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Abstract

An increasing focus on the environmental impacts from marine power systems uti-
lizing fossil fuel have resulted in implementation of Emission Controlled Areas, and
an increasing demand for levels of pollution forces changes in the marine power sys-
tems. A solution for accommodating these demands and lowering the total use of
fossil fuel for energy production is the implementation of energy storage systems.
An implementation of such a system is a battery energy system. If this is used in
a ship power system with AC-distribution the most common interface is for three
phase transformation is three-phase voltage source converters.

This thesis studies a VSM implementation in a marine power grid. The design of
the VSM is done such that the frequency of the virtual rotor is produced internally,
removing the need for a Phase Locked Loop. This also gives room for the possibility
of islanded operation of the power grid with only the VSM connected, using the
same control topology for the VSM. The power grid studied is designed as a tradi-
tional marine power grid with a SM, a VSM connected to a battery energy system
and a load model. A nonlinear state space model of these components has been de-
veloped and small signal models have been made for each. Small signal models have
been made for the VSM with grid connection and connected to the load model, SM
with grid connection and connected to the load model and a full model containing
all three components. This has given the possibility to study the dynamics of the
system and gain insight in the stability.

The small signal model developed have given the possibility to use linear analysis
tools to evaluate stability and system response. The validation process gave room
for validating the correctness of the small signal models and opened the possibility
for assessing the system response of the disturbance. An eigenvalue analysis of the
different small signal models has been done to determine critical modes and which
states is influenced by these. This analysis has given further insight in the system
response and the way that it is coupled. The eigenvalue analysis has also been tested
for operational area of the power grid giving insight in how the system dynamics of
the base case studied change as the total power flow is altered.

The analysis shows that the system is stable and have a good dynamic response
for transients. The eigenvalue analysis shows that the system has a good stabil-
ity margin, meaning that the system is not in danger of becoming unstable. The
system is able to function with all components (SM, VSM,load) connected. The
VSM have shown the ability to adapt to the frequency in the grid by synchronizing
to the other frequency setting component in the grid. This shows the possibility of
a grid being operated by an inverter without the need for a change in control system.



Sammendrag

Et økende fokus på miljøpåvirkningen fra marine kraftsystemer som benytter seg
av fossilt brensel har resultert i implementeringen av Utlippskontrollerte soner og et
økende krav til nivåer av utslipp av forurensede gasser fra marine kraftinstallasjoner.
En løsning for å imøtekomme disse kravene og redusere det totale forbruket av fossilt
brensel for energiproduksjon er implementeringen av Energy Storage systems. Et
eksempel på dette er et batterisystem. Hvis dette benyttes i et kraftsystem med
AC-distribusjon er det mest vanlige grensesnittet for trefase transformasjon en tre-
fase spenningskilde-konverter.

Denne oppgaven undersøker en VSM implementasjon i et marint kraftsysem. De-
signet på VSMen er utført slik at frekvensen til den virtuelle rotoren blir produsert
internt. Dette gjør at behovet for en PLL forsvinner. Dette gir rom for muligheten
til at VSMen kan operere kraftsystemet alene, uten et behov for at andre kom-
ponenter skal styre frekvensen uten å bytte styresystem for VSMen. Kraftsystemet
undersøkt er et tradisjonelt marint kraftsystem system bestående av en SM, en VSM
og en lastmodell. En ulineær tilstandsrommodell har blitt laget for hver komponent.
Disse har blitt linearisert til småsignalmodeller. Modellene består av VSM koblet til
et nett, SM koblet til nett, VSM og SM koblet sammen og VSM, SM og lastmodell
koblet sammen.

Småsignal modellene utarbeidet har gjort det mulig å bruke lineære analyseverktøy
for å analysere systemets stabilitet og system responsen. Småsignalmodellene ble
validert ved å sammenligne responsen ved en forstyrrelse med tilsvarende modeller
laget I Simulink. Dette ga muligheten for å validere modellene og vurdere responsen
til systemet ved en forstyrrelse. En eigenverdianalyse ble utført på småsignalmod-
ellene for å undersøke kritiske moder og vurdere stabilitetsmarginen.

Analysen viser at systemet er stabilt og har en god dynamisk respons for transien-
ter. Eigenverdianalysen viser at systemet har en god stabilitetsmargin. Systemet
fungerer for alle komponenter tilkoblet og VSMen viser evnen til å tilpasse seg nettet
den er koblet til. VSMen er i stand til å fungere for alle systemene introdusert uten
å måtte endres. Dette viser muligheten for at en inverter kan operere et nett uten
behov for en endring i kontrollsystemet.
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Chapter 1

Introduction

1.1 Motivation
An increasing focus on the environmental impacts from marine power systems uti-
lizing fossil fuel have resulted in the implementation of Emission Controlled Areas,
and an increasing demand for levels of pollution forces changes in the marine power
systems. [1] A solution for accommodating these demands and lowering the total
use of fossil fuel for energy production is the implementation of energy storage sys-
tems. These systems are in an increasing rate used in ship power systems in order to
lower the fuel consumption. This also enables the opportunity of hybrid operation
of the power grid. An implementation of energy storage is battery energy systems.
If this is used in a ship power system with AC-distribution the most common in-
terface is for three phase transformation is three-phase voltage source converters.
[2][3] The traditional control of these converters is utilizing a Phase locked loop for
synchronization to the voltage at the ac bus, meaning the inverter is dependent on
something else to control the frequency of the grid.[4]

By utilizing the control concept Virtual Synchronous Machines, the power electronic
converters can allow islanded operation of a single or multiple battery systems pow-
ering the AC-bus, or operating parallel with a synchronous machine without the
need of changing the control system. This gives the opportunity for hybrid opera-
tion of the marine power grid, and the possibility for an all-electric operation.

By linearizing a ship power system and making a small signal model equivalent for
the nonlinear system in an equilibrium point can give some idea of the influence the
VSM have on the system. By performing a linear analysis on this small signal model,
the stability and its ability to handle disturbances in forms of load changes and such.

1.2 Problem description
This project should study the dynamic performances of a power electronic converter
controlled as a Virtual Synchronous Machine (VSM) when operated in a typical
ac ship power system. Especially, the study should evaluate how a battery system

5
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with VSM-based control can influence the stability and transient response of a hybrid
ship power system in various operating conditions. A simplified system configuration
containing a VSM, a traditional diesel generator with a synchronous generator and
a load interfaced to the ac-bus by an active rectifier should be modelled for time-
domain simulations in Simulink and a corresponding state-space model should be
derived for analytic studies. The obtained state-space model should be linearized to
obtain a small signal model of the system. The system model should be developed in
steps, starting with models of power electronic converters interfaced to an ideal grid
voltage, and the model should be expanded until all components are represented
in the same framework. The small-signal models should be validated against the
detailed time-domain simulation models by evaluating the time-response to small
perturbations. Established tools for linear system analysis should be applied to
the derived and validated models in order to analyze how the use of a VSM can
influence the small signal dynamics of the ship power system under various system
configurations and operating conditions.

1.3 Limitations
This work has tested an implementation of a VSM topology in a model for a marine
power grid. This marine power grid is simplified to a traditional generation unit
with a SM and an inverter symbolizing a load in the grid.

In order to model the inverters for the VSM and load model an Average model
from the Simpower systems toolbox is used. This means that modulation frequency
can be assumed to be high enough not to inflict the transformations and can be
neglected, because the control signal sent to the inverter model is a three-phase
signal. Both the VSM and load model inverters have an ideal dc-voltage source on
the dc-side. This combined with the use of an average model means that the dc side
can be neglected as the voltage will be constant no matter the power flow.

The windings of the SM are assumed to be distributed uniformly along the air
gap. The magnetic hysteresis and mechanical vibrations have been neglected in this
model. In addition, magnetic saturation has also been neglected and in that way all
circuits is assumed to be linearly coupled. The control system of the SM consists of
an AVR and a Governor, modelled with two first order delays in order to be more
similar to a physical implementation. The damping of the rotor due to mechanical
losses have also been neglected.

When simulating the results, the transient phase leading to steady state have not
been studied. The models have only been used for steady state analysis.

The VSM model studied have been taken from [5]. The tuning of the virtual
impedance has not been conducted in this thesis, and uses this model with some
minor alterations. The SM model used is taken from [6]. Some alterations have
been done here as well, but the inspirations for the fundamentals is taken from here.
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1.4 Report outline
The report can be divided into three parts. The first part deals with some back-
ground laying the fundamentals of the report and explaining some methods used.
The second part is modeling. This section goes through the modeling of the system
and explains how the system is connected. It starts with the VSM model and goes
through each main component and controllers used. Then the SM model is pre-
sented in the same manner, and finally the load model. The last part is simulation
results. This part presents the results of different simulations and calculations. The
report finishes with a summary of results, discussion, conclusion and suggestions for
further work.
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Chapter 2

Background

2.1 Marine power grids

The main difference between land-based power systems and marine power systems
is that the power consumption is closer to the source. This means that the engineer-
ing problems related to transmission lines can be neglected. Because the installed
power compared to the voltage level is high leads to different engineering challenges
for these systems. Because of the size of the marine power grid, controls have the
possibility of a much tighter implementation, compared to the traditional land based
power system.[7]

Figure 2.1: System figure showing the main components of the power grid.

A ship power system can be modeled as a small micro grid containing different
sources of energy and different energy consumers. Using gas turbines or diesel en-
gine driven electric propulsion gives room for various ways of implementing the
electric grid on a marine vessel, including loads like electric propulsion to smaller
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loads that may be needed for the marine vessel. There are also alternatives to diesel
and gas like liquid natural gas, nuclear steam turbine plants, fuel cells and battery
energy storage systems. This also opens for hybrid solutions giving the possibility
to handle the peaks of energy need lowering the use of fossil fuel.[8] A simplified
implementation of a marine power grid can be seen in figure 2.1. Here a battery
energy storage system is implemented along with the diesel-powered generators.

The implementation of Emission Controlled Area at different locations along coast-
lines defines an acceptable emission level coming from diesel engines. This con-
tributes to focus more on the consumption of the fossil fuel and pushes development
towards more alternative solutions.[8] The International Marine Organization (IMO)
continuously updates the limits pollution rates and updates emission free areas. As
technology develops the requirements set by the IMO tightens, leading to a lower
legal total amount of pollution and a higher requirement for pollution on newly built
ships relative to its size.[1]

2.2 Virtual synchronous machine
As the use of renewable energy sources like photovoltaics and wind power plays a
bigger role for delivering power to grids, relieving the generators formerly delivering
power. The renewable sources rely on voltage source converters (VSC) in order to
connect to power grids. This means that the power system will have less inertia
coming from the synchronous machines, if the VSC works as replacements of for
SM. Having a low inertia in the power grid can lead problems with stability, like the
rate of change for the frequency changes when power system transients is applied.
[9] A solution for this problem can be implementing additional inertia with the use
of virtual inertia.

The concept of a virtual synchronous machine was first introduced in 2007 by Beck
and Hesse and was introduced as VISMA. [10] Here they described a type of inverter
control having inertia and electromechanical damping properties as a synchronous
machine. As time has gone by several approaches have been documented and tested.
Some of them can be found here: [11][12][13][14][15][16]. Varying in implementation
and complexity different models can be used for implementing a mathematical SM
model in the control system. The high order models can give accurate and precise
results, but the tradeoff here is the complexity of the system. In [13] a classification
of the different types of implementations for a VSM is introduced. This gives an
insight in the different types of solutions for modeling the VSM.

By focusing on the control system and implementation of the swing equation [17]
emulating the inertia, the VSM can be divided into four main groups: Synchron-
verter, Inertia-emulation, Voltage controlled VSM and Current controlled VSM. [18].
Presented here is a generalized model of these topologies. This means that there are
other possibilities and variations of the models presented here.
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The synchronverter was introduced by [19] and is the simplest VSM implementation
compared to the ones mentioned here, in terms of topology and complexity. Some
application of this control topology can be seen in [20] and[21]. This method can
be generalized as a reactive power controller and a frequency droop combined with
the swing equation. The main advantage of this control topology is the simplicity.
But as a result, from this simplicity, the control has few degrees of freedom, leading
to few control parameters giving a limitation to the possibility to adapt the control
for a desired dynamic response. This method in general requires a PLL in order to
unless alterations is done.

The topology of the inertia emulation is based on using the swing equation to calcu-
late the power reference using the frequency. The current reference is then calculated
using this power reference and a voltage measurement on the output of the inverter.
[22] [14] The topology can be generalized as a current controller as inner control
loop, with an outer loop consisting of a frequency droop controller. This method is
as well not that complex as it uses few measurements and have few controllers. This
generalized method as well requires a PLL in order to function but can be avoided
by altering the controller.

The voltage controlled VSM is the most complex of the models presented here. The
generalized control system consists of a swing equation model with a frequency droop
for angle and power control. A reactive power controller feeds a virtual impedance
a voltage reference. This impedance uses along with the voltage reference, measure-
ments of the output current of the inverter to calculate a voltage reference. This
reference is then sent to a voltage controller in in cascade with a current controller.
A drawback with this control is the complexity. Having multiple cascaded controllers
leads to a comprehensive strategy needed to tune the parameters of these controllers.
This generalized model requires a PLL in order to synchronize to the frequency of
the grid, but with some adjustments the need for a PLL can be avoided.[23], [24]

Current controlled VSM topology is somewhat simpler than the voltage controlled
VSM. In the generalized model a frequency droop cascaded with the swing equation
is used in order to find the phase angle and the frequency of the VSM. A reactive
power controller is used in cascade with a virtual impedance, using a mathematical
model of a SM, and a current controller. The advantage of the control topology is
that there is no need for a PLL for synchronization. A filter is used on the output
value of the swing equation replacing the need for a PLL. The mathematical model
of the SM used in the virtual impedance must be designed with care, because of its
influence on the system stability [5].

The method implemented in this thesis is the current controlled VSM and is chosen
for various reasons. Being able to function without a Phase locked loop is a im-
portant trait. This makes it possible for the model to function without relying on
measurements of the grid, producing its own frequency internally instead of mea-
suring the phase angle for the grid. Being able to function independently of other
sources or frequencies in the grid is important. Because of this the VSM is redun-
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dant and can function if the SM is tripped and enable a hybrid power supply for a
marine power grid.

In [24] an implementation of several VSM have been investigated. A small signal
analysis shows the results of adding inertia to a grid consisting of several distributed
energy sources. The implementation used was without a PLL controlling the refer-
ence frame of the VSM. A benefit of using a mathematical model of a SM is that
the machine parameters can be changed unlike a SM where the parameters are con-
stants. This opens for tuning of the machine parameters in order to get a more
desired behavior of a SM.

2.3 Small signal modelling
In order to study power systems in steady state with small disturbances, a small
signal model of the system is made, meaning that the system is linearized around
the steady state values. The general linearization method is taking the first order
Taylor expansion of the nonlinear system.[25] By defining the perturbations ∆x,∆u,
and ∆y from the solutions

x(t) = x0(t) + ∆x
u(t) = u0(t) + ∆u
y(t) = h[x0(t),u0(t), t] + ∆y

(2.1)

and taking the first order Taylor expansion around the solution x0 and u0 leads the
expression

ẋ =
∂f
∂x

∣∣∣
x0(t),u0(t)

∆x +
∂f
∂u

∣∣∣
x0(t),u0(t)

∆u

y =
∂h
∂x

∣∣∣
x0(t),u0(t)

∆x +
∂h
∂u

∣∣∣
x0(t),u0(t)

∆u
(2.2)

By modeling a power system and solving the set of equations with respect to the
first derivative equal to zero, implying that the system is in equilibrium, the desired
linearization points can be found, here defined as x0 and u0. Thus, the system
equations can be expressed as

ẋ = A(x0, u0)x +B(x0, u0)u
y = Cx +Du

(2.3)

Here A, B, C and D represents the system matrices. As equation 2.3 shows, both
the A and B matrices are dependent on the linearization points, x0 and u0.

Using this model the stability of the system can be analyzed and evaluated in various
ways. This thesis has completed an eigenvalue analysis and evaluated the partici-
pation factors by using the system eigenvalues and eigenvectors. By analyzing the
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eigenvalues, it is possible to understand how the components of the system behaves
and how parameters influence the dynamic response of the system. The eigenvalues
and eigenvectors for the system can be calculated from the matrix A in equation 2.3.

The article [26] have made classification on different types of stability. According to
this power system stability can be divided into three main groups, rotor angle sta-
bility, frequency stability and voltage stability. Small signal rotor angle stability is
focused around the power grids ability to be synchronized under small disturbances.
These disturbances need to be small enough for the linearized model of the power
system to still be valid for analysis. This means that the validity of the linearized
model is limited to small disturbances when validating the model.

Small signal voltage stability specifies the power systems ability to keep a even volt-
age when exposed to small disturbances like changes in the load of the system. This
stability can be impacted by controls and load characteristics. By making some
assumptions a linearized model can be analyzed in order to study this stability. By
studying the linearized model some information of the nonlinear system can also
be deduced, such as if the linearized system is asymptotically stable the nonlinear
system will also be asymptotically stable. [25]

2.3.1 Eigenvalues

The eigenvalues of a system defined as the solution of the characteristic equation
[27]

det(A− λI) = 0 (2.4)

Here λ is the eigenvalue, A is the system matrix and I is the identity matrix. The
eigenvalues also appear in the time domain solution for the general states space
formulation seen in equation2.3. This solution is

x(t) = eA(t−t0)Ax0(t0) +

∫ t

t0

eA(t−τB(τ)τ (2.5)

The eigenvalues can be real valued or complex conjugated. From equation 2.3 it can
be seen that the dimension of the derivative is 1

t
therefore the unit for the real part

of the eigenvalue is 1
s
while the imaginary part is rad

s
. From this the time constant of

the eigenvalue can be calculated from the real part, and is related to the damping.
The damping ratio can be calculated as

real(λ)√
real(λ)2 + imag(λ)2)

(2.6)

for eigenvalues containing an imaginary part. The imaginary part describes the nat-
ural frequency of the eigenvalue. The frequency can be found in Hz by multiplying
the imaginary part with 2π. This will be the oscillating frequency of the eigenvalue
if there was no damping.



14 CHAPTER 2. BACKGROUND

2.3.2 Participation factor

By evaluating the eigenvalues of the system, one can identify modes giving the sys-
tem the characteristics like oscillations or damping. By calculating the participation
factor a measure of relative participation can be calculated. This can be used to
identify different states contributing to a mode. The participation factor matrix is
defined as

P =


p11 p12 ... p1n

p21 p22 ... p2n

... ... ... ...
pn1 pn2 ... pnn

 =


φ11ψ11 φ12ψ21 ... φ1nψn1

φ21ψ12 φ22ψ22 ... φ2nψn2

... ... ... ...
φn1ψ1n φn2ψ2n ... φnnψnn

 (2.7)

Here P is the participation matrix while φ and ψ is the right and left eigenvalue
matrix respectively. Each participation factor is product of the kth element of the
ith left and right eigenvector. This gives the sensitivity of the ith eigenvalue to
the kth diagonal element of the state matrix. [17] [6] This can be expressed in a
more general way as pki = φkiψik where p gives a relative participation of the state
k in the mode i and the other way around. Because the participation factor is the
product of two eigenvectors make p dimensionless, and therefore independent of the
choice of units

2.4 Tuning methods for control loops

The methods Modulus optimum and Symmetric optimum is approaches for tuning
PI controllers with systems that fulfill some special requirements. Modulus optimum
is a method often used for low order systems, or high order simplified into a low order
system, containing a dominant time constant and a smaller time constant. If the
system fulfills the requirements of either Modulus optimum or Symmetric optimum
the methods is applicable.

2.4.1 Modulus optimum

Modulus optimum is a method for tuning low order systems with a dominant time
constant and a smaller time constant.[28] By inspecting the open loop transfer func-
tion the integrator gain should be set to cancel the dominant time constant. Take
the transfer function

G(s)ol = Kp
1 + Tis

Tis

1

1 + Tdoms

1

1 + Tmins

G(s)ol = Kp
1

Tdoms

1

rf

1

1 + Tmins

(2.8)

This is not a random choice for the transfer function. The inner loop control of
a inverter have a similar transfer function as shown above. The Modulus tuning
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criterion for this transfer function can be written as

Ti = Tdom

Kp =
Tdomr

2

(2.9)

This results in the closed loop transfer function

G(s)cl =
1

Tmins2 + Tmins+ 1
(2.10)

This is a mass, spring damper system and the natural frequency and damping ratio
equal to ωn = 1

Ta
√

2
and ζ = 1√

2
. [27] This method is based in pole cancellation re-

moving a dominant time constant with the integral time and achieving the absolute
value of the transfer function equal to one. This means that the natural frequency
and damping ration will always be equal to the result shown above.

2.4.2 Symmetric optimum

Modulus optimum is a tuning method for systems similar to 2.8, but instead of
having a minor first order delay a integrator part is present. Using the Symmetric
optimum will lead to a pole with a real part equal to zero, leading to no guarantee for
stability. The method maximizes phase margin such that the phase margin appears
at the crossover frequency. Achieving the highest possible phase margin results in a
system more robust against delays. This is important considering a control system
for an inverter, where the switching and inner control loop can be considered as
delays. The tuning criteria is obtained using the Nyquist criteria for stability:

|Gol(jω)| = 1 and ∠Gol(jω) = −180o + Φm (2.11)

Here Φm is the phase margin. Taking the general open loop transfer function with
a pole in origo 2.12

G(s)ol = Kp
1 + Tis

Tis

1

1 + Tdoms

1

Tmins
(2.12)

By differentiating the angle part of the Nyquist criteria with respect to ω, the criteria
becomes

ωd =
1√

TiTdom
(2.13)

This means that if the the integral time constant is set to Ti = Tdom(1+sin(φ)
1−sin(φ)

) the
resulting system will have a maximum phase margin at the crossover frequency ωd.
The crossover frequency will be symmetric about 1

Ti
and 1

Tdom
.[28]
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Both Modulus optimum and Symmetric optimum are efficient and accurate methods
for achieving a stable and accurate controller. The downside of using these methods
is the need for an approximation. When tuning the current controller, the switching
and the filter is approximated by a first order delay. When tuning the outer control
loop the current controller, switching delay and the filter time constant is approxi-
mated. These estimates can be inaccurate leading to a controller that may not have
the most optimal response. In addition, the assumption of a stiff grid with voltage
equal to 1 pu d-axis. When disconnecting the grid and connecting something with
different traits the system dynamics may change. This is why using the eigenvalues
and participation factors, and identifying the what modes belongs to what sate, the
controller parameters can be changed after using these tuning methods in order to
move the system modes to a more desired place in the left half plane.



Chapter 3

System description

The system this thesis has worked with consists of three main parts, the VSM, the
SM and the load model. The VSM and the SM are the sources in this marine power
grid, and an inverter along with a resistive and capacitive load is implemented a as
power consumers. Having a SM in a power grid is very common and relevant for
modeling a marine power grid. The inverter modeled as a load is meant to symbol-
ize a relatively big load for the system and is thought of as a motor operating the
propulsion system. The load is thought to have a DC-bus between the AC-grid and
the motor. The resistive and capacitive loads implemented is to add a small load
in the grid in addition to the inverter feeding a DC-bus. In figure 3.1 the one line
schematic of the system can be seen.

Figure 3.1: System figure showing the main components of the power grid.

Comparing 3.1 to the one line schematic for a general ship power system it can be
seen that this represent one side of the of the 2-split distribution system. This is
why the system in figure 3.1 can be representative for a simplified marine power
system.

17
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3.1 Modeling conventions

The per unit system chosen is based on a chosen phase peak voltage and a chosen
apparent power rating. All parameters discussed is in per unit unless other is spec-
ified. The transformation between three phase variables and dq variables is done
with the amplitude invariant park transformation. The axis alignment chosen is the
a-phase of the three-phase aligned with the d-vector of the dq-reference frame. The
notation used for dq variables in this thesis is as complex space vectors and can be
written as

x = xd + jxq (3.1)

3.2 Per unit system

The per unit system chosen for the system for the AC side is as follows

Vb = Nominal peak phase voltage

Sb = Nominal power

Ib = Nominal peak phase current

Zb = Base AC impedance

ωb = Base frequency

(3.2)

3.3 Reference frame orientation

When designing the state space model for the investigated system, a reference for
the synchronously rotating reference frames needs to be chosen, since this is a closed
system with two sources. Because of the choice of VSM model, the necessity for a
PLL disappears as the frequency of the VSM is produced internally. Because the
influence of the VSM on the system is the highest interest of analyzing in this sys-
tem, the deviation of phase angles is chosen to be referenced to the VSM. The load,
VSM and the SM all have different phase shifts in the frequency. By expressing the
phase angles as a deviation to this reference, a state space model can be made. The
figure 3.2 shows how the different reference frames may look like.

Figure 3.2: Vector diagram showing the reference frame.
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By defining the deviation between the rotating frames of the SM and load as

δθ = θ − θV SM (3.3)

The derivative of the angle deviation and expressing this in angular velocity it can
be rewritten as

d

dt
δθ = ω − ωV SM (3.4)

Here the ω without subscript is either ωSM or ωpll.

The reason this state is important is because when coupling the systems together,
the states having a phase shift need to be in phase with the rest of the states in the
equation. By looking at the phasor diagram 3.2 the rotation of the synchronously
rotating reference frames can be done by

xref = xe−jδθ

xref = x(cos(δθ)− jsin(δθ))
(3.5)

This equation can be expressed in matrix form as:[
d
q

]
=

[
cos(δθ) sin(δθ)
−sin(δθ) cos(δθ)

] [
d′

q′

]
(3.6)

This rotation matrix is used multiple times to connect systems together. The sys-
tems are first modeled connected to a grid and the connected. The coupling will
be explained in detail in chapter 8, after the relevant equations is presented. The
states taking an effect from this coupling will be the states modeling the outgoing
currents or voltages from the different component with defined phase shifts.

3.4 Investigated models
This thesis will take a look on different systems containing the VSM, SM and load
model. Firstly, the VSM and SM will be analyzed separately connected to an ideal
voltage source in order to test and validate the responses and see how the systems
influence each other when connected. Then a model of the VSM and SM connected
is analyzed. This model is done with a capacitive and resistive load at the AC-bus.
Finally, the VSM and SM are set together with the load model and the system is
complete.



20 CHAPTER 3. SYSTEM DESCRIPTION



Chapter 4

Virtual synchronous machine model

This chapter will go through the VSM model and present the equations used in the
state space model. The control topology will also be presented and explained. The
model introduced is connected to a grid.

Figure 4.1: Figure showing the VSM control topology. The Voltage Control block,
Electrical Model, Frequency control and Inertia Model blocks make up the virtual
SM.

21
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4.1 VSM model
The design chosen for the VSM is based on the dynamic synchronous machine model
from [5]. In figure 4.1 the system model of the investigated VSM can be seen. A
VSC is connected to a LCL-filter and the filter is then connected to a grid equivalent
representing the rest of the system. In the measurement processing block an ampli-
tude invariant park transformation is done to the three phase signals, resulting in
three DC signals. Here the phase angle θvsm is used as transformation angle, with
the d-axis aligned with the a-phase in the three-phase side. When modeling the
VSM the DC side of the VSC have not been considered and it is assumed that the
source connected have the sufficient power. The voltage level on the DC side of the
inverter is 2Vb. For modeling the VSC, an average model has been implemented,
resulting in no need for a modulation index. This means that any delay due to the
PWM implementation can be neglected. Furthermore, the assumption that the in-
put voltage reference signal for the VSC can be assumed to be approximately equal
to the output voltage as seen in equation 4.1.

m =
v∗cv
vdc

,vcv = mvdc, =⇒ vcv ≈ v∗cv (4.1)

There are several ways to implement a mathematical model of a SM in the control
design for an inverter. Here the tradeoff considering the level of detail the SM model
contains needs to be evaluated. A high order or full order model would result in an
unnecessary complex model. This is studied in [13].

4.1.1 Inertia emulation

For emulating inertia with the same characteristics as a SM, the swing equation is
used, giving a similar damping and inertia behavior as a SM. [17] [6] This equation is
central, among others, for the power system stability analysis describing the behavior
of the SM when there is unbalance in the electromagnetic and mechanical torque.
The general equation is given as 4.2, expressed as the first derivative of the speed.
Here Tel represents the electromagnetic torque, T0 is the mechanical torque, ω the
rotating speed of the machine, ωg is the angular frequency of the grid, J is the inertia
of the rotor and D is a coefficient that represents the damping torque associated
with the damper windings during transient responses. Since the changes done in
the frequency is small perturbations D is assumed constant in the case studied,
giving the equation limited but sufficient operating range.

Ta = Tm − Te (4.2)

Here Ta describes the accelerating torque, Tm the mechanical torque and Te the
electromagnetic torque all with unit Nm.

Tel − T0 = D(ω − ωg) + J
dω

dt
(4.3)

The grid frequency, ωg, either needs to be measured or estimated. The measurement
would be done by a PLL, making the VSM frequency synchronize with the grid. In
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this thesis ωg in equation 4.3 is produced internally using a high pass filter. The high
pass filter is implemented by using a low pass filtered negative feed forward, avoiding
derivative action. By removing the stationary part of the signal, the resulting effect
will be similar to a subtraction of the grid frequency in pu. Using the fact that
P = Tω and introducing the mechanical time constant Ta = 2H, the equation can
be rewritten as 4.4.

d

dt
ωvsm =

pr∗

Ta
− p0

Ta
− kd
Ta

(ωvsm − κ)) (4.4)

d

dt
κ = ωd ∗ ωV SM − ωb ∗ κ (4.5)

d

dt
θV SM = ωV SM ∗ ωb (4.6)

pr∗ represents the virtual power driving the inertia and is described further in section
Frequency control further down in this chapter. p0 is the power measured after the
LC-filter. The constants kd is a damping factor used to scale the feedback signal
and ωd is the high pass filter coefficient. θvsm is used for the park transformation in
the VSM model. The integrator seen in 4.2 is a wrapped state integrator or VCO,
creating a sawtooth signal going from 0 to 2π.

The figure 4.2 shows the block chart of the implementation of the emulated inertia,

Figure 4.2: Implemetation of the swing equation.

and is represented as the block "Voltage Control" in the system figure 4.1.

By observing the phasors seen in the phasorplot 3.2 from the previous chapter, the
state δθ is introduced. With the state space modeling in mind, it is desired to
achieve a steady state value used for linearizing. θV SM is the angle used for SRRF
transformations. Form the phasor plot the expression

δθ = θV SM − θg (4.7)

This is because the VSM is chosen for reference when modeling and linearizing. By
inserting equation 4.7 in equation 4.8, results in the following expression
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d

dt
δθV SM = ωV SMωb − ωgωb (4.8)

4.1.2 Electrical model of the VSM

In order to be able to control the amplitude of the voltage at the capacitance in
the LCL-filter for the VSM, a virtual impedance is used. This is done such that
the voltage signal can be transformed to a current signal used as reference for the
current controller. Defining the output of the voltage controller as ve, symboliz-
ing the internally induced voltage of an SM in series with a RL impedance which
representing the virtual stator windings. By using Kirchhoff’s law of voltage, the
internally induced voltage should be equal to the sum of the voltage across the vir-
tual impedance and the voltage measured at the capacitance of the LC filter. This
leads to the states given in complex vector form

d

dt
is =

ωb
ls
ve −

ωb
ls
v0 − (

rsωb
ls

+ jωV SMωb)is (4.9)

Here rs and ls is the stator resistance and inductance respectively. As mentioned,
rs and ls is here tunable, unlike a real SM where these parameters are constant.

4.1.3 Electrical model of the filter inductances

The voltage at the capacitor is calculated in a similar manner as the stator current
described above. Kirchhoff’s law for current describes that the current icv, coming
out of the inverter is equal to the sum of the current going down in the capacitor at
the filter and the current delivered to the grid.

d

dt
v0 =

ωb
cf

icv −
ωb
ls
i0 + jωV SMωb (4.10)

The current delivered to the grid, i0, and the current from the inverter, icv, is
modeled in the same way as the stator current, using the sum of voltage.

d

dt
i0 =

ωb
lg
v0 −

ωb
lg
vg − (

rgωb
lg

+ jωSMωb)i0 (4.11)

d

dt
icv =

ωb
lf
vcv −

ωb
lf
v0 − (

rfωb
lf

+ jωV SMωb)icv (4.12)

Since the VSM is a virtual machine the parameters that is normally constant be
altered in order to achieve a better functioning system. The stator inductance and
resistance are two parameters inflicting the poles coming from the state representing
the stator current and can be tuned in order to get a more desirable system.



4.2. CONTROL DESIGN 25

4.2 Control design

The control design of the inverter is a conventional design with an inner loop con-
trolling the current icv out from the inverter, and an outer loop controlling the
amplitude of the voltage at the capacitor in the LC-filter. For active and reactive
power control, droop controllers are utilized.

4.2.1 SRRF current controller, inner loop

The synchronous reference frame current controller uses PI-controllers for achieving
desired control. The block chart can be seen in figure 4.3. kpc and kic are the con-
trol parameters, and in order to achieve state space form the state γ is introduced,
representing the integral of the PI-controller. This controller is based on the expres-
sion from 4.12. Reformulating this equation, the equations for the filter inductor is
derived as

vcv = vf + rf icv +
lf
ωb

d

dt
icv + jωblf icv (4.13)

The current through the inductor lf can be controlled by manipulating vcv. The
converter voltage reference can be derived with PI-controllers and decoupling terms.
By implementing decoupling terms this system goes from being a MIMO system to
a SISO system.

v∗cv,d = vd,PI + vf,dωblf icv,q = v0,d + rf icv,d
lf
ωb

d

dt
icv,d − ωblf icv,q

v∗cv,q = vq,PI + vf,qωblf icv,d = v0,q + rf icv,q
lf
ωb

d

dt
icv,q − ωblf icv,d

(4.14)

This leads to the block chart seen in 4.3.

Figure 4.3: Synchronously rotation reference frame controller.

The current and voltage controller have been tuned using modulus optimum and
symmetric optimum respectively. The switching and the filter on the AC-side of the
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Figure 4.4: Active damping for oscillations on the voltage of the LC-filter capacitor.

inverter can be modeled as a first order delay. This leads to an open loop transfer
function as described in section Modulus optimum and Symmetric optimum2.4.

v∗cv = kpc(i
∗
cv − icv) + kic ∗ γ + jl1ωSM icv + kffvv0 − v∗AD (4.15)

d

dt
γ = i∗cv − icv (4.16)

In equation 4.15 there is also included a term called vad. This term is for active
damping of LC oscillations in the filter. This is designed as a negative feed forward
of the, v0, with a gain called kad and is high pass filtered. The high pass filter is
implemented as a low pass filter with negative gain added to a positive feed forward
of the system with a cut off frequency ωad. This can be seen in the block chart 4.4.
Here the state φ is introduced, which is the low pass filtered signal of the voltage
v0. The resulting state space equation can be seen in equation 4.18.

v∗ad,vsm = kad,vsm(v0,vsm − φvsm) (4.17)

d

dt
φvsm = ωad(v0,vsm − ωadφvsm) (4.18)

4.2.2 AVR, outer loop

The automatic voltage regulator is modeled as the outer control loop, such that the
output from this controller becomes the set point for the current controller. The
control variable for this is the internally induced voltage, v̂e. With this the mag-
nitude of the voltage at the capacitor in the filter v0 is controlled. The controller
contains a PI-controller and includes a droop function for low pass filtered reactive
power, qm. As in the current controller, there is introduced a state representing the
integral part of the controller, namely ζ. The low pass filter in the droop function
introduces a state resulting from the low pass filter. The block chart can be seen in
figure 4.5, and the output of the controller is given by

v̂e = kpv(v̂∗ − v̂0) + kpv(q
∗ − qm) + kivζ (4.19)

The state equations describing the low pass filtered reactive power, qm, and the
integrator part of the PI-controller, ζ, is given by

d

dt
ζ = v̂∗ − v̂0 + kq(q

∗ − qm) (4.20)
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Figure 4.5: Voltage control as outer loop for VSM.

d

dt
qm = ωqfq − ωqfqm (4.21)

4.2.3 Frequency control

The frequency control block seen in 4.1 is simply a frequency droop function. The
output of this droop controller symbolizes the virtual mechanical input power of the
VSM. This can be expressed as

pr∗ = p∗ − kω(ωV SM − ω∗) (4.22)

Here p∗ is the set point of the active power made by the VSM, kω is the active power
frequency droop gain and ω∗ is the set point for the frequency of the VSM.

4.3 State space model
The equations presented in this chapter forms the states space model with the states
seen in 4.23.

xvsm = [v0,d,vsm v0q,vsm icv,d,vsm icv,q,vsm γd,vsm γq,vsm i0d,vsm i0q,vsm

φd,vsm φq,vsm ζvsm isd,vsm isq,vsm qm,vsm ωvsm δθvsm κvsm]

uvsm = [p∗vsm q∗vsm vg,d vg,q v̂
∗ ω∗vsm]

(4.23)

A summary of the equations for each states can be found in the Appendix 11.1.1.
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Chapter 5

Synchronous machine model

This chapter will go through the state space modeling of a SM connected to a grid.
The basis of this modeling is taken from [6] with some modifications. This mod-
ification is the exclusion of the second damping winding in the q-axis. A similar
state space model for the SM can be seen in [29]. The presented model for the
synchronous machine based on per unit inductance. When modeling the SM, the
assumption of no saturation is made. Hence this is not taken in consideration when
modeling the SM. This chapter will first go through the equations for the SM and
then present the state space equations with control design.

5.1 The synchronous machine
The In figure 5.1 a overview of the control system of the SM can be seen.

Figure 5.1: System model of the controllers of the SM.
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5.2 The SM system equations

This section will present electrical equations of the SM. These equations describe
the model of the SM and lays the foundation of the state space model.

5.2.1 Voltage equations

The equivalent circuit of the SM can be seen in figure 5.2 and 5.3 [6]. Here φd(t)
and φq(t) are the flux linkages, vSM,d and vSM,q is the armature voltage, ism,d and
ism,q is the armature current. i1,d and i1,q is the currents in the damper windings.
The figure shows that the SM is modeled with a generator convention with currents
with defined direction out of the machine, while the direction of the field current
and the current in the dampers have been assumed to be flowing in to the machine.

Figure 5.2: Equivalent of the SM for the d-axis.

Figure 5.3: Equivalent of the SM for the q-axis.

From the equivalent circuit it can be seen that the voltages vSM,d and vSM,q can be
written as

vSM,d(t) =
1

ωb

d

dt
ψd(t)− raiSM,d(t)− ψq(t)ωSM(t) (5.1)
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vSM,q(t) =
1

ωb

d

dt
ψq(t)− raiSM,q(t)− ψd(t)ωSM(t) (5.2)

Here ra is the stator resistance, iSM is the armature current and ψd and ψq are the
armature flux linkages. The voltage equations for the rotor can be seen in equations
5.3-5.5. From the equivalent circuit the following context can be interpreted. These
equations describe the rotor voltages, flux linkages and currents.

vfd(t) =
1

ωb

d

dt
ψfd(t)− rfdifd(t) (5.3)

0 =
1

ωb

d

dt
ψ1d(t)− r1di1d(t) (5.4)

0 =
1

ωb

d

dt
ψ1q(t)− r1qi1q(t) (5.5)

5.2.2 Flux linkage equations

Writing the stator flux linkage equations results in 5.6 and 5.7. Here lad and laq are
the armature mutual inductance and ll is the armature leakage inductance.

ψd = −(lad + ll)iSM,d(t) + ladifd(t) + ladi1d(t) (5.6)

ψq = −(laq + ll)iSM,q(t) + laqi1q(t) (5.7)

The rotor flux linkage equations can be written as equation 5.11 - 5.13. Here lffd,
l11d, l11q are the self-inductance of the d-axis and q-axis damping circuit, lfd, l1d, l1q
are the leakage inductances and lf1d is the mutual inductance between the d-axis
damping circuit and the field.

lffd = lf1d + ifd (5.8)

l11d = lf1d + i1d (5.9)

l11q = laq + i1q (5.10)

ψfd = lffdifd(t) + lf1di1d(t)− ladiSM,d(t) (5.11)

ψ1d = lf1difd(t) + l11di1d(t)− ladiSM,d(t) (5.12)

ψ1q = l11qi1q(t)− ladiSM,d(t) (5.13)

5.3 State space model and control design
The equations resulting from the state space model of the SM can be seen in the
appendix 11.1.2. By using the equations from the previous chapter the system can
be written in compact form and can be represented in the following manner

v =
1

ωb
l
d

dt
i(t)− ri(t)− JψωSM(t) (5.14)
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In order to write this in sate space form the equation is transformed to

d

dt
i(t) = l−1ωb(v + ri(t) + JψωSM(t)) (5.15)

In order to find these equation and implement them in Matlab, Maple have been
used. The i matrix is (id,sm iq,sm if,sm i1d,sm i1q,sm)T

5.3.1 SM equations of motion

In order to model the dynamics of the SM the swing equation is used. This is done
in a similar manner as the implementation in the VSM chapter. As in the VSM the
swing equation is modeled as the first derivative of the rotational speed equal to the
difference of the mechanical and the electromagnetic torque.

TSM
d

dt
ω(t) = Tm(t)− Te(t) (5.16)

Tm and Te are given by

Tm =
pm,SM(t)

ωSM(t)
(5.17)

Te = ψd(t)iSM,q(t)− ψq(t)iSM,d(t) (5.18)

In order to define the phase shift of the grid voltage and the SM voltage the state
δθSM is defined. This is in order to model the SM in the SRRF and can be expressed
as

δθsm = θsm − θg (5.19)

Here θsm describes the angle of the reference frame of the SM, while θg is the angle
of the grid voltage. In order to achieve state space form the first derivative of
the expression 5.19 leading to the right hand side of the expresssion to be angular
velocities as

d

dt
δθsm = ωsm − ωg (5.20)

5.3.2 Reactive power control

The reactive power control is implemented as a droop function. A low pass filter
on the measured value of the reactive power produced by the SM is subtracted to a
reference then multiplied with a droop gain, here kq,sm, and finally subtracted to the
voltage amplitude reference. The low pass filter filtering the reactive power leads
to the state variable qm,sm. The block chart of the implementation can be seem in
figure 5.4. This leads to the expression

d

dt
qmsm(t) = −ωf,smqm,sm(t) + ωf,smqsm (5.21)

(5.22)
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where the reactive power is defined as

qsm(t) = −vsm,d(t)ism,q(t) + vsm,q(t)ism,d(t) (5.23)

The reactive power control sends its signal to the exiter and AVR. This signal can
be expressed as

v̂r∗sm(t) = v̂∗sm(t) + kq,sm(t)− qm,sm (5.24)

Figure 5.4: Droop function for reactive power.

5.3.3 Exiter with AVR

The exitation system is modeled as a first order delay. It takes in the reference value
of the voltage v̂r∗sm and controls the field voltage directly. The control objective of
the AVR is to control the terminal voltage by using the adjusting the field voltage.
It is controlled using a PI with a voltage reference along with a droop function for
the reactive power as seen in figure 5.5. Because of the integration part of the PI-
controller, the state ζ is introduced. Using the first order delay the field voltage vfd
can be modeled as

d

dt
vfd(t) =

v∗fd(t)

Tex
− vfd(t)

Tex
(5.25)

Tex is the filter time constant, and from figure 5.4 and 5.5 it can be seen that

v∗fd(t) = kp,ex(v̂
r∗
sm(t)− v̂sm(t)) + ki,exζ(t)) (5.26)

d

dt
ζ(t) = v̂r∗sm(t)− v̂sm(t) (5.27)

Figure 5.5: Frequency droop with a first order delay.
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5.3.4 Governor

For controlling the frequency, active power and the diesel generator the topology
in figure 5.6, have been implemented. The frequency is controlled with a droop
function, added to a power reference which then goes through a first order delay.
The output of the controller is pm, and symbolizes the mechanical power reference
sent to the diesel generator which then deliverers mechanical power to the SM. ω∗vsm
and ωsm and p∗sm symbolizes the frequency set point, the actual frequency and the
SM active effect set point respectively.

p∗m,sm(t) = p∗sm(t)− kω,sm(ωsm(t)− ω∗sm(t)) (5.28)

Because of the first order delay, the mechanical power can be expressed as

d

dt
pm,sm =

p∗m,sm
Tgt

− pm
Tgt

(5.29)

Figure 5.6: Frequency droop with a first order delay.

5.4 Small signal model
The states represented in the small signal model can be seen in equation 5.30.

x = [vd,sm vq,sm i0,d,sm i0,q,sm id,sm iq,sm ifd,sm i1d,sm i1q,sm ωsm δθsm pm,sm ...

qm,sm ζsm vfd,sm]

u = [v̂g,d v̂g,q ωg p
∗
sm q∗sm v̂∗ ω∗sm]

(5.30)

The equations for each state can be seen in the Appendix 11.1.2.



Chapter 6

Load model

A load model is included in order to make the system more similar to a marine power
grid. This load is modeled as a inverter feeding a DC-bus and draws continuously
draws power form the grid. As done in the modeling of the VSM, an average model
is used to represent the inverter. The DC side of this inverter is modeled as a ideal
DC voltage source, with a voltage level set to two times the peak phase voltage of
the AC side.

6.1 Control design
The control structure is somewhat similar to the VSM. There is a current controller
as an inner control loop controlling the AC-current of the inverter. This controller
is designed like the current controller implemented in the VSM. A filter for active
damping for oscillations similar to the VSM implementation have also her been im-
plemented in order damp oscillations. A Phase locked loop is used to synchronize
the frequency to the grid. A similar implementation of the PLL can be seen in [30].

Because of the filter used in the active damping and the LCL-filter the following
states can be deduced respectively

d

dt
φl = ωad,lv0,l − ωad,lφl (6.1)

d

dt
icv =

ωb
lf

vcv −
ωb
lf

v0 − (
rfωb
lf

+ jωvsmωb) (6.2)

d

dt
v0 =

ωb
cf

icv −
ωb
cf

i0 − jωbωvsmv0 (6.3)

d

dt
i0 =

ωb
lg

v0 −
ωb
lg

vg − (
rgωb
lg

+ jωvsmωb) (6.4)

(6.5)

Notice that the currents icv and i0 have defined direction leaving the inverter. This
requires the set point of the active power to be negative. This also must be taken
in consideration when modeling the grid voltage.
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The the integral part of the PI-controller in the current current controller is expressed
by

γ load = i∗cv − icv (6.6)

6.1.1 Phase locked loop

The PLL is used to calculate the position of the synchronous rotating reference
frame by measurements. This is done by measuring the voltage at the capacitor in
the LCL-filter and calculating the phase angle. First the signal is transformed in to
dq signals and low pass filtered. This results in the states vPLL

d

dt
vPLL(t) = ωPLLv0(t)− ωPLLvPLL(t) (6.7)

The phase angle error is then found by using the inverse tangent function. The error
between the phase angle is then sent to a PI-controller for minimizing the angle
between the two reference frames. Because of the integrator of the PI-controller the
state εPLL is introduced as

d

dt
ε = tan−1(

vpll,q(t)

vpll,d(t)
) (6.8)

Since the modeling of reference frame of the state space model is done with respect
to the SM in the system the state δθPLL describing the deviation of the rotating
reference frames, the state results in

d

dt
δθpll(t) = ωb(ωpll(t)− ωg(t)) (6.9)

The implementation of the PLL can be seen in figure 6.1. The incoming voltage
signals have been low pass filtered. Then the angle deviation θ is calculated by using
the inverse tangent. The desired deviation between the reference frames is zero, and
the deviation goes to the PI-controller. The normalized frequency is added. The
transformation of the frequency to an angle is an integrator. The integrator is in
wrapped state, oscillating from 0 to 2π, creating a sawtooth signal used for the
park-transformations.

6.2 State space model
The equations presented in this chapter forms the states space model with the states
seen in 6.10.

xload = [v0,d,load v0q,load icv,d,load icv,q,load γd,load γq,load i0d,load i0q,load

φd,load φq,load ζload isd,load isq,load qm,load ωload δθload κload]

uload = [i∗cv,d i
∗
cv,q]

(6.10)

A summary of the equations for each states can be found in the Appendix 11.1.1.
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Figure 6.1: Phase locked loop. The incoming voltage signals have been low pass
filtered.
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Chapter 7

Small signal model

The full model for the SM and VSM results in a equation system of 47 states and
10 inputs as seen in 7.1. The equations for most of the states is derived in previous
chapters. Models for the VSM, SM and load, each connected to a grid, have been
presented. In addition to this a model with only the VSM and SM, and only the
VSM and load have been analyzed and the whole system together.

xvsm = [v0,d,vsm v0q,vsm icv,d,vsm icv,q,vsm γd,vsm γq,vsm i0d,vsm i0q,vsm

φd,vsm φq,vsm ζvsm isd,vsm isq,vsm qm,vsm ωvsm κvsm]

xsm = [vd,sm vq,sm i0,d,sm i0,q,sm id,sm iq,sm ifd,sm i1d,sm

i1q,sm ωsm δθsm pm,sm qm,sm ζsm vfd,sm ]

xload = [v0d,l vcvq,l icvd,l γd,l γq,l i0d,l i0d,l φd,l

φq,l vpll,d,l vpll,d,l δθpll,l vg,d,l vg,d,l]

uvsm = [p∗vsm q∗vsm v̂∗vsm ω∗vsm]

usm = [p∗sm q∗sm v̂∗sm ω∗sm]

uload = [i∗cv,d,load i
∗
cv,q,load]

(7.1)

In order to implement the different variations of the models, some equations have
been changed. This mainly relates to the states that appears in the coupling equa-
tions tying the system together. This is the output currents i0 and the grid voltage
vg. The state δθV SM is removed from the model containing both SM and VSM.
This is because of the modeling choice of using the VSM as reference for the SRRF.
The state δθSM and δθpll is for the full system model referenced to the frequency of
the virtual rotor of the VSM. For the grid connected models the state vg have been
replaced by the input values v̂g and is represented in the u-matrix. When putting
the full system model together a few alterations have to be done to the equations in
order to tie the different components together. As the grid equivalent is removed,
states for the grid voltage must be introduced. These can be derived as the current
summation in a node.
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I0,vsm + I0,sm = I0,load +
Vg

Rl

+ cl
d

dt
Vg (7.2)

Here the left-hand side is the sum of currents going in to the AC-bus, namely the
currents from the VSM and SM, and the right-hand side is the sum of outgoing cur-
rents which is the current going to the load model and the resistor and capacitance
on the AC-bus. This equation is not in per unit. The problem with this equation is
that the currents is phase shifted and is not in phase as this equation may assume.
Since the reference is the VSM-angle the currents i0,sm and i0,load needs to be rotated
such that the phase angel shift is taken in consideration. As shown in chapter 2,
section 3.3 this could be done with the states δθsm and δθload representing the phase
shift from the VSM for the SM and load model.

Using the rotation matrix derived in chapter two the equation for the first derivative
of the grid voltage can be rewritten as

d

dt
vg,d = ωbωvsmvg,q − ωb

vg,d
clrl

+ ωb
i0,vsm,d
cl

+ ωbi0,load,dcos(δθload)

−ωbi0,load,qsin(δθlaod) + ωbi0,d,smcos(δθsm)− ωbi0,qsin(δθsm)

d

dt
vg,q = −ωbωvsmvg,d − ωb

vg,q
clrl

+ ωb
i0,vsm,q
cl

+ ωbi0,load,qsin(δθload)

+ωbi0,load,qcos(δθlaod) + ωbi0,d,smsin(δθsm) + ωbi0,qcos(δθsm)

(7.3)

Here the equation is on per unit form and the phase shift is taken in consideration.

Since the reference angle of the phase shift, the state δθvsm have no function and is
therefore removed. The expressions for the states i0,sm and i0,load also needs to be
altered in order to take the phase shift in consideration. The equation altered for
the states belong to the load model is

d

dt
i0,d,load = ωb

v0,d,load

lg,SM
− ωb

i0,d,loadrg
lg,load

+ ωbωvsmi0,q,load −
ωbvg,dcos(δθ)

lg,load
− ωbvg,qsin(δθ)

lg,load
d

dt
i0,q,load = ωb

v0,d,load

lg,load
− ωb

i0,q,loadrg
lg,load

− ωbωvsmi0,d,load +
ωbvg,dsin(δθ)

lg,load
− ωbvg,qcos(δθ)

lg,load

and the change in the equations of the SM is

d

dt
i0,d,SM = ωb

v0,d,SM

lg,SM
− ωb

i0,d,SMrmg
lg,sm

+ ωbωvsmi0,q,SM −
ωbvg,dcos(δθ)

lg,SM
− ωbvg,qsin(δθ)

lg,SM
d

dt
i0,q,SM = ωb

v0,d,SM

lg,SM
− ωb

i0,q,SMrmg
lg,sm

− ωbωvsmi0,d,SM +
ωbvg,dsin(δθ)

lg,SM
− ωbvg,qcos(δθ)

lSM
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Parameter Value Parameter Value Inputs Value
Sb 2.75 · 106MVA Tsm 4s p∗sm 0.5
Vb 690VLL,RMS kd,sm 40 q∗m,sm 0
ωb 2π · 50Hz Tgt,sm 0.5s ω∗sm 1
Ta,vsm 4s Tex,sm 0.1s v̂∗sm 1
kd,vsm 40 kp,ex 13.2 p∗vsm 0.5
ωd,vsm 5 rad

s
ki,ex 38.5 q∗vsm 0.2

ls,vsm 0.25pu kω,sm 20 v̂∗vsm 1
rs,vsm 0.1pu ωf,sm 1000 rad

s
ω∗vsm 1

kpc,vsm 1.27 kq,sm 0.2 i∗cv,dload -1
kic,vsm 15 cg,sm 1.5 · 10−5pu i∗cv,q,load 0
kad,vsm 1.5 lg,sm 0.2pu
ωad,vsm 50 rad

s
rg,sm 0.01pu

kω,vsm 20 cl 1 · 10−2pu
kpv,vsm 0.29 rl 0.2pu
kiv,vsm 92 kp,pll 0.084
ωqf,vsm 200 rad

s
ki,pll 4.7

kq,vsm 0.1pu kp,p 0.81
rf,vsm 0.003pu ki,p 167
lf,vsm 0.08pu kp,c 1.27
rg,vsm 0.005 ki,c 11.8
lg,vsm 0.074 kad 1.5

Table 7.1: Parameters used for the the full system model.

The small signal model for the full system contain the states seen in 7.4. The equa-
tions used for this model can be seen in the Appendix 11.1.3

x = [v0,d,vsm v0q,vsm icv,d,vsm icv,q,vsm γd,vsm γq,vsm i0d,vsm i0q,vsm...

φd,vsm φq,vsm ζvsm isd,vsm isq,vsm qm,vsm ωvsm κvsmvd,sm vq,sm...

i0,d,sm i0,q,sm id,sm iq,sm ifd,sm i1d,sm i1q,sm ωsm δθsm pm,sm ...

qm,sm ζsm vfd,smv0d,l vcvq,l icvd,l γd,l γq,li0d,l i0d,l φd,l...

φq,l vpll,d,l vpll,d,l δθpll,l vg,d,l vg,d,l ρl vdc,l]

u = [p∗vsm q∗vsm v̂∗ ω∗vsm p∗sm q∗sm v̂∗ ω∗sm i∗cv,d i
∗
cv,q]

(7.4)

The table 7.1 describes the base values for the model containing the VSM, SM
and the load model. Some parameters may have been changed when modeling and
simulating the different variations of the system.
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Chapter 8

Simulation results

In order to analyze the stability of the system, a small signal model was developed,
and the stability of the linear system was investigated. As mentioned, the equation
system was solved in Matlab with respect to the derivative equal to zero. This
gave the stationary values used as linearization points for the respective variable.
The linearized model has been compared to a Simulink simulation to ensure the
linearization is correct. All relevant plots and information are in steady state. The
transient phase leading to the steady state for the VSM, SM and load is not a topic
discussed in this thesis.

8.1 Model verification

The linearized model and a model created in Simulink have been compared in order
to validate the linearized model. The system is exposed to perturbations in variables
defined as inputs seen in the u-matrix. The dynamical response should be similar
to some extent. Because linearization is an approximation method valid around the
linearization point, and that the system is not linear, leaving the linearized area
can give some offsets between the small signal model and the simulated model. Al-
though this is true, the linearization model is still valid for the system in steady
sate and with small disturbances. The offset mentioned will disappear if the pertur-
bations is set to the value used for linearization. The dynamics of the two systems
should be similar if the perturbation is not far from the linearization point. When
testing this the model is in steady state and as a step is done in the input value
the two systems is observed until steady state is achieved with new stationary values.

In order to validate and analyze the model containing the VSM, SM and load, the
three was first tested separately connected to a grid. Then divided in systems, the
VSM connected to the SM and the VSM connected to the load was tested and a
final model of the system containing all three models. This is to validate not only
the small signal model but also the control parameters for the SM and the VSM.
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8.1.1 VSM connected to grid

The inputs used for linearization can be seen in table 7.1. A perturbation on the
system is done by using as step in the active power reference delivered from the
inverter. This step is from 0.5 to 0.55 and back from 0.55 to 0.5. Even though the
VSM model can handle a greater step in active power reference, it is chosen to be
limited to a change of 0.05 because it is desired to compare the response of the VSM
and SM from the next chapter. Because of limitations in the small signal model of
the SM the disturbance is limited to 0.05. As seen in figure 8.1, both the linearized
model and the model simulated in Simulink have a similar dynamic and the offset
in the models is low even despite leaving the linearized area.

The figure 8.1 shows the frequency and the current out of the LCL-filter of the VSM
in addition to the active power delivered from the VSM. As the step in the input
value is done, the speed of the virtual rotor starts to increase, and the currents
start to change leading to a change in the active power. The system stabilizes at
p∗vsm = 0.55 for a moment before the reference value is reset. The transient response
is well damped and reaches steady state almost within a second. The system is well
damped and reaches steady state after a reasonable time.

5 5.5 6 6.5 7 7.5

0.9995

1

1.0005

5 5.5 6 6.5 7 7.5

0.5

0.52

0.54

0.56

5 5.5 6 6.5 7 7.5

0

0.2

0.4

Figure 8.1: This figure show some of the states to VSM connected to the grid. Here
the frequency, active power delivered and current from the VSM of the linearized
model and the model simulated in Simulink of the VSM connected to a grid is
compared. A step change in the delivered active power reference is done, from 0.5
to 0.55
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8.1.2 SM connected to grid

As the VSM, the SM was validated for a perturbation in the active power reference.
The comparison of the dynamical response of the linearized model and the model
made in Simulink can be seen in 8.2. As the plot shows, the linearized model is
a good fit for the simulated model in Simulink. Making a bigger step than 0.05
gives an offset in the states influenced by the perturbation. This may be due to
the mathematical modeling of the SM; the linearized system is less accurate when
leaving the linearization point due to nonlinearities around the linearized are. Be-
cause of this a smaller perturbation is done on the VSM in order to compare the two.

The response of the SM and VSM is similar. As the step is done the frequency
starts rising together with the current coming out of the LCL-filter and the active
power. The difference is the oscillatory behavior of the SM. For the SM, all states
shown in the figure is oscillating more than the VSM but reaches steady state after
a few seconds. Here the advantage of tuning the virtual impedance is displayed.
The damping factor, kd,vsm can be altered in order to achieve a more damped per-
formance for the VSM, while the machine parameters of the SM is constants that
cannot be changed. The oscillations for the SM can also be seen in the current and
the active power but cease after little time and the model reaches steady state.
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Figure 8.2: This figure show some of the states to SM connected to the grid. Here
the frequency, active power delivered and current from the inverter of the linearized
model and the model simulated in Simulink of the VSM connected to a grid is
compared. A step change in the delivered active power reference is done, from 0.5
to 0.55
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8.1.3 VSM and load

The system containing the VSM and load model have been linearized and validated
against a grid model, and the system response can be seen in figure 8.3. Here a
step in the in the active power reference in the load model, icv,d is done from -1.2 to
-1.21. Some offset in the plot for frequency can be seen in the figure. As mentioned
some dynamic characteristics may be lost in the linearization, and a thing to have in
mind is that the state perturbed consists of nonlinear terms. Altering this state can
lead to some difference in the linearized model and the model simulated in Simulink.
Also, the noise in the currents may contribute to the offset. Still the models have
similar dynamics and reaches the same steady state values when in the linearization
point.

The response resulting from the step in the current reference is damped. The fre-
quency shows a transient phase lasting over a second before settling. No oscillations
can be observed in the frequency and the q-axis current, but a small oscillation can
be seen in the d-axis current.
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Figure 8.3: This figure shows the response of the VSM and load model when a step
in the current reference in the load model is done. The step is from 1.2 pu to 1.21
in the d-axis current.
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8.1.4 SM and load

The response of the SM connected to a load model can be seen in figure 8.4. The
signals plotted is the frequency of the SM and the currents out of the filter of the
SM. The change in inputs is identical to the VSM in the previous section, a step
is done in the d-axis current reference in the load model from 1.2 pu to 1.21 pu,
but the response is not similar. As the figure shows, the response is oscillation for
several seconds before settling. This goes for the frequency and the currents out of
the SM. From this figure it can be seen that the SM could use some more damping
on the rotor speed.

It can also in this plot be seen that there is some noise in the currents, but the
frequency of the SM is a good fit. The figure 8.4 shows that the linearized model
and the one simulated in Simulink is a good match.
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Figure 8.4: This figure shows the response of the SM and load model when a step
in the current reference in the load model is done. The step is from 1.2 pu to 1.21
in the d-axis current.

8.1.5 VSM and SM

After validating the VSM and the SM with a grid connection and the load model,
the two systems are coupled together forming its own grid. A resistive and a capac-
itive load is implemented at the bus connection after the LCL-filter for the VSM
and inductor from the SM. The load model is not included in this simulation. The
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Figure 8.5: Figure showing some of the states of the SM and VSM changing because
of a change in reference value in active power.

reisitive load is set to 0.2 pu, while the capacitance is 0.054 pu.

The input values for active power reference, p∗vsm and p∗sm, is set from 0.5 to 0.6 for
both VSM and SM. A step from 0.6 to 0.65 and back after a few seconds is done for
set point to the VSM. The dynamic response of states belonging to the VSM and
SM can be seen in figure 8.5. In these figures it is shown how the active power from
the VSM rises while the active power from the SM decreases. As the step is back
to its original position, the power delivered goes back to its steady state. While the
response of the frequency for the VSM is somewhat similar to the grid connected
case, the current is oscillating more. This may be due to the lack of damping in
the SM. The reason the active power out of both VSM and SM does not go to the
reference value is that the load is not 1.2 pu, and because of the droop controllers
the load is shared.

8.1.6 Full system model

The dynamical response of the model including the VSM, SM and load model can
be seen in figure 8.6. The figure is showing the frequency of the VSM and the SM
in the two top plots, d-axis current for the VSM and SM in the second row and
the q-axis current for the VSM and SM at the bottom. As this figure shows, the
linearized model of the system and the Simulink model is a good match. A small
offset in the transient of the current can be observed. This may be due to some loss
of characteristic caused by the linearization. The system goes to the same steady
state value. Although the currents have some disturbance the linearized model lies
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on an appropriate level within the noise.

Comparing the responses of the VSM connected to the load model and the SM con-
nected to the load model to the full system put together it can be seen that the
responses is merged together combining the damped response of the VSM and the
undamped response of the SM. The oscillations for the rotor speed of the SM can
be recognized from the grid connected model. Even though the frequency of the
SM is oscillating, the response of the currents of the SM shows a response that is
dominated by a damped response.
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Figure 8.6: This figure is showing the response of the full system after a step change
in the active power reference from -0.5 to -0.55.
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Chapter 9

Eigenvalue analysis

In addition to evaluate the system response to a perturbation in the defined inputs,
the eigenvalues of the small signal model have been used for a system analysis. The
eigenvalues are calculated from the system matrix A in the steady state equilibrium
points, and with chosen inputs for the system, using Matlab. By defining the input
values when linearizing and changing these in small steps while linearizing each time,
the system eigenvalues can be observed as the input values change. This shows the
stability margin for different inputs of the system and can descirbe how the system
response is with different inputs. The stability of the linearization can be analyzed
using the eigenvalues. If the eigenvalues change relatively much when moving the
linearization points of the inputs, it can be because the system is nonlinear around
these points.

Using the linearized models presented in the previous chapter and calculating the
eigenvalues of each system the participation factors have been calculated. These
can be used to tie each mode to a state and decide what states influence each other.
The participation factors are presented as the main participating factor, meaning
the states with the highest influence of the respective mode is shown. After calcu-
lating the participation factors the values have been normalized using the sum of
the absolute value of each state to the different modes. In addition, the factors have
been sorted from highest to lowest, meaning the first factor have the most influ-
ence of the pole. Values under 10% have been neglected in order to most efficiently
present the results. This means that some information could get lost because some
states are more dominant than the others. The participation factors can be seen in
the tables describing the modes and the main participating factors. If a eigenvalue
is a complex conjugated pair the it will be presented as λn,m. The participation
factors for these modes is the same.

9.1 VSM to grid

As mentioned, the VSM was modeled connected to a grid with 1 pu voltage as shown
in figure 4.1. After calculating the stationary values for the system equilibrium and
linearizing around these operation points the eigenvalues of the system matrix A

51
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was calculated and can be found in table 9.1.

Mode Value Participation factor
λ1,2 -1693.8+6520.4i v0,d,V SM v0,q,V SM icv,d,V SM icv,q,V SM
λ3,4 -1860+6161.2i icv,q,V SM icv,d,V SM v0,q,V SM v0,d,V SM

λ5,6 -1483.7+260.7i i0,q,V SM i0,d,V SM icv,d,V SM icv,q,V SM is,d,V SM is,q
λ7,8 -61.14+305.19i is,d,V SM is,q,V SM i0,d,V SM i0,q,V SM
λ9 -191.77 qm,V SM ζV SM
λ10,11 -57.01+17.78i ζV SM φd,V SM φq,V SM
λ12 -37.97 φq,V SM φd,V SM ζV SM
λ13,14 -6.23+9.03i δθV SM ωV SM κV SM
λ15,16 -9.36+0.19i κvsm δθ γq,V SM ωV SM φd,V SM γd,V SM φq,V SM
λ17 -12.05 γd,V SM γq,V SM

Table 9.1: VSM eigenvalues together with participation factors

The first thing to notice is that the real part of each eigenvalue is negative. If a
real part of the any of the eigenvalues was positive it would imply that the system
is unstable [27]. By looking at table 9.1 it can be observed that the poles are well
damped and sufficient fast. The lowest damping ratio results from the modes λ7,8

and is equal to −σ7,8/
√
σ2

7,8 + ω2
7,8 ≈ 0.19 where σ is the real part and ω is the imag-

inary part. All of the eigenvalues that have a complex part seem to have a sufficient
real part leading to damped response. The eigenvalue closest to origo is the com-
plex conjugated pair λ13,14, but their real value is not of any concern because despite
being the highest it is still far from the right half plane. The complex conjugated
pairs λ1,2 and λ3,4 have a high oscillation frequency but is well damped. The states
participating in these modes is the voltage over the filter capacitor and the current
from the inverter. Looking at the participation factors it can be noticed that some
states are more often represented as a major participant for different modes. In this
case the currents of the VSM shows that many states are coupled with other and is
a participant in many modes.

The figure 9.1 shows how the eigenvalues of the VSM model connected to a grid
changes as the set point for delivered power for the linearized model is changed. By
changing the input values used for linearization the eigenvalues change. The plot is
divided into three parts, zoomed in on the groups of eigenvalues. The plot shows
how the eigenvalues change as the set point is changed with small steps from -2 to
2 pu and is zoomed in on different locations in the left half plane. The interval
testes describes power flow in both directions, meaning if a battery energy storage
system is utilized this would describe charging and discharging the battery. Even
though the interval of change in setpoint is relatively big, the system modes is not
much inflicted, the modes are relatively stationary. This means that the VSM model
connected to a grid can operate within an operation range without having trouble
with stability if the only thing changing is the load delivered or absorbed.
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Figure 9.1: Plot showing how the VSM eigenvalues changes as the setpoint of deliv-
ered power is changed from -3 to 3 pu. Starting with the fastest eigenvalues on top
and the slowest on the bottom.

9.2 SM to grid

The SM was first modeled connected to a grid, with the same assumptions for the
grid voltage as in the VSM. The eigenvalues can be seen in the table 9.2. The
eigenvalues for the SM contain some critical modes. There is two high frequency
complex conjugated pairs λ1−4. These are the modes belonging to the filter of the
SM. Even though they have a high imaginary part, they have a real part damping
some of the oscillations. The complex conjugated pair λ13,14 is the modes closest to
origo. As seen in the table of eigenvalues the participation factors for this mode is
the currents ism,d, ism,q, if , i1,d, i1,q and ζ. Even though this eigenvalue is slow with
a fairly high time constant, its imaginary part is low enough to not give unwanted
oscillations.

In figure 9.2 the eigenvalues for the system linearized around a set point changed
from 0 to 3. Not all eigenvalues are included in this figure because they had no
relevant change. By inspecting the modes in table 9.2, it can be deduced that the
modes not included are the modes λ1,2, λ3,4 and λ5. The main participating states
for these modes are the output of the filter and the reactive power. Since the active
power is changed and the voltage is controlled to be constant, it is reasonable for
these states not to be influenced in a change in delivered active power. The complex
conjugated pair λ1,2, λ3,4 is the modes resulting from the LCL-filter. This can be
argued based on the participation factors. According to the participation factors,
the mode λ5 is the mode coming from the low pass filtered reactive power, qm. This
mode is around real 1000, which is about the same as the cut off frequency of the
low pass filter, 1000 Hz.
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Mode Value Participation factors
λ1,2 -1482.2 + 32579.4i vsm,d i0,sm,d vsm,q i0,sm,d
λ3,4 -1500.6 + 31842.5i vsm,q i0,sm,q vsm,d i0,sm,d
λ5 -1000.5 qm,sm
λ6,7 -185.02 + 306.55i ism,d if,d ism,q i1d i1,q
λ8 -46.49 i1d if,d ism,d
λ9,10 -2.3522 +27.2682i ωsmism,d if,d ism,q
λ11,12 -8.3228 + 5.0535i if,d ism,d i1,q ism,q
λ13,14 -1.2694 + 1.2866i if,d ζsm ism,d i1,q
λ15 -4.3069 pm,sm if,d ism,d

Table 9.2: Table of eigenvalues and the main participating factors for the model of
the SM connected to a grid.

-50 -45 -40 -35 -30 -25 -20 -15 -10 -5 0

-40

-20

0

20

40

0

1.5

3

-104 -102 -100 -98 -96 -94 -92

-1000

0

1000

0

1.5

3

-185.15 -185.1 -185.05 -185 -184.95

-1000

0

1000

2000

0

1.5

3

Figure 9.2: Plot of the eigenvalues of the SM as the reference point of the active
power delivered i changed from 0 to 3. The first of these three shows the modes
nearest origo, second the mode around -100 along the real axis and the second the
complex conjugated pair around -180 real. Dark blue symbolizes the eigenvalues
when the set point of active power is 0, and the color changes as the setpoint goes
to 3

As the VSM, the SM eigenvalues can handle a reasonable operating area, with no
relatively big changes in the eigenvalues, as the dynamic response in the last chap-
ter describing the response of the linearized model. As seen in the figure 9.2 of the
changing eigenvalues, the critical modes nearest origo moves nearer the right half
plane and some gets a increased imaginary value. This means that the system will
have less damping and be less robust against disturbances.

In figure 9.3 the response of the SM frequency after a step in the grid frequency of
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Figure 9.3: A step change on 0.2 pu in the grid frequency. The markings shows the
peak time and value of the frequency, ωsm, of the SM

the SM can be seen. The step is from 1 pu to 0.98 pu for ωg. As seen in the figure the
frequency oscillates for some time before stabilizing. In the figure the period is mea-
sured to approximately 0.23 seconds which corresponds to the frequency 4.34Hz.
By transforming the frequency from 1

s
to rad

s
by multiplying with 2π the frequency is

27.3ω
s
, the same as the unit for the imaginary part of the eigenvalue. By looking in

table 9.2 the imaginary part of the complex conjugated mode λ9,10 is approximately
the same. This means that this pole is influenced by the grid frequency. From the
participation factor it can be seen that both the angular velocity and the angle devi-
ation is represented in this mode. Comparing the real part to the imaginary part of
the eigenvalue, the damping factor can be found by −σ9,10/

√
σ2

9,10 + ω2
9,10 resulting

in a damping factor of ≈ 0.0859. According to [17] a damping ratio greater than
0.05 for rotor oscillations is considered desirable in practice. The oscillation can also
be seen in figure 8.5 of the frequency of the VSM after the perturbation in the grid
frequency is done. This oscillating behaviour can also be seen in the system response
of a step change in the active power reference. Comparing the VSM response with
grid connection and the SM with grid connection, it can be seen that the VSM have
significantly more damping. When connected to each other the oscillating is still
there but is more damped.

9.3 VSM to load

The table 9.3 contains the eigenvalues and the main participating factor of the
system consisting of the VSM and load model. As the table show there is many
eigenvalues with high damping. The first eigenvalues can also here be recognized as
modes resulting from the filter values and according to the main participant factor
the states involved only appears in these modes. Since these modes are the least
dominant of the system with a low time constant, they pose no concern regarding
stability and reliability of the power grid. The response of a perturbation of these
modes will be a high frequency transient with a low amplitude and low time constant
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because of the time constant of the modes.

A thing to notice is that the system has many overdamped eigenvalues. Many of the
complex conjugated eigenvalue pairs can be recognized from the main participation
factor where both eigenvalues are on the real axis. The outcome of all this damping
can be seen in the figure of with the system response of a step in the active power.
The dynamics are slow and damped, and take some time reaching steady state. This
results in a slow and stable system. The damping might be a bit excessive for this
application. The VSM application have a damping coefficient, kd,vsm, on 40. This
causes the system to be very damped, and the response slow.

The figure 9.4 shows the trajectory of the eigenvalues of this system as the load
models starts with a -2 pu current reference and goes to 0 pu. As seen in the figure,
the eigenvalues seem volatile. As the input is changes and the system is linearized
again, the placement of the modes is different, resulting in the behavior of the sys-
tem to change. This may be because of the nonlinearity of the linearization area.
If the system is nonilinear around the point of linearization the linearized model
will change relatively big because of the nonlinear system dynamics. It seems as
when the load goes up the eigenvalues λ21,22 becomes less damped and the natural
frequency goes up. This mode belongs to the PLL of the load. This means that the
reference frame of the load model will become less damped and the synchronization
will have more perturbations as the d-axis current is increasing.
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Figure 9.4: Plot of how the eigenvalues of the VSM connected to the load model
change when the as the load draws more active power. The plot on top shows all
eigenvalues, and the bottom is zoomed in.
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Mode Value Main participation factor
λ1,2 -76212+311.85i vg,dvg,q
λ3,4 -23466+311.27i vg,dvg,qi0,vsm,di0,vsm,qi0,load,di0,load,q
λ5,6 -1848.4+6493.4i icv,d,vsmicv,q,vsmv0,vsm,dv0,vsm,q

λ7,8 -1999.1+6141.7i icv,d,vsmicv,q,vsmv0,vsm,dv0,vsm,q

λ9.10 -2465.5+6234.5i v0,load,dv0,load,qicv,d,loadicv,q,load
λ11,12 -2595.2+5929.6i v0,load,dv0,load,qicv,d,loadicv,q,load
λ13,14 -1285.4+280.22i is,d,vsmis,q,vsm
λ15,16 -257.88+315.16i ism,dism,di0,d,vsmi0,q,vsm
λ17 -465.7+0i vpll,q
λ18 -500+0i vpll,d
λ19 -193.63+0i qm,vsm
λ20,21 -25.528+48.507i δθloadεload
λ22,23 -56.519+20.7i ζvsmφd,vamφq,vsm
λ24 -37.345+0i φq,vsmζvsmφd,vam
λ25,26 -23.998+7.4087i εloadφd,loadφq,load
λ27 -20.776+0i ωvsmε
λ28 -1.3293+0i κvsmωvsm
λ29 -7.8615+0i γd,loadγq,load
λ30 -9.1531+0i γd,loadγq,load
λ31 -11.13+0i γq,vsmγd,vsm
λ32 -12.08+0i γd,vsmγq,vsm

Table 9.3: Table showing the eigenvalues and main participating state in each mode
for the VSM model connected to the load model
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9.4 SM to load

The table 9.4 the eigenvalues and the main participating state of the respective mode
of the model with SM model connected to the load model. Many of the modes are
similar to the model of the VSM connected to grid. The exception is that the states
from the load model is included.

As the dynamic response of a step in the d-axis current reference in the load model
presented in the previous section shows, the model has some undamped modes. As
the SM to grid, the mode resulting in oscillations can be seen in the table. This is
the complex conjugated modes λ25,26. These modes have a damping ratio of approx-
imately 0.1 and a time constant of 2.4. This means that this mode is slow and have
little damping and will dominate the system dynamics. This corresponds with the
response of the step done in the previous chapter, where the frequency is oscillating
and takes seconds to reach steady state, but also the currents is oscillating as the
frequency does.

The figure 9.5 shows how the eigenvalues of the SM connected to load changes as
the current reference is changed from -2 pu to 0. This plot is enhanced on order
to show the eigenvalues closest to origo. This was done because the other modes
showed to have little of the change in the current reference. It can be seen that the
dynamics of the dominant modes, λ25,26, gets an increased real part as the current
reference changes, thus leading to a higher damping ratio.

-70 -60 -50 -40 -30 -20 -10 0

-50

0

50

-2

-1.6

-1.2

-0.8

-0.4

0

-9 -8 -7 -6 -5 -4 -3 -2 -1 0

-10

-5

0

5

10

-2

-1.6

-1.2

-0.6

-0.4

0

Figure 9.5: Plot of how the eigenvalues of the SM connected to the load model
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Mode Value Main participation factor
λ1,2 -49891+45684i vg,dvg,qi0,sm,di0,sm,q
λ3,4 -49891+45060i vg,dvg,qi0,sm,di0,sm,q
λ5,6 -2005.5+6461.1i icv,d,vsmicv,q,vsmv0,vsm,dv0,vsm,q

λ7,8 -2186.8+6106.8i icv,d,vsmicv,q,vsmv0,vsm,dv0,vsm,q

λ9.10 -651.6+4698.8i vsm,dism,d
λ11,12 -642.38+3834.4i vsm,qism,q
λ13 -1000+0i qm,sm
λ14,15 -400.08+278.86i ism,dism,dif,di1,di1,q
λ16 -500+0i vpll,d
λ17 -484.47+0i vpll,qism,d
λ18,29 -30.419+47.595i i1,qism,qism,d
λ20 -43.321+0i i1,dif,d
λ21,22 -26.433+6.9638i if,dism,dεpll
λ23,24 -1.8935+5.2556i ism,dif,d(ωsm)
λ25,26 -0.41804+3.9289i ωsmpm,sm
λ27 -2.7571+0i pm,sm
λ28,29 -8.6996+1.1522i γd,vsmγq,vsm
λ30 -7.6504+0i ism,dif,dvf,d

Table 9.4: Table showing the eigenvalues and main participating state in each mode
for the SM model connected to the load model

9.5 SM and VSM

This section contains the VSM and SM connected. The eigenvalues of the system
matrix A can be seen in table 9.5 along with the main participating factors.

The eigenvalues coming first in the table, λ1−8, is the modes resulting from the LCL-
filter. These eigenvalues stand out because of their high real and imaginary part.
From the participation factors for these modes it can be seen that there appears
only eight states, the same as there are modes, meaning there is also no apparent
coupling between the states coming from the equations for the electrical model for
the LCL-filter.

The modes λ15 and λ18 comes from the low pass filters filtering the states qsm and
qm,vsm respectively. These modes have a real part very close to the cut off frequency
of the respective filter, and by looking at the participation factors it can be seen that
there are no other states that influence this mode in any relevant way. The low pass
filters filtering the mechanical power and the field voltage for the SM cannot be seen
so easily as these filters. They have a cut off frequency of 0.5 and 0.25 respectively,
but there are significant coupling between the two states pm,sm and vf,d, and other.

The mode resulting in the oscillations when making a step in the grid frequency,
λ23,24, is still present with a high imaginary part compared to its real part. By
comparing it to the SM grid connected model it can be seen that the damping ratio
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Mode Value Main participation factor
λ1,2 -1489.3+32846i i0,d,smi0,q,smvsm,dvsm,q
λ3,4 -1506.8+32110i i0,d,smi0,q,smvsm,dvsm,q
λ5,6 -1681.8+6529.3i i0,d,vsmi0,q,vsmv0,vsm,dv0,vsm,q

λ7,8 -1850.9+6166.3i i0,d,vsmi0,q,vsmv0,vsm,dv0,vsm,q

λ9.10 -411.88+1533.6i ism,dism,qvg,dvg,q
λ11,12 -1312.8+279.5i is,vsm,dis,vsm,d
λ13,14 -422.42+894.4i ism,dif,dvg,dvg,q
λ15 -1000+0i qm,sm
λ16,17 -98.874+307.92i ism,dif,dism,qii,diiq
λ18 -195.93+0i qm,vsm
λ19,20 -52.099+22.949i ζvsmφd,vsmφq,vsm
λ21 -42.883+0i i1,dif,d
λ22 -37.617+0i φq,vsmφd,vsmζvsm
λ23,24 -2.6908+19.916i ωsmism,dif,d
λ25 -15.476+0i ωvsmκvsm
λ26 -12.065+0i γd,vsmγq,vsm
λ27 -11.098+0i γd,vsmγq,vsm
λ28,29 -6.1207+3.2936i ism,qi1,qvf,d
λ30,31 -1.8427+0.88061i pm,smκvsm
λ32,33 -1.34+1.8609i ζsmism,dism,q

Table 9.5: Eigenvalues and main participating factor for the VSM and SM.

have increased from approximately 0.0859 to 0.13. This explains the difference in
the dynamic response between the grid connected model and the model connected
to the VSM. The natural frequency has for this mode have decreased, resulting in a
less oscillating response.

A eigenvalue sweep have for this model can be seen in figure 9.6. A change in the
reference value of the VSM is done. The interval of the change of the active power
reference for the SM is from -1 to 1, while the active power reference of the SM was
set to 1.2 for the whole sweep. This interval was chosen in order to test the grid
for a realistic operating range, where the VSM can both absorb active power and
deliver. The plots are zoomed in on different parts of the eigenvalue plot and not all
are included because some modes are not influenced by the change in active power
and remains on the same place through the change of the power reference.
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Figure 9.6: Plots showing how the eigenvalues changes when the reference value for
delivered power is changed from -1 to 1. The plot starts with dark blue.

9.6 Full system model

The eigenvalues of the system matrix A belonging to the full system can be seen in
table 9.6, along the main contributors for each mode.

As in the system where the VSM is connected to the SM, there is possible to rec-
ognize some of the modes from the grid connected models. The modes λ1−12 is the
modes resulting from the filters of the outgoing signals from the VSM, SM and load
models. Comparing these values to the other modes of the small signal models a
complex conjugated pair is different. This is the modes λ1,2 connected to the grid
voltage states vg, and the high real part comes as a result of the values of the loads
connected directly on the AC-bus, cl and rl. These have a significantly higher real
and imaginary part than the rest of the modes. Keeping in mind that there are
other minor participating states, it can be observed that the participation factors of
these states does not appear as a major participant in any other mode.

The modes λ19, λ22, λ23 and λ26 comes from the low pass filters filtering the states
qsm, vpll,q, vpll,d and qm,vsm respectively. The values of the real part of the modes are
close to the cut off frequency of the filters, and these low pass filters have a cut off
frequency close to the real part of the eigenvalue. There are some other low pass
filters used in a similar way as the filters mentioned, but they have a relatively low
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Mode Value Main participation factor
λ1,2 -1.6744·105+320.43i vg,dvg,q
λ3,4 -31931+320.37i i0,sm,di0,sm,q
λ5,6 -2001.2+6488.9i v0,load,dv0,load,qicv,d,loadicv,q,load
λ7,8 -1588.2+6366.2i icv,d,vsmicv,q,vsmv0,vsm,dv0,vsm,q

λ9,10 -2181.4+6113.1i v0,load,dv0,load,qicv,d,loadicv,q,load
λ11,12 -1833.4+6023.2i icv,d,vsmicv,q,vsmv0,vsm,dv0,vsm,q

λ13,14 -1000.7+5375.8i vsm,dism,d
λ15,16 -928.31+4495.8i vsm,qism,q
λ17,18 -1328.9+282.35i is,d,vsmis,q,vsm
λ19 -1000+0i qm,sm
λ20,21 -443.47+303.01i ism,dism,qif,di1,di1,q
λ22 -492.1+0i vpll,q
λ23 -500+0i vpll,d
λ24,25 -92.393+313.81i ism,dism,qif,di1,di1,q
λ26 -193.84+0i qm,vsm
λ27,28 -8.6945+41.621i εloadδθpll
λ29,30 -54.189+20.111i φq,vsmφd,vsmζvsm
λ31 -44.025+0i i1,dif,dism,d
λ32,33 -35.514+13.673i φd,loadφq,load
λ34 -37.676+0i ζvsmφq,vsmφd,vsm
λ35,36 -2.3584+18.643i ism,dif,dωsmδθsm
λ37 -15.695+0i ωvsmκvsm
λ38 -12.069+0i γd,vsmγq,vsm
λ39 -11.204+0i γq,vsmγd,vsm
λ40 -9.0695+0i γd,loadγq,load
λ41 -8.7828+0i γq,loadγd,load
λ42,43 -5.6752+2.9923i vf,dif,di1,q
λ44,45 -2.0434+2.4174i ζsmism,dism,q
λ46,47 -1.8078+0.95617i pm,smκvsmism,dif,d

Table 9.6: Table showing the eigenvalues and the main participating state of each
node.



9.6. FULL SYSTEM MODEL 63

cut off and is coupled with other states. The last pole, λ47, comes partially from
the filter symbolizing the delay of the diesel generator. This first order delay has a
cut off frequency of 2 Hz. Despite having a relatively large filter time constant the
states are coupled other states, leading to a more damped mode.

The complex conjugated pair λ35,36 can be recognized from earlier. This was the
eigenvalue associated with oscillations of the rotor when a change in the grid fre-
quency occurred. The difference now is that the natural frequency is lower while
the real part is about the same. This leads to a higher damping ratio for the oscilla-
tions concerning the oscillations in the speed of the SM rotor. Comparing it to the
eigenvalue λ37, which is according to the participation factors the eigenvalue linked
to the speed of the virtual rotor of the VSM, it can be seen that the SM have a
damping ratio of 0.13, while the VSM have a damping ratio of 1.

In figure 9.7 a plot of how the eigenvalues changed based on how much power is
drawn from the load model. Here i∗cv,d,load changes from -2 to 0. Before simulation
the set point of delivered power, p∗V SM and p∗SM , of both the SM and the VSM was
set to 1, in accordance base case for the full system model. Comparing this sweep
with the others done previously, it can be seen that there are not that much change.
A important observation from this is the trajectory of the modes λ27,28. This mode
is changing fast towards the right half plane as the current increases. This plot
shows that the models will work in the operating range -2 to 0, but the response
will be better as the power of the inverter increases. The modes λ27,28 become less
dominant as the absolute value of the real part increases.

Observing the eigenvalue trajectory in figure 9.7 and focusing on the eigenvalues
with the highest real value, it can be seen that the eigenvalues will cross if the load
gets too high. This means that if the power consumption of the load model becomes
to great the system will become unstable.

As mentioned in Chapter 2, section 2.2 Virtual synchronous machine, the VSM
implementation is sensitive to changes in the virtual impedance. In figure 9.8 the
parameter rs,vsm is changed from 0.001 to 1. Here it can be seen that the system
goes from stable to having pole in the right half plane meaning instability. It can
be seen that many of the poles is influenced by changing this parameter.
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Figure 9.7: The plot on top is showing a zoomed plot of the eigenvalues, and the
lowest plot is showing the eigenvalues closest to origo, as the power drawn from the
load model goes from 0 to 2.

-3500 -3000 -2500 -2000 -1500 -1000 -500 0

-5000

0

5000

0

0.4

0.8.

1.2

1.6

2

-60 -50 -40 -30 -20 -10 0

-50

0

50

0

0.4

0.8

1.2

1.6

2

Figure 9.8

This figure shows that many of the dominant poles with the highest time constant
is moving towards origo as the virtual stator resistance is increasing.



Chapter 10

Conclusion and future work

A VSM, SM and a load model have been modeled, linearized, validated and ana-
lyzed. The tools used for this task are Matlab, Simulink and Maple. All models
have first been modeled with a grid connection and then models containing different
the different components have been developed. When validating the small signal
models, they have been compared against a corresponding model made in Simulink
using the Simpower systems tool box.

The VSM is adapted from [5]. This type of implementation has been chosen be-
cause of the flexibility. It has no PLL included in the virtual inertia, which makes
it possible to operate without having the need for a frequency to synchronize to.
This is crucial if it is desired to maintain the grid only using the VSM, isolating
the SM from the system. In order to model the SM the equations from [6], with
some alterations, and the SM parameters was used to linearize the model. To help
the algebraic process of inverting and modeling the SM equations, Maple have been
used. Maple have been of great help when modeling the SM, simplifying this alge-
braic process. The load model is built as a simplification of the VSM, with no outer
loop control, meaning the only control implemented in the load model is the current
controller and the PLL. A similar model for the VSC can be found in [9].

The system modeled is symbolizing a marine power grid. The results presented
shows that the different small signal models are stable and can operate under vari-
ous linearization points. The system can function with all components (SM, VSM,
load) connected. The VSM have shown the ability to adapt to the frequency in the
grid by synchronizing to the other frequency setting components in the grid. In
addition to this a model of the VSM was developed, where the VSM was the only
energy source connected to the load. Because of the design of the virtual inertia the
frequency of the virtual rotor was able to maintain the frequency without the need
of external measurements.

The small signal models created have given the possibility to use linear analysis tools
to evaluate stability and system response. The analysis has given further insight in
the system response and the way that it is coupled. By comparing the linearized
model with a corresponding model in Simulink, the models were validated such that
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the system of equations was confirmed implying that the small signal model was
confirmed. After validating the small signal models, linear analysis tools such as
eigenvalues and participation factors have been used to study the system in steady
state.

The control system of the SM managed to maintain a good response to a small
disturbance. A power system stabilizer could be a good choice to implement in the
control system of the SM to keep the electromechanical oscillations to a minimum.
The oscillations of the rotor was shown to be within the desired range. Also, a more
detailed model of the Exiter can give more degrees of freedom when tuning and
better control of the SM rotor oscillations.

The VSM by itself have with the base case a very damped response, as a result
from the tuning parameters of the virtual impedance and the swing equation pa-
rameters. When the VSM and SM is set together the damping of the VSM and the
low damping of the SM results in a response between the two. By examining the
eigenvalues of the systems with different components coupled, it could be seen how
the eigenvalues is influenced by the different models. The SM was underdamped
and the VSM was overdamped. The two put together resulted in accordance to the
system response of the simulated models and the eigenvalues a system with a system
with desirable response.

By iteratively changing the the inputs of the system and linearizing around each
point the eigenvalue trajectory can be observed. This have shown that the system
have a satisfactory stability margin within the tested area. The system is in no
danger of becoming unstable by just changing the the input in delivered power or
absorbed power. By observing the placement of the modes in the full system model
it can be seen that the there are a variation of undamped and damped modes. It is
not satisfactory that all states are damped. The inertia of a power grid will cause
a low damping because of the nature of oscillations of systems with a high inertia.
This means that it is desirable to have a variation of damped and undamped poles,
in order to achieve a good stability margin.

Because the VSM can function connected to the load model both with and without
the SM connected shows that this system is able to function with an all-electric op-
eration, meaning the only source of energy is the VSM modeled as a battery storage
system. This have not been tested by tripping the SM but should work in theory
when the VSM is able to function in all operating modes. This shows the flexibility
of the VSM design and shows some of the possibilities for hybrid operations for a
marine power grid with a battery energy storage system.

It have been shown that this implementation of the VSM is able to handle a var-
ious different operating modes such as grid-connected which is relevant for a land
based battery charging for the marine power grid, islanded operation where the VSM
maintains the power grid on its own and in parallel with the SM showing how is can
adapt to other frequencys in the grid.
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10.1 Future work
A more detailed analysis can be done on this model. A parametric sensitivity anal-
ysis can be conducted in order to see how the different parameters influence the
stability and if there are parameters with potentially more suitable values for the
system, like the parameters for the VSM.

This implementation can be done different ways be using a different VSM topology.
This would give insight in what the most suitable VSM implementation is, and with
a stability analysis and make it possible to differentiate how the different control
topologies influence the power grid.

The models can be tested in a more realistic way by implementing additional con-
trol on the load model. Here an DC-controller or active and reactive power control
can be implemented. This will lead to more system states but will result in a more
correct model. This will also have an impact on the system response leading to a
more realistic operation of the grid.
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Chapter 11

Appendix

11.1 Equation system

Here the equation system of the VSM connected to a grid, SM connected to a grid
and the full system model can be found respectively.

VSM states:

xvsm = [v0,d,vsm v0q,vsm icv,d,vsm icv,q,vsm γd,vsm γq,vsm i0d,vsm i0q,vsm

φd,vsm φq,vsm ζvsm isd,vsm isq,vsm qm,vsm ωvsm δθvsm κvsm]

uvsm = [p∗vsm q∗vsm vg,d vg,q v̂
∗ ω∗vsm]

(11.1)

11.1.1 VSM connected to a grid

v̇0,d,vsm = ωb ωvsm v0,q,vsm −
i0,d,vsm ωb

cf
+

icvd,vsm ωb
cf

v̇0,qvsm =
icvq,vsm ωb

cf
− i0,q,vsm ωb

cf
− ωb ωvsm v0,d,vsm

i̇cv,d,vsm =
γd,vsm kic,vsm ωb

lf
− icvd,vsm ωb (kpc,vsm + rf )

lf
+

isd,vsm kpc,vsm ωb
lf

− kad,vsm ωb ϕd,vsm

lf

−ωb v0,d,vsm (kad,vsm − kffv + 1)

lf

i̇cv,q,vsm =
γq,vsm kic,vsm ωb

lf
− icvq,vsm ωb (kpc,vsm + rf )

lf
+

isq,vsm kpc,vsm ωb
lf

− kad,vsm ωb ϕq,vsm

lf

−ωb v0,q,vsm (kad,vsm − kffv + 1)

lf
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γ̇d,vsm = isd,vsm − icvd,vsm

γ̇q,vsm = isq,vsm − icvq,vsm

i̇0,d,vsm =
ωb v0,d,vsm

lg
+ i0,q,vsm ωb ωvsm−

i0,d,vsm ωb rg
lg

− ωb vhat,g,d cos (δθ,vsm)

lg
− ωb vhat,g,q sin (δθ,vsm)

lg

i̇0,q,vsm =
ωb v0,q,vsm

lg
− i0,d,vsm ωb ωvsm−

i0,q,vsm ωb rg
lg

− ωb vhat,g,q cos (δθ,vsm)

lg
+
ωb vhat,g,d sin (δθ,vsm)

lg

φ̇d,vsm = −ωad,vsm ϕd,vsm − ωad,vsm v0,d,vsm

φ̇q,vsm = −ωad,vsm ϕq,vsm − ωad,vsm v0,q,vsm

ζ̇vsm = vhat,star,vsm − kq,vsm qm,vsm + kq,vsm qstar,vsm −
√
v0,d,vsm

2 + v0,q,vsm
2

i̇s,d,vsm = isq,vsm ωb ωvsm −
ωb v0,d,vsm

ls,vsm

−

kpv,vsm ωb
√
v0,d,vsm

2 + v0,q,vsm
2

ls,vsm

− isd,vsm ωb rs,vsm

ls,vsm

+

kpv,vsm ωb vhat,star,vsm

ls,vsm

+
kiv,vsm ωb ζvsm

ls,vsm

− kpv,vsm kq,vsm ωb qm,vsm

ls,vsm

+
kpv,vsm kq,vsm ωb qstar,vsm

ls,vsm

i̇s,q,vsm = −ωb v0,q,vsm

ls,vsm

− isd,vsm ωb ωvsm −
isq,vsm ωb rs,vsm

ls,vsm

qm,vsm = i0,d,vsm ωqf,vsm v0,q,vsm − ωqf,vsm qm,vsm − i0,q,vsm ωqf,vsm v0,d,vsm

ω̇vsm =
pstar,vsm

Ta
− i0,d,vsm v0,d,vsm + i0,q,vsm v0,q,vsm

Ta

−ωvsm (kd,vsm + kω,vsm)

Ta
+
kd,vsm κvsm

Ta
+
kω,vsm ωstar,vsm

Ta

δ̇θvsm = ωb ωvsm − ωb ωg
κ̇vsm = ωvsm ωd,vsm − κvsm ωd,vsm

11.1.2 SM connected to a grid

SM states:

x = [vd,sm vq,sm i0,d,sm i0,q,sm id,sm iq,sm ifd,sm i1d,sm i1q,sm ωsm δθsm pm,sm ...

qm,sm ζsm vfd,sm]

u = [v̂g,d v̂g,q ωg p
∗
sm q∗sm v̂∗ ω∗sm]

(11.2)
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v̇sm,d = ωb ωg vsm,q −
i0,sm,d ωb
cmg

+
ism,d ωb
cmg

v̇sm,q =
ism,q ωb
cmg

− i0,sm,q ωb
cmg

− ωb ωg vsm,d

i̇0,sm,d =
ωb vsm,d

lmg

+ i0,sm,q ωb ωg −
i0,sm,d ωb rmg

lmg

− ωb vhat,g,d cos (δθ,sm)

lmg

i̇0,sm,q =
ωb vsm,q

lmg

− i0,sm,d ωb ωg −
i0,sm,q ωb rmg

lmg

+
ωb vhat,g,d sin (δθ,sm)

lmg

i̇sm,d =
ωb vsm,d

(
l11,d lff,d − lf1,d2

)
l11,d lad

2 + lad lf1,d
2 − 2 lad

2 lf1,d + lad
2 lff,d + lf1,d

2 ll − l11,d lad lff,d − l11,d lff,d ll
−

lad ωb vf,d (l11,d − lf1,d)
l11,d lad

2 + lad lf1,d
2 − 2 lad

2 lf1,d + lad
2 lff,d + lf1,d

2 ll − l11,d lad lff,d − l11,d lff,d ll
+

ism,d ωb ra
(
l11,d lff,d − lf1,d2

)
l11,d lad

2 + lad lf1,d
2 − 2 lad

2 lf1,d + lad
2 lff,d + lf1,d

2 ll − l11,d lad lff,d − l11,d lff,d ll
−

ism,q ωb ωsm (laq + ll)
(
l11,d lff,d − lf1,d2

)
l11,d lad

2 + lad lf1,d
2 − 2 lad

2 lf1,d + lad
2 lff,d + lf1,d

2 ll − l11,d lad lff,d − l11,d lff,d ll
−

i1,d lad ωb r1,d (lf1,d − lff,d)
l11,d lad

2 + lad lf1,d
2 − 2 lad

2 lf1,d + lad
2 lff,d + lf1,d

2 ll − l11,d lad lff,d − l11,d lff,d ll
+

if,d lad ωb rf,d (l11,d − lf1,d)
l11,d lad

2 + lad lf1,d
2 − 2 lad

2 lf1,d + lad
2 lff,d + lf1,d

2 ll − l11,d lad lff,d − l11,d lff,d ll
+

i1,q laq ωb ωsm

(
l11,d lff,d − lf1,d2

)
l11,d lad

2 + lad lf1,d
2 − 2 lad

2 lf1,d + lad
2 lff,d + lf1,d

2 ll − l11,d lad lff,d − l11,d lff,d ll

i̇sm,q =
ωb vsm,d

(
l11,d lff,d − lf1,d2

)
l11,d lad

2 + lad lf1,d
2 − 2 lad

2 lf1,d + lad
2 lff,d + lf1,d

2 ll − l11,d lad lff,d − l11,d lff,d ll
−

lad ωb vf,d (l11,d − lf1,d)
l11,d lad

2 + lad lf1,d
2 − 2 lad

2 lf1,d + lad
2 lff,d + lf1,d

2 ll − l11,d lad lff,d − l11,d lff,d ll
+

ism,d ωb ra
(
l11,d lff,d − lf1,d2

)
l11,d lad

2 + lad lf1,d
2 − 2 lad

2 lf1,d + lad
2 lff,d + lf1,d

2 ll − l11,d lad lff,d − l11,d lff,d ll
−

ism,q ωb ωsm (laq + ll)
(
l11,d lff,d − lf1,d2

)
l11,d lad

2 + lad lf1,d
2 − 2 lad

2 lf1,d + lad
2 lff,d + lf1,d

2 ll − l11,d lad lff,d − l11,d lff,d ll
−

i1,d lad ωb r1,d (lf1,d − lff,d)
l11,d lad

2 + lad lf1,d
2 − 2 lad

2 lf1,d + lad
2 lff,d + lf1,d

2 ll − l11,d lad lff,d − l11,d lff,d ll
+

if,d lad ωb rf,d (l11,d − lf1,d)
l11,d lad

2 + lad lf1,d
2 − 2 lad

2 lf1,d + lad
2 lff,d + lf1,d

2 ll − l11,d lad lff,d − l11,d lff,d ll
+

i1,q laq ωb ωsm

(
l11,d lff,d − lf1,d2

)
l11,d lad

2 + lad lf1,d
2 − 2 lad

2 lf1,d + lad
2 lff,d + lf1,d

2 ll − l11,d lad lff,d − l11,d lff,d ll
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i̇f,d =
lad ωb vsm,d (l11,d − lf1,d)

l11,d lad
2 + lad lf1,d

2 − 2 lad
2 lf1,d + lad

2 lff,d + lf1,d
2 ll − l11,d lad lff,d − l11,d lff,d ll

−

ωb vf,d
(
−lad

2 + l11,d lad + l11,d ll
)

l11,d lad
2 + lad lf1,d

2 − 2 lad
2 lf1,d + lad

2 lff,d + lf1,d
2 ll − l11,d lad lff,d − l11,d lff,d ll

−

i1,d ωb r1,d

(
−lad

2 + lf1,d lad + lf1,d ll
)

l11,d lad
2 + lad lf1,d

2 − 2 lad
2 lf1,d + lad

2 lff,d + lf1,d
2 ll − l11,d lad lff,d − l11,d lff,d ll

+

if,d ωb rf,d
(
−lad

2 + l11,d lad + l11,d ll
)

l11,d lad
2 + lad lf1,d

2 − 2 lad
2 lf1,d + lad

2 lff,d + lf1,d
2 ll − l11,d lad lff,d − l11,d lff,d ll

+

ism,d lad ωb ra (l11,d − lf1,d)
l11,d lad

2 + lad lf1,d
2 − 2 lad

2 lf1,d + lad
2 lff,d + lf1,d

2 ll − l11,d lad lff,d − l11,d lff,d ll
+

i1,q lad laq ωb ωsm (l11,d − lf1,d)
l11,d lad

2 + lad lf1,d
2 − 2 lad

2 lf1,d + lad
2 lff,d + lf1,d

2 ll − l11,d lad lff,d − l11,d lff,d ll
−

ism,q lad ωb ωsm (laq + ll) (l11,d − lf1,d)
l11,d lad

2 + lad lf1,d
2 − 2 lad

2 lf1,d + lad
2 lff,d + lf1,d

2 ll − l11,d lad lff,d − l11,d lff,d ll

i̇1,d =
lad ωb vsm,d (l11,d − lf1,d)

l11,d lad
2 + lad lf1,d

2 − 2 lad
2 lf1,d + lad

2 lff,d + lf1,d
2 ll − l11,d lad lff,d − l11,d lff,d ll

−

ωb vf,d
(
−lad

2 + l11,d lad + l11,d ll
)

l11,d lad
2 + lad lf1,d

2 − 2 lad
2 lf1,d + lad

2 lff,d + lf1,d
2 ll − l11,d lad lff,d − l11,d lff,d ll

−

i1,d ωb r1,d

(
−lad

2 + lf1,d lad + lf1,d ll
)

l11,d lad
2 + lad lf1,d

2 − 2 lad
2 lf1,d + lad

2 lff,d + lf1,d
2 ll − l11,d lad lff,d − l11,d lff,d ll

+

if,d ωb rf,d
(
−lad

2 + l11,d lad + l11,d ll
)

l11,d lad
2 + lad lf1,d

2 − 2 lad
2 lf1,d + lad

2 lff,d + lf1,d
2 ll − l11,d lad lff,d − l11,d lff,d ll

+

ism,d lad ωb ra (l11,d − lf1,d)
l11,d lad

2 + lad lf1,d
2 − 2 lad

2 lf1,d + lad
2 lff,d + lf1,d

2 ll − l11,d lad lff,d − l11,d lff,d ll
+

i1,q lad laq ωb ωsm (l11,d − lf1,d)
l11,d lad

2 + lad lf1,d
2 − 2 lad

2 lf1,d + lad
2 lff,d + lf1,d

2 ll − l11,d lad lff,d − l11,d lff,d ll
−

ism,q lad ωb ωsm (laq + ll) (l11,d − lf1,d)
l11,d lad

2 + lad lf1,d
2 − 2 lad

2 lf1,d + lad
2 lff,d + lf1,d

2 ll − l11,d lad lff,d − l11,d lff,d ll
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i̇1,q =
i1,d lad laq ωb ωsm

−laq
2 + l11,q laq + l11,q ll

− i1,q ωb r1,q (laq + ll)

−laq
2 + l11,q laq + l11,q ll

− ism,q laq ωb ra

−laq
2 + l11,q laq + l11,q ll

−

ism,d laq ωb ωsm (lad + ll)

−laq
2 + l11,q laq + l11,q ll

− laq ωb vsm,q

−laq
2 + l11,q laq + l11,q ll

+
if,d lad laq ωb ωsm

−laq
2 + l11,q laq + l11,q ll

ω̇sm =
pm,sm
Tsm ωsm

− i1,d ism,q lad

Tsm

+
i1,q ism,d laq

Tsm

− if,d ism,q lad

Tsm

+
ism,d ism,q (lad − laq)

Tsm

δθsm = ωb ωsm − ωb ωg

ṗm,sm =
psm,star

Tgt

− pm,sm
Tgt

− kω,sm ωsm

Tgt

+
kω,sm ωsm,star

Tgt

q̇m,sm = ωf,sm (ism,d vsm,q − ism,q vsm,d)− ωf,sm qm,sm
ζ̇sm = vhat,sm,star − kq,sm qm,sm + kq,sm qm,sm,star −

√
vsm,d

2 + vsm,q
2

v̇f,d =
kp,ex vhat,sm,star

Tex

−
kp,ex

√
vsm,d

2 + vsm,q
2

Tex

− vf,d
Tex

+

ki,ex ζsm

Tex

− kp,ex kq,sm qm,sm
Tex

+
kp,ex kq,sm qm,sm,star

Tex

11.1.3 Full system model

The states in the full system model

x = [v0,d,vsm v0q,vsm icv,d,vsm icv,q,vsm γd,vsm γq,vsm i0d,vsm i0q,vsm...

φd,vsm φq,vsm ζvsm isd,vsm isq,vsm qm,vsm ωvsm κvsmvd,sm vq,sm...

i0,d,sm i0,q,sm id,sm iq,sm ifd,sm i1d,sm i1q,sm ωsm δθsm pm,sm ...

qm,sm ζsm vfd,smv0d,l vcvq,l icvd,l γd,l γq,li0d,l i0d,l φd,l...

φq,l vpll,d,l vpll,d,l δθpll,l vg,d,l vg,d,l]

u = [p∗vsm q∗vsm v̂∗ ω∗vsm p∗sm q∗sm v̂∗ ω∗sm i∗cv,d i
∗
cv,q]

(11.3)

Some equations defined in order to simplify the equation set:

ωpll,n = 1

ωpll = (kp,pllatan(vpll,q/vpll,q) + ki,pllε+ ωpll,n

vcv,load,d = kpc,load(i
∗
cv,d − icv,load) + kic,loadγload

−lf,loadicv,d,loadωpll − kad,lv0,d,load + kad,load
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v̇0,d,vsm = ωb ωvsm v0,q,vsm −
i0,d,vsm ωb

cf
+

icvd,vsm ωb
cf

v̇0,q,vsm =
icvq,vsm ωb

cf
− i0,q,vsm ωb

cf
− ωb ωvsm v0,d,vsm

i̇cv,d,vsm =
γd,vsm kic,vsm ωb

lf
− icvd,vsm ωb (kpc,vsm + rf )

lf
+

isd,vsm kpc,vsm ωb
lf

− kad,vsm ωb ϕd,vsm

lf

−ωb v0,d,vsm (kad,vsm − kffv + 1)

lf

i̇cv,q,vsm =
γq,vsm kic,vsm ωb

lf
− icvq,vsm ωb (kpc,vsm + rf )

lf
+

isq,vsm kpc,vsm ωb
lf

− kad,vsm ωb ϕq,vsm

lf

−ωb v0,q,vsm (kad,vsm − kffv + 1)

lf

γ̇d,vsm = isd,vsm − icvd,vsm

γ̇q,vsm = isq,vsm − icvq,vsm

i̇0,d,vsm =
ωb v0,d,vsm

lg
− ωb vg,d

lg
+ i0,q,vsm ωb ωvsm −

i0,d,vsm ωb rg
lg

i̇0,q,vsm =
ωb v0,q,vsm

lg
− ωb vg,q

lg
− i0,d,vsm ωb ωvsm −

i0,q,vsm ωb rg
lg

φ̇d,vsm = load− ωad,vsm ϕd,vsm − ωad,vsm v0,d,vsm

φ̇q,vsm = −ωad,vsm ϕq,vsm − ωad,vsm v0,q,vsm

ζ̇vsm = vhat,star,vsm − kq,vsm qm,vsm + kq,vsm qstar,vsm −
√
v0,d,vsm

2 + v0,q,vsm
2

i̇s,d,vsm = isq,vsm ωb ωvsm −
ωb v0,d,vsm

ls,vsm

−
kpv,vsm ωb

√
v0,d,vsm

2 + v0,q,vsm
2

ls,vsm

−

isd,vsm ωb rs,vsm

ls,vsm

+
kpv,vsm ωb vhat,star,vsm

ls,vsm

+
kiv,vsm ωb ζvsm

ls,vsm

− kpv,vsm kq,vsm ωb qm,vsm

ls,vsm

+
kpv,vsm kq,vsm ωb qstar,vsm

ls,vsm

i̇s,q,vsm = −ωb v0,q,vsm

ls,vsm

− isd,vsm ωb ωvsm −
isq,vsm ωb rs,vsm

ls,vsm

q̇m,vsm = i0,d,vsm ωqf,vsm v0,q,vsm − ωqf,vsm qm,vsm − i0,q,vsm ωqf,vsm v0,d,vsm

ω̇vsm =
pstar,vsm

Ta
− i0,d,vsm v0,d,vsm + i0,q,vsm v0,q,vsm

Ta

−ωvsm (kd,vsm + kω,vsm)

Ta
+
kd,vsm κvsm

Ta
+
kω,vsm ωstar,vsm

Ta
κ̇vsm = ωvsm ωd,vsm − κvsm ωd,vsm
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v̇0,d,load = ωb ωvsm v0,q −
i0,d ωb
cf

+
icvd ωb
cf

v̇0,q,load =
icvq ωb
cf

− i0,q ωb
cf
− ωb ωvsm v0,d

i̇cv,d,load =
ωb
lf

(vcv,d − rf icv,d − v0,d + lf icv,q,loadωvsm

i̇cv,q,load =
ωb
lf

(vcv,q − rf icv,q − v0,q − lf icv,d,loadωvsm

γ̇d,load = icvd,star − icvd

γ̇q,load = icvq,star − icvq

i̇0,d,load =
ωb v0,d

lg
+ i0,q ωb ωvsm −

i0,d ωb rg
lg

− ωb vg,d cos (δθ,pll)

lg
− ωb vg,q sin (δθ,pll)

lg

i̇0,q,load =
ωb v0,q

lg
− i0,d ωb ωvsm −

i0,q ωb rg
lg

− ωb vg,q cos (δθ,pll)

lg
+
ωb vg,d sin (δθ,pll)

lg

φ̇d,load = ωad v0,d − ωad ϕd

φ̇q,load = ωad v0,q − ωad ϕq

v̇pll,d,load = ωlp,pll v0,d − ωlp,pll vpll,d

v̇pll,q,load = ωlp,pll v0,q − ωlp,pll vpll,q

ε̇load = atan

(
vpll,q

vpll,d

)
δ̇θpll = ωb

(
epsi ki,pll + kp,pll atan

(
vpll,q

vpll,d

)
+ 1

)
− ωb ωvsm

v̇g,d = ωb ωvsm vg,q +
i0,d,vsm ωb

cl
+
i0,d ωb cos (δθ,pll)

cl
+
i0,sm,d ωb cos (δθ,sm)

cl
− i0,q ωb sin (δθ,pll)

cl

−i0,sm,q ωb sin (δθ,sm)

cl
− ωb vg,d

cl rl

v̇g,q =
i0,q,vsm ωb

cl
− ωb ωvsm vg,d +

i0,q ωb cos (δθ,pll)

cl
+
i0,sm,q ωb cos (δθ,sm)

cl
+
i0,d ωb sin (δθ,pll)

cl

+
i0,sm,d ωb sin (δθ,sm)

cl
− ωb vg,q

cl rl

v̇sm,d = ωb ωvsm vsm,q −
i0,sm,d ωb
cmg

+
ism,d ωb
cmg

v̇sm,q =
ism,q ωb
cmg

− i0,sm,q ωb
cmg

− ωb ωvsm vsm,d

i̇0,sm,d =
ωb vsm,d

lmg

+ i0,sm,q ωb ωvsm −
i0,sm,d ωb rmg

lmg

− ωb vg,d cos (δθ,sm)

lmg

− ωb vg,q sin (δθ,sm)

lmg

i̇0,sm,q =
ωb vsm,q

lmg

− i0,sm,d ωb ωvsm −
i0,sm,q ωb rmg

lmg

− ωb vg,q cos (δθ,sm)

lmg

+
ωb vg,d sin (δθ,sm)

lmg
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i̇sm,d =
ωb vsm,d

(
l11,d lff,d − lf1,d2

)
l11,d lad

2 + lad lf1,d
2 − 2 lad

2 lf1,d + lad
2 lff,d + lf1,d

2 ll − l11,d lad lff,d − l11,d lff,d ll
−

lad ωb vf,d (l11,d − lf1,d)
l11,d lad

2 + lad lf1,d
2 − 2 lad

2 lf1,d + lad
2 lff,d + lf1,d

2 ll − l11,d lad lff,d − l11,d lff,d ll
+

ism,d ωb ra
(
l11,d lff,d − lf1,d2

)
l11,d lad

2 + lad lf1,d
2 − 2 lad

2 lf1,d + lad
2 lff,d + lf1,d

2 ll − l11,d lad lff,d − l11,d lff,d ll
−

ism,q ωb ωsm (laq + ll)
(
l11,d lff,d − lf1,d2

)
l11,d lad

2 + lad lf1,d
2 − 2 lad

2 lf1,d + lad
2 lff,d + lf1,d

2 ll − l11,d lad lff,d − l11,d lff,d ll
−

i1,d lad ωb r1,d (lf1,d − lff,d)
l11,d lad

2 + lad lf1,d
2 − 2 lad

2 lf1,d + lad
2 lff,d + lf1,d

2 ll − l11,d lad lff,d − l11,d lff,d ll
+

if,d lad ωb rf,d (l11,d − lf1,d)
l11,d lad

2 + lad lf1,d
2 − 2 lad

2 lf1,d + lad
2 lff,d + lf1,d

2 ll − l11,d lad lff,d − l11,d lff,d ll
+

i1,q laq ωb ωsm

(
l11,d lff,d − lf1,d2

)
l11,d lad

2 + lad lf1,d
2 − 2 lad

2 lf1,d + lad
2 lff,d + lf1,d

2 ll − l11,d lad lff,d − l11,d lff,d ll

i̇sm,q =
i1,d l11,q lad ωb ωsm

−laq
2 + l11,q laq + l11,q ll

− i1,q laq ωb r1,q

−laq
2 + l11,q laq + l11,q ll

− ism,q l11,q ωb ra

−laq
2 + l11,q laq + l11,q ll

−

ism,d l11,q ωb ωsm (lad + ll)

−laq
2 + l11,q laq + l11,q ll

− l11,q ωb vsm,q

−laq
2 + l11,q laq + l11,q ll

+
if,d l11,q lad ωb ωsm

−laq
2 + l11,q laq + l11,q ll

i̇f,d =
lad ωb vsm,d (l11,d − lf1,d)

l11,d lad
2 + lad lf1,d

2 − 2 lad
2 lf1,d + lad

2 lff,d + lf1,d
2 ll − l11,d lad lff,d − l11,d lff,d ll

−

ωb vf,d
(
−lad

2 + l11,d lad + l11,d ll
)

l11,d lad
2 + lad lf1,d

2 − 2 lad
2 lf1,d + lad

2 lff,d + lf1,d
2 ll − l11,d lad lff,d − l11,d lff,d ll

−

i1,d ωb r1,d

(
−lad

2 + lf1,d lad + lf1,d ll
)

l11,d lad
2 + lad lf1,d

2 − 2 lad
2 lf1,d + lad

2 lff,d + lf1,d
2 ll − l11,d lad lff,d − l11,d lff,d ll

+

if,d ωb rf,d
(
−lad

2 + l11,d lad + l11,d ll
)

l11,d lad
2 + lad lf1,d

2 − 2 lad
2 lf1,d + lad

2 lff,d + lf1,d
2 ll − l11,d lad lff,d − l11,d lff,d ll

+

ism,d lad ωb ra (l11,d − lf1,d)
l11,d lad

2 + lad lf1,d
2 − 2 lad

2 lf1,d + lad
2 lff,d + lf1,d

2 ll − l11,d lad lff,d − l11,d lff,d ll
+

i1,q lad laq ωb ωsm (l11,d − lf1,d)
l11,d lad

2 + lad lf1,d
2 − 2 lad

2 lf1,d + lad
2 lff,d + lf1,d

2 ll − l11,d lad lff,d − l11,d lff,d ll
−

ism,q lad ωb ωsm (laq + ll) (l11,d − lf1,d)
l11,d lad

2 + lad lf1,d
2 − 2 lad

2 lf1,d + lad
2 lff,d + lf1,d

2 ll − l11,d lad lff,d − l11,d lff,d ll
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i̇1,d =
ωb vf,d

(
−lad

2 + lf1,d lad + lf1,d ll
)

l11,d lad
2 + lad lf1,d

2 − 2 lad
2 lf1,d + lad

2 lff,d + lf1,d
2 ll − l11,d lad lff,d − l11,d lff,d ll

−

lad ωb vsm,d (lf1,d − lff,d)
l11,d lad

2 + lad lf1,d
2 − 2 lad

2 lf1,d + lad
2 lff,d + lf1,d

2 ll − l11,d lad lff,d − l11,d lff,d ll
+

i1,d ωb r1,d

(
−lad

2 + lff,d lad + lff,d ll
)

l11,d lad
2 + lad lf1,d

2 − 2 lad
2 lf1,d + lad

2 lff,d + lf1,d
2 ll − l11,d lad lff,d − l11,d lff,d ll

−

if,d ωb rf,d
(
−lad

2 + lf1,d lad + lf1,d ll
)

l11,d lad
2 + lad lf1,d

2 − 2 lad
2 lf1,d + lad

2 lff,d + lf1,d
2 ll − l11,d lad lff,d − l11,d lff,d ll

−

ism,d lad ωb ra (lf1,d − lff,d)
l11,d lad

2 + lad lf1,d
2 − 2 lad

2 lf1,d + lad
2 lff,d + lf1,d

2 ll − l11,d lad lff,d − l11,d lff,d ll
−

i1,q lad laq ωb ωsm (lf1,d − lff,d)
l11,d lad

2 + lad lf1,d
2 − 2 lad

2 lf1,d + lad
2 lff,d + lf1,d

2 ll − l11,d lad lff,d − l11,d lff,d ll
+

ism,q lad ωb ωsm (laq + ll) (lf1,d − lff,d)
l11,d lad

2 + lad lf1,d
2 − 2 lad

2 lf1,d + lad
2 lff,d + lf1,d

2 ll − l11,d lad lff,d − l11,d lff,d ll

i̇1,q =
i1,d lad laq ωb ωsm

−laq
2 + l11,q laq + l11,q ll

− i1,q ωb r1,q (laq + ll)

−laq
2 + l11,q laq + l11,q ll

− ism,q laq ωb ra

−laq
2 + l11,q laq + l11,q ll

−ism,d laq ωb ωsm (lad + ll)

−laq
2 + l11,q laq + l11,q ll

− laq ωb vsm,q

−laq
2 + l11,q laq + l11,q ll

+
if,d lad laq ωb ωsm

−laq
2 + l11,q laq + l11,q ll

ω̇sm =
pm,sm
Tsm ωsm

− i1,d ism,q lad

Tsm

+
i1,q ism,d laq

Tsm

− if,d ism,q lad

Tsm

+
ism,d ism,q (lad − laq)

Tsm

δ̇θsm = ωb ωsm − ωb ωvsm

ṗm,sm =
psm,star

Tgt

− pm,sm
Tgt

− kω,sm ωsm

Tgt

+
kω,sm ωsm,star

Tgt

q̇m,sm = ωf,sm (ism,d vsm,q − ism,q vsm,d)− ωf,sm qm,sm
ζ̇sm = vhat,sm,star − kq,sm qm,sm + kq,sm qm,sm,star −

√
vsm,d

2 + vsm,q
2

v̇f,d =
kp,ex vhat,sm,star

Tex

−
kp,ex

√
vsm,d

2 + vsm,q
2

Tex

− vf,d
Tex

+
ki,ex ζsm

Tex

−kp,ex kq,sm qm,sm
Tex

+
kp,ex kq,sm qm,sm,star

Tex
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11.2 SM parameters
Table showing the parameters of the SM

Parameter Value
r1,d 0.050477
l11,d 2.6734
r1,q 0.010024
l11,q 1.6117
rf 0.0036817
lf1 2.3955
ra 0.013184
lad 2.3955
laq 1.3955
ll 0.05450
lff 2.5504
Tsm 1.7
kd,sm 0
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