
Automatic landing of multi-rotor on
moving platform

Vuk Krivokapic

Department of Engineering Cybernetics
Norwegian University of Science and Technology

Submission date: December 18, 2018
Supervisor: Professor Tor Arne Johansen
Co-Supervisor: PhD candidate Martin Lysvand Sollie

Preface

This specialization project is a mandatory part of the 2.year masters program in Cybernetics
and Robotics at Norwegian University of Science and Technology (NTNU), worth 7.5 credits.
The project is a preparation for my masters thesis next semester.

All the equipment and software used in this project, and that will be used for the masters thesis,
are provided by NTNU.

I would like to thank my supervisor Professor Tor Arne Johansen and co supervisor PhD candi-
date Martin Lysvand Sollie for valuable guidance and help through the semester.

Abstract

This thesis presents creation of a simulation environment for autonomous landing of multi-rotor
on a moving platform. The simulation environment is created in Matlab/Simulink. HEXH20,
manufactured by the British company QuadH20, is multi-rotor the environment is created for.
The thesis is divided in three parts, modeling, control and simulation.

Mathematical models for the multi-rotor and the landing platform was developed and added to
the simulation environment. Disturbances that affects landing, such as wind and waves are also
modeled in order to make the simulation environment as realistic as possible. Several controllers
are added to the system, to simulate the landing process. The controllers are implemented as a
cascade, and they are tuned to work together.

The thesis also presents several logical algorithms that are developed to carry out a successful
landing. The algorithms together complete a landing system, which is presented and simulated
in the thesis. Through many simulations, algorithms are tested carefully. The goal was to test
the robustness of the landing algorithms by performing simulations in several weather condi-
tions.

Results of the simulations are presented in a own chapter in the report. Three dimensional plots
of the landing approach are added to visualize the whole process. Some landing simulations
showed satisfying results, while others failed due to different reasons. Both simulations that
failed and that succeeded are discussed, and a plan for further development are presented at the
very end of the report.

Table of Contents

Preface 1

Abstract 2

Table of Contents 5

List of Figures 6

List of Tables 7

Notation 8

1 Introduction 1
1.1 Motivation . 1
1.2 Problem formulation . 1
1.3 Related work . 2
1.4 Outline . 3

2 System Overview 4
2.1 Hardware . 4

2.1.1 Hexacopter . 4
2.1.2 Motors . 5
2.1.3 ArduPilot . 5

2.2 Software . 5
2.2.1 ArduPilot - Mission planner . 5
2.2.2 DUNE . 5
2.2.3 Simulink . 6

3 Modeling 7
3.1 Theory . 7

3.1.1 Coordinate frames . 7
3.1.2 Euler angles . 8
3.1.3 Transformation between coordinate frames 8
3.1.4 Pierson-Moskowitz Spectrum . 9

3.2 Hexacopter dynamics . 9

3

3.2.1 Rotation . 9
3.2.2 Forces . 10
3.2.3 Torques . 11
3.2.4 Mathematical model . 12

3.3 Wind . 15
3.4 Platform . 17

3.4.1 Waves . 17

4 Control 20
4.1 Theory . 20

4.1.1 PID controller . 20
4.2 Method . 21

4.2.1 Altitude controller . 21
4.2.2 Attitude controllers . 21
4.2.3 Horizontal controller . 22
4.2.4 Mapping between controllers . 22

5 Simulation 25
5.1 Parameters . 25

5.1.1 Inertia . 25
5.1.2 Thrust constant . 26

5.2 Limitations . 26
5.2.1 Angular rate . 26
5.2.2 Maximal vertical velocity . 27
5.2.3 Control Inputs . 27
5.2.4 Maximal angular velocity of motors 28

5.3 Simulink model . 28
5.4 Tuning . 28

5.4.1 Roll controller . 28
5.4.2 Pitch controller . 29
5.4.3 Horizontal controllers . 30
5.4.4 Altitude controller . 34
5.4.5 Maximal wind . 35

5.5 Landing . 36
5.5.1 Boundaries . 36
5.5.2 State machine . 38
5.5.3 Parameter allocation . 39
5.5.4 Landing timing . 40

6 Results 41

7 Discussion 45
7.1 Controllers . 45
7.2 Wave prediction . 46
7.3 Boundaries . 46
7.4 Modeling . 46
7.5 Future work . 46

8 Conclusion 48

Bibliography 48

Appendices 51
A Flow chart - state machine . 51
B Simulation results . 52

List of Figures

2.1 HEXH20 [1] . 4

3.1 Coordinate frames relative to each other . 7
3.2 PM spectra for different V19.4 velocities . 9
3.3 Thrust forces and rotation of propellers . 11
3.4 Response of the Dryden gust wind model . 17
3.5 PM spectrum for sea state 4 . 18
3.6 Waves in x-direction for sea state = 4 . 19

4.1 PID controller block diagram . 21
4.2 PIV controller block diagram . 22

5.1 Dimensions and angles of hexarotor . 25
5.2 Simplified Simulink model . 28
5.3 Step response roll controller . 29
5.4 Step response pitch controller . 30
5.5 Responses of robust x-controller . 31
5.6 Responses of robust y-controller . 32
5.7 Responses of aggressive x-controller . 33
5.8 Responses of aggressive y-controller . 33
5.9 Wind tolerance test of the robust controller . 35
5.10 Wind tolerance test of the aggressive controller 36
5.11 Cylinder boundaries illustrated . 37
5.12 Simulation of landing in z-plane without wind present and sea state = 4 40

6.1 Landing shown in 3 dimensions, Wind = 4m/s, Sea State = 4 42
6.2 Roll response . 42
6.3 Pitch response . 43
6.4 Landing shown in 3 dimensions, Wind = 4m/s, Sea State = 4 44

6

List of Tables

2.1 Hexacopter parameters . 4
2.2 Motor parameters . 5

5.1 Tuning parameters roll controller . 29
5.2 Tuning parameters pitch controller . 29
5.3 Parameters of the robust horizontal controller 31
5.4 Parameters of the aggressive horizontal controller 32
5.5 Tuning parameters altitude controller . 34

6.1 Parameters used during simulations . 41

7

Abbreviations

AUV Autonomous Underwater Vehicle
DUNE Unified Navigation Environment
etc Et cetra
LOS Line Of Sight
LQR Linear Quadratic Regulator
LSTS Laboratrio de Sistemas e Tecnologia Subaqutica
MPC Model Predictive Control
NTNU Norwegian University of Science and Technology
PID Proportional Integral Derivative
PIV Proportional Integral Velocity
PM Spectrum Pierson-Moskowitz Spectrum
UAV Unmanned Arial Vehicle
UK United Kingdom

Chapter 1
Introduction

1.1 Motivation
The use of UAV is becoming increasingly popular in the recent years. A lot of money are in-
vested in expanding fields of operation for these platforms. Years of development resulted into
highly functional vehicles that can perform tasks as: geo referencing, surveillance of events,
detection of forest fires, transport, etc. Still, there is a lot of room for improvements.

UAV is often used for missions at sea. It is desired to operate UAV’s from the ships autonomous,
without using pilots. In order to complete an autonomous mission, an autonomous landing
system has to exist. In addition, an autonomous landing system enables landing on ships in
rough weather conditions with limited view, that would not be possible to perform manually.

1.2 Problem formulation
To perform a safe, autonomous landing, a properly developed, reliable landing system has to
exist. In order to design algorithms that can yield into a successful landing, a simulation envi-
ronment has to be created. The simulation environment has to be realistic, taking in count all
the disturbances that will affect a landing process. Creation of the simulation environment and
development of the landing algorithms is the main tasks of this project. The project is divided
in following sub tasks:

• Develop a realistic mathematical model of the hexa-rotor in Simulink.

• Develop control algorithms for the hexa-rotor.

• Investigate disturbances acting on the vehicle, and create a mathematical models of those.

• Perform testing of disturbance tolerance by simulating the model.

• Develop landing algorithms.

The simulation environment created in this project is supposed to work as a basis for later
development in the masters thesis.

1

1.3 Related work

1.3 Related work
Development of a landing system for a UAV can be separated in three parts, mathematical mod-
eling, control and landing algorithms.

A lot of work is done on modeling multi-rotors. Most of the work is related to quadcopters,
but there also exist a lot of work on hexacopters. However, the dynamics of both quadcopters
and hexacopters are similar, and can be used across each other. [2] has presented a detailed
multi-rotor model, modeling even DC motor and rotor blade dynamics. Parameters are later
confirmed by performing tests in a wind tunnel. [3] presents a simpler quadcopter model. [4]
shows a detailed hexacopter model, presenting both model equations with descriptions and pa-
rameters found. Finding correct parameters can be a difficult task, [5] presents how the thrust
parameters can be found by performing tests with a robotic arm, equipped with touch sensors.

Choice of control strategy depends on mission purposes. Several articles as [6], [2] and [7]
does cascaded PID control. That implies controlling attitude and horizontal position separate,
in a cascade. Another interesting control strategy, done by [8] and [9] is LQR control, an
optimal control strategy that assigns control signals based on weight matrices. Both [9], that
primary uses LQR control, and [7], that primary uses PID control, suggest testing of other con-
trol methods such as MPC, Backstepping and Adaptive control in order to improve controller
performance. An example of backstepping control implementation is presented in [4]. Target
tracking is a control problem that has to be considered before landing can be performed. One
way of performing target tracking is PID controllers, but a, often more efficient, way is LOS
guidance, presented in [10] and [9].

[7] has done work on landing a quadrotor on platform in motion using a vision system. The
author has divided landing procedure into several parts. Controller gains are adjusted depending
on which pre-defined part of the landing procedure the multi-rotor is located in. Like [3] and
[11], different parts of the landing sequence are defined by boundary violation of imaginary
boundaries around the target. Boundaries are defined to be maximal allowed distance from
the target. The two sources mentioned last are not using gain adjustment during the landing
sequence.

2

1.4 Outline

1.4 Outline
Chapter 2 gives an overview of the most important parts of the system. The chapter is divided
into two parts, one for hardware and one for software used.

Chapter 3 shows how different parts of the system are modeled mathematically. All forces
acting on the vehicle are described mathematically. Then the final mathematical model of the
hexacopter is presented. The chapter also contains modeling of wind and waves.

Chapter 4 presents the developed control algorithms.

Chapter 5 starts by calculating necessary parameters in order to perform a realistic simulation.
After that, limitations for the system are calculated. A test of maximal wind velocity that the
system can tolerate follows, before tuning of the controllers are presented. The landing algo-
rithms are described at the end of the chapter.

Chapter 6 shows final results of the simulation. The final results are shown in 3D plots.

Chapter 7 discuss the result from chapter 6. In addition, suggestions for further work are listed
at the end of the chapter.

Chapter 8 presents conclusions made from the project.

3

Chapter 2
System Overview

2.1 Hardware

2.1.1 Hexacopter
The vehicle used in this project is a Hexacopter HEXH2O, produced by QuadH20, a drone
manufactorer based in UK. It is known for being waterproof, and fits for missions involving
water.[12]

Figure 2.1: HEXH20 [1]

Table 2.1: Hexacopter parameters

Frame weight without electrics 1.4 kg
Fully loaded frame weight 3.7 kg
Motor weight (all six motors) 1 kg
Frame length 0.4 m
Frame width 0.28 m
Frame heigth 0.18 m
Arm length 0.39 m
Forward speed 56 km/h

The parameters of hexacopter are listed in table 2.1. Most of the parameters are found in [1].
Dimension parameters are self- measured and may deviate a bit form real values.

4

2.2 Software

2.1.2 Motors
The hexacopter is equipped with six E800 motors, from the famous UAV manufactur, DJI. DJI
is a world leading UAV manufacture from China.

The motor parameters are found in [13]:

Table 2.2: Motor parameters

Motor weight 0.106 kg
Propeller weight 0.019 kg
ESC weight 0.03 kg
Total weight (Motor + Propeller + ESC) 0.155 kg
Max thrust 2.1 kg
KV 350 rpm/V
Maximum Allowable Voltage 26 V
Maximum Allowable Current 20 A

2.1.3 ArduPilot
ArduPilot is an open source auto pilot used to control UAV’s. The ArduPilot is the most in-
stalled autopilot world wide [14]. The autopilot is capable of autonomous stabilization and
way-point navigation. The way-point navigation part can support over 100 way-points in three
dimensions. The ArduPilot uses Pixhawk as the flight controller. It is worth mentioning that
ArduPilot software is continuously improving, as the open source software is in continuously
development.

2.2 Software

2.2.1 ArduPilot - Mission planner
Mission planner is a ground station software for the ArduPilot (section 2.1.3). The named soft-
ware allows the user to setup and configure the UAV in order to achieve most optimal results
during the mission. As the name of the software implies, mission planner provides an opportu-
nity to plan and upload missions to the autopilot. Another opportunity provided by the software
is flight logging, which is useful for later mission analyzes.

2.2.2 DUNE
Unified Navigation Environment (DUNE) is a software used for sensor interaction, navigation,
control, maneuvering and plan execution. The software is operative system independent. DUNE
is mainly used for communication between different units of a larger system. DUNE is part of
the LSTS tool-chain, developed at university of Porto [15].

5

2.2 Software

2.2.3 Simulink
Simulink is an additional software to the computing program, Matlab. The main purpose of this
software is modeling dynamical systems. Simulink is a software used in almost every modeling
course at NTNU, which makes it a natural choice for this project as well. A significant amount
of integrated functions makes Simulink a good modeling software for this project.

6

Chapter 3
Modeling

3.1 Theory

3.1.1 Coordinate frames

Figure 3.1: Coordinate frames relative to each other

To describe position and orientation of an aircraft, it is useful to use various coordinate frames
(figure 3.1). The position of a body is often described relative to another, fixed frame. Attitude
of a body is described as rotation about axis of a coordinate frame that has origin in the center
of the body, known as body frame. Equations of motion for an aircraft are derived relative to
a earth-fixed coordinate frame, while aerodynamic forces and torques are derived in the body
coordinate frame. It is easy to do transformation between coordinate frames, by doing rotational
and translational operations (section 3.1.3).

7

3.1 Theory

3.1.2 Euler angles
Euler angles is a principle of discribing rotations using three angles. The rotations are described
in sequence,

1. Rotation about z-axis

2. Rotation about y-axis

3. Rotation about z-axis

with the rotation matrices,

R
x

=

1 0 0
0 cos(φ) − sin(φ)
0 sin(φ) cos(φ)


R
y

=

 cos(θ) 0 sin(θ)
0 1 0

− sin(θ) 0 cos(θ)


R
z

=

cos(ψ) − sin(ψ) 0
sin(ψ) cos(ψ) 0

0 0 1


(3.1)

Euler angles are singular for angles equal to ±90◦.

3.1.3 Transformation between coordinate frames
Transformation between coordinate frames is done by multiplication of translational vector and
rotational matrices (eq. 3.1). Rotational matrices represents rotation about each axis performed
between coordinate frames, while the translational vector represents the distance between coor-
dinate frames in three dimensions.

Rotation from body frame b to inertial frame i, where rotation is performed about all three axis,
can be described as,

R
i

b
= R

z
R
y
R
z

(3.2)

where (
R
i

b

)−1
=
(
R
i

b

)T
= R

b

i
(3.3)

The total transformation matrix is:

T
i

b
=

Ri

b

x
y
z

000 0

 (3.4)

8

3.2 Hexacopter dynamics

3.1.4 Pierson-Moskowitz Spectrum
Pierson-Moskowitz Spectrum (PM spectrum) is a model for energy distribution in sea, devel-
oped in 1964. Assumption made for the model is that wind blows steady for long time over
large area, and that the waves will eventually reach point of equilibrium with the wind. Model
is depended on two parameters, A and B.[16][17]

A = 8.1 · 10−3 · g2

B = 0.74(
g

V19.4
)4 =

3.11

H2
s

(3.5)

where V19.4 is wind velocity at height of 19.4 meters, g is the gravity constant and Hs is the
wave height. Wave height is depended on sea state, and can be roughly estimated using table
8.5 in [17].

Figure 3.2: PM spectra for different V19.4 velocities

Figure 3.2 shows fully developed PM spectra for different V19.4 velocities.

3.2 Hexacopter dynamics
Hexacopter dynamics can be derived from the Euler angles. The reason why this can be done is
that the hexacopter is assumed as a symmetrical and rigid body.

3.2.1 Rotation
Rotation from body to inertial frame is described by using series of rotations ψ − θ − φ, also
known as yaw-pitch-roll. The result of the series of rotation is following rotation matrix:

9

3.2 Hexacopter dynamics

R
I

B
=

 cos(ψ) sin(ψ) 0
− sin(ψ) cos(ψ) 0

0 0 1

cos(θ) 0 − sin(θ)
0 1 0

sin(θ) 0 cos(θ)

1 0 0
0 cos(φ) sin(φ)
0 − sin(φ) cos(φ)


=

cos θ cosψ cosψ sin θ sinφ− sin θ cosφ cosψ sin θ cosφ+ sin θ sinφ
cos θ sinψ sinψ sin θ sinφ+ cos θ cosψ cosφ sin θ sinψ − cosψ sinφ
− sin θ sinφ cos θ cos θ cosφ

 (3.6)

By using property from eq.3.3 it is possible to find rotation matrix from inertial to body frame.

R
B

I
=

 cos θ cosψ cos θ sinψ − sin θ
cosψ sin θ sinφ− sin θ cosφ sinψ sin θ sinφ+ cos θ cosψ sinφ cos θ
cosψ sin θ cosφ+ sin θ sinφ cosφ sin θ sinψ − cosψ sinφ cos θ cosφ

 (3.7)

Angular velocity of the body frame relative to the inertial frame is described using the same
series of rotations.

ω
b

ib
= Rx,−φRy,−θ

0
0

ψ̇

+ Rx,−φ

0

θ̇
0

+

φ̇0
0


=

 − sin θψ̇ + φ̇

sinφ cos θψ̇ + cosφθ̇

cosφ cos θψ̇ − sinφθ̇


=

1 0 sin θ
0 cosφ sin θ cosφ
0 − sinφ cosφ cos θ

φ̇θ̇
ψ̇


(3.8)

3.2.2 Forces
All forces acting on the hexacopter can be decomposed in three directions, x,y and z, in the
inertial frame. Beginning the force decomposition by decomposing gravity force, which is only
acting in z-direction of the UAV, decomposed in the inertial frame. It is also worth mentioning
that upwards direction is counted as positive in this model, which results into a negative sign of
the z-component of the gravity force.

Fgravity =

 0
0
−mg

 (3.9)

When propellers of the hexacopter are rotating, they are creating a force that makes hexacopter
fly. That force is called thrust. Thrust force is directly depended on the speed of each pro-
peller. Total thrust is sum of all thrust forces produced by each propel. Differences in the thrust

10

3.2 Hexacopter dynamics

produced by each propeller yields torque around the vehicle center of mass, resulting in rotation.

Fthrust =

 0
0

RI
B

∑6
i=1 bΩi

 (3.10)

b is the thrust constant in eq. 3.10.

Figure 3.3: Thrust forces and rotation of propellers

Aerodynamic movement inducts drag forces in x, y and z direction. Mathematical model pre-
senting the induced drag is,

Fdrag =

1
2
CdρV

2
xAx

1
2
CdρV

2
y Ay

1
2
CdρV

2
z Az

 (3.11)

where Cd is the drag coefficient, found to be 1.05 by considering the shape of the hexacopter.
[18] Ax, Ay and Az are surface areas pointing i x,y and z direction respectively, while ρ is the
air density. V represents the air velocity in given direction.

The drag force induced by the propellers is neglected in this project. The reason is the dom-
inance of drag induced my movement in the air. Neglecting drag force induced by propellers
also simplifies the model.

3.2.3 Torques
Torques are created by UAV’s rotation about its own body axis. Moments about body axis of the
UAV are created by adjusting angular velocity of each propel independently. Moments in roll,
pitch and yaw can be modelled from the geometrical structure of the hexacopter, and angular
velocities of the propellers (figure 3.3).

11

3.2 Hexacopter dynamics

τφ = bl
[
− Ω2

2 + Ω2
5 +

1

2
(−Ω2

1 − Ω2
3 + Ω2

2 + Ω2
6)
]

(3.12)

τθ = bl

√
3

2
(−Ω2

1 + Ω2
3 + Ω2

4 − Ω2
6) (3.13)

τpsi = d(−Ω2
1 + Ω2

2 − Ω2
3 + Ω2

4 − Ω2
5 + Ω2

6) (3.14)

where b is the thrust constant, l is distance from propellers to the center of gravity and d is the
drag factor.

3.2.4 Mathematical model
The mathematical model of the hexacopter can be divided into two parts, translational dynamics
and rotational dynamics. Translational dynamics represent hexacopter movement along x,y and
z axis of the inertial frame, while rotational dynamics represent rotation about x,y and z axis of
the body frame. Frame of the landing platform is considered as inertial frame in this project,
which makes sense since all controllers, described later in the repport, are designed to minimize
error between the inertial and body frame.

Translational dynamics

Translational dynamics are modeled by considering all forces acting on the body, described i
section 3.2.2.

ma =
∑

F = Fdrag + Fthrust + Fgravity (3.15)

which gives following translational equations of motion:

ẍ =
1

m

[
(cosφ cosψ sin θ + sinφ sinψ)(

6∑
i=1

Fi) + fdragxẋ

]
(3.16a)

ÿ =
1

m

[
(cosφ sinψ sin θ − sinφ cosψ)(

6∑
i=1

Fi) + fdragy ẏ

]
(3.16b)

ẍ =
1

m

[
(cosφ cos θ)(

6∑
i=1

Fi) + fdragz ż

]
(3.16c)

12

3.2 Hexacopter dynamics

Rotational dynamics

Rotational dynamics are modeled by considering all moments acting on the body, described in
section 3.2.3.

φ̈ =
1

Jxx

[
θ̇ψ̇(Jyy − Jzz) + bl

[
− Ω2

2 + Ω2
5 +

1

2
(−Ω2

1 − Ω2
3 + Ω2

2 + Ω2
6)
]]

(3.17a)

θ̈ =
1

Jyy

[
φ̇ψ̇(Jzz − Jxx) + bl

√
3

2
(−Ω2

1 + Ω2
3 + Ω2

4 − Ω2
6)

]
(3.17b)

ψ̈ =
1

Jzz

[
φ̇θ̇(Jxx − Jyy) + d(−Ω2

1 + Ω2
2 − Ω2

3 + Ω2
4 − Ω2

5 + Ω2
6)

]
(3.17c)

Relation between control inputs and angular velocities of propellers

The system is controlled by four control inputs, u1, u2, u3 and u4. The first control input is used
to control the vertical movement of the hexacopter, while the others are controlling roll, pitch
and yaw movements, respectively.

Thrust force acting in z-direction of the body frame is induced by angular velocity of all the
propellers. Velocity of the vertical movement depends on the force produced by the propellers.
Control input u1 directly controls thrust in body z-axis by controlling angular velocities of the
propellers. Roll, pitch and yaw movement about body axis are obtained by combinations of
different angular velocities of the six propellers. Mapping between control inputs u1, u2, u3 and
propellers angular velocities are presented in this section.


u1
u2
u3
u4

 =


b b b b b b
− bl

2
−bl − bl

2
bl
2

bl − bl
2

− bl
√
3

2
0 bl

√
3

2
bl
√
3

2
0 − bl

√
3

2

−d d −d d −d d




Ω2
1

Ω2
2

Ω2
3

Ω2
4

Ω2
5

Ω2
6

 (3.18)

Eq. 3.18 presents control inputs as functions of the propeller velocities. By taking the psaudo-
inverse of the 4x6 matrix in eq. 3.18, it is possible to find propeller velocities as function of
control inputs. 

Ω2
1

Ω2
2

Ω2
3

Ω2
4

Ω2
5

Ω2
6

 =
1

6bl



l 2 0 − bl
d

l 1 −
√

3 bl
d

l −1 −
√

3 − bl
d

l −2 0 bl
d

l −1
√

3 − bl
d

l 1
√

3 bl
d



u1
u2
u3
u4

 (3.19)

13

3.2 Hexacopter dynamics

Total system equations [4]

Model for the total system is presented by combining translational dynamics of the system,
rotational dynamics of the system and control inputs.

φ̈ =
1

Jxx

[
θ̇ψ̇(Jyy − Jzz) + bl

[
− Ω2

2 + Ω2
5 +

1

2
(−Ω2

1 − Ω2
3 + Ω2

2 + Ω2
6)
]]

=
1

Jxx

[
θ̇ψ̇(Jyy − Jzz) + u2

]
(3.20a)

θ̈ =
1

Jyy

[
φ̇ψ̇(Jzz − Jxx) + bl

√
3

2
(−Ω2

1 + Ω2
3 + Ω2

4 − Ω2
6)

]

=
1

Jyy

[
φ̇ψ̇(Jzz − Jxx) + u3

]
(3.20b)

ψ̈ =
1

Jzz

[
φ̇θ̇(Jxx − Jyy) + d(−Ω2

1 + Ω2
2 − Ω2

3 + Ω2
4 − Ω2

5 + Ω2
6)

]

=
1

Jzz

[
φ̇θ̇(Jxx − Jyy) + u4

]
(3.20c)

ẍ =
1

m

[
(cosφ cosψ sin θ + sinφ sinψ)(

6∑
i=1

Fi) + fdragxẋ

]

=
1

m

[
(cosφ cosψ sin θ + sinφ sinψ)u1 + fdragxẋ

]
(3.20d)

ÿ =
1

m

[
(cosφ sinψ sin θ − sinφ cosψ)(

6∑
i=1

Fi) + fdragy ẏ

]

=
1

m

[
(cosφ sinψ sin θ − sinφ cosψ)u1 + fdragy ẏ

]
(3.20e)

ẍ =
1

m

[
(cosφ cos θ)(

6∑
i=1

Fi) + fdragz ż

]

=
1

m

[
(cosφ cos θ)u1 + fdragz ż

]
(3.20f)

The system can further be simplified. The 12 states will be named x1 - x12, for the sake of order.

x1 = φ x2 = ẋ1 = φ̇ x3 = θ x4 = ẋ3 = θ̇

x5 = ψ x6 = ẋ5 = ψ̇ x7 = x x8 = ẋ7 = ẋ

x9 = y x10 = ẋ9 = ẏ x11 = z x12 = ẋ11 = ż (3.21)

14

3.3 Wind

a1 =
Jyy − Jzz
Jxx

a2 = − Jr
Jxx

a3 =
Jzz − Jzz
Jyy

a4 =
Jr
Jyy

a5 =
Jxx − Jyy

Jzz
a6 = −fdragx

m
a7 = −

fdragy
m

a8 = −fdragz
m

b1 =
1

Jxx
b2 =

1

Jyy
b3 =

1

Jzz

The final, simplified, model is:

ẋ1 = x2

ẋ2 = a1x4x6 + b1u2

ẋ3 = x4

ẋ4 = a3x2x6 + b2u3

ẋ5 = x6

ẋ6 = a5x2x4 + b3u4

ẋ7 = x8

ẋ8 = a6x8 +
1

m
(cosφcosψsinθ + sinφsinψ)u1

ẋ9 = x10

ẋ10 = a7x10 +
1

m
(cosφsinψsinθ − sinφcosψ)u1

ẋ11 = x12

ẋ12 = a8x12 +
cosφcosθ

m
u1 − g

Figure 5.2 shows a simplified block diagram of the total system.

3.3 Wind
It is important to consider wind disturbances while creating a simulation environment. There
exist many techniques of modelling wind. Dryden gust wind model is used in this project.

Vtotal wind = Vconstant wind + Vwind gust (3.22)

Dryden gust model consist three transfer functions, one for each wind direction (x, y and z).
Input to the transfer functions is white noise, while the output are wind gusts. In order to make
model realistic, a constant wind has to be added. Transfer functions contains three parameters.
Va is the nominal airspeed of the vehicle, which is typically 2-4 m/s for the hexacopter used in
this task. The same nominal airspeed is used in all three directions. Intensities of turbulence in

15

3.3 Wind

each direction are represented by σx, σy and σz, and their values can be found in Table 4.1 in
[19]. Lx, Ly and Lz are representing the spatial wavelengths, their values can also be found in
the same table.

Usually, transfer function for the wind in x direction, which is often defined as forward direction
of a vehicle, is a first order transfer function, while transfer functions in y and z directions are
second order functions. The reason is that the UAV’s usually moves with higher velocity in
x-direction. In this project, there are no defined a specific forward direction, therefore second
order transfer functions will be used for wind gusts in all three directions.

Hx(s) = σx

√
3Va
Lx

(
s+ Va√

3Lx

s+ Va
Lx

)
(3.23a)

Hy(s) = σy

√
3Va
Ly

(
s+ Va√

3Ly

s+ Va
Ly

)
(3.23b)

Hz(s) = σz

√
3Va
Lz

(
s+ Va√

3Lz

s+ Va
Lz

)
(3.23c)

Wind gusts are given in body frame [19], while constant winds are given i inertial frame. Since
the whole system is modeled relative to the inertial frame, wind gusts has to be transformed
from body to inertial frame. Transformation is done by multiplying wind vector with rotation
matrix from equation 3.6.

V I
wind gust = RI

B · V B
wind gust (3.24)

16

3.4 Platform

0 50 100 150 200 250 300 350 400 450 500

time [sec]

1

1.5

2

2.5

3

3.5

4

m
/s

Wind in x-direction

total wind

constant wind

0 50 100 150 200 250 300 350 400 450 500

time [sec]

1

2

3

4

5

m
/s

Wind in y-direction

total wind

constant wind

0 50 100 150 200 250 300 350 400 450 500

time [sec]

2.5

3

3.5

4

4.5

5

5.5

m
/s

Wind in z-direction

total wind

constant wind

Figure 3.4: Response of the Dryden gust wind model

3.4 Platform
The platform model is just a simple integrator in all three dimensions, with velocity input.
Outputs of the integrators are platform positions in three dimensions. Platform is assumed to be
the inertial frame in this task, and the UAV moves relative to the platform position. In addition,
wave disturbances are added to the platform (section 3.4.1).

3.4.1 Waves
Waves are modeled according to chapter 8.2.6 in [17]. A linear approximation is done during
wave modeling. Waves are modeled as second order transfer functions.

hwave(s) =
Kws

s2 + 2λω0s+ ω2
0

(3.25)

where

Kw = 2λω0σ

Parameters in equation 3.25 can be found by looking a Pierson-Moskowitz Spectrum (Section
3.1.4). To create spectra plot, which is later used to compute parameters, V19.4 has to be com-
puted. Formula used is,

17

3.4 Platform

Hs =
2.06

g2
V 2
19.4

V19.4 ≈ V20 = g ·
√

Hs

2.06

(3.26)

where Hs is average wave height value, depending on chosen sea state. Values of wave height
intervals of different sea states are based on Table 8.5 in [17]. Further, wave spectra is created
by slightly modifying functions from MSS toolbox.[20]

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

 [rad/s]

0

0.01

0.02

0.03

0.04

0.05

0.06

S
(

)
[m

2
 s

]

Pierson-Moskowitz Spectrum

Vwind @20m ASL =6.3935 [m/s]

Figure 3.5: PM spectrum for sea state 4

Figure 3.5 shows PM specter for sea state 4. The specter is further used to calculate parameters
for equation 3.25.

σ2 = m0 = S(w0) = Smax

σ =
√
Smax

(3.27)

Further, λ can be calculated by using Matlab command:

lscurvefit(’Slin’,0.1,\omega,S)

where Slin is a function from MSS toolbox.

Wave densities are assumed to be equal in all directions. There are made one transfer function
for each direction, but parameters inside functions are equal. A constant value is added in all
three directions, representing current.

18

3.4 Platform

0 50 100 150 200 250 300 350 400 450 500

time [sec]

3

3.5

4

4.5

5

5.5

6

6.5

m
/s

Velocity of waves in x-direction

total wave velocity

current velocity

0 50 100 150 200 250 300 350 400 450 500

time [sec]

0

500

1000

1500

2000

2500

m

Position of waves in x-direction

wave position

Figure 3.6: Waves in x-direction for sea state = 4

Figure 3.6 shows response of wave simulation for sea state = 4. A current on 5 m/s is added to
the simulation shown in the figure.

19

Chapter 4
Control

4.1 Theory

4.1.1 PID controller
Proportional Integral Derivative controller (PID) is an algorithm in control engineering used to
control a process. Algorithm calculates the control signal based on the error between measured
process value and the reference value. The main goal is to remove the error between process
value and the reference value. The control algorithm contains mainly three parts, which all have
a different role in the calculation of the control signal.

• Proportional part - receives error between reference and process measurement, and gains
the error with a pre-tuned parameter, Kp in order to remove it.

• Integral part - sums up error between reference and process measurement over time, and
removes the offset based on the error sum. The sum is gained with a pre-tuned parameter,
Ki.

• Derivative part - calculates error slope based on the error derivative. This part is used
to remove error between process measurement and reference faster. Error slope is gained
with a pre-tuned value, Kd.

The final control value is a sum of all three parts. Other combinations of the named parts are
also possible, such as P, PI or PD.

U = Kp · e(t)Ki

t∫
0

e(t) dt+Kd ·
de(t)

dt
(4.1)

20

4.2 Method

Figure 4.1: PID controller block diagram

Adding a feed-forward gain with desired velocity, can help the control loop to predict the next
error. The feed-forward is added outside the feed-back loop, and will therefore not influence the
control loop stability. Feed-forward can also added to control loops to remove the disturbance
faster.

4.2 Method
There are six different controllers implemented in the total in this project. All of the controllers
are different versions of PID control algorithm, described i section 4.1.1.

4.2.1 Altitude controller
Altitude controller is a PID controller that compares desired altitude with current altitude mea-
surement. The output signal of this controller is named u1.

u1 = Kpzez(t) +Kdz ėz(t) +Kiz

∫
ez(t)dt (4.2)

where ez(t) = z − zd.

The controller consist two equal controllers, where one takes desired position as input, while the
other takes integral of the desired velocity as input. Reason why the controller is designed this
way is described later in the report. The controllers are not designed to work simultaneously.
Since integral of velocity and position are the same input, the controllers are tuned equally (see
section 5.4.4).

4.2.2 Attitude controllers
The attitude control contains three controllers, one for each rotation about the body axis, roll,
pitch and yaw. As the attitude controllers are the last part of the horizontal control cascade, it
is important that they are designed properly. All three controllers are using the PID algorithm.
Reference for the roll and pitch controller is generated by mapping structure, described in sec-
tion 4.2.4. Reference for the yaw controller is fed in directly. Yaw controller is not used in this
project, since direction of the hexacopter movement is not a significant factor. Names of the
roll, pitch and yaw control signals are u2, u3 and u4, respectively.

21

4.2 Method

Roll

u2 = kpφeφ(t) + kdφėφ(t) + kiφ

∫
eφ(t)dt (4.3)

Pitch

u3 = kpθeθ(t) + kdθėθ(t) + kiθ

∫
eθ(t)dt (4.4)

4.2.3 Horizontal controller
Horizontal controller contains two controllers, one for movement in x-direction and another for
movement in y-direction. Both controllers are designed equally, with tuning constants being the
only difference. Control algorithm used for the horizontal control is called Proportional Integral
Velocity (PIV). PIV control differs from PID control in the way that the D - part is omitted from
the position controller, and added as a velocity controller. Horizontal controller is a cascade
with the first part being a PI position controller and the second part being a PI velocity con-
troller. Both controllers has a feed-back loop, feeding back measured position to the position
controller and measured velocity to the velocity controller. Reference signal of the position con-
troller is the platform position (see platform model in section 3.4), while the reference signal for
the velocity controller is the output of the position controller. In addition, feed-forward velocity
is added to the velocity control loop, where platform velocity is the fed signal. Output of the
horizontal controllers are horizontal forces, which can easily be transformed to accelerations
and used as reference values of the attitude controllers after a mapping is done (section 4.2.2
and 4.2.4).

This type of control gives a faster response, since velocity is both controlled and fed forward.
The goal is to design a controller that can respond fast to platform maneuvers.

Figure 4.2: PIV controller block diagram

4.2.4 Mapping between controllers
As mentioned in section 4.2.2 a mapping has to be done between horizontal movement and
rotation angles of the UAV. The horizontal controllers generates desired horizontal forces, but
the actual movement is performed by torques about UAV’s body axis and thrust forces created
by the propellers. Mapping between horizontal acceleration and roll and pitch rotations will be
described in this section.

22

4.2 Method

From equations 3.2.4 and 3.21 we have:

ẍ = −fdragx
m

x+
1

m
(cosφcosψsinθ + sinφsinψ)u1

ÿ = −
fdragy
m

y +
1

m
(cosφsinψsinθ − sinφcosψ)u1

(4.5)

Assuming equilibrium, the drag forces are equal to zero. Equation 4.5 than becomes:

ẍ =
1

m
(cosφcosψsinθ + sinφsinψ)u1

ÿ =
1

m
(cosφsinψsinθ − sinφcosψ)u1

(4.6)

Further, small roll (φ) and pitch (θ) angles are assumed, as UAV is assumed to be stabilized and
at equilibrium during these calculations.

Assumption that φ = 0 and θ = 0 gives:

ẍ =
u1
m

(cosψθ + sinψφ)

ÿ =
u1
m

(sinψθ − cosψφ)
(4.7)

At equilibrium, when the UAV is hovering over a place, a known fact is that the altitude control
signal u1 = mg. [

ẍ
ÿ

]
= g

[
sinψ cosψ
−cosψ sinψ

] [
φ
θ

]
(4.8)

Calculating the inverse of the 2x2 matrix in equation 4.8, equation that maps desired roll and
pitch angle from horizontal accelerations can be found.[

φd
θd

]
=

1

g

[
sinψ −cosψ
cosψ sinψ

] [
ẍ
ÿ

]
(4.9)

As the mapping is assuming a UAV at equilibrium, yaw angle is assumed to be zero in equation
4.9, which gives a more simplified mapping between horizontal accelerations an roll and pitch
angles. [

φd
θd

]
=

1

g

[
0 −1
1 0

] [
ẍ
ÿ

]
(4.10)

23

4.2 Method

φd = −1

g
ÿ (4.11a)

θd =
1

g
ẍ (4.11b)

Even that equation 4.11 gives the desired mapping, equation 4.9 has been implemented to the
model, because it keeps the opportunity for future implementation of the heading control open.

24

Chapter 5
Simulation

5.1 Parameters

5.1.1 Inertia
Using parameters from table 2.1 to find moments of inertia about all three body axis of the hexa-
rotor. For simplicity reasons, motors are assumed to be point loads attached to mass less arms.
Body is assumed to be a cube, with mass evenly spread around the whole volume. From figure
2.1 it can be seen that the assumptions makes sense, as the body has approximately cubical
shape and the motors are a lot smaller then the body itself.

Figure 5.1: Dimensions and angles of hexarotor

Inertia about each axis is calculated using formulas from [21].

Ixx = 4(lsin30◦)2mmotor + 2l2mmotor +
mbody

12
(h2 + w2)

= 4(0.39 · sin30◦)2 · 0.155 + 2 · 0.392 · 0.155 +
3.7

12
(0.182 + 0.282)

= 0.023576 + 0.047151 + 0.034163

= 0.10489 kgm2

(5.1)

25

5.2 Limitations

Iyy = 4(lcos30◦)2mmotor +
mbody

12
(h2 + l2)

= 4(0.39 · cos30◦)2 · 0.155 +
3.7

12
(0.182 + 0.42)

= 0.070727 + 0.059323

= 0.13005 kgm2

(5.2)

Izz = 4 · l2 ·mmotor +
mbody

12
(w2 + l2)

= 4 · 0.392 · 0.155 +
3.7

12
(0.282 + 0.42)

= 0.141453 + 0.073507

= 0.21496 kgm2

(5.3)

Total inertia matrix than becomes:

I =

0.10489 0 0
0 0.13005 0
0 0 0.21496

 (5.4)

5.1.2 Thrust constant
Mapping between input variables and angular velocities is shown in equation 3.18. Thrust
constant b can be found by looking at the relation between maximum angular velocity of one
motor Ωmax and maximum value of the control signal u1max , obtained in section 5.2.3 and 5.2.4.

u1max = 6 · b · Ω2
max

b =
u1max

6 · Ω2
max

=
124

6 · 9532
= 2.28 · 10−5 Ns2

(5.5)

5.2 Limitations

5.2.1 Angular rate
Since this project only takes care of simulation model and does not include real testing with the
UAV, it was hard to measure maximum angular rate about body axis. An approximation is done
by looking at another, similar UAV in [22]. Maximum angular rate is sat to be less then the
reference drone, to be sure that the limitations are within valid range of hexacopter used in this
project.

Maximal angular rate for the UAV is sat to be 130deg
sec about all three body axis. Since rotation

about z axis ψ is not considered in this project, the interesting rotation rate limitations are:

φ̇max = θ̇max = ±130
deg
sec

(5.6)

26

5.2 Limitations

5.2.2 Maximal vertical velocity
From [1], maximal vertical velocity is listed to be 6 m/s in ascend direction and 4.5 m/s in
descend direction. One has to be aware of the fact that [1] is using other type of motors, and that
vertical velocity limitations for hexacopter used in this task may deviate from ones implemented
in this project. Still, an assumption that the deviation is negligible is made.

vzmax,ascend
= 6

m
sec

vzmax,descend
= 4.5

m
sec

(5.7)

5.2.3 Control Inputs
Thrust

u1 is control input for the controller that controls vertical movement of the UAV. Control output
of the controller is thrust force (section 5.1.2). Maximal thrust for each motor is 2.1 kg. [13],
which tells us that each rotor can lift 2.1 kg weight. Since the hexacopter is equipped with six
rotors, the maximum total thrust becomes:

Tmax = u1max = (2.1 · 6)kg = 12.6kg ≈ 124 N (5.8)

Roll

Maximum roll input is also obtained by using relation from equation 3.18 and parameters from
section 5.2.4 and 5.1.2. In addition, parameters from table 2.1 are used.

u2max = blΩ2
max + 2 · bl

2
Ω2
max

= 2blΩ2
max

= 2 · 2.28 · 10−5 · 0.39 · 9532 = 16.15 Nm

(5.9)

Pitch

Same equations and tables obtained as in calculation of maximal roll input.

u3max = 2 · bl
2

√
3Ω2

max

= bl
√

3Ω2
max

= 2 · 2.28 · 10−5 · 0.39 ·
√

3 · 9532 = 13.99 Nm

(5.10)

27

5.3 Simulink model

5.2.4 Maximal angular velocity of motors
Maximal angular velocity of each rotor is calculated analytically by including known limitations
for the hexacopter combined with equations that maps input parameters with propeller rotations
(equation 3.18).

Ωmax = KV · Vmax
2π

60
(5.11)

where KV is motor constant in rpm
V , Vmax is maximum working voltage and 2π

60
is conversion

factor. Maximum motor angular velocity is calculated to be:

Ωmax = 350 · 26
2π

60
= 953

rad
sec

(5.12)

5.3 Simulink model
The Simulik model shows connections between different parts of the system graphically. The
system is large, with a lot of details. For simplicity reasons, and to make the system more
understandable, it is divided in so called subsystems. Model with subsystems and connections
between those is shown in Figure 5.2.

Figure 5.2: Simplified Simulink model

5.4 Tuning

5.4.1 Roll controller
Roll controller, designed as described in equation 4.2.2, has been assigned control parameters
listed in table 5.2. Control parameters are tuned after trial-error approach.

28

5.4 Tuning

Table 5.1: Tuning parameters roll controller

Parameter Value
Kp 18.9
Ki 5.6
Kd 8.8

0 5 10 15 20 25 30 35 40 45 50

time [sec]

0

5

10

15

20

25

30

35

d
e
g
re

e
s

Step response roll controller

d

Figure 5.3: Step response roll controller

5.4.2 Pitch controller
Because inertia is almost equal about x and y axis (section 5.1.1), control parameters are tuned
equally.

Table 5.2: Tuning parameters pitch controller

Parameter Value
Kp 18.9
Ki 5.6
Kd 8.8

29

5.4 Tuning

0 5 10 15 20 25 30 35 40 45 50

time [sec]

0

5

10

15

20

25

30

35

d
e
g
re

e
s

Step response pitch controller

d

Figure 5.4: Step response pitch controller

Both pitch and roll controller give a satisfying response. Tuning controllers became harder after
the limitations from section 5.2 was considered. The limitation that decides tuning parameters
is maximal angular rate from equation 5.6. With higher maximal rate, it would be possible to
tune a more aggressive controller, which gives a faster response.

5.4.3 Horizontal controllers
Horizontal controllers are tuned with two set of variables. First set of variables are tuned to
make a stable, but slow varying process. The other set are tuned in to make the controller ag-
gressive, and give a process that responds fast to changes. Downside with the slow varying
process is that it takes time to get back to the desired position, while downside with the aggres-
sive process is that it can get unstable quickly.

The idea is to change variable sets depending on which state the UAV is located in (Section
5.5.3).

After tuning, following parameters were found to fit a robust controller:

30

5.4 Tuning

Table 5.3: Parameters of the robust horizontal controller

Parameter Value x-controller Value y-controller
Kp 0.400 0.300
Ki 0.058 0.058
Kpvelocity 0.880 0.780
Kivelocity 0.180 0.080
Kfeed−forward 1.000 1.000

Figure 5.5: Responses of robust x-controller

31

5.4 Tuning

Figure 5.6: Responses of robust y-controller

Figures 5.5 and 5.6 shows different responses of the robust horizontal controllers. Responses
are applied in the velocity, while desired position is simply a integral of desired velocity. In
addition, wind is added to the two lowermost rows in both figures. The wind has a constant
velocity on 4 m/s in all three directions. Wind implementation is described in section 3.3.

It can be noticed that controllers in both directions give almost perfect tracking of the position.
Still, the interesting part is looking at the velocity responses, especially with the wind present.
Both controllers creates small oscillations that damps out the error smoothly. It is also notice-
able that the velocity starts in 4 m/s in the plots with wind present. The reason is simply just the
constant wind velocity.

Table 5.4: Parameters of the aggressive horizontal controller

Parameter Value x-controller Value y-controller
Kp 0.250 0.450
Ki 0.088 0.098
Kpvelocity 4.790 4.630
Kivelocity 0.380 0.380
Kfeed−forward 1.100 1.150

32

5.4 Tuning

Figure 5.7: Responses of aggressive x-controller

Figure 5.8: Responses of aggressive y-controller

Figures 5.7 and 5.8 shows responses of the aggressive horizontal controllers. The overshoot
edges of the aggressive controllers are pointy, compared to the robust controller. The aggres-
sive controllers tries to kill the error as fast as possible. It is also noticeable that the aggressive
controller is more efficient in demolishing disturbance oscillations. Although the robust con-

33

5.4 Tuning

troller gives faster response it has a downside. Sharp maneuvers of UAV in the horizontal plane,
which are undesirable during descend movement, can cause instability.

Tuning parameters of the aggressive controllers are listed in table 5.4.

5.4.4 Altitude controller
The altitude controller is tuned with only one set of variables, unlike the horizontal controllers.
Following parameters are found to give satisfying response:

Table 5.5: Tuning parameters altitude controller

Parameter Value
Kp 4.7
Ki 0.23
Kd 44.82

34

5.4 Tuning

5.4.5 Maximal wind
Several simulations are done in order to check the wind tolerance of the hexacopter. [1] says
that maximal wind/gust the UAV can tolerate is 25 miles per hour, or approximately 11 meters
per second. It is important to be skeptical about the information on the manufacturer website,
as it is most likely underestimated a lot in order to avoid problems with costumers liking to
pushing the limits and breaking the product.

Tests are performed with both sets of horizontal controllers (see section 5.4.3).

0 50 100 150 200 250 300 350 400 450 500

time [sec]

0

200

400

600

800

1000

1200

1400

m

Horizontal distance, wind = 17m/s

distance

distance
d

0 50 100 150 200 250 300 350 400 450 500

time [sec]

0

5

10

15

20

25

30

m
/s

Horizontal velocity, wind = 17 m/s

velocity

velocity
d

0 50 100 150 200 250 300 350 400 450 500

time [sec]

14

15

16

17

18

19

20

m
/s

Wind in all three directions

wind
x

wind
y

wind
z

0 50 100 150 200 250 300 350 400 450 500

time [sec]

0

2

4

6

8

m

105 Horizontal distance, wind = 18 m/s

distance

distance
d

0 50 100 150 200 250 300 350 400 450 500

time [sec]

0

500

1000

1500

2000

2500

3000

3500

m
/s

Horizontal velocity, wind = 18 m/s

velocity

velocity
d

0 50 100 150 200 250 300 350 400 450 500

time [sec]

15

16

17

18

19

20

m
/s

Wind in all three directions

wind
x

wind
y

wind
z

Figure 5.9: Wind tolerance test of the robust controller

Figure 5.9 shows a wind test performed on the robust controller. The test is simulated with same
wind intensity in all three directions. Wind is modeled as described in section 3.3.

Left hand side shows response when a wind with constant velocity on 17 m/s is added, while
the right hand side shows response with 18 m/s constant wind. It is noticeable that the controller
manages to resist the 17 m/s wind, but not 18 m/s.

35

5.5 Landing

0 50 100 150 200 250 300 350 400 450 500

time [sec]

0

500

1000

1500

m

Horizontal distance, wind = 16 m/s

distance

distance
d

0 50 100 150 200 250 300 350 400 450 500

time [sec]

0

5

10

15

20

25

30

m
/s

Horizontal velocity, wind = 16 m/s

velocity

velocity
d

0 50 100 150 200 250 300 350 400 450 500

time [sec]

13

14

15

16

17

18

m
/s

Wind in all three directions

wind
x

wind
y

wind
z

0 50 100 150 200 250 300 350 400 450 500

time [sec]

0

2

4

6

8

m

105 Horizontal distance, wind = 17 m/s

distance

distance
d

0 50 100 150 200 250 300 350 400 450 500

time [sec]

0

500

1000

1500

2000

2500

3000

m
/s

Horizontal velocity, wind = 17 m/s

velocity

velocity
d

0 50 100 150 200 250 300 350 400 450 500

time [sec]

14

15

16

17

18

19

m
/s

Wind in all three directions

wind
x

wind
y

wind
z

Figure 5.10: Wind tolerance test of the aggressive controller

Figure 5.10 shows a wind tolerance test performed on the aggressive controller. The same pro-
cedure is done, as in the test performed on the robust controller. As expected, the aggressive
controller tolerates less wind than the robust. From the simulation results, it can be seen that
maximal constant wind the aggressive controller can tolerate is 16 m/s, which is 1 m/s less than
the robust controller.

Since both controllers are used during a landing (section 5.5.3), the conclusion is that the max-
imal constant wind during a landing can be no higher than 16 m/s. According to Beafurt scale
[23] 16 m/s is considered as High wind, which brings whole threes in motion on land, and
heaps up the sea. Another interesting fact is that the maximal wind speed found by simulation
only deviates 5 m/s from the manufacturer advice. [1]

5.5 Landing
Landing itself is divided into different states. Different control parameters are used in differ-
ent states. State allocation depends on boundary violations and vertical velocity. Imaginary
boundaries are made in order to do the landing precise and prevent failure.

5.5.1 Boundaries
The landing algorithms are developed to always see three imaginary cylinders which extends
straight up from the platform. All three cylinders are centered over the landing platform (origin
of the inertial frame). The size of the cylinders are different. The main purpose of these cylin-
ders is to make imaginary boundaries that decides how far away from the center of platform the
UAV is allowed to be during the landing. Depending on how close the UAV is the platform in
vertical direction, the criteria of horizontal error relative to the platform changes. Simplified,

36

5.5 Landing

the closer the UAV is the platform, both horizontal and vertical direction, the smaller is the
cylinder that determines boundaries.

Figure 5.11: Cylinder boundaries illustrated

The largest cylinder (red) has diameter three times hexacopter length, including arms, which is
approximately 3 meters. That gives the UAV opportunity to move one length to the side, and
still stay inside the cylinder. Height of the largest cylinder is 20 meters, which is the decided
hovering altitude of the hexacopter. The largest cylinder is typically used as boundary during
descend movement between hovering and landing states.

Blue cylinder is the medium size cylinder, and has the diameter two times hexacopter length,
including arms. That allows the hexacopter to deviate by a half length relative to the center
of landing platform. Height of the medium cylinder is three meters. The cylinder is used as
boundary to make sure that the UAV is ready for landing.

The smallest cylinder, green, has the same diameter as the medium cylinder. Height of this
cylinder is 1.5 meters. The cylinder is used during the landing state.

37

5.5 Landing

Note that the cylinder dimensions are not final. The three cylinders above describes the main
principle of setting boundaries during the landing. Final dimensions of the cylinders will be set
after testing.

5.5.2 State machine
As the UAV approaches the platform with downwards velocity, it moves through different states.
Each state has own requirements when it comes to the importance of holding position and re-
action time. In addition, there exist requirements for entrance to every state as well. Based on
requirements of the different states, a state machine is designed to decide which state that is the
next the UAV should move to during a landing approach. The state machine contains in total
seven states, where each state has it’s own set of control parameters.

A flow chart of the state machine is presented in Appendix A.

The whole state machine will now be described. Every state will be described separately. Note
that the vertical velocities in the different states are not final, and can be changed.

1) Hover

Hover is the state where UAV flies right over the platform position on a given height, waiting
for a landing signal. When the landing signal is given, the UAV has to get inside the largest
cylinder, in order to move to the next state. It is only possible to move further to one state
from Hover, which is Down. So, when the distance gets smaller than the radius of the largest
cylinder, the state machine switches state to Down.

2) Down

Name of the state where UAV is approaching the platform in constant downwards velocity is
Down. The approach velocity is sat to be -0.6 m/s. When in this state, the state machine contin-
uously checks if the UAV is within the imaginary boundaries. If the UAV is inside the medium
cylinder (both radius and height), the state changes to Final. In other case, if the UAV is under
the height of the medium cylinder, but in between the walls of the medium and large cylinder,
the state changes to Up.

The last case considers violation of boundaries represented by the large cylinder. A violation
that big can be critical, and the state changes to Up fast.

3) Up

If a boundary somehow is violated, the state machine is built in the way that it always sends the
UAV up one state. State Up is the state that does the transportation from a state to previous.
At this state, upwards velocity is sat to be constant at 0.6 m/s. If the UAV is in UP state, and
the altitude is between the height of the large and medium cylinder in addition to the horizontal
position being inside the large cylinder, the state changes to Down. If altitude is higher than the
height of the large cylinder, the state changes to Hover, and the whole landing process starts
over again.

38

5.5 Landing

4) Up fast

Up fast is an emergency state used when boundary represented by the walls of the large cylinder
are violated. Upwards velocity in this state is sat to 2 m/s in order to get fast up to a safer point.
It is only possible to move to Hover state from Up fast state. That happens when the altitude
is above the largest cylinder height.

5) Final

This is the state where the state machine makes sure that the UAV manages to stay inside the
medium cylinder for a while. Downwards velocity is -0.4 m/s in this state. If the UAV violates
boundaries represented by walls of the medium cylinder, state changes to Up. If boundaries of
the large cylinder are violated, state changes to the emergency state, Up fast. At the end, if
UAV manages to get inside the smallest cylinder, state changes to Land.

6) Wait for landing

To complete a safe landing , the UAV has to be sure that its landing on the platform that does
not move towards the UAV. The velocity is sat to zero, and the vehicle is hovering at very low
altitude while waiting for landing signal from algorithm in section 5.5.4. When the landing
signal arrives, state changes to Land.

7) Land

Land is the last state of the state machine, and is a state with no return. Landing velocity is sat
to be -0.1 m/s. All motors turns off about 20 cm over the platform, as the landing is completed.

5.5.3 Parameter allocation
The UAV is planned to fly in rough environment with large disturbances, often represented by
strong winds. Two sets of control parameters are tuned in, where the difference between them
is the ability to resist disturbances. The first set of parameters are tuned to make a robust con-
troller, while the second set is tuned to make an aggressive controller (section 5.4.3).

Usage of the sets depends on which state of the landing process the UAV is located in. In
states where the boundaries are represented by walls of the largest cylinder, it is more impor-
tant having a robust controller than having a aggressive controller. Radius of the large cylinder
gives the UAV time to get back to the desired position, when dragged away by the disturbances.
Therefore, a robust, slow varying controller can be used. On the other hand, when boundaries
are reprensented by walls of the smallest cylinder, it is important having a fast, aggressive con-
troller, with fast reaction to disturbances.

Control parameters are allocated depending on the state UAV is located in during the landing
process. Robust controllers are used in: Hover, Down, Up and Up fast states. Aggressive
controllers are used in: Final, Wait for landing and Land states.

39

5.5 Landing

5.5.4 Landing timing
When landing, it is important to make sure that the platform is not moving towards the vehicle
itself. Waves causes platform movement in upward direction, called heave. To make sure that
the UAV is hitting the platform on the way down, an algorithm is designed.

The algorithm checks the vertical platform position continuously, and remembers the lowest
and highest measured platform position. If the platform position is higher than the previous
highest or lower than the previous lowest, the algorithm updates the remembered positions. The
algorithm checks if current wave is within 0.2 m from the top of the highest measured wave. If
the statement is true, landing approval is given.
Figure 5.12 shows a landing using the described algorithm. Notice that vehicle hits the platform
on the way down.

0 10 20 30 40 50 60 70 80 90 100

time [sec]

-5

0

5

10

15

20

m

Landing in z-plane without wind

z

z
d

platform

Figure 5.12: Simulation of landing in z-plane without wind present and sea state = 4

Note that landing is simulated without wind present, to make sure that the landing does not get
aborted due to wind disturbances. Note that the system is not able to perform landing for sea
state 6 and 8, which can cause problem in a realistic situation. The algorithm is far from perfect,
as it does not work if the highest waves occurs in the beginning of the simulation. This problem
is discussed deeper in section 7.5.

40

Chapter 6
Results

This chapter presents results of the simulation model represented in Chapter 5.

More simulation results are also presented in Appendix B. All simulations presented in Ap-
pendix B are simulated in same weather conditions as simulations presented in this chapter.
The only diffrence between simulations is the platform path.

Figure 6.1 shows a simulation of the landing approach in three dimensions. Parameters used in
the represented model are listed in table 6.1.

Table 6.1: Parameters used during simulations

Parameter Value
Sea State 4
Current x 4 m/s
Current y 4 m/s
Current z 4 m/s

Constant Wind x 4 m/s
Constant Wind y 4 m/s
Constant Wind z 4 m/s

Simulation shows that the UAV hovers at very low altitude for a long period, waiting for the
landing signal given by the algorithm described in section 5.5.4. A peak, that occurs after the
first landing attempt, can be noticed in figure 6.1. This peak happens after the UAV has violated
boundaries of the largest imaginary cylinder (see section 5.11). The boundaries are violated
because the horizontal controllers are not able to follow the desired path. It takes about 1

3
of the

simulation time to land the UAV, which is approximately 5 minutes. Considering the fact that
the initial height is only 20 meters, five minutes is way to much time for performing a landing.

41

Figure 6.1: Landing shown in 3 dimensions, Wind = 4m/s, Sea State = 4

0 100 200 300 400 500 600 700 800 900 1000

time [sec]

-50

-40

-30

-20

-10

0

10

20

d
e
g
re

e
s

Response roll controller

d

Figure 6.2: Roll response

Figure 6.2 shows the behaviour of the roll angle during the simulation shown in Figure 6.1. It
is noticeable that the roll angle is oscillating with very high frequency. Still, it seems like the
controllers are able to follow the desired roll position, which is satisfying.

42

0 100 200 300 400 500 600 700 800 900 1000

time [sec]

-20

-10

0

10

20

30

40

50

d
e
g
re

e
s

Response pitch controller

d

Figure 6.3: Pitch response

Figure 6.3 shows the behaviour of the pitch angle during the simulation shown in Figure 6.1.
Like roll controllers, pitch controllers are also able to follow a reference varying with high
frequency. The high frequency of the angles comes from the winds, that are present during
simulation (see table 6.1).

43

Figure 6.4: Landing shown in 3 dimensions, Wind = 4m/s, Sea State = 4

Another result of the simulation of the landing approach is presented i figure 6.4. The difference
from figure 6.1 is that platform path is slightly changed. Still, the change is enough to affect
the result. Several more peaks can be observed in figure 6.4 than figure 6.1. The reason is,
as named earlier, violation of boundaries represented by the large cylinder described in section
5.5.4. Halfway in the simulation, there are no more peaks, but the UAV still does not perform a
landing. The landing does not happen because no landing command is given form the algorithm
described in section 5.5.4. The weakens of the current version of the algorithm is discussed
deeper in chapter 7.

44

Chapter 7
Discussion

Simulations of several landing approaches shows that the hexacopter is able to land on a moving
platform on water. Still, there exist simulations that shows failed landing approaches in condi-
tions that the hexacopter should be able to land in. The system is large, consisting many small
details. Improving one tiny part of the system, can result into better simulation results.

7.1 Controllers
Figures 6.2 and 6.3 shows that the roll and pitch controllers are tuned properly. Roll and pitch
angles are able to follow the reference, even it is oscillating with high frequency. Of course,
there are limitations on how high the oscillation frequency can get before the desired signal
cannot be tracked anymore (section 5.2).

The figures named above also shows that the reference signal is saturated, especially in the be-
ginning. For a perfect modeled system, that should not happen, as the reference signal should
not exceed the feasible range of the given angle. The problem of the reference signals are prob-
ably horizontal controllers, that are not tuned properly. Even though figures in section 5.4.3
shows almost perfect tracking, one has to be aware of that the boundaries are tight (Section
5.5.1), and that a wind gust can result into violating those, if not properly tuned.

Section 5.5.3 presents how the tuning parameters changes depended on altitude relative to the
platform. The chosen approach does the tuning process more complicated as it requires two sets
of parameters. It is questionable whether it is necessary to switch between two sets of param-
eters. If possible, tuning one set of parameters that can yield into both robust and aggressive
behaviour will be a good replacement for the alternating sets, used in this project.

PIV control (section 5.4.3) looks like a good control design for horizontal controllers in this
problem, as velocity of the platform is available all the time. Still other control designs has to
be considered in order to get best possible result.

See section 7.5 for suggestions for further developing of horizontal controllers.

45

7.2 Wave prediction

7.2 Wave prediction
A simple algorithm is developed to prevent a landing during platform movement upwards,
caused by the waves. If not prevented, such landing can cause into destruction of the hexa-
copter. As mentioned in section 5.5.4, the main idea with the algorithm is to show that the
problem is considered. It is not expected to work perfectly yet, but it would be one of the main
parts of the system after further development.

Figure 6.4 shows the weakness of the current landing algorithm. The reason why the landing
signal is never given in the simulation shown in figure 6.4 is that the highest waves occurs in
the beginning of the process, the following waves never reaches the same height. As a result
of that, the algorithm in section 4.2 never sends out the landing permission, and the hexacopter
keeps on hovering at low altitude. The algorithm will be improved in future work.

7.3 Boundaries
Boundaries for the landing are described in section 5.5.1. One has to be aware of that dimen-
sions of cylinders in figure 5.11 are just a educated guess, without any test. Most likely, the
dimensions has to be adjusted in order to fit the problem. Still, the idea will most likely work,
as proved in [7] and [3].

7.4 Modeling
The mathematical model seems to be close to realistic. There already exist models of hexa-
copter, such as [5] and [4], that are proven to work. This model does not deviate much from
the listed ones, such that it is no reason to believe that there are some fatal errors in the model.
Still, a problem is noticed when it comes to stabilizing the UAV during a constant wind. When
a constant wind acts on the UAV body, and the goal is to hold constant position, one should
expect that the UAV will tilt towards the wind direction in order to hold the position. That did
not happened in the simulations. The problem probably lies in modeling errors of air forces.
Due to the limited time frame of this project, the problem was not investigated deeper.

7.5 Future work
As this project is a preparation for masters thesis, there will be done improvements and further
investigations of problems named in section 7.

Further development should begin by an investigation of the air forces and their implementation.
An approach to this problem can be reading related literature and comparing models. Hopefully
the error will be detected, and the mathematical model will get even more realistic.

46

7.5 Future work

Horizontal controllers definitely needs more investigation. First of all, a more systematic tun-
ing approach should be conducted. A suggestion is to find tuning parameters by looking at the
stability analysis. There are several approaches for tuning PID controllers listed up in [17] that
can be deeper investigated in future development. It is hard to tell which tuning approach that
will give the best result. Suggestion is to try different approaches, and compare results. After
tuning, the necessity of two set of controllers should be considered.

Other control strategies than PID should also be investigated, especially when it comes to hor-
izontal controllers. A suggestion is to investigate control strategies such as feedback lineariza-
tion and backstepping, and compare results of those control strategies with the results of PID
controllers. Stability of the total system should also be investigated, as finding stability regions
can be necessary to decide weather conditions a landing can be performed in. This can be done
using Lyapunov stability properties.

Algorithm described in section 5.5.4 has to be developed further, as it is one of the most impor-
tant parts of the system. It would be interesting to find a correlation between waves and wind,
and try to estimate waves. [24] shows an approach of estimation waves using Kalman filter, that
will be interesting to investigate deeper.

Boundaries from section 5.11 has to be adjusted, but this is hard to do before testing in real
enviorements.

Finally, points that has to be developed further are listed under:

1. Investigate modeling of air forces

2. Tune horizontal controllers by using a systematic tuning approach

3. Investigate other control strategies

4. Do a stability analysis of the whole system

5. Improve landing permission algorithm from section 5.5.4

6. Investigate possibility of developing a wave estimator

7. Adjust boundaries in figure 5.11

47

Chapter 8
Conclusion

The main goal with this thesis was to build a solid ground of a simulation environment for fur-
ther development in the masters thesis.

Low-level mathematical models of forces and torques acting on the vehicle are implemented
and merged together to a simulation environment. Literature with many citations are used as
support in creating models, which is an indication that the simulation environment is close to
realistic. On the other hand, it is hard to tell before the tests are performed on the real system.

Control algorithms has been developed and tuned. Based on the simulation results (chapter 6)
the attitude controllers seems to be well functioning and properly tuned. The horizontal con-
trollers gives partial satisfying results. Simulations shows sudden deviations from the reference
signals. In addition, the reference signal produced by the horizontal controllers sometimes ex-
ceed the feasible range. Therefore, a more through examination of the horizontal controllers
has to be done (see chapter 7).

The state machine, described in section 5.5.2, and boundaries, described in section 5.5.1, has
given satisfying results in all simulations. The results indicates that these algorithms can be im-
plemented to the real system. Of course, boundaries has to be adjusted, as mentioned in chapter
7.

Overall, the model builds a solid ground for further development. Unfortunately, the current
control algorithms can not be used on a real system, as there are to many failed simulations.
Still, after some future work is done (chapter 7) there is certainly a opportunity for using the
control algorithms on a real system.

48

Bibliography

[1] Specs hexacopter. https://www.quadh2o.com/hexh2o/hexh2o-kit/.

[2] Christian Månsson and Daniel Stenberg. Model-based design development and control of
a wind resistant multirotor uav. 2014.

[3] Joel Hermansson, Andreas Gising, Martin Skoglund, and Thomas Schön. Autonomous
landing of an unmanned aerial vehicle. Linköping University Electronic Press, 2010.

[4] Mostafa Moussid, Adil Sayouti, and Hicham Medromi. Dynamic modeling and control of
a hexarotor using linear and nonlinear methods. International Journal of Applied Infor-
mation Systems, 9(5), 2015.

[5] Johan Fogelberg. Navigation and autonomous control of a hexacopter in indoor environ-
ments. 2013.

[6] John Oyekan, Bowen Lu, Bo Li, Dongbing Gu, and Huosheng Hu. A Behavior Based
Control System for Surveillance UAVs, pages 209–228. 08 2010.

[7] Vegard Line. Autonomous landing of a multirotor uav on a platform in motion. Master’s
thesis, NTNU, 2018.

[8] Andrea Alaimo, V Artale, Gabriele Barbaraci, C Milazzo, Calogero Orlando, and Angela
Ricciardello. Lqr-pid control applied to hexacopter flight. 9:47–56, 01 2016.

[9] Andreas Vikane Hystad and Joakim Brobakk Lehn. Model, design and control of a quad-
copter. Mestrado em cibernética e robótica, Norwegian University of Science and Tech-
nology, Trondheim, 2015.

[10] Alexandre Borowczyk, Duc-Tien Nguyen, André Phu-Van Nguyen, Dang Quang Nguyen,
David Saussié, and Jerome Le Ny. Autonomous landing of a multirotor micro air vehicle
on a high velocity ground vehicle. IFAC-PapersOnLine, 50(1):10488–10494, 2017.

[11] Lorenzo Marconi, Alberto Isidori, and Andrea Serrani. Autonomous vertical landing on an
oscillating platform: an internal-model based approach. Automatica, 38(1):21–32, 2002.

[12] Quad h20. https://www.quadh2o.com/.

[13] E800. https://www.dji.com/e800/info.

49

https://www.quadh2o.com/hexh2o/hexh2o-kit/
https://www.quadh2o.com/
https://www.dji.com/e800/info

[14] Ardupilot. http://ardupilot.org/about.

[15] Dune. https://lsts.fe.up.pt/toolchain/dune.

[16] Pm spectra. https://www.dune-project.org/.

[17] Thor I Fossen. Handbook of marine craft hydrodynamics and motion control. John Wiley
& Sons, 2011.

[18] Drag coefficient. https://www.engineeringtoolbox.com/
drag-coefficient-d_627.html.

[19] Randal W Beard and Timothy W McLain. Small unmanned aircraft: Theory and practice.
Princeton university press, 2012.

[20] Mss toolbox. http://www.marinecontrol.org/.

[21] Inertiua calculation. http://hyperphysics.phy-astr.gsu.edu/hbase/
mi.html.

[22] Dji matrice. https://www.dji.com/matrice600-pro/info.

[23] Beufort scale. http://www.tranoy.net/stavanger/weather/beauforts.
htm.

[24] Cecilia Linroth. Statistical analysis of wave heights using kalman filtering methods, 2014.

50

http://ardupilot.org/about
https://lsts.fe.up.pt/toolchain/dune
https://www.dune-project.org/
https://www.engineeringtoolbox.com/drag-coefficient-d_627.html
https://www.engineeringtoolbox.com/drag-coefficient-d_627.html
http://www.marinecontrol.org/
http://hyperphysics.phy-astr.gsu.edu/hbase/mi.html
http://hyperphysics.phy-astr.gsu.edu/hbase/mi.html
https://www.dji.com/matrice600-pro/info
http://www.tranoy.net/stavanger/weather/beauforts.htm
http://www.tranoy.net/stavanger/weather/beauforts.htm

Appendices

A Flow chart - state machine

51

B Simulation results

52

53

	Preface
	Abstract
	Table of Contents
	List of Figures
	List of Tables
	Notation
	Introduction
	Motivation
	Problem formulation
	Related work
	Outline

	System Overview
	Hardware
	Hexacopter
	Motors
	ArduPilot

	Software
	ArduPilot - Mission planner
	DUNE
	Simulink

	Modeling
	Theory
	Coordinate frames
	Euler angles
	Transformation between coordinate frames
	Pierson-Moskowitz Spectrum

	Hexacopter dynamics
	Rotation
	Forces
	Torques
	Mathematical model

	Wind
	Platform
	Waves

	Control
	Theory
	PID controller

	Method
	Altitude controller
	Attitude controllers
	Horizontal controller
	Mapping between controllers

	Simulation
	Parameters
	Inertia
	Thrust constant

	Limitations
	Angular rate
	Maximal vertical velocity
	Control Inputs
	Maximal angular velocity of motors

	Simulink model
	Tuning
	Roll controller
	Pitch controller
	Horizontal controllers
	Altitude controller
	Maximal wind

	Landing
	Boundaries
	State machine
	Parameter allocation
	Landing timing

	Results
	Discussion
	Controllers
	Wave prediction
	Boundaries
	Modeling
	Future work

	Conclusion
	Bibliography
	Appendices
	Flow chart - state machine
	Simulation results

