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Abstract

As autonomous vessels start to populate our roads, waterways and skies the demand for
robust and safe collision avoidance (COLAV) systems will be high. This report describes a
detection and tracking system for image data captured using omnidirectional (360°) cam-
era systems on board Autonomous Surface Vessel (ASV)s which can further be used in a
sensor fusion with active sensors such as RAdio Detection And Ranging (RADAR) and
Light Detection And Ranging (LiDAR) together with ownship position and attitude esti-
mates from an Inertial Navigation System (INS). Both the image detector and the image
tracker are deep learning Artificial Intelligence (AI) based and trained to detect and track
boats and ships. The overall aim is a robust, real-time collision avoidance (COLAV) sys-
tem to enhance safety at sea.

The pipeline described in the report shows good performance and also inherit possibilities
for further optimization through training of the under-laying deep learning networks.
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Chapter 1
Introduction

There is a large and increasing interest in autonomous vehicles, both on land, in the air and
at sea. Heavy investments are being made to increase safety and reduce demand for person-
nel. The main investments and research has, especially in the past, been from the military
where a reduction of risk to own personnel and civilians have been in focus, as well as more
effective weapon systems. In contrast we now see a large private and commercial market
for remote controlled and autonomous vehicles. Especially in the air where Remotely
Piloted Aircraft Systems (RPAS) often called simply drones, have hit the mass marked.
The largest industry for autonomous vehicles are now the car industry where autonomous
car research is a very active field and is receiving large funds. The common denominator
for the systems in the private market is that they are relatively cheap and safe due to the
small size and low weight. The more expensive and potentially dangerous systems in the
commercial and military market have much stricter demands concerning safety and reli-
ability. To achieve this high robustness, several sensors and advanced computer systems
are necessary. Sensor fusion can help reduce the uncertainty that follows from any sensor
measurement, and provide more robust sensory information than any standalone sensor.
Different sensor fusion methods can therefore be valuable in all types of products contain-
ing several sensors. This applies to both high end military and commercial products as
well as mass market products.

1.1 Background and Motivation

This report considers Autonomous Surface Vessel (ASV) which are marine surface vehi-
cles such as ships and boats. For autonomous vessels it is of utmost importance to have
reliable and updated sensory information for both the vessel itself as well as the surround-
ings. In ships and boats the dynamics of the autonomous vessel itself is for the most part
a solved problem using state of the art solutions as of 2018 [1]. Several sensors are used
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to know the position, speed and attitude of the vessel with great confidence. These sen-
sors might be fused together to support each other, for example Inertial Navigation System
(INS), or be completely separated. Offshore ships such as diving vessels need to have sev-
eral separated systems so that any type of sensor or system failure will not make the vessel
suddenly start moving [2].

In contrast other vessels can have unexpected maneuvers and are not easily modelled with
sufficient certainty over longer time steps. Usually the other vessel is not known and prop-
erties such as size, speed, maneuverability and type may only be estimated by various
sensors such as RAdio Detection And Ranging (RADAR), Light Detection And Rang-
ing (LiDAR) and Automatic Identification System (AIS). Various optical sensors such as
regular cameras detecting visible light (daylight) and infrared (IR) cameras give detailed
information about the object, but need interpretation to be useful to computers.

The problem to be investigated in this report is sensor fusion of active and passive sensors,
i.e. RADAR and digital daylight cameras. The task is part of a collaboration project called
Autosea between Norwegian University of Science and Technology (NTNU), Maritime
Robotics, DNV GL and Kongsberg. The Autosea project aims to solve some of the prob-
lems concerning sensor fusion and collision avoidance for autonomous surface vehicles.

Many types of sensors are possible to use in collision avoidance (COLAV) scenarios. The
different sensors all have strengths and weaknesses and must be chosen and adapted for
the relevant scenario. RADAR have long range and good reliability, but low update fre-
quency and relatively little details. The cameras give detailed information for objects close
by, but give very limited depth information. This is even true for stereo cameras when the
objects are far away. If the camera could have been mounted high above the sea surface
the images would have given good distance information. This is unfortunately not feasible
on the available vessel. Another obvious limitation is that cameras rely on good light con-
ditions to give usable data. Since the cameras are passive sensors they can have extremely
high update frequency and are not affected by the limited range of for instance LiDAR. If
needed a stabilized camera with a good zoom lens can provide good details at long ranges,
this is however not exploited in the setup. Fusion between LiDAR and camera have been
the topic of the Master thesis of Kamsvåg [3] which this report in part builds on. LiDAR
have great details and high update frequency, but have short range and is more affected by
atmospheric conditions such as rain, snow or fog compared to RADAR.

In this report we suggest a novel approach for detection and tracking of targets in im-
age data and video. It is based on two Artificial Intelligence (AI) based methods where
a hybrid image/video tracker Real-time Recurrent Regression (Re3) is initialized and up-
dated by an image detector You Only Look Once (YOLO)v3. The AI methods are robust
against changes in lighting conditions, appearance and size. The underlying deep learning
networks can furthermore be optimized on the the types of boats and ships the ASV will
encounter in the area. This training to optimize deep learning networks are referred to as
transfer learning and will be explained in chapter 3.

Hermann et al. [4] have described a tracking system incorporating RADAR and camera
data for a maritime multiple obstacle tracker. They have demonstrated an significant im-
provement of the tracking performance by fusion of RADAR and camera. The obstacle
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detection in image data uses an effective and simple filtering and thresholding of the raw
image. They also extract the horizon using filtered canny edge detections.
Elkins et al. [5] proposes a framework for autonomous maritime navigation (AMN) using
several different sensors including RADAR, LiDAR and omnidirectional camera. They
provide insight into the core ideas for fusion. Although the AMN project had performed
several successful demonstrations they conclude that there are still big limitations of the
system.
The previous work by Kamsvåg [3] with fusion of passive and active sensors, i.e. camera
images and LiDAR, did not use any image tracker, but proposed to fused the measure-
ments from an image detector (Faster R-CNN) with the LiDAR measurements directly.
The advantage of using an image tracker is that one has continuous position estimates for
the tracked object compared to a detector which may or may not detect the object at each
frame. The trackers are generally also faster than detectors and have lower computational
demands. This may be utilized to provide better than real-time tracking speed for the
image data.

Further on the tracks from the image tracker are to be associated and fused with RADAR
measurements from other contributers in the Autosea project. [6] [7] This will be a large
part of the authors upcoming Master’s Thesis. The RADAR measurements are shown in
the suggested pipeline in figure 5.1 and will be presented through the report together with
the image processing from the cameras.

1.2 Report Outline

The rest of the report will be structured in the following matter:

• Chapter 2 is used to provide more detailed information about the different sensors
and processes. What types of sensors are available and some theory behind them.

• Chapter 3 gives an introduction to the YOLO detector and the Re3 tracker as well
as the underlying deep learning methods used.

• Chapter 4 builds up the background for target detection and tracking using both
passive and active sensors. The chapter also introduces sensor fusion and data asso-
ciation.

• Chapter 5 explains the suggested tracking pipeline for sensor fusion with omnidi-
rectional (360°) camera and RADAR.

• Chapter 6 is used to explain the experiments and tests that have been done to ver-
ify the possibilities and limitations of the methods and modules in the suggested
pipeline.

• Chapter 7 includes an overview of the status of the proposed pipeline. It gathers
the main takeaways in the report and also suggests future work that has not been
completed within this project.
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Chapter 2
Sensors

In modern vessels there are an abundant number of sensors which give valuable informa-
tion to the helmsman and potential guidance and navigation systems. If communication of
data such as AIS is installed much of this data can also be transmitted to other vessels.

2.1 Reference Frames

The dynamics of a vessel can be expressed in several different frames. The most common
used for surface vessels are [1]:

ECEF Earth Centered Earth Fixed (ECEF) where the center of the earth is the refer-
ence. This is commonly used in maritime navigation where World Geodetic Sys-
tem of 1984 (WGS84) is used and coordinates are given in degrees as Latitude
(north/south) and Longitude (east/west). The zero point for Latitude is the equator
while the zero point for Longitude is at the Greenwich Royal Observatory in Lon-
don. Elevation is given referenced to the WGS84 ellipsoid of the mean sea level
across the globe. Local Geoide models which are much more accurate are used if
the height information is important.

NED North East Down (NED) is a local coordinate system which can be considered
a flat tangent plane on the face of the earth. It is also referenced to the WGS84
ellipsoid.

BODY The Body-fixed (BODY) coordinate frame is fixed to the vessel or the sensor and
moves with the vessel. The Body-fixed (BODY) coordinates are given as Forward-
Starboard-Down which is comparable to North East Down (NED) with a transfor-
mation.
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Figure 2.1: East North Up (ENU) is similar to NED but is rotated so that up is positive. Here shown
compared to Earth Centered Earth Fixed (ECEF). Wikimedia Commons.

Rotation and rigid body transformation matrices belong to special distance preserving Lie
groups called Special Orthogonal Group 3 SO(3) and Special Euclidean Group 3 SE(3).
They have the useful property that the inverse of the matrix is it’s transpose, which is much
easier to compute.

SO(3) = {R ∈ R3×3
∣∣ RRT = 1, detR = 1}

SE(3) =

{
T =

[
R t

0T 1

]
∈ R4×4

∣∣∣∣∣ R = SO(3), t ∈ R3×3

}

The principal rotations φ, θ, ψ around the single axis x, y, z are given in the designated
coordinate system as:

Rx(φ) =


1 0 0

0 cφ −sφ
0 sφ cφ

 ,Ry(θ) =


cθ 0 sθ

0 1 0

−sθ 0 cθ

 ,Rz(ψ) =


cψ −sψ 0

sψ cψ 0

0 0 1


x, y, z indicates North,East,Down in NED and Forward,Starboard,Down in BODY. s and
c is short for Sine and Cosine respectively.
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Rotations from BODY to NED can be performed using the following rotation matrix which
is composed of all 3 principal rotations (x-y-z). Other variants of the rotation matrix is
used in other areas such as robotics where (z-x-z) is common. Superscript indicated the
expressed coordinate system, n indicates NED and b indicates BODY. Subscript indicates
the coordinate system it is referenced from.

Rn
b (Φ) = Rn

x/b(φ)Rn
y/b(θ)R

n
z/b(ψ) =


cψcθ −sψcφ+ cψsθsφ sψsφ+ cψcφsθ

sψcθ cψcφ+ sφsθsψ −cψsθ + sθsψcφ

−sθ cθsφ cθcφ


With the correct rotation and translation, any point p in the BODY coordinate frame can
be transformed to the NED coordinate frame.

pn = Tn
b p
b

2.2 Automatic Identification System (AIS)

An important safety feature that has been introduced to the maritime industry in recent
years is the AIS system. The AIS relies on Global Navigation Satellite System (GNSS)
position and sometimes also heading on board the other vessel and Very High Frequency
(VHF) radio for transmitting and receiving the information between the vessels. All ships
above 500 gross tonnage and all passenger ships of any size should have installed AIS [8].
Most new boats also install AIS as this is a cheap and effective safety feature, ensuring
visibility to others. Smaller ships and other objects at sea may not have AIS installed or it
can be turned off or be inoperative and one can therefor not rely solely on the system.

2.3 Active Sensors

Active sensors include a transmitter which sends out a signal that is reflected by the
surrounding environment and received again by the sensor. Common active sensors are
RADAR and LiDAR which sends out electro-magnetic signals in the form of radio and
light respectively. Also the many variants of echosounders used for measuring water depth
etc. are active, using sound-waves.

2.3.1 RAdio Detection And Ranging (RADAR)

The RADAR technology dates back to the early 1900s, but was improved significantly
during World War 2. In the maritime sector RADAR have been common for decades giv-
ing great improvement in navigation and safety at night and in poor visibility conditions.
The RADAR consists of an transmitter and receiver antenna which is rotating with a set
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speed. Older systems used the same antenna for transmitting and receiving. They trans-
mitted powerful short pulses and waited for the return (pulse radar). Maritime RADAR
is designed so that the transmitted signal is narrow in the horizontal plane, but wide in
the vertical, radiating a radio signal with a vertically fan-shaped beam. This arrange for a
good resolution horizontally while relatively unaffected by vessel motion. The transmit-
ted signal gets reflected by objects such as boats or land and is picked up by the receiver
antenna. The distance between the RADAR and the object is measured as half the time of
flight for light in air

r =
c · t
2

(2.1)

where c is the speed of light, r is the distance to the object and t is the time passed until the
transmitted signal has returned. The strength of the return indicates the reflectance of the
object, waves and rain will for instance give low return signal strength and much can be
filtered out. There are functions within the RADAR system for adjusting range and other
settings as well as some filtering.

The ”Simrad Broadband 4G™ RADAR” used in the experiments utilizes modern Fre-
quency Modulated Continuous Wave (FMCW) technology which give continuous data
coverage and very safe operation with low radiation [9]. There are two separate antennas
which rotates together, where one is transmitting radio waves in the X-band (8-12 GHz)
and one is receiving the return signals. The range setting for the RADAR controls the ro-
tational speed of the antennas. The maximum range for this RADAR is 32 Nautical Miles
(NM) (1 NM=1852 metres), with a rotational speed of 24 Rounds Per Minute (RPM) = 0,4
Hz. The maximum rotational speed is 48 RPM = 0,8 Hz, with a minimum range setting
of only 50 meters. Low range settings gives best range resolution while the horizontal
angular resolution of the antenna is fixed at 5,2°. The vertical angular resolution is 25°.
The relatively wide horizontal resolution might give problems where two close objects are
smeared together and not possible to separate in the data. Smaller objects some distance
away will also appear larger than they are in the data. The data output from this RADAR
also have limited amplitude information so that further filtering of the data is difficult.

2.4 Passive Sensors

Passive sensors do not contain any transmitter and only senses the environment via changes
in the received signals. This may be electro-magnetic waves, such as radio-waves or light,
sound, wind, temperature etc.

2.4.1 Inertial Navigation System (INS)

The INS is a state of the art sensor package used to measure and estimate the current
state of the vessel. It provides position and attitude measurements to be used by other
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Figure 2.2: Simrad Broadband 4G maritime RADAR

Figure 2.3: Simrad RADAR with protective dome removed

systems and sensors with a high output rate. The INS consists of an Inertial Measurement
Unit (IMU) with built in accelerometers and rate gyros in 3 axis. Sometimes also 3 axis
magnetometers are used to provide reference to magnetic north. The position and heading
output from the IMU is corrected by a GNSS system with two antennas and receivers.
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This is referred to as GNSS aided navigation [1] and is a sensor fusion algorithm based on
nonlinear Kalman Filter (KF) that is running within the INS.

The INS used in the experiments is the ”Kongsberg Seapath 330+” which have a state-of-
the-art performance.

• Heading accuracy 0.04° RMS (4 m baseline)
• Roll and pitch accuracy 0.008° RMS for ±5° amplitude
• Heave accuracy (delayed signal) 2 cm or 2% whichever is highest
• Position accuracy RTK (X and Y) 1 cm + 1 ppm RMS
• Position accuracy RTK (Z) 2 cm + 1 ppm RMS
• Velocity accuracy 0.03 m/s (RMS)

Table 2.1: Performance of the Kongsberg Seapath 330+ INS

The entire INS system is calibrated so that the sensors are exactly known relative to each
other and preferably the Center Of Rotation (COR) of the vessel. The INS can therefore
be considered as one system giving out the motion and attitude of a single vessel/BODY
reference point.

2.4.2 Digital Daylight Camera

Most cameras today use digital sensor arrays with several Megapixels. The Ladybug cam-
era described below have a total of 6 cameras, each with a resolution of 2448 x 2048 pixels
(5 Megapixels), covering the 360°horizon plus upwards.

2.4.3 Omnidirectional Cameras

Omnidirectional camera systems are cameras that have a total Field Of View (FOV) cover-
ing the entire 360°horizon. They are designed in several different ways using only one or
multiple cameras. Certain types of lenses, such as wide FOV dioptric cameras, commonly
known as ”fisheye”, and catadioptric cameras (camera and mirror systems) can provide
360 degree coverage using only one lens [10][11]. The images from fisheye lenses are
heavily distorted and the resolution of the single camera is spread around the entire image.
Most of the image will also be of the sky directly above, which in this setup is uninterest-
ing. Fisheye lenses are therefore unsuited for fusion with RADAR.

The camera setup using omnidirectional, convex mirror above the lens removes the prob-
lem with most of the image containing the sky, and by using the correct shape of the mirror
the distortion can be low [12][11]. This model requires very precise and high quality mir-
rors for good results. The simplicity of using only one sensor gives uncomplicated sensor
models. However the limitations of using only one sensor gives a relatively low resolution
in the interesting parts of the image. The image also have a distinct different appearance
from normal perspective cameras as can be seen in figure 2.4. This might give problems
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when feeding the image to a Convolutional Neural Network (CNN) for detections and
would require significant training effort.

Figure 2.4: Fisheye camera and hyperbolic mirror camera compared. Wikimedia Commons and
Columbia University CAVE project.

Figure 2.5: Hyperbolic mirror camera principle [12]

Another possibility for using only one camera is to use a rotating camera. This mimics how
the RADAR functions. However the two sensors have different workings and a camera
works best when relatively stationary, especially in low light conditions. This can affect
the image quality negatively. The acquisition with this rotating camera setup will also be
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quite slow. Part of the reason for fusing RADAR and camera is to have a faster sensor to
help with reliable tracking of objects.

Due to all the limitations of the above mentioned omnidirectional cameras, the best camera
type in this setup is polydioptric cameras, where the full 360°coverage is realized using
multiple overlapping cameras [11][13]. And especially because the tracked object using
RADAR is usually some distance away, effectively reducing the visibility of the objects,
the better resolution from the multiple cameras is valuable. The exact camera system used
in this report is the ”Ladybug 5+” from ”FLIR® Machine Vision”.

Figure 2.6: The FLIR Ladybug 5+ camera system

2.4.4 Calibration

As can be seen from figure 2.8 there are several percent overlap between the pictures from
the Ladybug camera. This is vital to perform stitching between the images, to create one
large panoramic image, as well as track objects translating from one image into the next.

There are primarily two reasons for not stitching the images together; Firstly the Real-time
Recurrent Regression (Re3) image tracker and the You Only Look Once (YOLO) detec-
tor, which will be described in chapter 3, performs best on images that have somewhat
quadratic shape as the images are converted into a fixed size before fed through the net-
work [14] [15]. Secondly the stitching might create strange artifacts that may negatively
impact the robustness of the detector. Also the Ladybug Linux Application Programming
Interface (API) does not support stitching out of the box.

The Ladybug camera system is built using a robust aluminium housing. The 6 cameras
come with factory calibrated parameters that must be used during processing. The cameras
need no further calibration or adjustment between each other. The images are however
output from the Ladybug system uncalibrated and have a large barrel distortion as can be
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seen from images 2.8, 2.10 and 2.11. The calibration parameters can be extracted from the
Ladybug API as seen in table 2.2. To convert from pixel location to the needed 3D ray a
transformation must be performed using the camera matrices 2.5 through 2.12 [16] [17].

The angle of view along the vertical and horizontal axis of each camera is calculated as
follows:

α = 2 arctan
d

2f
(2.2)

αy = 2 arctan
11.1

2 · 4.4
= 103.19° (2.3)

αx = 2 arctan
7.7

2 · 4.4
= 82.37° (2.4)

Where d is the sensor size in mm (height or width) and f is the focal length in mm [18].

The cameras have wide angle of view as can be seen in eqation 2.3 and 2.4, and introduce
much barrel distortion which must be counteracted. The rectified images can be modeled
using the standard perspective camera model (pinhole camera) [16].

Figure 2.7: The pinhole camera model

P = K
[
R|t

]
(2.5)

K =


fx s x0

0 fy y0

0 0 1

 (2.6)

[
R|t

]
=


r1,1 r1,2 r1,3 t1

r2,1 r2,2 r2,3 t2

r3,1 r3,2 r3,3 t3

0 0 0 1

 (2.7)

The P matrix is the camera matrix composed of the Intrinsic and Extrinsic matrices. The
camera matrix describes the mapping of the pinhole camera from 3D points in the world
frame to 2D points in the image plane.
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K is called the Intrinsic matrix or the camera calibration matrix and transforms the 3D
camera coordinates to 2D homogeneous image coordinates. The fi parameters are the
focal length, the x0 and y0 are the center point offset of the sensor and the s parameter is
a skew value which is usually 0.[
R|t

]
is a transformation matrix SE(3) called the Extrinsic matrix or the view matrix and

describes the camera’s location and pose in the world frame. It contains a 3D rotation and
a translation

u = Kx̂ (2.8)

u =


u

v

1

 , x̂ =


xcorrected

ycorrected

1

 =


(1 + k1r

2 + k2r
4 + k3r

6)x

(1 + k1r
2 + k2r

4 + k3r
6)y

1

 (2.9)

x =


x

y

1

 , r =
√

(xd − x0)2 + (yd − y0)2 (2.10)

x =
[
R|t

]
U (2.11)

U =


Xn

Y y

Zn

1

 (2.12)

Where u is the pixel coordinates in the normalized image plane, x is real coordinates
in mm given in the camera coordinate system, ki is radial distortion coefficients and r
is the distance from the image/distrortion center to the distorted coordinate xd, yd. U is
homogeneous world coordinates given in NED. The distortion coefficients are provided as
a calibration file for the Ladybug camera, but can also be calculated using software such
as OpenCV or Matlab given images of known checkerboard patterns or similar. See figure
2.9. Note that other calibration parameters than barrel distortion is not shown in equation
2.9, but can also be calibrated.

Figure 2.8: The 5 images that form the panoramic view from the Ladybug camera
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Figure 2.9: Calibration of barrel distortion using OpenCV. [19]

To convert a pixel location in a raw image to a 3 Dimensional (3D) ray in the Ladybug
Coordinate System the following steps should be taken using several of the Ladybug API
functions:

1. Obtain the focal length for the appropriate camera using:
ladybugGetCameraUnitFocalLength()

2. Obtain the image center for camera using:
ladybugGetCameraUnitImageCenter()

3. Obtain 6D extrinsics vector (Euler angles and translation) for the camera using:
ladybugGetCameraUnitExtrinsics()

4. Rectify 2D pixel location using:
ladybugRectifyPixel()

5. Find the (u,v) pixel coordinate for this rectified image location.
6. Transform the rectified 2D pixel location into a 3D ray within the local camera

coordinate system.
7. Transform the local 3D ray to a 3D ray in the Ladybug Coordinate System.

Table 2.2: Using the Ladybug API to convert a pixel coordinate to a 3D ray
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Figure 2.10: 2D polygon mesh of stitched Ladybug images [17]

Figure 2.11: 3D polygon mesh of stitched Ladybug images [17]
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Chapter 3
Deep Learning Methods

Deep learning is a modern AI and Machine Learning (ML) approach especially used for
information extraction from complex structures such as images, video and speech. It is
based on a layered data structure containing artificial neurons, where each layer extracts
the most valuable information, and passes this on to the next layer. The output of the
neurons are weighted through some type of non-linear function to avoid the whole net-
work becoming a linear combination. The network can be trained so that the information
extracted in each layer is optimized for the given task. This is commonly referred to as
backpropagation, where the weights (gain) and bias for input to the neurons are updated.
One can also finetune a previously trained network by retraining, and updating the parame-
ters, only in the last few final layers. This is called transfer learning. Backpropagation will
not be further detailed here. For a good reference on deep learning methods we can refer
to [20] and [21]. Transfer learning is however a method that is suitable for retraining the
YOLOv3 and Re3 networks as described below. Doing this one can also limit the number
of objects the detector should look for.

3.1 Convolutional Neural Network (CNN)

CNNs are a special type of neural networks used primerily where the input is an image or a
video (series of images). The spatial matrix style of images makes them ideal for reducing
the size through convolution as separate parts of an image does not directly affect other
parts.

The input image has a size of (n×m× c), with c = 3 channels (Red Green Blue (RGB))
or c = 1 channel if grayscale. After the convolution layer the size of the image is changed
to ((n− s)× (m− s)× f) where f is the number of different filters and s is the number
of pixels the filter kernel is translated (stride). If pooling is used the size is even further
reduced, while keeping the most interesting features extracted by the filters. However,
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Figure 3.1: An illustration of the typical Neuron model used in fully connected neural networks

recent findings may lead the way for pooling layers to be replaced by convolutional layers
with larger strides.
For each convolution step, the spatial size is changed so that the image matrix is trans-
formed from a large, flat ”box” to a small, tall ”box”. Finally the output of the last
convolutional layer is fed to a classical fully connected layer for classification. A large
percentage of the total number of parameters are within this last fully connected layer.
The convolutional layers utilize parameter sharing so that the number of parameters de-
pend on the kernel size rather than the image size, dramatically reducing the number of
parameters that must be optimized. Newer network architectures therefore try to limit the
use of fully connected layers.

Figure 3.2: A typical CNN structure. Wikimedia Commons

3.2 Long Short-Term Memory (LSTM)

Long Short-Term Memory (LSTM) is a special type of Recurrent Neural Network (RNN)
capable of learning long-term dependencies.
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Figure 3.3: The LSTM chain over 3 timesteps, notice the 4 gates affecting the information flow

In a regular CNN does not retain any information from previous timesteps, and performs
the same computations every time. To be able to utilize the previous data this must be
stored and fed to the next computation, or looped in the data structure. This is referred
to as a RNN. In contrast to standard RNN the LSTM has a data line transferring previous
information that is not the output of the cell. This data line or cell state, Ct is affected
by 3 neural layers in the cell, and it also influences the output of the cell. The cell state
is also very effective in reducing the problem of vanishing gradient in back propagation,
preventing learning, during training.
The first layer is called the “forget gate layer” and takes the previous output ht−1 combined
with the current inputXt and scales the data inCt due to the output of the Sigmoid function
σ which ranges from 0 to 1.
The next two layers the Sigmoid “input gate layer” and the tanh layer adds information to
the cell state Ct.
Finally the output ht is a multiplication of the last Sigmoid layer and a tanh weighting of
Ct.

The LSTM networks can similarly to other deep learning networks be trained using anno-
tated data to improve the output predictions. A LSTM network can therefore effectively
retains important information from previous images and ignore information which is not
useful due to occlusion for instance. The network can therefore predict robustly over time.

3.3 You Only Look Once (YOLO) v3 detector

YOLO is a state-of-the-art object detection algorithm capable of running in real-time even
for large images on a powerful Graphics Processing Unit (GPU). The algorithm is built
using ”Darknet” which is an open source neural network framework written in C and
Compute Unified Device Architecture (CUDA) so that it is capable of computing both
using a Central Processing Unit (CPU) and a GPU. YOLOv3 uses a version of ”Darknet”
with 53 layers, see figure 3.4. There are many versions of YOLO and tiny-yolo uses for
instance only 15 layers [22]. This is considerably faster, but also much less reliable when
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detecting objects. Especially small objects and objects with a different than ”normal” look.

The detector layers are added to the output of the CNN. As can be seen from figure 3.5 the
regular YOLOv3 detector performs detection on 3 different scales and does an upsampling
of the images between the layers, similar to a feature pyramid network. This makes version
3 better at detecting small objects than the previous verions. The detector is fast due
to the fact that it only extracts information from the image one single time (You Only
Look Once). The detections from each 3D tensor output for all the 3 layers are combined
to make the total output, and only detections with a certainty above some threshold are
accepted. The detector used in the tests is trained on the Common Objects in COntext
(COCO) dataset which contains 80 different object types [23][15]. Compared to other
high end detectors YOLOv3 is faster and just as robust. It is slightly weaker in adjusting
the bounding box to perfectly match the ground truth.

Figure 3.4: The Darknet-53 CNN structure of YOLOv3
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Figure 3.5: The feature extractor of YOLOv3 on the Darknet-53 CNN

3.4 Real-time Recurrent Regression (Re3) tracker

TheRe3 tracker is the first successful hybrid tracker utilizing both a pretrained ,deep learn-
ing based offline tracker and an online tracker capable of learning features of the tracked
object real-time.[14] It is a generic tracker which is trained on the ”Imagenet” dataset
containing almost 22.000 object types and more than 14 million images in total.[24] The
model is trained on very generic data and therefore can track almost anything. It is shown
to be robust against changes in appearance of the tracked object and very fast, giving real-
time performance even without a GPU.

The tracking pipeline, as shown in figure 3.6, consists of convolutional layers to embed the
object appearance, recurrent layers to remember appearance and motion information, and
a regression layer to output the location of the object. The tracker takes in a cropped part
of both the current image and the previous image that is twice the size of the previously
predicted bounding box and feeds both through separate CNNs. This makes the network
able to fully separate out the differences between the images before they are concatenated.

The recurrent layers are built using a two layer LSTM with 1024 units/neurons each, fol-
lowed by a 2048 unit fully connected layer for predicting the 4 corners of the bounding
box. The two layer LSTM is likely able to capture more complex object transformations
and remember longer term relationships than the single layer LSTM.[14] The tracker is
capable of tracking multiple objects simultaneously in real-time.
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Figure 3.6: Overview of the structure of Re3
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Chapter 4
Target Detection and Tracking

In this report we suggest to use a video (series of images) tracker as the basis of fusing the
passive camera sensors with the active RADAR sensor. We suggest to run a deep learning
detection algorithm to find boats or other interesting objects and use this to initialize and
update the tracker.

The YOLO version 3 detector is used in the report as this is state-of-the-art in terms of
speed and robustness as of the time of writing of this report. The Re3 tracker is used in
this report as it is a generic tracker and is demonstrated to be robust and fast [14].

One of the huge benefits with using active sensors for target detection and tracking is that
they are capable of measuring both the angle and distance to an object. Passive sensors
will need to triangulate to calculate the distance to an object. This will within the task of
tracking at sea usually not be feasible, or one must make assumptions such that the object
is stationary. Dept or distance information is therefore usually only reliably gathered using
active sensors such as RADAR and LiDAR.

Passive sensors on the other hand do not have any transmitters and therefore do not inter-
fere with any other instruments on board, this makes them more flexible in where they can
be mounted. Cameras are the potentially fastest of the sensors considered here, practically
only limited by the computing power for processing the images. As mentioned in chapter 2
do passive sensors not give depth or range information directly. It is possible to use stereo
camera setup with a long baseline between the cameras on a large vessel, but this is not
feasible on a small ASV. There exists methods for estimating depth from single cameras as
used extensively in for example Simultaneous Localization And Mapping (SLAM). The
methods are however primarily suitable where the surroundings are stationary. The sea
and objects we wish to track are to the contrary dynamic of nature.
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Figure 4.1: Example of the simplest confusion matrix

4.1 Data Association and Sensor Fusion

4.1.1 Data Association

Data association is the process of associating measurements with inherent uncertainty to
known prior tracks [25]. The main problems that arise in the data association are whether
or not a detection is a true target. For each sensor a twofold problem arises: Is the detection
a true object, a True Positive (TP), or is it an error, a False Positive (FP). If there is no
detection we have the same conundrum; does no detection mean that there is no object,
a True Negative (TN), or did we just not detect an object that really is there, a False
Negative (FN). The classes can be gathered in a confusion matrix, splitting up in true/false
and positive/negative as shown in figure 4.1. If the sensors are capable of detecting several
different objects the same problem appears for all of the classes, effectively increasing the
size of the confusion matrix. When several sensors are used the big problem is whether or
not the the detections arise from the same target and if they are all TP.

The probability of each of the four classes are dependant of the sensor used and the envi-
ronment being observed. If no vessels are in the area we would like all of the detections to
be TN. This might however not be the case in a real setting where noise and other factors
could trigger erroneous detections. Erroneous detections due to for instance low Signal to
Noise Ratio (SNR), clutter or multipath introduce noise in the estimates and must be taken
care of in a suitable manner.

4.1.2 The Assignment Problem

As long as there is only one object being tracked the problem formulation is relatively
straightforward and one can use the probability of a correct detection, a TP in the further
processing. However when multiple objects are being tracked simultaneously it is also
important to match which detection belongs to which object. From the camera sensor,
or any other sensor which is limited by Line of Sight (LOS) detections, occlusion might
blend two objects so that the furthermost one is lost. Another important possibility that the
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hypotheses must consider is that the detection does not belong to any tracked object and is
a FP or a new object.

The Kuhn–Munkres algorithm or ”Hungarian algorithm” is one way to solve the assign-
ment problem [26]. It finds the optimal solution in O(N3) (polynomial) time, where N is
the size of the largest size of the corresponding matrix. See figure 4.3 for an example of
the matrix. Other methods include the ”Auction algorithm” [27], successive shortest path
algorithms and Djikstra’s algorithm [28].

In the context of target tracking for vessels in open waters, we will most of the time have
separation between the different measurements and the track assignment will be relatively
straight forward. However once there is any overlap between more than one measurement
the task is much harder. The Jaccard index, also known as Intersection over Union (IoU),
as shown in figure 4.2, is used here as a measure for the likelihood of one measurement be-
longing to one particular track. The reason for using the IoU compared to other statistical
or probabilistic methods are due to simplicity as both the Re3 tracker and the YOLO de-
tector outputs similar bounding boxes [14][15]. The bounding boxes are easy to compare
using IoU which directly outputs a measure of overlap between 0 and 1 [29].

J(A,B) =
|A ∩B|
|A ∪B|

=
|A ∩B|

|A|+ |B| − |A ∩B|
, ∈ R | [0 ≤ J(A,B) ≤ 1] (4.1)

A and B are bounding boxes from the Re3 tracker and the YOLO detector respectively.

Figure 4.2: Intersection over Union visualized. Wikimedia Commons

See figure 4.3 for an illustration on how the matrix with 4 targets and 4 measurements
could look like.
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- A B C D

a 0 0 0.2 0.7

b 0.8 0 0 0.1

c 0.1 0.2 0.8 0

d 0 0.9 0 0

BestSolution

(A, b) = 0.8

(B, d) = 0.9

(C, c) = 0.8

(D, a) = 0.7

Figure 4.3: The assignment problem illustrated with targets A,B,C,D, measurements a,b,c,d and
IoU as values. Higher is better.
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Chapter 5
Proposed Tracking Pipeline

The proposed pipeline using deep learning based methods for both the image detector and
the image/video tracker provides flexible possibilities for training both methods on the
concrete data that is likely to be encountered in the area of interest. Boats around the
world have quite large changes in appearance and one might not need to reliably detect
unlikely boat shapes at a distance. Due to the module based structure of the pipeline it
is possible to replace any of the modules if better versions are available. As of writing
both the Re3 tracker and the YOLOv3 detector are state-of-the-art in terms of speed and
reliability. The RADAR tracker from the Autosea project may also be updated and the
physical RADAR be changed as long as the output from the library remains the same.

Another possibility that would be interesting to pursue is to fuse the convolutional net-
works in the Re3 tracker and the YOLOv3 detector. This would reduce the need for pro-
cessing the images multiple times, and should give rise to increased detection and tracking
speeds. However this would limit some of the module based architecture and would re-
quire significant number of hours to implement. This option is not given further attention
in the report.

5.1 Autosea Project

There has been built up a framework and a repository for sensor fusion utilizing primar-
ily ROS and Python in the Autosea project. In this repository a fully functional RADAR
tracker based on Probabilistic Data Association Filter (PDAF) and Integrated Probabilistic
Data Association (IPDA) is available.[30] [31] [32] This has been used during the early
experiments where data was gathered also for this project. The properties of these associ-
ation methods will not be further detailed in this report, but their implementation can be
studied in the papers by Kufoalor et al. [33][7] and Wilthil et al. [6]
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One important feature from the Autosea RADAR tracker is that detections of land is fil-
tered out using a map database from the Norwegian mapping authorities. The remaining
detections are robustly gathered as objects with a center point and a polygon enclosing
each object. The data from the RADAR as well as the ASV pose from the INS is output
and stored using ROS as different rostopics.

All sensory data is time tagged from the INS and the accurate time when the data was
collected is embedded in the data available from the ROS node. The Ladybug camera
system used also support 1 Pulse Per Second (1PPS) which is an extremely accurate elec-
trical pulse output from the Seapath INS used to synchronize the time information given in
the National Marine Electronics Association (NMEA) standard messages such as GPGGA
and GPZDA or other time strings. These messages give information about GNSS satellite
status from the INS as well as time or other information such as attitude.

5.2 Image Detections using YOLOv3

The YOLO detector is out of the box trained for detecting 80 objects, among these are
boats. It is this pretrained network that is used throughout the tests. During these tests the
YOLOv3 detector found boats at a distance covering as little as 12×40 pixels, or 2% of the
width of the raw image. The detector outputs a nested array containing arrays of bounding
boxes for all detected objects. The array includes object type and certainty as well as
the center point plus width and height of the box. The center point, width and height is
converted to corners of the bounding box outside the detector. Since the detector and the
Re3 tracker works om the same images no further processing is done using the detector
and the bounding boxes that contain boats are handed over to the image tracker. Since
the detector processes each image separately and has no recurrent network or memory, the
output can change between image frames. This includes the order of detections.

5.3 Image Tracking using Re3

For each tracked object the image tracker outputs a bounding box array with the 4 cor-
ners and a unique name as parameters. The tracker will normally be initialized using
the bounding boxes from the YOLO detector. However in future implementations it can
also be initialized around the horizon from the RADAR detections. It is assumed that the
RADAR-only detections is some distance away since the image detector does not find it.
The bounding box would then be initialized to a fixed, rather small, size around the hori-
zon in the direction of the RADAR detection. This could further be evolved into using the
polygon from the Autosea tracker as size of the bounding box.

The Re3 image tracker is primarily written to accept one tracked object. It is however
also adapted to accept more tracked objects. These two tracker functions are separated in
the code as two objects and you cannot track only one object with the multi-tracker. To
overcome this problem we have utilized both trackers and swapped between them when
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the number of targets changed. Another possibility is to just always track a virtual target
so that the number is never less than 2. The tracker is not started if it is only the virtual
target present.

5.4 Proposed Sensor Fusion Pipeline

In figure 5.1 an overview of the proposed method is shown. The Autosea RADAR tracker
remains to be implemented and fused in the pipeline.

PROPOSED SENSOR FUSION
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Figure 5.1: Proposed Sensor Fusion pipeline

The Ladybug camera system is interfaced into ROS using a library from Autoware and
the 6 images are easily extracted from the ROS node. The raw images output from the
Ladybug camera are uncalibrated and must be calibrated using the Ladybug API or using
parameters found during prior calibration with OpenCV etc. [19].

The YOLO detector is using the exact same images as the Re3 tracker. The detector
does however only perform detections on every fift imageframe. New detections from the
detector will be used to update the tracker if the bounding box from the detector and the
tracker deviates too much. This can be calculated using IoU [29], which gives a measure
for how good the two bounding boxes aligns. A value below approximately 0.7 would be
reason to update the tracker bounding box. However this value should be tuned during
experiments and it might also not be a good idea to update the value based on just a single
detection from YOLO as this might be erroneous. A special case is where the IoU is zero
as this indicates no overlap. This might indicate a new object to be tracked.

If the Re3 tracker does not receive any validating detections from the YOLO detector, or
from other sensors, this is a strong indication that the tracker is not tracking the correct
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object. This bounding box will then be flagged as invalid and be deleted within a specified
time if it is still not validated by any measurements. This time must be experimentally
tuned.

Since the problem can involve many different objects that needs to be tracked and detected
simultaneously, the chosen method must be very robust and not be to computationally
expensive. The data association problem when tracking multiple objects is very challeng-
ing. The Kuhn–Munkres algorithm or ”Hungarian algorithm” is one way to assign which
track belongs to which measurement. [26] This algorithm is used in the method to assign
detections from YOLO to tracks in Re3 as the output order from YOLO is not fixed.

For future improvements it is prepared for a IPDA based RADAR tracker from the Au-
tosea project [7] to run in parallel to the video tracker and detector. The interfacing of
the RADAR detections from the Autosea library and the complementary sensor fusion
pipeline is still to be completed. The same is true for utilizing the INS data for position
and attitude of the ASV. This data has to be extracted from the Autosea ROS framework
where it is stored or output as several rostopics. The RADAR detections are presented in
a local NED coordinate frame where the Munkholmen island is origin. The position of the
ASV is given in the same coordinate frame from the Autosea library.

The detections from the Autosea RADAR tracker are verified to not be land, and is there-
fore likely to be boats/ships or some other marine obstacles. If the YOLO detector do not
find the object that the RADAR tracks, it is proposed that theRe3 tracker is anyway initial-
ized on this object with a bounding box around the horizon. After initialization the video
tracker and Autosea RADAR tracker should track the same object. Since the object is far
away and occupy only a few pixels in the image, the Re3 tracker might have problems
locking on to the object, especially if there is much motion from waves etc. Any bounding
boxes from these detections that drift away from the horizon should therefore be removed
or reinitialized.

When the full fusion algorithm as shown in figure 5.1 is implemented, it will provide
substantially higher update rates for position estimates of the tracked vessels.

5.5 Transformation

Since the best available RADAR data is given in NED while the camera data is related
to the vessel BODY frame, the RADAR data and the camera must be mapped together
in either BODY or NED coordinates for fusion with the other sensors. Since the camera
embeds no depth/distance information and the RADAR data contains no elevation infor-
mation this can be done easily by mapping all data to polar coordinates. From Cartesian
coordinates as the RADAR is given in the mapping is:

p(t)radar =

[
φ(t)

r(t)

]
=

[
atan2(∆y(t),∆x(t))√

∆x(t)2 + ∆y(t)2

]
(5.1)

30



where ∆x,∆y is the relative position between the ASV and the other vessel. φ is the angle
and r is the distance between the ASV and the other vessel. The atan2(y, x) function gives
the angle in radians between −π and π. The angles can then be rotated between NED and
BODY for aligning the sensors. The RADAR data is presented in two ways with a centroid
of the detected vessel/object as well as points of the corresponding polygon. The centroid
is commonly used to represent the RADAR detection.

As the RADAR gives no information of altitude or height of the detected object we have
taken a 2 Dimensional (2D) approach in the sensor fusion method, and not tried to estimate
this from the image data either. This simplification allows the image data to be easily
transformed to polar coordinates as well. Each camera has an angle of view which is
fixed, see equation 2.3 and 2.4. From the camera calibration this angle is found together
with projection errors. Once the camera is calibrated it is further simplified and considered
to be a linear relation between image coordinates and angle.

p(t)camera =
[
φ(t)

]
=
[
φmin + (φmax−φmin)u(t)

umax

]
(5.2)

Where u is the calibrated pixel coordinate in width. The bounding box coordinates con-
taining a vessel being tracked by the image tracker are transformed to polar coordinates
in the vessel BODY frame using 5.2. The distance to the objects are only given by the
RADAR data. Between RADAR detections it is assumed that the vessel in question has
constant speed and constant heading. The accuracy of the INS is assumed to be perfect.
Any error in the GNSS position due to loss of Real-Time Kinematics (RTK) or other dis-
turbances only affects the comparison of the RADAR data and the map. Since all sensors
are fixed to the vessel frame and calculations are based on the ASV as origin, any error in
initial position does not propagate further.
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Chapter 6
Tests and Results

The proposed task asked for experiments with time synchronized capture of camera data
together with RADAR and INS data. The experiment was performed in the last week of
september 2018 together with several PhD students at NTNU using Maritime Robotics
ASV ready boat ”Telemetron”. One ASV from Kongsberg, ”Drone 1” as seen in figure
6.1, was used as a target. On the first day also the tug ”Munkholmen II” from Trondheim
harbor was used as a target.

During the experiments the targets was following tracks with fixed heading and speed.
Several algorithms and scenarios were tested out for autonomous collision avoidance.
Telemetron would then autonomously perform several maneuvers based on the relative
angle between the target’s course and Telemetron’s course. Different scenarios was intro-
duced including Head-on, Overtaking, Crossing from starboard and Crossing from port.
Virtual fixed obstacles was also used to safely test out difficult scenarios close to land. See
the article from Kufoalor et al. [7] for more details about the experiments.

6.1 Interfacing the Ladybug

6.1.1 Time-Synchronization

The first task that was completed was to get the time synchronization up and running.
The Ladybug 5+ camera has an auxiliary port used for power and interfacing with the
camera. Data is output over a shielded Universal Serial Bus (USB) 3 cable. Previous
experiments had shown that USB3 was interfering with GNSS reception, but probably due
to the shielded design of the Ladybug this was not an issue in the tests. The auxiliary
port has input for GNSS and time data using the common NMEA sentences as well as a
dedicated signal wire for 1PPS. The usage of time strings together with 1PPS is common
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Figure 6.1: ”Telemetron” and ”Drone 1” used in the experiments

in areas where accurate time-stamping of data is necessary such as in bathymetric data
acquisition. The NMEA data is commonly output from a navigational sensor system,
such as the Kongsberg Seapath which is used in this experiments, as Electronic Industries
Association (EIA) Recommended Standard 232 (RS-232) compatible signals. The RS-232
standard defines voltage levels which are not compatible with the Ladybug interface which
only supports Transistor–Transistor Logic (TTL) voltage levels. A converter module had
to be implemented between the Seapath and the Ladybug. This was implemented using
a RS232 − to − TTL converter board which Maritime Robotics had in store. Power to
the converter was taken from a USB port on the Seapath as the board required +5 Volts
and ground (GND) externally. The reason for using the USB as power was to remove
any problems with different ground potentials that could potentially destroy the circuits.
Initially power was tried extracted from the RS-232 port, but this only provided +3 Volts
which was to low.

6.1.2 Ladybug ROS node

There exists a ROS package for the Ladybug camera system from another open-source
project called Autoware [34]. This relies on the Ladybug Linux API which is supplied
from FLIR Machine Vision. The supplied driver did however not work on any of the PCs
we tried up until the experiment. Support from FLIR was unable to find the root of the
problem, and this remains an open issue. The driver has been successfully installed on a
Laptop later on, and the ROS package verified to work well. The images are output as one
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Figure 6.2: Comparison between RS-232 (top) and TTL voltage levels for logic

node with 6 separate ROS topics, one for each of the 6 cameras.

During the experiments the data from the Ladybug had to be recorded on a Windows PC
using the supplied LadybugCapPro software.

6.2 Verification of the Re3 Tracker

Using several different videos of boats at sea found on Youtube as well as the images
captured during the experiment, the performance of the Re3 tracker have been tested. It
has proved to be impressive in locking on to boats with large changes in visibility and
appearance. The bounding box is adapting to the visible part of the boat. See the images
in figures 6.3 and 6.4 for examples of the tracking performance. What can be noticed is
that the tracker locks on to the boat, but it is conservative in the size of the bounding box,
only tracking a small part of the boat as it passes by the camera. Last it locks on to an islet
as well, as the boat passes this. Due to the recurrent network the islet is not further tracked
when it is out of the picture and the bounding box reduces towards the boat.

In figure 6.4 ”Telemetron” does rather aggressive maneuvers without the tracker loosing
track of the drone. The drone is quite far away as it is not very visible in the image. Still
the tracker performs well. The exact distance is yet to be found from the RADAR data, but
the bounding box robustly locks on to the ”Drone 1” target when it is as little as 10 × 30
pixels. See figure 6.4. This might also be further improved by cropping the raw image
to a smaller size around the object before being fed to the Re3 tracker, as the image is
downsized within the tracking algorithm.
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Figure 6.3: Examples of the tracking performance of the Re3 tracker. The tracker was initialized
manually with a bounding box containing the boat. Video from YouTube: Weka Digital Media NZ
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Figure 6.4: Examples of the tracking performance of the Re3 tracker. The tracker was initialized
manually with a bounding box containing the boat. Images from experiment with ”Drone 1”. The
images are cropped for clarity
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6.3 Verification of the YOLO3 Detector

YOLO comes in many variants with different size, speed and detection capabilities. The
YOLOv3 and YOLOv3-tiny detectors with standard networks and weights have been
tested on several images of boats, as well as the experiment images, to verify the per-
formance. The network is trained using the COCO dataset which contains 80 different
object classes. The network is therefore not only detecting boats. As can be seen in figure
6.5 the regular YOLO detector is much better than the tiny version.

Using the standard net and weights the detector successfully detected boats and ships in
a large range of scales with different appearance. It was also able to find multiple boats
in the same image. To detect boats as far away as possible the raw image was also cut
into tiles 1/6 of the original size. Two images was extracted from the raw image around
the horizon and fed through the YOLO network. On the cropped images the YOLOv3
algorithm manages to detect boats that are far away and only occupy 12× 40 pixels. That
is 2% of the with of the raw image. See figure 6.10.

Without cropping the image the detector is unsuccessful in detecting the boats as can be
seen in figure 6.9. The reason for the lack of detection is due to downsizing of the raw
image within the detector. Every image is converted to a fixed size before the convolutional
network starts the processing [15].

Using the smaller YOLOv3-tiny network the detector only detected the biggest boats and
was unsuccessful in finding the more exotic images of boats. The tiny version of the
detector is significantly faster, but the lower robustness limits the practical use.

By training the networks to only search for boats it is possible that the tiny version would
be significantly better. It would still be much less capable of finding small boats though,
compared to the full size YOLOv3.

In figures 6.6, 6.7 and 6.8 the performance of the full size YOLOv3 and YOLOv3-tiny are
evaluated on the same video as the Re3 tracker. It is clear that the robustness of the tiny
detector is severely lower than the full size detector. The full size detector finds the boats
reliably and also correctly detects birds and people. The tiny version incorrectly detects
rocks as elephants, and cows and is much less robust in detecting the boats.
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(a) YOLOv3 Accepted certainty: 0.15 (b) YOLOv3-tiny Accepted certainty: 0.1

(c) YOLOv3 Accepted certainty: 0.2 (d) YOLOv3-tiny Accepted certainty: 0.2

(e) YOLOv3 Accepted certainty: 0.3 (f) YOLOv3-tiny Accepted certainty: 0.3

(g) YOLOv3 Accepted certainty: 0.5 (h) YOLOv3-tiny Accepted certainty: 0.5

Figure 6.5: Performance of regular YOLOv3 (left) and YOLOv3-tiny (right)
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Figure 6.6: Examples of the performance of the YOLOv3 detector. Part 1 of 2. Video from
YouTube: Weka Digital Media NZ
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Figure 6.7: Examples of the performance of the YOLOv3 detector. Part 2 of 2. Video from
YouTube: Weka Digital Media NZ
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Figure 6.8: Examples of the performance of the YOLOv3-tiny detector. Video from YouTube:
Weka Digital Media NZ
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Figure 6.9: Examples of the performance of the YOLOv3 detector on the raw Ladybug images. The
target vessel ”Drone 1” is too far away and too small to be detected

Figure 6.10: By tiling the original raw Ladybug image in such a way that we have two images along
the horizon, and 6 tiles in total, the YOLOv3 detector is able to detect the target vessel even at a
large distance.
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Figure 6.11: The YOLOv3-tiny detector also consistently detected the plate holding the Ladybug
camera as a boat. This is an unwanted detection that creates noise in the data.

6.4 Combination of YOLO Detector and Re3 Tracker

The combination of YOLO and Re3 shows good results. Due to limited GPU memory
on the used computer it was only possible to run the tiny version, YOLOv3-tiny, together
with the Re3 tracker. Even though YOLOv3-tiny shows poor performance in figure 6.8
it provides updated bounding boxes that is robust enough for the tracker. To speed things
up the YOLO network and Re3 network was initialized only once and later used to only
detect and track objects in new images.

If the full size YOLOv3 detector could have been used the bounding boxes for the boat
would have been even more accurate.
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Figure 6.12: Examples of the performance of the combined YOLOv3-tiny detector and the Re3

tracker. Part 1 of 2. Notice that it is the ”bad” tiny version of YOLO that is used. Video from
YouTube: Weka Digital Media NZ
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Figure 6.13: Examples of the performance of the combined YOLOv3-tiny detector and the Re3

tracker. Part 2 of 2. Notice that it is the ”bad” tiny version of YOLO that is used. Video from
YouTube: Weka Digital Media NZ
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6.5 Single Object Tracking

Single object tracking is quite straight forward with the setup where the YOLO detector
initializes and updates the Re3 tracker. Problems arise quickly if the detector senses more
than one object, resulting in the tracker being reinitialized on new objects every time an-
other object is first in the array of detections from the YOLO detector. The problem could
have been reduced by not updating the image tracker until several detections match on a
new object only.

6.6 Multi Object Tracking

The multi-object tracking problem is a non-trivial part of the sensor fusion. In the fusion
of the YOLO detector and the Re3 tracker the number of initialized tracks grows contin-
uously if the new detection are not matched with the existing tracks. The Kuhn-Munkres
algorithm [26] is used to match the detections with existing tracks. If more detections
than tracks are found, a new track is initialized for the new detection bounding box. If the
IoU between the detections and the existing tracks are below a given value the tracker is
updated with the new detection. Otherwise the tracker is left to continue tracking. If the
IoU is zero it indicates that the detection is new. It could also indicate that the tracker has
lost the desired object and the track will be terminated after a given time.

Figure 6.14: If the chosen IoU value for updating the tracker is chosen too low one might end up
with overlapping bounding boxes on the same object. The tiny detector had trouble locking onto the
whole boat.
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(a) If the detections and existing tracks are not combined in the data association,
one ends up with several overlapping tracks.

Figure 6.15: Examples of the multi-target performance of the combined YOLOv3-tiny detector and
the Re3 tracker. The pruning of old tracks is not optimized.
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6.7 Discussion

A challenging part that came a bit unforeseen, was the large number of prerequisites that
was needed to make the network run on a GPU with the required architecture and perfor-
mance. Initially the tests had been performed using a laptop with only an integrated Intel
GPU, see table 6.1, which gave very poor performance on the YOLO detector. Each image
processing would take roughly one minute. Since the performance of the YOLO detector
was substantially below par another laptop was tried, see table 6.2, which had quite good
specifications even though it was about 4 years old and in a bad shape physically. This
laptop has a Nvidia GPU with support for CUDA which is used in Nvidia GPUs to access
the GPU processing power. It is commonly known as a GPGPU (General-Purpose com-
putation on Graphics Processing Units) and is similar to OpenCL, but more optimized for
Nvidia cards. A fresh installation of Ubuntu 16.04 LTS (Xenial Xerus) was installed on
a partition on the SSD (Solid State Disk) which is by far the fastest of the two available
disks on the machine.

The idea with starting by getting the YOLO detector up to speed first was in itself good,
but it was made clear, after a while, that Tensorflow, which is used as one of the back-
bones of the Re3 tracker, did not support the latest version of CUDA and after trying to
compile Tensorflow from source, and failing, it was back to start. After around 30 hours
in total trying different versions of CUDA with its tools, Tensorflow and OpenCV it all
started working together. OpenCV was in the end built from source. Here it was also an
compatibility issue, where newer versions than 3.4.0 did not work.

As can be seen from table 6.1 and 6.2 there is an 540 fold increase in the speed of the
YOLO detector when using the GTX 860M GPU. TheRe3 tracker has a more conservative
increase, but the 7-8 fold increase in speed is still massive. Without CUDA the tracker on
the new machine ran with 9 frames per second, which is similar to the detector with CUDA.

To be able to utilize the complete powers of both the full size YOLOv3 detector and the
Re3 tracker it is needed at least 4 GB of GPU memory (RAM), 3 GB might work, but
it will be problematic when tracking more than one camera simultaneously. The 2 GB
GPU memory on the laptop limited the performance to either use the full size YOLOv3
together with the CPU only version of Re3, or use the GPU version of Re3 together with
the smaller YOLOv3-tiny detector. The latter is shown in figures 6.12 and 6.13.
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Lenovo YOGA 520
CPU: Intel Core i5 7200U 2,5GHz

GPU: Intel HD Graphics 620

RAM: 8 GB

Storage: 256 GB SSD

YOLO: 1 frame per minute

Re3: 7 frames per second

Table 6.1: Laptop used for initial experiments

Multicom Xishan W230S
CPU: Intel Core i7 4710MQ 2,5GHz

GPU: Nvidia GeForce GTX 860M

RAM: 16 GB

Storage: 240 GB SSD + 1 TB HDD

YOLO: 9 frames per second

Re3: 60 frames per second

Table 6.2: Laptop used for further experiments
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Chapter 7
Concluding Remarks and Further
Work

This project has matured a lot while it has been in the making. The dual deep learning
based pipeline that is proposed in this report shows good potential as a robust tracking
method for detected boats. The fusion of the YOLO detector and the Re3 tracker works
well for single object tracking, while multi-object tracking still is not optimized. The
program parameters must be tuned so that old tracks are pruned fast enough, but not too
aggressively. The overall method works well and lays a good foundation to build upon.

Even though the relatively poor performing YOLOv3-tiny version worked well for updat-
ing theRe3 tracker it is suggested to use the full size YOLOv3 for hardware that is capable
of this. The much more reliable detections as well as detections of smaller or further away
objects is important. To ease the demand for computing power, the detector could be used
less frequently as long as it is reliable and consistent with the detection bounding boxes.
The Re3 tracker runs continuously in real-time.

The deep learning methods also have good potential to be further optimized and trained on
the relevant boats and ship types to be encountered in this region. The number of object
types to be detected by YOLOv3 can be adjusted to only boats and ships or to include
other objects if needed. Training of the YOLO detector and the Re3 tracker requires a
large database of images with ground truth bounding boxes around the boats and ships
visible in the images. Previous work has been done on the area and some data should be
available. This update of the networks will be performed as soon as possible.

The full fusion algorithm including the IPDA based RADAR tracker [7] as shown in figure
5.1 remains to be implemented. The same is true for utilizing the INS data for position
and attitude of the ASV.
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