumption.
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Figure 7.37: Individual responses for adaptive control with and without the use of the ESKF.

The plots of the individual responses show that the planar position is almost identical. The
most notable difference is the vessel’s ability to track the desired heading reference. The
introduction of the ESKF drastically improves the tracking ability for the heading.
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Figure 7.38: Control input for adaptive control with and without the use of the ESKF.

The visibly smoother control input for the yaw moment has removed almost all oscilla-
tions in the desired force. The smoother control input will reduce power consumption and
ensure smoother heading trajectory tracking. The control input for the yaw moment does,
however, show that more measurement noise has propagated through to the actuators. The
desired yaw moment with the use of the ESKF is visibly noisier.

7.4.2 Crossing Test With Old vs New GNC system
During regular operation, the ferry will have a forward and backward direction dictated by
the non-dynamic positive surge direction. For this definition, the thrust allocation has set
the home angle for the thrusters to 0◦, which affects how the ferry responds during oper-
ation. The thrust allocation punishes servo movement substantially as the servo dynamics
are slow. The reduced ability for fast servo angle changes causes the thrusters to rotate in
reverse when the ferry is moving backwards.

When the propellers are operating in reverse, they generate less thrust because of cavita-
tion. The cavitation causes the thrusters to need a more extensive range of rotations per
minute (RPM) to generate the desired control input. Consequently, the negative rotation
direction of the thrusters leads to slower thruster dynamics than positive rotation. Slower
thruster dynamics will, in turn, cause more significant deviations from the desired pose.
The heading stability especially suffers due to the need for quick adjustments to keep the
vessel stable.
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The crossing tests with the old vs the new GNC systems focus on the vessel operating in
the defined positive surge direction. Figure 7.39 and 7.40 show the individual responses
for the four possible variations consisting of the old and new motion controllers and nav-
igation systems. A small remark is that the initial position plays a role in the generation
of the reference trajectory for a crossing. Initializing a crossing at the same position every
time is not possible. These initialization offsets cause the trajectories to differ slightly in
comparison to each other.
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Figure 7.39: Pose η/η̂ during normal crossing operation. η̂ is the pose from the estimator, while η
is pose from raw measurements. Crossing tests that use the ESKF utilize the pose η̂ in the motion
control algorithm.

The position accuracies for all variations are stellar. However, the heading stability suffers
from oscillations with the use of the old navigation node.
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Figure 7.40: Comparison of the individual responses during normal crossing operation with four
variations of navigation and motion control systems.

The combined efforts of the new navigation and control systems significantly improve the
overall heading accuracy during crossing operations. By inspection of the two variations
using the ESKF, the tracking accuracy is improved substantially with the use of the filter.
The reduced convergence time of external dynamics with the use of the new controller
further improves the heading accuracy.

7.4.3 Collision Avoidance
The new navigation and motion control systems interfaces with a COLAV module to en-
able the ferry with autonomous capabilities. The full details of the development of the
COLAV module are in [Thyri, 2019]. The algorithm uses a path-velocity decomposition
approach with predefined paths. A series of different transit scenarios with virtual objects
established the ferry’s ability to avoid collisions. Figure 7.41 shows one experimental test
scenario performed in the harbor basin by Brattøra. More COLAV scenarios are available
in Appendix B.
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Figure 7.41: Snapshots at different time stamps of scenario 5 during the experimental COLAV tests.
Snapshots courtesy of [Thyri, 2019].

The grey lines are the possible paths the ferry can follow and switch between, the solid
blue line is the course of the ferry, the green line is the heading for the ferry, and the dotted
blue line is the path of the ferry. The red objects are the virtual objects and their respective
paths. The successful integration of the COLAV module, together with the new navigation
and motion control systems, marks the implementation of a new upgraded GNC system
on milliAmpere capable of autonomous transit.

7.4.4 Discussion
In comparison to the old navigation system, the ESKF struggles to obtain an accurate
estimate for the velocity during low speeds. The inaccurate estimate is due to substantial
measurement noise in both the acceleration and velocity measurements. The somewhat
inaccurate estimate leads to a minimal loss of planar positional accuracy during the 4-
corner test. The old navigation node obtains very accurate velocity estimates during low
speeds, though at the cost of a phase lag. For slow lateral movement, as is the case for the
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4-corner test, this phase lag will have little to no effect, and thus very accurate tracking
can be performed when the need for adaptation of external disturbances is small.

The conditions during the 4-corner test presented in this section were excellent. Thus, the
need for estimation of the unmodeled dynamics was small. Achieving the same positional
accuracy with the new system during low-speed operations in excellent conditions is dif-
ficult because of the less accurate velocity estimate. The yaw rate estimate will still suffer
from the phase lag with the use of the old navigation node, and the heading stability suffers
because of it.

The increased heading stability is the most encouraging improvement because of the in-
troduction of the ESKF and the non-linear adaptive controller. The removal of the phase
lag in ν̂ is the main contributor for the improvement. The notorious problem with head-
ing oscillations during transit is almost wholly gone. The increased ability to stabilize the
heading is evident in figures 7.40 and 7.42. Figure 7.42 show how the vessel copes with
the introduction of an induced time-varying yaw moment. The results further emphasize
the improvement the non-linear motion controller and the new navigation system have on
the vessel’s heading stability. The heading stability and its oscillations have previously
been the Achilles heel of the GNC system. The improvement is very encouraging.
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Figure 7.42: Pose during normal crossing operation with induced time-varying yaw moment.

Other means of stabilizing the heading could be through means of hardware. One hardware
solution can be an instalment of a couple of fins to the bottom of the hull. The fins will
make sure that more yaw moment is required to induce any angular velocity around the
z-axis.
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The introduction of the ESKF has another upside. The removal of the phase lag in the
velocity estimate allows for faster adaptation. The phase lag caused the whole control
system to destabilize with the use of more aggressive adaptation. The value for the adap-
tation gain, γωδ , increased through iterative tuning from 3000 to 20000. The increase in
the value of the adaptation law improves the controller’s ability to estimate the unmodeled
dynamics. During demanding conditions, the faster convergence time for the estimation of
the unmodeled dynamics will ensure a more robust controller and more accurate tracking
with faster path convergence.

The simulated environment show the improvement in the ability to estimate the unmodeled
dynamics. A time varying external disturbance of

τ d = (sin(0.05t) +
1

20
cos(t))[200,−200, 50]T

is applied to interact with the vessel. Figure 7.43 shows the difference between the esti-
mation of the unmodeled dynamics using the two different approaches.

Estimation of External Force

Time [s]

Figure 7.43: Estimation of the external disturbances. ωn is the external disturbance, ω̂bb is the
estimated disturbance by the backsteppping framework, andωi is the estimated disturbance with the
integrator in the PID controller. Estimation in the simulated environment is performed with the same
tuning parameters as on the experimental platform.

The backstepping framework drastically improves the ability to estimate the external dis-
turbances. The linear integrator in the PID controller is significantly worse with a sub-
stantial delay in the estimation of the unmodeled dynamics. Further, the new adaptation
approach decouples the adaptation from the robustness of the controller, providing a more
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robust control system as a whole. All in all, while being tested under scrutiny, the new
adaptive control approach outperforms the old PID controller in every way.

There is, however, one drawback to the introduction of the ESKF. The IMU angular ve-
locity measurement noise introduced in the feedback propagates through to the actuators.
The increased noise corrupts the desired output force through the derivative component of
the controller. The result of the noise is a constant high-frequency oscillation in the error
term between the desired turn rate and actual turn rate. The actuators will continuously
readjust to the perceived error. Constant readjustment caused by measurement noise will
cause unnecessary actuator wear and tear and needs correcting.

7.5 Chapter Summary
This chapter presented and discussed all the experimental results. The experimental tests
with the use of the ESKF follow the same procedure as in the simulations. The experi-
mental results shown are three variations of the filter for the final implementation of the
estimation algorithm. Testing of the ESKF in a challenging environment containing cor-
rupted measurements further tested the extended abilities of the filter. The results obtained
with corrupted measurements were presented along with tests over a prolonged period to
establish the stability and robustness of the filter.

This chapter also presented the experimental tests of the control algorithms. The experi-
mental tests were conducted using the same methodology as in the simulations to compare
the performance of the individual controllers. The same performance metrics and visual-
izations, as in the simulations, were used to evaluate the performance of the controllers in
the experimental tests.

Lastly, the chapter presented the difference in performance between the new and old im-
plementations. Four different variations were presented to highlight the contributions the
different aspects of the implementations had. At the end of the chapter, a COLAV scenario
with virtual objects is presented to show the capabilities of the new GNC system.
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Chapter 8
Conclusions and Future Work

8.1 Conclusions
The new controller introduces feedforward for better transient response, and an adaptive
backstepping approach to rapidly estimate and counteract the unmodeled dynamics. These
additions have shown to increase the overall accuracy and robustness for the motion con-
trol system. The main contributor to the performance boost is the faster convergence of
the estimation of unmodeled dynamics. The linear nature of the PID controller puts limi-
tations on the efficiency of the controller when in a non-linear environment. This behavior
severely limits the controller’s ability to deal with significant disturbances and fast time-
varying disturbances. The new non-linear adaptive backstepping approach makes the new
controller more suited for estimation of the unmodeled dynamics and increases accuracy.

The new implementation of the navigation system uses sensor fusion of GNSS and IMU
data for robust state estimation. The new navigation system performs state estimation
without relying on low pass filtered differentiation w.r.t time of the measured states. The
new approach successfully removes the phase lag that is present in the old implementation.
The removal of the phase lag increases the overall tracking performance of the motion
control system. The main advantage is the significant increase in the vessel’s ability to
track the desired heading.

The new navigation system proves to be able to withstand significant amounts of com-
promised measurements. It proves to be robust during both normal and abnormal circum-
stances. The wild point filters implemented in the ESKF serves their purpose gracefully.
The wild point filtering successfully detects false measurements and drops them from the
estimation process. The different implementations and their combined efforts mark the
achievement of the goal to implement a more robust GNC system through sensor fusion
and adaptive motion control.

One drawback is apparent with the new state estimation algorithm. The current implemen-
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tation does not have any form of filtering of the IMU measurements that drives the filter.
Consequently, the measurement noise propagates through to the actuators. Future work
should address this issue to reduce the actuator wear and tear.

The successful integration between the new navigation system and the motion control sys-
tem with the COLAV module conclude a complete overhaul of the existing GNC system.
The successful experimental tests show that the ferry can avoid collision given sufficient
information about its immediate dynamic environment.

8.2 Future Work
The vessel serves a prototype for an autonomous passenger ferry giving grounds to an
excessive amount of possibilities in future work. Different tasks for future work involve
everything from cyber-security, human-machine interface (HMI), hardware and software
redundancy and fallbacks, risk analysis and the like. Future work mentioned in the current
thesis focuses on the different tasks related to the sensor fusion algorithm and the new
adaptive control algorithm.

8.2.1 LiDAR Sensor Fusion
The current setup with the ESKF is highly dependent on the GNSS measurements. For
any autonomous vessel, this is unacceptable. The GNSS is a vulnerable sensor that can
cause severe malfunction due to outside efforts. Outside efforts such as either spoofing or
jamming of the GNSS measurements render the sensor useless. Both of these occurrences
would be catastrophic for the vessel. Additionally, if the measurements from the GNSS
become unreliable or are lost, the measurement noise in the IMU will cause the position
prediction to drift rapidly. Introducing other sensor data to the sensor fusion algorithm
will minimize the effects of corrupted measurements and increase the robustness of the
navigation algorithm.

Other onboard sensors can reduce the dependability on the GNSS. The LiDAR is an ac-
tive sensor and offers localization data with high accuracy. The LiDAR localization data
provides position data redundancy in the sensor fusion algorithm and is an essential step
towards a more robust navigation system. The ferry is operating in a small predetermined
area, and extensive knowledge of the surrounding environment enables the LiDAR to ob-
tain highly accurate localization data. Using LiDAR for localization, will reduce the de-
pendability of GNSS measurements. [Dalhaug, 2019] looks further into a method for
LiDAR localization on milliAmpere. The use of other onboard sensors will downgrade
the GNSS sensor to a secondary role.

8.2.2 IMU Sensor Upgrade
The ESKF makes better use of the IMU sensor data on the ferry. However, investing
in a new, improved IMU less susceptible to measurement noise will further increase the
accuracy of the state estimates. The acceleration measurements have an observed peak-to-
peak noise as high as 0.08m/s2. The acceleration constraint on the reference filter with
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the lowest constrained acceleration is at 0.1m/s2. Measurement noise of that magnitude
makes it difficult to perform accurate predictions and leads to worse estimation. The IMU
sensor should also be moved to make it less susceptible to external vibrations and material
deflections caused by movement on deck and thruster usage.

8.2.3 Redundancy and Safety
The new navigation node is more robust against measurement errors and similar unwanted
behavior than the old navigation node. However, there is still room for improvement re-
garding safety. Various safety features can include logging of measurements like that of
a flight recorder, sensor redundancy, and different fall back methods in case of malfunc-
tion. These safety measures should be a combination of efforts from both hardware and
software.

8.2.4 Thruster Dynamics
The various experiments conducted during this thesis revealed issues with the current az-
imuth thruster setup. The thruster dynamics are too slow and cause considerable delays
when the desired change in thrust force is substantial. The problem with the rate saturation
is especially troublesome during more aggressive maneuvering. The current thruster setup
restricts any high accuracy operation to scenarios with low acceleration.

The most notable struggles are evident when significant deceleration is needed while op-
erating at speed. Multiple of the experimental COLAV scenarios require sudden decelera-
tion. The delay in reversing the thrusters cause the actual thrust force output to be close to
zero during that span. This time span is as large as 3-4 seconds at most, which causes de-
viations from the intended trajectory. Due to the volatility of the orientation of the vessel,
these delays cause considerable deviations from the intended heading.

The significant deviations from the desired heading set off a chain of events that cause un-
wanted oscillations in all degrees of freedom. Due to the large oscillations in the heading,
the necessary control input in the BODY frame change rapidly in order to keep the vessel
on the right course along the predefined trajectory. The thruster system’s inability to track
the rapid rate change in the control input causes substantial deviations from the desired
pose.

The slow thruster dynamics restrict the ability to perform accurate tracking in scenarios re-
quiring more substantial acceleration. The slow dynamics also restrict the adaptation in the
newly implemented controller and rules out the use of the L1-AB controller completely. A
more dynamic thruster system capable of more substantial thrust rate change will signifi-
cantly improve the ability to track the intended trajectory. The improved tracking ability is
achieved through faster adaptation, but also by enabling other non-linear controllers, such
as the L1-AB controller, to be put into use.

The L1-AB controller showed great promise in simulations and the ability for accurate
tracking during more demanding situations. This controller should serve as a viable candi-
date as the motion control algorithm for a more capable thruster system. The next iteration
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of the ferry should improve the overall thruster dynamics, and a thruster setup that allows
for higher thrust rate change is a necessity.

8.2.5 Other Future Work
• Further tune the tuning parameters in the ESKF to ensure optimal estimation

• Use a filter to reduce the IMU measurement noise to alleviate unnecessary actuator wear
and tear.

• Timing of messages from sensors with GPS time synchronization

• Add handling in case of sensor drop-outs, such as a navigation fallback method and
visual warnings.

• Add more sensor data to the sensor fusion algorithm
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Appendix A
Dissemination

A.1 Coverage
During the project and thesis work, milliAmpere has generated a lot of media attention.
The media outlets are an important part of the continued development of autonomous
vessels. The media exposure serve as an important part in bringing attention to the field of
autonomy the potential of this technology.
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Figure A.1: Brage (left) on board milliAmpere during a demo at Sjøsikkerhetskonferansen in
Haugesund. Photo courtesy of Teknisk Ukeblad

Articles and Media

• NRK TV, milliAmpère på distriktsnyheter (26.09.2018): https://tv.nrk.no/serie/
distriktsnyheter-rogaland/DKRO97092618/26-09-2018#t=2m43s

• NRK Radio, Innslag i Haugesund (26.09.2018): https://radio.nrk.no/serie/
distriktsprogram-rogaland/DKRO02019318/26-09-2018#t=8m27.16s

• Skipsrevyen, innslag med milliAmpère (26.09.2018): https://www.skipsrevyen.no/article/
autonomt-innslag-paa-sjoesikkerhetskonferansen/

• TV Haugaland, visning av milliAmpère (27.09.2018): https://hnytt.no/2018/09/27/her-
kjorer-den-forerlose-ferga-i-smedasundet/

• Teknisk Ukeblad, milliAmpère i Haugesund (28.09.2018): https://www.tu.no/artikler/
her-demonstrerer-de-selvkjorende-milliampere-na-skal-de-bygge-ferge-pa-12-meter
/447398?key=aTPPxOqK

• Stand på DN Havet Konferansen med besøk av kronprins Håkon (16.10.2018):
https://www.facebook.com/havetDN/videos/1130244403799605/

• Dagens Bilde i Adresseavisa (20.11.2018)
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A.2 Ocean Week Trondheim
During Ocean Week in Trondheim, the author held a pitch for his majesty the king and
other excellences about the use of autonomous passenger ferries and their potential impact
in the future. The presentation is shown below.

137







https://www.ntnu.edu/autoferry/



Figure A.2: Pitch during Ocean Week May 7th 2019. Photo courtesy of Morten Breivik.
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Appendix B
COLAV Experiments

Experimental test results with the new navigation and motion control systems interfaced
with a COLAV system. Section 7.4.3 shows the scenario for experimental COLAV transit
5.
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Figure B.1: Snapshots at different time stamps of scenario 1 during the experimental COLAV tests.
Snapshots courtesy of [Thyri, 2019].
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Figure B.2: Snapshots at different time stamps of scenario 2 during the experimental COLAV tests.
Snapshots courtesy of [Thyri, 2019].
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Figure B.3: Snapshots at different time stamps of scenario 3 during the experimental COLAV tests.
Snapshots courtesy of [Thyri, 2019].
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Figure B.4: Snapshots at different time stamps of scenario 4 during the experimental COLAV tests.
Snapshots courtesy of [Thyri, 2019].
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Figure B.5: Snapshots at different time stamps of scenario 6 during the experimental COLAV tests.
Snapshots courtesy of [Thyri, 2019].
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Figure B.6: Snapshots at different time stamps of scenario 7 during the experimental COLAV tests.
Snapshots courtesy of [Thyri, 2019].
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Figure B.7: Snapshots at different time stamps of scenario 8 during the experimental COLAV tests.
Snapshots courtesy of [Thyri, 2019].
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Appendix C
Test Plan for Experimental Tests

C.1 Experimental Test Plan for ESKF
The ESKF can be challenging to tune, as many parameters need to be adjusted. Especially
tricky is the tuning of the process noise matrix Q. The matrix does not constitute any real
quantity but is a weighting matrix for the acceleration and angular velocity measurements.

A systematic test plan is put in place to minimize the time and effort needed to obtain
decent tuning parameters. A proper test plan hopefully results in the best tuning parameters
possible.

The ROS framework has a convenient feature that enables the ability to record the data
available in the various topics in the system. This feature allows for easy logging of all the
data streams that are present on the OBC. The rosbag feature stores the recorded data in
a rosbag. This rosbag can then be played back in real-time, appearing as for the observer
that the data is coming in real-time in a real scenario. This feature is used heavily. By
using rosbags to store data, the measurements and dynamics of the ferry in a real scenario
can be played back while working in an office. Analyzing data in an office provides better
working conditions and better opportunities to analyze the results and tune the parameters
simultaneously.

C.1.1 Test 1, Initial Tuning
The first test will perform initial sensor checks and record sensor data during regular op-
eration. The initial tuning of the filter uses the recorded data as input and error correction.
Test 1 focuses on the following tasks

• Integrate the observer node with the rest of the system on milliAmpere

• Inspect all the sensor components for mounting issues
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• Double check both sensor lever arms

• Record data during normal operation for use in “online tuning” using the rosbag feature
in ROS

• Play back recorded data in the office at a proper workstation using the rosbag feature in
ROS.

• Use the NIS test actively for judgement of estimation accuracy.

After testing according to test 1, the tuning parameters are expected to be well-tuned.

C.1.2 Test 2, Robustness and Corrupted Measurements
The second part of the ESKF tests will focus on prolonged estimation and robustness. Af-
ter the initial tuning of the filter based on the recorded data from test 1, the filter parameters
are expected to well-tuned. These tests investigate if the filter can withstand other outside
factors and to be able to perform reliant estimation while under duress. The robustness of
the filter is tested by doing the following

• While the ferry is moored, record data over an extended period with the observer in the
loop performing live estimation. The extended period will give an indication of any
error occurring after prolonged estimation

• Force spikes in IMU measurements by stomping and jumping on deck to induce false
measurements.

• Record the ESKF’s ability to cope with corrupted IMU measurements.

• Analyze data back at the office.

• Use NIS test results actively in the tuning process.

• Use data to tweak parameters slightly if needed

After test 1 and test 2, the tuning parameters should be close to final. At this stage, the
expectation is excellent estimation performance.

C.1.3 Test 3, Live Estimation
Test 3 focuses on filter estimation during an operation where the ESKF is working as
the navigation node. The main goal of the tests at this stage is to document the different
effects the new navigation node has on the GNC system as a whole. No parameter tuning is
expected at this stage, but parameters will be adjusted if necessary. The test is summarizing
in these bullet points

• Perform crossing tests with the ESKF as the working navigation node

• Adjust parameters after initial runs if necessary

• Perform 4 corner tests both with the ESKF and with the old navigation node

• Investigate tracking performance with the new navigation node

152



At this stage, the tuning parameters for the filter should be final. A final consistency test
will be performed during prolonged regular operation to ensure proper and reliable filter
estimates. Any last changes to the tuning parameters will be conducted based on this
consistency test.

C.2 Experimental Test Plan for Adaptive Controller
The intentions for the experiments are to tune the newly designed control algorithm on the
ferry. By performing the 4 corner test, any weaknesses become apparent, and the individ-
ual non-coupled and coupled motions are easy to analyze. The bullet points summarize
the test plan

• Integrate the new controller node into the existing system on milliAmpere

The new ROS node is set up in such a way that it should communicate with the
existing system already in place. The integration of the new node should be quick.

• Tune the adaptation law for the adaptive feedforward

The PD controller with the adaptive feedforward utilizes the P and D terms in the
previous controller already in place on milliAmpère. The adaptation gain needs to
be tuned based on the measurement noise in the different sensors, as well as the
systems ability to adhere to the commanded thrust vector.

Initial tuning is carried out while performing station keeping. The adaptation gain is
increased with small increments while observing the estimation parameter ω̂. The
adaptation gain is slowly increased online until measurement noise manifests itself
in the estimated parameter.

• Perform 4 corner test with the roughly tuned PD + L1 − FF controller with small
variations in parameter value.

Perform multiple 4 corner test with varying adaptation gain to find the best parame-
ter value. By performing multiple tests with variations in the adaptation gain based
on maximum value found, the best possible tuning is found by analyzing the accu-
racy of the controller with the help of the performance metrics in Section 6.2.2.

• Test the impact of the low pass filter on the adaptive control input

The low pass filter reduces high oscillatory effects introduced by the adaptation.
The time constant needs to be sufficiently large to remove the unwanted effects, but
also sufficiently low to cause minimal lag on the desired thrust force. Tune the filter
constant to achieve the best possible results.
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Appendix D
Robot Operating System

The implementations in this thesis utilize the ROS framework heavily. The features ros-
topics and rosbag are especially widely used. This appendix serve as a brief introduction
to the essential aspects of the main ROS features used. The tutorials are taken from the
ROS website [ROS].
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Understanding ROS Topics 

roscore 

Let's start by making sure that we have roscore running, in a new terminal: 

$ roscore 

If you left roscore running from the last tutorial, you may get the error message: 

• roscore cannot run as another roscore/master is already running.  

• Please kill other roscore/master processes before relaunching 

This is fine. Only one roscore needs to be running. 

ROS Topics 
The turtlesim_node and the turtle_teleop_key node are communicating with each other 

over a ROS Topic. turtle_teleop_key is publishing the key strokes on a topic, 

while turtlesim subscribes to the same topic to receive the key strokes. Let's 

use rqt_graph which shows the nodes and topics currently running. 

Note: If you're using electric or earlier, rqt is not available. Use rxgraph instead. 

Introducing rostopic 

The rostopic tool allows you to get information about ROS topics. 

You can use the help option to get the available sub-commands for rostopic 

$ rostopic -h 

• rostopic bw     display bandwidth used by topic 

• rostopic echo   print messages to screen 

• rostopic hz     display publishing rate of topic     

• rostopic list   print information about active topics 

• rostopic pub    publish data to topic 

• rostopic type   print topic type 

Or pressing tab key after rostopic prints the possible sub-commands: 

$ rostopic  

bw    echo  find  hz    info  list  pub   type  

Let's use some of these topic sub-commands to examine turtlesim. 



Using rostopic echo 

rostopic echo shows the data published on a topic. 

Usage: 

rostopic echo [topic] 

Let's look at the command velocity data published by the turtle_teleop_key node. 

For ROS Hydro and later, this data is published on the /turtle1/cmd_vel topic. In a new 

terminal, run: 

$ rostopic echo /turtle1/cmd_vel 

For ROS Groovy and earlier, this data is published on 
the /turtle1/command_velocity topic. In a new terminal, run: 

$ rostopic echo /turtle1/command_velocity 

You probably won't see anything happen because no data is being published on the topic. Let's 
make turtle_teleop_keypublish data by pressing the arrow keys. Remember if the turtle 

isn't moving you need to select the turtle_teleop_key terminal again. 

ROS Messages 
Communication on topics happens by sending ROS messages between nodes. For the 
publisher (turtle_teleop_key) and subscriber (turtlesim_node) to communicate, the 

publisher and subscriber must send and receive the same type of message. This means that a 
topic type is defined by the message type published on it. The type of the message sent on a 
topic can be determined using rostopic type. 

rostopic continued 
Now that we have learned about ROS messages, let's use rostopic with messages. 

Using rostopic pub 

rostopic pub publishes data on to a topic currently advertised. 

Usage: 

rostopic pub [topic] [msg_type] [args] 

For ROS Hydro and later, example: 

$ rostopic pub -1 /turtle1/cmd_vel geometry_msgs/Twist -- '[2.0, 0.0, 0.0]' 

'[0.0, 0.0, 1.8]' 

For ROS Groovy and earlier, example: 

$ rostopic pub -1 /turtle1/command_velocity turtlesim/Velocity  -- 2.0  1.8 



The previous command will send a single message to turtlesim telling it to move with a linear 
velocity of 2.0, and an angular velocity of 1.8 . 

 

This is a pretty complicated example, so lets look at each argument in detail. 

For ROS Hydro and later, 

• This command will publish messages to a given topic: 

rostopic pub 

• This option (dash-one) causes rostopic to only publish one message then exit: 

 -1  

• This is the name of the topic to publish to: 

/turtle1/cmd_vel 

• This is the message type to use when publishing to the topic: 

geometry_msgs/Twist 

• This option (double-dash) tells the option parser that none of the following arguments is 
an option. This is required in cases where your arguments have a leading dash -, like 

negative numbers. 

-- 

• As noted before, a geometry_msgs/Twist msg has two vectors of three floating point 
elements each: linear and angular. In this case, '[2.0, 0.0, 0.0]' becomes the 

linear value with x=2.0, y=0.0, and z=0.0, and '[0.0, 0.0, 1.8]' is 

the angular value with x=0.0, y=0.0, and z=1.8. These arguments are actually in 

YAML syntax, which is described more in the YAML command line documentation. 

'[2.0, 0.0, 0.0]' '[0.0, 0.0, 1.8]'  

For ROS Groovy and earlier, 

• This command will publish messages to a given topic: 

rostopic pub 

• This option (dash-one) causes rostopic to only publish one message then exit: 

 -1  

• This is the name of the topic to publish to: 

/turtle1/command_velocity 

• This is the message type to use when publishing to the topic: 

turtlesim/Velocity 

• This option (double-dash) tells the option parser that none of the following arguments is 
an option. This is required in cases where your arguments have a leading dash -, like 

negative numbers. 



-- 

• As noted before, a turtlesim/Velocity msg has two floating point elements 
: linear and angular. In this case, 2.0becomes the linear value, and 1.8 is 

the angular value. These arguments are actually in YAML syntax, which is described 

more in the YAML command line documentation. 

2.0 1.8  

You may have noticed that the turtle has stopped moving; this is because the turtle requires a 
steady stream of commands at 1 Hz to keep moving. We can publish a steady stream of 
commands using rostopic pub -r command: 

For ROS Hydro and later, 

• $ rostopic pub /turtle1/cmd_vel geometry_msgs/Twist -r 1 -- '[2.0, 0.

0, 0.0]' '[0.0, 0.0, -1.8]' 

For ROS Groovy and earlier, 

• $ rostopic pub /turtle1/command_velocity turtlesim/Velocity -r 1 -- 2

.0  -1.8 

This publishes the velocity commands at a rate of 1 Hz on the velocity topic.  

 

 

 

 

 

 

 

 



Understanding ROS Services and 
Parameters 

ROS Services 
Services are another way that nodes can communicate with each other. Services allow nodes to 
send a request and receive a response. 

Using rosservice 
rosservice can easily attach to ROS's client/service framework with services. rosservice has 

many commands that can be used on services, as shown below: 

Usage: 

rosservice list         print information about active services 

rosservice call         call the service with the provided args 

rosservice type         print service type 

rosservice find         find services by service type 

rosservice uri          print service ROSRPC uri 

 

rosparam list 

$ rosparam list 

Here we can see that the turtlesim node has three parameters on the param server for 
background color: 

• /background_b 

• /background_g 

• /background_r 

• /rosdistro 

• /roslaunch/uris/host_57aea0986fef__34309 

• /rosversion 

• /run_id 

 

 

 



Recording and playing back data 

 

Recording data (creating a bag file) 
This section of the tutorial will instruct you how to record topic data from a running ROS system. 
The topic data will be accumulated in a bag file. 

First, execute the following commands in separate terminals: 

Terminal 1: 

roscore 

Terminal 2: 

rosrun turtlesim turtlesim_node  

Terminal 3: 

rosrun turtlesim turtle_teleop_key 

This will start two nodes - the turtlesim visualizer and a node that allows for the keyboard control 
of turtlesim using the arrows keys on the keyboard. If you select the terminal window from which 
you launched turtle_keyboard, you should see something like the following: 

Reading from keyboard 

--------------------------- 

Use arrow keys to move the turtle. 

Pressing the arrow keys on the keyboard should cause the turtle to move around the screen. 
Note that to move the turtle you must have the terminal from which you launched turtlesim 
selected and not the turtlesim window. 

Recording all published topics 

First lets examine the full list of topics that are currently being published in the running system. 
To do this, open a new terminal and execute the command: 

rostopic list -v 

This should yield the following output: 

Published topics: 

 * /turtle1/color_sensor [turtlesim/Color] 1 publisher 

 * /turtle1/cmd_vel [geometry_msgs/Twist] 1 publisher 

 * /rosout [rosgraph_msgs/Log] 2 publishers 

 * /rosout_agg [rosgraph_msgs/Log] 1 publisher 



 * /turtle1/pose [turtlesim/Pose] 1 publisher 

 

Subscribed topics: 

 * /turtle1/cmd_vel [geometry_msgs/Twist] 1 subscriber 

 * /rosout [rosgraph_msgs/Log] 1 subscriber 

The list of published topics are the only message types that could potentially be recorded in the 
data log file, as only published messages are recorded. The topic /turtle1/cmd_vel is the 
command message published by teleop_turtle that is taken as input by the turtlesim process. The 
messages /turtle1/color_sensor and /turtle1/pose are output messages published by turtlesim. 

We now will record the published data. Open a new terminal window. In this window run the 
following commands: 

mkdir ~/bagfiles 

cd ~/bagfiles 

rosbag record -a 

Here we are just making a temporary directory to record data and then running rosbag 
record with the option -a, indicating that all published topics should be accumulated in a bag file. 

Move back to the terminal window with turtle_teleop and move the turtle around for 10 or so 
seconds. 

In the window running rosbag record exit with a Ctrl-C. Now examine the contents of the 
directory ~/bagfiles. You should see a file with a name that begins with the year, date, and time 
and the suffix .bag. This is the bag file that contains all topics published by any node in the time 
that rosbag record was running. 

The limitations of rosbag record/play 
In the previous section you may have noted that the turtle's path may not have exactly mapped 
to the original keyboard input - the rough shape should have been the same, but the turtle may 
not have exactly tracked the same path. The reason for this is that the path tracked by turtlesim 
is very sensitive to small changes in timing in the system, and rosbag is limited in its ability to 
exactly duplicate the behavior of a running system in terms of when messages are recorded and 
processed by rosrecord, and when messages are produced and processed when using rosplay. 
For nodes like turtlesim, where minor timing changes in when command messages are 
processed can subtly alter behavior, the user should not expect perfectly mimicked behavior. 

 



Appendix E
GUI

The GUI was made to streamline online testing on milliAmpère. The GUI features inter-
active buttons providing the possibility of switching states in the state machine. It also
visualizes the azimuth thruster angles such that it is easy to discover any potential mal-
functions related to the azimuth thrusters. Along with the visualization of the angles of the
azimuth thrusters, the GUI presents various data for easier debugging. The GUI has since
been updated with a flashing alarm that triggers if any predefined events are to occur.

Figure E.1: GUI made with RVIZ, RQT and QT
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Appendix F
Model Parameters

Parameter Value Unit
m11 2131.80 kg
m12 1.00 kg
m13 141.02 kgm
m21 -15.87 kg
m22 2231.89 kg
m23 -1244.35 kgm
m31 -423.76 kgm
m32 -397.64 kgm
m33 4351.56 kgm2

Xu -68.676 kg
s

X|u|u -50.08 kg
m

Xuuu -14.93 kgs
m2

Xv -25.20 kg
s

Xr -145.30 kgm
s

Yu 90.15 kg
s

Yv -8.69 kg
s

Y|v|v -189.08 kg
m

Yvvv -0.00613 kgs
s2

Y|r|v –3086.95 kg

Yr -24.09 kgm
s

Y|v|r -338.32 kg
Y|r|r 1372.06 kgm2

Nu -38.00 kgm
s

Nv -97.26 kgm
s

N|v|v -18.85 kg
N|r|v 5552.23 kgm

Nr -230.19 kgm2

s
N|r|r -0.0063031 kgm2

Nrrr -0.0006723 kgms
N|v|r -5888.89 kgm

Table F.1: Estimated model parameters for the milliAmpere ferry [Pedersen, 2019].
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